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Predicting new links in physical, biological, social, or technological networks has a significant scientific and
societal impact. Path-based link prediction methods utilize the explicit counting of even- and odd-length paths
between nodes to quantify a score function and infer new or unobserved links. Here, we propose a quantum
algorithm for path-based link prediction using a controlled continuous-time quantum walk to encode even and
odd path-based prediction scores. Through classical simulations on a few real networks, we confirm that the
quantum walk scoring function performs similarly to other path-based link predictors. In a brief complexity
analysis we identify the potential of our approach in uncovering a quantum speedup for path-based link
prediction.
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I. INTRODUCTION

From genes and proteins that govern our cellular func-
tion, to our everyday use of the Internet, Nature and our
lives are surrounded by interconnected systems [1]. Net-
work science aims to study these complex networks and
provides a powerful framework to understand their struc-
ture, function, dynamics, and growth. Studies in network
science typically have a substantial computational compo-
nent, borrowing tools from graph theory to extract relevant
information about the underlying system. With the advent
of quantum computation, a natural question to ask is which
problems in network science can be explored with this
new computing paradigm and what benefits it can yield.
This question can be interpreted in at least two different
ways. First, there is a large body of work in quantum al-
gorithms for graph theoretical problems, some examples
being Refs. [2–5], which may have their own applications in
network science problems. However, network science algo-
rithms often look for specific patterns or organizing principles
based on empirical observations from the real underlying
systems, which may warrant the development of problem-
specific quantum algorithms. This constitutes a novel research
direction, different from the development of more general
graph-theoretical algorithms. Previous connections have been
made between quantum phenomena and complex networks,
both by using quantum tools to study complex networks

*Corresponding author: joao.p.moutinho@tecnico.ulisboa.pt

[6–9] and by using complex network tools to study quantum
systems [10]. Nevertheless, to our knowledge, potential quan-
tum speedups for network science problems have not been
addressed.

In this work we propose a quantum algorithm to the
problem of link prediction in complex networks using
continuous-time quantum walks (CTQW) [11,12] inspired
by popular path-based methods and discuss potential quan-
tum speedups over classical algorithms. The objective in link
prediction is to identify unknown connections in a network
[13–18]. For example, in social networks, we aim to predict
which individuals will develop shared friendships, profes-
sional relations, exchange of goods and services, or others
[13,14]. In biological networks, the main focus is the issue
of data incompleteness, which hinders our understanding of
complex biological function. For example, in protein-protein
interaction (PPI) networks link prediction methods have al-
ready proven to be a valuable tool in mapping out the large
amount of missing data [19,20]. While there are many ap-
proaches to the problem of link prediction [18], such as using
machine learning techniques [21,22], stochastic block models
[23], or studying global perturbations [24] other methods fo-
cused on simple topological features like paths of different
length between nodes quantified by powers of the adja-
cency matrix. Path-based methods are simple but remarkably
popular and have been shown to be competitive with other ap-
proaches in networks of various types [18,25–27]. In our work
we show that quantum walks can be used as a natural encoding
of path-based link prediction in the development of a quantum
algorithm.

2469-9926/2023/107(3)/032605(12) 032605-1 ©2023 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.107.032605&domain=pdf&date_stamp=2023-03-10
https://doi.org/10.1103/PhysRevA.107.032605


JOÃO P. MOUTINHO et al. PHYSICAL REVIEW A 107, 032605 (2023)

FIG. 1. Classical path-based link prediction. Link prediction methods take as input in a complex network with a corresponding adjacency
matrix A. Each method then associates a prediction value pi j , or score, to every pair of nodes {i, j}, such that a higher value pi j correlates to
a higher probability of the link {i, j} appearing. This requires assumptions about the organizing principles of each network. Predictions based
on the triangle closure principle (TCP) rely on similarity between nodes, represented as a matrix S, a common assumption about connections
in social networks. This can be quantified in the simplest case as P ∼ S ∼ A2, counting paths of length 2 between pairs of nodes. As an
alternative, proteins often connect to others that are similar to their neighbors, but not necessarily similar to themselves, quantified for example
as P ∼ AS ∼ A3, counting paths of length 3 between nodes [19]. Most classical link prediction methods output all nonzero entries of matrix
P, organized in a ranked list of scores from highest to lowest, where the relevant top l predictions are those where the precision is above a
user-determined threshold δ. The relevant predictions are considered as new inferred links, represented in yellow, while the rest are discarded.

II. CLASSICAL PATH-BASED LINK PREDICTION

Link prediction methods take as input a graph G(V, E ),
where V is the set of nodes with size N = |V| and E is the set
of undirected links, often described by the adjacency matrix
A ∈ {0, 1}N×N ,

Ai j = Aji =
{

1 if (i, j) ∈ E,

0 otherwise, (1)

and output a matrix of predictions P ∈ RN×N where each
entry pi j is a score value quantifying the likelihood of a link
existing between nodes i and j (see Fig. 1). Each method
computes P differently, depending on the assumptions made
about the network and its emergent topological features. Most
path-based methods are based on the triadic closure principle
(TCP), assuming that two nodes are more likely to connect
the more similar they are [17,19]. Given a matrix S ∈ RN×N ,
quantifying the similarity between any two nodes, predictions
based on TCP assume that

P = S. (2)

Similarity is often quantified based on the number of shared
connections, i.e., paths of length two between two nodes,
which can be computed as S = A2. A possible generalization
is to consider a linear combination of even powers of A. It
has been shown that, despite its dominant use in biological

networks, the TCP approach is not valid for most protein pairs
[19]. Instead, in Ref. [19], a link prediction method (L3) was
proposed without the assumption that node similarity corre-
lates with direct connectivity. L3 is based on the assumption
that a potential new link (i, j) relies on i being similar to the
existing neighbors of j. In matrix form, predictions based on
the L3 paradigm may be computed by extending the similarity
matrix S one step over the adjacency matrix

P = AS, (3)

as illustrated in Fig. 1. Considering the simple case of S = A2,
the authors of Ref. [19] defined P based on AS = A3, with an
added degree of normalization. Their results showed the L3
method significantly outperforms other TCP-based methods
in the prediction of protein-protein interactions. At the same
time, the LO method was proposed in Ref. [28], which rep-
resents P as a linear combination of odd powers of A, also
showing significant improvements over TCP-based methods.
Other follow-up studies proposed different L3-based methods
[29] and further studied the application of L3- and TCP-based
methods [25,30], concluding that L3-based methods perform
well in various network categories.

Our quantum approach takes inspiration from both these
paradigms, utilizing even (TCP) and odd (L3-like) powers of
A. One of the main reasons why link prediction may prove
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FIG. 2. Quantum link prediction (QLP) circuit. The algorithm requires a total of n = log2(N ) qubits to encode each of the N nodes as
a basis state and an extra ancilla qubit qa to perform controlled operations. The ancilla qubit is initialized to |0〉 and the remaining n qubits
are initialized to some basis state | j〉 corresponding to a node in the network. The first Hadamard gate creates a superposition of |0〉 and |1〉
in qa. A controlled QW, represented here by two operators, applies e−iAt to the remaining n qubits if qa = |0〉 and e+iAt if qa = |1〉. Given
that qa is in a superposition of |0〉 and |1〉, the controlled QW creates a superposition of the two evolutions entangled to the ancilla qubit. A
second Hadamard gate applied to the ancilla qubit mixes the two subspaces together and creates an interference between the two quantum
walks. Finally, all qubits are measured. The measurement of qa collapses the network to one of two possible cases, imposing either a sum
or subtraction of the two conjugate evolutions, which encodes even powers of A (even predictions) for qa = |0〉 and odd powers of A (odd
predictions) for qa = |1〉 [Eqs. (6) and (7)]. The measurement of the remaining n qubits returns a bit string marking a node i, which together
with the initial node j forms a sample of a link (i, j) [Eq. (12)].

suitable to be tackled with a quantum computer is the real-
ization that, in practice, we are not interested in knowing the
scores of all pairs of nodes, but we simply wish to know which
ones have the highest score up to a certain cutoff threshold,
as illustrated in Fig. 1. By encoding the prediction scores in
the amplitudes of a quantum superposition and performing
quantum measurements on the system, the predictions with
the highest score will be naturally sampled with higher prob-
ability, which can potentially be advantageous compared to
the classical case of explicitly computing all scores as long
as the quantum superposition can be efficiently prepared. We
proceed now in Sec. III with the description of the quantum
method and discuss in Sec. IV the expected resource complex-
ity and show example comparisons with classical path-based
methods.

III. QUANTUM LINK PREDICTION

We now describe our method for quantum link prediction
(QLP), which we summarize at the end. We base our approach
on a CTQW [11,12], where the Hilbert space of the quantum
walker is defined by the orthonormal basis set {| j〉} j∈V , with
each | j〉 corresponding to a localized state at a node j. We
consider the Hamiltonian of the evolution as the adjacency

matrix of the graph, A. In Fig. 2 we show the main structure
of the QLP circuit using a qubit representation. In the simplest
case, we require n = log2 N qubits to add a binary label to
each of the N nodes, hereafter marked by the subscript n, and
we consider an extra ancilla qubit qa that doubles the Hilbert
space of the quantum walk, such that any node j has two
associated basis states

|0〉a| j〉n and |1〉a| j〉n. (4)

For an initial state |ψ j (0)〉 = |0〉a| j〉n, the first step in the
circuit of Fig. 2 is to apply an Hadamard gate to qa, which
creates the superposition

1√
2

(|0〉 + |1〉)a| j〉n. (5)

A conditional CTQW is then applied which evolves the qa =
|0〉 subspace with e−iAt and the qa = |1〉 subspace with e+iAt .
Finally, a second Hadamard gate is applied to qa to inter-
fere with the two quantum walks in the computational basis,
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leading to the state

|ψ j (t )〉 = |0〉a

(
e−iAt + eiAt

2

)
| j〉n

+ |1〉a

(
e−iAt − eiAt

2

)
| j〉n. (6)

To make the connection with the link prediction more evident,
we rewrite the previous expression as

|ψ j (t )〉 = |0〉a

(+∞∑
k=0

ceven(k, t ) A2k

)
| j〉n

+ i|1〉a

(+∞∑
k=0

codd(k, t ) A2k+1

)
| j〉n, (7)

where we replaced the exponential terms with their respective
power series and defined the time-dependent coefficients as

ceven(k, t ) = (−1)kt2k/(2k)!, (8)

codd(k, t ) = (−1)k+1t2k+1/(2k + 1)!. (9)

A detailed calculation leading to Eq. (7) can be found in
Appendix A. Given some initial node j, Eq. (7) describes
the state that is created following the QLP circuit, before
measurement. This state has two entangled components, one
with a linear combination of even powers of A for qa = |0〉
and another with odd powers of A for qa = |1〉. The time t
of the quantum walk defines the linear weights and acts as a
hyperparameter in the model. This describes the unitary part
of the protocol. To obtain relevant predictions from this state
we must perform repeated measurements on the system to
draw multiple samples, as we now describe.

The first step is to measure qa, yielding |0〉 or |1〉 and
collapsing the state of the remaining qubits to

|ψ j (t )〉even
n ∝

(∑
k

ceven(k, t ) A2k

)
| j〉, or (10)

|ψ j (t )〉odd
n ∝

(∑
k

codd(k, t ) A2k+1

)
| j〉, (11)

respectively, where we omitted the normalization. This effec-
tively selects whether the link sampled will be drawn from a
distribution encoding even or odd powers of A. The last step
is then to measure the remaining qubits, yielding a bit string
corresponding to a sample of some node i with probability

peven
i j ∝

∣∣∣∣∣〈i|
(+∞∑

k=0

ceven(k, t ) A2k

)
| j〉

∣∣∣∣∣
2

,

podd
i j ∝

∣∣∣∣∣〈i|
(+∞∑

k=0

codd(k, t ) A2k+1

)
| j〉

∣∣∣∣∣
2

, (12)

which, together with the initial node j, forms a sample of a
link (i, j). The values peven

i j and podd
i j encode the prediction

scores of the link (i, j), but these cannot be directly extracted
from the algorithm. Instead, what this algorithm allows is
the repeated sampling of these distributions, yielding pairs
of nodes (i, j) with probability proportional to peven

i j or podd
i j .

FIG. 3. QLP algorithm. Starting with an initial node j, the QLP
circuit samples a node i corresponding to an even or odd prediction
of a link (i, j) according to the value measured in qa. Repeating this
procedure for each node j allows the larger values of the even and
odd predictions scores pi j to be approximated.

This is analogous to sampling entries (i, j) from the matrix
of prediction scores P with probability proportional to |Pi j |2.
As discussed in Sec. II, predictions coming from even or odd
powers of A are typically useful in different types of net-
works. For a given network application of QLP, whether each
sample obtained corresponds to an even or odd prediction
depends on the value measured in the ancilla qubit and this
postselection can only be done probabilistically [31]. This is a
potential sampling overhead, as unwanted predictions need to
be discarded. Another overhead to consider is the possibility
of sampling the initial node, or to sample already existing
links, given the contribution of the identity I in peven

i j and A
in podd

i j , which must also be discarded. As stated, QLP uses a
linear combination of powers of A weighted by the time t . As
already mentioned, a classical prediction method with a linear
combination of odd powers of A was presented in Ref. [28],
which was shown to sometimes improve the prediction preci-
sion compared to the original L3 method from Ref. [19] by
also fitting an additional model parameter. Another popular
link prediction method is the Katz index [32], which uses a
linear combination of all powers of A.

We can now summarize the QLP algorithm, as illustrated in
Fig. 3. First, an initial state |ψ j (0)〉 = |0〉a| j〉n is prepared for
a node j in the network. Second, the QLP evolution leading to
Eq. (7) is performed for a specific time t . Finally, the ancilla
and node qubits are measured to obtain a sample of a link
(i, j) corresponding to an even or odd prediction, and the
procedure is repeated. The number of samples that output a
certain link (i, j) will follow the distributions described by
Eq. (12), and thus represent a score for link (i, j). Once pre-
dictions associated with node j are sufficiently characterized,
the procedure can be repeated for other relevant nodes in the
network.

IV. RESULTS AND DISCUSSION

A. Complexity analysis

To identify a potential quantum advantage, we briefly
discuss how link prediction scales on a classical com-
puter. Complex networks are typically sparse [1] with the
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FIG. 4. Computational cross-validation: Precision. Cumulative precision over the list of ranked scores for each network, averaged over a
ten-fold cross validation procedure. The shaded regions correspond to the standard deviation. Details on the precision and score rank metrics
are described in the text. The networks used correspond to the PPI networks HI-III-20, the most recent PPI mapping of the human interactome
[20], Yeast-Bio, a PPI network of a yeast organism [35], Messel, a food web [36], Hamsterster [37] and Facebook [38], two online social
networks, and Wiki-Vote, a vote network between users for adminship of Wikipedia [39]. For comparison, we implemented five classical
link prediction methods: the L3 method [19], the LO method [28], the CH-L3 method [29], and two even power methods, RA-L2 (resource
allocation) [40], and CH-L2 [29,41]. The dataset parameters characterizing each network are shown in Table II and the values selected for the
optimal parameters t in the QLP method and α in the LO method are shown in Table III.

average degree much smaller than the total number of nodes,
kav 	 N , and as such there are O(N2) potentially missing
links. The general case of computing all possible scores leads
to a classical complexity of at least O(N2). Different methods
scale differently depending on the assumptions made about
the solution. For example, the scaling of simple length-2 based
methods is O(N〈k2〉) and the scaling of L3 [19] is upper
bounded by O(N〈k3〉), where 〈kn〉 is the average of the nth
power of the degrees (see Appendix B). These methods do
not calculate a score for every possible missing link, only for
those corresponding to nodes at distance 2 or 3. However,
other methods also surpass the O(N2) scaling, as is the case

of LO [28] that uses a matrix inversion to represent a linear
combination of odd powers of A, scaling approximately with
O(N2.4), and is one of the best performing classical methods
tested. Complex networks can easily reach sizes of up to
millions or billions of nodes, consider, for example, online
social and e-commerce networks, or the neuronal network in
the human brain [33]. Improving these scalings may thus be
decisive in the application of link prediction methods to larger
networks in the future.

To provide an estimate for the complexity of implement-
ing QLP on a quantum computer, there are a few things to
consider. First, we comment on the implementation of the

TABLE I. Computational cross-validation: AUC. Area under the curve (AUC) performance metrics for the datasets in Fig. 4. The metrics
were computed over the full set of potential predictions for each dataset in a ten-fold cross-validation procedure. Each value corresponds to
the mean AUC over the ten iterations. In bold are the best values for both QLP and the classical methods tested, confirming that QLP performs
similarly to other path-based link prediction methods in the AUC-ROC and AUC-PR metrics.

Dataset QLP-Even QLP-Odd LO L3 CH-L3 RA-L2 CH-L2

AUC-ROC HI-III-20 0.786 0.909 0.879 0.917 0.917 0.655 0.655
Yeast-Bio 0.878 0.894 0.852 0.905 0.904 0.738 0.738

Messel 0.635 0.887 0.880 0.891 0.890 0.641 0.649
Hamsterster 0.971 0.964 0.952 0.965 0.966 0.962 0.962
Facebook 0.995 0.994 0.988 0.991 0.991 0.995 0.994
Wiki-Vote 0.878 0.904 0.898 0.905 0.905 0.858 0.859

AUC-PR HI-III-20 0.006 0.081 0.074 0.042 0.049 0.005 0.013
Yeast-Bio 0.014 0.093 0.082 0.038 0.049 0.013 0.024

Messel 0.008 0.104 0.104 0.051 0.062 0.007 0.013
Hamsterster 0.341 0.568 0.574 0.131 0.280 0.284 0.365
Facebook 0.429 0.392 0.427 0.444 0.334 0.262 0.257
Wiki-Vote 0.0287 0.112 0.111 0.026 0.037 0.043 0.047
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e−iAt unitary, representing the CTQW used to obtain each link
prediction sample. For this purpose, the most relevant results
are related to the quantum simulation of d-sparse matrices,
meaning that A has at most d entries in any given row. A state-
of-the-art result [34] shows that in that scenario implementing
e−iAt scales as Õ(dt‖A‖max), omitting logarithmic factors,
where t is the time interval of the evolution and ‖A‖max is
the maximum entry in absolute value. In our case, d = kmax,
the maximum degree of the network, and ‖A‖max = 1, which
allows us to write the complexity of implementing e−iAt as
Õ(kmaxt ). Second, we comment on the time t . As mentioned
earlier, t is a hyperparameter in the model which determines
how each power of A is weighted for the predictions. A large
value of t would lead higher powers of A to be more heavily
weighted. This is not the case for typical link prediction meth-
ods, where the most relevant contributions are typically from
A2 or A3, irrespective of the network size. In our simulations
we found the optimal value of t to change from network to
network, however, it seems to do so independently of N (see
Table III). For these reasons, we believe it is reasonable to
disregard the contribution of t to the complexity. Finally, for
each application of the circuit from Fig. 2 a link prediction
sample associated with a node j is obtained. Then, assuming
a repetition of the process to obtain samples for every node
leads to a factor of N in the complexity, and for each node j a
sufficient number of samples s j is required to characterize the
predictions associated with it. If we consider that the missing
links have been removed randomly from the network, each
node j will have a number of missing links proportional to its
observed degree k j . However, the relation between s j and k j

is highly network-dependent, as it depends on how well the
quantum walk method represents the underlying truth of the
missing links. In practice, we can leave s j as a free parame-
ter, as ultimately the number of samples to obtain would be
decided by the user.

In summary, assuming a repetition of the QLP method for
each node in a network of N nodes, with an average number
of samples per node of sav = 1

N

∑N
j=1 s j , and each sample

requiring the implementation of e−iAt with a cost Õ(kmax) for
some constant t , the final complexity estimate for QLP is

Õ(Nsavkmax). (13)

The most meaningful complexity comparison we can make
is between methods that make similar assumptions. In that
sense, both QLP and LO assume the solution is a linear combi-
nation of powers of the adjacency matrix, and as we will see in
the next section, these methods are often the best performing.
Here we can see that QLP has a potential quantum speedup
given the polynomially lower dependence on N but with an
extra savkmax factor. Relating kmax to N can be done through
γ as kmax ∝ N

1
γ−1 , where γ is the exponent in the power-law

degree distribution of a scale-free network, which is typically
in the range 2 < γ � 4 [1]. For these values the dependence
is always sublinear, approaching linearity as γ → 2, as in
this regime the network tends to form larger and larger hubs.
For γ = 3, for example, our estimate for the scaling of QLP
in scale-free networks is Õ(N3/2sav), a potential polynomial
speedup over the LO method. Comparing QLP to simple
length-2 and length-3 based methods is less straightforward,

as the difference is solely based on the degree factors and the
number of samples for QLP.

B. Cross-validation tests

1. Description of metrics

In Fig. 4 we show the cumulative precision over the score
rank for each method and network tested. The score rank
represents the ordered list of scores: the top score has score
rank 0, the second best has score rank 1, and so on. The
cumulative precision tracks the ratio of correct predictions to
total predictions over all previous score ranks. For example, a
precision of 0.8 at score rank 9 means that out of the ten top
predictions occupying score rank 0 through 9, eight of them
were correct. For each iteration of the ten-fold cross validation
procedure 10% of the links were randomly removed and the
remainder used as input to the link prediction methods, lead-
ing to a different cumulative precision curve for each iteration.
In the plots we show the average cumulative precision ± one
standard deviation over the ten iterations. Since the networks
tested have different sizes and densities the total number of
predictions that may be considered relevant varies. We chose
to cutoff the figure at a score rank of 0.05 × N × kav, which is
sufficient to show a drop in the precision over the score rank
while still focusing on the precision of the best predictions
occupying the first ranks.

In Table I we show the area under the curve (AUC) for the
receiver-operating characteristic cruve (AUC-ROC) and the
precision-recall curve (AUC-PR), which are standard bench-
mark metrics in machine learning for predictive models.

2. Discussion

In Fig. 4 we compare the prediction precision of QLP
with classical path-based link prediction methods using the
standard link prediction benchmark of cross validation on a
selection of networks from different fields. In Table I we fur-
ther compare the methods using two standard AUC metrics, as
described. A summarized description of the classical methods
used can be found in Ref. [18]. We compared against three
odd-power methods, L3 [19], LO [28], and CH-L3 [29], and
two even-power methods, RA-L2 [40] and CH-L2 [29,41].
These are the state-of-the-art in local and global link pre-
diction indices based on path counting. The scores used for
QLP were an exact calculation of the distributions in Eq. (12)
by classically computing the time-evolution operator of the
quantum walk, as described in Appendix A. The networks
used and respective parameters are summarized in Table II.
For each network, we selected the time t that maximizes
the prediction precision by removing 10% of the links from
the training set in the first iteration of the cross validation,
selecting both a value that maximizes the precision of the even
component as well as one that maximizes the odd component,
detailed in Table III. As shown in Fig. 4 and Table I, we
confirm that QLP matches the typical performance of classical
path-based link prediction methods tested in terms of predic-
tion precision as well as standard AUC metrics for a range of
real-life complex networks [20,35–39], as expected. In most
cases, we observe that both QLP-Odd and LO stand out as the
best performing methods, a result which further affirms the
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TABLE II. Datasets and respective network parameters. The parameters listed are the following: Network parameters: |V | is the number
of nodes; |E | is the number of links; kav is the average degree; ρ is the network density; dmax is the maximum distance between any two nodes;
dav is the average distance between any two nodes; C is the average clustering coefficient.

Network Ref. |V | |E | kav ρ dmax dav C

Fig. 4 HI-III-20 [20] 8275 52569 12.589 1.59 × 10−3 12 3.844 5.92 × 10−2

Yeast-Bio [35] 4885 28270 11.161 2.29 × 10−3 10 3.603 1.20 × 10−1

Messel [36] 700 6444 18.326 2.61 × 10−2 6 2.632 1.04 × 10−1

Hamsterster [37] 2426 16631 13.711 5.65 × 10−3 10 3.589 5.38 × 10−1

Facebook [38] 4039 88234 43.691 1.08 × 10−2 8 3.693 6.06 × 10−1

Wiki-Vote [39] 7115 103689 29.147 3.98 × 10−3 7 3.248 1.41 × 10−1

Fig. 5 Arabidopsis [45] 4865 11374 4.493 9.24 × 10−4 14 5.180 9.82 × 10−2

Pombe [35] 1929 3700 3.397 1.76 × 10−3 14 4.671 6.37 × 10−2

AS Routes [46] 6474 13895 3.884 6.00 × 10−4 9 3.705 2.52 × 10−1

Citeseer [47] 3264 4536 2.779 8.518 × 10−4 28 9.315 1.45 × 10−1

Cora [47] 2708 5429 4.010 1.44 × 10−3 19 6.311 2.41 × 10−1

P2P-Gnutella [46] 10876 39994 7.355 6.78 × 10−4 10 4.622 6.22 × 10−3

Fig. 6 Screen 1 [20] 4643 16447 6.970 1.64 × 10−3 12 4.094 5.13 × 10−2

Screen 2 [20] 4177 11644 5.467 1.31 × 10−3 13 4.284 4.33 × 10−2

Screen 3 [20] 3807 10245 5.268 1.31 × 10−3 15 4.456 4.16 × 10−2

Screen 4 [20] 3082 5685 3.655 1.19 × 10−3 14 5.370 1.51 × 10−2

Screen 5 [20] 2712 4496 3.277 1.21 × 10−3 15 5.560 1.25 × 10−2

Screen 6 [20] 3128 5981 3.774 1.21 × 10−3 16 5.361 1.54 × 10−2

Screen 7 [20] 3508 7910 4.486 1.28 × 10−3 15 5.465 9.73 × 10−3

Screen 8 [20] 3383 7533 4.436 1.31 × 10−3 16 5.555 1.20 × 10−2

Screen 9 [20] 3404 7712 4.512 1.33 × 10−3 15 5.520 9.40 × 10−3

case that there can be advantages in including higher-order
powers of the adjacency matrix in the predictions [28]. While
optimizing over t allows us to show the maximum precision
of the method, we note that even with hand-picked values
the method tends to perform well in comparison with other
path-based methods without a free parameter. Further results
for the cross-validation benchmark are shown in Fig. 5 and
Table IV, as well as detailed results for each of the experi-
mental screens that contribute to the full HI-III-20 network
in Fig. 6. Here we predict interactions that were obtained by
independent, full experimental screens, simulating the case of
real-life performance against future experiments.

V. CONCLUSION

In this work we presented a quantum algorithm for link
prediction in complex networks, QLP, offering a potential
quantum speedup for a practical network science problem.
The inclusion of even and odd paths allows QLP to make
both TCP-like and L3-like predictions, thus encompassing all
types of networks where these topological patterns play a role.
Our results serve as a proof of principle for potential future
applications of QLP in large complex networks using quantum
hardware. Recently, a 62-node network CTQW was demon-
strated experimentally [42], an important first step towards
this goal.

We note that, in our estimated complexity, the dependence
on kmax comes from assuming a circuit-based simulation of

the quantum walk with the d-sparse matrix model. We may
argue that the existence of large hubs make complex networks
a bad fit for the d-sparse matrix model. Highly connected
nodes imply that some rows in the adjacency matrix are
very dense, while most are sparse, and thus d = kmax greatly
overestimates the overall sparseness of the matrix. Finding
a more efficient quantum simulation algorithm that directly
exploits the degree distribution of complex networks would
be a very important result for quantum computation applied
to network science, should such a method exist. Nevertheless,
the method we propose here is general to any representa-
tion of the quantum walk, for example, using an analog
quantum walk implementation, as done in Ref. [42], or any
future quantum simulation techniques that prove to be more
efficient.

Besides the potential improvement in complexity when
sampling from the quantum solution, especially in the com-
parison between QLP and LO, we should also note that a
classical simulation of QLP relies on the diagonalization of
the adjacency matrix and thus it has a comparable classi-
cal complexity to other path-based classical link prediction
methods. This makes QLP easier to be further developed with
a focus on immediately relevant real-world applications, while
at the same time exploring other ways in which quantum
features of QLP can be advantageous when quantum hardware
becomes more widely available.

Our code for QLP is available on GitHub , see Ref. [43].
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FIG. 5. Extra cross-validation results: Cumulative precision over the top-ranked predictions (the top 0.05 ∗ Nkav scores) for each network,
averaged over a ten-fold cross-validation procedure. The shaded regions correspond to the standard deviation. In each trial 10% of the links
were randomly removed and the remainder were used as input to the link prediction methods. The networks used correspond to the PPI
network Arabidopsis [45], Pombe [35], AS Routes [46], Citeseer [47], Cora [47], and P2P-Gnutella [46]. We note that P2P-Gnutella is a
bipartite network and thus the TCP based methods QLP-Even, RA-L2 and CH-L2 have null precision. The dataset parameters characterizing
each network are shown in Table II, and the values selected for the optimal 610 parameters t in the QLP method and α in the LO method are
shown in Table III.

ACKNOWLEDGMENTS

The authors thank Albert-László Barabási for the use-
ful discussion and acknowledge the support from the JTF
project The Nature of Quantum Networks (Project No.
60478). J.P.M., B.C., and Y.O. thank the support from
Fundação para a Ciência e a Tecnologia (FCT, Portu-
gal), namely through Projects No. UIDB/50008/2020 and
No. UIDB/04540/2020, as well as from projects The-
BlinQC and QuantHEP supported by the EU H2020 Quan-
tERA ERA-NET Cofund in Quantum Technologies and
by FCT (QuantERA/0001/2017 and QuantERA/0001/2019,
respectively), and from the EU H2020 Quantum Flagship
project QMiCS (820505). J.P.M. acknowledges the support
of FCT through scholarship SFRH/BD/144151/2019, and
B.C. acknowledges the support of FCT through Project No.
CEECINST/00117/2018/CP1495/CT0001.

APPENDIX A: QLP METHOD

We consider the usual CTQW model, where the Hilbert
space of the quantum walker is defined by the orthonormal
basis set {| j〉} j∈V , each basis state | j〉 corresponding to a
localized state at a node j in the network and the Hamiltonian
of the evolution given by the adjacency matrix of the graph. In
these conditions, the solution to the Schrödinger equation for
the CTQW can be written directly as

|ψ (t )〉 = e−iAt |ψ (0)〉. (A1)

By taking the power series of the time evolution operator we
can immediately make the connection to the link prediction

e−iAt =
+∞∑
k=0

1

k!
(−it )kAk, (A2)

as each power Ak encodes the number of paths of length k be-
tween any two nodes in the graph. Furthermore, we note that
the imaginary term ik adds a phase to the quantum evolution
that separates the sum over even powers in the real part of
the evolution and the sum over odd powers in the imaginary
part. To proceed we wish to separate the evolution over even
powers from the evolution over odd powers, and for that it is
useful to consider a qubit representation of the graph, as seen
in Fig. 2 of the main text. We now define an operator CQW(t )
corresponding to a controlled quantum walk, which applies
a normal or conjugate evolution operator on the node qubits
depending on the value of qa,

CQW(t ) = |0〉〈0|a(e−iAt )n + |1〉〈1|a(e+iAt )n. (A3)

Considering now an initial state localized at node j in the form
|ψ j (0)〉 = |0〉a| j〉n we start by applying an Hadamard gate on
the ancilla qubit

Ha|0〉a| j〉n = 1√
2

(|0〉 + |1〉)a| j〉n, (A4)

followed by the CQW(t ) operator

CQW(t )

[
1√
2

(|0〉 + |1〉)a| j〉n

]

= 1√
2

(|0〉ae−iAt | j〉n + |1〉ae+iAt | j〉n), (A5)

followed by a second Hadamard gate on the ancilla qubit,
leading to the following expression after rearranging the
terms:

|ψ j (t )〉 = 1
2 |0〉a(e−iAt + eiAt )| j〉n + |1〉a(e−iAt − eiAt )| j〉n.

(A6)
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Finally, taking the power series from Eq. (A2) to replace the
exponential terms we arrive at

|ψ j (t )〉 = |0〉a

(+∞∑
k=0

ceven(k, t ) A2k

)
| j〉n

+ i|1〉a

(+∞∑
k=0

codd(k, t ) A2k+1

)
| j〉n, (A7)

with ceven(k, t ) = (−1)kt2k/(2k)! and codd(k, t ) =
(−1)k+1t2k+1/(2k + 1)! being time-dependent coefficients.

This procedure describes how the real and imaginary parts
of the time-evolution operator can be separated on a quantum
computer through an extra ancilla qubit. To simulate QLP
on a conventional computer, it suffices to compute the time-
evolution operator and directly extract the real and imaginary
parts, as described below.

QLP on a conventional computer

In this section we describe how to directly compute the
scores of QLP on a conventional computer. Consider a net-
work described by its adjacency matrix A. Start by picking
a value for the t parameter. Then numerically compute the
time-evolution operator of the quantum walk

U (t ) = e−iAt , (A8)

for example, by computing the eigenvalues and eigenvectors
of A and then computing the matrix exponential. The matrix
U (t ) is complex. The prediction scores described in the main
text can then be obtained directly, in matrix form, as

Peven = |Re(e−iAt )|2(i j),

Podd = |Im(e−iAt )|2(i j), (A9)

where |.|2i j denotes the entry-wise absolute value squared. The
entries of Peven and Podd correspond to the peven

i j and podd
i j

values described in the main text, which can be used to rank
predictions from highest to lowest score.

APPENDIX B: LINK PREDICTION COMPLEXITY

Consider a graph G(V, E ) describing a complex network,
where V is the set of nodes with size N = |V| and E is the set
of undirected links. Link prediction on a classical computer
requires 1

2 N (N − 1) − |E | scores to be computed, one for
each of the 1

2 N (N − 1) possible links, with the exception of
those already present in the set of known links E . Rewriting
in terms of the average degree, kav = 2|E |/N , we have that
the total number of scores scales as 1

2 N2 − 1
2 N (1 + kav). Real

complex networks are typically sparse [1] with kav 	 N , and
thus O(N2) scores are evaluated. Taking O(N2) as an esti-
mate for the complexity of a general classical link prediction
method assumes two more things: that the method will indeed
compute a score for every potential missing link, and that
the cost of computing each score is O(1). To analyze these
assumptions, let us pick a concrete method and study its
complexity.

COMMON NEIGHBOURS (CN) is one of the simplest link
prediction algorithms. It quantifies the likelihood of a link

existing between two nodes i and j by the number of common
neighbors they share, or in other words, by the number of
paths of length 2 between i and j. While we do not use CN
directly in the various simulations presented in this work,
we used the method of resource allocation [40] (marked as
RA-L2 in the plots), which is similar to CN with the addition
of a degree normalization to each score. Adding the degree
normalization does not affect the complexity significantly, and
so we will analyze the simpler problem of counting paths of
length 2. The objective of CN is to compute

pi j = |�(i) ∩ �( j)| (B1)

for every pair of nodes (i, j) where |�(i) ∩ �( j)| �= 0, with
�(x) being the set of nodes neighboring x. A simple algorithm
to accomplish this iterates through all nodes z in the graph and
adds a contribution to pi j for each pair of nodes (i, j) neigh-
boring z. Such an algorithm will visit every path of length
2 in the graph and thus its complexity will be proportional
to

∑N
i, j=1(A2)i j . As detailed in Ref. [44] this sum can be

simplified as

N∑
i, j=1

(A2)i j =
N∑

i=1

k2
i = N〈k2〉, (B2)

where 〈k2〉 is the average of the second power of the degrees
in the graph. By assuming that the cost of accessing the graph
data structure and adding the contributions to each pi j is O(1)
we can conclude that the CN method scales as O(N〈k2〉).

COMMON NEIGHBOURS is a TCP-based method, and as dis-
cussed in the main text, it is not able to match the precision of
methods based on paths of length 3 in many networks. For that
reason, let us see how the complexity changes when counting
paths of length 3, which is the main computational cost behind
the L3 method [19]. An algorithm to count paths of length 3
can be easily built with an extension of the CN algorithm,
and using the same argument as before, its complexity will
be proportional to

∑N
i, j=1(A3)i j . This sum is not as easy to

simplify, but the authors of Ref. [44] proved the following
bound for a general power of A

N∑
i, j=1

(An)i j �
N∑

i=1

kn
i = N〈kn〉. (B3)

With this information we can conclude that the complexity
for counting paths of length 3 will be upper bounded by
O(N〈k3〉).

For scale-free networks, characterized by γ , the degree
exponent in the degree power-law distribution, we can analyze
the moments 〈kn〉 in terms of γ and N (see Sec. 4 of Ref. [1]).
Typically, 〈k〉 (denoted as kav in the rest of the text) is much
smaller than 〈k2〉 or 〈k3〉. For many scale-free networks γ is
between 2 and 4. As N grows, 〈k2〉 diverges for 2 < γ � 3 and
〈k3〉 diverges for 2 < γ � 4, while 〈k〉 does not. These diver-
gences can be seen in the expressions below from Ref. [1],
which estimated the dependence of 〈kn〉 with N

〈kn〉 ∝ kn−γ+1
max − kn−γ+1

min

n − γ + 1
, (B4)
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TABLE III. Hyperparameter values used for each dataset.

Network t (QLP-Even) t (QLP-Odd) α (LO)

Fig. 4 HI-III-20 3.0 × 10−6 1.00 8.0 × 10−3

Yeast-Bio 7.0 × 10−1 1.10 2.0 × 10−2

Messel 2.0 × 10−6 1.20 2.0 × 10−2

Hamsterster 4.0 × 10−1 1.60 3.0 × 10−2

Facebook 2.0 × 10−1 1.00 7.0 × 10−3

Wiki-Vote 2.0 × 10−6 1.00 4.0 × 10−3

Fig. 5 Arabidopsis 2.0 × 10−6 1.00 2.0 × 10−2

Pombe 9.0 × 10−1 1.00 4.0 × 10−2

AS Routes 5.0 × 10−4 0.60 2.0 × 10−3

Citeseer 5.0 × 10−5 1.40 8.0 × 10−2

Cora 1.0 × 10−6 0.03 6.0 × 10−2

P2P-Gnutella - 1.30 2.0 × 10−2

Fig. 6 Screen 1 6.0 × 10−6 1.10 1.0 × 10−2

Screen 2 4.0 × 10−6 0.90 8.0 × 10−3

Screen 3 6.0 × 10−5 0.90 1.0 × 10−2

Screen 4 9.0 × 10−5 0.02 1.0 × 10−2

Screen 5 6.0 × 10−5 0.03 3.0 × 10−3

Screen 6 1.0 × 10−6 0.03 7.0 × 10−3

Screen 7 1.0 × 10−6 0.70 7.0 × 10−4

Screen 8 2.0 × 10−6 0.30 4.0 × 10−4

Screen 9 1.0 × 10−6 0.80 6.0 × 10−4

which together with the relation kmax = kminN
1

γ−1 can be writ-
ten as

〈kn〉 ∝ kn−γ+1
min

n − γ + 1

(
N

n−γ+1
γ−1 − 1

)
. (B5)

Out of the methods tested in this work, RA-L2 and L3 fall
in the complexity categories of counting paths of length 2 and
3, respectively. CH-L2 and CH-L3 also have path counting as
a base, but use a more complex structure of paths which has
added complexity. LO, the best performing classical method
tested, uses a matrix inversion for which the best algorithms
scale roughly as O(N2.4).

As stated in the main text, the complexity of QLP can be
written as Õ(Nkavkmaxt ). The previous expressions show that
kav remains finite for all γ > 2, while the higher-order mo-

ments can diverge. Although these expressions do not include
any information about the finite value to which the moments
tend when they do not diverge, complex networks are typically
sparse, we may still use kav 	 N to quantify the differences
in complexity between the methods, especially in the cases
where 〈k2〉 and 〈k3〉 diverge with growing N . Furthermore,
we can comment on the dependence with kmax coming from
the d-sparse Hamiltonian simulation of the quantum walk.
The relation kmax ∝ N

1
γ−1 [1] leads to kmax ∝ N in the limit

of γ → 2, implying a quadratic scaling of QLP. This lower
bound corresponds to an extreme case in scale-free networks
and other larger values within the realistic 2 < γ < 4 range
reduce this dependence on N polynomially.

APPENDIX C: MODEL HYPERPARAMETERS

In Table III we present the values picked for the hyperpa-
rameter t for both the QLP-Even and QLP-Odd components,
independently, and also the value of α used for the LO
method [28] for each network. We omitted t for QLP-Even
in P2P-Gnutella given that this is a bipartite network, and thus
predictions based on even length paths have no meaning. The
values were chosen by removing 10% of the links from the
training set in the first iteration of the ten-fold cross-validation
procedure and maximizing the prediction precision for those
removed links.

One immediate observation is that the values of t for the
predictions from QLP-Even and QLP-Odd are different by
many orders of magnitude. From Eq. (3) in the main text
we can write the prediction matrices for both components as
follows:

Peven = |I − t2

2!
A2 + t4

4!
A4 − t6

6!
A6 + · · · |2(i j), (C1)

Podd = | − tA + t3

3!
A3 − t5

5!
A5 + t7

7!
A7 − · · · |2(i j), (C2)

where |.|2(i j) denotes the entry-wise absolute value squared.
In both cases the first term does not contribute to the predic-
tions. The small values of t in QLP-Even indicate that these
predictions are best represented by the A2 component in the

TABLE IV. Extra cross-validation results: AUC performance metrics for the datasets in Fig. 5, for both the receiver-operating curve
(AUC-ROC) and precision-recall curve (AUC-PR). P2P-Gnutella is omitted due to a lack of computational resources to evaluate these metrics
for the full network. The metrics were computed over the full set of potential predictions for each dataset in a ten-fold cross-validation
procedure. Each value corresponds to the mean AUC over the ten iterations. The parameter values of t and α for the QLP and LO methods,
respectively, were the same shown in Table III. In bold are the best values for both QLP and the classical methods tested.

Dataset QLP-Even QLP-Odd LO L3 CH-L3 RA-L2 CH-L2

AUC-ROC Arabidopsis 0.661 0.776 0.792 0.808 0.808 0.574 0.574
Pombe 0.670 0.685 0.727 0.729 0.729 0.563 0.563

AS Routes 0.701 0.725 0.810 0.743 0.742 0.604 0.604
Citeseer 0.638 0.675 0.703 0.743 0.743 0.672 0.672

Cora 0.706 0.781 0.679 0.766 0.766 0.709 0.709
AUC-PR Arabidopsis 0.007 0.127 0.119 0.006 0.015 0.092 0.097

Pombe 0.004 0.070 0.052 0.040 0.047 0.004 0.006
AS Routes 0.007 0.028 0.029 0.026 0.023 0.008 0.011

Citeseer 0.014 0.049 0.046 0.029 0.032 0.014 0.017
Cora 0.023 0.024 0.017 0.022 0.023 0.022 0.024
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FIG. 6. Prediction of missing PPIs in the human interactome validated against experimental screens. Procedure described in Appendix D.

series, while these values observed for QLP-Odd indicate that
these predictions typically benefit from the contributions of
the higher-order powers of A.

APPENDIX D: VALIDATION AGAINST
EXPERIMENTAL SCREENS

In Fig. 6 we validate the prediction from the QLP method
against experimental protein-protein interaction screens. The
results presented correspond to the cumulative precision over
the top 500 ranked predictions. The dataset used consists of
nine different screens over a search space of human binary
PPIs using a panel of three different assay versions [20], the
most recent experimental study of the human interactome
network, named HI-III-20. In this study the authors presented
a reference interactome map of human binary protein interac-

tions with 52 569 protein-protein interactions involving 8275
proteins. This map was generated by screening a search space
of roughly 90% of the protein-coding genome a total of nine
times with a panel of three different but complementary assay
versions. For each of the nine plots we used the results of the
respective screen as the input network to the link prediction
methods and compared the predictions obtained to the PPIs
identified in the remaining two screens from the same assay.
For example, for the case of Screen 1, the predictions were
compared with the PPIs identified in Screen 2 and Screen
3 combined. For the methods with a free parameter (QLP
and LO) we randomly removed 50% of the input dataset and
optimized the method to best predict the removed links by
maximizing the area under the precision curve over the top
500 score ranks. The optimized parameter was then used for
the results displayed.
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