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ABSTRACT
In order to analyse the flow characteristics of free-surface vortexes and to validate the Burgers vortex model by using stereo particle image velocime-
try, experiments are conducted in a 600 mm diameter vortex tank. Measured axial velocities indicate that 10–25% of the flow is transported through
the vortex core. The velocity profiles show that the axial flow is concentrated in a domain bounded by two times the core radius. Despite Burgers’
assumption of radially independent axial velocity profiles, the model quantifies the tangential velocity profile within a relative uncertainty of circa
10%. The measurements show that it seems valid to use Burgers’ model to obtain an estimate for the core radius by taking the average axial velocity
over a radial domain of approximately 2.2 times the core radius. The Burgers model quantifies the air core depth with an uncertainty of 20% rela-
tive to the measurements. When compared with the magnitude of vorticity diffusion by molecular viscosity, the experiments show that there is no
significant diffusion by radial turbulence.

Keywords: Air core depth; axial vortex flow; Burgers vortex model; experiments; stereo particle image velocimetry (SPIV); vortex
dynamics; vortex core radius

1 Introduction

Wastewater pumping stations often experience problems due
to the accumulation of individual floating particles of fat, oil
and grease (FOG) in the pump sump. The presence of FOG
can result in pump failures that may cause up to a 16%
increase of yearly volume of combined sewer overflows, as
shown by Korving, Clemens, and van Noortwijk (2006) for
a specific case study. The current, widely accepted, guide-
lines for sump design (e.g. American National Hydraulic Stan-
dards Institute, 2012) only deal with the transport of floating
debris in a superficial manner and for a limited number of
sump geometries only. In order to obtain a more fundamen-
tal understanding of the FOG problems related to wastewater

pumping stations, the authors initiated a research project to
study the ability of free-surface vortices (hereafter referred as
“vortex”) as a mechanism to transport floating FOG particles
from the water surface to the pump suction inlet (Duinmei-
jer & Clemens, 2016). An experimental set-up is constructed
to study this transport ability for experimental particles having
characteristic lengths of in the range of 0.02–0.04 m. Based on
preliminary experiments, it was shown that the transport abil-
ity in both radial and axial direction strongly depends on the
three dimensional flow field (3D-flow) in the vortex’s irrota-
tional flow field (outer field) and rotational flow field (vortex
core) (Duinmeijer & Clemens, 2016). For example, particles
could be ejected out of the vortex air core (irrotational field)
due to an imbalance between the (hydrostatic) pressure forces
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and particle centrifugal force. Another observed phenomenon
is that the particle can be “caught” in the vortex core due to
an imbalance between the downward drag force generated by
the vortex core axial velocity and the upward particle buoyancy
force.

1.1 Problem definition

To predict the vortex’s transport capacity, it is essential to obtain
knowledge of the 3D-flow in both the vortex core and outer
field. Furthermore, as air entrainment by an air core that extends
into the pump must be prevented in the practical application
of the vortex, there is a need for a reliable quantification of
the vortex air core depth HD. Over recent decades numerous
research projects on the characteristics of vortex flow field have
been reported. A part of the literature focuses on deriving the
governing parameters and the effects of viscosity and surface
tension on the vortex formation, e.g. Anwar (1966), Anwar,
Weller, and Amphlett (1978), Dagget and Keulegan (1974),
Rindels and Gulliver (1983) and Suerich-Gulick, Gaskin, Vil-
leneuve, and Parkinson (2014a). Other research focuses on
deriving expressions to compute the minimum submergence
depth above an intake needed to prevent air entrainment by
an air core extending into the pump, e.g. Anwar and Amimi-
lett (1980), Odgaard (1986), Gulliver and Rindels (1987). Yet
another area of research is in validating vortex models using
experimental data, e.g. Hite and Mih (1994), Wang, Jiang, and
Liang (2011) and Sun and Liu (2015). Nevertheless, only lim-
ited accurate experimental data are available on measurements
of the 3D-flow in both the outer field and vortex core at different
vertical positions and especially regarding the axial flow profile
in the vortex core and its gradient in the vertical direction.

1.2 Main research questions addressed

To obtain knowledge on the vortex 3D-flow, the research ques-
tions addressed here are: (1) What is the distribution of the
vortex velocity components in the vortex core and outer field?
(2) Can the Burgers (1948) vortex model be validated to enable
the quantification of the vortex characteristics? (3) What is
the ratio Qv/Q between the axial vortex flow Qv and total
flow Q?

1.3 Research outline

The vortex 3D-flow field in the outer field and vortex core is
measured in three horizontal planes using stereo particle image
velocimetry (SPIV). A cylindrical coordinate system (r, θ , z)
is applied where the flow field is presented in tangential (Vθ ),
radial (Vr) and axial (Vz) velocities. The measured profiles of
Vθ , Vr and Vz are compared with the Vθ profile of the Burg-
ers (1948) vortex model and with the Vz profiles proposed by
Hite and Mih (1994) and Wang et al. (2011). In the vortex flow,
the core radius rc is a characteristic parameter illustrating the

radial position of transition between the vortex core and outer
field. Burgers developed a model (hereafter referred to as Burg-
ers’ model) to compute rc with rc = 2(ν /a)0.5 representing the
ratio between axial vortex stretching and molecular viscous dif-
fusion of vorticity with a = ∂Vz/ ∂z the stretching parameter and
ν the kinematic viscosity. As Burgers’ model assumes an unre-
alistic radially independent Vz profile (∂Vz/∂r = 0), the validity
of this model is studied when the measured radially dependent
Vz is modelled as a spatially average value V̄z. Furthermore, the
accuracy of Burgers’ model to predict HD for the present set-up
is examined.

First, this paper addresses the theoretical background of free-
surface vortices and the Burgers model. In Section 3 the exper-
imental set-up, the SPIV method and measuring programme are
presented. In Section 4 the results obtained for the velocity pro-
files are described and the validity of Burgers’ model to compute
rc and HD are discussed.

2 The free-surface vortex and the Burgers vortex model

A free-surface vortex is characterized by a solid-body rotating
core with vorticity and an outer field of irrotational flow without
vorticity. The vorticity ω is defined as the curl of the velocity
vector: ω = ∇ × V and is related to the angular momentum of
a fluid particle around its centre of mass. A two-dimensional
model describing Vθ for both fields was proposed by Rankine
(1858):

Vθ = Ωr = Γ

2π

r
rc

2 (r < rc)

Vθ = Γ

2πr
(r > rc) (1)

In which Ω is the angular velocity of the vortex core and rc is
the position of the transition between the vortex core and the
outer field (Fig. 1). The flow circulation Γ is defined as the line
integral of a velocity around a closed curve C; based on Stokes’
theorem it represents the flux of the vorticity vector ω through
any surface area A bounded by the closed curve C:

Γ =
∮
C

Vds =
∫∫

A
ω · n̂dA (2)

Consequently, a circulation on C has a region that contains
vorticity. In the Rankine model this region is the vortex core
with ω = 2Ω . (Fig. 1). Based on the Navier–Stokes equations,
Burgers proposed a 3D-vortex model that describes a balance
between intensification of vorticity (the vortex stretching) and
viscous diffusion of vorticity (Fig. 1). Burgers’ model is based
on the equation of conservation of vorticity given by:

Dω

Dt
= (ω · ∇)V + ν∇2ω (3)
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Figure 1 (a) Distribution of tangential velocity Vθ . (b) Distribution of vorticity ω. In the Rankine model, all vorticity is concentrated in the vortex
core of solid-body rotation where the Burgers model shows viscous diffusion of vorticity

For an axi-symmetric flow there is only vorticity in z-direction
allowing to reformulate Eq. (3) as:

∂ωz

∂t
+ Vr

∂ωz

∂r
+ Vz

∂ωz

∂z
+ Vθ

r
∂ωz

∂θ

= ωz
∂Vz

∂z
+ ν

(
∂2ωz

∂r2 + 1
r

∂ωz

∂r

)
(4)

Without an external torque acting on the vortex and defining
the terms ∂ωz/∂θ = ∂ωz/∂z = 0 because of axi-symmetry and
constant vorticity in z-direction, the vorticity is only a function
of r:

Vr
∂ωz

∂r
= ωz

∂Vz

∂z
+ ν

1
r

∂

∂r

(
r
∂ωz

∂r

)
(5)

The first term of the right-hand side represents vortex stretch-
ing or extensional strain. To solve Eq. (5) with the boundary
conditions ωz(0) and ωz(∞), Burgers assumes an axial velocity
profile that is independent of r and varies linearly with z:

Vz(z) = az, Vr(r) = −1
2

ar (6)

The profile of Vr is a result of conservation of mass. Using these
profiles in Eq. (5) the following vorticity equation is obtained:

∂ωz

∂r
= −

( a
2ν

)
rωz (7)

Integrating Eq. (7) gives the solution for the distribution of
vorticity in radial direction:

ωz(r) = ω0 exp

[
−

(
r
rc

)2
]

(8)

where ω0 = Γ ∞/(π rc
2) the vorticity in the vortex centre and rc

is the core radius, presenting the ratio between axial stretching

a = ∂Vz/∂z and molecular diffusion of vorticity:

rc = 2(ν/a)0.5 (9)

Applying Stokes’ theorem on Eq. (8), the Burgers profile of Vθ

is obtained:

Vθ (r) = Γ∞
2πr

{
1 − exp

[
−

(
r
rc

)2
]}

(10)

It is noted that Burgers’ assumption that ∂Vz/∂r = 0 seems not
valid for real vortices in the far flow field, but may hold in the
direct vicinity of the core. This is discussed in Section 4.5. Vari-
ous authors, e.g. Vatistas (1989), Mih (1990), Wang et al. (2011)
and Sun and Liu (2015), proposed expressions based on Eq. (10)
without the exponential term and using a dimensionless radius
R = r/rc.

3 Experimental set-up and programme

3.1 Experimental set-up

The experimental set-up consists of a cylindrical acrylic tank
with an inside diameter of 0.610 m and a height of 1 m (Fig. 2).
The tank is placed in a square 0.699 × 0.699 × 1.0 m acrylic
container filled with water to reduce the effects of light refrac-
tion when recording camera images. The set-up is a closed loop
system with a pump discharging water in the tank that flows
through an outlet in the bottom back to the pump. The flow rate
Q is measured with a Kobold type DMH magnetic-inductive
flow meter (calibrated before the experiments, the average devi-
ation was determined to be 2%) located in the pressure line at
a distance > 10d from any pipe components with d the com-
ponent diameter. Two outlet pipe diameters (D = 0.030 m and
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Figure 2 (a) Schematic overview experimental set-up. (b) Vortex tank with inlet pipes and floating quadripod

0.044 m) enable variation of the vortex characteristics by chang-
ing the mean outlet velocity Uo = 4Q/πD2. The uncertainty in
Uo is determined to be ± 0.01 m s−1. The transition between
tank bottom and outlet is curved to minimize flow separation
and at the same time avoiding an error in the calculation of Uo.
A separation tank of 0.3 × 0.3 × 0.4 m is placed between the
tank outlet and the pump suction side for separating experimen-
tal floating particles from the closed system. The flow enters
the tank through two horizontal Ø25.9 × 1.9 mm inlet pipes
mounted flush in the tank wall placed 0.5 m above the tank bot-
tom. The circulation Γ is determined with a floating quadripod.
This device consists of four egg shaped floaters connected to a
0.30 m cross shaped frame of 3 mm diameter aluminium rods.
The frame centre was connected to a vertical aluminium rod
to centre the quadripod above the tank. This method was also
applied by e.g. Brocard, Beauchamp, and Hecker (1983) and
Echávez and McCann (2002). The circulation Γ is determined
by measuring Vθ around a circle with diameter d:

Γ =
∮
C

Vds = 2πrVθ = π2d2Nt−1 (11)

with d = 0.3 m the length of the quadripod and t the measured
time to accomplish N revolutions. The revolution rate N /t of
the quadripod was recorded using a stopwatch. The measure-
ment of Γ is done at a distance r = 0.15 m which is equal to
8rc and thus larger than 3rc which is assumed to be the mini-
mum to measure the bulk circulation Γ ∞ (Suerich-Gulick et al.,
2014a). By applying the theory of error propagation on Eq. (11)
and assuming the uncertainty as normal distributed, the circula-
tion uncertainty δΓ = (πd)2(t/N )−2δt and varies from 0.005 to
0.02 m2 s−1. The depth of the air core is measured using a stylus
placed in the centre of the air core with an estimated uncertainty

of ± 0.5 cm for series 1 to 3, ± 1 cm for series 4 to 6 and ±
2 cm for series 7 to 8. The uncertainty of this measurement is
largely due to the oscillating behaviour of the air core depth and
the water free-surface. Application of alternative methods like a
video camera would probably yield the same uncertainty. Dur-
ing the experiments, the water temperature is measured and was
found to vary between 22 and 28°C, influencing the physical
properties of water such as viscosity and surface tension.

Influence of scale effects

The order of magnitude of the dimensions of the set-up are
roughly similar to sumps of real wastewater pumping stations
(the majority of wastewater pumping stations in the Netherlands
are relatively small). Therefore, scale effects when translating
the presented results to the application of vortices in real sumps
are considered of minor importance.

3.2 Stereo particle image velocity method and vector
processing

Stereo PIV measurement set-up

The stereo PIV set-up comprises two cameras (LaVision Imager
MX 4M, Göttingen, Germany) imaging a horizontal plane cov-
ering approximately one quadrant of the inner tank cylinder.
One camera captures the plane of interest from above and the
other images the plane from below. The cameras pixel size is
5.5 μm at an image format of 2048 × 2048 pixels. Two 28 mm
objectives (Nikon Nikkor, Minato, Tokio, Japan) are mounted
on Scheimpflug adapters at the angle that yields the largest
depth of field. Two acrylate water filled prisms are mounted on
the tank to improve the imaging by reducing refraction effects.
Nearest to the cameras the measurement plane is mapped onto
the 10 bit CMOS sensor with a magnification of 0.079 and
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Figure 3 (a) (A) cameras, (B) water-filled prisms, (C) measurement area at height h = 0.49 m above tank floor (laser light sheet), (C′) measurement
area at h = 0.29 m above tank floor, (C′′) measurement area at h = 0.62 m above tank floor. (b) Top view of the set-up. (A) cameras, (B) water-filled
prisms, (C) measurement area, (D) inlet pipes, (E) outlet. The grey lines indicate the width of the light sheet

furthest from the cameras the magnification is 0.10. Figure 3
shows a sketch of the set-up. To measure over a radial dis-
tance from the centre of the vortex that is as large as possible,
the vortex core is positioned in a corner of the measurement
domain. A pulsed laser (Litron lasers Nano L 50-100, Rugby,
United Kingdom) at 532 nm and 50 mJ per pulse is used to gen-
erate a light sheet. For each measurement 500 image pairs are
acquired at a sampling rate of 1 Hz. Stereo calibration for each
plane is performed by placing a multilevel calibration target
with round marks (LaVision, type 21) horizontally in the tank
and using the third order polynomial method (Soloff, Adrian,
& Liu, 1997). The light sheet is aimed at and aligned with the
calibration plate. The stereo self-calibration correction is on the
order of 0.01 pixel and 0.01°. The flow is seeded with 100 μm

polyamide spheres (Vestosint, Evonik, Marl, Germany) with
density ρ = 1060 kg m−3. The particle seeding density is lim-
ited by the agglomeration of particulate matter in the core and is
typically 10 particles per 64 × 64 pixel area.

Contour averaging method

To quantify Vθ over a large radial distance from the core, while
resolving large gradients in velocity in the core, the SPIV results
are contour averaged (CA) over an angle from 0 to π /4 radians.
Figure 4 shows the area over which the CA over π /4 radians
is applied. To obtain an average of Vz and Vr over a larger
azimuthal domain near the core, a second CA is determined by
averaging over a polar angle from – π /2 to π (Fig. 4b). Vec-
tors inside the air core interface are excluded from analysis. The

Figure 4 (a) Vθ of series 1 at h = 0.29 m. The area within the solid black line is the area in which CA is applied for the large domain. (b) Vz . The
domain inside the black line is the area in which CA is applied for the azimuthal domain of 3π /2 rad (Vz and Vr)
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angular domain for the CA of Vz is selected larger than that used
for the CA of Vθ to obtain an estimate of the axial mass flow at
the cost of resolution of steep spatial gradients. The vortex cen-
tre location is obtained by calculating the location of maximum
rotation from the in-plane SPIV vector field results. Vector fields
are determined using the DaVis8 PIV software by LaVision. A
background subtraction is performed and a mask is applied. In
case the air core is present in the measurement plane the SPIV
correlation procedure consists of a sum-of-correlation (SOC)
approach over 500 double frame images with three passes at
64 × 64 pixel areas with 50% overlap followed by two passes
at 32 × 32 pixel areas with 50% overlap (Meinhart, Wereley, &
Santiago, 2000). Universal outlier detection is used for vector
validation (Westerweel & Scarano, 2005).

The weighted conditional averaging method

Weighted conditional averaging over the core location is per-
formed as described in Pennings, Westerweel, and Van Terwisga
(2015) in case the air core is not present in the measurement
plane. The procedure of weighted conditional averaging of SPIV
data consists of the following steps. (1) Conventional SPIV
processing is performed at a coarse resolution (48 × 48 pixels
using 50% overlap for every double frame image). From the
in-plane velocity vectors the core location is determined by fit-
ting a parabola to the sum of the absolute values of the vertical
and horizontal components. (2) The raw data files with similar
vortex locations are grouped and SOC processing is applied to
the separate groups. (3) The SOC processing results of these
groups are then weighted by the number of raw data images
used in the group versus the total number of used images and
summed. Using this approach, a higher spatial resolution can be
attained. In the present work, the maximum spatial resolution is
8 × 8 pixels with 50% overlap which gives a vector spacing of
0.39 mm.

3.3 Measuring programme

The measuring programme to measure rc, Vθ , Vr and Vz con-
sisted of eight series. Series one to four was conducted with
D = 0.03 m and series five to eight were conducted with
D = 0.044 m. All experiments were conducted with an undis-
turbed water depth H of 0.90 m. The quantities were measured
at three horizontal planes at h = 0.29, 0.49 and 0.62 m measured
from the tank bottom. The range of experimental hydraulic con-
ditions D, Q and Γ were selected to generate vortices with air

core depths in the range of 0.09 m to 0.85 m. The selected flow
rates resulted in two equal Uo values for four series. This con-
dition was selected to study the relation between Uo and rc as
discussed later. All four series consisted of measurements with
two flow rates and with two different Γ for each flow rate. Γ

was changed by using one or both inlet pipes. Table 1 shows
the measurement series and Γ quad with 95% confidence interval
determined by the quadripod.

4 Results and discussion

4.1 Measured circulation

Based on Eq. (11), Fig. 5 shows the Γ of both the float-
ing quadripod (Γ quad) and SPIV measurements (Γ SPIV) for all
series. The Γ SPIV is plane averaged and determined at r =
0.135 m. Γ quad includes the 95% confidence interval ( ± 2σ )
due to uncertainties in the measured parameters. For the pre-
sented research purposes, Γ quad shows a sufficiently close match
to Γ SPIV. Differences between both methods can be explained
by the observation that the Γ SPIV shows a minor gradient in the
radial direction indicating that the outer field is not entirely irro-
tational. This was also observed in the PIV measurements of Sun
and Liu (2015). There is a radial variation as well in Γ SPIV due
to the concentrated momentum influx from the Ø25.9 mm inlet
pipes. This causes a slightly non-uniform distribution of angular
momentum along the radial direction throughout the outer field.

4.2 Measured velocity profiles

The measured velocity profiles are analysed for measurements
with no air core crossing a measurement plane only. Because

Figure 5 Γ measured by quadripod at r = 0.15 m and by SPIV at
r = 0.135 m. The error bars represent the 95% confidence interval

Table 1 Measurement series with hydraulic conditions and Γ quad

Series Q (m3 h−1) D (m) Γ quad (m2 s−1) Series Q (m3 h−1) D (m) Γ quad (m2 s−1)

1 0.69 0.030 0.07 ± 0.01 5 1.50 0.044 0.16 ± 0.01
2 0.69 0.030 0.08 ± 0.01 6 1.50 0.044 0.23 ± 0.02
3 1.16 0.030 0.12 ± 0.01 7 2.50 0.044 0.31 ± 0.02
4 1.16 0.030 0.17 ± 0.01 8 2.50 0.044 0.44 ± 0.04
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of the different SPIV measurements post processing methods,
Vr and Vz are shown for 0 < r < 0.04 m and Vθ is shown for
0 < r < 0.10 m.

Tangential velocity profiles

For series three and five (all other series produced roughly sim-
ilar profiles) the measured velocities in each plane are shown in
Fig. 6. The figure also shows Burgers’ profile of Vθ (Eq. (10)) by
using the measured Γ ∞ and rc for that plane. For Γ ∞, the Γ SPIV

at r = 3rc is used where the vorticity is decreased to almost zero
and the flow is assumed as irrotational (Suerich-Gulick, Gaskin,
Villeneuve, & Parkinson, 2014b). The determination of the mea-
sured rc is given in Section 4.4. For all series, the measured
profiles of Vθ show only slight differences between the different
planes. Indeed, for this axi-symmetric vortex, the assumption is
that ∂Vθ / ∂z ∼ 0 as is shown by the PIV data of e.g. Sun and
Liu (2015) as well and which characterizes the 2D line vortex.
Burgers’ profiles of Vθ match the measured profiles. However,
for series five (and a few others) the model shows an under-
prediction of the maximum velocity. This is not related to the

non-uniformity of Γ SPIV in the outer field and postulating Γ SPIV

at r = 3rc as Γ ∞. The use of Γ ∞ calculated at r = 5rc gives no
significant changes in maximum velocities. The deviations δVθ

are possibly related to a combination of (a) Burgers’ assumption
of a radially independent axial velocity and (b) the uncertainty
of rc. However, by defining a required accuracy |δVθ /Vθ | <

10% for the presented research purposes, the Burgers model
produces a sufficiently accurate prediction of the Vθ profile.

Radial velocity profiles

The analysis of the measured profiles of Vr was shown to be
straightforward. Figure 6 shows that the velocities are relatively
low ( < 0.1 m s−1) and are observed to be the same order as the
uncertainties. Therefore, the analysis is limited to a qualitative
description of the velocity profiles. The velocities are negative
representing radial inflow towards the vortex centre. The inflow
is concentrated in a domain with radius comparable to the outlet
radius with a maximum around rc which was also showed by
the PIV data of Sun and Liu (2015). The measured velocity pro-
files show some similarity with the model Einstein and Li (1951)

Figure 6 (a–c) Measured profiles of Vθ , Vr and Vz for series 3 with D = 0.03 m. (d–f) Measured profiles for series 5 with D = 0.044 m. The graphs
include Burgers’ profile of Vθ (Eq. (10)) using the characteristic parameters Γ ∞ and rc
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proposed, assuming axial plug flow bounded by a domain with
radius α and Vz = 0 at r > α:

Vr =

⎧⎪⎨
⎪⎩

− qr
2πα2 , r < α

− q
2πr

, r > α
(12)

where q = Qv/H. The vortex flow rate Qv is defined as the axial
down-flow. Unfortunately, a quantitative comparison with the
measured profiles is not possible. Vr is found to be negligible
compared to Vθ . This supports the choice that was made to
neglect the Vr terms in the computation of HD as discussed in
Section 4.5.

Axial velocity profiles

For all series, the measured profiles show that the axial down-
flow is primarily concentrated in a domain with a radius in the
order of 2–3rc while having a semi-parabolic profile with a max-
imum at rc. A similar profile was observed in the experiments of
Ito, Ezure, and Ohshima (2014). The maximum Vz is observed
to be in a range of 4–8% of the maximum Vθ . The measured
velocity profiles are not in line with the Vz models of e.g. Hite
and Mih (1994) and Wang et al. (2011). These models suggest
that the maximum Vz occurs at the axis of symmetry. However,
the models mentioned were validated using experimental data
available for r > rc only, while no data were available for model
validation of the vortex core region. In order to ensure mass con-
servation, the Vz profile should show a positive gradient in the
downward direction (∂Vz/ ∂z > 0). As Vr is assumed to be con-
stant in the axial direction, the gradient is constant and thus Vz

follows a linear profile along the vortex length. The gradient is
not clearly visible for series one and two because the differences
in Vz between the planes are very small and in the same order
of magnitude as the measurement uncertainties. The uncertainty
for these series are assumed to be 0.2–2% of the maximum value
of Vθ (Westerweel & Scarano, 2005).

Secondary flow patterns

The measured Vz profiles do not show any significant veloci-
ties in the outer flow field (r > 3rc). Consequently, secondary
flow patterns in the outer field as observed by e.g. Echávez and
McCann (2002) are not expected. However, a reliable statement
on the absence of (small) secondary flow patterns cannot be
made, as the very small velocities in the outer field are in the
same order of magnitude as the measurement uncertainty.

4.3 Axial vortex flow

For each plane the axial vortex flow Qv is determined by
integration of the Vz profile over the cross-sectional area A:

Qv(z) =
∫∫

A
Vz(r)dA = 2π

∫ r

0
Vz(r)r dr (13)

where A is the area containing all axial flow bounded by r. The
integration boundary is defined in terms of rc and set to 2.2rc

to use the largest number of available measured values of Vz.
Figure 7 shows the computed ratios Qv/Q for the planes 0.29 and
0.49 m. The Qv/Q of series four and plane 0.49 m is considered
as an outlier because of hindered optics due to agglomeration
of particulate contamination in the vortex core just below the
air–water interface. All measurements show distinctly that the
vortex carries only a small percentage of the discharge Q. This
is in line with the experimental observations made by Echávez
and McCann (2002) and Andersen, Bohr, Stenum, Rasmussen,
and Lautrup (2006). By assuming a linear gradient in vortex
flow between the planes, Qv at the tank bottom is quantified by
extrapolation of the obtained values of Qv between the planes
0.62 and 0.29 m to the tank bottom. Figure 7h shows that Qv at
the tank bottom falls in a range of 10–25% of Q. Furthermore,
there is no clear relation observed between the maximum Qv/Q
and the discharge Q or outlet diameter D.

4.4 Validation of the Burgers model to compute the core
radius

Vortex core radius

The validation of Burgers’ model to compute rc is based on the
experimentally observed rc. This rc is taken equal to the radial
position where the measured Vθ is maximal (Vθ−max). For each
series, rc is assumed to be normally distributed and presented
as r̄c ± σc, where r̄c is the mean value of the three planes and
σc the standard deviation. A Student’s t-test shows less than 5%
significance for each mean radius r̄c,p ± σc,p of each plane con-
structed by the 95% confidence interval of measured velocities
around r̄c,p where Vθ (r) + 2σvθ < Vθ−max. When the air core
intersects a measurement plane, the radius is not considered in
the calculation of r̄c except for series eight in which the air core
diameter was smaller than rc. For series seven to eight, σc is
taken equal to the standard deviation of the 95% interval as the
velocities are only measured for one plane. Figure 8 shows r̄c

including the 95% confidence interval.

Relation between Uo and rc

Figure 8 shows that there is no unique relation between the
average outlet velocity Uo and rc. Using only Uo to compute
rc seems invalid, as does Odgaard’s (1986) model to pre-
dict the submergence depth S by using rc = 2(νeff /a)0.5 with
a = ∂Vz/∂z = Uo/H. Odgaard (1986) proposes that an increase
in circulation leads to high radial shear stresses near the vor-
tex core that generates turbulence which increases diffusion
of vorticity. Therefore, to include the diffusion of vorticity
by radial turbulence, Odgaard introduced an effective viscos-
ity νeff = ν + kΓ ∞ with kΓ ∞ the eddy viscosity and k the
factor of proportionality given by k = 6 × 10−5 for a typi-
cal experimental set-up. For the research presented here, the
Reynolds number R is in a range between 8 × 103 and 2 × 104
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Figure 7 (a–g) ratio between axial vortex flow Qv and total flow Q for the measurement planes h = 0.29 and h = 0.49 m. (h) Approximation
of Qv /Q at tank bottom (h = 0 m). All values include the 95% confidence interval

Figure 8 (a) Plane averaged r̄c obtained from location of maximum Vθ including the 95% confidence interval for series D = 0.03 m. (b) r̄c for
series D = 0.044 m
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Figure 9 Experiment of slow axial transport of a Ø50 mm sphere in a vortex with rc ≈ 17 mm where dye is injected into the vortex core above the
sphere. The dye core shows no radial diffusion of dye towards the outer field and thus no indication of radial turbulence

with R defined by Vθ rc/ν. In this range, radial turbulence can
be present. However, the results presented here show that the
occurrence of radial turbulence around the vortex core is uncer-
tain, as shown by Fig. 9 where no radial diffusion of dye is
observed. Suerich-Gulick et al. (2014a, 2014b) propose a semi-
empirical model to determine rc from the approach flow and the
geometry of a specific laboratory-scale hydropower intake based
on Burgers’ model of rc = 2(ν /a)0.5. The experimental results
reported by Suerich-Gulick et al. (2014a, 2014b) match with
Burgers’ model without using eddy viscosity. These results sug-
gest that eddy viscosity is used to compensate the undecided use
of Uo to predict rc. For a similar type of experimental set-up as
that presented here, Sun and Liu (2015) propose an expression
where rc is only a function of Γ ∞ : rc = 1.69T0.55

∞ . However,
as Γ ∞ strongly depends on Q, Sun and Liu (2015) show also
a relation between Q and rc. Using the equation suggested by
Sun and Liu (2015) with the measured Γ ∞ presented here, and
comparing the thus determined rc with the measured rc, shows
significant deviations. Consequently, relations between vortex
characteristics appear to be highly dependent on the geometry
of the experimental set-up used.

Validation of Burgers’ model when using radially dependent
Vz profiles

Burgers’ model of rc = 2[ν /(dVz/dz)]0.5 is derived using the
assumption of a radially independent Vz profile given by
Vz = az. The measured Vz profiles show that this assumption
not valid. In this section, the validity of this model is studied for
radially dependent Vz profiles comparable to the present mea-
surements of Vz. To do this, the measured Vz profile is converted
to a radially independent average velocity V̄z which is used in
Burgers’ model for rc. V̄z is computed based on the vortex axial
flow Qv:

V̄z =
∫∫

A Vz(r)dA
A

= Qv

π(2.2rc)
2 (14)

with A bounded by r = 2.2rc. Assuming the Vz profile lin-
ear with z, the gradient dV̄z/dz is then computed by using the

average gradient of dQv/dz between the planes:

dV̄z

dz
= 1

n − 1

n−1∑
i=1

{
1

[h(i + 1) − h(i)]

×
[

Qv(i)
π(2.2rc,i)

2 − Qv(i + 1)

π(2.2rc,i+1)
2

]}
(15)

with Qv = (Qv ,0.29, Qv ,0.49, Qv ,0.62) and h = (0.29 m, 0.49 m,
0.62 m) and n the number of planes where Qv is measured.
By substituting Eq. (15) in Burgers’ model of rc, the following
expression is obtained to compute rc with the Burgers model:

rc = 2

√√√√√√√√√
ν

(
1

n − 1

n−1∑
i=1

{
1

[h(i + 1) − h(i)][
Qv(i)

π(2.2rc,i)
2 − Qv(i + 1)

π(2.2rc,i+1)
2

]})−1 (16)

Figure 10a shows the computed rc for series one, two, three,
five and six (for series five the gradient is used between the
planes 0.29 and 0.49 m). The determined value for rc for the
series three, five and six show a match with the measured rc,
while series one and two show a deviation of circa 60%. These
deviations are possibly related to the small axial velocity differ-
ences between the planes with the same order of magnitude as
the measurement uncertainty. Another explanation could be the
presence of a Taylor–Proudman column above the outlet, sup-
pressing axial velocity gradients. The typical Rossby number
Ro = Vθ (rc)/2Ω rc for this set-up is circa 0.5, indicating that the
Coriolis forces are of the same order of magnitude as the iner-
tial forces. However, a further discussion on this phenomenon
is beyond the scope of this study. To conclude, it seems valid to
use Burgers’ model for the estimation of rc by taking the gradi-
ent of the average value V̄z of the radially dependent Vz profile
within the vortex and assuming it to be linear. Figure 10b shows
the results of the computed rc if extra diffusion of vorticity due
to radial turbulence is applied as proposed by Odgaard (1986)
where ν is replaced by ν + kΓ ∞ with k = 10−5 to use an eddy
viscosity in the same order of magnitude as the kinematic vis-
cosity. Indeed, as radial turbulence is likely to be absent, the
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Figure 10 (a) Comparison of measured and computed rc using V̄z . (b) Comparison including extra diffusion of vorticity by radial turbulence with
kΓ of the same order of magnitude as the kinematic viscosity

introduction of a small eddy viscosity leads to unrealistic large
values of the core radii.

4.5 Computation of HD with the Burgers model

The computation of HD or total surface depression is based on
conservation of radial momentum from the Navier–Stokes equa-
tions by assuming ∂Vr/∂z = 0 and neglecting the contribution of
the Vr terms since they are very small compared to the Vθ terms
as shown in Section 4.2. The radial pressure term as a function
of r is then:

p(r) = ρ

∫ r

0

[
V2

θ

r
− Vr

∂Vr

∂r
+ ν

∂

∂r

(
∂Vr

∂r
+ Vr

r

)]
dr

≈ ρ

∫ r

0

V2
θ

r
dr + p(0) (17)

and characterizes the balance between radial pressure force and
centrifugal force of the rotating fluid. The pressure distribution
in the axial direction is determined by taking the integral of
the axial Navier–Stokes equations and neglecting the Vz pres-
sure terms as they are small compared to the pressure due to the
gravitational force:

p(r) = ρ

∫ z

0

[
Vr

∂Vz

∂r
+ Vz

∂Vz

∂z

+ ν

(
∂2Vz

∂r2 + 1
r

∂Vz

∂r
+ ∂2Vz

∂z2

)
− g

]
dz ≈ p(0) − ρgz

(18)

Consequently, the pressure distribution is taken as hydrostatic
as supposed by e.g. Odgaard (1986), Gulliver and Rindels
(1987), Hite and Mih (1994) and Andersen et al. (2006). When
including surface tension, the elevation h of the free surface is

approached by:

h(r) = h(0) + 1
g

ρ

∫ r

0

Vθ
2

r
dr − σ

ρg
[κ(r) − κ(0)] (19)

with σ the fluid surface tension and κ the surface curvature
(Andersen et al., 2006):

κ(r) = h′

r[1 + (h′)2]
1/2 + h′′

[1 + (h′)2]
3/2 (20)

with h′ = dh/dr and h′′ = d2h/dr2. Subsequently, HD, or the
total surface depression, is approached by integrating Eq. (19)
between r = 0 and r → ∞ while neglecting the curvature κ(∞)
at infinity:

HD = h(∞) − h(0) = 1
g

∫ ∞

0

V2
θ

r
dr − σ

ρg
κ(0) (21)

Influence of surface tension

The influence of surface tension σ on HD has been studied by
many authors. For example, Anwar et al. (1978) stated that
the influence of σ can be neglected when the Weber num-
ber We = ρUo

2H /σ > 104. In our experimental range with
σ = 0.072 N m−1 (25°C), We varies between 103 to 3·103,
implying that σ cannot be neglected; however, the relative con-
tribution is unknown. Odgaard (1986) states that the surface
tension pressure ps at the tip of the air core is of a magnitude of
− 2σ /rc, giving a maximal contribution to the presented exper-
imental range of circa 1% of the measured HD. Suerich-Gulick
et al. (2014b) numerically examined the relative contribution of
surface tension δ = (hn – hσ )/hn on the air core depth for dif-
ferent scales and shapes of the surface depression as a function
of the nominal slope ζ = hn/rc, where hn and hσ are the cal-
culated HD without and with σ . For funnel-shaped air cores



12 A. Duinmeijer et al. Journal of Hydraulic Research (2019)

Figure 11 Free-surface vortex air core depths HD for series 5 to 8 with from left to right: HD = ± 0.17 m, ± 0.26 m, ± 0.54 m and ± 0.85 m. All
air cores are typically funnel shaped

Figure 12 (a) to (f) Surface depression profile computed with Eq. (19) and without surface tension and compared with the measured HD for series
2 to 7. Both results are presented with the 95% confidence interval
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(Fig. 11) with a minimal nominal slope in our experimental
range of about 10, Suerich-Gulick et al. (2014b) showed that
the relative contribution has a maximum of about 2%. Because
of this minor contribution, the influence of σ in the computation
of HD is neglected.

Validation of the expression to compute the surface elevation
h(r)

The Burgers model to quantify HD is based on the expression
to compute the surface elevation (Eq. (19)) without taking sur-
face tension into consideration. Therefore, both Eq. (19) and the
assumption of negligible surface tension effects is validated by
comparing the results of Eq. (19) with the measured HD. The
comparison uses the measurements of Vθ at plane h = 0.29 m.
Figure 12 shows that Eq. (19) matches with measured HD show-
ing some under-prediction for most of the series that validates
neglecting surface tension effects for the presented experimental
range.

Computation of HD with the Burgers model

The Burgers model to compute HD is obtained by substituting
Burgers’ expression of Vθ in the validated Eq. (19) and inte-
grating over r ∈ [0, ∞] while neglecting effects due to surface
tension:

HD = 1
g

∫ ∞

0

V2
θ

r
dr = ln 2

4π2g

(
Γ∞
rc

)2

(22)

Figure 13 shows the results of the Burgers model using Γ̄SPIV

and r̄c that are the plane averaged values. For series one to
six, the Burgers model shown an under-prediction of HD while
there is an over-prediction of HD for series seven and eight. The
randomness of the deviations is probably related to a combina-
tion of minor inaccuracies in r̄c and Burgers’ assumption of an
unrealistic radially independent Vz profile. To conclude, with an
uncertainty of approximately 20% the Burgers model produces
sufficiently accurate results for the research purposes addressed
in this study.

Figure 13 Computed air core depth HD with the Burgers model (Eq.
(22)) compared to measured HD. Both results are presented including
the 95% confidence interval because the averaged core radius r̄c was
used and because of uncertainty linked to air core tip instability

5 Conclusions

For a Ø600 mm vortex tank a unique set of velocity field mea-
surements of the 3D-flow field of the free-surface vortex at
different planes is presented including Γ ∞, the profiles of Vθ ,
Vr, Vz and rc. The use of a simple floating quadripod to mea-
sure Γ proved to be a simple but accurate measuring device.
The profile of Vθ is shown to be nearly independent of the verti-
cal coordinate (∂Vθ /∂z ≈ 0) and thus the rotational flow can be
assumed as a 2D line-vortex. Based on the characteristic vortex
parameters rc and Γ ∞, where Γ ∞ is assumed to be equal to Γ at
r = 3rc, the Burgers (1948) vortex model produces a sufficiently
accurate estimate of the Vθ profile for the present research pur-
poses. The profile of Vr was hard to measure because of the
velocities being in the same order of magnitude as the mea-
surement uncertainty. The radial inflow is primary concentrated
near the vortex core with a maximum velocity around rc and
being zero in the outer field. For all series, the measured Vz

profiles show that the axial down-flow is primary concentrated
in a region with a radius comparable to approximately 2 –3rc

while showing a semi-parabolic profile with a maximum around
rc. Integration of the measured Vz shows that between 10% and
25% of the flow is transported by the vortex. The measurements
show that it is valid to use Burgers’ model for the computation
of rc for radially dependent Vz profiles by using the average V̄z

over a radial domain of 2.2rc. Compared to the magnitude of dif-
fusion of vorticity by molecular viscosity, the experiments show
that there is no considerable diffusion by radial turbulence. The
influence of surface tension can be neglected in the computation
of HD for the present experimental range. By only using Γ ∞ and
rc and compared with the measured HD, the Burgers model com-
putes HD with an uncertainty of 20%. The purpose of the vortex’
application is to transport floating debris to the pump suction
inlet. At the design stage, there is a safety margin in distance
between HD and the inlet depth as air entrainment by a full air
core must be prevented. The 20% uncertainty in air core depth
is negligible compared to this margin and therefore acceptable
for engineering applications. This however, will ask for a clear
communication on this point with practitioners. The results of
the work presented here will be used to study the ability of the
free-surface vortex as a transport mechanism to remove floating
debris. The outcome of this research will be published in future
communications.
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Notation

a = gradient of axial velocity (s−1)
A = cross-sectional area normal to flow (m2)



14 A. Duinmeijer et al. Journal of Hydraulic Research (2019)

d = pipe diameter, length of quadripod (m)
D = outlet diameter (m)
g = gravitational constant (m s−2)
h = height of plane measured from tank bottom (m)
H = undisturbed water depth above outlet (m)
HD = total surface depression or air core depth (m)
k = constant (–)
n = number of measurement planes (–)
N = number of revolutions (–)
p = pressure (N m−2)
q = flow rate per unit of height (m2 s−1)
Q = flow rate (m3 s−1)
Qv = vortex flow rate (m3 s−1)
r = radial coordinate (m)
rc = vortex core radius (m)
R = non dimensional radius (–)
R = Reynolds number (–)
Ro = Rossby number (–)
S = submergence depth (m)
t = time (s)
Uo = mean outlet velocity (m s−1)
V = vortex velocity field
Vr = radial velocity (m s−1)
Vz = axial velocity (m s−1)
Vθ = tangential velocity (m s−1)
We = Weber number (–)
z = axial coordinate (m)
α = bounding radius (m)
δ = relative contribution of surface tension (–)
ε = eddy viscosity (m s−2)
ζ = nominal depression slope (–)
θ = azimuthal coordinate (rad)
ν = kinematic viscosity (m s−2)
νeff = effective viscosity (m s−2)
ρ = density (kg m−3)
σ = surface tension (N m−2), standard deviation
Γ = circulation (m2 s−1)
Ω = angular velocity (rad s−1)
ω = vorticity (s−1)
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