

Delft University of Technology

Amalur
The Convergence of Data Integration and Machine Learning
Li, Ziyu; Sun, Wenbo; Zhan, Danning; Kang, Yan; Chen, Lydia; Bozzon, Alessandro; Hai, Rihan

DOI
10.1109/TKDE.2024.3357389
Publication date
2024
Document Version
Final published version
Published in
IEEE Transactions on Knowledge and Data Engineering

Citation (APA)
Li, Z., Sun, W., Zhan, D., Kang, Y., Chen, L., Bozzon, A., & Hai, R. (2024). Amalur: The Convergence of
Data Integration and Machine Learning. IEEE Transactions on Knowledge and Data Engineering, 36(12),
7353-7367. https://doi.org/10.1109/TKDE.2024.3357389

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1109/TKDE.2024.3357389
https://doi.org/10.1109/TKDE.2024.3357389

Green Open Access added to TU Delft Institutional Repository

'You share, we take care!' - Taverne project

https://www.openaccess.nl/en/you-share-we-take-care

Otherwise as indicated in the copyright section: the publisher
is the copyright holder of this work and the author uses the
Dutch legislation to make this work public.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 36, NO. 12, DECEMBER 2024 7353

Amalur: The Convergence of Data Integration and
Machine Learning

Ziyu Li , Wenbo Sun , Danning Zhan, Yan Kang, Lydia Chen, Alessandro Bozzon , and Rihan Hai

Abstract—Machine learning (ML) training data is often scat-
tered across disparate collections of datasets, called data silos.
This fragmentation poses a major challenge for data-intensive
ML applications: integrating and transforming data residing in
different sources demand a lot of manual work and computational
resources. With data privacy constraints, data often cannot leave
the premises of data silos; hence model training should proceed
in a decentralized manner. In this work, we present a vision of
bridging traditional data integration (DI) techniques with the re-
quirements of modern machine learning systems. We explore the
possibilities of utilizing metadata obtained from data integration
processes for improving the effectiveness, efficiency, and privacy of
ML models. Towards this direction, we analyze ML training and
inference over data silos. Bringing data integration and machine
learning together, we highlight new research opportunities from
the aspects of systems, representations, factorized learning, and
federated learning.

Index Terms—Machine learning, data integration, federated
learning.

I. INTRODUCTION

THE accuracy of an ML model heavily depends on the
training data. In real-world applications, often the data is

not stored in a central database or file system but spread over
different data silos. Examples include drug-risk prediction [1] or
keyboard stroke prediction [2]; the data is collected at different
locations or devices.

Data integration (DI) systems enable interoperability among
multiple, heterogeneous sources and provide a unified view
for users. Notably, they allow us to describe data sources and
their relationships [3]: i) mappings between different source

Manuscript received 31 August 2023; accepted 5 January 2024. Date of
publication 23 January 2024; date of current version 13 November 2024. This
publication is part of the project Understanding Implicit Dataset Relationships
for Machine Learning (with project number VI.Veni.222.439) of the research
programme NWO Talent Programme Veni which is (partly) financed by the
Dutch Research Council (NWO). This work was supported by the European
Union Horizon Programme call HORIZON-CL4-2022-DATA-01 under Grant
101093164 (ExtremeXP). Recommended for acceptance by Lei Chen. (Ziyu Li
and Wenbo Sun contributed equally to this work.) (Corresponding author: Ziyu
Li.)

Ziyu Li, Wenbo Sun, Danning Zhan, Alessandro Bozzon, and Rihan
Hai are with the Department of Software Technology, Delft University of
Technology, 2628 CD Delft, The Netherlands (e-mail: z.li-14@tudelft.nl;
w.sun-2@tudelft.nl; d.zhan@tudelft.nl; a.bozzon@tudelft.nl; r.hai@tudelft.nl).

Yan Kang is with the WeBank, Shenzhen 518052, China (e-mail:
yangkang@webank.com).

Lydia Chen is with the Department of Computer Science, University of
Neuchatel, 2000 Neuchâtel, Switzerland, and also with the Delft University of
Technology, 2628 CD Delft, The Netherlands (e-mail: L.chen-10@tudelft.nl).

Digital Object Identifier 10.1109/TKDE.2024.3357389

Fig. 1. Scope of this line of work.

schemata, i.e., schema matching and mapping [4], [5] and ii)
linkages between data instances, i.e., data matching (also known
as record linkage or entity resolution (ER)) [6]. Nevertheless, a
DI system aims to facilitate query answering or data transfor-
mation over silos, not directly supporting ML applications. As a
result, practitioners nowadays tackle silos with DI systems and
ML tooling separately.

Running Example: Consider the feature augmentation exam-
ple in Fig. 2; the downstream ML task is to predict patients’
mortality (binary classification) based on information scattered
across tables maintained by different departments in the same
hospital. Data from the ER department are stored in a base table
S1(m,n,a,hr), which has the label column m (mortality) and
features a (age) and hr (resting heart rate). To improve
the model’s accuracy, a data discovery system is employed
to discover a related table S2(m,n,a,o,dd) (Fig. 2(b)), with in-
formation coming from the pulmonary department. This table
brings information about a new feature column o (oxygen),
which shows the blood oxygen level. The label column and the
selected feature columns constitute the schema of the table for
downstream ML models, i.e., T(m, a, hr, o), which we refer to
as the target table schema or mediated schema.

Data Integration, Data Management and ML: Fig. 1 illus-
trates our problem scope. Recent advances with in-database
machine learning [7], [8], [9], mainly consider a single database
instead of data silos.1 Traditional data integration, which

1The intersection of data management and ML (DBML) is two-fold: ML for
DB, and DB for ML. ML has been applied to improve key operations of DI such
as schema matching [10], [11], and data matching [11], [12], [13], [14]. In this
paper, we focus on data management for ML. Except for data cleaning [15],
[16], [17], little has been discussed in terms of using the key DI operations to
facilitate ML [18].

© 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see
https://creativecommons.org/licenses/by-nc-nd/4.0/

https://orcid.org/0000-0001-9403-572X
https://orcid.org/0009-0004-7849-7771
https://orcid.org/0000-0002-3300-2913
https://orcid.org/0000-0002-3720-6585
mailto:z.li-14@tudelft.nl
mailto:w.sun-2@tudelft.nl
mailto:d.zhan@tudelft.nl
mailto:a.bozzon@tudelft.nl
mailto:r.hai@tudelft.nl
mailto:yangkang@webank.com
mailto:L.chen-10@tudelft.nl

7354 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 36, NO. 12, DECEMBER 2024

Fig. 2. Traditional integration of data silos for ML.

addresses data management concerns across silos [19], do not in-
herently cater to the needs of ML. Federated learning (FL), on the
other hand, involves training ML models using data residing in
isolated silos [20], with an emphasis on data privacy regulations
such as GDPR [21], HIPAA [22], IPA [23], and PIPL [24]. In
this paper, we argue that when data management, data silos, and
ML meet, there are new optimization opportunities and research
challenges.

Issues With the Separation of Data Integration and ML: As
shown in Fig. 2(c)–(d), to use the data from the two tablesS1 and
S2, a data scientist would need to rely on a DI system or manually
find the schema mapping and entity resolution between the two
given tables. We elaborate schema mappings in Section IV-A.
Then, a DI system can integrate these source tables by merging
the mapped columns and linked entities (i.e., matched rows).
Finally, it materializes the data instances of the target table T
and exports it to downstream ML applications. Such a process
usually involves massive manual work and computation over-
head, e.g., joining tables. The source datasets go through the
long data integration and transformation pipeline and reach the
ML training phase as one large materialized dataset. The rich
structural and semantic metadata obtained during data integra-
tion is discarded.

Research Vision & Question: In this work, we explore the
uncharted research area at the intersection of data integration

and ML. We explore the possibilities of utilizing DI metadata
(e.g., the output of schema matching and entity resolution) to
improve ML model training and inference. As the starting point,
we ask a fundamental question:
Q: Can we use DI metadata to improve the efficiency, effec-

tiveness, and the privacy of ML model training and inference?
Data integration is a well-studied research area with ma-

ture logic-based theoretical frameworks, techniques, and sys-
tems [19], [25], [26]. Yet, current ML systems [27], [28] focus
on ML pipelines, merging and materializing the source datasets
being a common practice, using Python libraries such as Pandas,
NumPy or SciPy. We envision novel systems that combine DI
information to improve ML efficiency, effectiveness, and the
privacy of data. We refer to efficiency as the overall training
(inference) time, effectiveness as the accuracy of the ML models,
and data privacy as not revealing new information to other
parties. To this end, we present new research challenges to design
such a novel DI-aware ML system. Moreover, we reveal exciting
new research challenges when bridging data integration with ML
philosophies, e.g., federated learning.

In this paper, we focus on these challenges in four aspects:
system design, metadata and their representations, computation
efficiency, and privacy. The contributions go as follows.
� System design (Section II): We present the design of

Amalur, a novel ML system that leverages DI results. We
elaborate on the research challenges of building such a
system.

� Heterogeneous metadata (Section III): We showcase vari-
ous types of metadata and highlight their roles in improving
efficiency, effectiveness, and privacy for ML tasks.

� DI metadata representations (Section IV): We propose
matrix-based representations for DI metadata, which cap-
ture i) column matches, ii) row matches, and iii) redun-
dancies between data sources and the target table. We
also discuss and compare other available alternatives as
representations for DI metadata.

� Computation efficiency: (Section V) We highlight the new
opportunities for utilizing DI metadata to improve the time-
wise efficiency of ML model training over data silos.

� Privacy (Section VI): We discuss the research challenges
of improving vertical federated learning with DI metadata.

II. AMALUR: AN DI-AWARE ML SYSTEM

In this section, we first explain the challenges of two com-
mon ML scenarios, i.e., feature augmentation and federated
learning, and propose a novel system Amalur to tackle these
challenges. Amalur is a unified ML system designed to enhance
ML pipelines’ efficiency, effectiveness, and privacy in data
integration contexts. It facilitates model training and inference
over data silos by leveraging DI metadata.

A. Silo Problem: DI Formulation for Different ML Scenarios

With two representative ML scenarios, we explain when train-
ing data could come from silos, i.e., feature augmentation and
federated learning. As shown in Table I, for these scenarios, the
dataset relationships between source tables and the desired target

LI et al.: AMALUR: THE CONVERGENCE OF DATA INTEGRATION AND MACHINE LEARNING 7355

TABLE I
FOUR EXAMPLE DATA INTEGRATION SCENARIOS FOR FEATURE AUGMENTATION AND FEDERATED LEARNING

table can be captured by a class of well-studied data dependen-
cies, i.e., tuple-generating dependencies (tgds) [29], [30], which
are the commonly used formalisms in data integration studies.

Scenario 1: Feature augmentation is the exploratory process
of finding new datasets and selecting features that help improve
the ML model performance [31], [32], [33]. Fig. 2(b) shows
an example: starting from a base table S1, we augment the
features by introducing the tableS2 and selecting the new feature
o (oxygen).

Scenario 2: Federated learning (FL) [20] studies how to build
joint ML models over data silos (e.g., enterprise data ware-
houses, edge devices) without compromising privacy, which
follows a decentralized learning paradigm. Similar to the virtual
data integration problem setting [3], FL assumes that source data
is not stored at a central data store but stays locally. According to
how the feature space and sample space are partitioned among
the data sources, FL can be categorized as vertical federated
learning (VFL) and horizontal federated learning (HFL) [34].
For VFL, data sources share the overlapping data instances, but
the feature columns partially overlap. For HFL, data sources
share the overlapping feature columns, while the data instances
may overlap.

Example 1 (full outer join) is explained for feature augmen-
tation in Fig. 2 and Example 4.1. Full outer join is also a
general case of FL, where sources have similar schemata and
data instances (entities) that may or may not overlap.

Example 2 (inner join) represents the data integration scenario
where only overlapped rows in two sources will be transformed,
i.e., an inner join between S1 and S2 followed by a projection on
columns m, a, hr, o. It can be used to describe the feature aug-
mentation processes where fewer missing values are preferred.
Such dataset relationships also reside in a VFL context, where
data sources share the sample space (overlapped rows) but not
necessarily the feature space (overlapped feature columns).

Example 3 (left join) shows a left join between S1 and S2.
Compared to Example 1, we slightly change the schema of S2

by dropping the label column m. Example 3 describes another
typical feature augmentation scenario for supervised learning:
only the base table S1 contains the label column. In VFL cases,
not all but specific sources hold the labels for supervised model
training.

Example 4 (union) is a special case of Example 1, where S1

andS2 do not share any rows. We modify theS1 andS2 schemata
to share the same feature columns mapped to the target schema

T . Example 4 can represent the scenario when a new table is
selected to bring more data samples.

Two Computation Strategies: The training process of an ML
model requires complex arithmetic computations. The compu-
tations in the previous four examples, i.e., joinable or unionable
source tables, can be conducted in a materialized or factorized
manner, similar to data warehousing and virtual data inte-
gration. Materialization requires joining the source tables and
obtaining the instances of the target table before exporting it for
model training, as depicted in Fig. 2. Another option is learning
over factorized joins [35], also known as factorized learn-
ing [36]. Given an ML model and joinable tables of a database,
factorized learning requires reformulating the ML model and
pushing down the computation to each table. Compared to ma-
terialization, factorized learning does not affect model training
accuracy but often helps to improve the training efficiency, as the
arithmetic computation results after factorization, are the same
as the original operators [35], [37], [38]. Similar to traditional DI
systems, materialization is sometimes impossible due to privacy
constraints and other reasons, which we address in Section VI. In
this section, we focus on the performance implications of these
two strategies.

B. Amalur Overview

We are currently developing Amalur, a machine learning
system that is based on our work on data lakes [39] and model
zoos [40]. With DI metadata, Amalur solves the challenges of
efficient training and inference of ML models over data silos and
reducing the manual work of integrating the data. Fig. 3 provides
a high-level overview of Amalur with key components relevant
to this paper. Our proposed system is designed to support both
materialized and factorized data; however, while learning on
materialized data is well established, our primary focus is to
explore factorization.

User Inputs: Amalur empowers users, including domain ex-
perts like physicians or data scientists, to run predictive or
ML model training tasks on data silos. Through the metadata
provided by the catalog, users can choose the desired features
and relevant data silos. They can also initiate model training
using either custom models or Amalur’s built-in ML models with
metadata from the catalog. Furthermore, specific constraints,
such as data privacy regulations like the GDPR [21], can be
specified by individual users or particular silos.

7356 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 36, NO. 12, DECEMBER 2024

Fig. 3. Overview of Amalur.

Hybrid Metadata Catalog: One of the fundamental compo-
nents of Amalur is the metadata catalog. It stores the metadata of
data, ML models, and hardware settings. Data-related metadata
includes the basic metadata and DI metadata. Collected from
the silos, the basic metadata describes each data source, e.g.,
source table schema, data types, and silo location. The DI
metadata includes column relationships from schema matching
and row matching from entity resolution. Model-related meta-
data includes information describing models and the evaluation
performance (e.g., model accuracy). We have addressed the
representations of basic metadata of source tables [41] and
ML models [40]. In this work, we focus on a mixture of het-
erogeneous metadata in Section III, and DI metadata with an
explanation of their matrix-based representations in Section IV.

Estimator and Planner: The cost estimator and task planner
play a critical role in the system. The cost estimator leverages the
metadata from the catalog (e.g., data characteristics, hardware
specifics) and constraints to determine the approach to execute
the input task over silos: materialization and factorization. We
have developed an initial cost estimator utilizing basic hardware
information and the computational complexity of the target
model. We elaborate on the cost estimator’s theoretical founda-
tions and preliminary results in Section V. The planner identifies
the appropriate physical operators and generates an execution
plan for task orchestration.

Task Orchestrator and Dispatcher: The execution plan from
the planner is translated into specific programs tailored to the
training approach, i.e., factorization, materialization, or FL, and
the execution environment, such as TensorFlow, PyTorch, Spark,

Fig. 4. Example workflows of factorized learning in Amalur.

or ONNX. For materialization, Dataloader pulls data from the
silos for processing. Model training or inference will be per-
formed in the centralized server. Alternatively, if factorization
is preferred, programs are sent to remote silos as the metadata
dictates, i.e., silo location, ensuring they reach the appropriate
data location. The main computations are performed over each
silo.

Aggregator: For factorized learning and federated learning,
a crucial component is the aggregator. Some computations are
pushed to the silos while a central server aggregates the results.
The computations are performed locally, and the parameters are
learned globally. The role of the aggregator is to collect the result
of local computations and then distribute the loss to the silos and
aggregate the gradient of the parameters.

C. Amalur Workflows for ML Training and Inference

With the core components in Amalur being introduced, we
will explain the main workflow among the components in
Fig. 4. Given the user inputs in Amalur, different workflows
are performed: either performing inference or training, either
factorizing or materializing the data, etc.

Amalur allows users to determine the data sources and mod-
els. If there is available DI metadata, Amalur will provide data
sources that can be connected. To increase the effectiveness of
ML training, a user can select feature columns from the available
schemata. Model-related metadata is also retrieved from the
metadata catalog and provided to users, which enables them
to decide what algorithm and hyper-parameters to use. Users
may use their customized model and hyper-parameter sets. In the
input phase, the user selects data sources (e.g., name of the table,
name of the schema), chooses the model, and determines the
task (classification or regression) and constraints (e.g., privacy).

LI et al.: AMALUR: THE CONVERGENCE OF DATA INTEGRATION AND MACHINE LEARNING 7357

With the inputs, model training or inference will be performed.
In the end, all results, which include predictive outcomes and
trained models, are gathered in a centralized cluster. Concur-
rently, the system logs the training or inference method (materi-
alization/factorization), the hyper-parameters, and performance
(e.g., F1-score, runtime) in the metadata catalog, making them
accessible for future reference and used by other users. Below,
we will introduce the training and inference in more detail.

Model Training: After Amalur receives the inputs from a user,
the cost estimator will determine the computation strategy for
training, i.e., to materialize or factorize, with metadata from the
inputs and metadata catalog. For materialization, Amalur will
integrate the source datasets and generate the target table in the
centralized server, and training will be performed on the server.
For factorization, the model is decomposed and pushed down
to silos. When privacy constraints are present, Amalur executes
privacy-aware model training processes over the silos [42], i.e.,
federated learning, which we elaborate in Section VI-A.

Fig. 4 depicts a workflow for ML model training in a factorized
manner. The planner will split the model into the parameters
θ1, θ2 along with the DI metadata M1,M2, which are pushed
to Silo1 and Silo2 for computations respectively. Subsequently,
the central server will collect the computations and aggregate
the result, i.e., Y1 from Silo1, computes the loss calculated from
Loss(Ȳ , Y1 + Y2) which is sent back to the silos for gradient
updates. Once the loss meets a predefined criterion, a central or-
chestrator records performance metrics in the metadata catalog.
In addition to illustrated workflow, due to privacy considerations
in FL, the partial parameters are stored locally within the silos.

Model Inference: A user can select a specific model and
perform model inference if models are available for the pre-
pared dataset. Like model training, the cost estimator determines
whether the computation is performed in a factorized or material-
ized manner. Model inference in a materialized manner is similar
to model training. Inference in a factorized manner is slightly
different, with only the local predictive results being sent to the
centralized aggregator to generate the predictive results, while
nothing is returned from the server.

III. METADATA IN AMALUR

Metadata is crucial for DI systems [3], [43], [44]. At the
core of this vision, we reveal the importance of metadata,
particularly DI metadata, for ML training and inference. In the
following, we divide the relevant metadata into three categories,
i.e., data-related, ML-related, and hardware-related metadata. In
each category, we showcase the representative types of metadata
in Table II, and discuss their roles in improving the effectiveness,
efficiency, and privacy of ML model training and inference.
The metadata is stored and managed by the metadata catalog
described in Section II-B.

A. Data-Related Metadata

Metadata in databases and data lakes refers to the information
that describes the structure, and characteristics of databases
or data lakes and their objects [45], [46], [47]. The metadata

TABLE II
EXAMPLE METADATA TYPES USED IN AMALUR

includes information regarding schemata, statistical and descrip-
tive data about relations and attributes, integrity constraints, silo
locations, etc.

Data Integration Metadata: By DI metadata, we refer to
the information that describes the relevance and overlap be-
tween data sources, e.g., schema-level correspondences between
source tables and the target table (schema mapping), and row
matching between source tables (entity resolution).2

To address the research question in Section I , we employ DI
metadata in a threefold manner.

1. Efficiency: By representing schema mapping and row
matching as matrices (Section IV), Amalur facilitates a unified
execution of data transformation operations and linear algebra
operations (Section V-A and VI-A), which improves the effi-
ciency of training tasks (Sections V-B and V-C).

2. Effectiveness: DI metadata brings new opportunities for
improving the effectiveness of federated learning frameworks,
e.g., through discovering the redundancy among source datasets
(Section VI-C).

3. Privacy: DI metadata leads to new challenges for data
privacy in FL frameworks (Sections VI-B and VI-C).

Challenges: Another type of DI metadata is the similarity
among source datasets. In recent studies on data lakes, it is a cru-
cial step to first capture the similarity between source datasets,
i.e., joinable or unionable dataset discovery [49], [50], [51],
before data integration. The similarity between datasets is also
valuable for improving the effectiveness of ML training, e.g.,
resolving the inconsistency across datasets and recommending
models to train if the model was trained on a similar dataset [52].
In recent data integration works [11], [50], [53], the embeddings
are applied to capture the similarities between features or tuples
in source tables. Taking one step further, representations of
the entire table [54], [55] allow for many more applications,
e.g., transfer learning and multimodal machine learning. Many
research questions remain open, regarding more types of DI

2How to obtain DI metadata is not the focus of this work, as schema matching
and mapping, and entity resolution are intensively studied topics with open-
source tools [12], [48] and commercial products. We assume that the DI metadata
is part of Amalur’s input. We are interested in how to utilize DI metadata for
machine learning.

7358 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 36, NO. 12, DECEMBER 2024

metadata, their representations, and their roles in improving ML
tasks.

B. ML-Related Metadata

Amalur not only supports efficient ML training but also man-
ages the trained models, which makes it necessary to design a
metadata catalog that includes heterogeneous metadata for ML,
i.e., ML-related metadata. ML-related metadata captures the
metadata from various ML lifecycle stages [40], such as model
definition and model training. The metadata describing the
model includes architecture, framework, configurations (e.g.,
hyper-parameters), input/output (e.g., prediction classes), etc.
These types of metadata are utilized in different components
in Amalur. For example, the cost estimator requires informa-
tion regarding the complexity of the model (e.g., algorithm,
parameters) to predict workload and model training requires
hyper-parameters. The metadata catalog also keeps track of the
connections between the model and its training datasets. Thus,
given a generated dataset, if a model was previously trained
on this dataset, the model will be recommended to the user for
inference or retraining.

Besides the information describing a model, we also record
the performance of ML models (e.g., model accuracy, runtime,
memory footprint) under different execution environments. This
information helps recommend models to users in the model
preparation stage. Recommending a good model to train based
on different strategies [56] can improve the effectiveness and
efficiency of ML training.

C. Metadata Regarding Hardware

Hardware and environment settings are important to measure
the performance of databases [57], the interested information
including, e.g., number of CPU cores, memory. This information
is also essential for measuring ML performance during training
and inference [58]. For ML, the hardware devices may also
include GPU or TPU. In general, the hardware-related metadata
is regarding the execution environment in the central cluster and
distributed silos.

In this paper, the hardware-related metadata also supports
an essential component for improving the efficiency of ML
training. This type of metadata, along with the data-related
and ML-related metadata, supports the cost estimator to decide
whether to train a model on materialized or factorized data. The
result of the cost estimation results in a more efficient plan for
model training or inference.

IV. REPRESENTATION: A TALE OF THREE MATRICES

In this section, we discuss the representations that capture
the metadata of DI, which enable optimizing ML tasks. When

combining the functions of DI and ML in one system such as
Amalur, one core task is how to represent the DI metadata.
The challenge is that the representation needs to be expressive
enough to capture the DI metadata while bringing little overhead
for model training.

We define three logical-level representations: mapping matrix
for preserving the column mapping (Section IV-A), indicator
matrix for row matching (Section IV-B), and redundancy matrix
for data redundancy (Section IV-C). We choose matrix-based
representations, as they facilitate direct computation with linear
algebras without the need of additional transformation, which
we illustrate in Section V. Finally, in Section IV-D, we inspect
the implementation of such matrix-based representations at the
physical level.

A. Mapping Matrix

Preliminaries: Schema mappings lay at the heart of data
integration and data exchange. LetS andT be a source relational
schema and a target relational schema sharing no relation sym-
bols. A schema mapping M between S and T is a triple M =
〈S,T,Σ〉, where Σ is a set of dependencies over 〈S,T〉. The
dependenciesΣ can be expressed as logical formulas over source
and target schemas. One of the most commonly used mapping
languages is source-to-target tuple generating dependencies (s-t
tgd) [29], [30], which are also known as Global-Local-as-View
(GLAV) assertions [25]. An s-t tgd is a first-order sentence in the
form of ∀x (ϕ(x) → ∃y ψ(x,y)) where ϕ(x) is a conjunction
of atomic formulas over the source schema S,and, and ψ(x,y)
is a conjunction of atoms over the target schema T.

Example 4.1: In Fig. 2(c), m1, m2, and m3 are all tgds. We
represent mapped attributes with the same variable names, e.g.,
S1.m and S2.m. The tgd m1 specifies that the overlapped rows
of S1 and S2 are added to T (∧ denotes a natural join between
S1 and S2); m2 and m3 indicate that all rows of S1 and S2

will be transformed to generate new tuples in T , respectively.
Among the three tgds, it is the union relationship. The three tgds
together, describe that the instances in T are obtained via a full
outer join between the datasets S1 and S2.

Gaps: Tgds are first-order sentences specifying schema map-
pings. A DI system often generates schema mappings as exe-
cutable data transformation scripts, e.g., SQL, which transform
the source data instances and materialize the target table T . In
contrast, the fundamental language of ML models is LA. To
embed schema mappings in an end-to-end ML pipeline, we
need a novel representation for schema mappings, which is
compatible with algebraic computation in ML model training.

Matrix-Based Representation for Schema Mappings: Schema
mappings contain the information about the mapped columns
between source and target tables. We define the mapping matrix
to preserve such column mappings. As a preparation step, we
add ID numbers to mapped columns as shown in Fig. 5(a). In
Table III, we summarize the notations used.

Definition 4.1 (Mapping Matrix): Mapping matrices between
source tablesS1, S2, . . ., Sn and target table T are a set of binary
matrices M = {M1, . . .,Mn}.Mk (k ∈ [1, n]) is a matrix with

LI et al.: AMALUR: THE CONVERGENCE OF DATA INTEGRATION AND MACHINE LEARNING 7359

Fig. 5. Mapping, indicator, and redundancy matrices of the running example.

TABLE III
NOTATIONS USED IN THE PAPER

the shape cT × cSk
, where

Mk[i, j] =

⎧⎨
⎩
1, if jth column of Sk is mapped to

the ith column of T
0, otherwise

Intuitively, inMk[i, j] the vertical coordinate i represents the
target table column while the horizontal coordinate j represents
the mapped source table column. A value of 1 in Mk specifies
the existence of column correspondences between Sk and T ,
while the value 0 shows that the current target table attribute has
no corresponding column in Sk. Fig. 5(a) shows the mapping
matrices M1 for S1, and M2 for S2 of the running example.

It is easy to see that the binary mapping matrices are often
sparse. To solve the sparsity problem we apply a more com-
pressed form of mapping matrices as follows.

Definition 4.2 (Compressed Mapping Matrix): Compressed
mapping matrices between source tables S1, S2, . . ., Sn and tar-
get table T are a set of row vectors CM = {CM1, . . ., CMn}.
CMk (k ∈ [1, n]) is a row vector of size cT , where

CMk[i] =

⎧⎨
⎩
j, if jth column of Sk is mapped to

the ith column of T
−1, otherwise

We continue with the running example. Fig. 5(a) illustrates
the compressed mapping matrices CM = {CM1, CM2}. They
can be directly generated from schema mappings without the
generation of the mapping matrices M = {M1,M2}.

B. Indicator Matrix

We use the indicator matrix [37] (denoted as Ik) to preserve
the row matching between each source table Sk and the target
table T . Similar to the mapping matrix, a binary indicator matrix

could be very sparse, and its compressed form is preferred. Due
to space restriction, we directly define the compressed indicator
matrix.

Definition 4.3 (Compressed Indicator Matrix): Compressed
indicator matrices between source tables S1, S2, . . ., Sn and
target table T are a set of row vectors CI = {CI1, . . ., CIn}.
CIk (k ∈ [1, n]) is a row vector of size rT , where

CIk[i] =

⎧⎨
⎩
j, if the jth row of Sk is mapped to

the ith row of T
−1, otherwise

Fig. 5(b) shows the row matching of the running example and
the compressed indicator matrices, CI1 and CI2.

C. Redundancy Matrix

DI systems often need to handle data redundancy when mul-
tiple sources have overlapping values. Consider the example in
Fig. 2, when a user queries how many patients aged above 30
are in S1 and S2, the correct answer is three instead of four.
That is the overlapped row of Jane should be counted only once.
Such redundancy resides in the projection of shared rows on the
overlapped columns. Similarly, to support ML models we also
need to detect redundancy to avoid repeated computation, which
might lead to erroneous results. Thus, we propose a declarative
representation to capture redundancy, i.e., redundancy matrix.
To prepare for its definition, we first discuss how each source
table contributes to the target table materialization. With the
mapping matrix Mk and indicator matrix Ik, we can transform
a source tableDk to an intermediate matrix with the same shape
as T , denoted as Tk, Tk = IkDkM

T
k

Fig. 5(c) shows T1 and T2 of the running example. The red
values inT2 are the repeated values that already appeared inT1. It
is easy to see that Tk indicates the contribution from each source
Sk. However, due to the aforementioned redundancy issue (red
values in T2), we cannot make a simple matrix addition to obtain
the target table. For instance, T1 + T2 	= T in Fig. 5(b)–(c). This
is why we need the redundancy matrix, which is defined below.

Definition 4.4 (Redundancy Matrix): A redundancy matrix
Rk of source table Sk is a binary matrix with the shape of rT ×
cT , where

Rk[i, j] =

{
0, if Tk[i, j] is redundant

1, otherwise

7360 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 36, NO. 12, DECEMBER 2024

Note that before we say the data of a source table is redundant,
we first need to specify which source table is the base table.
For instance, in Example 1–3 of Table I, if we specify S1 as
the base table, then we consider the overlapped values in S2 are
redundant, and only need to generate a redundancy matrix forS2.
For completeness, we can consider that the redundancy matrix
for the base table is an all-ones matrix, with all the element values
equal to one. Fig. 5(c) showsR2 forS2, which is computed based
on mapping and indicator matrices of S1 and S2.

D. Metadata Representation as Tensors

The three proposed types of matrices offer a novel perspective
on the data processing pipeline, where we can describe data,
and DI processes with LA. Aside from the intuitive 2D matrix
representation, we can use high-dimensional tensors to integrate
data and metadata. For example, the data matrix Dk can be
expanded to a third dimension where Mk and Ik adhere along
values and primary keys respectively. As such, we can represent
the data and DI metadata with a more expressive data structure
compatible with tensor algebra and recent advances in data
processing [59], [60], [61], [62], [63], [64], [65].

As tensor processing modules become more prevalent, tensor
representation aligns well with new hardware advancements.
Both Google TPUs and recent Nvidia GPUs have built-in tensor
cores, remarkably boosting linear algebraic computations such
as matrix multiplications. In our recent work on empirical per-
formance comparison [66], we have extensively analyzed the
performance differences between classic hash join and matrix
multiplication join (MMJoin), using the DI metadata discussed
in this section. Leveraging the vast parallelism and dedicated
tensor cores, MMjoin on GPUs outperforms classic GPU hash
joins (by percentage), even with the inherently higher compu-
tational complexity of matrix multiplications. This underscores
the potential of tensorized DI metadata in real-world DI tasks.

Moreover, as the fundamental language of ML, tensor algebra
and the benefits it brings in efficiency [59], [60], [61] have
attracted the considerable attention of the ML and DB research
communities. Many recent works [62], [63], [64], [65] have
started considering the integration of data processing and ML
pipeline in unified tensor runtimes. Such a combination enables
cross-optimizations between data processing and ML pipelines,
a vital part of the Amalur system.

V. ALGEBRAIC COMPUTATION OVER SILOS

This section explores the research opportunities of model
training across disparate data silos utilizing DI metadata. Early
factorization works [35], [36], [67] required manual design for
factorizing specific ML algorithms such as linear and logistic

regression, and decision trees. Recent advances [37], [38], [68]
facilitate more automation and optimization opportunities by
decomposing ML models to basic building blocks of linear
algebra (LA) operators, i.e., developing rewriting rules for LA
operators and then pushing them down to joinable tables. Exist-
ing solutions for factorization over joins [37], [69], [70] mainly
tackle inner joins. Our main contribution is to expand the dataset
relationships to more integration scenarios, with left joins, full
outer joins, and unions, cf. Table I.

Below, we first discuss the methods and challenges of gener-
alizing existing factorization techniques from singular databases
to multiple data sources. Second, we introduce an ML-based cost
estimator, which leverages factorization and materialization and
improves model training efficiency over silos. We also cover the
existing cost estimation challenges, from the logical level to the
hardware level.

A. Computation Challenge: DI Metadata for Factorization

As discussed in the previous section, factorized learning does
not affect the model training accuracy but often helps to improve
the efficiency compared to materialization. In the following, we
explain how the DI metadata can generalize existing factoriza-
tion techniques over silos, and discuss the new challenges it
brings. To simplify the discussion, here we use the example of
LA operator left matrix multiplication (LMM) and its rewrite
rule from [37].

New Algebraic Rewriting Rules: Given a matrix θwith the size
cT × cθ, the LMM of T and θ is denoted as Tθ. For better un-
derstanding, we use mapping/indicator matrices Mk/Ik below,
although we generate and utilize their compressed forms CMk

and CIk in practice. Equations below present an example of
transforming an existing LMM rewriting [37] with our proposed
rule.

Tθ → I1(D1θ[1 : cS1
,]) + I2(D2θ[cS1

+ 1 : cT ,])[37] (1)

Tθ → I1D1M
T
1 θ + ((I2D2M

T
2) ◦R2)θ [Amalur] (2)

We first compute IkDkM
T
k for each source table. In this

step, we reorder the matrix multiplication sequence to reduce
computation overhead, similar to the join-order optimization in
databases. The second step is detecting and removing duplicated
computations through the redundancy matrices. For instance,
we continue with the running example. ConsiderD1 as the base
table while D2 is redundant. To obtain the correct final LMM
result, here we can perform a Hadamard Product (element-wise
multiplication) between I2D2M

T
2 and the redundancy matrix

R2. This way, we drop the redundant intermediate results indi-
cated by the redundancy matrix R2. Fig. 5(c) shows the results
of T1θ and (T2 ◦R2)θ. Verifying that their addition is the same
as Tθ is easy.

DI Metadata & Operator-Level Factorization: First, to com-
pute the local LMM result, in the above rule (1) [37], θ is parti-
tioned as θ[1 : cS1

] and θ[cS1
+ 1 : cT ,] because the columns of

T are assumed to be two disjoint sets fromD1 andD2. To tackle
the overlapping columns, in our modified rule (2), mapping
matrixMk brings more flexibility in choosing the columns ofSk.
Second, to compute the final result, In the original rule (1), two

LI et al.: AMALUR: THE CONVERGENCE OF DATA INTEGRATION AND MACHINE LEARNING 7361

Algorithm 1: Linear Regression Using Gradient Descent
([37]).

Input: Target table T , label matrix Y , parameters w,
learning rate γ

for i ∈ 1 : n do
w = w − γ(TT ((Tw)− Y))

end for

local LMM results (i.e.,D1θ[1 : cD1
,] andD2θ[cD1

+ 1 : cT ,])
are simply added up via indicator matrices I1 and I2. However,
as stated, we need to handle redundancy when generalizing the
LA factorization problem.

ML Model Training With Factorization: Progressing with this
notion, if an ML model is built using linear operators, it can be
trained directly on factorized data sources. Using the example
showcased in Fig. 2, let’s consider the task of training a linear
regression model to predict mortality. The features for this task
reside in S1 and S2, connected by patient names as the joinable
key. To enable linear regression on factorized data sources, we
must first deconstruct the training algorithm.

Algorithm 1, as an example, outlines the LA operations in
training linear regression models using gradient descent. This
encompasses two primary LA operations: element-wise scalar
operations and matrix multiplications. With substituting T with
I1D1M

T
1 + I2D2M

T
2 , the LR model can be trained over fac-

torized data sources, where I∗ andM∗ are stored in the metadata
catalog described in Section II-B.

Current Implementation, Extensibility and Challenges: Our
running example and current implementation replace null values
to zero and apply one-hot-encoding for categorical variables.
Extending the implementation to replace the null values with
mean/median values or user-specified values and other methods
for handling categorical variables is straightforward. Based on
the process we described, we showed a simple example of
how Amalur uses DI metadata in factorized model training.
Nonetheless, such processes might be less straightforward due
to more complex schema or row mappings produced by the
corresponding data integration processes. For example, consider
the cases where we have 1 : n mappings among the schema
attributes of the source tables and the one of the target table
(e.g., fullname mapping to first name and last name), or the
cases where source tables contain duplicated information (i.e.,
repeated entities) and require dedicated solutions. Embedding
such DI metadata into factorization techniques is part of our
future directions. Another interesting direction is to support
more ML models, e.g., transformers [71]. In existing works,
non-linearity is studied with regard to feature interactions [69]
and ML models, e.g., Gaussian Mixture Models, Neural Net-
works [70].

B. Cost Estimation Challenge: To Factorize or to Materialize

Factorization has shown its efficacy at increasing the effi-
ciency of model training [35], [36], [37], [38], [67], [68] How-
ever, the question of when to factorize is not fully answered. We
illustrate the problem intuitively in Fig. 6. Let us assume that
there exists a borderline (the curvy purple line), between the

Fig. 6. Abstraction of different decision areas (factorize/materialize) and their
boundaries.

cases where factorization is faster and the cases where materi-
alization is faster. Areas I and II cover the cases when it is easy
to decide on factorization or materialization, respectively, while
area III covers the harder cases. The state-of-the-art solution [37]
only resolves the cases in Area I, missing many potential cases
in Area III where factorization is faster.

Essentially, cost estimation depends on four factors: the ML
model, LA operators, hardware and underlying data. Given a
model, its architecture and algebraic computations are fixed; we
also know which LA operators are affected by factorization [37].
To examine the relative speedup of factorization, we mainly
need to inspect data redundancy [35], [37], and the interactions
between physical data transfers (e.g., network and memory
bandwidth) [72].

1) Existing Solutions: We inspect data redundancy first,
which is the main indicator of decision boundary in existing
works. In general terms, if by joining the source tables we
obtain a target table with more instance redundancy than source
tables, factorization may be faster than materialization. To dis-
tinguish the Area I in Fig. 6 from others, two heuristic metrics
are proposed: tuple ratio (TR) and column (or feature) ratio
(FR) [37], [69], [73]. The TR, representing duplicated rows
post-join, is defined as #tuples of S2

#tuples of S1
. The FR quantifies the

feature column proportion between two joining tables, denoted
as #columns of S1

#columnsof S2
. Collectively, these metrics measure the data

redundancy in target tables relative to source tables.
Before materialization, several parameters within the silos

are crucial for understanding redundancy. These include source
descriptions (e.g., the number of sources, column and row count
for each source, and the null value ratio) and source correspon-
dences (such as column and row matching between sources).
Determining the boundary over separate data sources is more
challenging compared to existing works over inner joins, as we
need to conduct accurate cost estimation by incorporating the
aforementioned DI metadata.

2) Amalur’s Cost Estimator on CPUs: In the current imple-
mentation3, we have established logic-based theoretical frame-
works suitable for scenarios in Area I and II, i.e., with the
existing schema mappings as early-pruning rules. We provide
an example in Example 5.1. However, such schema-only rules
cannot cover all the cases, as the relative comparison between
target redundancy and source redundancy also depends on the
row matching, i.e., Area III in Fig. 6. In Amalur, we also

3Amalur’s CPU-based implementation is currently under submission to an
anonymous conference, including methods, synthetic data generator and exper-
iment results. Here we report the results for the completeness of our approach.
Our main contribution is the GPU-based estimator in Section V-C.

7362 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 36, NO. 12, DECEMBER 2024

Fig. 7. (a) Speedups of factorization compared to materialization in three example configurations. Speedups are divergent with different configurations.
(b) Speedups of operators and model training with factorization. Various LA operators shows significantly different speedups with factorization. (c) Speedups of
operators and model training with factorization.

apply an ML-based cost estimation module that considers all
three types of metadata mentioned in Section III, e.g., source
and target schemata, schema mapping and row matching, ML
model architecture (LA operators) and hyper-parameters, CPU
memory and bandwidth.

Example 5.1: Consider Example 2 in Table I.m1 is a full tgd,
i.e., m1 does not contain existentially quantified variables. All
the attributes of target schema T come from at least one source
schema. In such a case, the number of columns inT is less than or
equal to the total number of columns in S1 and S2 participating
in factorization. In the use cases of feature augmentation and
VFL, the number of rows in T is usually less than or equal to the
total number of rows inS1 andS2. That is, the materialized target
tableT does not contain more redundancy than the source tables.
Thus, factorization will not bring performance improvement,
which makes it a case in area II of Fig. 6. In similar cases, we can
make a straightforward decision on choosing materialization.

Results: We evaluated our approach over approximately 1800
synthetic datasets and seven real datasets.4 Amalur outperforms
baselines [37] for estimating the faster strategy between mate-
rialization and factorization. For instance, over real datasets the
state-of-the-art approach with tuple ratio and feature ratio [37]
has achieved 0.464 for accuracy and 0.211 for F1 score, while
Amalur achieved 0.905 and 0.821 accordingly. Factorization
enhanced 31% in model training, delivering speedups of up to
4x. By identifying tasks suitable to factorization, our estimator
managed to boost the system’s overall performance by 20%
across all ML model training.

3) Theoretical and Practical Challenges: The above exam-
ple is one of the simplest applications of mapping formalism
in the context of estimating performance improvement of fac-
torization. There are more types of tgds describing more com-
plicated dataset relationships, e.g., nested tgds [74] and plain
SO tgds [75]. The discussion could also be expanded to more
types of metadata, e.g., expand the existing entity resolution
approaches [76] and come up with other pruning rules. In short,
utilizing DI metadata in factorization needs more effort from
data integration theoreticians and practitioners.

In practice, LA operators are often performed by GPUs.
An estimator designed for CPUs might not be well-suited for
GPU architectures due to differences in hardware configurations,
including cache hierarchy, memory access speed, etc, which
leads to the following challenge.

C. Cost Estimation Challenge: From CPU to GPU

The advent of LA accelerators in contemporary GPUs has
substantially accelerated LA computations. This development
also holds promise for enhancing factorized model training
leveraging tensorized DI metadata.

We implemented three representative ML models: linear re-
gression, logistic regression, and KMeans in both their original
and factorized forms. We implemented the LA operators using
CuPy5, which is a CUDA-enabled Python numerical library.
Below, we identify key insights through experiment observations
in Fig. 7. Furthermore, we discuss two new challenges of cost
estimation on GPUs with our initial exploration.

1) Two Insights From Experiment Observations. Hardware-
related factors in cost estimation: During the development of
CPU-based estimator in Section V-B, we discovered that the
choice depends on three factors: data (incl. DI metadata), ML
algorithms (LA operators), and hardware configuration. As dis-
cussed in Section V-B given an ML model, the data redundancy
affects factorization or materialization. The heuristic metrics for
measuring data redundancy are TR and FR [37]. Fig. 7(a) shows
the results of training logistic regression models on CPUs using
synthetic datasets. With a TR=2, factorization is slower than
materialization, while with a TR=3, factorization is faster than
materialization. The data-related factor, e.g., TR, is important
in choosing between factorization and materialization. Now we
compare the green bar (TR=2, CPU) with the purple bar (TR=2,
GPU). Even with the same TR (i.e., same data redundancy), the
speedup of factorization against materialization is significant.
The reason is the inherent high parallelism and LA-friendly
architecture of the GPU, which significantly accelerate LA
operations and lead to an even more remarkable speedup even at
lower TR. Thus, in complex data integration scenarios in Area
III, studying hardware-related parameters, such as parallelism
is imperative.

Speed-Up Over Individual LA Operators: Different com-
binations of LA operators present within the model training
algorithm also influence the attainable speedups of factor-
ized model training. Fig. 7(b) and (c) depict the speedups
of both LA operators and ML model training. Element-wise

4Project Hamlet datasets: https://adalabucsd.github.io/hamlet.html
5https://cupy.dev/

https://adalabucsd.github.io/hamlet.html
https://cupy.dev/

LI et al.: AMALUR: THE CONVERGENCE OF DATA INTEGRATION AND MACHINE LEARNING 7363

Fig. 8. Workflow of our cost estimator on GPUs.

scalar operators show substantially higher speedups compared
to matrix multiplications, primarily because of the absence
of internal data synchronization. Model training algorithms
containing a larger proportion of element-wise operations
can consequently achieve more significant speedups. Hence,
training the KMeans algorithm using factorization demon-
strates considerably higher speedups than training logistic
regression.

2) Our Initial Exploration of Cost Estimation on GPUs: The
cost estimation’s objective is to choose between factorization
and materialization. Continuing our work on cost estimation on
CPUs in Section V-B, we developed an ML-based cost estimator
for GPUs. Our key insight is utilizing the metadata mentioned
in Section III, e.g., hardware details, model architecture, and
source data characteristics, including DI metadata. To handle the
non-linear relationships between these factors that influence the
speedups of factorization, we adopted a tree-boosting model, i.e.,
XGBoost [77]. Tree-boosting models are particularly notable
in the domain of cost estimators [78], [79] because of their
explainability and fast prediction speeds.

Workflow of Amalur’s estimator on GPUs: Fig. 8 shows the
workflow of the tree-boosting cost estimator in Amalur. Our tree-
boosting cost estimator utilizes the metadata from the catalog.
Importantly, given the wide adoption of GPUs as foundational
infrastructure in recent ML applications, our focus is estimating
the costs of ML training on GPUs.

Furthermore, we take into account the computational com-
plexities of LA operators, both under factorization and mate-
rialization. Considering that operators with factorization and
materialization have unique complexities and memory I/O de-
mands, we normalize these metrics based on their total amount
and hardware parallelism.

Preliminary Results: Fig. 9 presents the performance met-
rics of our preliminary cost estimator compared to two base-
lines: i) an estimator applying a linear regression model in
which non-linear feature interactions are neglected, and ii) the
state-of-the-art empirical estimator [37], i.e., TR and FR. Our
tree-boosting-based estimator demonstrates the highest overall
speedups compared to the other two estimators, even though it
did not achieve the top marks in accuracy and F1-score. Con-
versely, the empirical estimator achieves the highest accuracy
but generates excessive False Positive estimations, leading to a
reduced F1-score and overall speedups. While the LR estimator
achieves the highest F1-score, its overall speedups are less than
our estimator.

Fig. 9. Performance of Tree-boosting cost estimator compared to Logistic
Regression and SoTA estimators.

Despite the impressive overall speedups, our tree-boosting
estimator correctly identified scenarios where factorization
is faster in only 69% of samples. Furthermore, the average
speedups for False Positive samples are even lower than those
of True Negatives. This implies that certain tasks trained with
factorization are significantly slower than materialization, neg-
atively affecting the overall performance of the Amalur system.
These results highlight that there remains considerable work in
constructing a more accurate estimator with respect to the overall
performance improvement.

3) The Road Ahead: From preliminary results, we observed
that the cost estimation for factorization or materialization on
GPU is a difficult problem. The remaining research gaps are
more than just adding more hardware-related parameters to the
previous CPU-based estimator. We are working on improving
our current approach in the following two directions.

A more comprehensive study on GPU-related factors: Pre-
liminary results indicate that GPUs can enhance the pro-
portion of tasks where factorization proves faster. However,
the real potential for speedup benefits can only be har-
nessed with a more accurate cost estimator. Our current
estimator only uses simplistic hardware information, lim-
iting its portability due to the absence of detailed hard-
ware architectural characteristics. A more effective cost
estimator would ideally incorporate micro-level hardware
specifics.

Dynamic training of the ML-based cost estimator: Our current
estimator requires pre-training before deployment. Yet, in many
real-world applications [78], [79], training occurs in real-time,
eliminating the need for a dedicated data preparation phase
to fine-tune the estimator. Exploring this dynamic training ap-
proach is on our research horizon.

7364 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 36, NO. 12, DECEMBER 2024

VI. DATA INTEGRATION AND FEDERATED LEARNING

As indicated, various regulations govern data, e.g., GDPR and
HIPAA. Consequently, it is imperative to incorporate privacy
constraints into ML workflows. Privacy preservation indicates
that the ML process should not reveal raw data. It necessitates
an adaption of factorized learning to federated learning (FL).
Current FL systems take DI as a separate preprocessing step,
focusing on the learning side. In existing federated learning
studies, dataset relationships are oversimplified compared to the
past decades of development in the DI field. By putting DI and
FL together, our vision is two-fold. First, DI metadata brings
new computation and privacy-preserving opportunities in FL
frameworks (Sections VI-A and VI-B). Second, new research
challenges emerge when we expand the problem setting of
existing FL works to more general DI scenarios (Section VI-C).

A. FL Computation in Amalur

In FL, a crucial prerequisite is establishing alignments among
data silos, i.e., obtaining their column and row matching. This
typically requires ML engineers to prepare a subset of local data
by adding or removing feature and instance candidates from
different data silos. With our proposed mapping and indicator
matrices in Section IV, the subsets of local data can be repre-
sented and embedded in the federated models, which has a great
potential to automate the whole process.

In what follows, we explain our intuition with the vertical
federated linear regression (VFLR) algorithm from [34] and
Example 2 in Table I. The VFLR training objective is:

min
θ1,θ2;
D1,D2

∑
i

∥∥∥D(i)
1 θ1 +D

(i)
2 θ2 − Y (i)

∥∥∥2 (3)

where D1 and D2 are data matrices as defined in Section IV-D,
Y is the label space of D1, θ1, and θ2 are the local FLR model
parameters of S1 and S2, (i) denotes the row index of data
instances in the matrix.

Factorized Learning to Federated Learning: In Amalur, we
perform FL by extending our factorized learning approach, de-
scribed in Section II. The performance of trained VFLR models
depends on the quality ofD1 andD2, which are prepared before
and fixed during training. Refining the performance of VFLR
models typically requires regenerating D1 and D2. With our
mapping and indicator matrices, we can integrate I1D1M

T
1 and

I2D2M
T
2 into the VFLR training as an end-to-end optimization

procedure in a similar fashion as Section V-A.
Based on the above (3), we can extend our factorized learning

approach in Section V-A to FL. We can consider the mapping
matrix M1 to match the columns of the data matrix D1 to
the respective parameters θ1. Conversely, we use the mapping
matrix M1 to map the parameter to the data, such as if we have
the VFLR model defined by parameters θ = (θ1, θ2). Thus M1

applied to θ results in θ1.

B. Data Privacy in Amalur With Common FL Assumptions

We first discuss common assumptions made in existing FL
works for tabular data [80], [81], [82], [83]. Essentially, entity
resolution (ER) and FL are often treated as two isolated tasks.

ER is seen as a preprocessing step, leading to the assumptions
below.

Assumption 1: The global schema is not communicated
amongst the parties except the key.

Assumption 1 means that i) each party knows that they share
a common key column; ii) each party does not know the feature
columns of other parties. Continuing with the running example,
consider the case that the table of party A has the schema
S1(n, m, a, hr), while party B has the schemaS2(n, a, o, dd).
Through entity resolution, e.g., private set intersection (PSI),
parties A and B know that they have the identifier column n
(name),6 but they do not know the rest of the columns of each
other. In Amalur, we implemented the PSI step in Python us-
ing delta-psi-Py, which provides the row-matching information.
With row matching, we generate indicator matrices as discussed
in Section IV-B.

Assumption 2: The data is assumed to be independent in a
single dimension (row or column) amongst the data sources.

As mentioned in Section II-A, existing FL implementations
either handle silos with disjoint feature columns but the same set
of data instances (VFL) or disjoint data instances but the same
set of feature columns (HFL) [34], [80], [81], [84]. We explain
Assumption 2 with the previous example of S1(n, m, a, hr)
and S2(n, a, o, dd). The key column n (name) does not serve
as a feature; the data sources, party A and party B, do not have
overlapping feature columns in Assumption 2. This means that
properties of independent computations can be used.

Data Privacy Preservation in Amalur: Continuing
Section VI-A, we can ensure privacy under the above two
assumptions. Because of Assumption 2, operations on the
data can also be considered independent, which means the
aggregation of results would heavily depend on the architecture
of the chosen VFL model. This can be observed in (3) for the
VFLR optimization equation for θ1, θ2. In (3), the results of
Y1 = S1θ1 and Y2 = S2θ2 do not impact each other. Therefore,
we can use latent representations L1, L2, which can be derived
by applying specific functions, such as LA computations on
S1, S2. For example, if we consider a neural network, the
values obtained from the intermediate layers are considered
latent representations. Instead of performing the model training
with S1 and S2, the model can be trained using S1 and latent
representation L2 [85]. That is, party B does not need to send
data but latent representation to party A, which makes the
training process more secure.

min
θ1,θ2;

I1,M1,L2

∑
i

∥∥∥(I1D1M
T
1)(i)θ1 + (L2)

(i)θ2 − Y (i)
∥∥∥ (4)

Moreover, when we consider the data integration scenarios
under Assumptions 1 and 2, limited information can be learned
from the training process. Thus, there will be less known about
the other parties’ data; even the model architecture could be
unknown. For linear models, we can extend the factorization
approach in Section V to FL while preserving data privacy.

6In this specific example, we assume that the name column is a key, i.e., no
duplicated name values.

LI et al.: AMALUR: THE CONVERGENCE OF DATA INTEGRATION AND MACHINE LEARNING 7365

Fig. 10. VFL workflow and data breach.

C. Proposed Assumption and New Challenges

Assumptions 1 and 2 are far from real-life data integration
scenarios. Data sources often have both column and row over-
laps. This is why many DI pipelines have schema matching and
entity resolution steps. Thus, we define and use Assumption 3
rather than the previous two assumptions.

Assumption 3: Data silos may share both overlapping feature
columns and data instances.

The running example illustrates Assumption 3, where S1 and
S2 share feature column age and the row for Jane. Table I shows
the general data integration scenarios based on the Proposed
Assumption 3. In the following, we discuss the new research
opportunities based on such a more general assumption.

Improving Model Effectiveness Through Redundancy Detec-
tion: As discussed in Section IV-C, with overlapping columns
and rows, two source tables may share redundant values that
redundancy matrices can indicate. When such data redundancy
is non-negligible, it may deteriorate the model’s accuracy. With
the redundancy matrices, it is possible to improve the data quality
by detecting and eliminating such redundancy, improving the
model’s effectiveness. The redundancy matrices only point out
the locations of the repeated values without leaking the raw
values of source datasets in silos.

Privacy Concern Due to Overlapped Data: Under the Pro-
posed Assumption 3, we revisit (3). Since parties A and B share
common features, their parameters can now be partitioned into
the following set: (θ1, θ2, θ1∩2). The shared parameters, i.e.,
θ1∩2, lead to privacy concerns, such as learning the feature values
through the gradient of the shared parameters θ1∩2 [81], [86].
An example of the overlap can be seen in Fig. 10. Thus, an
interesting question is: how to utilize DI metadata for FL to
avoid such privacy threats?

Choosing Privacy-Preserving Technique: There are a number
of widely used privacy-preserving techniques that are suitable
for different ML algorithms and scenarios, e.g., homomorphic
encryption (HE) [87], [88], secret sharing (SS) [89], [90] and
differential privacy [91]. HE is typically used to encrypt sensitive
information exchanged between parties. It guarantees privacy
but incurs high computational cost. SS enables participating
parties of FL to collaboratively compute a function while pre-
venting all parties from accessing the input data of that function
and hence preserves the privacy of input data. However, secret
sharing brings about high communication cost. Differential pri-
vacy protects data privacy by adding noise to the original data

or information exchanged between parties. It is more efficient
than HE and SS, but may jeopardize the performance of ML
models. It is an open question: How do we choose the appropriate
technique when considering source dataset characteristics and
their relationships?

VII. CONCLUSION AND FUTURE DIRECTION

In this work, we have explored the possibilities of bringing
data integration and machine learning together. Toward this
direction, we have proposed a data integration-aware ML system
Amalur, which supports machine learning training and infer-
ence over silos. We have inspected the promising challenges
of representing DI metadata and utilizing it for factorized and
federated learning. We envision this work as one of the first steps
towards bridging the recent advances in machine learning with
the well-studied traditional data integration field.

REFERENCES

[1] J. M. Bos et al., “Prediction of clinically relevant adverse drug events in
surgical patients,” PLoS One, vol. 13, no. 8, 2018, Art. no. e0201645.

[2] A. Hard et al., “Federated learning for mobile keyboard prediction,”
2018, arXiv: 1811.03604.

[3] A. Doan, A. Halevy, and Z. Ives, Principles of Data Integration, Amster-
dam, The Netherlands: Elsevier, 2012.

[4] E. Rahm and P. A. Bernstein, “A survey of approaches to automatic schema
matching,” VLDB J., vol. 10, no. 4, pp. 334–350, 2001.

[5] R. Fagin et al., “Clio: Schema mapping creation and data exchange,” in
Conceptual Modeling: Foundations and Applications, Berlin, Germany:
Springer, 2009, pp. 198–236.

[6] D. G. Brizan and A. U. Tansel, “A survey of entity resolution and record
linkage methodologies,” Commun. IIMA, vol. 6, no. 3, 2006, Art. no. 5.

[7] N. Makrynioti and V. Vassalos, “Declarative data analytics: A sur-
vey,” IEEE Trans. Knowl. Data Eng., vol. 33, no. 6, pp. 2392–2411,
Jun. 2021.

[8] X. Zhou, C. Chai, G. Li, and J. Sun, “Database meets artificial intelligence:
A survey,” IEEE Trans. Knowl. Data Eng., vol. 34, no. 3, pp. 1096–1116,
Mar. 2022.

[9] S. Maximilian, O. Dan, Abo-Khamis, and N. XuanLong, “Learning models
over relational data: A brief tutorial,” in Proc. Int. Conf. Scalable Uncer-
tainty Manage., Cham: Springer, 2019, pp. 423–432.

[10] A. Alserafi, A. Abelló, O. Romero, and T. Calders, “Keeping the data lake
in form: Proximity mining for pre-filtering schema matching,” ACM Trans.
Inf. Syst., vol. 38, no. 3, pp. 26:1–26:30, 2020.

[11] R. Cappuzzo, P. Papotti, and S. Thirumuruganathan, “Creating embed-
dings of heterogeneous relational datasets for data integration tasks,” in
Proc. ACM SIGMOD Int. Conf. Manage. Data, 2020, pp. 1335–1349.

[12] H. Köpcke, A. Thor, and E. Rahm, “Evaluation of entity resolution
approaches on real-world match problems,” in Proc. VLDB Endowment,
vol. 3, pp. 484–493, 2010.

[13] S. Das et al., “Falcon: Scaling up hands-off crowdsourced entity matching
to build cloud services,” in Proc. ACM SIGMOD Int. Conf. Manage. Data,
2017, pp. 1431–1446.

[14] Z. Wang, B. Sisman, H. Wei, X. L. Dong, and S. Ji, “CorDEL: A contrastive
deep learning approach for entity linkage,” in Proc. IEEE Int. Conf. Data
Mining, 2020, pp. 1322–1327.

[15] S. Krishnan et al., “ActiveClean: Interactive data cleaning for statistical
modeling,” in Proc. VLDB Endowment, vol. 9, pp. 948–959, 2016.

7366 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 36, NO. 12, DECEMBER 2024

[16] S. Krishnan, M. J. Franklin, K. Goldberg, and E. Wu, “BoostClean:
Automated error detection and repair for machine learning,” 2017, arXiv:
1711.01299.

[17] P. Li, X. Rao, J. Blase, Y. Zhang, X. Chu, and C. Zhang, “CleanML: A study
for evaluating the impact of data cleaning on ML classification tasks,” in
Proc. IEEE 37th Int. Conf. Data Eng., 2021, pp. 13–24.

[18] X. L. Dong and T. Rekatsinas, “Data integration and machine learning: A
natural synergy,” in Proc. ACM SIGMOD Int. Conf. Manage. Data, 2018,
pp. 1645–1650.

[19] A. Y. Halevy, A. Rajaraman, and J. J. Ordille, “Data integration: The
teenage years,” in Proc. 32nd Int. Conf. Very Large Data Bases, 2006,
pp. 9–16.

[20] Q. Yang, Y. Liu, Y. Cheng, Y. Kang, T. Chen, and H. Yu, Federated
Learning, San Rafael, CA, USA: Morgan & Claypool, 2019.

[21] P. Voigt and A. Von dem Bussche, “The EU general data protection regu-
lation (GDPR),” in A Practical Guide, vol. 10, 1st ed. Cham, Switzerland:
Springer, 2017, pp. 10–5555.

[22] D. of health and human services, “Summary of the HIPAA privacy rule
- hhs.gov,” [Online]. Available: https://www.hhs.gov/sites/default/files/
ocr/privacy/hipaa/understanding/summary/privacysummary.pdf

[23] Information privacy act 2009. Accessed: Aug. 31, 2023. [Online].
Available: https://www.legislation.qld.gov.au/view/pdf/inforce/current/
act-2009--014

[24] Personal information protection law of the People’s Republic of China.
Accessed: Aug. 31, 2023. [Online]. Available: http://en.npc.gov.cn.cdurl.
cn/2021--12/29/c_694559.htm

[25] M. Lenzerini, “Data integration: A theoretical perspective,” in Proc. ACM
SIGMOD-SIGACT-SIGART Symp. Princ. Database Syst., 2002, pp. 233–
246.

[26] B. Golshan, A. Y. Halevy, G. A. Mihaila, and W.-C. Tan, “Data integration:
After the teenage years,” in Proc. ACM SIGMOD-SIGACT-SIGART Symp.
Princ. Database Syst., 2017, pp. 101–106.

[27] W. Wang et al., “Rafiki: Machine learning as an analytics service system,”
2018, arXiv: 1804.06087.

[28] P. Kraft, D. Kang, D. Narayanan, S. Palkar, P. Bailis, and M. Zaharia,
“Willump: A statistically-aware end-to-end optimizer for machine learning
inference,” in Proc. Int. Conf. Mach. Learn. Syst., 2020, pp. 147–159.

[29] C. Beeri and M. Y. Vardi, “A proof procedure for data dependencies,” J.
ACM, vol. 31, no. 4, pp. 718–741, 1984.

[30] R. Fagin, Tuple-Generating Dependencies, Boston, MA, USA: Springer,
2009, pp. 3201–3202.

[31] N. Chepurko, R. Marcus, E. Zgraggen, R. C. Fernandez, T. Kraska, and
D. Karger, “ARDA: Automatic relational data augmentation for machine
learning,” in Proc. VLDB Endowment, vol. 13, no. 9, pp. 1373–1387,
2020.

[32] M. Esmailoghli, J.-A. Quiané-Ruiz, and Z. Abedjan, “COCOA: Cor-
relation coefficient-aware data augmentation,” in Proc. 24th Int. Conf.
Extending Database Technol., 2021, pp. 331–336.

[33] A. Kumar et al., “To join or not to join? Thinking twice about joins before
feature selection,” in Proc. ACM SIGMOD Int. Conf. Manage. Data, 2016,
pp. 19–34.

[34] Q. Yang, Y. Liu, T. Chen, and Y. Tong, “Federated machine learning:
Concept and applications,” ACM Trans. Intell. Syst. Technol., vol. 10, no. 2,
Jan. 2019, Art. no. 12.

[35] M. Schleich, D. Olteanu, and R. Ciucanu, “Learning linear regression
models over factorized joins,” in Proc. ACM SIGMOD Int. Conf. Manage.
Data, 2016, pp. 3–18.

[36] A. Kumar, J. Naughton, and J. M. Patel, “Learning generalized linear
models over normalized data,” in Proc. ACM SIGMOD Int. Conf. Manage.
Data, 2015, pp. 1969–1984.

[37] L. Chen, A. Kumar, J. Naughton, and J. M. Patel, “Towards linear alge-
bra over normalized data,” in Proc. VLDB Endowment, vol. 10, no. 11,
pp. 1214–1225, 2017.

[38] R. Alotaibi, B. Cautis, A. Deutsch, and I. Manolescu, “HADAD: A
lightweight approach for optimizing hybrid complex analytics queries,”
in Proc. ACM SIGMOD Int. Conf. Manage. Data, 2021, pp. 23–35.

[39] R. Hai, S. Geisler, and C. Quix, “Constance: An intelligent data lake
system,” in Proc. ACM SIGMOD Int. Conf. Manage. Data, 2016, pp. 2097–
2100.

[40] Z. Li et al., “Macaroni: Crawling and enriching metadata from public
model zoos,” in Proc. Int. Conf. Web Eng., Springer, 2023, pp. 376–380.

[41] C. Quix, R. Hai, and I. Vatov, “Metadata extraction and management in
data lakes with GEMMS,” Complex Syst. Inform. Model. Quart., no. 9,
pp. 67–83, 2016.

[42] M. Scannapieco et al., “Privacy preserving schema and data matching,” in
Proc. ACM SIGMOD Int. Conf. Manage. Data, 2007, pp. 653–664.

[43] P. A. Bernstein, “Applying model management to classical meta data
problems,” in Proc. Int. Conf. Innov. Data Syst. Res., 2003, pp. 209–220.

[44] P. G. Kolaitis, “Schema mappings, data exchange, and metadata man-
agement,” in Proc. 24th ACM SIGMOD-SIGACT-SIGART Symp. Princ.
Database Syst., Baltimore, MD,USA, 2005, pp. 61–75.

[45] A. Silberschatz, H. F. Korth, and S. Sudarshan, “Database system con-
cepts,” 2011.

[46] G. Singh et al., “A metadata catalog service for data intensive applications,”
in Proc. ACM/IEEE Conf. Supercomputing, 2003, pp. 33–33.

[47] A. Y. Halevy et al., “Managing Google’s data lake: An overview of
the Goods system,” IEEE Data Eng. Bull., vol. 39, no. 3, pp. 5–14,
Mar. 2016.

[48] C. Koutras et al., “Valentine: Evaluating matching techniques for
dataset discovery,” in Proc. IEEE Int. Conf. Data Eng., 2021,
pp. 468–479.

[49] R. Hai, C. Koutras, C. Quix, and M. Jarke, “Data lakes: A survey of
functions and systems,” IEEE Trans. Knowl. Data Eng., vol. 35, no. 12,
pp. 12571–12590, Dec. 2023.

[50] S. Bharadwaj, P. Gupta, R. Bhagwan, and S. Guha, “Discovering related
data at scale,” in Proc. VLDB Endowment, vol. 14, no. 8, pp. 1392–1400,
2021.

[51] A. Khatiwada, R. Shraga, and R. J. Miller, “DIALITE: Discover, align
and integrate open data tables,” in Proc. Int. Conf. Manage. Data, 2023,
pp. 187–190.

[52] J. Yosinski, J. Clune, Y. Bengio, and H. Lipson, “How transferable are
features in deep neural networks?,” in Proc. Int. Conf. Neural Inf. Process.
Syst., 2014, pp. 3320–3328.

[53] H. Iida, D. Thai, V. Manjunatha, and M. Iyyer, “TABBIE: Pretrained
representations of tabular data,” 2021, arXiv:2105.02584.

[54] R. Levin et al., “Transfer learning with deep tabular models,” in Proc. Int.
Conf. Learn. Representations, 2022.

[55] P. Michał et al., “STable: Table generation framework for encoder-decoder
models,” in Proc. NeurIPS 1st Table Representation Workshop, 2022.

[56] C. Renggli, X. Yao, L. Kolar, L. Rimanic, A. Klimovic, and C. Zhang,
“SHiFT: An efficient, flexible search engine for transfer learning,” in Proc.
VLDB Endowment, vol. 16, no. 2, pp. 304–316, 2022.

[57] I. Trummer and C. Koch, “Approximation schemes for many-objective
query optimization,” in Proc. ACM SIGMOD Int. Conf. Manage. Data,
2014, pp. 1299–1310.

[58] C. Coleman et al., “DAWNBench: An end-to-end deep learning benchmark
and competition,” Training, vol. 100, no. 101, 2017, Art. no. 102.

[59] A. Sabne, “XLA: Compiling machine learning for peak performance,”
2020.

[60] H. Vanholder, “Efficient inference with tensorrt,” in Proc. GPU Technol.
Conf., 2016, Art. no. 2.

[61] A. Paszke et al., “PyTorch: An imperative style, high-performance deep
learning library,” in Proc. Int. Conf. Neural Inf. Process. Syst., 2019,
pp. 8024–8035.

[62] D. He et al., “Query processing on tensor computation runtimes,” in Proc.
VLDB Endowment, vol. 15, no. 11, pp. 2811–2825, 2022.

[63] Y.-C. Hu, Y. L. Li, and H.-W. Tseng, “TCUDB: Accelerating database
with tensor processors,” in Proc. ACM SIGMOD Int. Conf. Manage. Data,
2022, pp. 1360–1374.

[64] M. Kim and K. S. Candan, “TensorDB: In-database tensor manipulation
with tensor-relational query plans,” in Proc. ACM Int. Conf. Inf. Knowl.
Manage., 2014, pp. 2039–2041.

[65] D. Koutsoukos et al., “Tensors: An abstraction for general data processing,”
in Proc. VLDB Endowment, vol. 14, no. 10, pp. 1797–1804, 2021.

[66] W. Sun, A. Katsifodimos, and R. Hai, “An empirical performance compar-
ison between matrix multiplication join and hash join on GPUs,” in Proc.
IEEE Int. Conf. Data Eng. Workshop, 2023, pp. 184–190.

[67] M. A. Khamis, H. Q. Ngo, X. Nguyen, D. Olteanu, and M. Schleich,
“AC/DC: In-Database learning thunderstruck,” in Proc. 2nd Workshop
Data Manag. End-To-End Mach. Learn., Houston TX USA, 2018, pp. 1–
10.

[68] D. Justo, S. Yi, L. Stadler, N. Polikarpova, and A. Kumar, “Towards
a polyglot framework for factorized ML,” in Proc. VLDB Endowment,
vol. 14, no. 12, pp. 2918–2931, 2021. [Online]. Available: https://doi.org/
10.14778/3476311.3476372

[69] S. Li, L. Chen, and A. Kumar, “Enabling and optimizing non-linear feature
interactions in factorized linear Algebra,” in Proc. ACM SIGMOD Int.
Conf. Manage. Data, 2019, pp. 1571–1588.

[70] Z. Cheng, N. Koudas, Z. Zhang, and X. Yu, “Efficient construction of
nonlinear models over normalized data,” in Proc. IEEE 37th Int. Conf.
Data Eng., 2021, pp. 1140–1151.

[71] V. Ashish et al., “Attention is all you need,” in Proc. Int. Conf. Neural Inf.
Process. Syst., 2017, pp. 5998–6008.

[72] M. Zhao et al., “Understanding data storage and ingestion for large-scale
deep recommendation model training,” in Proc. 49th Annu. Int. Symp.
Comput. Architecture, 2022, pp. 1042–1057.

https://www.hhs.gov/sites/default/files/ocr/privacy/hipaa/understanding/summary/privacysummary.pdf
https://www.hhs.gov/sites/default/files/ocr/privacy/hipaa/understanding/summary/privacysummary.pdf
https://www.legislation.qld.gov.au/view/pdf/inforce/current/act-2009--014
https://www.legislation.qld.gov.au/view/pdf/inforce/current/act-2009--014
http://en.npc.gov.cn.cdurl.cn/2021--12/29/c_694559.htm
http://en.npc.gov.cn.cdurl.cn/2021--12/29/c_694559.htm
https://doi.org/10.14778/3476311.3476372
https://doi.org/10.14778/3476311.3476372

LI et al.: AMALUR: THE CONVERGENCE OF DATA INTEGRATION AND MACHINE LEARNING 7367

[73] Z. Cheng, N. Koudas, Z. Zhang, and X. Yu, “Efficient construction of
nonlinear models over normalized data,” in Proc. IEEE 37th Int. Conf.
Data Eng., 2021, pp. 1140–1151.

[74] P. G. Kolaitis, E. Sallinger, and V. Savenkov, “On the language of nested
tuple generating dependencies,” ACM Trans. Database Syst., vol. 45, no. 2,
pp. 1–59, 2020.

[75] M. Arenas et al., “The language of plain SO-tgds: Composition, inversion
and structural properties,” J. Comput. Syst. Sci., vol. 79, no. 6, pp. 763–784,
2013.

[76] V. Christophides, V. Efthymiou, T. Palpanas, G. Papadakis, and K. Ste-
fanidis, “An overview of end-to-end entity resolution for big data,” ACM
Comput. Surv., vol. 53, no. 6, pp. 1–42, 2020.

[77] T. Chen and C. Guestrin, “XGBoost: A scalable tree boosting sys-
tem,” in Proc. ACM SIGKDD Int. Conf. Knowl. Discov. Data Mining,
2016, pp. 785–794. [Online]. Available: https://doi.org/10.1145/2939672.
2939785

[78] T. Chen et al., “TVM: An automated end-to-end optimizing compiler
for deep learning,” in Proc. 13th USENIX Conf. Operating Syst. Des.
Implementation, 2018, pp. 578–594.

[79] A. Adams et al., “Learning to optimize halide with tree search and random
programs,” ACM Trans. Graph., vol. 38, no. 4, pp. 121:1–121:12, 2019.

[80] K. Cheng et al., “SecureBoost: A lossless federated learning framework,”
IEEE Intell. Syst., vol. 36, no. 6, pp. 87–98, Nov./Dec. 2021.

[81] F. Fu, H. Xue, Y. Cheng, Y. Tao, and B. Cui, “BlindFL: Vertical federated
machine learning without peeking into your data,” in Proc. ACM SIGMOD
Int. Conf. Manage. Data, 2022, pp. 1316–1330.

[82] F. Fu et al., “VF 2 Boost: Very fast vertical federated gradient boosting
for cross-enterprise learning,” in Proc. Int. Conf. Manage. Data, 2021,
pp. 563–576.

[83] W. Fang et al., “Large-scale secure XGB for vertical federated learning,”
in Proc. ACM Int. Conf. Inf. Knowl. Manage., 2021, pp. 443–452.

[84] D. Liu, L. Bai, T. Yu, and A. Zhang, “Towards method of horizontal fed-
erated learning: A survey,” in Proc. 8th Int. Conf. Big Data Inf. Analytics,
2022, pp. 259–266.

[85] C. Thapa, M. A. P. Chamikara, and S. Camtepe, “SplitFed: When fed-
erated learning meets split learning,” 2020, arXiv: 2004.12088, [Online].
Available: https://arxiv.org/abs/2004.12088

[86] R. Shokri, M. Stronati, C. Song, and V. Shmatikov, “Membership inference
attacks against machine learning models,” in Proc. IEEE Symp. Secur.
Privacy, 2017, pp. 3–18.

[87] C. Fontaine and F. Galand, “A survey of homomorphic encryption for
nonspecialists,” EURASIP J. Inf. Secur., vol. 2007, 2007, Art. no. 013801.

[88] P. Paillier, “Public-key cryptosystems based on composite degree resid-
uosity classes,” in Proc. Int. Conf. Theory Appl. Cryptographic Techn.,
Springer, 1999, pp. 223–238.

[89] A. Shamir, “How to share a secret,” Commun. ACM, vol. 22, no. 11,
pp. 612–613, 1979.

[90] A. Beimel, “Secret-sharing schemes: A survey,” in Proc. Int. Conf. Coding
Cryptol., Springer, 2011, pp. 11–46.

[91] C. Dwork, “Differential privacy: A survey of results,” in Proc. Int. Conf.
Theory Appl. Models Computation, Springer, 2008, pp. 1–19.

Ziyu Li received the BS degree from the South China
University of Technology, China, in 2017, and the MS
degree in computer science from the Delft University
of Technology, The Netherlands, in 2019. She is
currently working toward the PhD degree with the
Department of Software Technology, Delft University
of Technology, The Netherlands. Her research inter-
ests include data management, machine learning, and
metadata management.

Wenbo Sun received the master’s degree in compu-
tational science from the University of Amsterdam.
He is currently working toward the PhD degree with
TU Delft. Prior to joining TU Delft, he worked as a
software engineer. His research focuses on database
system over modern hardware and performance en-
gineering.

Danning Zhan received the bachelor’s degree in
mathematics, in 2020, and the master’s degree in
computer science, in 2022. He is currently working
toward the PhD degree with the Department of Soft-
ware Technology, TU Delft. His research explores
data privacy in machine learning on distributed data.

Yan Kang is currently a researcher with the AI De-
partment of WeBank, Shenzhen, China. His works
focus on the research and implementation of privacy-
preserving machine learning and federated learning.
His research was authored or coauthored in well-
known conferences and journals, including IEEE ISP,
IEEE TBD, IJCAI, ICDE, and IEEE TKDE.

Lydia Chen is a professor with the University of
Neuchatel and TU Delft. She is the director of
Distributed Learning Systems Lab. She returned to
academia, after a decade of industry experience with
the IBM Research Zurich Lab. Her research interests
lie in the distinct areas of deep machine learning, big
data systems, and privacy enhancing technology. She
is also the co-founder of BlueGen.ai. Her research is
supported by the Swiss National Science Foundation,
Dutch National Science Foundation the European
Union, IBM Research, ABB, TU Delft, Aegon, Tata

Steel, and ASML.

Alessandro Bozzon received the PhD degree from
Politecnico di Milano, in 2009, with a thesis focused
on model driven approaches for the design, develop-
ment and automatic code generation of Search Based
Applications. He is professor of Human-Centered
Artificial Intelligence and head of the Department
of Sustainable Design Engineering, Delft University
of Technology. He is principal investigator of Urban
Data and Intelligence at the Amsterdam Institute for
Advanced Metropolitan Solutions (AMS), member of
the Steering Committee of the International Confer-

ence of Web Engineering (ICWE), and member of the Steering Committee of the
Human Computation and Crowdsourcing (HCOMP) conference. His research
lies at the intersection of human-computer interaction and machine learning.
He co-authored more than 200 papers in leading peer-reviewed international
journals and conferences, where he also regularly serves as senior program
committee member.

Rihan Hai received the PhD degree from RWTH
Aachen University, Germany. She is an assistant pro-
fessor with the Web Information Systems Group,
Delft University of Technology, The Netherlands.
Her research focuses on data lakes, data integration,
and data management for machine learning. She has
served as a program committee member of database
conferences, such as VLDB, ICDE, and EDBT, and a
journal reviewer of the IEEE Transactions on Knowl-
edge and Data Engineering, VLDB Journal, Journal
of Machine Learning Research, and IEEE Transac-

tions on Parallel and Distributed Systems.

https://doi.org/10.1145/2939672.2939785
https://doi.org/10.1145/2939672.2939785
https://arxiv.org/abs/2004.12088

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

