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a b s t r a c t 

This paper presents a new approach for solving the recovery of the airline schedule when disruptions 

have occurred. The goal is to develop an operational tool that provides the airline with a solution in 

less than one minute. The proposed recovery model uses a heuristic that iteratively solves selections 

of the airline’s fleet in order to quickly converge to a good solution. An initial solution is always pre- 

sented in seconds, after which potential reductions of disruption cost are investigated. The schedule is 

modeled as a set of parallel time-space networks, using an integer linear programming. The model is 

solved dynamically; a recovery solution is found whenever a disruption occurs and subsequent disrup- 

tions are solved based on the previously found solution. Aircraft maintenance schedules and passenger 

itineraries are modeled, while crew concerns are indirectly taken into consideration to avoid major dis- 

ruptions caused by the recovery solution. The approach presented in this paper can be applied on het- 

erogeneous fleets and to both point-to-point and (multi) hub-and-spoke airlines. The performance of the 

selection heuristic is discussed using a case study on the network of an airline operating in the United 

States. This case study shows that the selection heuristic can find a globally optimal solution in 90% of 

the disruption instances tested, within 22 s on average. This corresponds to 4% of the time needed to 

compute the optimal solution using the entire fleet. 

© 2020 Elsevier Ltd. All rights reserved. 
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. Introduction 

The airline industry encounters disrupted flight schedules on a

aily basis. Delays, inclement weather, temporary closures of air-

orts or airspaces, unscheduled maintenance, all of these can be

he cause of severe disruptions to the airline’s flight schedule. Such

isruptions affect the scheduled routing of aircraft, but can also

pset crew schedules and passenger itineraries. The entire process

f recovering the schedule after disruptions occur is defined as dis-

uption management. EUROCONTROL (2019) has established that in

1 of 2019, 19.2% of all flights in Europe suffered from delays. Fur-

hermore, 42% of the total generated delay minutes have a reac-

ionary cause, meaning the delay is the result of an aircraft’s late

rrival from a previous flight. This emphasizes the need for disrup-

ion management systems. 

For a disruption management system to be suitable for real-

ime implementation at an airline, it should be reliable and provide
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E-mail address: b.f.santos@tudelft.nl (B.F. Santos). 

a  

m  

a  

ttps://doi.org/10.1016/j.cor.2020.104892 

305-0548/© 2020 Elsevier Ltd. All rights reserved. 
olutions quickly. This is because in actual operations multiple dis-

uptions occur throughout the day and decisions need to be made

n a matter of minutes, after new disruption information becomes

vailable. We define this iterative process of re-solving the airline’s

chedule every time new disruption information is made available

s dynamic recovery . In this process, the resolution of new disrup-

ions starts from the solution for the previous disruption event.

revious decisions(s) can be revoked if it improves the solution and

nder the constraint that there is still time to change operations. 

Despite the interest of many researchers in the airline re-

overy problem, few studies consider this inherent dynamic as-

ect of the problem. To the best of the authors’ knowledge, the

orks from Bratu and Barnhart (2006) , Vos et al. (2015) , and

arla et al. (2017) are the only exceptions. Nevertheless, none of

hese models are suitable for operational use by airlines. To enable

uch use, three aspects must be addressed: first, the model shall

rovide good solutions at the fleet level in one or two minutes,

s demanded by most airline operations controllers; second, the

odel should be able to handle a large set of possible disruptions;

nd third, the model shall always provide a solution, regardless of

https://doi.org/10.1016/j.cor.2020.104892
http://www.ScienceDirect.com
http://www.elsevier.com/locate/cor
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cor.2020.104892&domain=pdf
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the eventual infeasibility of the problem from the operational point

of view (e.g., an aircraft may get stuck during the day at an air-

port closed due to adverse weather conditions, never reaching the

home base of the airline as required to resume operations the next

day). 

In this paper we address these aspects. We present a new mod-

eling approach that has been designed to be implemented in prac-

tice, solving the aircraft routing and flight schedule parts of the

airline recovery problem in practice. This problem of solving the

aircraft routing and flight schedule together is denoted as the Air-

craft Recovery Problem (ARP). Passengers and aircraft maintenance

schedule recovery are considered in the model by modeling pas-

sengers’ re-accommodation possibilities and considering individual

aircraft maintenance requirements. The latter aspect requires air-

craft to be modeled individually. This greatly increases the model’s

computational complexity. Therefore the problem is divided and

solved sequentially, such that the problem size remains manage-

able and solutions are provided in a matter of seconds. Finally,

crew scheduling concerns are indirectly modeled, limiting the im-

pact of aircraft and schedule changes on the crew schedules. 

This study provides new insights into three aspects: 

1. We address the practical challenge of developing a decision

support model suitable for operational use – the model pro-

vides good solutions within one minute and slack variables are

used to guarantee that the problem is always feasible. 

2. We propose an expedited way to incorporate connecting pas-

sengers in the Aircraft Recovery Problem (ARP) without increas-

ing the complexity of the resulting model. 

3. We approach the Aircraft Recovery Problem (ARP) according to

the dynamic aspect of the problem, demonstrating how much

we under-estimate the disruption costs when considering fully

information in a static version of the problem. 

This paper is structured as follows. First existing literature is re-

viewed in Section 2 . The proposed modelling approach is discussed

in Section 3 , followed by the explanation of the proposed rule-

based selection heuristic in Section 4 . A case study is presented

in Section 5 that is used to demonstrate and validate the method-

ology as it could be applied in practice, followed by a study of the

robustness of the results, presented in Section 6 . Conclusions are

presented in Section 7 . 

2. Literature overview 

The development of modeling techniques for airline disruption

management has frequently been addressed in research. Previous

efforts were focused on specific aspects of airline disruption man-

agement, or addressed the combination of multiple aspects in one

model. This section first discusses research with a focus on the re-

covery of aircraft routing, after which the literature that includes

other aspects of the recovery problem is presented. A chronologi-

cal overview of the evolution of modeling developments to address

the Aircraft Recovery Problem (ARP) is shown in Fig. 1 . 

2.1. Aircraft recovery 

Teodorovi ́c and Guberini ́c (1984) were among the first to ad-

dress the Aircraft Recovery Problem (ARP), solving a problem

for eight flights with the objective to minimize passenger delay.

The problem was modeled as a connection network, as defined

by Clausen et al. (2010) . This work was extended in Teodorovi ́c

and Stojkovi ́c (1990) and Teodorovi ́c and Stojkovi ́c (1995) . Also

in the 90’s, researchers started to model the Aircraft Recovery

Problem (ARP) using time-space networks. A time-space network

is a transformation of the Aircraft Recovery Problem (ARP) in a
wo-dimensional plane where one axis time intervals are repre-

ented and the other airport stations. Jarrah et al. (1993) devel-

ped two successive shortest path models, one considering the de-

ay of flights and another considering flight cancellation as a re-

overy technique. Yan and Yang (1996) incorporated both cancel-

ations and delays of flights. Delays are incorporated using slid-

ng arcs; that is, copies of the flight arcs at later departure times.

he model is formulated as an integer programming problem. The

odel was tested on a single fleet of 17 aircraft and 39 flights.

hengvall et al. (20 0 0) was the first to propose parallel time-

pace networks for a multi-fleet situation, using a mixed inte-

er programming (MIP) approach. A separate time-space network

s created for each sub-fleet. Protection arcs are included as an

ncentive for the model to adhere to the initial flight schedule.

os et al. (2015) proposed parallel time-space networks for each

ndividual aircraft so that aircraft-specific constraints could be in-

orporated. This model is solved dynamically , meaning that disrup-

ions are solved as they become known, and subsequent disrup-

ions are solved based on the previously found recovery solution.

he model was tested on a fleet of 43 aircraft serving 53 destina-

ions, for which solutions were found in about 10–15 min. 

Alternative to the time-space network representation, time-

and networks were introduced by Bard et al. (2001) to model

he Aircraft Recovery Problem (ARP). These are similar to time-

pace networks, in which only the arcs corresponding to flights

re created and nodes represent all activities at an airport within

 certain time interval (the time-band). This node consolidation

s used to reduce the size of the time-space network. For ex-

mples on time-band networks, see Eggenberg et al. (2010) and

u et al. (2015) . Both works used parallel network structures to

odel individual aircraft. The former work used separate networks

or each aircraft to include maintenance constraints while solving

he Aircraft Recovery Problem (ARP). The authors used a column

eneration approach to solve disruptions for a fleet of 10 aircraft

ithin 30 seconds. Hu et al. (2015) modeled disruptions in a fleet

f 178 aircraft split over multiple sub-fleets, for which solutions

ere found within approximately three minutes for five-minute

ime-bands. The authors considered re-accommodation options for

assengers on disrupted flights, but passenger connections at a

ub airport and aircraft maintenance requirements were not mod-

led. 

.2. Integrated recovery 

With the increase in computer performance over the last

ecade, more aspects of airline operations have been integrated

n recovery models. In this section we discuss some of these in-

egrated models. 

Bratu and Barnhart (2006) presented a delay management

odel to define which outbound flight to delay and which to can-

el. The authors considered passenger connections and assumed

he presence of reserve crews to guarantee crew schedule feasi-

ility. In this work, the fleet has been modeled as a single com-

odity, without differentiating aircraft in the fleet. Two versions

f the passenger delay model were investigated. An initial version

ssumed an approximation of the delay costs according to an al-

orithm previously developed by the authors. The second version

xplicitly modeled passenger disruptions and the recovery options.

espite the approximation assumed in the first model, the authors

entioned a computation time of 4.5 min for a problem with 302

ircraft of four different aircraft types. The computational times of

he second version of the model were up to 25 times longer. More

ecently, Santos et al. (2017) also addressed the airline delay man-

gement model to cope with disruptions in a hub airport. In this

tudy the authors modeled passenger connectivity at a hub airport,

ntegrating airport capacity management when solving the flight
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Fig. 1. Timeline of developments in modeling the aircraft recovery problem. 

r  

a  

t  

u

 

h  

i  

1  

l  

t  

g  

S  

p  

n  

o  

l  

s  

p  

t  

t  

w

 

h  

t  

C  

c  

P  

i  

m  

r  

t  

t  

q  

l  

b  

c  

r  

T  

M  

s  

t  

a  

i  

t

 

u  

c  

p  

c  

s  

M  

t  

o  

i  

s  

m  

a  

d  

l  

g  

s  

t  

m  

t  

i  

i  

t  

e  

s  

s  

i  

m  

i  

t  

t  

e  

w  

i  

f  

c  

c

 

a  

a  

w  

a  

l  

m  

i  

c  

d  

s  

t  

t  

d  

s  

o  

a  

s  

t  

l  

s

escheduling problem. Although the authors referred to the oper-

tional use of the tool by an airline, they reported computational

imes of five to six minutes to solve for time windows of 180 min,

sing a rolling horizon approach. 

Bisaillon et al. (2011) developed a large neighborhood search

euristic to solve the Aircraft Recovery Problem (ARP) while

ncluding passenger itineraries. Solutions were found within a

0 min time limit, and the model won the ROADEF 2009 Chal-

enge. Inconsistency and penalty costs are applied for decisions

hat are possible but not preferable, for example when a passen-

er’s itinerary cannot be restored. This model was improved in

inclair et al. (2014) and Sinclair et al. (2016) . The focus of these

apers was on improving the solution quality, assuming fixed run-

ing times of five or 10 min. A heuristic method was also devel-

ped by Jozefowiez et al. (2013) as part of the ROADEF 2009 Chal-

enge. The authors proposed a three-phase heuristic to solve the

chedule, aircraft and passenger rescheduling problems. By com-

aring their results with the results previously published, the au-

hors showed that their heuristic method was capable of obtaining

he best-found solution on more than half of the large instances,

hile not taking more than four minutes. 

Models that integrate aircraft, passenger and crew recovery

ave also been developed. Considering these three aspects at

he same time greatly increases the complexity of the problem.

rew schedules for example, are highly regulated and schedule

hanges can still have effects multiple days after the disruption.

etersen et al. (2012) were the first to present results for a fully

ntegrated model. A Benders’ decomposition is used to solve the

aster problem (flight schedule) and three subproblems (aircraft

ecovery, crew recovery and passenger re-accommodation). The in-

egrated approach finds equal or lower cost solutions compared to

he traditional approach where the subproblems were solved se-

uentially. Also, the integrated approach is capable of finding so-

utions for which the traditional approach does not find a feasi-

le solution. The improved performance in terms of solution cost

omes at the price of increased computational time. For larger dis-

uptions, the time required to find a solution often exceeds 20 min.

his makes such a model unsuitable for real-time operational use.

aher (2015) presents a column and row generation approach for

olving an integrated recovery model. Big-M constraints are used

o ensure passengers are re-accommodated if possible, but these

re not formulated as hard constraints to prevent model infeasibil-

ty. Only single leg passenger itineraries are considered. Computa-

ion times of 20 min are reported. 

Previously mentioned work did not consider the possibility to

se cruise speed control to prevent delays. Arikan et al. (2016) in-

orporate this option using a conic quadratic mixed integer

rogramming (MIP), because of the nonlinear relation between

ruise speed and fuel consumption. The authors argue that pas-

enger delay can be greatly mitigated by using this approach.

arla et al. (2017) consider discrete cruise speed changes to study
he relation between fuel burn and delay costs, and show that

verall costs can be reduced by allowing cruise speed changes. Us-

ng discrete alternative flight plans (associated with different cruise

peeds), the problem is formulated as an mixed integer program-

ing (MIP) problem. The departure time of outbound flights can

lso be re-timed. The objective is to minimize the sum of fuel,

elay and cancellation costs. The research focuses on the delay of

ong haul flights inbound to the hub, as these flights carry passen-

ers that connect to downstream flights. The model integrates pas-

enger delay costs. These are approximated, as it was established

hat explicitly modeling each connecting passenger results in a for-

ulation of the problem that cannot be solved in a time frame

hat is acceptable for airlines. When a passenger misses a connect-

ng flight a fixed penalty is applied, assuming that this passenger

s re-accommodated in the next bank. Computation time is limited

o two minutes, and the mixed integer programming (MIP) gap is

valuated to determine how far solutions are from the optimum

olution. The model is tested on an airline operating a hub-and-

poke network with 250 flights. For large inbound delays, exceed-

ng 120 min, authors mention an average mixed integer program-

ing (MIP) gap of about 13–15% when alternative flights plans are

ncluded. Without alternative flight plans included, the model finds

he optimal solutions in two minutes. Marla et al. (2017) consider

he dynamic nature of airline disruption management by consid-

ring fixed points in time, just before each arrival and departure

ave of the long-haul flights. The airline’s network is modeled us-

ng parallel time-space networks; a separate network is created

or each aircraft. On these networks, maintenance tasks are in-

luded if applicable. These tasks are compulsory and cannot be

anceled. 

The goal of the research in this paper is to develop an oper-

tional tool that provides solutions quickly. In consultation with

irlines it was established that solutions have to be available

ithin 1 minute to be suitable for operational use. Moreover,

n operational tool should always provide the airline with a so-

ution, even if not all airline preferences can be satisfied. The

odel presented in this paper applies a similar principle as used

n Marla et al. (2017) , although we do not regard cruise speed

hanges. We expand the scope of disruptions considered; in ad-

ition to arrival delay of flights with connecting passengers as as-

umed by Marla et al. (2017) , we consider flight cancellations and

emporary unavailability of aircraft and airports. These are realis-

ic disruptions that cause more severe disturbances than a simple

elay of an inbound flight. Severe disruptions may cause conflicts

uch that certain airline preferences cannot be satisfied, e.g. the

vernight-location of a certain aircraft. As our goal is to develop

 tool for operational use, we include strategies to cope with such

ituations. This paper also furthers the techniques that can be used

o incorporate connecting passengers in the Aircraft Recovery Prob-

em (ARP) without increasing the complexity of the problem to be

olved. 
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Fig. 2. Principle of parallel time-space networks. A separate network is created for 

each aircraft. Note that only operated flight and ground arcs are illustrated, non 

selected arcs are not shown for the sake of clarity of the figure. 

f  

m

N

3. Modelling approach 

In this section we explain the approach followed to address the

dynamic Aircraft Recovery Problem (ARP), in which disruptions are

solved as they occur throughout the day. For every disruption the

recovered schedule resulting from the previous disruptions is used

as a starting point. The schedule is to be recovered within a certain

time window. At the end of the time window, all aircraft are ex-

pected to be at the right location such that scheduled operations

can be resumed from this point on. If disruptions are so severe

that a requested aircraft location at the end of the time window

can not be complied with, we provide the next-best solution: one

where the minimal amount of location requests are violated. The

violated request is highlighted and the alert is provided to the con-

troller. This human-in-the-loop characteristic is one of the aspects

that makes this model an operational tool. Another aspect is the

time needed to find a solution. For an airline, it is important to

obtain a feasible solution in a very short time. The model provides

the first recovery solution within seconds such that the airline can

implement decisions quickly, if necessary. 

The methodology can be applied to both hub-and-spoke and

point-to-point network structures, and to airlines operating a het-

erogeneous fleet. Four types of disruptions are considered in this

work. Namely, 

- delay of flights, 

- cancellation of flights, 

- closure of airports for a period of time, and 

- technical problems that make the aircraft unavailable for a pe-

riod of time. 

The next subsection describes the parallel time-space network

approach adopted in this work, followed by the formulation of the

optimization model. The main ingredients of the model, including

the modeling of connecting passengers and the consideration of

maintenance requirements, are explained in the following subsec-

tions. 

3.1. Parallel time-space networks 

In this work we make use of parallel time-space networks to

model each individual aircraft ( Fig. 2 ), as previously proposed by

Vos et al. (2015) . A separate network is created for each aircraft,

which are connected by flight coverage constraints. Time is dis-

cretized in homogeneous time-steps. Scheduled flight time is ex-

tended to accommodate for the minimum required turnaround

time (TAT), and the departure and arrival times are rounded to the

nearest time-step. The advantage of individual aircraft networks is

that we can use specific tail numbers , solving the scheduled recov-

ery problem together with the aircraft routing recovery problem.

In addition, aircraft specific constraints, such as maintenance re-

quirements and destination at the end of the day, can be modeled.

Besides delay options, we assume that flights can be canceled

or operated by other aircraft. This means that each aircraft network

contains the flight arcs (both on time and delayed) of all other

aircraft in the recovery model. The airline needs to define which

aircraft types are potential substitutes for each other, providing a

swapping matrix similar to the fleet substitution and capacity ma-

trix presented in Hu et al. (2015) . The difference in operating costs

and the passengers costs resulting from considering aircraft with

different seating capacity are reflected in the costs associated with

the flight arcs involving aircraft swaps. 

3.2. Model formulation 

In this section we present our recovery model. Notation is in-

troduced first, after which the model formulation is presented. The
ollowing sections explain some of the key features of the model in

ore detail. 

otation 

Sets 

P Aircraft in the (selected) fleet 

F Flight arcs allocated to aircraft present in P in the disrupted 

schedule 

F p Fight arcs currently allocated to aircraft p 

D Delayed flight arcs 

G Ground arcs associated with F 

N Intermediate nodes associated with F 

R Maintenance activities associated with F 

R f lex , R f ix Flexible and fixed maintenance activities 

E Aircraft types included in P

A Airports associated with F 

O (n, p) Arcs originating at node n for aircraft p 

T (n, p) Arcs terminating at node n for aircraft p 

Z(a, e ) Arcs terminating at airport a for aircraft type e 

X(p, f ) Forbidden flight f and aircraft p combinations 

U(r, p) Ground arcs corresponding to fixed maintenance activities r for 

aircraft p

V (r, p, m ) Ground arcs corresponding to flexible maintenance activities r for 

aircraft p at start time m . 
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Decision 

Variables 

δF p, f 
Binary variable equal to 1 if aircraft p is allocated to flight 

arc f , zero otherwise 

δD p, f,d 
Binary variable equal to 1 if aircraft p is allocated to delay 

arc f with delay d , zero otherwise 

δC f Binary variable equal to 1 if flight f is canceled, zero 

otherwise 

δG p,g 
Binary variable equal to 1 if aircraft p uses ground arc g , zero 

otherwise 

y r,m Binary variable equal to 1 if maintenance activities r starts at 

time m , zero otherwise 

s a,e Integer slack variable for aircraft type e balance at airport a 

at end of time window 

s r Binary slack variable equal to one if maintenance activities r 

are canceled 

s p Binary slack variable equal to one if the routing of aircraft p 

is changed when compared with the original routing 

Parameters 

OC p, f Operating cost of aircraft p on flight f 

DC f,d Delay cost of flight f for delay d 

CC f Cancellation cost of flight f 

GC n Cost of ground arc n 

M a,e Cost of missing an aircraft of type e at airport a at the end of 

the time window 

M r Cost of canceling maintenance activities r 

M p Cost of changing the routing of aircraft p

B n,p Flow balance at node n for aircraft p. 0 at intermediate 

nodes, 1 at start node 

where aircraft p is supplied. 

K a,e Number of aircraft of type e demanded at airport a at the 

end of the time window. 

ormulation 

inimize: 
∑ 

p∈ P 

∑ 

f∈ F 
OC p, f · δF p, f 

+ 

∑ 

p∈ P 

∑ 

f∈ F 

∑ 

d∈ D 
(OC p, f + DC f,d ) · δD p, f,d 

+ 

∑ 

f∈ F 
CC f · δC f 

+ 

∑ 

p∈ P 

∑ 

g∈ G 
GC n · δG p,g 

+ 

∑ 

a ∈ A 

∑ 

e ∈ E 
M a,e · s a,e + 

∑ 

p∈ P 
M p · s p + 

∑ 

r∈ R 
M r · s r (1) 

Subject to: 

 

p∈ P 

( 

δF p, f 
+ 

∑ 

d∈ D 
δD p, f,d 

) 

+ δC f = 1 , ∀ f ∈ F (2)

∑ 

g∈ G ∩ O (n,p) 

δG p,g 
−

∑ 

g∈ G ∩ T (n,p) 

δG p,g 
+ 

∑ 

f∈ F ∩ O (n,p) 

δF p, f 

−
∑ 

f∈ F ∩ T (n,p) 

δF p, f 
+ 

∑ 

f∈ F,d∈ D ∩ O (n,p) 

δD p, f,d 

−
∑ 

f∈ F,d∈ D ∩ T (n,p) 

δD p, f,d 
= B n,p , ∀ n ∈ N, ∀ p ∈ P (3) 

∑ 

g∈ G ∩ Z(a,e ) 

δG p,g 
+ 

∑ 

f∈ F ∩ Z(a,e ) 

δF p, f 

+ 

∑ 

f∈ F,d∈ D ∩ Z(a,e ) 

δD p, f,d 
= K a,e − s a,e , ∀ a ∈ A, ∀ e ∈ E (4) 
∑ 

f∈ F p 

( 

δF p, f 
+ 

∑ 

d∈ D 
δD p, f,d 

) 

≥ | F p | · ( 1 − s p ) , ∀ p ∈ P (5) 

∑ 

∈ U(r,p) 

δG p,g 
≥ | U(r, p) | · ( 1 − s r ) , ∀ r, p ∈ R fix (6)

∑ 

∈ V (r,p,m ) 

δG p,g 
≥ | V (r, p, m ) | · y r,m 

, ∀ r, p, m ∈ R flex (7)

∑ 

 ∈ V (r,p,m ) 

y r,m 

= 1 − s r , ∀ r, p ∈ R flex (8)

∑ 

f ∈ F p ∩ X(p, f ) 

δF p, f 
+ 

∑ 

d∈ D ∩ X(p, f ) 

δD p, f,d 
= 0 ∀ p ∈ P (9)

Bounds: 

F p, f 
∈ { 0 , 1 } ∀ p ∈ P, ∀ f ∈ F (10)

D p, f,y 
∈ { 0 , 1 } ∀ p ∈ P, ∀ f ∈ F , ∀ d ∈ D (11)

G p,g 
∈ { 0 , 1 } ∀ p ∈ P, ∀ g ∈ G (12)

C f ∈ { 0 , 1 } ∀ f ∈ F (13)

 r,m 

∈ { 0 , 1 } ∀ r, m ∈ R f lex (14)

 r ∈ { 0 , 1 } ∀ r ∈ R (15)

 p ∈ { 0 , 1 } ∀ p ∈ P (16)

 a,e ∈ Z ≥0 ∀ a ∈ A, ∀ e ∈ E (17)

We propose an integer linear programming (ILP) model that

inimizes cost, while ensuring that all scheduled flights are flown

f possible. The objective function (1) includes both operating and

isruption costs. The first term defines the operating cost of flights

eparting at their scheduled time, while the second term covers

he cost of delayed flights. If a flight is canceled, a cancellation

ost is assigned in the third term. The fourth term covers the cost

f operating ground arcs (if applicable). We define the sum of the

rst four terms as the operational disruption cost. The last three

erms define the artificial disruption costs and penalties, discussed

n Section 3.5 . 

The problem is subjected to several constraints. The flight cov-

rage constraint (2) ensures each flight is either performed by one

f the (on time or delayed) aircraft in the fleet or canceled. Flow

alance is ensured by two constraints. For the intermediate and

tart nodes (3) , balance is maintained for all nodes in each air-

raft time-space network: if an aircraft is supplied to a certain

ode, it should also depart from that node. For nodes at the end

f the time window (4) , the demanded number of aircraft of a cer-

ain type should be ensured. These constraints must be included to

uarantee that aircraft are in the right position to resume sched-

led operations. 

Using Constraint (5) , a penalty is assigned in the objective func-

ion whenever the scheduled routing of an aircraft is changed. The

et F p contains all the flights scheduled for an aircraft. If all these

ights are flown by the aircraft, no penalty is assigned. But in the

ase that one of the flights is performed by another aircraft (or

anceled), the scheduled string of flights is broken and the vari-

ble s p is used to satisfy the constraint. 
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Fig. 3. Connecting flight example. Passengers on Flight 1 need to connect to Airport C at Airport B. Flight 2 is the scheduled connection, Flight 3 is a recovery connection. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. Delay cost profiles for different flights when downstream flights are missed 

as a result of arrival delay. Each line represents a different arrival flight. 
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Constraints (6), (7) and (8) guarantee aircraft maintenance re-

quirements. They ensure that ground arcs that represent scheduled

maintenance are covered by the respective aircraft. Maintenance

activities are divided into fixed and flexible maintenance require-

ments, as will be further explained in Section 3.4 . Fixed mainte-

nance activities (6) have to be respected, unless the binary slack

variable s r is activated, with an associated high cost in the objec-

tive function. For flexible maintenance tasks, the set of constraints

(8) ensure that one of the possible maintenance slots is chosen,

while Constraint (7) defines the ground arcs that correspond to

each of the maintenance slots. 

Constraint (9) ensures that in a situation with multiple aircraft

types, flights are only performed by aircraft that satisfy conditions

such as range and number of required seats. Constraints (10) –(17)

define the decision variables as being binary or integer. 

3.3. Connecting passengers 

Especially for network carriers, connecting passengers amount

to a significant portion of the airline’s customers. Passengers who

miss their connecting flight can be severely disrupted, resulting

in large compensation costs for the airline. This research aims to

include the effects of passengers who miss their connection in

the aircraft recovery problem. However, as discussed in Bratu and

Barnhart (2006) and Marla et al. (2017) , this increases the com-

plexity of the Aircraft Recovery Problem (ARP) to a significant ex-

tent. In light of this consideration, we propose an expedited ap-

proach to consider connecting passengers’ recovery itinerary op-

tions without compromising the computation time of our model. 

We precompute the connecting passenger delay costs for mul-

tiple delay values. Delay is measured at the final destination of the

passengers. To do this, we estimate the delay impact of having to

divert passengers if their connection is lost due to a delay of the

inbound flight at the hub airport. The determination of the cost of

missed connections is illustrated in Fig. 3 . In this example, Flight 1,

from Airport A to Airport B, carries passengers that want to trans-

fer at Airport B to their final destination Airport C. If Flight 1 is de-

layed up to 20 min, the connection at Airport B can be guaranteed

and no delay is experienced by passengers. If the flight is delayed

by 30 min or more, the delay for the connecting passengers would

be 60 min (at their end-destination). Should Flight 1 be delayed by

90 min or more,then also Flight 3 is missed. This would result in

a much higher delay cost equivalent to canceling the passenger’s

itinerary, if we assume that Flight 3 is the last flight of the day

flying to Airport C. 

Following this approach, we precompute two matrices of size

flights ∗ (time steps + 1) (the additional time step dimension corre-

sponds to the cancellation of the flight). The first matrix stores the

delay costs at the final destination for connecting passengers per

flight and delay time step. The second matrix stores a tuple with
he number of the downstream flight to which the connecting pas-

engers will be allocated to. 

The delay costs matrix provides a delay profile per flight, as

epresented in Fig. 4 . The delay costs increases represent a group

f passengers that will miss their connection. When a connection

s missed, we consider the capacity available on the alternative

ights. If an alternative flight can not accommodate some or all of

he disrupted passengers, the delay costs of these passengers are

etermined based on the arrival time of a later flight. If no capacity

s available in later flights, or if there are no later flights, the can-

ellation and accommodation costs are considered. The delay costs

atrix for connecting passengers is processed together with the

alculation of the delay costs for direct passengers in each flight

o compute the matrix of coefficients in our optimization model

 DC f,d and CC f ). 

This approach allow us to estimate the delay experienced by

assengers, the costs of these delays and the itineraries followed

y passengers, without adding additional constraints or decision

ariables in our optimization model. However, the following sim-

lifications have been incorporated: 

- For a given disruption event, it is assumed that the outbound

flights are not delayed in the recovery solution. This assumption

was made deliberately to maintain tractability of the problem.

However, before solving a future disruption, the seat availabil-

ity per flight, the departure times of outbound flights and the

previous estimations of passenger delays can be updated. 

- Reallocation of passengers will follow the sequence of airports

in their original itinerary. That is, we do not consider the pos-

sibility to reroute passengers via another hub of the airline. 
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Fig. 5. Flowchart of selection algorithm 

Fig. 6. Reduction of best solution (lowest disruption cost) found by SA as time pro- 

gresses. 
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- We only consider itineraries with two flight legs. However,

the approach could be extended to also assess the effect on

itineraries with more than two flights. 

The advantages of this approach are three-fold. First, it provides

etter estimations of the exact passenger delay costs than the fixed

osts per connecting passengers approach proposed by previous

uthors (e.g., Bratu and Barnhart 2006; Marla et al. 2017 ). Second,

t provides additional value by considering passengers’ itineraries

nd providing reallocation actions without compromising compu-

ational times. Third, reallocation actions are defined based on

ooking information and the delay costs are calculated irrespective

f bank times at a hub, as proposed by Marla et al. (2017) . 

.4. Maintenance requirements 

Scheduled maintenance activities are included in the recovery

odel (constraints (6), (7) and (8) ), such that in the recovery so-

ution all aircraft are routed to their maintenance station, if sched-

led as such. A distinction is made between fixed and flexible main-

enance activities. A fixed maintenance activity is a maintenance

heck that can not easily be rescheduled, either because it involves

any resources (e.g. hangar space) or because it is close to the air-

raft maintenance interval limits. A flexible maintenance activity

re, most commonly, inspections scheduled to be performed on an

n-service aircraft during its turnaround time (TAT), (also known

s line or platform maintenance). These are activities that, in some

ases, can be rescheduled to other times and eventually to a dif-

erent maintenance station. The flexible maintenance activities can
e rescheduled only if available maintenance slots exist and if they

o not exceed the maximum number of aircraft that can be ser-

iced simultaneously at an airport (given resource limitations). De-

ermining which maintenance activities are fixed or flexible is up

o the airline, in coordination with the maintenance provider. 

Maintenance activities ( R ) are modeled using ground arcs ( U ( r,

 ) and V ( r, p, m ), respectively for fixed and flexible maintenance

ctivities). Whenever a fixed maintenance task is scheduled for an

ircraft, it is ensured in the model that the aircraft uses the ground

rcs at the corresponding airport. For a flexible maintenance task,

ets of sequential ground arcs are defined, representing the elapsed

ime of the maintenance task. One of these sets needs to be used

n the obtained solution in order to guarantee the performance of

he maintenance. Because we use the existing ground arcs, addi-

ional decision variables to model the maintenance tasks are not

equired. 

.5. Initial schedule and infeasible solutions 

This section addresses two additional issues regarding the prac-

icability of the proposed model. The first concerns the goal to re-

pect the initial schedule as much as possible, which is assumed to

e the optimal schedule for the day before disruptions take place.

he second issue is the impossibility to respect some of the air-

ine’s preferences in some disruptions scenarios, making the op-

imization model infeasible. Both issues are handled in the opti-

ization model using penalty costs, either associated with slack

ariables or incorporated in the operating costs in the objective

unction. 

.5.1. Initial schedule 

The goal of airline disruption management is to minimize dis-

uption costs. Ideally costs are minimized while swapping the least

umber of aircraft possible. The reason for this being that each air-

raft swap represents an operational burden that is usually associ-

ted with hidden costs (e.g. the cost of re-positioning an aircraft

r adapting crew schedules). 

We propose two measures that can be used to respect the air-

ine’s initial schedule. Firstly, a penalty is applied whenever a flight

s operated by a different aircraft than was scheduled. This concept

s similar to the penalty costs used by Bisaillon et al. (2011) . This

enalty is included in the operating cost of the flights ( OC p,f ). Using

his penalty, the model has a preference for utilizing the scheduled

ircraft or, if not possible, an aircraft of the same type. This penalty

hould represent the costs that are incurred by an airline in the

ase of a tail swap, such that a swap is only performed when the

itigated delay costs offset the swap costs. 
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The second measure concerns the aircraft routing. The penalty

on a flight-level does not protect the consecutive operation of

flights by the scheduled aircraft. As such, this could have a great

impact on crew schedules and passengers that are on a through-

flight. Therefore a second penalty ( M p ) is applied whenever the ini-

tially scheduled routing of an aircraft is changed. This concept is

similar to the protection arcs presented by Thengvall et al. (2003) .

The slack variables used to indicate route changes ( s p ) are integer,

meaning that the solution will be penalized proportionally to the

number of changes in the schedule. 

Two observations need to be made regarding these penalties.

The first is that the penalties are optional and adjustable to the air-

line specific operations and policies. There is always the option to

not include these penalties. The second observation is the fact that

these penalties can help us to return to the initial schedule during

a day of operations, after deviating from the initial schedule when

solving earlier disruptions. Even after a tail swap is performed, the

initially scheduled tail number is taken into account by the model.

If the situation presents itself that later during the day the model

can return a flight to the initially scheduled aircraft, the cost in-

centive still exists. This is a consequence of the followed dynamic

approach. 

3.5.2. Infeasible solutions 

Certain disruptions may have such an effect on the flight sched-

ule that some of the airline’s preferences for the recovery solution

can not be satisfied. For example, when an aircraft is grounded for

the rest of the day for technical reasons, it may not be possible

to satisfy the aircraft demand at the nodes at the end of the time

window (end nodes). The same applies to constraints related to

maintenance tasks. If an aircraft cannot be routed to its mainte-

nance location due to disruptions, this can result in an infeasible

integer linear programming (ILP) problem. Therefore, slack vari-

ables are included in each constraint for maintenance tasks and

end nodes. These slack variables are associated with artificial dis-

ruption costs in the objective function. These costs are many times

greater than the largest cost of normal variables, and therefore the

recovery model will only select these slack variables if there is

no feasible solution. The slack variables are used to identify con-

straints that could not be satisfied and the operations controller is

made aware of the specific airline’s preferences not satisfied by the

final solution. 

The slack variables ( s r ), associated with the maintenance task

constraints, are binary; the task is either completed or not. The

slack variables associated with the end node constraints ( s a,e ) are

integer, corresponding to the number of aircraft of a certain type

that are missing at the end node. As a result, every missing aircraft

is penalized. 

4. Aircraft selection algorithm 

The recovery model previously presented in this paper finds the

set of recovery decisions resulting in the lowest disruption cost.

However, constructing the parallel time-space networks for each

aircraft in the fleet and solving the resulting integer linear pro-

gramming (ILP) problem can require too much time to be suitable

for operational use. 

By working with several airlines, we observed that only a sub-

set of aircraft are used in practice to solve disruptions. Even in the

case of large disruptions. This happens because, on one hand, for

minor disruptions it is not necessary to involve many aircraft and,

on the other hand, because airline controllers avoid to involve too

many aircraft when solving disruptions. Therefore, we propose a

Selection Algorithm , in which different selections of aircraft are it-

eratively considered. This is a rule-based procedure used to ensure

that solutions are always provided to the airline within seconds.
ntermediate solutions are not necessarily optimal. Yet this enables

he airline to, when needed, implement quick decisions before the

lgorithm is completely finished. The rules were defined follow-

ng several experiments with different rules and the observation

f some of the decisions made at the Operations Control Center

OCC) from multiple airlines when solving disruptions. The costs

f the solutions found using the proposed Selection Algorithm, and

he solution that is found when all aircraft are considered by the

nteger linear programming (ILP) solver, are compared in Section 5 .

The work from Vos et al. (2015) already suggested the use of

ircraft selections to solve the Aircraft Recovery Problem (ARP).

he authors suggest that aircraft selections can be made based on

he assumption that the ground-time of aircraft is the best indi-

ator for a good candidate. Aircraft with the longest ground-time

re considered to be the best candidates to help solve disruptions

nd are solved by the integer linear programming (ILP) solver first.

n this paper we demonstrate that better candidate aircraft can be

ound based on the location of the aircraft rather than ground-

ime. Also, long-time impact disruptions (e.g. a flight cancellation

r the long unavailability of an individual aircraft) require different

orting techniques. Another difference to the solution technique

roposed by Vos et al. (2015) is the fact that our method always

rovides an initial solution in seconds, based on which better re-

ults will be provided as time progresses, making it more suitable

or operational use. 

The Selection Algorithm proposed in this paper consists of three

ndividual algorithms, for which a high-level overview is shown in

ig. 5 . As can be seen, when a disruption occurs the trivial so-

ution is solved first. Next, Algorithm 2 is always executed, and

lgorithm 3 will be executed only if the disruption to be solved is

 long aircraft unavailability. The notation used for the three algo-

ithms is introduced next, after which the procedure to determine

he aircraft selections is explained in more detail using the three

lgorithms. 

otation Selection Algorithm 

ircraft sets 

 disrupt Disrupted aircraft at t 0 

 una v ail abl e Aircraft with unavailability disruption at t 0 

 used Aircraft used in best found integer linear programming (ILP) solution

Aircraft to be considered in the integer linear programming (ILP) 

Candidate aircraft 

 delay Candidate aircraft for delayed flights 

 cancel Candidate aircraft for cancelled flights 

 other Candidate aircraft not in C delay or C cancel 

 select Candidate aircraft selected for integer linear programming (ILP) solve

 1 Aircraft in Level 1 sort of Algorithm 3 

 2 Aircraft in Level 2 sort of Algorithm 3 

ircraft information 

Aircraft index 

 p Time duration of unavailability disruption 

light information 

 delay Delayed flights in integer linear programming (ILP) solution 

 cancel Cancelled flights in integer linear programming (ILP) solution 

Flight index 

 f Origin airport of flight f

epart f Scheduled departure time of flight f

( continued on next page )
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Algorithm 2 Solve Aircraft Iterations 

1: INPUT: S used , S disrupt , F delay , F cancel from Algorithm 1 

2: for f ∈ F delay do 

3: C delay ← C delay + aircraft at o f between t 0 and (depart f + 

delay f ) � No duplicate aircraft 

4: for f ∈ F cancel do 

5: C cancel ← C cancel + aircraft at o f between t 0 and (depart f + 

T cancel ) � No duplicate aircraft 

6: C ← sorted list C cancel + C delay � Sorted based on ground time 

7: C other ← any aircraft / ∈ (C cancel ∪ C delay ) � Other aircraft 

8: C = C + C other 

9: while | C| > 0 do � Iterative integer linear programming (ILP) 

solver 

10: C select ← first K · | S disrupt | aircraft of C 

11: Solve integer linear programming (ILP) (1) - (17) with P = 

S disrupt + S used + C select 

12: update S used 

13: update Sol best 

14: Remove C select from C 

15: return Sol best 
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delay f Delay of flight f

Airport information 

a Airport index 

A sche Airports in flight schedule 

A cand Candidate airports for Algorithm 3 

Selection Algorithm information 

t 0 Time at which disruption(s) is(are) known 

Sol tri v ial Trivial solution 

Sol best Best solution found so far 

Sol f inal Final solution 

Sol air por t Best found airport solution 

T una v ail abl e Threshold of unavailability time 

T cancel Additional time to determine candidate aircraft for cancelled flights 

K Multiplication factor used to determine the size of C select 

Algorithm 1 explains the high-level structure of the Selection

lgorithm. First, the Main Selection Algorithm is run with only the

isrupted aircraft. This is generally a small selection of aircraft, and

hus results in a simple problem which can be solved in a few sec-

nds. The solution provides the airline with an overview of the

otential effects of the disruptions, and a disruption cost indica-

ion. We call this solution the trivial solution , where we only allow

isruption effects to propagate within the flights of the disrupted

ircraft. 

lgorithm 1 Main Selection Algorithm 

1: procedure Trivial Solution 

2: Solve integer linear programming (ILP) (1) - (17) with P = 

S disrupt � First find Trivial Solution

3: F delay ← delayed flights in trivial solution 

4: F cancel ← canceled flights in trivial solution 

5: update Sol tri v ial 

6: for p ∈ S una v ail abl e do 

7: if D p > T una v ail abl e ) then � Strategy in case of long

unavailability 

8: procedure Solve Airports Iterations 

9: goto: Algorithm 3 return S used , F delay , F cancel 

10: procedure Solve Aircraft Iterations 

11: goto: Algorithm 2 return Sol f inal � Default strategy 

12: end 

From this trivial solution we attempt to reduce disruption costs

y adding aircraft that are likely to help reduce cost. Based on air-

ine defined criteria, candidate aircraft are drawn from the fleet

f aircraft indicated to be a potential substitute of the disrupted

ircraft (e.g. same fleet or same (sub-) type). The Selection Algo-

ithm has two different solution strategies for the selection of air-

raft, depending on the set of disruptions. The first strategy fo-

us on the airports in which the disruption(s) take place to se-

ect the aircraft that may contribute to solve the disruption(s). This

trategy is is activated in all disruption events and is presented in

lgorithm 2 . The second strategy considers other airports in the

cheduled routes of aircraft present at airport in which the dis-

uption(s) take place at the time of the disruption(s). This strategy

s only activated in the presence of a long aircraft unavailability

larger than a given threshold defined by T unavailable ) and is dis-

ussed in Algorithm 2 . 

In Algorithm 2 the aircraft are sorted based on their location

uring the day. Any aircraft that is at the same airport as a dis-

upted aircraft between the time of occurrence of the disruption
nd the delayed departure time is considered a candidate aircraft .

e assume that these candidates are in a good position to poten-

ially swap with the disrupted aircraft. Within these candidates, we

ive higher priority to those that have a larger ground time during

hat airport visit. For canceled flights the procedure is similar; can-

idates are those that are at the same airport between the time of

ccurrence of the disruption and scheduled departure time of the

anceled flights, plus an additional time window. This window is

ntroduced to consider aircraft that arrive after the arrival time of

he canceled flight. Given the high costs of canceling a flight, these

ircraft may still be valuable for the recovery. The candidate air-

raft from canceled and delayed flights are sorted at the top of the

ist according to their total time on the ground. The remaining air-

raft are then added to the bottom of the list of candidates. In this

ay all aircraft will be taken into consideration once, but those

onsidered earlier in the process are more likely to contribute to a

ood recovery solution. 

After sorting the list of aircraft, the integer linear programming

ILP) solver is iteratively called, with a different set of aircraft of

he sorted candidate list ( C ), together with the disrupted aircraft

 S disrupt ). The number of aircraft of the sorted list is defined as a

ultiple of the size of S disrupt . When a better solution is found, the

est solution is updated and the aircraft involved in the solution

re stored as S disrupt . These aircraft are considered in subsequent

terations, guaranteeing that at the end of each iteration the solu-

ion is as good or better than the previously found solution. The

lgorithm stops when all aircraft in the candidate list have been

onsidered to solve the set of disruptions. 

Algorithm 3 was developed to address demanding cases in

hich aircraft are unavailable for a long duration of time. These

re difficult cases to be solved because these disruptions may po-

entially involve the cancellation of many flights. This can be hard

o solve by only using the tail swaps between aircraft that are both

n the same selection, as defined in Algorithm 2 . Therefore, to un-

erstand better how to solve these large disruptions, we tried to

olve these cases with the entire fleet of aircraft. This gave us the

ptimal solutions for these cases. It was observed that, in some

ases, the optimal solution would involve aircraft that did not visit

he disrupted airport. However, these aircraft did visit airports that

ere also visited by aircraft that originated from the disrupted air-

ort. At these undisrupted airports, they were used in tail swaps

ith aircraft that took some of the flights from the disrupted air-
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craft. From this we concluded that for making a good selection of

candidate aircraft, it is useful to determine which airports in the

network are visited by aircraft that originate from the disrupted

airport. 

Algorithm 3 Solve Airport Iterations 

1: INPUT: S disrupt , F delay , F cancel , D p , p from Algorithm 1 

2: procedure Level 1 airport sort 

3: f 1 ← first flight f of unavailable aircraft p 

4: L 1 ← aircraft departing from o f 1 between depart f 1 and

(depart f 1 + D p ) 

5: for a ∈ A sche do 

6: Count number of flights in A 1 to a 

7: A cand ← any destination of flights in L 1 with > 1 flight �

These have swap opportunities 

8: procedure Level 2 airport sort 

9: for a ∈ A cand do � Iterative integer linear programming

(ILP) solver 

10: L 2 ← any aircraft at a between depart f 1 and (depart f 1 +
D p ) 

11: Solve integer linear programming (ILP) (1) - (17) with P =
S disrupt + L 2 

12: update Sol air por t 

13: S used ← aircraft used in Sol air por t 

14: F delay ← delayed flights in Sol air por t 

15: F cancel ← canceled flights in Sol air por t 

16: return S used , F delay , F cancel 

Therefore, the need of an additional selection strategy for the

Selection Algorithm was considered. Algorithm 3 is initiated in

Algorithm 1 in case of an aircraft unavailability that exceeds

the user defined threshold ( T unavailable ). This threshold is used to

prevent additional integer linear programming (ILP) iterations in

Algorithm 3 in case of shorter aircraft unavailability. These addi-

tional integer linear programming (ILP) iterations would require

more computational time, while the default strategy ( Algorithm 2 )

provides good selections of aircraft to solve the disruption. 

Algorithm 3 consists of selecting aircraft that visit the same

airport (other than the airport where the unavailable aircraft is

grounded) later in the day. Let Airport A be the airport where the

aircraft is grounded. We define A canc , a list of airports that are vis-

ited later during the day by aircraft that are also at Airport A during

the unavailability. From this list of airports we disregard the ones

that are visited only by one of these aircraft (if only one aircraft

visits the airport, there is little opportunity to perform swaps such

that we mitigate delays at Airport A ). We consecutively run the in-

teger linear programming (ILP) solver for the different airports in

A canc until all candidate airports have been run. For the candidate

airport that provides the lowest cost recovery solution, we retrieve

the aircraft that are used in the solution ( S used ). After these runs,

we will continue the Selection Algorithm with the default solution

strategy defined in Algorithm 2 . 

It is important to note that the selections in the Selection Algo-

rithm are created based on the location of aircraft, irrespective of

the airline network structure. Therefore, the algorithm can be ap-

plied to both point-to-point and (multi) hub-and-spoke networks.

In addition, the algorithm is solved several times, considering mul-

tiple selections of aircraft (see Algorithm 2 ). This provides interme-

diate solutions to the operations controller even before the prob-

lem is completely solved. Hence, if time is a limiting factor, the

operations controller may accept the last solution found without

waiting for the model to finish all selections. 
. Case study 

To demonstrate the sequential approach for solving the aircraft

ecovery problem, the model described was tested based on infor-

ation from an airline operating in the United States. The airline

perates a fleet of over 100 aircraft, serving 70 destinations on 600

aily flights. All flights are medium-haul or short-haul flights. The

eet is split over two aircraft types of the same family with differ-

nt seating capacity (70 and 80 seats). Flight schedule, fleet com-

osition, maintenance schedule and booked passengers per flight

ere obtained from the airline. However, information regarding

onnecting passengers was not available and had to be estimated

ased on open-source data from the US Department of Transporta-

ion ( https://www.transtats.bts.gov ). 

The recovery model was implemented in Python using CPLEX

2.7 to solve the integer linear programming (ILP) problem. Com-

utational tests were conducted on a computer using a 64 bit Intel

5-3470 3.20 GHz processor and 8 GB RAM. 

.1. Parameter assumptions 

The scenarios tested in the case study were performed using

he following parameters. 

- The time window of recovery is equal to 16 h, the duration of

one day of operations for the flight schedule studied. 

- Time is discretized in 10 min time steps. 

- Flights can be delayed up to six hours. After six hours, flights

are considered to be canceled. 

- Passenger delay cost averages $1.28 per passenger per minute,

but increases with the severity of the delay, using a piece-wise

linear function, as proposed by Cook et al. (2012) . This covers

all cost experienced by the airline. Cost of reputation damage

were obtained from the work from Cook et al. (2012) , while

cost of compensations to passengers were derived from airline

data. 

- Passengers that do not reach their final destination at the end

of the day are treated as if they are delayed by ten hours (af-

ter this limit the delay costs are kept constant). In addition, a

compensation cost of $250 is added to cover accommodation

costs. 

- Schedule penalties costs: $100 per tail swap, $1,0 0 0 per change

of aircraft routing ( M p ). These values are derived from the min-

imum delay required to offset the penalty costs. Given the ca-

pacity of the aircraft in the case study, and an average load fac-

tor of 75%, the $100 penalty corresponds to delays exceeding

10 min. To change the aircraft route is only justified if it can

save a flight delay longer than 40 minutes. 

- Slack variables cost: $1,0 0 0,0 0 0 per missing aircraft at end of

time window ( M a,e ) or when a maintenance task needs to be

canceled ( M r ). These costs should be sufficiently high such that

the model will only violate these constraints if no other possi-

bility exists. This value corresponds to the cost of about eight

flight cancellations. A low slack variable cost can result in vio-

lation of constraints in favor of flight cancellations. 

- Cost of ground arcs are neglected for the case study. 

- The factor K for the Selection Algorithm ( Algorithm 2 ) is set to

two. 

- The time threshold T unavailable used to invoke Algorithm 3 is set

to four hours. T canc is set to three hours. 

In this case study we did not consider the possibility to up-

rade (or downgrade) the seat class for a passenger subjected to

n itinerary disruption. This means that when checking the pos-

ibility accommodation of passengers in different flights than the

nes included in the original passenger itinerary we only consider

eats of the same class. 

https://www.transtats.bts.gov
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.2. Disruption scenarios 

In the case study, the recovery model was tested using several

llustrative disruption scenarios ( Table 1 ). These scenarios are ar-

ificial as actual disruption information was not available for the

etwork studied. However, they were proposed by the airline par-

icipating in this study as being representative for a disrupted day

f operations. Each scenario covers one entire day of operations,

uring which several unexpected disruption events occur. The sce-

arios were constructed such that different types of disruptions are

ombined and that real-life situations, e.g. hub closures or reduced

eparture capacity as a result of extreme weather, are simulated. 

A set of disruptions becoming known at the same time is called

 disruption event . Each scenario is composed of two to five dis-

uption events happening at different moments of the day. For the

ake of simplicity, the disruption events of all scenarios are defined

t five specific times of the day. However, these events could vary

n number and occur at completely different moments. 

.3. Solutions being compared 

For the disruption scenarios discussed, four different solutions

re presented and compared. 

- Trivial (TR) solution - the solution which is found taking only

the disrupted aircraft in consideration. This solution resembles

the immediate solution that a controller would find during op-

erations and it is the first solution obtained by the Selection Al-

gorithm. It is found in about two to three seconds, because the

resulting problem involves few aircraft and is therefore small. 

- Selection Algorithm (SA) solution - the best solution found

by Selection Algorithm presented in this work, after considering

all the selections of aircraft candidate to solve the disruption

events. 

- Dynamic Global (DG) solution - the solution when the en-

tire fleet of candidate aircraft is used. Determining this solution

takes too long to be suitable for real-time use. However, this

solution corresponds to the global optimum solution to the dis-

ruption problem, as defined in this work. This is used as the

reference solution in the analysis of the results. 

- Static Global (SG) solution - the solution found if we assume

that all disruptions for the day are know at the beginning of

the day; all disruptions are solved in a single run. This solution

also uses the entire fleet of candidate aircraft and it is used to

assess the relevance of adopting a realistic dynamic approach

when solving airline disruption problems. 

To fairly compare the solutions obtained for each disruption

vent during the day, we opted to compute the TR solutions for

ne disruption event following the SA solution from the previous

vent (or the initial schedule, in the case of the first disruption

vent of the day). The DG solutions are always based on the pre-

ious DG solution. That is, the DG solution for the first disruption

vent is taken as the starting schedule for the computation of the

G solution for the second disruption event. 

.4. Overall results comparison 

The results for all ten scenarios are summarized in Table 2 . The

alues presented are the averages among the values obtained for

he different disruption events in each scenario. In total, we mod-

led 48 disruption events over the 10 scenarios. The first three

olumns (after the scenarios column) compare the average com-

utational time needed to find the DG solution and the best SA

olution. The fourth column compares these same two solutions in

erms of their objective function value. The same is done in the last

olumn but for the DG and SG solutions. The compared solutions
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Table 2 

Runtime and operational cost comparison for all scenarios. Runtimes are the average of all disruption events in a scenario. Model 

settings: time window = 16 hours, maximum delay = 6 hours, K = 2. 

Scenario Average runtime SA Average runtime DG Selection runtime ratio Selection cost ratio Static cost ratio 

[mm:ss] [mm:ss] [SA/DG] [SA/DG] [SG/DG] 

1 00:21.7 06:59.0 0.05 1.00 0.77 

2 00:22.5 07:41.9 0.05 1.03 0.99 

3 00:06.6 08:22.3 0.01 1.00 1.00 

4 00:41.4 18:24.2 0.04 1.00 0.92 

5 00:44.0 12:26.8 0.06 1.39 0.88 

6 00:05.8 07:47.2 0.01 1.00 1.00 

7 00:17.7 07:08.4 0.04 1.00 0.97 

8 00:20.2 05:41.8 0.06 1.00 1.00 

9 00:36.6 17:58.4 0.03 1.19 0.99 

10 00:04.8 05:49.5 0.01 1.00 0.37 

Average 00:22.1 09:49.9 0.04 1.06 0.81 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7. Results for disruption Scenario 1. Comparison of different result types. Com- 

putational time required to find solution using SA is indicated by columns as per- 

centage of time required for DG solution. 
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did not involve the use of slack variables and, for an easier com-

parison of the results, the schedule penalty costs are not included

in the objective function values compared from the different solu-

tions. 

When analyzing the results, the first observation is that the best

SA solution was always found in less than 50 s, and on average it

only took 22.1 s to be found. On the other hand, we needed almost

10 min, on average, to compute the DG solution. In some cases, it

took more than 20 min. This means that the SA is 20 times faster

than when solving the integer linear programming (ILP) problem

for the entire fleet. This, as might be expected, results from the re-

duction of the problem size. When using the entire fleet we deal

with a problem of the order of 3300 thousand columns and 750

thousand rows (depending on the specific problem being solved).

With the SA, per selection analyzed, we reduced the number of

columns by a factor of about 100 and rows by a factor of 40. Still,

for seven of the ten scenarios we found the global optimum so-

lution with the SA – this happened for 90% of the 43 disruption

events solved. Only for four disruption events this did not happen.

The worst case was in Scenario 5 when three aircraft are unavail-

able for long periods. In this case, the SA obtained solutions that

were 39% worse than the optimum solution. However, on average,

we obtained solutions in a matter of seconds that were only 6%

more expensive than the global optimum. 

Comparing the SG solution with the DG solution, we can say

that the average disruption costs are under-estimated by 19% when

we assume that all disruptions are known at the start of the day.

This is the ’price’ of not adopting a dynamic approach when solving

disruption problems. The difference between both solutions can be

of more than 60%, as it happened for Scenario 10. 

The goal of the SA is to provide solutions in less than one or

two minutes. The algorithm provides an initial solution, the TR so-

lution, in less than three seconds. Every few seconds the algorithm

solves the problem using a new selection of aircraft and provides a

solution that is always at least as good as the solutions previously

found. Fig. 6 depicts the trade-off between the time that the air-

line has available and the quality of the solution that the recovery

model presents. It shows how disruption cost for all scenarios re-

duces as time progress. The dot figures represent the average value

over all the scenarios while the error bars indicating the range of

all observations. After 50 s the SA has converged and the solutions

no longer improves. That means that within one minute the airline

control has the best solution for the disruption event. 

5.5. Scenarios analysis 

The results of scenarios 1 and 5 are discussed in detail in this

subsection. Scenario 1 is a standard disruption scenario, where dif-

ferent disruptions occur in several aircraft throughout the airline’s

network, at different times during the day. This was one of the
cenarios in which the SA always found the optimum solution. On

he other hand, Scenario 5 was the scenario with the worst per-

ormance from the SA. As it was previously mentioned, this is a

cenario involving the long unavailability of several aircraft. 

.5.1. Scenario 1 

The results of Scenario 1 are summarized in Fig. 7 . The figure

llustrates the development of disruption cost during the day, for

he different types of solutions. 

In the morning, at 06:00, a small disruption (two delays) oc-

urs. For this disruption, the TR, SA and DG solution were all of the

ame cost. The TR solution was equal to the DG solution, mean-

ng that it was not possible to mitigate delays by performing tail

waps. In the second disruption set, at 09:00, the TR solution was

ver $80 0 0 more expensive than the SA and DG solution. However,

he latter two were the same, meaning that the SA corresponds

o the best possible solution. The time required to find the solu-

ion using the SA was 27 s. This is 5.1% of the time required to

nd the DG solution (534 seconds). At 12:00, a disruption occurs

hat barely has an effect in terms of disruption cost. At 15:00 and

8:00 disruptions occur for which again costs could be reduced

ompared to the TR solution. For the 20:00 disruption, the TR, SA

nd DG solution were equal. This was observed in multiple other

cenarios; at the end of the day the recovery options available to

he airline are limited and as a result often the TR solution is also

he best solution. 

For these disruption events, the SA solution was equal to the

G solution. As it can be observed, the time required to find so-
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Fig. 8. Results for disruption Scenario 5. Also shown are the solutions of the SA if 

only Algorithm 2 is used. 
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Table 3 

Normalized results of the Dynamic Global (DG) so- 

lution, the trivial solution (TR) and the solution 

found with the Selection Algorithm (SA). Averages 

for 370 random disruption events. 

Solution type Solution time Solution cost 

DG 1.00 1.00 

TR 0.39 5.36 

SA 0.42 1.19 

Fig. 9. Cost comparison 
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i

utions using the SA are longer when costs can be reduced with

espect to the TR solution. In this case, more selections were re-

uired before the lowest cost solution was found. Still, required

omputational time is reduced by over 95% compared to the DG

olutions. The SG solution cost for Scenario 1 was 23% lower than

he solution obtained when considering the disruptions occurring

ynamically throughout the day. 

.5.2. Scenario 5 

The results of Scenario 5, shown in Fig. 8 , illustrate a case

here the SA did not find the same solution as the DG solution.

n this case the DG approach benefits from the possibility to as-

ess all candidate aircraft at the same time to solve the problem of

aving three aircraft unavailable for a long time. The SA is limited

o re-assigning aircraft that are together in a single selection. As a

esult the SA solution has greatly reduced cost compared to the TR

olution, but was still 39% more costly than the DG solution. 

This scenario also allows us to illustrate the value of

lgorithm 3 , designed for cases involving long unavailability of air-

raft. With a red cross we indicate the value that would be ob-

ained by the SA in case this Algorithm 3 is not included. In this

ase the overall disruption cost for the day would be about 5 times

igher. 

Scenario 5 is not the only scenario involving the unavailability

f aircraft (although this was the only scenario involving the use

f Algorithm 3 ). In fact, for scenarios 1, 2, 3, 8 and 10 aircraft were

navailable and we were able to obtain the global optimum or a

olution that was only 3% worse than the global optimum (for Sce-

ario 2). This indicates that the Algorithm 2 is capable of finding

ptimal solutions if the disruptions are not extremely severe. 

. Robustness test 

The results presented in Section 5 were based on ten artificial

isruption scenarios. These scenarios were well-suited for demon-

tration of the progress of the solution during the day of opera-

ions, but limited in volume. In order to better evaluate the robust-

ess of the Selection Algorithm, this approach was also tested on

70 generated disruption scenarios. The input data used in these

cenarios can be downloaded from https://doi.org/10.4121/uuid:

f38f494- e9a5- 447f- af2c- 500544999294 . 

.1. Flight schedule 

The robustness test was performed on the flight schedule

rom a U.S. airline. This flight schedule was obtained from pub-
icly available data of the ’Reporting Carrier On-Time Performance’

atabase, published by the United States Department of Trans-

ortation ( Bureau of Transportation Statistics, 2019 ). The schedule

sed consists of about 2100 flights a day, operated by over 800

ircraft in eight different families. Passenger data was estimated

ased on the methodology suggested by Barnhart et al. (2014) . 

Based on this historic data, probability distributions of differ-

nt disruption events (e.g. flight delay, aircraft unavailability) were

erived. Using these distributions, 370 disruption events were ran-

omly generated and solved. Each disruption event contains one or

ore disruptions. In total these disruption events contain 565 in-

ividual flight disruptions. For the sake of simplicity, these events

re modelled independently, and not as a sequence of events like

e did in the case study presented in Section 5 . In this robustness

est we have followed the same parameter assumptions present in

he case study. 

.2. Results 

A summary of the robustness test results are presented in

able 3 . This table shows the normalized results in terms of solu-

ion time and cost. On average, the SA requires less than the half of

he time used by the DG algorithm. It is almost as fast as the triv-

al solution. However, while the trivial solution is, on average, more

han five times worse than the DG solution, the solution costs only

eteriorates by 19% when using the SA. 

Figs. 9 and 10 show the spread of the 370 different disruption

vents in a boxplot. As can be seen in Fig. 9 , the majority of the

uns have a cost which is similar to the solution found by the DG

pproach (i.e. a value close to 1). For 96% of the 370 scenarios, the

A found a solution with the same cost as the DG solution. In 88%

f the 370 events, the SA found the trivial solution. There are a

ew outliers for which the solution found by SA is more expensive.

n five of the 370 events the SA found a solution which was more

han twice the cost found by the DG solution. Such cases are rare

1.35% of the cases) and they occur when the DG solution uses a

arge combination of aircraft that are not considered in the same

teration by the SA. 

https://doi.org/10.4121/uuid:3f38f494-e9a5-447f-af2c-500544999294
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Fig. 10. Time comparison 
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Fig. 10 shows that for the SA the solution time is on average

42% of the time required by the DG solution. This time difference

is not as large in this robustness test as it was in the case study

( Table 2 ). The main reason for this is the fact that in this robust-

ness test the disruption events are modelled independently. This

makes the DG solution equivalent to the static global (SG). Fur-

thermore, the probability distributions computed for this robust-

ness test rarely generate long delays. These two fact contribute

to computational times of the DG that are much lower than in

the previous case study. In fact, there are three out of the 370

events for which the SA requires more time than the DG solution.

In all three cases, the DG solution time was very small (within the

fastest 20%). For these case the overhead required for creating the

aircraft selections and solving them iteratively, did not prove to be

beneficial for the overall solution time. 

7. Conclusions 

In this paper we presented an operational framework that

solves the aircraft recovery problem. Maintenance requirements

and passengers itineraries were taken into account when solving

the disruptions. This included itinerary disruption for passengers

that lost their connections at hub airports. An expedited method

was proposed to model these passengers without compromising

the computation time of the solution technique proposed. Crew

concerns were indirectly modeled by penalizing solutions that po-

tentially have effects on crew schedules. 

By sequentially solving subproblems with selections of the air-

line’s fleet, a recovery solution was be found in a fraction of the

time that would be needed when considering the entire fleet. A

rule-based algorithm was used to sort the aircraft according their

potential contribution to solve the disruption. In following these

simple rules, the algorithm proved to be very efficient, while gen-

erating solutions that are (close to) globally optimal. A case study

performed with data from a U.S. airline indicated that a good so-

lution can be achieved within 50 seconds. This is an important

achievement for a tool that is intended for operational use. The

results suggested that airlines can have a solution in less than 1

minute by only compromising the cost of the solution with 6%–

19%, when compared with the globally optimal solution. These re-

sults where obtained from a case study of 10 manually designed

scenarios, as well as a test for robustness on 370 randomly gener-

ated disruption. The operational tool was built in such a way that

a solution is always provided to the user, highlighting elements in

the solution that may be the cause of infeasibility. A third rele-

vant feature of the operational tool was the fact that is prepared to

solve the disruption problem in a dynamic way: i.e., re-solving the

airline’s schedule every time new disruption information is made
vailable, starting from the solution for the previous disruption

vent and revoking previous decision(s) if it proved to improve the

olution and if there was still time to change operations. With all

hese ingredients we are convinced that we presented a unique ap-

roach for operational use by airlines. 

The framework presented in this paper has limitations to con-

ider in future research. First, passenger itineraries are assumed to

e static. That is, passengers are not rerouted or rebooked to differ-

nt classes. Second, crew schedules are indirectly modelled. Third,

he selection algorithm is a rule-based heuristic that may require

djustments for the network of individual airlines. The first two

imitations are of particular interest for the development of a com-

letely integrated airline disruption management operational tool.

owever, it will be a major challenge for future development to

eet the computation time requirements for this integrated tool.

his could be, in part, solved by addressing the last limitation. For

nstance, a promising area of development would be to consider a

ore efficient machine learning technique to select the best selec-

ion of aircraft to solve a set of disruptions. 
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