
Short PaperDelft University of Technology
CSE3000 – Research Project – Final Report (2023) 
R. Bidarra and M. Skrodzki (Editors)

Rendering Non-Euclidean Space in Virtual Reality Using Portals

R. Slotboom1

1Delft University of Technology

Abstract
Simulating non-Euclidean geometry in virtual reality is of interest to a wide variety of fields of research. However it is still
quite a challenge. Various methods are already known, but they vary greatly in performance and applicability. This paper
compares some methods of rendering a non-Euclidean space. We focus on the order-5 square tiling that can be found in the
hyperbolic plane, but the methods used are also relevant to other non-Euclidean spaces. We render this space using portals
with two different implementations: one using render textures, an one using stencil polygons. Through an experiment where we
measured and compared the frame rate of each method, we have found that, even with a small number of portals, the stencil
polygon approach is more than two times as efficient. However, this method is limited in the number of portals, whereas render
textures can be used for any number of portals.

1. Introduction

Over two millennia ago, Euclid’s five postulates laid the foundation
for geometry. These postulates reflect the world around us, and it
was not until the 19th century that mathematicians managed to de-
scribe alternative geometries that do not follow Euclid’s postulates.
However, visualizing these non-Euclidean geometries was still a
challenge, as they are inherently impossible to fully recreate in the
real world. Nowadays however, we can use computer graphics to
simulate various types and parts of non-Euclidean geometries, in
order to get a better grasp of how they work.

Hyperbolic geometry is one example of non-Euclidean geome-
try. Because the available space grows exponentially when moving
away from the origin, it is an interesting tool for fields like data vi-
sualization. It may also enable us to investigate how a person learns
new modes of navigation. However to do this effectively, the user
must be able to immerse themselves in the non-Euclidean world.
For this it is important to render non-Euclidean space appropriately.

To investigate how to render non-Euclidean geometry, we
will use an experimental virtual reality game called Holonomy
[YBS∗22]. The game, made in the Unity game engine as part of
the Software Project course in 2022, is based on an order-5 square
tiling, where five square tiles are placed around each vertex rather
than the four that we are used to in Euclidean space, as shown in
Figure 1b. Such a tiling exists in the hyperbolic plane, and was cho-
sen for Holonomy as a simplified model of hyperbolic space for
reasons that we will discuss in Section 3. The player navigates this
non-Euclidean game world by physically moving around in a 3x3
play area.

Rendering this tiling using a Euclidean render engine is chal-
lenging because different tiles will need to occupy the same area

(a) Order-4 square tiling (b) Order-5 square tiling

Figure 1: Example of how different tiles in an order-5 square tiling
can occupy the same space in a Euclidean order-4 square tiling. In
the Euclidean tiling, following the blue arrow takes the player (rep-
resented by the red circle) to the same tile as following the orange
arrow. However, in the order-5 square tiling, these two arrows lead
to two different tiles.

of Euclidean space, as seen in Figure 1. One way of rendering this
is to divide the grid into "subgrids", and have "portals" linking the
subgrids to the main grid. That is, if two tiles would occupy the
same Euclidean space, then two subgrids are created, along with
two portals that each show one of the two subgrids. An example
layout is shown in Figure 2.

One of the biggest challenges in Holonomy’s rendering is that
there are multiple portals, some of which are placed behind or in
the same position as other portals. As seen in Figure 2, if the player
is standing in one of the corner tiles, then there are two tiles in the
center which are seen through portals, and beyond that (in the op-
posite corner) there are a total of four tiles which are seen through

© 2023 The Author(s)



R. Slotboom / Rendering Non-Euclidean VR

Figure 2: An example layout for rendering an order-5 square tiling
in a 3x3 grid. In this example, the player is represented by the red
square in the bottom-left tile of the main grid. A total of six subgrids
are created, and when the player looks through a portal (represented
by colored edges), they will see the corresponding subgrid (with the
same colored edge in it). [YBS∗22]

two levels of portals. Thus for each approach, we will also con-
sider how the portals can be made to interact with each other in the
desired way.

This paper aims to answer the following question: how can we
render a non-Euclidean space based on an order-5 square tiling in a
performance-friendly manner? To answer this question, the follow-
ing will be investigated:

• What methods of rendering hyperbolic space are there?
• How do these methods compare to each other in terms of perfor-

mance?
• What technical limitations exist for these methods?

2. Background

This section outlines existing solutions to related problems of non-
Euclidean rendering. An approach using render textures is ex-
plained in Section 2.1. Section 2.2 then explains a method using
stencil polygons.

2.1. Render Textures

One possible method of rendering non-euclidean space uses render
textures. This method creates portals by first rendering the portal
view onto a texture, and then rendering a quad with that texture as
the portal itself [AL97].

This approach using render textures can also be extended to work
recursively, by scaling the created texture to fit the portal inside
the portal view [KK18]. Another option is to continuously move
the camera that is used to render the texture, rendering the deepest
level of recursion first and inserting the texture before rendering the
next deepest level. The first recursion method is useful to emulate
infinite recursion, where a portal is contained within its own portal

Figure 3: An example setup for stencil polygon portals. The por-
tals themselves are represented by the lines marked "A" and "B".
The camera is represented by the red square. Some rays are shown
coming from the camera to an object. Before reaching portal A, the
stencil value of a ray will be 0. Portal A sets it to 1. Finally, when
the ray reaches portal B, the value is set to 2, which in this example
is the requirement for the geometry (black boxes) to be rendered.
The shaded parts of boxes are the parts that are actually rendered.

view. The second method, which is the method previously imple-
mented in Holonomy [YBS∗22], is useful for finite recursion with
multiple portals that see each other, but not themselves.

2.2. Stencil Polygons

Another approach for creating portals is to use stencil polygons
[NHH∗20] rather than render textures. Stencil polygons are trans-
parent objects that write a value to the stencil buffer. Any objects
behind these polygons then read from the stencil buffer to deter-
mine if they should be rendered. This allows two objects to be
placed in the same position in a way that the first is seen through
one stencil polygon and the second through another stencil poly-
gon.

In Unity, stencil polygons work as follows. Each object – both
the stencil polygon and the actual geometry that should be rendered
– is rendered using a shader with a stencil test [Pet13]. The stencil
test consists of a comparison function, such as "Equal" or "Less",
and a reference value, which is an integer. The value in the stencil
buffer is compared to the reference value using the given function.
If this test passes, the object will be rendered. Additionally, the
shader dictates what operation is performed on the stencil buffer
after the test. Examples of operations are "Keep" to leave the value
unchanged, or "Replace" to set the buffer to the same reference
value that was used for comparison. This operation can differ based
on whether the stencil test passes. For example, it is possible to
perform the "Keep" operation if the test passes and the "Replace"
operation if it fails. An example of how stencil polygons work is
shown in Figure 3

3. Related Work

HyperRogue [KCC17] is a game set on the hyperbolic plane. The
player is shown a top-down view of the game world, rendered using

© 2023 The Author(s)



R. Slotboom / Rendering Non-Euclidean VR

Figure 4: Diverging light rays from two eyes looking straight ahead
in H2. [HHMS17b]

the Poincaré disk model. HyperRogue gives us an idea of what
it is like to navigate tilings of the hyperbolic plane, but because it
is played in two dimensions it does not allow the player to fully
immerse themselves in a non-Euclidean world.

A more recent game utilizing hyperbolic geometry is
Hyperbolica [Cod22], which does use three dimensions, un-
like the previous example. Specifically, it is set in H2 ×E. That is,
the product of the hyperbolic plane and a Euclidean vertical axis.
The game’s implementation uses gyrovector spaces as a hyperbolic
analogy to the vector spaces that are widely used for Euclidean
rendering [Ung05, Ung04]. Hyperbolica even supports virtual
reality, although this is not "true" hyperbolic virtual reality as we
do not experience the phenomenon of geodesic deviation.

Geodesic deviation is one of the properties that makes hyperbolic
rendering challenging, in particular in virtual reality. [HHMS17a,
Skr20]. A geodesic is a straight path through two points; in Eu-
clidean space, this is simply a line. However in hyperbolic space,
two geodesics that start in the same direction will diverge. This
means that light rays coming into our eyes also diverge as they
travel along geodesics (see Figure 4), and we will see something
different than what we are used to from E3.

Geodesic deviation and other properties of hyperbolic space
cause unpleasant experiences for a player in a virtual reality game
[Wee21], which is why "true" hyperbolic virtual reality is not fea-
sible. This issue is the main reason why Holonomy is based on an
order-5 square tiling but otherwise uses Euclidean rendering.

4. Method

As mentioned in Section 1, having multiple portals on the screen
simultaneously poses some additional challenges. This section ex-
plains some ways of overcoming those challenges when working
with stencil polygons. Section 4.1 goes into the challenges of plac-
ing portals behind other portals. Section 4.2 shows how to solve
the issues that arise when multiple stencil polygons are placed at
the same position.

4.1. Multiple Stencil Polygons in Sequence

When multiple portals are placed in sequence, those on the first
level of depth can be implemented in the same way as when they are
the only portals in the scene (except there may be some constraints
on the utilized reference values, as we will see in the following
paragraphs). Any portals that are placed deeper do require a dif-
ferent implementation: they should only be rendered if the stencil
value from the first level is equal to some reference value. If this test
passes, they should change the stencil value to some other value.
This is where the problem arises: we need one reference value for
reading and another for writing, but comparison and modification
both use the same reference value in the Unity engine, which is
used for Holonomy.

A simple solution would be to use two stencil polygons for each
portal beyond the first level, instead of just one. The first polygon
compares the stencil buffer to the desired value and writes the value
0 if the test fails†. The second polygon then writes the new sten-
cil value, but only if the stencil value is currently greater. If the
first level of depth is set to use stencil values greater than the sec-
ond level of depth, this comparison will always succeed unless the
buffer was set to 0 by the first polygon.

Auxiliary stencil polygons are not always desirable, so we will
consider another possible solution. We can only apply this solution
in a case where the first level of depth only has two stencil poly-
gons. On this level, polygon A will be set to use the smallest out
of all the utilized stencil values, and B will use the largest. Then
at the second layer of depth, portals that should be seen through A
can test if the buffer is smaller than their reference value, and those
that should be seen through B can test if the buffer is larger than
their reference value. Again, this will not work if the first level has
more than three possible values, since there is no way to distinguish
between all three using only "less than" and "greater than" compar-
isons. Additionally, if more than two levels of depth are used, this
same restriction applies to each level except the final level.

A third solution, again without any auxiliary stencil polygons,
works using the "increment" operation of the stencil shader. If sten-
cil polygons C and D should be seen through stencil polygon A,
then both C and D first compare the stencil buffer to the desired
reference value (that of A). If the test passes, C keeps the current
value and D increments the value. This method can distinguish any
number of stencil polygons on the first level of depth, but is limited

† At first glance this still seems to require two reference values in the same
stencil polygon, but there exists a dedicated operation for writing 0 to the
stencil buffer which can be used here.

© 2023 The Author(s)



R. Slotboom / Rendering Non-Euclidean VR

Figure 5: Conflicting stencil polygon portals. The blue portal uses
reference value 1, the yellow portal uses reference value 2, and
the green line represents an overlap between the two portals. Each
segment of a camera ray is marked with the corresponding stencil
value. The final value of the middle ray is not known, as it depends
on the render order of the portals; whichever portal renders last dic-
tates what the value will be.

to two portals‡ at the second level per portal on the first level. It
also would not work for more than two levels of depth; at the third
level, incrementing the value of C is the same as keeping the value
of D, so these can no longer be distinguished in this way.

4.2. Multiple Stencil Polygons at the Same Position

If multiple portals are placed at the same position, there are some
additional challenges in implementing them using stencil polygons.
These polygons, if implemented incorrectly, may overwrite each
other’s stencil values, causing the wrong geometry to be rendered
behind it. Such a conflict is illustrated in Figure 5.

Firstly, this means that the first of the potential solutions in 4.1
will not work. To see why, take two stencil polygons C and D that
are placed at the same position in the second level of depth. Here C
should be seen only through A, and D only through B. If the test of
C’s auxiliary polygon fails, the buffer will be set to 0. Then the test
of D’s auxiliary polygon will automatically fail, even when seen
through B. Thus in the use case of Holonomy,one of the other
methods must be implemented.

Secondly, the operation of one polygon should not interfere with
the comparison of another. This becomes relevant for the second
proposed solution: there should be no overlap between the range
seen through A (which is compared using "less than") and the range

‡ This method can be extended by utilizing the "decrement" operation in
addition to the "increment" and "keep" operations, but this still limits the
number of available portals.

Figure 6: An example of how stencil polygons are implemented in
our game. Some example camera rays are shown, with each seg-
ment being labeled with the stencil buffer value as the ray passes
through stencil polygons (marked in orange).

seen through B (compared using "greater than"). This does not in-
validate the method, but must be kept in mind when implementing
it.

5. Implementation

Section 4.1 proposed three methods for portals behind other por-
tals using stencil polygons. The first method cannot be applied to
Holonomy because auxiliary stencil polygons would not interact
with each other correctly (see Section 4.2). The other two methods
are similar to each other, both in implementation and in perfor-
mance, since they use the same number of stencil polygons. Since
the third method is more general than the second, we implemented
this one in Holonomy. The first level of portals uses reference val-
ues 1 and 3, and the second level either keeps or increments these
values, giving us a range of 1 to 4 as our reference values. This is
illustrated in Figure 6.

In order to ensure the correct render order, different render
queues were used in Unity’s universal render pipeline. This allows
us to always render the first level of portals before the second, and
lets us render geometry after the corresponding portals are ren-
dered. Within each render queue, objects are rendered farthest to
nearest, using render queues that are usually used to ensure that
transparent objects are rendered in the correct order.

6. Evaluation

This section aims to compare the render texture approach and the
stencil polygon approach, to see which is more effective for render-
ing our order-5 square tiling. Section 6.1 explains an experimental
setup to analyze the performance of these methods, and Section
6.2 shows the results of this experiment. Section 6.3 then discusses
what can be concluded from these results.

6.1. Methodology

In order to compare the performance of the stencil polygon ap-
proach to that of the render texture approach, we have con-
ducted the following experiment, using the Unity editor to run

© 2023 The Author(s)



R. Slotboom / Rendering Non-Euclidean VR

the project. A camera was placed in the center of one of the tiles
in Holonomy’s 3x3 grid. The camera then made 3 full rotations
around the Y axis over the span of 12 seconds. Each frame, we
measure the time since the frame before it, and take the reciprocal
of this time to find the number of frames per second (FPS).

The portal layout in Holonomy depends on the player’s position
within the grid. This leads to three distinct layouts: one where the
player is in the center tile, one where they are in a corner tile, and
one where they are in an edge tile. We conducted the above experi-
ment separately for each of these cases. For the last two cases, there
is not always a portal in the camera’s field of view, because it will
be pointed straight at the nearest wall for some duration. Because
of this, we also repeated the experiment with a smaller range of
camera angles, only letting it rotate 90 (for a corner tile) or 180 (for
an edge tile) degrees before reversing the direction and repeating.

It should be noted that this experiment was not done in
Holonomy itself due to conflicts with existing assets that would
have taken too long to resolve for this project. Instead, we made a
separate Unity project in which we manually replicated each of the
previously mentioned portal layouts. This is still representative of
the actual performance since we are only interested in the compar-
ison of the two methods.

6.2. Results

Table 1 shows the results of the experiment in Section 6.1 for render
textures, and Table 2 shows the results for stencil polygons. Note
that in all cases (either approach, any tile, and any range of angles),
one of the first few frames has a value very close to 1 frame per
second. This is likely caused by the loading time of the Unity editor
and thus not representative of the actual results. For this reason, we
ignore the initial second of frames when listing the minimum FPS.
Finally, Table 3 shows the speedup of the stencil polygon method,
obtained by dividing its average FPS by that of the render texture
approach.

6.3. Discussion of Results

As expected and mentioned in Section 6.1, limiting the camera’s
movement to always show at least one portal significantly lowers
the FPS of the render texture method, seen in the average and stan-
dard deviation in Table 1. However, for stencil polygons (Table 2)
this is not the case. This indicates that stencil polygons add little to
no overhead with additional portals, whereas render textures do.

We also see that for render textures, the corner tile case has a
lower FPS than the other cases§. There are two possible explana-
tions for this. Firstly, this case is the only one that has portals behind
other portals, and thus the only case requiring recursion. Secondly,
while the total number of portals is lower than in the center tile
case, more portals are shown simultaneously. That is, when stand-
ing in a corner tile, all six portals can be seen, but from the center
tile we can only see four of the eight portals at a time. Again, this

§ Only when limiting the movement to 90 degrees, because when mak-
ing full rotations the camera will point at the wall for roughly 75% of the
duration.

decrease in FPS does not happen for stencil polygons because of
the low overhead.

Table 3 shows the speedup that stencil polygons provide. If we
disregard the cases where the camera is pointed at the wall for most
of the time, we see that stencil polygons perform about 2.3 times
faster, or even more for the case described above. This makes them
significantly more efficient, and as we have seen this difference will
be even bigger when there are more portals in the scene.

While stencil polygons clearly have a better performance than
render textures, there are some limitations to the number of stencil
polygons and the maximum depth, as explained in Section 4. The
alternative method using auxiliary polygons does not have these
constraints, but stops working when multiple polygons are placed
at the same position, as is the case in Holonomy. This approach is
also limited in the depth of recursion [LD03]. This is not a problem
for Holonomy itself, since it only requires two layers of depth, but
may pose a problem for other use cases or for future versions of the
game. This is a clear downside compared to the render texture ap-
proach, as render textures can be rendered recursively to any level
of depth.

The render texture approach is limited when it comes to light-
ing. Objects that are rendered behind the portals are not lit by light
sources in front of the portals, and vice versa. Therefore it may hap-
pen that the player sees a light source in an adjacent room, but does
not see this light in the room they are currently occupying. With
stencil polygons however, light sources behave mostly as expected.
We did not investigate if light sources can also be filtered out using
stencil polygons, which may still be investigated in future work.

7. Responsible Research

The methods used are explained in Section 6.1 to ensure that the
experiment can be reproduced. In our discussion of the results (Sec-
tion 6.3), we state our conclusions and clearly show how the data
supports those conclusions. We also consider the validity of our test
cases – in particular the corner tile and edge tile cases, where the
camera is pointed at the wall for much of the duration.

It is important to consider how players experience the
Holonomy game, even in a paper that does not perform experi-
ments with human participants. In Section 3, we have seen why we
chose to use our order-5 square tiling model rather than true hy-
perbolic geometry. Additionally, improving the frame rate of the
portals is the main focus of our research. Both of these points serve
to prevent motion sickness for players of Holonomy.

8. Conclusion

Our experiments have shown that stencil polygons perform signif-
icantly better than render textures for rendering our portals. Fur-
thermore, our tests used only a small number of portals, and adding
more portals impacts the performance of render textures much
more than it does stencil polygons, making the latter more scal-
able. However, this scalability does eventually reach an upper limit
to the number of portals, whereas render textures work with any
number. In short, render textures are less efficient, but more gener-
ally applicable than stencil polygons.

© 2023 The Author(s)



R. Slotboom / Rendering Non-Euclidean VR

Total number of portals Average Minimum after one second Maximum Standard deviation
Center tile 8 143.843830 13.072681 209.894423 34.19565984
Corner tile 6 258.604970 17.555625 409.718523 92.5478929

Corner tile (90 degrees) 6 92.67712857 9.16414729 148.9669144 30.36676437
Edge tile 4 216.967100 18.209497 396.652255 87.75802708

Edge tile (180 degrees) 4 146.4999928 13.08432981 207.1851821 36.87121221

Table 1: Average, minimum, maximum, and standard deviation of the measured FPS for render texture portals.

Total number of portals Average Minimum after one second Maximum Standard deviation
Center tile 8 333.679134 21.542346 447.487358 74.0470264
Corner tile 6 332.965919 7.593937 465.311060 76.97215996

Corner tile (90 degrees) 6 367.6417286 23.61704489 487.3531849 70.6103923
Edge tile 4 313.425702 11.469639 434.442610 67.58017243

Edge tile (180 degrees) 4 342.3625739 24.48621793 460.4263548 72.48499617

Table 2: Average, minimum, maximum, and standard deviation of the measured FPS for stencil polygon portals.

There are still some questions left unanswered by this paper,
since this project was relatively limited in time and therefore misses
some interesting points. These points could be investigated in fu-
ture work.

Firstly, only two methods were investigated in this paper. Stencil
polygons and render textures are not the only methods of rendering
hyperbolic space, and other methods can be compared to these two
using a setup similar to the one used here.

Secondly, the performance of the two approaches was compared
only in terms of rendering time. Another metric that may be used in
the context of Holonomy is the time required to generate the grid
when the player moves into a new tile. The new implementation
requires fewer objects to be placed, so there may be a speedup in
this part of the game as well.

Lastly, what we did not consider is a combination of our two
methods – using render textures for some subset of our portals, and
stencil polygons for the rest. By combining them, we could make
the stencil polygons as generally applicable as render textures. This
would come at the cost of some of the efficiency we gain from
stencil polygons, but would still be much more efficient than us-
ing exclusively render textures. However the optimal strategy for
combining the two methods depends heavily on the use case, as we
would want to minimize the number of render texture portals while
eliminating the constraints posed by the stencil polygons.

References
[AL97] ALIAGA D., LASTRA A.: Architectural walkthroughs using por-

tal textures. In Proceedings. Visualization ’97 (Cat. No. 97CB36155)
(1997), pp. 355–362. doi:10.1109/VISUAL.1997.663903. 2

[Cod22] CODEPARADE: Hyperbolica, 2022. URL: https://store.
steampowered.com/app/1256230/Hyperbolica/. 3

[HHMS17a] HART V., HAWKSLEY A., MATSUMOTO E., SEGERMAN
H.: Non-euclidean virtual reality i: Explorations of hÂ³. In Proceed-
ings of Bridges 2017: Mathematics, Art, Music, Architecture, Education,
Culture (Phoenix, Arizona, 2017), Swart D., Séquin C. H., Fenyvesi K.,
(Eds.), Tessellations Publishing, pp. 33–40. URL: http://archive.
bridgesmathart.org/2017/bridges2017-33.html. 3

[HHMS17b] HART V., HAWKSLEY A., MATSUMOTO E. A.,

SEGERMAN H.: Non-euclidean virtual reality ii: explorations of
H2 ×E, 2017. arXiv:1702.04862. 3

[KCC17] KOPCZYNSKI E., CELINSKA D., CTRNACT M.: Hy-
perrogue: Playing with hyperbolic geometry. In Proceedings of
Bridges 2017: Mathematics, Art, Music, Architecture, Education, Cul-
ture (Phoenix, Arizona, 2017), Swart D., Séquin C. H., Fenyvesi K.,
(Eds.), Tessellations Publishing, pp. 9–16. URL: http://archive.
bridgesmathart.org/2017/bridges2017-9.html. 2

[KK18] KIRCHER D., KOHLI T.: Portal problems, 2018. URL: https:
//cs50.harvard.edu/games/2018/weeks/11/. 2

[LD03] LOWE N., DATTA A.: A fragment culling technique for render-
ing arbitrary portals. In Computational Science — ICCS 2003 (Berlin,
Heidelberg, 2003), Sloot P. M. A., Abramson D., Bogdanov A. V., Don-
garra J. J., Zomaya A. Y., Gorbachev Y. E., (Eds.), Springer Berlin Hei-
delberg, pp. 915–924. 5

[NHH∗20] NEERDAL J. A. I. H., HANSEN T. B., HANSEN N. B.,
BONITA K. L. F., KRAUS M.: Navigating procedurally generated overt
self-overlapping environments in vr. In Interactivity, Game Creation, De-
sign, Learning, and Innovation (Cham, 2020), Brooks A., Brooks E. I.,
(Eds.), Springer International Publishing, pp. 244–260. 2

[Pet13] PETERSSON A.: Fast complex transformative portals, 2013.
URL: https://www.diva-portal.org/smash/record.
jsf?pid=diva2%3A830875&dswid=-6058. 2

[Skr20] SKRODZKI M.: Illustrations of non-euclidean geometry in virtual
reality, 2020. arXiv:2008.01363. 3

[Ung04] UNGAR A.: On the unification of hyperbolic and eu-
clidean geometry. Complex Variables, Theory and Application:
An International Journal 49, 3 (2004), 197–213. URL: https:
//doi.org/10.1080/02781070310001657976, arXiv:
https://doi.org/10.1080/02781070310001657976,
doi:10.1080/02781070310001657976. 3

[Ung05] UNGAR A.: Gyrovector spaces and their differential geometry.
Nonlinear Functional Analysis and Applications 10 (01 2005). 3

[Wee21] WEEKS J.: Body coherence in curved-space virtual re-
ality games. Computers Graphics 97 (2021), 28–41. URL:
https://www.sciencedirect.com/science/article/
pii/S0097849321000443, doi:https://doi.org/10.
1016/j.cag.2021.04.002. 3

[YBS∗22] YARAR B., BAKKER B., SNELLENBERG R., SLOTBOOM R.,
LI W.: “Holonomy”: a non-Euclidean labyrinth game in virtual reality.
Tech. rep., TU Delft, 2022. URL: http://resolver.tudelft.
nl/uuid:60d473f0-f327-411e-a402-95d44e27f088. 1, 2

© 2023 The Author(s)

https://doi.org/10.1109/VISUAL.1997.663903
https://store.steampowered.com/app/1256230/Hyperbolica/
https://store.steampowered.com/app/1256230/Hyperbolica/
http://archive.bridgesmathart.org/2017/bridges2017-33.html
http://archive.bridgesmathart.org/2017/bridges2017-33.html
http://arxiv.org/abs/1702.04862
http://archive.bridgesmathart.org/2017/bridges2017-9.html
http://archive.bridgesmathart.org/2017/bridges2017-9.html
https://cs50.harvard.edu/games/2018/weeks/11/
https://cs50.harvard.edu/games/2018/weeks/11/
https://www.diva-portal.org/smash/record.jsf?pid=diva2%3A830875&dswid=-6058
https://www.diva-portal.org/smash/record.jsf?pid=diva2%3A830875&dswid=-6058
http://arxiv.org/abs/2008.01363
https://doi.org/10.1080/02781070310001657976
https://doi.org/10.1080/02781070310001657976
http://arxiv.org/abs/https://doi.org/10.1080/02781070310001657976
http://arxiv.org/abs/https://doi.org/10.1080/02781070310001657976
https://doi.org/10.1080/02781070310001657976
https://www.sciencedirect.com/science/article/pii/S0097849321000443
https://www.sciencedirect.com/science/article/pii/S0097849321000443
https://doi.org/https://doi.org/10.1016/j.cag.2021.04.002
https://doi.org/https://doi.org/10.1016/j.cag.2021.04.002
http://resolver.tudelft.nl/uuid:60d473f0-f327-411e-a402-95d44e27f088
http://resolver.tudelft.nl/uuid:60d473f0-f327-411e-a402-95d44e27f088


R. Slotboom / Rendering Non-Euclidean VR

Average FPS for render textures Average FPS for stencil polygons Speedup factor
Center tile 143.843830 333.679134 2.32
Corner tile 258.604970 332.965919 1.29

Corner tile (90 degrees) 92.67712857 367.6417286 3.97
Edge tile 216.967100 313.425702 1.44

Edge tile (180 degrees) 146.4999928 342.3625739 2.34

Table 3: Speedup factor for five test cases, obtained by dividing the average FPS of the stencil polygon portals by that of the render texture
portals.

© 2023 The Author(s)


