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Formal Analysis of the Sampling Behavior of
Stochastic Event-Triggered Control

Giannis Delimpaltadakis , Member, IEEE, Luca Laurenti , and
Manuel Mazo Jr. , Senior Member, IEEE

Abstract—Analyzing event-triggered control’s (ETC)
sampling behavior is of paramount importance, as it
enables formal assessment of its sampling performance
and prediction of its sampling patterns. In this work, we
formally analyze the sampling behavior of stochastic linear
periodic ETC (PETC) systems by computing bounds on
associated metrics. Specifically, we consider functions
over sequences of state measurements and intersampling
times that can be expressed as average, multiplicative
or cumulative rewards, and introduce their expectations
as metrics on PETC’s sampling behavior. We compute
bounds on these expectations, by constructing Interval
Markov Chains equipped with suitable reward functions,
that abstract stochastic PETC’s sampling behavior. Our
results are illustrated on a numerical example, for which we
compute bounds on the expected average intersampling
time and on the probability of triggering with the maximum
possible intersampling time in a finite horizon.

Index Terms—Bounded-parameter Markov decision pro-
cesses, event-triggered control, finite abstractions, interval
Markov decision processes, networked control systems,
stochastic systems.

I. INTRODUCTION

IN THE past two decades, event-triggered control (ETC)
has constituted the primary research focus of the control

systems community toward reducing resource consumption in
networked control systems [1], [2], [3], [4], [5], [6], [7], [8],
[9], [10], [11], [12], [13], [14], [15], [16], [17], [18], [19], [20],
[21], [22]. ETC is a sampling paradigm, where communication
between the sensors and the controller takes place only when
a state-dependent triggering condition is satisfied. Even though
ETC’s event-based sampling typically reduces the amount of
communications (compared to conventional periodic sampling),
it also generates an erratic and generally a priori unknown
sampling behavior; given an ETC system, the times at which
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communication is going to take place are not known before-
hand. Obtaining information on ETC’s sampling behavior and
predicting its communication (or sampling) patterns is crucial,
as it enables: a) formally assessing an ETC design’s sampling
performance (e.g., determining how frequently the system is
expected to sample, which quantifies expected energy and band-
width savings), and b) scheduling communication traffic1 in net-
works shared by multiple ETC loops, to avoid packet collisions
and thus facilitate deployment of ETC systems in congested
networks.

Although analyzing ETC’s sampling behavior is fundamental,
research around it is scarce [9], [10], [11], [12], [13], [14],
[15], [16], [17], [18]. One branch of it composes of analytic
approaches [9], [10], [11], [12], [13]. In particular, Demirel
et al. [9] studied deadbeat stochastic linear PETC (periodic
ETC, e.g., [2]; a practical variant of ETC2) systems. Owing to
deadbeat control, studying the sampling behavior of the system
simplifies to analyzing a Markov chain, which can be used to
compute quantitative metrics over the sampling performance.
Nevertheless, assuming deadbeat control is admittedly restric-
tive. Similarly, authors in [10] and [11] perform analytic studies
on ETC’s expected average intersampling time, but again rely on
simple system dynamics (assuming that the controller can reset
the state to 0) and it is not clear if these results may be extended
to more general metrics on ETC’s sampling. Further, authors
in [12] and [13] derive interesting results on asymptotic prop-
erties of the intersampling times of 2-D linear ETC systems
with quadratic triggering conditions. However, they also obey
certain limitations: they 1) address only planar systems, 2) are
dependent on the type of triggering condition considered, and
most importantly 3) do not provide quantitative information on
all possible sampling patterns that may be exhibited by an ETC
system; as such, they cannot be employed to compute metrics on
ETC’s sampling performance or predict its sampling patterns.
Finally, some works design ETC schemes to optimize perfor-
mance criteria involving sampling-related metrics (typically,
average intersampling time), e.g., [19], [20], [21], [22]; however,

1Traffic scheduling is much more trivial with periodic sampling, where the
generated traffic is known beforehand.

2In PETC, the triggering condition is checked only periodically, as opposed
to CETC, where this happens continuously in time. As such, the framework of
PETC models practical scenarios more realistically, since (see, e.g., [2]): a) in
practice, checking the triggering condition is performed by smart sensors, which
generally operate digitally, and b) in most networks, communication takes place
in discrete time instants.
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See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: TU Delft Library. Downloaded on July 23,2024 at 06:26:24 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0002-2651-0629
https://orcid.org/0000-0003-1190-6097
https://orcid.org/0000-0002-5638-5283
mailto:i.delimpaltadakis@tue.nl
mailto:l.laurenti@tudelft.nl
mailto:m.mazo@tudelft.nl


4492 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 69, NO. 7, JULY 2024

this is not in this article’s scope, which focuses on analyzing the
sampling behavior of a given ETC system.

The other branch of research studying ETC’s sampling be-
havior is abstraction-based approaches [14], [15], [16], [17],
[18], among which the present work is placed. These construct
finite-state systems, abstracting a given ETC system’s sampling:
The set of their traces contains all possible sequences of in-
tersampling times that may be exhibited by the ETC system.
Contrary to the analytic approaches, they do not place restrictive
assumptions on system dynamics, system dimensions (modulo
computational complexity), and the triggering condition (except
that minor steps in the abstraction’s construction might vary).
Meanwhile, in exchange for high computational complexity,
they provide quantitative information on ETC’s diverse sam-
pling patterns, allowing for computing performance metrics and
predicting sampling patterns. For example, the work in [15],
[16], [17], and [18] constructed abstractions for ETC traffic
scheduling, while Gleizer and Mazo [14] utilized them to com-
pute the minimum average intersampling time.

Thus far, in [15], [16], [14], [17], and [18] only nonstochastic
systems have been considered. Specifically, authors in [14], [15],
and [16] considered linear ETC and PETC systems, whereas
in [17] and [18] addressed nonlinear systems with bounded
disturbances. In this work, we consider stochastic systems,
for the first time. Among others, for verification purposes, the
probabilistic framework of stochastic systems is naturally less
strict than the deterministic one, as it takes into account the
disturbances’ probability distribution, instead of being bound
by worst-case scenarios.

In particular, we consider stochastic linear PETC systems.
We define their sampling behavior as the set Y of all possi-
ble sequences of state-measurements and intersampling times
along with its associated probability measure. Studying ETC’s
sampling behavior is formalized by computing expectations
of functions defined over these sequences g : Y → R. Here,
we focus on functions g described as cumulative, average, or
multiplicative rewards, i.e., g� with � ∈ {cum, avg,mul}. This
class of functions is rather standard in the context of quantita-
tive analysis of stochastic systems, and it extends to including
specifications of probabilistic computation tree logic (PCTL;
see [23]). Besides, it is able to describe various metrics on ETC’s
sampling performance, as demonstrated through examples in
Section III-B. In fact, as shown in one example, including state-
measurements in the sampling behavior’s definition allows for
incorporating control-performance metrics as well. The problem
statement of this work is to obtain bounds on expectations of
functions g�.

To address the problem, given a PETC system, we construct
an IMC (interval Markov chain; Markov chain with interval
transition probabilities) that captures its sampling behavior.
Then, we equip the IMC with appropriate reward functions and
prove that the{cum, avg,mul} rewards over the paths of the IMC
indeed bound the expectation of g� (see Theorem IV.1). The IMC
rewards can easily be computed via well-known value-iteration
algorithms (see, e.g., [24]).

The main challenge in constructing the IMC is computing
the IMC’s probability intervals. For that, we study the joint
probabilities of transitioning from one region of the state-space

to another and the intersampling time taking a specific value.
Computation of these probabilities is more complicated than the
traditional transition probabilities that appear in the literature
of IMC-abstractions (e.g., [23], [25], [26], [27]), due to the
presence of intersampling time as an event. To cope with that,
we employ a series of convex relaxations and the fact that the
system’s state is a Gaussian process. That way, we reformulate
computing these probabilities as optimization problems of log-
concave objective functions and hyperrectangle constraint sets,
which are easy to solve. Finally, our results are demonstrated
through a numerical example, where we compute bounds on the
expected average intersampling time and on the probability of
triggering with the maximum possible intersampling time in a
finite horizon, for a given system.

In summary, this work’s main contributions are as follows.
1) It is the first one to abstract the sampling behavior of

stochastic ETC.
2) It computes bounds on performance metrics over stochas-

tic PETC’s sampling behavior, allowing for its formal
assessment and prediction of its patterns.

A preliminary version of the present work was presented
in [28]. In [28], only cumulative rewards are addressed and
the derived upper and lower bounds on transition probabilities
are different (here, they are tighter). Furthermore, the proof of
Lemma V.2, which shows log-concavity of our optimization
problems’ objective functions, appears here for the first time.
Finally, as Theorem IV.1 argues about any horizon, its proof,
employing time-varying adversaries, is more elaborate than the
proof of [28, Th. IV.1], which argues only about infinite horizons,
where time-invariant adversaries suffice.

II. PRELIMINARIES

A. Notation

R stands for the set of real numbers, N for the natural
numbers including 0, and N+ without 0. Given a vector x ∈ Rn,
we denote |x|∞ ≡ maxi |xi|, where xi is the ith component
of the vector. Given X ⊆ R, X[a,b] = X ∩ [a, b]. In is the n-
dimensional identity matrix. Given a set S in some space X ,
we denote: its indicator function by 1S(·), its Borel σ-algebra
by B(S), its complement by S = X\S, and the k-times Carte-
sian product S = S × · · · × S by Sk. Given x ∈ Rn, denote
by {x}k: Both the k-times Cartesian product {x} × · · · × {x}
and the kn-dimensional vector

[
x� . . . x�

]�
. Given sets

Q1, Q2, and Q = Q1 ×Q2, for any q = (q1, q2) ∈ Q denote
projQ1

(q) = q1 and projQ2
(q) = q2. Given two sets Q1, Q2

in some space, denote Q1 +Q2 = {q1 + q2 : q1 ∈ Q1, q2 ∈
Q2} and Q1 −Q2 = {q1 − q2 : q1 ∈ Q1, q2 ∈ Q2}. Consider
a parameter-dependent set S(x) ⊆ Rn, where x ∈ Rm (i.e., a
set-valued function S : Rm → 2Rn

). We say that S(x) is linear
on x, if S(x) = S ′ + {Ax}, where A ∈ Rn×m and S ′ ⊆ Rn.

Given a random variable x and an associated probability
measure P , we denote its expectation w.r.t. P by EP [x] (when
P is clear from the context, it might be omitted). We use
the term “path” or “sequence” interchangeably. Given a fi-
nite path ω = q0, q1 . . . , qN , denote ω(i) = qi and ω(end) =
ω(N) = qN . Given a function g(ω) of paths ω, we denote

Authorized licensed use limited to: TU Delft Library. Downloaded on July 23,2024 at 06:26:24 UTC from IEEE Xplore.  Restrictions apply. 
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Eq0 [g(ω)] ≡ E[g(ω)|ω(0) = q0]. Finally, N (μ,Σ) denotes the
Gaussian distribution with mean μ and covariance matrix Σ.

B. Rewards Over Paths

Consider a set Q and a set of paths Y of length N + 1,
such that: ω(i) ∈ Q, for all ω ∈ Y and 0 ≤ i ≤ N . Assume
a probability measure P over B(Y) (for how to define B(Y)
in our context, see Section III-B). Define a reward function
R : Q → [0, Rmax]. We define the following expectations:

1) Cumulative (discounted) reward: EP [gcum,N (ω)] ≡
EP [

∑N
i=0 γ

iR(ω(i))], where γ ∈ [0, 1].
2) Average reward: EP [gavg,N (ω)] ≡ EP [

1
N+1

∑N
i=0 R

(ω(i))].
3) Multiplicative reward: EP [gmul,N (ω)] ≡ EP [

∏N
i=0 R

(ω(i))].
These expectations can describe a wide range of quantita-

tive/qualitative properties of paths in Y, and they have been
employed for verification in numerous settings, such as (interval)
Markov chains (e.g., [23], [25], [26], [27]), stochastic hybrid
systems (e.g., [29]), etc. Later, we showcase their descriptive
power within our framework (see Section III-B).

C. Interval Markov Chains (IMCs)

IMCs are Markov models with interval transition probabili-
ties, and they are defined as:

Definition II.1 (IMC): An IMC is a tuple Simc = {Q, P̌ , P̂},
where Q is a finite set of states, and P̌ , P̂ : Q×Q → [0, 1] are
functions, with P̌ (q, q′) and P̂ (q, q′) representing lower and
upper bounds on the probability of transitioning from state q
to q′, respectively.

For all q ∈ Q, we have that P̌ (q, q′) ≤ P̂ (q, q′) and∑
q′∈Q P̌ (q, q′) ≤ 1 ≤ ∑

q′∈Q P̂ (q, q′). A path of an IMC is
a sequence of states ω = q0, q1, q2, . . . , with qi ∈ Q. Denote
the set of the IMC’s finite paths by Pathsfin(Simc). Given a
state q ∈ Q, a transition probability distribution pq : Q → [0, 1]

is called feasible if P̌ (q, q′) ≤ pq(q
′) ≤ P̂ (q, q′) for all q′ ∈ Q.

Given q ∈ Q, its set of feasible distributions is denoted byΓq . We
denote by ΓQ = {pq : pq ∈ Γq, q ∈ Q}, the set of all feasible
distributions for all states.

Definition II.2 (Adversary): Given an IMC Simc, an adver-
sary is a function π : Pathsfin(Simc) → ΓQ, such that π(ω) ∈
Γω(end), i.e., given a finite path it returns a feasible distribution
w.r.t. the path’s last element.

The set of all adversaries is denoted by Π. Given a π ∈ Π and
ω(0) = q0, an IMC path evolves as follows: at any time-step
i > 0, π chooses a distribution p ∈ Γω(i−1) from which ω(i) is
sampled.

IMCs may be equipped with a reward function R : Q →
[0, Rmax]. Given a π ∈ Π and an initial condition q0 ∈ Q, all
expectations listed in Section II-B are well-defined and single-
valued: e.g., Eq0

π [gcum,N (ω)] (see [24]). However, due to the
existence of infinite adversaries, the IMC produces whole ranges
of such expectations. The bounds of these ranges, e.g., (supπ∈Π
and) infπ∈Π Eq0

π [gcum,N (ω)], can be computed via well-known
value-iteration algorithms (e.g., see [24], [30]).

III. SAMPLING BEHAVIOR OF STOCHASTIC PETC:
FRAMEWORK AND PROBLEM STATEMENT

A. Linear Stochastic PETC Systems

Consider a state-feedback stochastic linear control system:

dζ(t) = Aζ(t)dt+BKζ(t)dt+BwdW (t)

where A,B,K, and Bw are matrices of appropriate dimensions,
ζ(t) ∈ Rnζ is the state, and W (t) is an nw-dimensional Wiener
process on a complete probability space (Ω,F , {Ft}t≥0,P ). Ω
denotes the sample space, F the σ-algebra generated by W ,
{Ft}t≥0 the natural filtration, and P the probability measure. We
denote the solution of the above stochastic differential equation
with initial condition ζ0 by ζ(t; ζ0).

In PETC, the control input is held constant between consecu-
tive sampling times (or event times) ti, ti+1 and is only updated
on such times

dζ(t) = Aζ(t)dt+BKζ(ti)dt+BwdW (t), t ∈ [ti, ti+1).
(1)

Sampling times are determined by the triggering condition:

ti+1 = ti + min

{
kh,

min {kh : k ∈ N, φ (ζ(kh; ζ(ti)), ζ(ti)) > 0}
}
(2)

where t0 = 0, h > 0 is a checking period, k ∈ N+, φ is
called triggering function, and ti+1 − ti is called intersampling
time. PETC works as follows during an intersampling interval
[ti, ti+1): At time ti, the triggering function φ(ζ(ti), ζ(ti)) is
negative; the sensors, periodically with period h, measure the
state and check if the triggering function is positive; if it is found
positive, or if kh time has elapsed since ti, a new event ti+1 is
triggered, the latest state-measurement is sent to the controller,
which updates the control action, and the whole process is
repeated again. The forced upper-bound kh on intersampling
times is applied in practice (see, e.g., [14], [31]), to prevent the
system from operating in an open-loop manner indefinitely; that
is, its presence is a standard assumption from a practical view-
point. Nonetheless, this assumption can be lifted, as explained
in Remark 7. We call the combination (1) and (2) (stochastic)
PETC system.

Intersampling time is a random variable that depends on the
previously measured state and we denote it as follows:

τ(x) = min

{
kh,min {kh : k ∈ N, φ (ζ(kh;x), x) > 0}

}
where x ∈ Rn is the previously measured state. Note that,
because the system is time-homogeneous, reasoning w.r.t. the
interval [ti, ti+1) is equivalent to reasoning w.r.t. [0, ti+1 − ti).

Assumption 1: We assume the following.
1) The matrix pair (A,Bw) is controllable.
2) The checking period h = 1.
3) φ(ζ(t;x), x) = |ζ(t;x)− x|∞ − ε, where ε > 0 is a pre-

defined constant.

Authorized licensed use limited to: TU Delft Library. Downloaded on July 23,2024 at 06:26:24 UTC from IEEE Xplore.  Restrictions apply. 
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Item 1 enforces that ζ(t) is a nondegenerate Gaussian random
variable (see [26]). Item 2 is for ease of presentation and with-
out loss of generality. Regarding item 3, φ is the well-studied
Lebesgue-sampling triggering function [10] with an ∞-norm
instead of a 2-norm. We restrict to this case for clarity, but our
results can be extended to more general functions, as explained
in Remark 10.

Remark 1: As it was shown in [Th. 6.C.2] [32], Lebesgue-
sampling guarantees mean-square practical stability for PETC
system (1) and (2).

B. Sampling Behavior and Associated Metrics

A stochastic PETC system may exhibit different se-
quences of state measurements and intersampling times
(ζ0, t0), (ζ(t1), t1 − t0), (ζ(t2), t2 − t1), . . . , where ti are sam-
pling times. We call sampling behavior, the set of all possible
such sequences:

Definition III.1 (Sampling Behavior): We call N -sampling
behavior of stochastic PETC system (1), (2) the set:

YN =
{
(x0, s0), . . . , (xN , sN ) : xi ∈ Rnζ , si ∈ N[0,k]

}
(3)

where N ∈ N. When N is clear from the context, it is omitted.
We denote Q := Rnζ × N[0,k]. Given an initial condition

y0 = (x0, s0) ∈ Q, the set YN is associated with a probability
measure Py0

YN
(conditioned on y0), which is inductively defined

over B(YN ) as follows3:

Py0

YN
(ω(0) ∈ (X, s)) = 1(X,s)(y0) (4)

Py0

YN
(ω(i+ 1) ∈ (X ′, s′) | ω(i) = (xi, si))

= P (ζ(si+1;xi) ∈ X ′, τ(xi) = s′) (5)

where ω ∈ YN , s, si, s′ ∈ N[0,k], xi ∈ Rnζ , X,X ′ ⊆ Rnζ , and
we use (X, s), with s ∈ N, to denote the set {(x, s) : x ∈ X}.
This measure is well-defined, even when the horizon N = +∞,
according to the Ionescu–Tulcea theorem [33].

Remark 2: As noted in Section III-A, typically it is assumed
that the first sampling time t0 = 0, which implies that the first
intersampling time s0 = t0 − 0 = 0 and the initial condition is
y0 = (x0, 0).

Remark 3: Under item 3 of Assumption 1, and in every Zeno-
free ETC scheme, P (τ(x) = 0) = 0 for any x ∈ Rnζ , because
the triggering function is strictly negative for k = 0. Thus, for
any i ≥ 1 and ω ∈ YN : PYN

(projN
[0,k]

(ω(i)) = 0) = 0. Note

that this is not in contrast with Remark 2 that only reasons about
initial conditions (x0, s0) and not (xi, si) with i ≥ 1.

Studying PETC’s sampling behavior may be formalized by
defining functions g : YN → R and computing their expecta-
tions EP

y0
YN

[g(ω)]. Here, we focus on functions that can be

described as cumulative gcum,N , average gavg,N , or multiplicative
gmul,N rewards (see Section II-B). By appropriately choosing
the reward R, these classes of functions can describe many
interesting properties of PETC’s sampling behavior:

3Consider QN+1 endowed with its product topology. Then, B(YN ) is the
σ-algebra generated by cylinder sets of QN+1.

1) Example 1: ConsiderR(x, s)=s. Then,EP
y0
YN

[gavg,N (ω)]

is the expected average intersampling time: The larger it
is, the less frequently the system is expected to sample,
saving more bandwidth and energy.

2) Example 2: Consider R(x, s) = α 1
|x|+ε + βs, with

α, β, ε > 0, penalizing paths that overshoot far from the
origin or exhibit a high sampling frequency. A bigger
EP

y0
YN

[gcum,N (ω)] implies better performance in terms of

stabilization speed and sampling frequency. Observe how
incorporating state measurements x in our definition of
sampling behavior allows to include control-performance
related metrics, apart from sampling-performance met-
rics.

3) Example 3: Consider the reward:

R(x, s) =

{
0, if s = k
1, otherwise.

Then, we have that

EP
y0
YN

[gmul,N (ω)] = Py0

YN

(
projN

[0,k]
(ω(i)) �= k, ∀i

)
EP

y0
YN

[gmul,N (ω)] is the probability that there is no inter-

sampling time s = k in the next N events. The smaller
it is, the more probable it is that the system samples, at
least once in the first N triggers, with intersampling time
s = k, implying that a bigger maximum intersampling
time could be used, allowing the system to sample even
less frequently and saving more bandwidth.

Observe that, if the initial condition (x0, s0) is only known
to obey some distribution p0 : Q → [0, 1], the expected reward
can be described as

EP
p0
YN

[g�,N (ω)]

=
∑

s0∈N
[0,k]

∫
Rnζ

E
P

(x0,s0)

YN

[g�,N (ω)]p0(x0, s0)dx0.

Thus, reasoning about individual initial conditions y0 is suffi-
cient and immediately extends to the general case of random
initial conditions.

Overall, defining PETC’s sampling behavior YN , associating
it to its induced probability measure Py0

YN
given in (4), (5), and

studying expectations EP
y0
YN

[g(ω)] constitutes a formal frame-

work for the study of PETC’s sampling behavior.

C. Problem Statement

Unfortunately, exact computation of EP
y0
YN

[g�,N (ω)] is gen-

erally infeasible. Among others, how to obtain the measure Py0

YN

over the uncountable set of paths YN and then integrate over it?
Hence, we aim at computing bounds over such expectations:

Problem statement: Consider the PETC system (1), (2) and
its sampling behavior YN , for some N ∈ N. Let Assump-
tion 1 hold. Consider a reward function R : Q → [0, Rmax].
For all initial conditions y0 ∈ X × N[0,k], where X ⊂ Rnζ is a
compact hyperrectangle, compute (nontrivial) lower and upper
bounds on EP

y0
YN

[g�,N (ω)], where � ∈ {cum, avg,mul}.
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Fig. 1. Flowchart showing the steps followed to compute bounds on the expected rewards EP
y0
YN

[g�,N (ω)].

In the rest of this article, we address the problem by con-
structing an IMC that abstracts the sampling behavior YN

along with Py0

YN
, equipping it with suitable reward functions

R,R, and computing (supπ∈Π and) infπ∈Π Eq0
π [g�,N (ω̃)], with

� ∈ {cum, avg,mul}, to obtain the bounds we are looking for.
Specifically, in the next section we show how to construct such an
IMC, by partitioning the state space X and providing conditions
(7), (8) that have to be satisfied by the IMC’s transition probabil-
ity intervals. We prove in Theorem IV.1 that this IMC equipped
with suitable rewards gives rise to bounds on EP

y0
YN

[g�,N (ω)].

Later, in Section V, we show how to compute P̌ and P̂ such that
they satisfy (7) and (8), by solving optimization problems with
log-concave objective functions. Finally, the desired bounds
(supπ∈Π and) infπ∈Π Eq0

π [g�,N (ω̃)] are obtained via well-known
value iteration algorithms, as demonstrated through a numerical
example in Section VI. A flowchart of the steps followed to
compute the desired bounds is shown in Fig. 1.

Remark 4: By assuming that y0 = (x0, s0) ∈ X × N[0,k],
we essentially assume that the initial state of the system x0 ∈ X .
Compactness of X is vital, to partition it into a finite number
of subsets Ri and end up with a finite-state IMC. Nonetheless,
this is not an unrealistic assumption, as in practice the initial
conditions of the system are usually known to be bounded in some
set. X being hyperrectnagular allows us to exactly partition it
into hyperrectangles Ri, which facilitates computation of the
Gaussian integrals in Section V. If X were not a hyperrectangle,
we could still derive a partition into hyperrectangles Ri, such
that X ⊆ ⋃

i Ri, and all results are still valid. Finally, s0 ∈
N[0,k] for generality, but, as mentioned in Remark 2, typically
in ETC s0 = 0.

Remark 5: We constrain ourselves to {cum, avg,mul} re-
wards for clarity, but our approach extends to a more general
framework. As commented in Section IV-B, our IMCs can be
employed for computing bounds on bounded-until probabilities

Py0

YN
(∃i ∈ N[0,N ] s.t. ω(i) ∈ G and ∀k ≤ i, ω(k) ∈ S)

where S,G ⊆ Q. Since all PCTL formulas can be written with
bounded-until operations, our approach covers PCTL. More-
over, by extending our proofs according to [27], we could
incorporate probabilistic Linear Temporal Logic (LTL).

IV. IMCS ABSTRACTING PETC’S SAMPLING BEHAVIOR

A. Constructing the IMC

Typically, to abstract a stochastic behaviorY and its probabil-
ity measure PY through an IMC: 1) the state space is partitioned
into a finite number of regions, each of which corresponds to an
IMC-state, 2) if the state space is unbounded, then one of these

regions is unbounded, and its IMC-state is made absorbing,4

and 3) the bounds on transition probabilities P̌ (q, q′), P̂ (q, q′)
are derived such that P̌ (q, q′) ≤ PY(ω(i+ 1) ∈ q′|ω(i) = x) ≤
P̂ (q, q′) for all x ∈ q, where ω ∈ Y.

We adopt the above methodology. Observe that the state
space from which the sampling behavior emerges is the set
Q = Rnζ × N[0,k]. Since N[0,k] is by-construction partitioned

into the singletons{0}, {1}, . . . , {k}, it suffices to partition Rnζ .
Consider m nonoverlapping compact hyperrectangles Ri such
that

⋃
i∈N[1,m]

Ri = X . Then, Rnζ is partitioned into

QR ∪ {X}
where QR = {R1, . . . ,Rm}. According to the aforementioned
methodology, the states of the IMC would be of the form
(q, s) ∈ (QR ∪ {X})× N[0,k]. Nonetheless, for compactness

of the IMC, we group all states (X, s) (for s ∈ N[0,k]) that

correspond to X into a single absorbing state qabs

qabs = X × N[0,k].

From now on, we abusively use (Ri, s) (resp. qabs) to denote
both the corresponding IMC-state and the set Ri × {s} (resp.
X × N[0,k]). Finally, the set of the IMC-states is

Qimc =
(
QR × N[0,k]

)
∪ {qabs}. (6)

Regarding the transition probability bounds P̌ (q, q′) and
P̂ (q, q′), since we need to bound P (ω(i+ 1) ∈ q′|ω(i) = x) for
all x ∈ q, by employing (5), we have that for all (R, k), (S, s) ∈
QR × N[0,k]

P̌ ((R, k), (S, s)) ≤ min
x∈R

P (ζ(s;x) ∈ S, τ(x) = s)

P̂ ((R, k), (S, s)) ≥ max
x∈R

P (ζ(s;x) ∈ S, τ(x) = s)

P̌ ((R, k), qabs) ≤
∑

s∈N
[0,k]

min
x∈R

P (ζ(s;x) ∈ X, τ(x) = s)

P̂ ((R, k), qabs) ≥
∑

s∈N
[0,k]

max
x∈R

P (ζ(s;x) ∈ X, τ(x) = s)

(7)

and for all q′ ∈ Qimc

P̌ (qabs, q
′) = P̂ (qabs, q

′) =
{
1, if q′ = qabs

0, otherwise.
(8)

The computation of P̌ and P̂ such that they satisfy (7) and (8) is
addressed in Section V and it involves bounding the solutions to
the optimization problems of (7). The summation in the last two

4An IMC-state q ∈ Qimc is absorbing ⇐⇒ P̌ (q, q) = 1.Authorized licensed use limited to: TU Delft Library. Downloaded on July 23,2024 at 06:26:24 UTC from IEEE Xplore.  Restrictions apply. 
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inequalities of (7) results from the fact that qabs is a grouping
of all states (X, s) with s ∈ N[0,k], while (8) indicates that qabs

is indeed absorbing. In view of Remark 3, since we know that
P (τ(x) = 0) = 0, then for any q ∈ Qimc andS ∈ QR, it suffices
to write P̌ (q, (S, 0)) = P̂ (q, (S, 0)) = 0; that is, states (S, 0)
only have outgoing transitions and no incoming ones. Finally, we
define the IMC that abstracts the sampling behavior as follows:

Simc =
(
Qimc, P̌ , P̂

)
(9)

where Qimc is given by (6) and P̌ , P̂ are given by (7) and (8).
To demonstrate how the constructed IMC abstracts the PETC

system’s sampling behavior, let us relate paths ω ∈ YN to
paths ω̃ ∈ Pathsfin(Simc). First, consider a path ω such that
ω(i) �∈ qabs for all i ≤ N . Then, this path is related to a path
ω̃ ∈ Pathsfin(Simc) of the same length, for which ω(i) ∈ ω̃(i)
for all i ≤ N . Next, consider a path such that ω(i) ∈ qabs for
some i ≤ N and ω(j) �∈ qabs for all j < i. Then, ω is related to
ω̃ ∈ Pathsfin(Simc) of the same length, for which ω(j) ∈ ω̃(j)
for all j ≤ i and ω̃(k) = qabs for all k ≥ i. This latter relation
indicates that all paths in YN that enter X (even those that
eventually return to X) are mapped to IMC-paths that enter qabs

at the same time and stay there.

B. Bounds on Sampling-Behavior Rewards Via IMCs

The IMC described above, if equipped with suitable rewards
R,R, can be employed for the computation of lower and upper
bounds on EP

y0
YN

[g�,N (ω)]:

Theorem IV.1: Consider the IMC Simc given by (9). Define
reward functions R,R : Qimc → [0, Rmax] such that

R(q) =

⎧⎨
⎩

min
(x,s)∈q

R(x, s), if q �= qabs

min
(x,s)∈Rnζ×N

[1,k]

R(x, s), if q = qabs

R(q) =

⎧⎨
⎩

max
(x,s)∈q

R(x, s), if q �= qabs

max
(x,s)∈Rnζ×N

[1,k]

R(x, s), if q = qabs
(10)

and the associated rewards over paths ω̃ ∈ Pathsfin(Simc)
denoted by g

�,N
, g�,N , where � ∈ {cum, avg,mul}. Then, for

any initial condition y0 = (x0, s0) ∈ X × N[0,k] and N ∈ N:

inf
π∈Π

Eq0
π [g

�,N
(ω̃)] ≤ EP

y0
YN

[g�,N (ω)] ≤ sup
π∈Π

Eq0
π [g�,N (ω̃)]

where q0 is such that y0 ∈ q0.
Proof Sketch: The above expectations are written as value

functions defined via value iteration (see Lemma IX.1), and
mathematical induction over the iteration is employed. For the
full proof, see Appendix A. �

Hence, to compute bounds on expectations EP
y0
YN

[g�,N (ω)],

we equip the IMC (9) with the reward functions R,R from
(10) and compute the expectations infπ∈ΠEq0

π [g
�,N

(ω̃)] and

supπ∈ΠEq0
π [g�,N (ω̃)]. As mentioned in Section II-C, these ex-

pectations can be computed via well-known value-iteration al-
gorithms (e.g., see [24]), with polynomial complexity in the
number of IMC states. In fact, the value iteration used for

{cum,mul} rewards is given here by (26) and (37), respectively,
in the Appendix (the avg reward is the same as cum with γ = 1,
and in the last step we just divide by N + 1). Moreover, as
bounded-until probabilities on IMCs, and thus PCTL proper-
ties, may be expressed by a similar value iteration [23], our
proofs can be adapted to show that we can bound bounded-until
probabilities defined over YN by using the constructed IMC.

Finally, Theorem IV.1 indicates that the same IMC can be used
to derive bounds for any chosen {cum, avg,mul} reward, for any
horizon N , and any initial condition y0 ∈ X × N[0,k]. It is also
worth noting that a proof like that of Theorem IV.1 was missing
from the literature on IMC-abstractions [23], [25], [26], [27],
where it was (correctly) taken for granted that the quantitative
metric (e.g., a reward) evaluated over the IMC bounds the metric
evaluated over the original stochastic behavior, due to the way
that the transition probabilities are constructed.

Remark 6: For any q ∈ Qimc, the rewards R and R serve as
conservative estimates of the real reward obtained if the system
operates in q. In fact, specifically for qabs, R and R are global
lower and upper bounds, respectively, on the actual reward
R(x, s) (except for the case s = 0, which happens with zero
probability, except for initial conditions). Due to this, for states
(R, s) ∈ Qimc with R being “near” X (i.e., near the boundary
of X), which tend to obtain larger transition probabilities to
qabs, the lower and upper bounds infπ∈ΠEq0

π [g
�,N

(ω̃)] and

supπ∈ΠEq0
π [g�,N (ω̃)] are more conservative, compared to when

R is further inside X . This is showcased by Fig. 4. For that
reason, in practice, to construct the IMC, it is better to partition
a superset Y ⊇ X into regions Ri, so that the regions that
comprise X are further inside Y , and the corresponding bounds
are not that conservative.

Remark 7: To lift the assumption of a forced upper bound k
on intersampling times, one could slightly adapt the proposed
method to construct the IMC as follows.

1) Pick an arbitrary k and create the IMC states and the
transitions between them as described in Section IV-A.

2) Create a second absorbing state qabs,2, defined as follows:

qabs,2 = Rnζ × N[k+1,+∞).

3) The lower bound on transition probabilities from any state
(R, k) ∈ QR × N[0,k] to qabs,2 has to be computed such
that P̌ ((R, k), qabs,2) ≤ minx∈R P (τ(x) > k). Thus, we
could define

P̌ ((R, k), qabs,2) := 1−
∑

s∈N
[1,k]

max
x∈R

P (τ(x) = s)

since the right-hand side is a lower bound on
minx∈R P (τ(x) > k):

1−
∑

s∈N
[1,k]

max
x∈R

P (τ(x) = s) ≤ 1−max
x∈R

P (τ(x) ≤ k)

= min
x∈R

P (τ(x) > k).

The upper bound P̂ ((R, k), qabs,2) is defined similarly.
The termsmaxx∈R P (τ(x) = s) can be computed via the
methods proposed in Section V.
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4) Define the rewards of both qabs and qabs,2 as

R(qabs) = R(qabs,2) = min
(x,s)∈Rnζ×N[1,+∞)

R(x, s)

and similarly for R.
As with qabs, the fact that qabs,2 is made absorbing introduces

conservativeness, in the sense that the computed bounds supπ∈Π
and infπ∈Π Eq0

π [g�,N (ω̃)] are less tight. Picking a larger k would
make the bounds tighter, at the expense of greater computational
load.

Remark 8: Our results extend to infinite horizons (i.e., N =
+∞), when the rewards are well defined, as it has already been
proven in [28, Th. IV.1]; in fact, the proof for N = +∞ is
simpler, as it suffices to consider time-invariant adversaries.

The only thing that remains is to describe how to compute the
transition probability bounds given by (7). This is carried out in
the coming section.

V. COMPUTING THE TRANSITION PROBABILITY BOUNDS

Here, we compute lower bounds on the minima and upper
bounds on the maxima in (7), thus completing the IMC’s con-
struction. Through a series of convex relaxations, and employing
Proposition V.1 and Lemma V.2, the min/max expressions in
(7) are formulated as optimization problems of log-concave
functions (in fact, Gaussian integrals) over hyperrectangles,
which are straightforward to solve. For the rest of the docu-
ment, for any s ∈ N[1,N ], we denote ζs,x = ζ(s;x) and ζ̃s,x =[
ζ�1,x ζ�2,x . . . ζ�s,x

]�
. The following statements are instru-

mental in our derivations.
Proposition V.1: For any s ∈ N[1,N ], we

have that ζ̃s,x ∼ N (μζ̃s,x
,Σζ̃s,x

) with μζ̃s,x
=[

E(ζ�1,x) E(ζ�2,x) . . . E(ζ�s,x)
]�

,

Σζ̃s,x
=

⎡
⎢⎢⎣

Cov(1, 1) Cov(1, 2) . . . Cov(1, s)
...

... . . .
...

Cov(s, 1) Cov(s, 2) . . . Cov(s, s)

⎤
⎥⎥⎦

where E(ζ(t;x)) = (eAt(I +A−1BK)−A−1BK)x and

Cov(t1, t2) =
∫ min(t1,t2)

0

eA(t1−s)BwB
�
we

A�(t2−s)ds.

Thus, given some set S ⊆ Rsnζ , the following holds:

P (ζ̃s,x ∈ S) =

∫
S

N (dz|μζ̃s,x
,Σζ̃s,x

). (11)

Proof: Application of the expectation and covariance opera-
tors to the solution of linear SDE (1) (see [34, pp. 96]). �

Lemma V.2: Consider a function h : Rn → [0, 1] with n ∈
N+ defined by

h(x) =

∫
S(x)

N (dz|f(x),Σ)

where Σ is a covariance matrix, S(x) ⊆ Rm with m ∈ N+ is
linear on x and convex for all x ∈ Rn, and f : Rn → Rm is an
affine function. The function h(x) is log concave.

Proof: See Appendix B. �
In what follows, we transform the probabilities involved in (7)

to set-membership ones P (ζ̃s,x ∈ S(x)), where S(x) is a poly-
tope, but neither necessarily convex nor linear on x. Afterward,
we break them down to simpler ones and employ some convex
relaxations, such that the set of integration of the resulting
Gaussian integrals is convex and linear on x and Lemma V.2
is enabled. Finally, we end up with optimization problems of
log-concave functions over the hyperrectangle R, and solve
them to obtain lower and upper bounds on the expressions in (7).

A. Transition Probabilities as Set-Membership
Probabilities

For now, let us focus on transitions from any state (R, k) ∈
Qimc\qabs to any state (S, s) ∈ QR × N[1,k](

max
x∈R

or

)
min
x∈R

P (ζ(s;x) ∈ S, τ(x) = s).

Later, in Section V-D, we show how transitions to qabs can be
treated similarly to the case above. Moreover, remember that for
s = 0 the above probability is trivially 0 (see Remark 3).

Define the following hyperrectangle:

Φ(x) := {y ∈ Rn : φ(y, x) ≤ 0} = {y ∈ Rn : |y − x|∞ ≤ ε}.
Note that Φ(x) is convex and linear on x: Φ(x) = Φ(0) + {x}.
Moreover, it is such that ζ(t;x) ∈ Φ(x) ⇐⇒ φ(ζ(t;x), x) ≤
0. Thus, the following equivalences hold:

if s ∈ N[1,k−1] : τ(x) = s ⇐⇒ ζ̃s,x ∈ Φs−1(x)× Φ(x)

if s = k : τ(x) = s = k ⇐⇒ ζ̃k−1,x ∈ Φk−1(x)

where, for brevity, in the case where s = 1 we have abusively
denotedΦ0(x)× Φ(x) = Φ(x). In other words, when s �= k, the
intersampling time is s if and only if the state belongs to Φ(x)
at all checking times 1, 2, . . . , s− 1 and at time s it lies outside
Φ(x). When s = k, it suffices that the state belongs toΦ(x) at all
checking times 1, 2, . . . , k − 1. Thus, applying Proposition V.1,
for s ∈ N[1,k−1]:

P (ζ(s;x) ∈ S, τ(x) = s)

= P
(
ζ̃s,x ∈ Φs−1(x)× (

Φ(x) ∩ S))
=

∫
Φs−1(x)×(Φ(x)∩S)

N
(
dz|μζ̃s,x

,Σζ̃s,x

)
(12)

and for s = k:

P (ζ(k;x) ∈ S, τ(x) = k) = P
(
ζ̃k,x ∈ Φk−1(x)× S

)
=

∫
Φk−1(x)×S

N
(
dz|μζ̃

k,x
,Σζ̃

k,x

)
. (13)

In the following we combine (12) and (13) with some convex re-
laxations, to enable Lemma V.2 and obtain bounds on (maxx∈R

Authorized licensed use limited to: TU Delft Library. Downloaded on July 23,2024 at 06:26:24 UTC from IEEE Xplore.  Restrictions apply. 



4498 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 69, NO. 7, JULY 2024

Fig. 2. Interplay between sets R, S, Φ(x) ∩ S and S \
⋃

x∈R Φ(x). (a) Set R is the dashed square on the left, S is the one on the right, and

Φ(x) is the one centered at x. For the given x on the figure, Φ(x) ∩ S is nonconvex. For different x ∈ R the set Φ(x) ∩ S has a different shape;
thus, Φ(x) ∩ S is not linear on x. (b) Set

⋃
x∈R Φ(x), and consequently S \

⋃
x∈R Φ(x), does not depend on x. The set S \

⋃
x∈R Φ(x) can be

partitioned into a finite number (minimum one, here) of hyperrectangles. (c) Set S \
⋃

x∈R Φ(x) can be partitioned into a finite number (minimum
two, here) of hyperrectangles.

and) minx∈R P (ζ(s;x) ∈ S, τ(x) = s) through solving opti-
mization problems with log-concave functions. In particular, ob-
serve thatμζ̃s,x

is already an affine function ofx (see Proposition
V.1), thus satisfying one of the two conditions of Lemma V.2.
Hence, our efforts focus on transforming the integration sets in
(12) and (13) such that they become linear on x and convex.

B. Lower Bounds on Transition Probabilities

Let us start by determining lower bounds on

min
x∈R

P (ζ(s;x) ∈ S, τ(x) = s). (14)

The special case when s = k, which is given by (13), is simple.
Observe that the set Φk−1(x)× S is convex (since Φ(x) and
S ∈ QR are hyperrectangles) and linear on x, as it can be written
as

Φk−1(x)× S = Φk−1(0)× S

+
[
Inζ

Inζ
. . . Inζ

0nζ

]�
{x}.

Thus, when s = k, the objective function P (ζ(s;x) ∈
S, τ(x) = s) of minimization problem (14) is log-concave (due
to (13) and Lemma V.2). The constraint setR is a hyperrectangle.
Thus, the minimization problem attains its solution at one of
the vertices of R [35, pp. 343, Th. 32.2]; we simply have to
evaluate the objective function for each of the vertices, to find
the minimum.

When s �= k, the set of integration in (12) is neither convex
nor linear on x due to Φ(x) ∩ S (see Fig. 2(a)); thus, we
cannot invoke Lemma V.2 and there is no indication that it is
straightforward to compute (14). In this case, we resort to convex
relaxations, each of which yield a lower bound on (14) that can
be computed easily. These are the following.

a) Relaxation 1: Notice that Φ(x) ∩ S = S\Φ(x), for any
x ∈ R. Since Φ(x) ⊆ ⋃

x∈R Φ(x) for all x, it follows that:

Φ(x) ∩ S = S \ Φ(x) ⊇ S \
⋃
x∈R

Φ(x).

For examples of S \⋃x∈R Φ(x), see Fig. 2(b) and (c). Ob-
serve that, since

⋃
x∈R Φ(x) does not depend on x, the set

S \⋃x∈R Φ(x) does not depend on x; it is a fixed set, in con-
trast to Φ(x) ∩ S . Moreover, since both S and

⋃
x∈R Φ(x) are

hyperrectangles, then S \⋃x∈R Φ(x) can always be partitioned
into a finite number of hyperrectangles S1, . . . ,Sr, where r ≤ n
and r = 0 in the case where S \⋃x∈R Φ(x) is empty. Thus

min
x∈R

∫
Φs−1(x)×(Φ(x)∩S)

N
(
dz|μζ̃s,x

,Σζ̃s,x

)

≥ min
x∈R

∫
Φs−1(x)×(S\⋃x∈R Φ(x))

N
(
dz|μζ̃s,x

,Σζ̃s,x

)

≥
r∑

i=1

min
x∈R

∫
Φs−1(x)×Si

N
(
dz|μζ̃s,x

,Σζ̃s,x

)
. (15)

The integration sets Φs−1(x)× Si are convex and linear on x.
Thus, in the last expression of (15) we are dealing with log-
concave objective functions, and r minimization problems attain
their minimum at vertices of R. Hence, we easily solve the r
minimization problems to obtain a lower bound on (14).

b) Relaxation 2: Here, we employ the law of total probability
to write

P
(
ζ̃s,x ∈ Φs−1(x)× (Φ(x) ∩ S)

)
=P

(
ζ̃s,x∈Φs−1(x)×S

)
−P

(
ζ̃s,x∈Φs−1(x)×(Φ(x) ∩ S)

)
which gives the following relationship:

min
x∈R

P
(
ζ̃s,x ∈ Φs−1(x)× (Φ(x) ∩ S)

)
≥ min

x∈R
P
(
ζ̃s,x ∈ Φs−1(x)× S

)
−max

x∈R
P
(
ζ̃s,x ∈ Φs−1(x)× (Φ(x) ∩ S)

)
. (16)

The minimization problem in the right-hand side of (16) is simi-
lar to the ones discussed before (log-concave objective function
and hyperrectangle constraint set), and the minimum can be
computed easily. However, the set Φ(x) ∩ S not being linear on
x makes the maximization problem hard to solve. By employing
that Φ(x) ∩ S ⊆ S ∩⋃

x∈R Φ(x), we relax it by writing

max
x∈R

P
(
ζ̃s,x ∈ Φs−1(x)× (Φ(x) ∩ S)

)
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≤ max
x∈R

P

(
ζ̃s,x ∈ Φs−1(x)×

(
S ∩

⋃
x∈R

Φ(x)

))
.

The set S ∩⋃
x∈R Φ(x) is a (possibly empty) hyperrectangle

and does not depend on x; thus,Φs−1(x)× (S ∩⋃
x∈R Φ(x)) is

convex and linear on x. Hence, the maximization problem in the
right-hand side of the above equation is a convex program (log-
concave objective function over the convex constraint setR), and
can be easily solved via regular convex optimization techniques.
By computing the exact minimum in the right-hand side of (16)
and an upper bound on the maximum-term as discussed here,
we obtain a lower bound on (14).

c) Relaxation 3: Continuing from (16), we propose a different
relaxation for the maximization problem in the right-hand side
of (16). Specifically, by employing Bayes’s rule:

max
x∈R

P
(
ζ̃s,x ∈ Φs−1(x)× (Φ(x) ∩ S)

)
≤ max

x∈R
P
(
ζ̃s,x ∈ Φs(x)|ζs,x ∈ S

)
·max
x∈R

P (ζs,x ∈ S). (17)

The term maxx∈R P (ζs,x ∈ S) can be computed exactly
easily, as P (ζs,x ∈ S) is log-concave on x. For the term
maxx∈R P (ζ̃s,x ∈ Φs(x)|ζs,x ∈ S), we make use of the follow-
ing bound.

Proposition V.3: The following holds:

max
x∈R

P
(
ζ̃s,x ∈ Φs(x)|ζs,x ∈ S

)
≤ max

(x,v)∈R×S
P
(
ζ̃s,x ∈ Φs(x)|ζs,x = v

)
. (18)

Proof: The proof is the same as in [36, Lemma II]. �
To compute the right-hand side of (18), we use the fact that

the random variable ξ = (ζ̃s,x|ζl,x = v) is normally distributed.
Corollary V.4 (Proposition V.1): Consider the random vari-

able ξ = (ζ̃s,x|ζl,x = v), where l ∈ N[1,s], and v ∈ Rn. Then
ξ ∼ N (μξ(x, v),Σξ), where

μξ(x, v) = E(ζ̃s,x)− Σζ̃s,x,ζl,x
Σ−1

ζl,x
(v − E(ζl,x))

Σξ = Σζ̃s,x
− Σζ̃s,x,ζl,x

Σ−1
ζl,x

Σζl,x,ζ̃s,x

where Σζl,x = Cov(l, l), Σζ̃s,x
, E(ζ̃s,x), and E(ζl,x) are ob-

tained from Proposition V.1, and Σζl,x,ζ̃s,x
= Σ�

ζ̃s,x,ζl,x
=[

Cov(l, 1) Cov(l, 2) . . . Cov(l, s)
]
.

Proof: Straightforward application of the well-known for-
mula for conditional normal distributions [37]. �

Thus, we have that

max
(x,v)∈R×S

P
(
ζ̃s,x ∈ Φs(x)|ζs,x = v

)

= max
(x,v)∈R×S

∫
Φs(x)

N (dz|μξ(x, v),Σξ).

Observe that μξ(x, v) is affine on the optimization variables
(x, v), and Φs(x) is obviously convex and linear on x. Thus, the
objective function of the above maximization problem is log-
concave. Finally, since the set of constraints R× S is convex,

we deduce that computing the right-hand side of (18) is a convex
program. Combining (18) with (17) and (16) yields an easily
computable bound on (14).

Remark 9: Gaussian integrals over hyperrectangles
are often encountered in fields such as statistics and
learning, and many algorithms exist for their numerical
computation (e.g., Genz’s algorithm [38] or python’s
scipy.stats.multivariate_normal [39]).

Finally, when computing the IMC’s transition bounds, the
least conservative among the lower bounds obtained by the above
three relaxations, i.e., the largest one, is chosen to serve as the
lower bound on (14), which determines the lower bounds on
transition probabilities P̌ ((R, k), (S, s)). From the experiments
we have performed, we observed that which of the relaxations
yields a better bound depends on the particular case ofR,S , and
s; thus, we have presented them all.

C. Upper Bounds on Transition Probabilities

We proceed to computing upper bounds on

max
x∈R

P (ζ(s;x) ∈ S, τ(x) = s). (19)

Again, the case where s = k is easy: It corresponds to a convex
program, and (19) is computed exactly. For the case where s �= k,
we employ a relaxation similar to Relaxation 3 described in the
previous. In particular, as in (16), we write

max
x∈R

P
(
ζ̃s,x ∈ Φs−1(x)× (Φ(x) ∩ S)

)
≤ max

x∈R
P
(
ζ̃s,x ∈ Φs−1(x)× S

)
−min

x∈R
P
(
ζ̃s,x ∈ Φs−1(x)× (Φ(x) ∩ S)

)
. (20)

The term maxx∈R P (ζ̃s,x ∈ Φs−1(x)× S) is computed easily,
through convex optimization. For the other term in the right-hand
side of (20), we write as in (17)

min
x∈R

P
(
ζ̃s,x ∈ Φs−1(x)× (Φ(x) ∩ S)

)
≥ min

x∈R
P
(
ζ̃s,x ∈ Φs(x)|ζs,x ∈ S

)
·min
x∈R

P (ζs,x ∈ S).
(21)

Given the discussion of the previous section, it is clear that:
a) minx∈R P (ζs,x ∈ S) is computed exactly (by traversing the
vertices of R), and b) a lower bound on minx∈R P (ζ̃s,x ∈
Φs(x)|ζs,x ∈ S) is computed by employing Proposition 5.3 and
Corollary 5.4, which yield log-concave minimization over the
polytope R× S .

D. Transitions to qabs

According to the last two inequalities in (7), for transitions to
qabs we are interested in(

min
x∈R

or

)
max
x∈R

P
(
ζ(s;x) ∈ X, τ(x) = s

)
.
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We focus on the maximization, as minimization follows identical
steps. By the law of total probability, we have

max
x∈R

P
(
ζ(s;x) ∈ X, τ(x) = s

)
≤ max

x∈R
P (τ(x) = s)−min

x∈R
P (ζ(s;x) ∈ X, τ(x) = s). (22)

Note that, since X is a hyperrectangle, the term
minx∈R P (ζ(s;x) ∈ X, τ(x) = s) can be treated exactly
as discussed in the previous sections (where X takes the place
of S). Regarding P (τ(x) = s), we have the following two
cases:

a) s = k: In this case

P (τ(x) = s) = P
(
ζ̃s,x ∈ Φs−1(x)

)
.

Thus, maxx∈R P (τ(x) = s) = maxx∈R P (ζ̃s−1,x ∈ Φs−1(x)),
which can be computed easily (log-concave objective function
and hyperrectangular constraint set).

b) s �= k: In this case, by the law of total probability:

P (τ(x) = s) = P
(
ζ̃s,x ∈ Φs−1(x)× Φ(x)

)
= P

(
ζ̃s−1,x ∈ Φs−1(x)

)
− P

(
ζ̃s,x ∈ Φs(x)

)
where when s = 1 we have abusively denoted ζ̃0,x = x and
Φ0(x) = x. Thus, we have

max
x∈R

P (τ(x) = s)

≤ max
x∈R

P
(
ζ̃s−1,x ∈ Φs−1(x)

)
−min

x∈R
P
(
ζ̃s,x ∈ Φs(x)

)
and both terms in the right-hand side can be computed easily
as discussed in the previous sections (log-concave objective
functions and hyperrectangular constraint sets).

Remark 10: To compute the transition probabilities, we have
exploited the fact that Φ(x) := {y ∈ Rn : φ(y, x) ≤ 0} is a
hyperrectangle linear on x, which is a consequence of the par-
ticular form of the triggering functionφ(ζ(t;x), x) = |ζ(t;x)−
x|∞ − ε. To address the more general mixed-triggering func-
tion φ(ζ(t;x), x) = |ζ(t;x)− x| − ε1|ζ(t;x)| − ε2, where now
Φ(x) = {y ∈ Rnζ : |y − x| − ε1|y| − ε2 ≤ 0} is neither a hy-
perrectangle nor linear on x, one could use hyperrectangular
approximations Φ̌(x) and Φ̂(x) of the setΦ(x), such that both of
them are linear on x and Φ̌(x) ⊆ Φ(x) ⊆ Φ̂(x) for all x ∈ R.
Nonetheless, this would introduce additional conservativeness
and computational load.

VI. NUMERICAL EXAMPLES

We, now, demonstrate our theoretical results with a numerical
example. Consider a stochastic PETC system (1) and (2) with

A =

[
−4 3

−2 1

]
, B =

[
1

0

]
,K =

[
−2 3

]
, Bw =

[
2.5 0

0 2.5

]

and ε = 0.25, h = 0.006, k = 3. We are interested in assessing
the sampling behavior of the system for initial conditions inX =
[−1.2, 1.2]2. Following Remark 6, we partition Y = [−2, 2]2

Fig. 3. Blue and red lines are the computed lower and upper bounds,
respectively, on the expected multiplicative reward from Example 3 in
Section III-B starting from any initial condition x0 ∈ Ri (initial inter-
sampling time is assumed s0 = 0), for all regions Ri ⊂ [−1.2, 1.2]2 in
the partition. The yellow (middle) line is the statistical estimate of the
expected reward for a random initial condition from each region.

into 2500 equal rectangles, and construct the IMC as described
in the previous.

First, consider the multiplicative reward from Example 3 in
Section III-B and a horizon N = 5. Recall that, in this case,
the expected reward expresses the probability that there is no
intersampling time s = k in the first five triggers. As dictated
by Theorem IV.1, we equip the IMC with rewards R,R, which
are as follows for any q ∈ Qimc:

R(q) =

{
0, if q = qabs or projN(q) = k
1, otherwise

R(q) =

{
0, if projN(q) = k
1, otherwise.

For all q0 ∈ Qimc\qabs, we calculate infπ∈ΠEq0
π [g

mul,N
(ω̃)] and

supπ∈ΠEq0
π [gmul,N (ω̃)], by employing the value iteration intro-

duced in (37). The adversary that gives rise to each bound is
the so-called o-maximizing MDP and can be computed easily
(see [24] and [23]).

The obtained bounds for all q0 = (R, 0) ∈ QR × {0}, with
R ⊂ [−1.2, 1.2]2, are shown in Fig. 3. We only consider the
case where the initial intersampling time s0 = 0, as commented
in Remark 2.5 From the obtained bounds, one can expect from
the system a high probability of sampling with intersampling
time k. Thus, based on that observation, an engineer who is to
implement the PETC system, could decide to further increase
the maximum allowed intersampling time, in order to allow the
system to sample even less frequently.

Fig. 3, also, shows the statistical estimate of the expected
reward, as derived by simulations. Specifically, for all q0 ∈
QR × {0} with R ⊂ [−1.2, 1.2]2, we pick a random initial con-
dition y0 ∈ q0 and simulate 1000 sample paths, with a horizon

5This is with no loss to generality, as s0 does not affect the evolution of the
system: For different s0 and the same realization of the Wiener process, the
sample path evolves exactly the same.
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Fig. 4. Surface plot of the obtained lower and upper bounds on the
expected multiplicative reward from Example 3 in Section III-B for all
regions Ri ⊂ [−2, 2]2 in the partition (x-axis). The surface on the bottom
is the lower bound, the surface at the top is the upper bound, and the
one in the middle is the statistical estimate of the expected reward for a
random initial condition from each region, as obtained from simulations.

Fig. 5. Blue and red lines are lower and upper bounds, respectively,
on the bounded-until probability (23) starting from any initial condition
x0 ∈ Ri (initial intersampling time is assumed s0 = 0), for all regions
Ri ⊂ [−1.2, 1.2]2. The yellow line (the one in the middle) is the statistical
estimate of the probability for a random initial condition from each region.

of five triggers (the simulation stops after the fifth trigger).
Each sample path that does not generate any intersampling time
s = k is counted, and the total count is divided by 1000 to
obtain a statistical estimate of the true probability. Fig. 3 shows
that, as expected by Theorem IV.1, the statistical estimate is
confined within the computed bounds. Finally, Fig. 4 is a surface
plot illustrating the obtained bounds and the statistical estimate
for all regions Ri ∈ [−2, 2]2, supporting what is discussed in
Remark 6: Regions closer to the boundary of the partition
correspond to more conservative bounds.

Next, to demonstrate our results’ extension to PCTL, we
derive bounds on the following bounded-until probability:

Py0

YN

(∃i ∈ N[0,5] s.t. projN(ω(i)) = k

and ∀k ≤ i, ω(k) /∈ qabs) . (23)

This is the probability that the state stays in Y until there is a
trigger s = k, in a horizon N = 5. Fig. 5 shows the results.

Finally, for completeness, we calculate bounds on the ex-
pected average intersampling time for N = 5, as introduced

Fig. 6. Blue and red lines are lower and upper bounds on the ex-
pected average intersampling time starting from any initial condition
x0 ∈ Ri (initial intersampling time is assumed s0 = 0), for regions Ri ⊂
[−1.2, 1.2]2. The yellow line (the one in the middle) is the statistical
estimate of the expected average for a random initial condition from each
region.

in Example 1, Section III-B. Since we assume s0 = 0, which
implies that we are only interested in the average of the five
subsequent triggers, we use N in the denominator, instead of
N + 1. The results are illustrated in Fig. 6. The obtained bounds
could be used to compare the average sampling performance of
this particular PETC design with some other implementation;
e.g., it is evident that, on average, it samples considerably
more efficiently than a periodic implementation with period h.
Alternatively, they could be used to forecast the expected average
occupation of the communication channel.

VII. CONCLUSION

In this work, we have computed bounds on metrics associated
with the sampling behavior of linear stochastic PETC systems,
by constructing IMCs abstracting the sampling behavior and
equipping them with suitable rewards. The metrics are expecta-
tions of functions of sequences of intersampling times and state
measurements, that take the form of cumulative, average, or
multiplicative rewards. Numerical examples have been provided
to demonstrate the effectiveness of the proposed framework in
practice. Specifically, for a given system, we have computed
the expected average intersampling time and the probability
of triggering with the maximum allowed intersampling time,
in a finite horizon. Moreover, we have computed bounds on
a bounded-until probability, demonstrating extensibility of our
approach to PCTL properties. Overall, the framework presented
here enables the formal study of PETC’s sampling behavior and
the assessment of its sampling (versus control) performance.

Future work will focus on the following: 1) extending the
class of systems considered, as well as addressing the case
of continuous ETC, 2) investigating how adaptive partitioning
methods or the partition proposed in [16] for deterministic
systems can be employed here, for improved and more scalable
results, and 3) endowing the IMCs with actions, which will allow
for scheduling ETC data traffic in networks shared by multiple
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ETC loops, such that performance criteria are met and optimized
(e.g., minimizing packet collisions).

APPENDIX

A. Technical Lemmas and Proof of Theorem IV.1

In this section, we first provide some technical lemmas, and
then prove Theorem IV.1. Let us introduce some notation and
terminology. We constrain ourselves to Markovian adversaries.
The value of such adversaries depends only on the time-step
i and the given state q ∈ Qimc, i.e., π(i, q) = pi,q ∈ Γq . From
now on, we abusively write π(i, q, q′) = pi,q(q

′), for any q′ ∈
Qimc, to denote the transition probability from q to q′ at time i,
under adversary π. Moreover, for si, si+1 ∈ N[0,k], xi ∈ Rnζ ,
Xi+1 ⊆ Rnζ , denote

T ((Xi+1, si+1)|(xi, si))

:= Py0

YN
(ω(i+ 1) ∈ (Xi+1, si+1)|ω(i) = (xi, si)). (24)

This notation is common in the literature of stochastic sys-
tems and T is often called transition kernel. Let us abuse
notation and write

∫
Q T (dy′|y), for some y ∈ Q, to denote∑

s′∈N
[0,k]

∫
Rn T ((dx′, s′)|y).

We proceed to stating the technical lemmas. The first one
provides a relationship indicating that the expected cumulative
reward can be written as a value function defined via value
iteration, which is a trivial extension of the value iteration in [24]
to finite horizons and time-varying adversaries. The second and
third lemmas provide some useful bounds, which are employed
in the Proof of Theorem IV.1.

Lemma IX.1: Given IMC Simc from (9), equipped with a re-
ward function R : Qimc → [0, Rmax], any Markovian adversary
π ∈ Π and any q0 ∈ Qimc, we have that

Eπ

⎡
⎣ N∑

j=i

γj−iR(ω̃(j))|ω̃(i) = q0

⎤
⎦ = V π,i(q0) (25)

where for all q ∈ Qimc and i ∈ N[0,N−1]:

V π,N (q) = R(q) (26a)

V π,i(q) = R(q) + γ
∑

q′∈Qimc

V π,i+1(q
′)π(i, q, q′). (26b)

Similarly, for all y0 ∈ Q:

EP
y0
Y

⎡
⎣ N∑

j=i

γj−iR(ω(j))|ω(i) = y0

⎤
⎦ = Vi(y0) (27)

where for all y ∈ Q and i ∈ N[0,N−1]:

VN (y) = R(y) (28a)

Vi(y) = R(y) + γ

∫
Q

Vi+1(y
′)T (dy′|y). (28b)

Consequently, we have

Eq0
π

[
g

cum,N
(ω̃)

]
= Eπ

⎡
⎣ N∑
j=0

γjR(ω̃(j))|ω̃(0) = q0

⎤
⎦

= V π,0(q0)

EP
y0
Y

[gcum,N (ω)] = EP
y0
Y

⎡
⎣ N∑
j=0

γjR(ω(j))|ω(0) = y0

⎤
⎦

= V0(y0). (29)

Proof: We prove (25) by induction. The proof of (27) is
identical, and then (29) follows immediately. It obviously holds
that V π,N (q0) = R(q0) = Eπ[

∑N
j=N γj−NR(ω̃(j))|ω̃(N) =

q0] for all q0 ∈ Qimc. Now, assume that (25) holds for some
i ∈ N[1,N ]. Then

V π,i−1(q0)

= R(q0) + γ
∑

q′∈Qimc

V π,i(q
′)π(i− 1, q0, q

′)

= R(q0) + γ
∑

q′∈Qimc

Eπ

⎡
⎣ N∑

j=i

γj−iR(ω̃(j))|ω̃(i) = q′

⎤
⎦

· π(i− 1, q0, q
′)

= R(q0) + Eπ

⎡
⎣ N∑

j=i

γj−i+1R(ω̃(j))|ω̃(i− 1) = q0

⎤
⎦

= Eπ

⎡
⎣R(q0) +

N∑
j=i

γj−i+1R(ω̃(j))|ω̃(i− 1) = q0

⎤
⎦

= Eπ

[
R(q0) + γR(ω̃(i)) + γ2R(ω̃(i+ 1))

+ . . . |ω̃(i− 1) = q0]

= Eπ

⎡
⎣ N∑
j=i−1

γj−i+1R(ω̃(j))|ω̃(i− 1) = q0

⎤
⎦

where
1) in the second equality, we used the induction assumption

that we made;
2) in the third equality we put γ inside the expectation, and

we used the law of total expectation;
3) and in the fourth equality, we put R(q0) inside the expec-

tation.
Thus (25) is proven by induction, and the proof is completed.

�
Lemma IX.2: Given any adversary π ∈ Π, for all y ∈

Rnζ × N[1,k] and for all i ∈ N[1,N ]:

V π,i(qabs) ≤ Vi(y). (30)

Proof: From Lemma IX.1, we know that

Vi(y) = EPy
Y

⎡
⎣ N∑

j=i

γj−iR(ω(j))|ω(i) = y

⎤
⎦

V π,i(qabs) = Eπ

⎡
⎣ N∑

j=i

γj−iR(ω̃(j))|ω̃(i) = qabs

⎤
⎦
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=

N∑
j=i

γj−iR(qabs) =

N∑
j=i

γj−i min
(x,s)∈Rnζ×N

[1,k]

R(x, s)

(31)

where in the second equation, the second equality comes from
the fact that qabs is absorbing for anyπ ∈ Π and the third equality
comes from (10).

From Remark 3, since y ∈ Rnζ × N[1,k] we can deduce that
for all j ∈ N[i,N ] we have

PYN

(
ω(j) ∈ Rnζ × N[1,k]|ω(i) = y

)
= 1.

Thus, we have

min
(x,s)∈Rnζ×N

[1,k]

R(x, s) ≤ R(ω(j)), for all j ∈ N[i,N ] a.s. (32)

where a.s. means “almost surely.” By combining the above
equation with (31), (30) follows. �

Lemma IX.3: Given any adversary π ∈ Π and any y ∈ Q:

V π,i(qabs)

∫
qabs

T (dy′|y) ≤
∫
qabs

Vi(y
′)T (dy′|y). (33)

Proof: We have that∫
qabs

Vi(y
′)T (dy′|y)

=

∫
X×N

[1,k]

Vi(y
′)T (dy′|y) +

����������∫
X×{0}

Vi(y
′)T (dy′|y)0

≥ V π,i(qabs)

∫
X×N

[1,k]

T (dy′|y)

= V π,i(qabs)

∫
X×N

[1,k]

T (dy′|y)

+ V π,i(qabs)

∫
X×{0}

T (dy′|y)︸ ︷︷ ︸
0

= V π,i(qabs)

∫
qabs

T (dy′|y)

where for crossing out the term
∫
X×{0} Vi(y

′)T (dy′|y) we used

the fact that
∫
X×{0} T (dy

′|y) = 0 (due to what is discussed in
Remark 3), and for the inequality we used Lemma IX.2. �

Now, we are ready to prove Theorem IV.1.
Proof of Theorem IV.1: First, we prove the statement for

cumulative rewards, and then we show how the proof is adapted
for average and multiplicative rewards. We focus on the lower
bound as the proof for the upper bound is similar. It suffices to
show that there exists an adversary π∗ ∈ Π such that

Eq0
π∗

[
g

cum,N
(ω̃)

]
≤ EP

y0
Y
[gcum,N (ω)]. (34)

By employing Lemma IX.1, specifically (29), to prove (34)
it suffices to prove that there exists a π∗ ∈ Π such that for any
q0 ∈ Qimc\{qabs} and any y0 ∈ q0:

V π∗,0(q0) ≤ V0(y0). (35)

Consider the following adversary for all q ∈ Qimc, i ∈ N[0,N−1]:

π∗(i, q, q′) =

⎧⎨
⎩
∫
q′ T (dy

′|y∗i (q)), if q �= qabs

1, if q = q′ = qabs,
0, otherwise

(36)

where y∗i (q) = arg miny∈qVi(y). Indeed π∗ ∈ Π, since∑
q′∈Qimc

π∗(i, q, q′) = 1 for all q ∈ Qimc, and from (7) and

(24) it easily follows that P̌ (q, q′) ≤ π∗(i, q, q′) ≤ P̂ (q, q′).6

Now, we are ready to prove (35), by induction. First, from (10)
it is obvious that V π,N (q0) ≤ VN (y0) for any q0 ∈ Qimc\{qabs}
and any y0 ∈ q0, since

V π,N (q0) = R(q0) ≤ R(y0) = VN (y0).

Assume that V π,i(q0) ≤ Vi(y0) for any q0 ∈ Qimc \ {qabs} and
any y0 ∈ q0, for some i ∈ N[1,N ]. Then

V π,i−1(q0)

= R(q0) + γ
∑

q′∈Qimc

V π,i(q
′)π(i− 1, q0, q

′)

= R(q0) + γ
∑

q′∈Qimc\{qabs}
V π,i(q

′)
∫
q′
T (dy′|y∗i−1(q0))

+ γV π,i(qabs)

∫
qabs

T (dy′|y∗i−1(q0))

≤ min
y∈q0

R(y) + γ
∑

q′∈Qimc\{qabs}
min
y∈q′

(Vi(y))

∫
q′
T (dy′|y∗i−1(q0))

+ γV π,i(qabs)

∫
qabs

T (dy′|y∗i−1(q0))

≤ min
y∈q0

R(y) + γ
∑

q′∈Qimc\{qabs}

∫
q′
Vi(y

′)T (dy′|y∗i−1(q0))

+ γ

∫
qabs

Vi(y
′)T (dy′|y∗i−1(q0))

≤ R(y∗i−1(q0)) + γ
∑

q′∈Qimc

∫
q′
Vi(y

′)T (dy′|y∗i−1(q0))

= R(y∗i−1(q0)) + γ

∫
Q

Vi(y
′)T (dy′|y∗i−1(q0))

= Vi−1(y
∗
i−1(q0)) = min

y∈q0
Vi−1(y)

where
1) in the first step we used (26); in the second step we used

the definition (36) of π∗;
2) in the third step, we used that R(q0) = miny∈q0 R(y)

[from (10)] and that V π,i(q0) ≤ Vi(y0) for any q0 ∈
Qimc\{qabs} and any y0 ∈ q0 (from the induction assump-
tion);

3) in the fourth step, we used that miny∈q′(Vi(y)) ≤ V (y′)
for all y′ ∈ q′, and the inequality given by Lemma IX.3;

6Adopting the transition-kernel notation, it can be written that for q ∈ Qimc\
{qabs}, P̌ (q, q′) ≤ miny∈q

∫
q′ T (dy′|y), for any q′ ∈ Qimc. Similarly for P̂ .

Indeed it follows that P̌ (q, q′) ≤ π∗(i, q, q′) ≤ P̂ (q, q′).
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4) in the sixth step, we used that
⋃

q′∈qimc
q′ = Q, in the

seventh step we used (28), and in the last step we used
that y∗i−1(q0) = arg miny∈q0Vi−1(y).

Hence, since V π,i−1(q0) ≤ miny∈q0 Vi−1(y), we have that
(35) is proven by induction, thus proving (34).

Only thing remaining is to explain how this proof generalizes
to average and multiplicative rewards. The average reward is
very simple, as it is just the time-average of a cumulative reward
with γ = 1: E[gavg,N (ω)] = 1

N+1E[
∑N

0 R(ω(i))]. Finally, for
multiplicative rewards, only thing that changes w.r.t. cumulative
rewards is the value iteration, which becomes

V π,N (q) = R(q)

V π,i(q) = R(q) ·
∑

q′∈Qimc

V π,i+1(q
′)π(i, q, q′). (37)

�

B. Proof of Lemma V.2

Proof of Lemma V.2: This proof draws inspiration from the
proof of [40, Proposition II]. Let us first prove log-concavity of
the following simpler case:

g(x) =

∫
S

N (dz|x,Σ)

with S ⊆ Rn not dependent on x. Observe that

g(x) =

∫
S−{x}

N (dz|0,Σ)

where S − {x} is still a convex set as a mere translation of S.
Then, g(x) can be written as

g(x) = P (S − {x})
where P (·) is a probability measure over B(Rn) with density
N (0,Σ). Since N (z|0,Σ) is log-concave, from [41, Th. 2] we
know that P is a log-concave measure, meaning that for every
pair of convex sets S1, S2 ⊆ Rn and any λ ∈ (0, 1):

P (λS1 + (1− λ)S2) ≥ (P (S1))
λ(P (S2))

1−λ. (38)

Moreover, for any x1, x2 ∈ Rn and any λ ∈ (0, 1) we have

λ(S − {x1}) + (1− λ)(S − {x2})
= {λ(y − x1) : y ∈ S}+ {(1− λ)(w − x1) : w ∈ S}
= {λ(y − x1) + (1− λ)(w − x1) : y, w ∈ S}
= {λy + (1− λ)w − λx1 − (1− λ)x2 : y, w ∈ S}
= {λy + (1− λ)w : y, w ∈ S} − λ{x1} − (1− λ){x2}
= S − λ{x1} − (1− λ){x2} (39)

where the last equality is because v = λy + (1− λ)w is a con-
vex combination of any two points y, w ∈ S and S is convex.7

7SinceS is convex, then for any twoy,w ∈ S and any λ ∈ (0, 1), we have that
v = λy + (1− λ)w ∈ S. Thus, for a given λ, {λy + (1− λ)w : y,w ∈ S} ⊆
S. But, also, S = {λy + (1− λ)y ∈ S : y ∈ S} ⊆ {λy + (1− λ)w : y,w ∈
S}. Thus, it has to be S = {λy + (1− λ)w : y,w ∈ S}.

Finally, for any x1, x2 ∈ Rn and any λ ∈ (0, 1) we have

g(λx1 + (1− λ)x2)

= P (S − λ{x1}+ (1− λ){x2})
= P (λ(S − {x1}) + (1− λ)(S − {x2}))
≥ (P (S − {x1}))λ (P (S − {x2}))(1−λ)

= (g(x1))
λ(g(x2))

1−λ

where in the second equality we used (39) and for the inequality
we used (38). Thus, it follows that g(x) is log-concave.

For the general case, since S(x) ⊆ Rm is linear on x and
convex, then it can be written asS(x) = S ′ + {Gx}, whereS ′ ⊆
Rm is convex and G ∈ Rm×n. Thus, we have

h(x) =

∫
S(x)

N (dz|f(x),Σ) =
∫
S′+{Gx}

N (dz|f(x),Σ)

=

∫
S′
N (dz|f(x)−Gx,Σ)

= g(f(x)−Gx)

where g(x) =
∫
S′ N (dz|x,Σ). The function h(x) = g(f(x)−

Gx) is log-concave as the composition of the log-concave func-
tion g(x) with the affine function f(x)−Gx. �
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