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A B S T R A C T

Very large waves, such as rogue waves, can be dangerous for ships and offshore structures. There is no
consensus on the theoretical occurrence probability of these rogues and ocean measurements containing rogue
waves are rare. This paper addresses the long-term occurrence probability of rogue waves using time-extreme
(TE) and space–time extreme (STE) statistical wave models, evaluated with a significant amount of historical
directional wave data from Monterey Bay, California, USA. A novel understanding of these models is obtained
by exploring the area size for which the STE models estimate a higher rogue wave occurrence probability
compared to the TE models. For four rogue wave and crest heights the return periods until a 95% rogue
wave occurrence probability are estimated. To illustrate an application of this statistical analysis, the risk of
rogue waves to a spar-type floating wind turbine is evaluated. Based on both the dynamic response and the
long-term occurrence probability of the rogue wave, this research presents a new and advanced approach for
a risk analysis of rogue waves to floating offshore structures.
1. Introduction

Rogue waves, which are suddenly appearing, exceptionally large
waves compared to the surrounding sea state, can pose a real threat
to ships and offshore structures (Dysthe et al., 2008; Cavaleri et al.,
2012). Assessing the occurrence probability of these extreme waves
is important to better design offshore structures and increase safety.
These rogue waves are often defined by two different size criteria: one
relating to the crest height 𝜂𝑐 (Eq. (1)) and the other to the wave height
𝐻 (Eq. (2)) both normalized by the significant wave height 𝐻𝑠. These
criteria must be met in a 20-min duration for the wave to be considered
rogue (Haver, 2001; DNV, 2017). Here, 𝐻𝑠 is taken as four times the
standard deviation of the surface elevation (𝜎).
𝜂𝑐
𝐻𝑠

≥ 1.25 (1)

𝐻
𝐻𝑠

≥ 2 (2)

Different explanations for the generation mechanisms of rogue
waves have been proposed, such as spatial and temporal wave fo-
cussing, wave blocking, and modulational instability, but so far no
consensus has been reached (Dysthe et al., 2008). The EU project
MaxWave set out to prove the existence of rogue waves and the risk
of encounter (Rosenthal and Lehner, 2008). The MaxWave project,

∗ Corresponding author.
E-mail address: H.C.Seyffert@tudelft.nl (H.C. Seyffert).

endorsed by other subsequent research, concluded that rogue waves
occur more frequently than previously expected by conventional wave
statistics (Fedele, 2012; Benetazzo et al., 2015).

However, as there is no consensus on the primary generation mech-
anism and since rogue waves are statistically rare events which are
seldom physically measured, the occurrence probability of rogue waves
remains unclear. Previous authors approached the occurrence proba-
bility by investigating characteristic wave parameters (Christou and
Ewans, 2014; Cattrell et al., 2018) and meteorological conditions (Ad-
cock et al., 2011; Cavaleri et al., 2016) in relation to rogue wave
occurrences, but reported no quantitative statistics, though a recent
investigation using significant amount of buoy data has suggested that
the crest–trough correlation is an important parameter in rogue wave
occurrence (Häfner et al., 2021). Surface kurtosis in relation to mod-
ulational instability was investigated as a rogue wave indicator (Mori
and Janssen, 2006; Toffoli et al., 2015), but applicability to realistic
ocean conditions has been questioned (Fedele et al., 2016; Benetazzo
et al., 2017). In an intensive study by the CresT (Cooperative Research
on Extreme Seas and their impacT) JIP that examined over 220,000 h
of raw wave samples, the only resulting identifiable trend of rogue
waves was frequency-phase focusing, perhaps caused by directional
focusing (Christou and Ewans, 2011a,b). The authors found no dis-
cernible connection between rogue occurrence and sea state/ wave
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steepness, skewness, kurtosis, spectral shape, or environmental hindcast
conditions based on wind, wave, and current data.

In this paper, the occurrence probability of different rogue waves is
evaluated with multiple statistical wave models using historical wave
buoy data. Both rogue wave definitions from Eqs. (1) and (2) are
assessed separately, using wave crest and crest-to-trough models. The
effect of including a spatial dimension in the probabilistic analysis
is investigated by using both time-extreme (TE) statistical models,
which consider extremes at a single point in time, and space–time
extreme (STE) statistical models, which consider extremes over a given
area in time. The area size from which an STE model yields a more
conservative rogue wave estimate compared to a TE model is explored.
This information is valuable when an offshore structure is considered
and one wants to use the most conservative statistical wave model for
extreme (rogue) wave analysis based on the footprint. Then, return
periods until a 95% rogue wave occurrence probability are estimated
for four rogue crest and wave heights. Lastly, an application of this
probabilistic analysis is presented by evaluating the probability that
rogue waves induce a damaging dynamic response in a spar-type float-
ing wind turbine (SFWT). Spar-type floating wind turbines present an
attractive and interesting option for analysis, considering the number
of SFWTs already in-use the field and the many available open-source
high-quality models.

This paper is structured as follows: Section 2 describes the con-
sidered statistical wave models used in the probabilistic analysis and
introduces the directional wave data retrieved from the Monterey
Bay wave buoy. Section 3 presents the method used to compare the
statistical models and estimate the long-term rogue wave occurrence
probability. Section 4 presents the results of the statistical analysis.
In Section 5, an application of the statistical rogue wave analysis is
presented by evaluating the risk of rogue waves to a SFWT. Finally,
Section 6 presents the conclusions of this study.

Note that this paper examines time-extreme and space–time extreme
wave crest and wave crest-to-trough models without considering the
effects of wave breaking, as even the most extreme sea states examined
here may be considered weakly nonlinear; interested readers may
consider e.g., Mori (2003), Latheef and Swan (2013), Karmpadakis et al.
(2019) and Schubert et al. (2020) for more in-depth discussions on such
effects.

2. Utilized models & data

2.1. Statistical wave models

The two rogue wave definitions regarding the crest height, Eq. (1),
and the crest-to-trough height, Eq. (2), are evaluated separately. Two
statistical approaches are used: the first concerns the surface elevation
at a fixed point in time, called time-extreme models (TE), and the
second concerns the sea surface elevation over an area (𝑋 × 𝑌 m2) in
ime, called space–time extreme models (STE). The statistical models
sed for this purpose are briefly introduced below and are presented in
ore detail in the Appendix.

.1.1. Wave crest models
Realistic ocean waves are characterized by steeper crests and shal-

ower troughs compared to the linear shape. The wave crest height is
ffected by surface nonlinearities which increases the probability of a
arge wave crest occurring beyond that estimated by the linear Rayleigh
odel (Holthuijsen, 2007). Weibull-type distributions which incorpo-

ate second-order surface nonlinearities, such as those from Tayfun
1980) and Forristall (2000), are considered to provide a good estimate
f the crest height at a fixed point in time (i.e., as a TE model) (Dysthe
t al., 2008; Casas-Prat and Holthuijsen, 2010). Tayfun and Fedele
lso presented an extension of the Tayfun model to incorporate third-
rder nonlinearities by taking the excess kurtosis of the wave field into
ccount (Tayfun and Fedele, 2007).
2

Research has shown that maximum crest heights evaluated over
n area of size 𝑋 × 𝑌 m2 are generally larger than those at a fixed
oint (Krogstad et al., 2004; Fedele, 2012; Benetazzo et al., 2015).
edele, drawing upon Adler and Taylor (2009), presented a linear
pace–time extreme statistical wave model, hereafter referred to as the
TE1 model (Fedele, 2012). Benetazzo et al. extended the linear space–
ime model using the nonlinear Tayfun crest definition, resulting in a
onlinear STE model (Benetazzo et al., 2015), hereafter referred to as
TE2.

.1.2. Wave crest-to-trough models
Crest-to-trough heights are only slightly affected by surface non-

inearities. Wave heights can be predicted by the Rayleigh distribu-
ion (Longuet-Higgins, 1952), but observations have shown that the
ayleigh model slightly over-predicts the wave heights (see, e.g., McAl-

ister and van den Bremer (2020)). A bandwidth-corrected Rayleigh
odel, such as presented by Naess (1985), results in a more accurate

stimation (Casas-Prat and Holthuijsen, 2010). A crest-to-trough STE
robability model is formulated by extending the STE1 model with
he quasi-determinism theory from Boccotti (2000). This theory states
hat the largest waves in a wave spectrum follow a deterministic shape
ased on the autocorrelation function of the underlying wave energy
pectrum, thus giving a relation of crest height to wave height. This
inear extended crest-to-trough STE model will be referred to as the
TE1QD model.

.2. Environmental wave data

This research considers directional wave data from the Monterey
ay wave buoy (see Fig. 1), operated by the National Buoy Data Center
NBDC). Wave data is available from June 1998 until the end of 2020,
hich is a significant amount considering the life of a typical offshore

tructure (Ersdal and Hörnlund, 2008).
The wave data of the NDBC buoys is not acquired from direct

easurements. Accelerometers or inclinometers within the buoy mea-
ure the heave acceleration or the vertical displacement of the hull
uring a 20-min data acquisition window in each hour, together with
ensors such as a triaxial magnetometer and/or three orthogonal an-
ular rate sensors, which measure the hull azimuth, pitch, and roll
ngles. Then this data is transformed from the time domain to the
requency domain by applying a Fast Fourier transformation. After this
ransformation, response amplitude operator processing is performed
n the data to eliminate hull and electronic noise so that the directional
nd non-directional wave parameters can be derived.

The buoy output is associated with six different data files, which
re sampled for each hourly record (based on the representative 20-min
cquisition window) and collected per year. The measurements taken
uring the 20-min data acquisition window are assumed to represent
he conditions for the whole hour. The first file contains meteorological
ata such as wind speed, significant wave height, dominant wave
eriod, air pressure, etc. The second file contains the wave energy
n m2∕Hz. The third until sixth file contain parameters necessary to
alculate the directional wave spectrum sampled per frequency: mean
ave direction, principal wave direction, and two Fourier constants.

Corrupt hourly entries, where for any of the above parameters a
alue is e.g., missing, not a number, or an unreasonably high/low
umber are identified and filtered out by complete removal of the
orresponding time stamp in all data files. After filtering, a total of
9.5 years (170,845 hourly sea states) of usable wave data is obtained.

A directional wave spectrum can be represented using the direc-
ional Fourier series expansion (Longuet-Higgins, 1961) based on the
uoy parameters 𝜃1 = mean wave direction, 𝜃2 = principal wave
irection, 𝑟1 = first normalized directional Fourier constant, 𝑟2 = second
ormalized directional Fourier constant, and 𝐶 (𝑓 ) = non-directional
11
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Fig. 1. Location of the Monterey Bay directional wave buoy. Water depth: 1646 m.
(Google maps, 2021).

spectral density (energy). Using the directional Fourier series expan-
sion, the wave spectrum 𝑆(𝑓, 𝜃) can be written as:

𝑆(𝑓, 𝜃) = 𝐶11(𝑓 )𝐷(𝑓, 𝜃) (3)

𝐷(𝑓, 𝜃) is the directional spreading function without any weighting
values to prevent negative energy:

𝐷(𝑓, 𝜃) =
1
2 + 𝑟1 cos

(

𝜃 − 𝜃1
)

+ 𝑟2 cos
(

2
(

𝜃 − 𝜃2
))

𝜋
(4)

The weighting values can be added in an analogous manner to
the cosines of Eq. (4). Weighting values are needed because co- and
cross-spectra from three-dimensional buoy data can only resolve the
first five terms in the directional Fourier series expansion. Therefore,
higher terms are usually considered zero. However, this can intro-
duce negative spectral energy in some frequency bands; this is often
counteracted by the addition of weighting values to the terms in
Eq. (4) (Longuet-Higgins, 1961). For this investigation they are chosen
as 2

3 and 1
6 for the first and second cosine respectively, after Earle et al..

Other approaches to deal with this negative-energy issue are addressed
by Gorman (2018).

3. Methods

The input parameters for the statistical wave models (see Table 1)
follow from the spectral directional moments. For each hourly sea state,
the directional wave spectrum is calculated using Eq. (4), and the
spectral moments are numerically evaluated by Eq. (5).

𝑚𝑖𝑗𝑘 = ∬ 𝑘𝑖𝑥𝑘
𝑗
𝑦𝑓

𝑘𝑆(𝑓, 𝜃)𝑑𝑓𝑑𝜃 (5)

Here 𝑘𝑥 and 𝑘𝑦 are the directional wave number in the 𝑥− and
𝑦−direction, respectively, 𝑓 the wave frequency and 𝑆(𝑓, 𝜃) the di-
rectional wave spectrum. The buoy provides directional wave data in
degrees, measured clockwise from true north. The main direction of
wave propagation is chosen as the direction of the positive 𝑥-axis when
calculating the spectral directional moments.

The statistical models are evaluated in each hourly sea state for
either the rogue crest, or the rogue crest-to-trough threshold definition.
The rogue crest definition from Eq. (1) is reformulated by normalizing
the wave crest elevation with the standard deviation of the sea surface
(𝜎). The significant wave height is assumed equal to 4𝜎, resulting in the
new rogue crest definition 𝜂𝑟𝑜𝑔𝑢𝑒∕𝜎 ≥ 5. The exceedance probability of
the rogue threshold is calculated over a period of 20 min to comply with
3

Table 1
An overview of the considered statistical wave models.

Probability model Time-extreme (TE) Space–time extreme (STE)

Crest
Forristall (2000)

STE2 (Benetazzo et al., 2015)Tayfun (1980)
Tayfun and Fedele (2007)

Crest-to-trough Naess (1985) STE1QD (Boccotti, 2000)Longuet-Higgins (1952)

Fig. 2. Scatter diagram of the significant wave height and the mean zero-crossing wave
period.
Source: Dataset from Monterey Bay from 1998–2020.

the rogue definitions (Haver, 2001; DNV, 2017) based on the 20-min
data acquisition period representing each hour.

According to Benetazzo et al., the area evaluated with the STE mod-
els should be smaller than 100× 100 m2 for the unbounded STE models
to stay accurate and prevent theoretical unlimited growth (Benetazzo
et al., 2020). Therefore, the STE models are evaluated in the range of
no spatial component (𝑋 = 0, 𝑌 = 0), to an area of 𝑋𝑌 = 100 × 100 m2.

3.1. Wave climate

Fig. 2 gives the average number of waves (N) in each sea state,
calculated using the mean zero-crossing wave period, 𝑇𝑚. From this
diagram, frequently occurring combinations of 𝐻𝑠 and 𝑇𝑚 are chosen as
criteria to compare the models on. Also, this diagram is used to address
the occurrence probability of certain sea states.

3.2. Long-term rogue probability

To estimate the long-term rogue probability, both the short-term
rogue statistics and the sea state occurrence probability have to be
taken into account. In Fig. 2, the wave climate is visualized by a
scatter diagram displaying the average number of waves in bins of
significant wave height and mean zero-crossing period. For the purpose
of calculating the overall rogue probability, this scatter diagram is
slightly modified to consider the number of 1-h sea states in each bin.

Four rogue size thresholds are established for both the crest and
the crest-to-trough height. Since only very large waves are relevant for
the safety of offshore structures, the four uppermost rows containing
entries in Fig. 2 are investigated. For each of these rows, the average
significant wave height is calculated to serve as a benchmark for
the thresholds. Table 2 presents these 𝐻𝑠 averages, together with the
corresponding rogue thresholds.

Each bin of Fig. 2 is evaluated separately in terms of its exceedance
probability of the rogue thresholds during the duration 𝐷 = 1200 s,
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Table 2
Average significant wave height and corresponding rogue thresholds of the four rows
containing the highest sea states of the scatter diagram.

Scatter diagram row 𝐻𝑠 Avg 𝐻𝑠 𝜂𝑟𝑜𝑔𝑢𝑒 𝐻𝑟𝑜𝑔𝑢𝑒
[m] [m] [m] [m]

10–10.5 10.31 12.89 20.62
9.5–10 9.92 12.40 19.84
9–9.5 9.13 11.41 18.26
8.5–9 8.78 10.98 17.56

𝑃 (𝜂∕𝜎 ≥ 𝜉 ∣ 𝐷) and 𝑃 (𝐻∕𝐻𝑠 ≥ 𝑧 ∣ 𝐷). First, the average 𝐻𝑠 of the
sea states within that bin is calculated. This average 𝐻𝑠 is then used
to determine the average threshold 𝜉 or 𝑧 that a sea state within that
particular bin will have to exceed the rogue thresholds. Using these 𝜉
and 𝑧 values, an average exceedance probability is calculated per bin.
This is done by taking the average of the exceedance probabilities of
all the sea states within the bin evaluated at that average 𝜉 or 𝑧 value.

To calculate the probability that at least one wave in the dataset
exceeds one of the thresholds, instead the null problem is considered:
the probability that no wave in the dataset exceeds one of the thresh-
olds (see Eq. (6)). Here the sea states, Ssi are assumed to be statistically
independent.

P(rogue) = 1 −

( 𝑁
⋂

𝑖=1
P(no rogue ∣ Ssi)

)

(6)

P(no rogue ∣ Ssi) is defined as the average probability of no wave
exceeding the rogue threshold in that particular sea state (Ssi), to the
power 𝐾, which represents the number of 20-min time series expected
for that sea state, based on the scatter diagram in Fig. 2:

P(no rogue ∣ Ssi) = P(no rogue)Ki,avg (7)

Sea states are excluded from the calculation based on two criteria:
(1) if the average wave has a negligible probability of being considered
rogue in that particular sea state, or (2) if the wave breaking limit
evaluated using the average mean zero-crossing period (𝐻∕𝐿 < 0.14) is
exceeded (Holthuijsen, 2007).

For the first criterion, note that of course each of the sea states
from Fig. 2 could theoretically exceed one of the rogue wave thresholds
defined in Table 2, given enough time. But in low sea states, the
threshold 𝜉 and 𝑧 which have to be exceeded in order to produce
a rogue wave large enough to surpass the thresholds established in
Table 2 will be much higher compared to those of a high sea state. The
probability of exceeding a high threshold 𝜉 and 𝑧 rapidly decreases as
the threshold increases. This means that, having the scatter diagram
in mind, from a certain sea state range downwards, the contribution
of those low sea states to the exceedance probability of the rogue
thresholds is negligible. Conversely, note that only waves which classify
as rogue are of interest to this calculation. If in a sea state the threshold
𝜉 and 𝑧 is not considered rogue, then that sea state is excluded from the
calculation.

Considering the second criterion, since the wave breaking limit is
defined with respect to the wave height and not the crest height, the
rogue wave height from Table 2 is used to determine the wave breaking
limit belonging to the corresponding rogue crest height. At some point,
sea states will be excluded from the calculation if the wave breaking
limit 𝐻∕𝐿 < 0.14 is exceeded (Holthuijsen, 2007). To give a quick
indication of this cut-off limit the lowest crest-to-trough threshold of
Table 2, 𝐻𝑟𝑜𝑔𝑢𝑒 = 17.56 m, is taken as an example. The minimum
wavelength which a wave should have in order to attain such a wave
height and not break would be ∼125 m. Using the deep-water dispersion
relationship, this corresponds to a minimum wave period of ∼9 s. For
ach bin this wave breaking limit is evaluated using the average mean
ero-crossing period. Since the wave breaking limit is defined with
espect to the wave height and not the crest height, the rogue wave
4

Table 3
10 chosen sea state bins spanning possible range of 𝐻𝑠 values.
𝐻𝑠 range 𝑇𝑚 range

1 < 𝐻𝑠 ≤ 1.5 m 6 < 𝑇𝑚 ≤ 7 s
2 < 𝐻𝑠 ≤ 2.5 m 6 < 𝑇𝑚 ≤ 7 s
3 < 𝐻𝑠 ≤ 3.5 m 7 < 𝑇𝑚 ≤ 8 s
4 < 𝐻𝑠 ≤ 4.5 m 7 < 𝑇𝑚 ≤ 8 s
5 < 𝐻𝑠 ≤ 5.5 m 8 < 𝑇𝑚 ≤ 9 s
6 < 𝐻𝑠 ≤ 6.5 m 8 < 𝑇𝑚 ≤ 9 s
7 < 𝐻𝑠 ≤ 7.5 m 10 < 𝑇𝑚 ≤ 11 s
8 < 𝐻𝑠 ≤ 8.5 m 11 < 𝑇𝑚 ≤ 12 s
9 < 𝐻𝑠 ≤ 9.5 m 12 < 𝑇𝑚 ≤ 13 s
10 < 𝐻𝑠 ≤ 10.5 m 13 < 𝑇𝑚 ≤ 14 s

height from Table 2 is used to determine the wave breaking limit
belonging to the rogue crest height in the same row as well.

These two exception criteria for the rogue calculation are linked
for the exclusion of sea states. By considering the wave period cut-
off limit for wave breaking, an assumption can be made from which
point the inclusion of low sea states in the overall rogue wave prob-
ability calculation becomes insignificant. Since the lowest rogue wave
threshold requires a minimum wave period of ∼9 s, we can disregard
ll bins containing waves with a lower mean zero-crossing period. The
argest amount of sea states found in one bin in the valid 𝑇𝑚 range then
ecomes ‘2758’ (bin 2 < 𝐻𝑠 ≤ 2.5 & 9 < 𝑇𝑚 ≤ 10). Following Eq. (7),

this would lead to 𝐾𝑚𝑎𝑥 = 8274 time records. Once the largest average
sea state exceedance probabilities 𝑃 (𝑛𝑜 𝑟𝑜𝑔𝑢𝑒)𝑖,𝑎𝑣𝑔 are found to be in the
order of 10−9, the inclusion of lower sea states are disregarded. Even
using the value 𝐾𝑚𝑎𝑥, this would no longer significantly influence the
overall rogue probability.

4. Rogue wave occurrence probability analysis

This section presents the results of the rogue wave occurrence
probability analysis. First, the area from which the STE models estimate
a higher rogue wave probability than the TE models is investigated.
This is done by comparing the TE and STE models to each other based
on their estimated probability of exceeding the rogue threshold in
different sea states for a range of area sizes. Then return periods until
a 95% occurrence probability are reported for four different size rogue
waves.

4.1. Influence of spatial scale on predicted rogue wave probability

The TE and STE models are compared in 10 different sea state
combinations of 𝐻𝑠 and 𝑇𝑚, based on Fig. 2. Note that an in-depth
explanation of the TE models is given in the Appendix Sections A.1
and A.2, while the STE models are further described in the Appendix
Sections A.3 and A.4.

Frequently occurring sea states are identified for each possible 𝐻𝑠
range of Fig. 2 (such as 2 < 𝐻𝑠 ≤ 2.5 m) by selecting the modal period
𝑇𝑚 bin for a given 𝐻𝑠 range containing the largest number of expected
waves (𝑁). With 21 rows containing entries, this results in 21 sea state
bins. Then, from those frequently occurring combinations, 10 evenly
spaced bins over the 𝐻𝑠 range are chosen as the sea states to compare
the models in as given in Table 3.

The STE and TE models are compared based on their estimated
exceedance probability of the rogue threshold (Eq. (1)–(2)) within
20 min. In each of the 10 sea state bins, the maximum probability
of exceeding the rogue threshold is identified for each wave model.
These are the highest probabilities per bin and are chosen as a way
to represent a worst-case scenario in terms of rogue wave occurrence.
The probability estimated by an STE model is divided by that of a TE
model, in a range starting from no spatial component (𝑋 = 0, 𝑌 = 0) to
𝑋𝑌 = 100×100 m2, in each of the 10 sea states. This results in a ratio of

‘‘STE over TE’’ for different area sizes, facilitating a simple comparison.
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Fig. 3. Comparison of the STE2 (Benetazzo et al., 2015) and TE Forristall (Forristall, 2000) estimate of 𝑃 (𝜂𝑚𝑎𝑥∕𝜎 ≥ 5 |D) with D = 1200 s. (a) Area sizes ranging from no spatial
component (𝑋 = 0, 𝑌 = 0) to 100×100 m2. (b) Area sizes ranging from no spatial component (𝑋 = 0, 𝑌 = 0) to 20×20 m2. The horizontal black dashed line visualizes a y-ratio of 1 .
Fig. 4. Comparison of the STE2 (Benetazzo et al. (2015)) and TE Tayfun (Tayfun, 1980) estimate of 𝑃 (𝜂𝑚𝑎𝑥∕𝜎 ≥ 5 | D) with D = 1200 s. (a) Area sizes ranging from no spatial
component (𝑋 = 0, 𝑌 = 0) to 100× 100 m2. (b) Area sizes ranging from no spatial component (𝑋 = 0, 𝑌 = 0) to 20× 20 m2. The horizontal black dashed line visualizes a y-ratio of 1.
Fig. 5. Comparison of the STE2 (Benetazzo et al. (2015)) and TE Tayfun–Fedele (Tayfun and Fedele, 2007) estimate of 𝑃 (𝜂𝑚𝑎𝑥∕𝜎 ≥ 5 |D) with D = 1200 s. (a) Area sizes ranging
from no spatial component (𝑋 = 0, 𝑌 = 0) to 100×100 m2. (b) Area sizes ranging from no spatial component (𝑋 = 0, 𝑌 = 0) to 20×20 m2. The horizontal black dashed line visualizes
a y-ratio of 1.
4.1.1. Wave crest models
Figs. 3, 4 and 5 present the comparisons between the STE2 model

from Benetazzo et al. and the TE Forristall, Tayfun, and Tayfun–Fedele
models respectively. The area size is reported on the x-axis in terms of
5

√

𝑋𝑌 as a way to specify the length of the sides of the square area. The
values on the y-axis represent the ratio of the exceedance probability
estimated by the STE model to that of the TE model. Some observations
regarding these figures:
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• As the area size of the STE2 model increases, the relative differ-
ence between the rogue crest threshold exceedance probabilities
estimated by the TE and STE models increases.

• Regarding the TE models, the Forristall model appears to estimate
the lowest rogue crest threshold exceedance probabilities, fol-
lowed by the Tayfun model. The Tayfun–Fedele model estimates
the highest exceedance probabilities for these TE crest models.

• Figs. 3 and 4 clearly show a decreasing trend of the relative dif-
ference between the estimated rogue crest threshold exceedance
probability by the STE and TE model, as the sea state trends to
higher 𝐻𝑠 values. This decreasing trend can be explained by the
fact that as waves become higher, they generally become longer
crested, thus decreasing the number of unique waves that exist
within or on the borders of the considered area and therefore de-
creasing the influence of the spatial dimension, as also suggested
by Fedele (2012).

• A similar conclusion was noted by Barbariol et al. when compar-
ing time-extreme (Forristall) and space–time extreme
(STE2) estimates from reanalysis datasets (validated based on
buoy and stereo-video wave observations for the TE and STE
models, respectively) (Barbariol et al., 2019). They found that
for a single fixed area (100 × 100 m2), more extreme conditions
(99th percentile) were associated with longer wavelengths than
typical conditions (50th percentile), making the statistical effects
of the 3D geometry of waves and their short-crestedness less
pronounced. Figs. 3 and 4 further indicate that the effects of a
diminishing spatial component (i.e., smaller area size within the
STE model) have a more drastic impact on moderate sea states
than extreme sea states.

• Note that larger 𝐻𝑠 values are also associated with larger 𝑇𝑚
values as well, meaning that these higher sea states may also
have fewer unique waves within some considered area due to
longer wave periods. The STE models take this into account
by calculating the average number of waves expected along
the one-dimensional spatial perimeter of the area boundary,
𝑁𝐵 (Eq. (A.16)), on the two-dimensional spatial surfaces, 𝑁𝑆
(Eq. (A.17)), and within the three-dimensional space–time do-
main, 𝑁𝑉 (Eq. (A.18)) over some time duration 𝐷, where all these
numbers of waves decrease for increasing wave period 𝑇𝑚. This
reduced number of waves reduces the exceedance probabilities
for both the STE1 and STE2 model, Eq. (A.30)–(A.31).

• Wave spreading can also play a role here. Latheef and Swan
note that when considering the role of directional spreading in
physical experiments, unidirectional situations show the largest
nonlinear amplifications to wave crest measurements, though
this effect seems to reduce for steeper sea states where wave
breaking may play a role (Latheef and Swan, 2013); this result
was also confirmed by numerical simulations of the Euler equa-
tion (Toffoli et al., 2008). More unidirectional sea conditions may
also lead to more long-crested waves, suggesting larger nonlin-
ear amplifications of wave crests. However, this effect is also
closely intertwined with wave breaking and steepness which may
counteract such effects; unraveling the overall outcome of such
dependent effects is therefore beyond the scope of this paper.

• Fig. 5 also shows traits of the above mentioned trend, though it is
less pronounced. Many of the curves in Fig. 5, from a sea state of
4 < 𝐻𝑠 ≤ 4.5 m and higher, are somewhat clustered together. This
could be explained due to the fact that the Tayfun–Fedele model is
an extension of the Tayfun model where an extra parameter, the
excess kurtosis, is taken into account to incorporate third order
surface nonlinearities.

Notice that as the area sides X and Y approach 0 m, the STE2
odel still approximates higher probabilities of a rogue crest threshold

xceedance than the Forristall and Tayfun model. This can clearly be
bserved via the black dashed line which denotes the ratio threshold
6

f 1, indicating whether the STE or TE model estimates a higher
robability, visible in Figs. 3(b) and 4(b). From an analytical point
f view, one might expect the STE2 and Tayfun model to converge
t
√

𝑋𝑌 = 0 m, since the Tayfun crest definition was used to extend
the linear STE1 model to the nonlinear STE2 model. However, when
formulating the exceedance probability function of the STE models,
the asymptotic Gumbel limit was used to ensure probabilities bounded
by 1 for small 𝜂∕𝜎 thresholds (Fedele, 2012; Benetazzo et al., 2015).
Therefore these two models do not converge as the area sides X and Y
approach 0.

Only the Tayfun–Fedele model, in two sea states, slightly estimates
a higher rogue crest threshold exceedance probability than the STE2
model as the area sides X and Y approach 0. However, this difference
can be considered insignificant, as from an area of approximately 2 ×
2 m2 onwards the STE2 model again predominates. Since this area can
be considered small, and the Tayfun–Fedele model is the most conser-
vative TE wave crest model, one can conclude that when rogue wave
crests are considered for structures like floating offshore wind turbines,
inclusion of the spatial dimension using the STE2 model from Benetazzo
et al. (2015) will provide the most conservative estimate in all sea
states.

4.1.2. Wave crest-to-trough models
Figs. 6 and 7 present the comparisons of the STE1QD model from

Boccotti with the TE Naess and Rayleigh model respectively. The
increasing difference in estimated rogue crest-to-trough threshold ex-
ceedance probability between the STE and TE models is again clearly
visible as the area increases, as well as the declining relative difference
as the sea state becomes higher. Note that both in Figs. 6 and 7 the
lines corresponding to the two lowest sea states seem to approach a
maximum as the area increases. This is because in those sea states, the
STE1QD model estimates an exceedance probability of almost 1 from a
certain area size onwards.

Fig. 6(b) shows that as the area sides X and Y decrease to 0, the
STE1QD model still predominates the Naess model. It can be observed
in Fig. 7(b) that for a small area (approximately < 2 × 2 m2), the
Rayleigh model always estimates a higher rogue wave crest-to-trough
threshold exceedance probability than the STE1QD model, regardless
of the sea state. As the area size increases, the STE1QD model starts
to predominate, and from an area size of around 12 × 12 m2 onwards
the STE1QD model estimates higher probabilities even in the highest
sea states. This is interesting because the Rayleigh model is generally
regarded to overestimate wave heights. These results indicate that
when rogue waves are evaluated for an offshore structure with a
footprint larger than 12 × 12 m2, inclusion of the spatial dimension
using the STE1QD model from Boccotti (2000) will provide the most
conservative occurrence estimate of rogue crest-to-trough threshold
exceedance probabilities in all sea states.

4.1.3. Wave crest vs. crest-to-trough models
One thing is clear from comparing the STE/TE ratios from the wave

crest models (Figs. 3, 4, 5) and from the wave crest-to-trough models
(Figs. 6, 7): the wave crests seem to be more affected by the spatial com-
ponent than do the wave crests-to-troughs. To understand this differ-
ence, we look to studies comparing such STE and TE models with more
detailed wave observation measurements. Barbariol et al. noted that
the STE2 wave crest model extended with quasi-determinism theory,
which accounts for second-order non-resonant wave non-linearities,
better matched the temporal profiles for the largest wave crest heights
from stereo video measurements than the linear STE1QD model. They
also noted that the time-extreme wave crest Tayfun–Fedele model over-
estimated wave crests, while the time-extreme wave crest-to-trough
Naess model slightly underestimated these crest-to-trough heights as
compared to buoy measurements. When comparing the space–time
extreme models to the time-extreme models, Barbariol et al. simi-
larly found that the wave crests were more affected by the addition
of the spatial component (i.e., larger estimates) than were the wave

crest-to-troughs (Barbariol et al., 2019).
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Fig. 6. Comparison of the STE1QD (Boccotti, 2000) and TE Naess (Naess, 1985) estimate of 𝑃 (𝐻𝑚𝑎𝑥∕𝐻𝑠 ≥ 2 |D) with D = 1200 s. (a) Area sizes ranging from no spatial component
(𝑋 = 0, 𝑌 = 0) to 100 × 100 m2. (b) Area sizes ranging from no spatial component (𝑋 = 0, 𝑌 = 0) to 20 × 20 m2. The horizontal black dashed line visualizes a y-ratio of 1.
Fig. 7. Comparison of the STE1QD (Boccotti, 2000) and TE Rayleigh estimate of 𝑃 (𝐻𝑚𝑎𝑥∕𝐻𝑠 ≥ 2|D) with D = 1200 s. (a) Area sizes ranging from no spatial component (𝑋 = 0, 𝑌 = 0)
to 100 × 100 m2. (b) Area sizes ranging from no spatial component (𝑋 = 0, 𝑌 = 0) to 20 × 20 m2. The horizontal black dashed line visualizes a y-ratio of 1 .
4.2. Long-term rogue probability

Now the long-term rogue wave occurrence probability according to
the different statistical models is investigated in terms of a return period
until the rogue threshold exceedance probability is at least 95%. The
wave climate suggested by the Monterey Bay buoy data, visualized by
Fig. 2, is extrapolated for this purpose. Tables 4 and 5 present these
return periods for the four considered rogue crest and wave heights.
To reflect the footprint of an offshore structure, the area sides 𝑋 and 𝑌
of the STE models are defined using the waterline diameter (6.5 m) of a
reference SFWT model developed for phase IV of the IEA Offshore Code
Comparison Collaboration (OC3) (Jonkman, 2010), hereafter referred
to as the OC3-Hywind concept.

For the considered rogue crests, the Forristall model estimates the
longest return periods, followed by the Tayfun model, then by the
Tayfun–Fedele model, while the STE2 model from Benetazzo et al. es-
timates the lowest return periods. The difference between the Tayfun–
Fedele model and the STE2 model is significant, which was expected
regarding the earlier results from Section 4.1.1. In offshore design
practices it is common to work with 50- and 100-year return periods
for extreme environmental conditions (DNV, 2017). The return periods
estimated by the TE models all largely exceed 100 years. Only the
STE2 model estimates return periods lower than 100 years for the two
smallest rogue crests. This illustrates how using an STE model could
provide more conservative estimates than a TE model.
7

Between the crest-to-trough models it is observed that the Rayleigh
and STE1QD model from Boccotti estimate lower return periods than
the Naess model. During the model comparisons of maximum rogue
crest-to-trough threshold exceedance probabilities, it was observed that
up until an area size of 12×12 m2, the Rayleigh model estimated higher
rogue wave probabilities in several sea states. In this long term rogue
probability calculation, the results indicate that for the considered
area of 6.5 × 6.5 m2, the Rayleigh and STE1QD model estimate similar
occurrence probabilities. For the two smallest rogue wave thresholds,
these periods are very close and for the two largest waves the STE1QD
model is slightly more conservative. When the overall rogue wave
probability is considered, it appears that the STE1QD model is already
more conservative from an area size of 6.5 × 6.5 m2.

Note that in some cases the return periods in the third column
(second rogue threshold) are higher than those in the fourth column
(first rogue threshold). This is due to the exclusion of sea states in
which a certain rogue threshold is not considered rogue. By raising the
threshold, more sea states are included which in this case reduces the
return period relative to the previous column.

Of course, it is important to note that these estimations assume
independent sea states and do not account for temporal variability in
sea conditions. Seasonal variability may introduce important effects, as
noted by Cattrell et al., who found rogue wave intensification trends
during winter periods when analyzing different Southern California
buoy data (Cattrell et al., 2019).
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Table 4
Return periods in years necessary until the rogue threshold exceedance probability is at least 95%, per threshold, for the Forristall, Tayfun,
Tayfun–Fedele and STE2 model.
Probability of at least one rogue wave 𝜂𝑟𝑜𝑔𝑢𝑒 = 10.98 m 𝜂𝑟𝑜𝑔𝑢𝑒 = 11.41 m 𝜂𝑟𝑜𝑔𝑢𝑒 = 12.40 m 𝜂𝑟𝑜𝑔𝑢𝑒 = 12.98 m
Return period until 95% probability [years] [years] [years] [years]

Forristall (2000) 750 1000 5000 3350
Tayfun (1980) 400 525 2400 2150
Tayfun and Fedele (2007) 175 235 960 1010
STE2 6.5 × 6.5 m2 (Benetazzo et al., 2015) 55 72 230 260
Table 5
Return periods in years necessary until the rogue threshold exceedance probability is at least 95%, per threshold, for the Naess, Rayleigh and
STE1QD model.
Probability of at least one rogue wave 𝐻𝑟𝑜𝑔𝑢𝑒 = 17.56 m 𝐻𝑟𝑜𝑔𝑢𝑒 = 18.26 m 𝐻𝑟𝑜𝑔𝑢𝑒 = 19.84 m 𝐻𝑟𝑜𝑔𝑢𝑒 = 20.62 m
Return period until 95% probability Years Years Years Years

Naess (1985) 123 180 850 660
Rayleigh (Longuet-Higgins, 1952) 22 33 147 134
STE1QD 6.5 × 6.5 m2 (Boccotti, 2000) 22 31 104 113
5. Application: spar-type floating wind turbine response to rogue
wave impact

To illustrate an application of this statistical rogue wave analysis, a
risk analysis is done by evaluating the dynamic response of a spar-type
floating wind turbine (SFWT) to the four considered rogue waves in
Table 2. A frequently used concept for such research is the OC3-Hywind
concept from Jonkman et al. (2009) and Jonkman (2010).

Limited research has been done on the response of a SFWT to a
single rogue wave. Ruzzo and Arena analyzed the dynamic response of
a SFWT (OC3-Hywind) to a single rogue wave using a 3-DOF in-house
numerical code (Ruzzo and Arena, 2019). Qu et al. investigated the
effect of the wave–current interaction on the generation process of a
rogue wave and evaluated the dynamic response of the SFWT (OC3-
Hywind) using a 6-DOF in-house numerical code (Qu et al., 2020).
Both papers considered one size rogue wave, limited to one sea state,
where nothing about the rogue wave statistics or their severity could
be concluded for realistic ocean conditions. The statistical rogue wave
analysis allows this paper to assess the possible danger of a rogue wave
to a SFWT with a clear connection to occurrence probability and return
period.

5.1. Deterministic rogue wave time series

For this research, wave time series with a deterministic rogue
wave are generated based on the NewWave theory (Tromans et al.,
1991). Taylor et al. introduced a method to embed the
NewWave profile in a stochastic wave time series (Taylor et al., 1997).
Their method ensures a deterministic extreme wave at time 𝑡𝑟, after
which the wave series returns to the random shape of the background
waves, which is referred to as the most-likely wave (MLW) model.

For each sea state bin included in Table 2 a ‘most-likely wave
spectrum’ is estimated. This most-likely wave spectrum aims to reflect
the average of the sea states in which that particular size rogue wave
is most likely to occur. An assumption is made that the most-likely
wave spectrum consists of the averaged wave spectrum belonging to the
scatter diagram row of that particular rogue wave threshold, together
with two rows below (see Fig. 8). These resulting most-likely wave
spectra are defined in Table 6. The random wave time series were
generated from these most-likely wave spectra.

Due to the influence of the underlying wave spectrum moving away
from the deterministic wave peak at the defined point of interest,
the preceding and following wave trough around the rogue event are
influenced. To give similar rogue wave crest-to-trough conditions for
multiple simulations for each rogue wave height threshold, the crest
amplitude was iteratively adjusted to ensure the resulting crest-to-
trough height, when embedded in the random time series, met the
desired 𝐻 criterion.
8

𝑟𝑜𝑔𝑢𝑒
Table 6
Significant wave height 𝐻𝑠 and peak modal period 𝑇𝑝 for the most-likely wave spectrum
associated with each rogue threshold. The average rogue wave period, rogue wave
steepness (𝐻𝑟𝑜𝑔𝑢𝑒∕𝜆𝑟𝑜𝑔𝑢𝑒), and wave spectrum steepness ( 1

2
𝐻𝑠𝑘𝑝) are also given for each

rogue height.
𝐻𝑟𝑜𝑔𝑢𝑒 𝐻𝑠 𝑇𝑝 Rogue Rogue Sea state
[m] [m] [s] period [s] steepness [−] steepness [−]

20.62 8.93 19.23 15.67 0.0538 0.0486
19.84 8.92 17.24 15.57 0.0524 0.0604
18.26 8.55 16.94 15.3 0.0500 0.0600
17.56 8.16 16.94 14.3 0.0550 0.0572

Fig. 8. A visual representation of the most-likely wave spectrum for the third rogue
wave threshold 𝐻𝑟𝑜𝑔𝑢𝑒 ≥ 18.26 m.

Note that only the 𝐻𝑟𝑜𝑔𝑢𝑒, and not the 𝜂𝑟𝑜𝑔𝑢𝑒, thresholds from Table 2
are used to generate these rogue time series. However, considering that
the return-periods for exceeding the 𝜂𝑟𝑜𝑔𝑢𝑒 thresholds are significantly
longer than the 𝐻𝑟𝑜𝑔𝑢𝑒 return-periods in the same sea states, the 𝐻𝑟𝑜𝑔𝑢𝑒-
defined rogue time series present indeed a more ‘most-likely’ scenario,
and one more relevant for the design lifetime of such an offshore
structure. In addition, the 𝐻𝑟𝑜𝑔𝑢𝑒 definitions allow for a more direct
comparison, versus the 𝜂𝑟𝑜𝑔𝑢𝑒 thresholds where the preceding wave crest
or trough magnitude may vary significantly based on the underlying
wave spectrum.

Fig. 9 gives an example of a most-likely autocorrelation function
used to generate the rogue wave deterministic shape, based on the third
rogue wave threshold 𝐻𝑟𝑜𝑔𝑢𝑒 ≥ 18.26 m, where the considered spectra
are the those from Fig. 8. For each size rogue wave, five random wave
time histories are generated with a deterministic rogue wave at 350 s
and a total length of 462 s. In these five simulations, the deterministic
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Table 7
Parameters of the wind turbine and spar substructure.
5 MW wind turbine OC3-Hywind spar substructure

Parameter Value Parameter Value

Rotor, hub diameter 126 m, 3 m Total draft 120 m
Hub height 90 m Elevation to platform top above SWL 10 m
Cut-in, rated, cut-out wind speed 3 m/s, 14 m/s, 25 m/s Depth to top of taper below SWL 4 m
Rotor mass 110,000 kg Depth to bottom of taper below SWL 12 m
Nacelle mass 240,000 kg Platform diameter above taper 6.5 m
Nacelle dimension (l × b × h) 14.285 × 2.286 × 3.500 m Platform diameter below taper 9.4 m
Nacelle drag areas (𝑥, 𝑦, 𝑧) 8.0, 50.0, 32.7 𝑚2 Total platform mass 7,466,330 kg
Nacelle inertia (about 𝑥, 𝑦, 𝑧 axis) 350020, 5409970, 2607890 kg𝑚2 Number of mooring lines 3
Drag coefficient (𝐶𝐷) (along 𝑥, 𝑦, 𝑧) 1.0, 1.2, 1.2 Depth to fairleads below SWL 70 m
Tower mass 347,460 kg Depth to anchors below SWL 320 m
Coordinate center of mass (0.2 m, 0.0 m, 64 m)
Fig. 9. A visual representation of the most-likely rogue wave shape for the third rogue
wave threshold 𝐻𝑟𝑜𝑔𝑢𝑒 ≥ 18.26 m.

rogue wave shape based on the NewWave formulation remains constant
while the stochastic wave time series is determined by a different seed,
as directed by the most-likely wave model (Taylor et al., 1997).

5.2. Dynamic response

The dynamic analysis software OrcaFlex was used to evaluate the
dynamic response of the open-source OC3-Hywind concept model (Or-
cina, 2019). The OC3-Hywind incorporates a spar substructure based
on the Equinor Hywind Scotland SFWT with a 5MW NREL refer-
ence turbine, an industry-standard reference model representative for a
utility-scale, multi-megawatt wind turbine (Jonkman et al., 2009). To
keep the turbine from drifting, the spar is anchored to the sea bed by
three catenary mooring lines. The spar has a draft of 120 m and the
top, upon which the turbine tower is placed, extends 10 m above the
still water line (SWL).

5.2.1. System modeling
The OC3-Hywind concept model has parameters as given in Table 7

and is built up out of the following components: the turbine, the tower,
the spar platform and the mooring system. The turbine element is a
conventional three-bladed rotor, with options for variable speed and
pitch control. A gear ratio can be specified and is set to 97 for the OC3-
Hywind model. The rotor hub has a radius of 1.5 m and is assigned to
the turbine object. The transverse and axial moments of inertia around
the main shaft are specified and the center of mass of the hub is located
at the geometric center of the rotor.

The turbine blades in OrcaFlex are modeled by a structural model
somewhat similar to the one used by lines, with inertia lumped at the
nodes which are connected by massless segments. Each blade consists of
9

17 different elements, which can vary in length, wing type and (initial)
pitch angle. The blade DOFs are set to free, which means that for each
node, 6 DOFs are included. This allows the blade parts to move in a
rotational and translational direction with respect to each other, thus
allowing the blade flexibility to be modeled. The nacelle is modeled as
a lumped 6-DOF buoy object, with the proper mass, center of mass, and
inertial properties. To account for the aerodynamic effects, a massless
drag line with appropriate drag and added mass coefficients is further
attached to the nacelle, as in OrcaFlex aerodynamic effects cannot be
captured for the 6-DOF buoy object on its own (Orcina, 2019).

The conical tower is modeled as a line object with a ‘homogeneos
pipe’ line type assigned to it. By doing so, a variable wall thickness can
be modeled with the appropriate inner and outer diameters, as well
as the physical properties of the tower such as the material density,
Young’s modulus and Poisson ratio. This leads to a model where
OrcaFlex can take the structural deflection of the tower into account.

The spar platform is modeled in Orcaflex using the ‘spar’ category
of the 6D buoy element. This results in a rigid body spar platform,
with 6 DOFs and the appropriate geometric and physical properties
assigned to it. The spar buoy is split up into 40 discrete cylinders. To
accurately capture changes to the hydrodynamic loading and buoyancy
on the surface-piercing part of the spar buoy, the cylindric parts in the
top section have been assigned a fine discretization of 1 m, while for
the lower part a discretization of 10 m is considered (see Fig. 10).
To calculate the hydrodynamic loads on the spar in Orcaflex, the
Morison equation extended for a moving body is considered (Eq. (8)).
The influence of radiation damping and diffraction effects are assumed
negligible, as is assumed by the OC3 NREL report (Jonkman, 2010).

𝐹 = 𝛥𝑎𝑓 + 𝐶𝑎𝛥𝑎𝑟 +
1
2
𝜌𝐶𝐷𝐴|𝑣𝑟|𝑣𝑟 (8)

where

𝑓 = fluid force
𝛥 = fluid mass displaced by the body
𝑎𝑓 = fluid acceleration relative to earth
𝐶𝑎 = body added mass coefficient
𝑎𝑟 = fluid acceleration relative to the body
𝜌 = water density
𝑣𝑟 = fluid velocity relative to the body
𝐶𝐷 = body drag coefficient
𝐴 = drag area

The three catenary mooring lines holding the spar in place are
assigned their physical properties via the appropriate line type ele-
ments. The anchors and mooring lines are placed evenly around the
spar in azimuth increments of 120◦, and the radius of the anchors
to the centerline of the spar is approximately 854 m. The mooring
lines are connected to the spar via a ‘delta’ or ‘crowfoot’ connection,
as illustrated in Fig. 11. Each line is connected to the spar at a
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Fig. 10. The OC3-Hywind spar substructure as built in OrcaFlex.
Source: Retrieved from Ross and McKinnon (2018).

Fig. 11. The mooring line arrangement of the OrcaFlex OC3-Hywind model.
Source: Retrieved from Ross and McKinnon (2018).

radius of 5.2 m measured from the spar’s centerline. The mooring
lines were modeled in OrcaFlex by the analytic catenary method,
which considers line properties like weight, buoyancy, axial stiffness,
and axial seabed friction but ignores bend stiffness, drag, and added
mass. Within OrcaFlex simulations, lookup tables are used to relate the
mooring line fairlead tension to some offset value. Note that such large
rogue waves could also lead to slack-line events in the mooring lines,
see, e.g. Robertson et al. (2017), though such an effect has not been
examined for the simple application considered here.

During the simulations, only the wave loads are considered. The
wind and current speeds are set to 0 m∕s, and the turbine is assumed
to be in a parked condition. The dynamic response of the SFWT to the
rogue wave was investigated on the basis of the surge, heave, pitch and
nacelle acceleration. Table 8 presents the results of five simulations.
For each parameter, the average maximum of the five simulations is
reported, which were found directly or shortly after the rogue wave
impact.

Some observations regarding the results from Table 8:

• The largest rogue wave led to the largest surge response of
16.91 m, followed by the third largest rogue wave inducing a
surge response of 15.32 m.

• The heave response is mild overall. The largest rogue wave led
to the largest response, which was only 3.02 m. This comes
as no surprise, as spar designs are designed to reduce heave
motions (Ma and Patel, 2001).
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Table 8
Dynamic response results from the five OrcaFlex rogue wave simulations for each
embedded rogue wave height and corresponding crest height. Reported values are the
average of the maximums of five simulations. Surge, heave and pitch are evaluated for
the spar at the height of the mean sea level, MSL.

Rogue wave Average rogue Surge Heave Pitch Nacelle acceleration
threshold [m] crest height [m] [m] [m] [◦] [m∕s2]

𝐻𝑟𝑜𝑔𝑢𝑒 = 20.62 m 11.25 16.91 3.02 7.15 3.81
𝐻𝑟𝑜𝑔𝑢𝑒 = 19.84 m 11.20 14.31 2.51 6.35 3.83
𝐻𝑟𝑜𝑔𝑢𝑒 = 18.26 m 10.05 15.32 2.53 6.97 3.82
𝐻𝑟𝑜𝑔𝑢𝑒 = 17.56 m 9.95 13.07 2.01 5.63 3.69

• The largest rogue wave led to the largest pitch angle of 7.15◦,
followed by the third largest rogue wave inducing a pitch angle
of 6.97◦.

• The top three rogue wave sizes produced almost identical av-
eraged nacelle accelerations of about 3.81–3.83 m∕s2, and the
response to the fourth rogue wave is very close to this value.

Simulations with a larger rogue wave do not always induce motions
which are much more extreme than the smaller waves. The random
seeds used to generate the underlying wave spectrum are different for
each simulation, which leads to more or less favorable initial conditions
of the floating turbine system before the rogue wave impact. Due to
this, some lower rogue waves may induce similar or more extreme
motions than the larger ones.

It is difficult to make unambiguous conclusions regarding the po-
tential danger of a rogue wave to the SFWT based only on the dynamic
response. There are no specific limits for translational displacements
of a catenary moored SFWT. Mostly the pitch angles and nacelle
accelerations are limiting, due to stability criteria and the presence of
sensitive components in the nacelle. In the industry, these maximum
angles and accelerations of wind turbines are imposed by the turbine
original equipment manufacturers and are treated secretively.

In the literature, a few claims have been made regarding maximum
allowable inclination and nacelle accelerations. Papers that discuss the
pitch angle state that the maximum pitch angle should be taken as
10◦ (see, e.g., Sclavounos et al. (2008), Huijs et al. (2013), Kolios et al.
(2015), Taboada et al. (2020)). In absence of exact values from the
industry, 10◦ may be used as a reference value. Regarding the nacelle
acceleration, some papers state that 0.4 g (3.92 m∕s2) is a common
industry limit (Boo et al., 2013, 2017; Taboada et al., 2020). Other
papers assume lower limits, such as 0.3 g (Nejad and Torsvik, 2021),
or even 0.2 g (Leimeister, 2017). When comparing the responses of
Table 8 with the reference values found in the literature, the rogue-
induced pitch angles are below the conventional literature limit of 10◦

and the nacelle accelerations are below 0.4 g. However, the nacelle
accelerations can be said to be significant, as they are only slightly
below the 0.4 g literature limit, and notably higher than the lower 0.2
g and 0.3 g limits.

Since the reference values are not exceeded and the return periods
(Table 5) for the four rogue waves indicate that these waves can be
considered a once-in-a-lifetime event for a typical offshore structure,
where the most conservative statistical model estimates return periods
of over 100 years for the two largest rogue waves, it appears that these
rogue waves alone present no danger to the spar-type floating wind
turbine.

6. Conclusions

In this paper, the occurrence probability of several rogue waves
was investigated using statistical wave models and a significant amount
of historical wave data. Two rogue wave size definitions, one re-
garding the wave crest, and the other regarding the crest-to-trough
height, were evaluated separately using two statistical approaches. The
first approach estimates a wave height at a point in time by time-
extreme models (the Forristall (2000), Tayfun (1980), Tayfun and
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Fedele (2007), Naess (1985), and Rayleigh (Longuet-Higgins, 1952)
model). The second approach estimates the wave height over an area in
time via space–time extreme models (the STE2 model from Benetazzo
et al. (2015) and STE1QD model from Boccotti (2000)).

The area size which leads to the STE models estimating a higher
rogue wave occurrence probability than the TE models was investi-
gated. Four rogue crest and wave heights were established using the
highest measured sea states and for these waves the return periods
until a 95% occurrence probability were calculated. The area size for
which the STE models were evaluated was based on the OC3-Hywind
spar diameter, for which an application of the probabilistic rogue wave
analysis was presented. The dynamic response of the OC3-Hywind spar
to the four considered rogue waves was evaluated in Orcaflex. Using
both the dynamic response and the long-term occurrence probability of
the rogue wave, this research presents a new and advanced approach
for a risk analysis of rogue waves to offshore structures.

The main findings of this study can be summarized as follows:

• For the TE wave crest models it was observed that the Forristall
model estimates the lowest rogue crest occurrence probabilities,
followed by the Tayfun model. The Tayfun–Fedele model es-
timates the highest probabilities. Of those three models, only
the Tayfun–Fedele model estimates higher probabilities than the
STE2 model from Benetazzo et al. in two sea states, for an area
size smaller than 2 × 2 m2. When the occurrence probability of
rogue crests is considered on a spatial scale relevant for (floating)
offshore wind turbines, incorporating the spatial dimension using
the STE2 model will result in the most conservative estimate.

• Regarding the crest-to-trough models, it was observed that the
STE1QD model from Boccotti estimates higher exceedance proba-
bilities of the rogue threshold than the Naess model for all areas in
all sea states. The Rayleigh model estimates higher probabilities
than the STE1QD model in several sea states for an area size
smaller than 12 × 12 m2. When the area size was smaller than
2 × 2 m2, the Rayleigh model estimated higher probabilities in all
sea states. While evaluating the long term rogue wave occurrence
probability, it was observed that for the considered area of 6.5 ×
6.5 m2 the STE1QD model already became more conservative than
the Rayleigh model.

• The dynamic response of the OC3-Hywind spar to the four rogue
waves did not exceed the maximum reference values, but they can
be considered quite serious as some did exceed lower thresholds.
Based on the fact that for the two largest rogue waves the most
conservative probability model estimates a return period of over
100 years until a 95% occurrence probability, and all four waves
induced a dynamic response which did not exceed maximum ref-
erence limits, it appears that effects from these rogue waves alone
present no obvious danger for the considered SFWT. However,
ultimately this will depend on the sensitivity of the components
inside the turbine, the included effects of wind and current, as
well as the desired risk profile of the wind farm owner.

Future work can be imagined for both the probabilistic rogue wave
stimations and the resulting spar dynamic modeling. For the former
opic, many interesting questions arise when considering what would
e the effect of looking at different locations or potentially even more
uoy data. This analysis did not explicitly compare the rogue proba-
ilistic models based on the wave spreading, which could also have
nteresting effects. For the latter topic, more simulations could be
sed for a more in-depth risk analysis, considering also rogue waves
efined by longer return-periods. In addition, some other effects, such
s slack-line events in the mooring lines, have been mentioned as other
actors to consider for examining the effects of rogue wave impacts on
par-type floating wind turbines.
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ppendix. Statistical wave models

This appendix describes the considered statistical wave models used
n this study. The TE and STE models are considered separately for the
ave crest or crest-to-trough models.

.1. Crest-to-trough heights - Time extreme

The Rayleigh distribution is generally said to overestimate wave
eights occurring at a certain location. A better estimation is given by
bandwidth-corrected version of the Rayleigh distribution, originally

resented by Naess (1985):

𝑁 (𝐻 > 𝑧) = exp

[

− 4
1 − 𝛹∗

(

𝑧
𝐻𝑠

)2
]

(A.1)

This distribution accounts for finite-bandwidth effects by incorpo-
ating the bandwidth parameter 𝜓∗. Here 𝜓∗ is the minimum of the
utocorrelation function of the sea surface 𝜓(𝑡), which can be estimated
rom the wave spectrum as:

(𝑡) = 1
𝜎2 ∬ 𝑆(𝜔, 𝜃)𝑑𝜃 cos(𝜔𝑡)𝑑𝜔 (A.2)

The Rayleigh distribution of wave heights from Longuet-Higgins
1952) is recovered from Eq. (A.1) when 𝜓∗ = −1:

𝑅ℎ (𝐻 > 𝑧) = exp

[

−2
(

𝑧
𝐻𝑠

)2
]

(A.3)

A.2. Crest heights - Time extreme

The Tayfun distribution approximates second-order Stokes’ waves
(Tayfun, 1980). It is sometimes called a Rayleigh–Stokes distribu-
tion (Nerzic and Prevosto, 1998) because it describes crest heights by
a first-order Gaussian process (therefore having a Rayleigh crest distri-
bution, Eq. (A.4)) with a second-order Stokes expansion. The Tayfun
distribution is solely dependent on a dimensionless wave steepness
parameter 𝜇, and is given by Eq. (A.5). (see, e.g., Tayfun and Fedele
(2007))

𝑃𝑅𝑐
(

𝜂𝑐∕𝜎 > 𝑧
)

= exp
[

− 𝑧
2

2

]

(A.4)

𝑃T
(

𝜂𝑐∕𝜎 > 𝜉
)

= exp
⎡

⎢

⎢

⎣

−1
2

(

−1 +
√

1 + 2𝜇𝜉
𝜇2

)2
⎤

⎥

⎥

⎦

(A.5)

where 𝜉 = 𝑧(1+𝜇𝑧∕2) is the second-order wave envelope related to the
first-order wave envelope 𝑧 which follows the Rayleigh distribution,
and 𝜇 is a wave steepness parameter:

𝜇 = 𝜇
(

1 − 𝜈 + 𝜈2
)

(A.6)
𝑚
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where

𝜇𝑚 = 𝜎
(

2𝜋𝑚001∕𝑚000
)2 ∕𝑔 (A.7)

is corrected with the spectral bandwidth, Eq. (A.9) (Fedele and Tayfun,
2009) and the directional moments 𝑚𝑖𝑗𝑘 are calculated by Eq. (5).

𝜀 =

√

1 −
𝑚2
2

𝑚0𝑚4
(A.8)

𝜈 =
√

𝑚2𝑚0
𝑚1𝑚1

− 1 (A.9)

The Forristall model, Eq. (A.10), is based on the Weibull distribution
itted to second order simulations and experimental data (Forristall,
000).

F
(

𝜂𝑐 > 𝑧
)

= exp

[

−
(

𝑧
𝛼𝐻𝑠

)𝛽
]

(A.10)

The parameters 𝛼 and 𝛽 are found as functions of the wave spectrum
and the water depth. These are based on the degree of nonlinearity
as given by the wave steepness and the Ursell number. The steepness
number used in the fits is given by:

𝑆1 =
2𝜋
𝑔
𝐻𝑠

𝑇 2
1

(A.11)

where 𝑇1 = 𝑚0∕𝑚1 is the spectral mean wave period. Here, the Ursell
umber is given by:

r =
𝐻𝑠

𝑘21𝑑
3

(A.12)

where 𝑘1 is the wave number for the frequency 1∕𝑇1. The fits of the
parameters 𝛼 and 𝛽 to the 3D wave data can then be written as:

𝛼 = 0.3536 + 0.2568𝑆1 + 0.0800Ur (A.13)

𝛽 = 2 − 1.7912𝑆1 − 0.5302Ur + 0.284Ur2 (A.14)

The Tayfun–Fedele model is an improvement of the Tayfun model
to include third-order nonlinearities (Tayfun and Fedele, 2007). The
probability of exceedance of a normalized crest by the Tayfun–Fedele
model is given by:

𝑃TF
(

𝜂𝑐∕𝜎 > 𝜉
)

= exp
⎡

⎢

⎢

⎣

−1
2

(

−1 +
√

1 + 2𝜇𝜉
𝜇2

)2
⎤

⎥

⎥

⎦

×
[

1 + 𝛬
64
𝜉2

(

𝜉2 − 4
)

]

(A.15)

where 𝜇 again is the wave steepness as presented in Eq. (A.6), 𝜉 =
𝑧(1 + 𝜇𝑧∕2), and 𝛬 is a function of the joint fourth-order cumulants
of the surface elevation. 𝛬 may in practice be approximated only as a
function of the excess kurtosis by 𝛬appr = 8𝜆40∕3, where in deep water
the bound component reduces to the simple form 𝜆𝑏40 = 18𝜇𝑚 (Fedele
et al., 2016).

A.3. Crest heights — Space–time extreme

The STE1 model from Fedele considers a stationary homogeneous
Gaussian wave field 𝜂(𝑥, 𝑦, 𝑡) which is bounded by a space–time volume
𝑉𝑠𝑡 = 𝑋𝑌𝐷, where 𝑋 and 𝑌 are the spatial dimensions and 𝐷 represents
some duration of time (Fedele, 2012). The model considers the average
number of waves within the 3D domain 𝑁𝑉 , waves on the 2D surfaces
𝑁𝑆 along the 1D perimeter 𝑁𝐵 of the considered spatial domain.

𝑁𝐵 = 𝑋
𝐿𝑥

+ 𝑌
𝐿𝑦

+ 𝐷
𝑇𝑚

(A.16)

𝑁𝑆 =
√

2𝜋
(

𝑋𝐷
𝐿𝑥𝑇𝑚

√

1 − 𝛼2𝑥𝑡 +
𝑋𝑌
𝐿𝑥𝐿𝑦

√

1 − 𝛼2𝑥𝑦 +
𝑌 𝐷
𝐿𝑦𝑇𝑚

√

1 − 𝛼2𝑦𝑡

)

(A.17)
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𝑁𝑉 = 2𝜋 𝑋𝑌𝐷
𝐿𝑥𝐿𝑦𝑇𝑚

√

1 − 𝛼2𝑥𝑡 − 𝛼2𝑥𝑦 − 𝛼
2
𝑦𝑡 + 2𝛼𝑥𝑡𝛼𝑥𝑦𝛼𝑦𝑡 (A.18)

Here, 𝑇𝑚 is the mean zero-crossing period, 𝐿𝑥 and 𝐿𝑦 are the mean
components of the wavelength in 𝑥− and 𝑦−direction, and 𝛼𝑥𝑡, 𝛼𝑦𝑡 and
𝛼𝑥𝑦 are the irregularity parameters of the sea state. These irregularity
parameters account for correlations between space and time or space
and space so that waves are not counted twice. All these parameters
are given by Eq. (A.19)–(A.24):

𝑇𝑚 =
√

𝑚000
𝑚002

(A.19)

𝑥 = 2𝜋
√

𝑚000
𝑚200

(A.20)

𝑦 = 2𝜋
√

𝑚000
𝑚020

(A.21)

𝑥𝑡 =
𝑚101

√

𝑚200𝑚002
(A.22)

𝛼𝑦𝑡 =
𝑚011

√

𝑚020𝑚002
(A.23)

𝑥𝑦 =
𝑚110

√

𝑚200𝑚020
(A.24)

Now, the exceedance probabilities that a 3D crest height normalized
by 𝜎 exceeds a certain threshold 𝑧 within the 3D volume, on the 2D
surfaces, and along the 1D perimeter are given by:

𝑃𝐵
{

𝜂𝑐∕𝜎 > 𝑧 ∣ 𝐵
}

= 𝑃Rc (A.25a)

𝑃𝑆
{

𝜂𝑐∕𝜎 > 𝑧 ∣ 𝑆
}

= 𝑧𝑃Rc (A.25b)

𝑃𝑉
{

𝜂𝑐∕𝜎 > 𝑧 ∣ 𝑉
}

=
(

𝑧2 − 1
)

𝑃Rc (A.25c)

with 𝑃Rc representing the Rayleigh wave crest distribution from
Eq. (A.4). The probability the global surface maximum 𝜂𝑚𝑎𝑥 exceeds
threshold 𝑧 (given 𝑧 ≫ 1) over the 3D volume by the space–time model
(STE1) is given by Eq. (A.26).

𝑃STE1,max
{

𝜂max∕𝜎 > 𝑧 ∣
(

𝑁𝑉 , 𝑁𝑆 , 𝑁𝐵
)}

≈
[

1 −
(

1 − 𝑃𝑉
)𝑁𝑉

]

+
[

1 −
(

1 − 𝑃𝑆
)𝑁𝑆

]

+
[

1 −
(

1 − 𝑃𝐵
)𝑁𝐵

]

≈ 𝑁𝑉 𝑃𝑉 +𝑁𝑆𝑃𝑆 +𝑁𝐵𝑃𝐵 ≈
(

𝑁𝑉 𝑧
2 +𝑁𝑆𝑧 +𝑁𝐵

)

𝑃Rc (A.26)

Benetazzo et al. extended the STE1 model to include the second-
order contribution of the waves 𝜉, as originally presented in the Tayfun
model, here called the STE2 model (Benetazzo et al., 2015):

𝑃STE2,max
{

𝜂max∕𝜎 > 𝜉 ∣
(

𝑁𝑉 , 𝑁𝑆 , 𝑁𝐵
)}

≈
(

𝑁𝑉 𝑧2 +𝑁𝑆𝑧 +𝑁𝐵
)

𝑃Rc

(A.27)

The Gumbell asymptotic limit ensures exceedance probabilities
smaller than 1 for small thresholds, resulting in Eqs. (A.30) and (A.31)
in Box I for the STE1 and STE2 models, respectively. Here ℎ𝑠𝑡 is the
dimensionless most probable extreme value 𝜂𝑚𝑎𝑥∕𝜎 which can be found
by solving the following implicit equation:
( 2 ) ( 2 )
𝑁𝑉 ℎ𝑠𝑡 +𝑁𝑆ℎ𝑠𝑡 +𝑁𝐵 exp −ℎ𝑠𝑡∕2 = 1 (A.28)
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𝑃STE1,max
{

𝜂max∕𝜎 > 𝑧 ∣
(

𝑁𝑉 , 𝑁𝑆 , 𝑁𝐵
)}

≈ exp

{

−exp

[

−
(

𝑧 − ℎST
)

(

ℎST −
2𝑁𝑉 ℎST +𝑁𝑆

𝑁𝑉 ℎ2ST +𝑁𝑆ℎST +𝑁𝐵

)]}

(A.30)

𝑃STE2,max
{

𝜂max∕𝜎 > 𝜉 ∣
(

𝑁𝑉 , 𝑁𝑆 , 𝑁𝐵
)}

≈ exp

⎧

⎪

⎪

⎨

⎪

⎪

⎩

−exp

⎡

⎢

⎢

⎢

⎢

⎣

−

(

𝜉 − ℎST − 𝜇
2 ℎ

2
ST

)

(

ℎST − 2𝑁𝑉 ℎST+𝑁𝑆
𝑁𝑉 ℎ2ST+𝑁𝑆ℎST+𝑁𝐵

)

1 + 𝜇ℎST

⎤

⎥

⎥

⎥

⎥

⎦

⎫

⎪

⎪

⎬

⎪

⎪

⎭

(A.31)

𝑃STE1QD,max
{

𝐻𝑚𝑎𝑥 > 𝐻 ∣
(

𝑁𝑉 , 𝑁𝑆 , 𝑁𝐵
)}

≈ exp

⎧

⎪

⎨

⎪

⎩

−exp

⎡

⎢

⎢

⎢

⎣

−
(

𝐻 − ℎST ⋅ 𝜎
√

2(1 − 𝜓∗)
)

⎛

⎜

⎜

⎜

⎝

ℎST − 2𝑁𝑉 ℎST+𝑁𝑆
𝑁𝑉 ℎ2ST+𝑁𝑆ℎST+𝑁𝐵

𝜎
√

2(1 − 𝜓∗)

⎞

⎟

⎟

⎟

⎠

⎤

⎥

⎥

⎥

⎦

⎫

⎪

⎬

⎪

⎭

(A.32)

Box I.
.4. Crest-to-trough heights — Space–time extreme

By extending the linear STE1 model, an expression can be formu-
ated for a space–time crest-to-trough model. For this purpose, use is
ade of the Quasi-Determinism theory presented by Boccotti (2000).
his linear theory states that the largest waves in a certain sea state
ollow a deterministic shape, based on the autocorrelation function of
he wave spectrum as earlier defined by Eq. (A.2). Using the deter-
inistic shape of the largest waves, the relation between crest and

rest-to-trough height can be estimated as:

=
√

2(1 − 𝜓∗) ⋅ 𝜂 (A.29)

Again 𝜓∗ is defined as the minimum of the autocorrelation function
ased on Eq. (A.2). Rewriting Eq. (A.30) using the deterministic rela-
ionship of crest and crest-to-trough yields Eq. (A.32) for the STE1QD
odel (Boccotti, 2000) (see Eqs. (A.30)–(A.32) in Box I).
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