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Abstract
During infiltration of water in soil, menisci form at the interface of water, grains, and air
in the pores, inducing suction due to surface tension. Due to the random distribution of
interconnected pores of different sizes, characteristic of porous media, differences in suction
and friction inside pores give a diffusing infiltration front. The process of infiltration is
often simulated by solving Richards’ equation in which the water flux is calculated with
Darcy’s law. Underlying Darcy’s law is the assumption that the gradients in flow potential
and the flow resistance due to viscous forces are independent from each other. This paper
shows that these parameters are dependent and negatively correlated. A new method for
calculating flows in unsaturated porous media has been developed to evaluate the impact of
the covariance on infiltration predictions. The results show that the impact is significant and
leads to a reduction in infiltration rate and mean friction experienced during infiltration. The
method thereby provides a physical explanation for the subdiffusion observed during water
infiltration in soil and is consequently expected to provide more insights into the processes
of infiltration.

Keywords Darcy · Richards’ equation · Diffusion · Infiltration

1 Introduction

Soil is characterized by a random distribution in pore sizes. During water infiltration, water
menisci form at the interface of water, soil grains, and air in the pores, inducing suction due to
surface tension . Differences in suction and friction inside pores give a diffusing infiltration
front whereby the infiltration rate is higher in the smaller pores than in the larger pores.
The process of infiltration is often simulated by solving Richards’ equation (Richards 1931)
which follows from substituting Darcy’s law in the mass balance equation.

Darcy (1856) discovered that for fully saturated porous media, the volume flux of water in
soil is linearly dependent on the potential gradient over the porous media. Under fully satu-
rated conditions, gradients in potential are deterministic and given by the imposed boundary
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conditions (Bonilla and Cushmann 2000) . The friction experienced by a laminar flow inside
a pore thereby corresponds with the friction of a flow in an enclosed capillary tube. The
friction is consequently inversely proportional to the pore radius R [m] squared (Pfitzner
1976; Sutera and Skalak 1993). The mean flow velocity w̃ inside a water-filled pore with
radius R is related to the deterministic spatial gradient in flow potential head dφ

dη according
to

w̃ = −gR2

8ν

dφ

dη
(1)

Here, g [m/s2] is the gravitational constant, and ν [m/s2] is the kinematic viscosity of water.
For low-velocity flows, the potential φ approximates the pressure head. From Eq. 1 follows
that the expected value for the flow velocities inside a saturated porous medium E[w̃], which
is characterized by the random distribution in pore radii R, follows from

E[w̃] = − g

8nν
E[R2]dφ

dη
(2)

where n denotes the porosity of the soil and the term g
8nν

E[R2] resembles the expected value
for the friction experienced by the flow in the water-filled capillary tubes (Dekking et al.
2005). For saturated soil conditions, the potential gradients dφ

dη in the pores are deterministic
and independent from each other (Bonilla and Cushmann 2000). A hydraulic conductivity
parameter is now defined which is given by

K = 1

E[πR2]
gπ

8nν
E
[
R4] (3)

Multiplying the expected value for the flow discharge 1
E[πR2] E[πR2w̃] with the porosity n

and the expected value for the moisture content E(θ) gives the volume flux of water Q [m/s].
It should thereby be noted that for fully saturated soils, the expected value for the moisture
content is constant. Darcy’s law is found when multiplying the hydraulic conductivity K
[m/s] with the deterministic gradient in pressure head, which gives the specific discharge Q
[m/s], or

Q = −K
dφ

dη
(4)

Unlike saturated soils, unsaturated soils are characterized by the presence of watermenisci
at the interface of air, water, and soil particles. Over water menisci, the surface tension of
water induces a drop in pressure head resulting in suction. Young (1805) discovered that the
drop in pressure head �φ [m] over a water meniscus is inversely proportional to the pore
radius R and follows from

�φ = − 2γ

ρgR
(5)

Here, γ denotes the surface tension of water, and ρ [kg/m3] denotes the density of water.
In soil, pore radii are randomly distributed. Consequently, the drop in pressure head at the
boundary �φ results in a stochastic Dirichlet boundary condition which gives a stochastic
potential gradient field (Bonilla and Cushmann 2000). Over the years, different methods have
been developed to account for the effects of water menisci on the infiltration process.

In 1911, Green and Ampt attempted to simulate the infiltration of water into unsaturated
soil by representing soil as a series of independent capillary tubes between which no water
exchange is possible. For a closed off capillary tube with a fixed diameter, the gradient in
pressure head which is driving the flow is given by the difference in pressure head at either
end of the tube φ|η2 − φ|η1 divided by the infiltration length L (Green and Ampt 1911). For
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a flow down an enclosed capillary tube, the cross-sectional averaged flow velocity w̃ in a
capillary tube is given by

w̃ = −gR2

8ν

φ|η2 − φ|η1
L

(6)

Because Green and Ampt (1911) considered all tubes to be independent from each other, the
infiltration profile follows from summing the individual solutions for the flow velocities w̃

after multiplying them with the respective probability of occurrence. Equation 6 shows that
the infiltration rate increases with an increase in pore radius R. Amore rapid infiltration in the
wider tubes than in the smaller tubes gives an increase in pressure gradients between tubes.
For a porous medium like soil, this is unrealistic and conflicts observations. A criticism of
this bundle-of-tubes description is therefore that it does not account for cross-flows between
tubes (Bartley and Ruth 1999). Recently developed approaches therefore attempt to account
for the exchange of water between pores (Dahle et al. 2005; Talbot and Ogden 2008), making
the flow properties in pores dependent on the flow properties in other pores. These methods
are, however, limited by the accuracy with which the exchange of water between pores is
determined. In conclusion, bundle-of-tubes methods highlight two important aspects. One:
An independent description of tubes gives an inaccurate description of the infiltration process,
and two: Due to the dependence of the suction on the pore radius, the gradient in pressure
head changes from being deterministic to stochastic.

Richards (1931) took a continuum-based approach tomodellingflows in partially saturated
porous media. Richards’ starting point was the mass balance equation which states that the
change in moisture content inside a control volume equals the nett flux into that control
volume, or

∂θ

∂t
= −∂Q

∂η
(7)

Here, the first term refers to the change in overall moisture content, E[θ ] with time t , and
the term on the right-hand side denotes the nett inflow of moisture. Richards (1931) then
stated that the volume flux Q [m/s] could be described by Darcy’s law (see Eq. 4) leading to
Richards’ equation which is given by

∂θ

∂t
= − ∂

∂η

(
K E

[
dφ

dη

])
(8)

where φ refers to the distribution in pressure heads. Equation 8 is closed by means of soil–
water characteristic curves (Fredlund and Rahardio 1993; Fredlund and Xing 1994) which
empirically relate the expected value in pressure head φ to the moisture content θ . By apply-
ing Darcy’s law, Richards (1931) inherently assumed that the expected values of the viscous
effects and the gradient in pressure head are independent of each other and that the pres-
sure head is deterministic. The bundle-of-tubes description of soil has, however, shown that
in unsaturated porous media, the viscous contributions to the friction and the gradients in
pressure head are both stochastic parameters and dependent on the distribution in pore radii.
In this case, the expected value for the flow follows from the product of the expected value
of the hydraulic conductivity and the pressure gradient plus the covariance of the hydraulic
conductivity and the pressure gradient (Dekking et al. 2005) or

E
[
w̃
] = E

[ g

8nν
R2
]
E

[
−dφ

dη

]
+ Cov

(
g

8nν
R2,−dφ

dη

)
(9)

where E
[
w̃
]
denotes the expected value for the velocity inside a pore. Since the friction in a

pore and the gradient in pressure head are negatively correlated, the covariance is negative.
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Applying Eq. 2 to unsaturated porous media hence gives an overestimation of the mean
velocity. Similarly, the water flux Q through a porous medium follows from

Q = 1

E[πR2]
{
E
[ πg

8nν
R4
]
E

[
−dφ

dη

]
+ Cov

(
πg

8nν
R4,−dφ

dη

)}
(10)

The friction in a pore and the gradient in pressure head are negatively correlated. Darcy’s
law therefore overestimates the volume flux inside an unsaturated porous medium. The error
introduced by applying Darcy’s law thereby equals the covariance of the viscous effects and
the potential gradients multiplied by the surface area.

Studies have been performed on the characteristics of Richards’ equation in describing
wetting fronts (Witelski 1996; Gilding 1991). According to these studies, Richards’ equation
describes a continuously expanding wet region whereby the speed of wetting is finite. Several
discrepancies have been found between the solution and experimental data (Nielsen et al.
1962; Bell and Nur 1978; Roeloffs 1988). To improve the predictive capacity of Richards’
equation, closed-form relationships havebeendeveloped that relate the hydraulic conductivity
to themoisture content (Gardner 1958; vanGenuchten1980;Fredlund andXing1994) leading
to a nonlinear partial differential equation. More recent improvements made to Richards’
equation have a basis in the field of thermodynamics and aim to providemore insights into the
physical processes of infiltrations like soil hysteresis (Hassanizadeh and Gray 1980; Niessner
and Hassanizadeh 2008). Caputo (2000) noted that the permeability of a soil diminishes with
time as if the porous medium has a memory and went on to produce diffusion models by
including memory formalism. The memory effect is attributed to chemical reactions between
the porous medium and the pore fluid and due to the transportation of particles through the
channels (Caputo 2000; Sapora et al. 2017). Pachepsky et al. (2003) introduced a dependence
of the diffusivity on time or distance to account for the effects of the memory by replacing
the first-order time derivative by a fractional time derivative. Fractional diffusion equations
are related to random walk approaches and have shown to be a synthetic and efficient tool to
model memory effects and non-local interactions (Scalas et al. 2000; Evangelista et al. 2011).
Mathematical models based on fractional calculus have led to improved predictions of the
time-dependent decrease in diffusion observed during experiments. These models thereby
aim to incorporate the past history of the infiltration process on the present state of the system
(Freitas et al. 2017). Although a formal agreement with experiments is obtained, the physical
proof that the effects of memory are the source of the a time-dependent decrease in diffusion
is still lacking.

Although these models do give an explanation for the time-dependent decrease in diffu-
sion, they all are still based on substituting Darcy’s law in the mass balance equation and
inherently do not yet account for the contribution of the covariance. This paper analyses
the impact of the assumption underlying Darcy’s law that the covariance of the gradient in
pressure head and the friction approximates 0. To perform this analysis, a new modelling
methodology has been developed. In the new method, one mass and two momentum balance
equations are solved to describe a problem in one spatial dimension. One of the momen-
tum balance equations describes the flow through a pore, and the other momentum balance
equation describes the exchange of water between pores. The momentum balance equations
are linked to each other via the pressure, for which a pressure relationship is solved. At the
location of water menisci, the method accounts for the discontinuities in pressure field. The
number of parameters needed to solve these equations has been kept equal to the number of
parameters needed to solve Richards’ equation. Soil–water characteristic curves are thereby
used to derive a discretized pore space distribution (Fredlund and Xing 1994; Nimmo 2013)
that serves as input for the model. The model output consists of a discretized distribution in
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flow velocities. The max flux then follows from the discrete sums of the discharges w j A j in
the pores multiplied by their respective probability p j and the porosity n and divided by the
expected value for the surface area inside a pore.

Q = n

∑ j=∞
j=1 w̃ j A j p j
∑ j=∞

j=1 A j p j

(11)

Consequently, the model is well suited for evaluating the impact of the expected values. Sec-
tion 2 describes the development of the new method. The results are, respectively, presented
and discussed in Sects. 3 and 4.

2 Methodology

Porous media are here characterized as a random distribution of interconnected pores of
different sizes. Solutions for flows in porous media are therefore given by the statistical
ensemble of solutions for theflow in andbetween eachof the pores. The ensemble of pore sizes
has been discretized into k distinct sizes, each with a distinct radius R [m] and corresponding
probability p such that

∑i=k
i=1 pi = 1. The shape of a pore is assumed to be cylindrical which

is in line with the bundle-of-tubes-like description (Dahle et al. 2005; Talbot and Ogden
2008). The porous flow of a liquid with density ρ [kg/m3] is consequently well described
by the mass and momentum balance equations in cylindrical coordinates. In this section, the
methodology is illustrated for the case of vertical infiltration of water into soil whereby the
η coordinate direction has been replaced with Cartesian ẑ direction.

2.1 Constitutive Equations

A laminar flowdown the centre axis of a porous pipe is considered to have a parabolic velocity
distribution given by

w(r) = 2

R2 w̃
(
R2 − r2

)
(12)

where w [m/s] is the flow velocity as a function of r ∈ [0, R], where R [m] denotes the
radius of the tube. The flow is maximum for r = 0. The fraction at the right-hand side scales
the parabolic distribution in such a way that the cross-sectional averaged flow velocity in the
pore equals w̃.

2.1.1 Mass Balance

The exact flow field inside a cylindrical-shaped tube is of little interest as the assumption of
a cylindrical shape is only a simplification of the pore structure. This warrants integration
over the cross section of a pore. Due to the porous nature of soil, each individual pore in a
porous medium is connected with surrounding pores of different radii. The circumference
of a pore, when represented as a cylinder, consists of a fraction of pore spaces denoted by
the porosity n and a fraction of solid tube walls given by the grains and denoted by (1 − n).
The pore fraction in turn consists of j fractions, each of which resembles a connection with
another pore with a distinct pore diameter, such that the sum of the individual fractions leads
up to 1. Consequently, npi refers to that fraction of the circumference of the pore for which
the pore is connected with a specific neighbouring pore denoted by index i . This has been
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Fig. 1 Representation of the wall fraction and neighbouring pore fractions of a porous medium divided into
five discretized pore sizes (each pore has four neighbouring pores, or j = 4)

illustrated in Fig. 1. Between pores, both mass and momentum are exchanged. The degree to
which this exchange takes place depends on the probability of occurrence of the pores and
their corresponding properties (See Fig. 1). Due to the presence of solid particles separating
the pore spaces at the edge of the pore space, the flow in angular direction inside a pore is
assumed negligible. The total exchange of water between pores is given by the discrete sum
of the individual solutions for the flow between the pores. With R denoting the radius of
the pore, A = πR2 = ∑i=k

i=1 π pi R2, and with ũr referring to the cross-sectional averaged
nett outflow from the tube in radial direction, the cross-sectional integrated mass balance
equation follows from integrating the mass balance equation in cylindrical coordinates over
the cross-sectional surface area of a cylinder and is given by

∂ρA

∂t
+ ∂ρw̃A

∂z
+

i=k∑

i=1

2ρπRnpi ũr = 0 (13)

Here, pi is the probability of occurrence of a surrounding pore, ρ [kg/m3] is the density of
water and w̃ [m/s] is the cross-sectional averaged flow velocity down a pore.

2.1.2 Momentum Balance

For a laminar flow down a cylindrical pore, the shear stress is related to the flow velocity
according to (Schlichting 1979)

τr z = μ

(
∂w

∂r

)
(14)

where μ [Pa-s−1] is the dynamic viscosity of water. Substituting Eq. 12 in Eq. 14 shows
that the viscous effects experienced by the flow in a tube are linearly dependent on the
cross-sectional averaged flow velocity in a tube w̃, which is in line with Darcy’s law, and
Hagen–Poiseuille (Sutera and Skalak 1993). Consequently, integrating the momentum bal-
ance equation in cylindrical coordinates for flows in the ẑ coordinate direction over the
cross-sectional area of a cylindrical-shaped pore results in

∂ρAw̃

∂t
+ ∂ρAw̃w̃

∂z
+

i=k∑

i=1

2ρπRnũr w̃pi = −ρAgz − A
∂ P̃

∂z
− 8πμ(1 − n)w̃ (15)
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The friction experienced by the flow due to viscous forces is assumed to be due to the flow
interaction with the solid particles, denoted by (1 − n) in the last term of Eq. 15.

The horizontal flow between tubes follows from integrating the radial momentum balance
equation over the cross section of the tube. For the acceleration terms, this gives

∂ρũr A

∂t
+ 2πRρũr ũr + ∂ρũrwA

∂z

=
i=k∑

i=1

⎛

⎝ABpi −
r2∫

r1

2πri pi
∂P

∂r
dr

⎞

⎠− 2πR
ρgn

Kr
ũr (16)

Here, B denotes the body force in radial direction. The last term on the right-hand side denotes
the friction experienced by the radial flow. It should be noted that due to the unknown size
of the connections between the pores in radial direction, the term Kr [m/s], which resembles
the local conductivity in a pore, is at this stage yet unknown.

2.1.3 Pressure Relationship

Due to the exchange of water in and out of the pores and the effects of this exchange on the
pressure gradient, the cross-sectional integrated pressure in a pore is a function of the pore
diameter and z. An expression for the pressure follows from the Poisson equation which is
found by taking the divergence of the generic momentum balance equations. Integrating the
resulting expression over the angular direction from 0 to 2π pi and over the radial direction
r from 0 to R gives

2πR
∂ρũr
∂t

|r=R + 2π
∂ρũr ũr R

∂r
+ 2πR

∂ρũr w̃

∂z
+

i=k∑

i=1

2π pr RB + 2πRρgn

Kr
ũr

+ ∂

∂z

(
∂ρAw̃pi

∂t

)
+
(

∂2π piρũr w̃R

∂z

)
+ ∂2ρApi w̃w̃

∂z2
− Apiρwg

+ ∂

∂z
(8πμ(1 − n)w̃) = −

i=k∑

i=1

2π pi R
∂ P̃

∂r
|r2 − A

∂2 P̃

∂z2
(17)

It has thereby been assumed that ũr |r=0 = 0 and that A and p are constant in time.

2.2 Integrating over the Infiltration Length

At this stage, each pore in a porous medium is assumed to be connected with few surround-
ing pores. Due to the random arrangement of the soil matrix and corresponding random
distribution in pore sizes, for each pore it is unknown what the sizes of the directly adjacent
pores are. Consequently, no local information is available on the pressure in each of the
directly adjacent pores, or on the friction experienced by the flow towards or from the adja-
cent pores. This inhibits quantifying the flow exchange to and from each pore individually.
Joekar-Niasar et al. (2008) addressed this problem by resolving to a network model in which
the pore structure is randomized. Here, this problem is addressed by integrating each specific
pore diameter over the infiltration length. Each individual pore size is thereby evaluated on
the sum of the inflow and outflow from and to other pore sizes. It is thereby assumed that,
over the length of infiltration, each specific pore size is connected with the full distribution
of pore sizes larger and smaller than the pore size under evaluation. After removing the pore
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size under evaluation, the distribution of surrounding pore sizes is obtained. The cumulative
sum of the probabilities of occurrences of the surrounding pore sizes per definition adds up
to one, which has been accounted for by normalizing the probability of each surrounding
pore pi by the discrete sum of the probabilities of the surrounding pores.

p̃i = pi
∑ j=k

j=1 p j | j �= i
(18)

Each time, the flow properties that correspond to a single pore radius are evaluated. Pore
radii are thereby not assumed to vary in time or space.

2.2.1 Mass Balance Integrated

Integrating the mass balance equation in each discrete pore size over the infiltration length
in ẑ direction from z1 to z2, where z1 denotes the soil surface and z2 the infiltration front,
gives after applying Leibniz integration rule

ρA
∂L

∂t
+

i=k∑

i=1

2πρRpi ũr L − Aw̃|z1 = 0 (19)

By integrating each pore size over the infiltration length, the density no longer depends on
z. The overbar . in Eq. 19 denotes the infiltration length averaged value. A new outflow
parameter is now defined as q̃i = ũr L . Applying this parameter to the over the infiltration
length integrated mass balance gives

A
∂L

∂t
+ 2πRq̃r − Aw̃|z1 = 0 (20)

2.2.2 Momentum Balance Integrated

A positive consequence of integrating over the infiltration length is that the exchange of
water between the pores occurs over the full distribution of pore sizes. The pressure gradient
between two distinct pores averaged over the infiltration length is considered deterministic
as the pores are fully saturated over the infiltration length. Hence, the volume flux between
the pores could be determined using Darcy’s law whereby the average friction experienced
by the flow is denoted by the saturated hydraulic conductivity Ks [m/s]. Integrating the radial
momentum balance equation over z from z1 to z2 now gives

∂ρq̃r A

∂t
+ 2πRiρũr q̃r =

i=k∑

i=1

ABpi L −
i=k∑

i=1

r2∫

r1

2πRpi L
∂P

∂r
dr − Aρgn

Ks
q̃r (21)

The integral of the pressure gradient in radial direction given in Eq. 21 yet needs to be
determined. Applying integration by parts gives
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i=k∑

i=1

r2∫

r1

2πRpi L
∂P

∂r
dr =

i=k∑

i=1

2πRpi PL −
i=k∑

i=1

r2∫

r1

P2π
∂r Lpi

∂r
dr

=
i=k∑

i=1

2πRpi PL −
i=k∑

i=1

r2∫

r1

(
P2π pi L + P2πRL

∂ pi
∂r

)
dr

= −E(2πRL P̃)|r2 (22)

Here, E denotes the expected value. Hence, when integrating the pressure gradients over the
domain [0, R], the sum of the integral of the pressure gradients becomes equal to the expected
value for the nett driving pressure multiplied by the area of each pore. When ∂ pi

∂r = 0, as
would be the case for a uniform-distributed pore sizes, then no pressure differences are present
between the pores and the flow in horizontal direction is 0.

2.2.3 Pressure Relationship Integrated

Equation 17 is now integrated over the ẑ coordinate direction. Hereby, ∂L
∂t = w|z2 , and

ũr |z1 = 0. Water is thereby assumed incompressible leading to

Aw|z2 − Aw|z1 + 2πRq̃r = 0 (23)

Spatial gradients in flow accelerations in groundwater flows are small allowing for gradients
in advective acceleration to be omitted. Furthermore, substituting Z = −ρg and substituting
Eq. 23 in Eq. 17 give an expression for the over the infiltration length averaged pressure

inside a pore P̃ . This expression also guarantees that mass is overall conserved during the
exchange of water between the pores.

i=k∑

i=1

2π pi RLB|r2 + ρgn2πR

Ks
q̃r |r2 −

(
16π

R
μ(1 − n)pi + 4π piρũr

)
q̃r

= −
i=k∑

i=1

2π pi R
∂ P̃ L

∂r
− A

(
∂ P̃

∂z
|z2 − ∂ P̃

∂z
|z1
)

(24)

For each pore size, the distribution of the surrounding pores is unique as the pore size under
investigation is removed from the pore size distribution (see Fig. 1). This leads to k unique
equations for k pore sizes, and it becomes possible to resolve the flow for each individual
pore.

2.2.4 Body Forces

The final step needed to solve the mass and momentum balance equations is an expression
for the body force B. For a situation at rest, the capillary rise is inversely proportional to
the pore radius. Pressure profiles thereby linearly decrease over the capillary rise height and

the mean pressure is P̃ = P̃|z1+P̃|z2
2 (see Fig. 2). With no radial body forces (B) in place,

differences in boundary pressure P|z2 cause a net horizontal force which results in a flow
between tubes of different diameters despite an equal pressure gradient in the pores, and an
equal bottom boundary pressure (see Fig. 2). Consequently, a body force must be in place
to correct this. A body force in horizontal direction could only originate from the capillary
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Fig. 2 Pressure distributions for
steady-state cases with capillary
rise for two different pore radii

forces on that fraction of the sides of the pores in contact with air over the height equal to
the difference in infiltration length between pore radii. Hence, the body force is a function of
P(Li − L) where L is the pore under investigation and Li denotes the infiltration length in a
pore with index i . Between two pore sizes, the pressure acting over the height L − Li would
equal the average in pressure boundaries given by 1

2

(
P|z2 + Pi |z2

)
. Hence, the integrated

body forces are given by

A
i=k∑

i=1

Bpi L = 2πR
i=k∑

i=i

[(
Pz2 |i + Pz2

)

2
(Li − L) · pi

]

(25)

The gradient in body forces with respect to R, as given in the integrated pressure Poisson
equation (see Eq. 24), is given by

i=k∑

i=1

2π pi BLR = 2π
i=k∑

i=i

[(
Pz2 |i + Pz2

)

2
(Li − L) · pi

]

(26)

Substituting Eqs. 25 and 26 in, respectively, Eqs. 21 and 24 gives, respectively, the radial
momentum balance equation and pressure relationship used for resolving the volume flux
between pore sizes. The equations have been solved numerically according to the method
prescribed in “Appendix A.”

3 Results

In this section, the numerical solutions of the equations from Sect. 2.2 are given for two cases.
For both cases, the pore size distribution is based on the Van Genuchten equation. When the
steady-state potential is expressed in terms of the pore radius by means of φ = 2γ

R , then this
equation becomes (Fredlund and Xing 1994)

P(R < R) =
⎡

⎢
⎣

1

1 +
(
−sρg 2γ

R

)w

⎤

⎥
⎦

m

(27)
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Fig. 3 Pore space distribution corresponding to the demonstration case of horizontal infiltration

Here,m,w, and s are curve fitting parameters wherebym = 1− 1
w
. The resulting distribution

is depicted in Fig. 3 for w = 3, and s = 1. The values for P(R < R) range from 1
no+2 to

no
no+2 , where no is the discrete number of pore sizes indicative of the distribution. This results
shown correspond with no = 200. A further increase in the number of tubes only provided a
small increase in accuracy. The values corresponding with the lowest and highest cumulative
probability have been used to, respectively, determine the upper and lower limit values for φ,
which have been converted into radii using Eq. 5. The radii are thereby assumed to increase
at equal distant steps from Rmin to Rmax.

For various deterministic constant positive pressures described at a boundary location
below a horizontal phreatic surface, the simulated capillary rise results in a rest saturation
profile that corresponds with a moisture distribution given by Van Genuchten equation. The
rate of capillary rise is thereby faster in the smaller pores than in the larger pores, indicating
that the exchange of mass and momentum is accurately predicted by the model. Mass and
momentum are thereby exchanged from the wider pores towards the narrower pores. Figure 4
demonstrates the model output for a case of horizontal infiltration in a soil with a pore space
distribution given by Fig. 3. Here, the infiltration profiles are given at 80 s intervals whereby
the outside water pressure is given by 0.50 m water column. For a higher positive pressure
head, the degree of advection of the infiltration frontwas found to increase. The corresponding
internal exchange of water between pores of different sizes is depicted for each of the time
steps in Fig. 5. As can be seen, the larger pores show a net outflow and the smaller pores
a net inflow. Water is hence rerouted from the larger pores towards the smaller pores. The
exchange of water between the pores thereby decreases with time leading to the characteristic
decrease in diffusion of the infiltration profile with time as illustrated in Fig. 4.

At the boundary where the soil is saturated, a water flux conforming to Darcy’s law is
found by multiplying the expected value of the potential gradient by the expected value of
the friction, both of which follow from the model. To determine the expected value for the
friction which conforms to Darcy, the effects of the exchange of radial momentum were set
at 0. The prediction of the specific discharge according to Darcy as depicted on the horizontal
axis in Fig. 6 now represents
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Fig. 4 Moisture content profiles at 80 s intervals (from left to right) for the horizontal infiltration in soil. The
dashed line indicates the initial infiltration profile
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80 s intervals (from light to dark) for the horizontal infiltration in soil. A positive velocity indicates an outflow
from a pore. The initial condition consists of a 0 exchange
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Fig. 6 Product of the expected value of the potential gradient and the expected value of the friction (see Eq. 3)
(horizontal) versus the expected value of the water flux (vertical). The difference indicates the error introduced
by Darcy’s law in Richards’ equation

Q = 1

E[πR2]
{
E
[ πg

8nν
R4
]}

E

[
−dφ

dη

]
(28)

These results have been set out against the expected value for the mass flux that follows
directly from the model, given on the vertical axis, which follows from

Q = 1

E[πR2]
{
E

[
− πg

8nν
R4 dφ

dη

]}
(29)

Figure 6 shows both predictions set out against each other for t > 2 s. During the first 2 s, the
model is initializing. The initial conditions of the model were chosen such that no pressure
gradients were present between the pores. After 2 s, the effects of this assumption were
negligible. The difference in prediction indicates the effects of the covariance. The solid line
denotes the perfect fit line. As time progresses, the nett effects of the covariance become
smaller as indicated by the decrease in deviation from the perfect fit line when following the
predictions in Fig. 6 from the top right to the bottom left. The relative effect, indicated by
the ratio between predictions, however appears to remain constant.

Substituting Darcy’s law in the mass balance equation gives Richards’ equations (see
Eq. 8) (Richards 1931). By substituting the Boltzmann variable λ = η

t0.5
, Eq. 8 becomes

− λ

2

∂θ

∂λ
= ∂

∂λ

(
K (θ)E

[
∂θ

∂λ

])
(30)

where the hydraulic conductivity K is a function of the moisture content. For Eq. 30 to be
valid, the relation between the expected value of the location of the infiltration front L and time
t must obey L :: tα for α = 0.5 (Pachepsky et al. 2003). Here, the value of α = 0.5 denotes
the Fickian diffusion of the infiltration front, indicating that the mean-squared displacement
of the infiltration front is a linear function of time. Values for α < 0.5 indicate subdiffusion
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Fig. 7 Change in subdiffusion with time

of the infiltration front whereby the mean-squared displacement of the infiltration front is a

sublinear function of time. Defining L lg = lg(L) and tlg = lg(t) gives that
dL lg
dtlg

= α. Here, lg
refers to the natural logarithm. In Fig. 7, the values for α have been set out against time for
t > 2.8 s. As indicated by the values for α < 0.5, subdiffusion takes place during the initial
stages of infiltration. Over time, the behaviour of the system converges to that of Fickian
diffusion.

4 Discussion

Pachepsky et al. (2003) noted that Richards’ equation is not general enough to simulate water
transport in various soils. One of the improvements suggested by Pachepsky et al. (2003) was
to introduce a dependence of the diffusivity on time or distance via a fractional derivative of
the water content. This approach has been the focus of more recent studies which highlight
the effectiveness of such an approach on capturing the subdiffusion of the infiltration front
(Freitas et al. 2017; Evangelista et al. 2011; Sapora et al. 2017). Figure 7 shows that during the
initial stages of infiltration, the change in expected location of the infiltration front with time
is described by a subdiffusion process as α < 0.5, whereby L :: tα . With time, the process
asymptotically approaches a Fickian diffusion problem indicated by α = 0.5. The values
for α following from the model are in line with the values given by Pachepsky et al. (2003)
who found values between α = 0.344 and α = 0.479 for infiltration depths up to 50 cm.
Consequently, the model appears to capture the time-dependent diffusivity of the infiltration
front well by simulating the exchange of mass and momentum between the pores. Richards’
equation follows from substituting Darcy’s law in the mass balance equation. An error is
introduced in Richards’ equation by ignoring the impact of the covariance of the potential
gradients and hydraulic conductivity in calculating the volume flux. Deviations from the
Fickian diffusion indicated by the values for α < 0.5 are therefore indicative of the impact of
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the divergence of the covariance. The degree in deviation from Fickian diffusion during the
initial infiltration (see Fig. 7) indicates that the effects of the divergence of the covariance are
significant. It is important to note that the degree of subdiffusion decreases as the infiltration
front progresses. Consequently, it is related to the degree of exchange of water between the
different-sized pores and pressure differences between the pores. A more extensive study to
quantify the effects of subdiffusion is recommended.

In the model, the water exchange between the different-sized pores follows from the
mass and momentum balance equations. Pressure differences between the different pore
sizes decrease as the infiltration front diffuses. This causes a reduction in the exchange
of water from the larger towards the smaller pores and a decrease in subdiffusion of the
infiltration front. Bundle-of-tube models (Talbot and Ogden 2008) and dual-permeability
models (Gerke and Van Genuchten 1993) account for a redistribution of water between the
different-sized pores. Characteristic of these types of models is that mass is redistributed,
but momentum is not. In this type of models, the expected value of the pressure gradient
in the individual pores is assumed to be independent on those in the surrounding pores.
In the presented model, the pressures between the different pore sizes are made dependent
on the other pores by solving the momentum balance equations for the flow between the
pores. The presented model thereby shows similarities with the model of Sapora et al. (2017)
who made the flow rate in a point dependent on the gradient in pressures in all nonadjacent
points. Sapora et al. (2017), however, assumed that the sum of horizontal pressure differ-
ences is 0, indicating that the sum of the exchange of water between the pores is 0. Here
is assumed that the sum of the exchange of water between the pores is equal to the sum
of the spatial gradients in the exchange of water. Diffusion of the pressures between the
different pore sizes and the time-dependent reduction in mass exchange between the dif-
ferent pore sizes thereby explain the subdiffusive behaviour of the infiltration front. The
results may be used to extend the method of Sapora et al. (2017) by adding fractional time
derivatives.

Figures 4 and 5 show the effect of the pressure differences between the different pore
sizes and how diffusion of the pressure differences between the pores results in a contin-
uous decrease in the rate of exchange of water between the different pore sizes. Diffusion
of the rate of exchange implies that there is one pore size for which the nett inflow and
outflow are the same. The rate of diffusion is thereby limited by the balance between the
pressure differences and the flow resistance. A larger positive pressure head on the soil
surface gives an increase in the rate of displacement of the infiltration front which cor-
responds with findings by Freyberg et al. (1980). During desorption, pressure differences
between the pores change. Water exchange tends to be dominant in the direction of the
larger pores towards the smaller pores due to the higher capillary action in the smaller
pores. The lack of water exchange during desorption therefore results in a higher average
flow resistance and a higher matric suction. This corresponds with the soil hysteresis phe-
nomena described by Tami et al. (2004). To improve the understanding of the hysteresis
phenomena, further studies to the dependence of pore pressure gradients and the exchange
of water between the pores, indicated by the effects of the covariance, are therefore recom-
mended.

A requirement for any model to capture the infiltration process correctly is the need
to predict the volume flux correctly. Due to differences in pore sizes, the average infiltra-
tion rate is a function of the rate of exchange of water between the different pore sizes. In
Richards’ equation, the average volume flux is determined by Darcy’s law which is based
on the assumption that the friction in the pores and the potential gradient are independent
on each other. The developed model was used to evaluate this assumption. Figure 6 shows
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that the impact of the dependence between the potential gradient and friction is significant.
Ignoring the effect of the covariance gives an overestimation of the specific discharge pre-
dictions of approximately 48% (See Fig. 6). It should be noted that the quantification of
this impact is influenced by the method of choice whereby pore sizes are averaged over the
infiltration length and soil is schematized as a distribution of interconnected tubes. How-
ever, considering that the model physically captures the subdiffusion of the infiltration front
indicates that in the case of unsaturated soils, the average pressures in a pore are depen-
dent on those in the neighbouring pores. The effects of the dependence between the friction
and capillary pressures on predicting the volume flux are thereby significant. The signifi-
cant impact of the covariance also introduces questions about the impact of the continuum
assumption underlying Richards’ equation (Gilding 1991). The problem with the contin-
uum approach is that the divergence of the covariance cannot be accurately determined and
the effects of the covariance on the inflow boundary conditions are a priori unknown. An
advantage of the method presented herein over the Richards’ equation solvers is that the
pressure boundary conditions and body forces are well defined in the model. The constitutive
equations and solution method given here for the case of a 1D infiltration problem could
thereby be extended to 2D or 3D problems. The model is thereby able to reproduce the
subdiffusion of the infiltration front. Spatial and temporal fractional approaches may also be
able to capture the impact more accurately. Further research on how to capture the effects
of the covariance of the friction and potential gradient in these types of models is therefore
recommended.

5 Conclusion

This paper presents the results of a study to the impact of the dependence between the
friction and potential gradient, which is ignored by Darcy’s law underlying Richards’ equa-
tion. Both the friction and potential gradient are a function of the pore radius and are
randomly distributed. Darcy’s law must therefore be extended to include the covariance
of the potential gradient and the friction. A new modelling method was presented which
accounts for this dependence in simulating the infiltration process in unsaturated porous
media. In this model, pore pressures have been made dependent on the pressures in the
surrounding pores. Pressure differences between pores thereby balance the friction losses
due to the exchange of water between the pores. The model output shows that ignoring the
effects of the covariance gives a significant over-prediction of the volume flux and prevents
the time-dependent diffusion process from being captured. The impact of the covariance,
however, decreases as the infiltration depth increases. The degree of subdiffusion thereby
approaches Fickian diffusion. Further studies to the impact of the divergence of the covari-
ance are recommended to further improve the accuracy with which the infiltration process
can be modelled.
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Appendix

A SolutionMethod

This appendix describes the numerical scheme used to solve themass andmomentumbalance
equations given in Sect. 2.2. In the numerical solution, the spatial gradient in advective
acceleration in the ẑ direction has been ignored as this is small compared to changes in radial
direction. The method of solving the equations has been based on an over the infiltration
length integrated implicit pressure correction method (Chorin 1997; Ferziger and Peric 2002;
Stelling and Zijlema 2003) which leads to the following steps.

1. Define the initial conditions
2. Use an initial guess for the averaged pressure P̃ to solve Eq. 31. This results in a first

guess for the over the infiltration length averaged radial flow velocity q̃r [m/s].

∂ρq̃r A

∂t
+

i=k∑

i=i

2πRpiρũr q̃r

= 2πR
i=k∑

i=i

[(
Pz2 |i + Pz2

)

2
(Li − L) · pi

]

− E(2πRLP)|r2 − ρgn

Ks
q̃r (31)

3. Estimate the new infiltration length from

A
∂L

∂t
+ 2πRq̃r − Aw̃|z1 = 0 (32)

4. Substitute the resulting value for q̃r in the pressure relationship given by Eq. 33 to arrive
at a new estimation of a pressure field which also guarantees that mass is conserved.

2π
i=k∑

i=i

[(
Pz2 |i + Pz2

)

2
(Li − L) · pi

]

+ ρgn2πR

Ks
q̃r |r2 − 16π

R
μ(1 − n)q̃r

= −2πR
i=k∑

i=1

pi
∂ P̃

∂r
− A

(
∂ P̃

∂z
|z2 − ∂ P̃

∂z
|z1
)

(33)

5. Repeat Steps 2 to 4 until the solution has converged
6. Solve the cross-sectional averagedmomentum balance equation in the ẑ coordinate direc-

tion to update the boundary condition for the inflow in each of the tubes.

∂ρAw̃

∂t
|z1 + 8πμ(1 − n)w̃|z1 = −ρAg − A

∂ P̃

∂z
|z1 (34)

7. Go back to step one whereby the new initial conditions follow from the converged results
of the previous time step.

A.1 Discretization

Due to the very small distances between the pores, the momentum balance equations have
been solved with the implicit time stepping method. The discharge q̃r and the pressure P are
thereby solved iteratively. Below, the previous iteration step is denoted by the superscript ∗.
The result of the new iteration step is denoted by ∗∗. The previous time step is denoted by
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superscript n and the new time step by superscript n+1. The new time step is reached after
the iterations have converged at which moment the variable at the new time step equals the
last guess from the iterations. The length L has implicitly been accounted for in solving the
radial momentum balance equation to improve model stability. The length at a new time step
follows from the mass balance equation which has been discretized as

Ln+1 = Ln − �t
2n

R
q̃n+1
r + �tw̃n |z1; (35)

please note that w̃|z1 [m/s] is defined at the old time step and is considered as a quasi-steady
inflow boundary condition. The value for q̃n+1

r is given by the final iteration step for q̃r . In the
radial momentum balance equation (see Eq. 31), the local and advective acceleration term
and the friction term have been discretized as

ρA
q̃∗∗ − q̃n

�t
+
(

2πRpi
q̃∗
L∗ + ρgn

Ks

)

˜q∗∗ (36)

A semi-implicit expected value for the driving force in the momentum balance equation in
radial direction (See Eq. 31) follows from replacing the infiltration lengths by the expression
for Ln+1 given by Eq. 35. This gives

−E
(
2πRL P̃

)
|r2 = −2πR

i=k∑

i=1

( ¯̃P∗
i L

∗∗
i − ¯̃P∗L∗∗) pi

= 2πR
i=k∑

i=1

( ¯̃P∗
i L

∗∗
i pi

)
− ¯̃P∗L∗∗

= 2πR
i=k∑

i=1

[
¯̃P∗
i

(
Ln
i − �t

2n

R
q̃∗∗
i + �tw̃n

i |z1
)
pi

]

− 2πR

[
¯̃P∗
(
Ln − �t

2n

R
q̃∗∗ + �tw̃n |z1

)]
(37)

The body forces in Eq. 31 are represented by the capillary action at the side walls of the
tube and are hence given by the difference in infiltration length between the tubes. The same
procedure as followed for deriving the implicit discretized pressure relationship has been
used to find an implicit discretized relationship for the body force. This results in

−2πR
i=k∑

i=1

[(
P|z2 + Pi |z2

2

) (
L∗∗ − L∗∗

i

)
pi

]

= −2πR
i=k∑

i=1

[(
P|z2 + Pi |z2

2

) (
Ln − Ln

i

)
pi

]

− 2πR
i=k∑

i=1

[(
P|z2 + Pi |z2

2

)
�t

(
w̃n |z1 − 2n

r
q̃∗∗
r − w̃n

i |z1 + 2n

R
q̃∗∗
r |i

)
pi

]
(38)

whereby
∑i=k

i=1 pi = 1. Hence, for tubes with a larger infiltration length than the tube under
regard, the body forces are negative reducing the outflow from a tube, and for tube sizes
smaller than the tube under regard, the body forces are positive giving a stronger outflow.
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In the Poisson equation, the pressure terms consisting of the right-hand side of Eq. 24
have been discretized as

−
i=k∑

i=1

2π pi R
∂PL

∂r
− A

(
∂P

∂z
|z2 − ∂P

∂z
|z1
)

=
i=k∑

i=1

2π pi R
¯̃P∗∗
i L∗∗

i

R
− 2π pi R

¯̃P∗∗L∗∗

R
+ 4πR2

¯̃P∗∗

L∗∗ − 2πR2 P|z2
L∗∗ − 2πR2 P|z1

L∗∗

(39)

Equation 39 has been solved by rewriting it as amatrix vectormultiplication given by A ¯̃P∗∗ =
V . Matrix A thereby contains the known parameters and vector ¯̃P∗∗ the unknown pressures.
Vector V follows from the input values given by the previous iteration step of the momentum
balance equations and contains the pressure boundary conditions given by the last two terms
in Eq. 39 and the parameters given by the left-hand side of Eq. 33which have been discretized
as

2π
i=k∑

i=i

[(
Pz2 |i + Pz2

)

2

(
L∗∗
i − L∗∗) · pi

]

+ ρgn2πR

Ks
q̃∗∗
r |r2 − 16π

R
μ(1 − n)q̃∗∗

r ; (40)

the total volume flux now follows from the sum of the flow down all tubes scaled by the area
of the individual tubes.

qz = 1
∑i=k

i=1 Ai

i=k∑

i=1

wi pi Ai n (41)

An advantage of the proposedmethod is that the exchange ofwater between the pores is based
on the mass and momentum balance equations instead of an a priori assumed redistribution
profile. The exchange ofmass andmomentum is thereby also accounted forwhen determining
the overall redistribution of water in soil.
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