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Connecting the macroscopic world of continuous fields to the microscopic world of discrete molecular events
is important for understanding several phenomena occurring at physical boundaries of systems. An important
example is heterogeneous catalysis, where reactions take place at active surfaces, but the effective reaction rates
are determined by transport limitations in the bulk fluid and reaction limitations on the catalyst surface. In this work
we study the macro-micro connection in a model heterogeneous catalytic reactor by means of stochastic rotation
dynamics. The model is able to resolve the convective and diffusive interplay between participating species, while
including adsorption, desorption, and reaction processes on the catalytic surface. Here we apply the simulation
methodology to a simple straight microchannel with a catalytic strip. Dimensionless Damkohler numbers are
used to comment on the spatial concentration profiles of reactants and products near the catalyst strip and in the
bulk. We end the discussion with an outlook on more complicated geometries and increasingly complex reactions.

DOI: 10.1103/PhysRevE.96.022115

I. INTRODUCTION

Many of the chemicals and fuels encountered in our daily
life are products of chemical conversion in reactors, where
catalyst materials are used to accelerate the conversion rate
without being consumed themselves. Heterogeneous catalysis,
i.e., reactions taking place on the surface of a solid catalytic
material (deposited on or inside a structured or porous
support) is the most common type of catalytic conversion. The
design and optimization of heterogeneous catalytic reactors
is an intrinsically multiscale and multiphysics problem: the
microscale (intrinsic) kinetics are determined by quantum
chemical effects, while the macroscale (effective) kinetics are
often limited by flow and diffusion of reactant and product
species around and through the support structures. A number
of computational methods have been developed to capture
these effects. Density functional theory modeling [1,2] is
one such approach to study molecular electronics, whereas
microkinetic modeling [3] focuses on the surface chemistry
of reactions with the aim of generating rate constants for
different reaction pathways that lead to product generation.
At the macroscale, the discrete element method [4] and
direct numerical simulations [5] model large multicomponent
systems by looking at the particle interactions and resolving
the hydrodynamic forces surrounding these particles. The
connection between these two scales is critical as information
needs to be passed from the microworld in some usable
form to the macroworld, and this is where the need for the
mesoscale world emerges with a smooth transition from a
discrete environment to the continuum.

*a.sengar@tue.nl
†j.t.padding@tudelft.nl

Various mesoscale techniques could be used such as the
Lattice-Boltzmann method, direct simulation Monte Carlo,
and dissipative particle dynamics. One approach that may be
particularly suitable for the study of reactive surfaces coupled
to diffusive flows is stochastic rotation dynamics (SRD),
originally developed in 1999 by Malevanets and Kapral [6].
SRD relies on the discrete-time dynamics of coarse-grained
particles in a continuous space, executing computationally
efficient local collisions of particles with their neighbours
while conserving momentum and energy [7]. Given that SRD
is a stochastic approach, thermal fluctuations are inherently
present in the calculation of any dependent variable. The
automatic inclusion of hydrodynamic interactions, both short-
range and longe-range, gives the model a very appealing
tone. The transport process variables have been extensively
studied, and analytical expressions to describe them have
previously been derived in Refs. [8–14]. SRD has been
implemented to study various systems such as polymer flow
[15,16], phase separation in binary and tertiary mixtures
[17], colloidal suspensions [18], vesicles in shear flow [19],
enzyme catalysis [20], and anisotropic interaction in liquid
separation [21].

The SRD model has been extended to include homogeneous
reactions. Rohlf et al. [22] used the approach by including
birth-death stochastic processes to study limit cycle formation
in the Selkov model. The approach developed is called the
reactive multiparticle collision model. The SRD model has also
been extended to simple heterogeneous reactions occurring on
the surface of a spherical catalyst particle [23–26]. In these
works, it is assumed that the reaction happens instantaneously
with a certain probability once the reactant species collides
with the catalytic sphere. The method has first been applied
to static catalytic particles [23,24] and later extended to
self-propelled nanomotors [25,26]. This method applies to
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instantaneous reactions that are only transport limited and not
reaction limited.

Most real heterogeneous chemical systems have certain
rate-determining steps associated with the individual pro-
cesses, such as adsorption, desorption, and individual elemen-
tary reaction steps that require overcoming large activation
barriers. The aim of this paper is to show that SRD can
also be used to study such multicomponent systems involving
various time scales associated with both transport and reac-
tion limitations. Other particle-based techniques have been
previously used to study reaction-diffusion systems [27], but
the introduction of a surface reaction model that incorporates
different reaction rates for each participating process in this
work extends the model beyond previous studies. Squires et al.
[28] have developed a first-order adsorption desorption model
under quasisteady-state equilibrium conditions. The present
model will expand further on the model of Squires et al. by
giving the adsorbed species different pathways of desorption
and reaction.

The paper is arranged as follows. In Sec. II we focus
on the development of the model, stating the presence of
catalyst inside the system, interaction of the reactants with
this catalyst leading to product formation, and diffusion of
these products out of the system. This study also involves
determining rate parameters used to construct the system. In
Sec. III we describe the surface reaction models and provide a
dimensionless analysis to compare the diffusive and reactive
fluxes at a steady state. Damkohler numbers [29] are defined
to draw out this comparison. In Sec. IV we validate the model
for (a) diffusion by comparing the simulation results with the
analytical solution for a convection-diffusion problem and (b)
reactions by comparing equilibrium surface coverage over the
catalyst with the solution for the surface reaction model. A
new adsorption and desorption technique for a particle-based
model is mentioned that can be expanded to include reactions.
In Sec. V we study the temporal and spatial concentration
profiles of product species generated for different Damkohler
numbers. Finally, we draw conclusions and present an outlook
for further studies with the model in Sec. VI.

II. METHODOLOGY

The solvent present in SRD is represented by a coarse-
grained ensemble of fluid point particles. There has been
sufficient discussion with regard to approaches to model a
pure solvent model using SRD [13,18]. Inclusion of different
species with different diffusivities makes the dynamics more
interesting with regard to real world applicability.

A. Fluid model

In this paper we will focus on a simple narrow slitlike
microfluidic reactor, described in more detail in the next
subsection. The participating species in the model reactor are
modeled as follows. Inside the system, N particles are placed,
such that the total mass in the reactor is

∑k
i=1 χimiN where

χi and mi are the mole fraction and mass of component i,
respectively, and k is the number of components inside the
system. In the scope of this study, k will be either 1 or 2.

The two steps for the SRD algorithm are the streaming
and the collision step. During the streaming step, for every
discrete time interval �tc, the coordinates are updated using a
first-order Euler scheme

rt+1
i = rt

i + vt
i�tc, (1)

where ri
t and vi

t are the position and velocity vector of particle
i at time t. The particles do not interact with each other during
the streaming step. For the collision step, the three-dimensional
space is coarse grained into a grid of cubic lattice cells of size
a0. Interparticle collisions are then carried out within each
cell space where the particle velocity is updated using the
expression

vt+1
i = v̄ + �

(
vt

i − v̄
)
. (2)

Here v̄ is the center-of-mass velocity of all particles in the same
cell as particle i and therefore takes into account the presence
of different kinds of particles, and � is a stochastic rotation
matrix that rotates the velocity vector of each particle in the
center of mass reference frame around a randomly oriented
axes by a fixed angle α. It has been shown previously [6] that
there is an H theorem to the algorithm stating that the velocities
equilibrate to a Maxwell distribution, and that the macroscopic
behavior is in accordance with the hydrodynamic (Navier-
Stokes) equations conforming to the ideal-gas equation of
state.

A random grid cell shift procedure is employed just before
the collision procedure to ensure Galiliean invariance [8]. If the
mean-free path of particles is more than half the grid cell size,
this shift procedure is not required as the particles undergo
momentum transfer both within and outside the grid cells in
subsequent time steps.

Due to the grid-shift procedure, certain cells at the boundary
will be underfilled and certain cells will be overfilled. Lamura
et al. [30] first mentioned the introduction of pseudoparticles to
account for the possible artificial lower viscosity of boundary
cells. This was further extended by Whitmer and Luijten
[31] for overfilled boundary cells. Appendix A provides
further details about the treatment of boundary cells in a
multicomponent system.

In some cases a body force is used to drive a flow in the fluid.
In such a case, the velocity update by the collision step, Eq. (2)
is immediately followed by a change in velocity vt+1

i = vt+1
i +

g�tc, where g is the acceleration associated with this body
force. Note that care must be taken to not apply a large body
force to stay away from Mach number limitations caused by the
high compressibility of the SRD fluid [18]. Also, the external
body force will supply energy to the system, which will result
in an overall increment in the energy of the system, leading to
an increase in the average temperature. A Galilean invariant
thermostat proposed by Padding and Louis [18] has therefore
been implemented. The thermostat performs a global rescaling
of the velocity fluctuations in the center of mass frame to
calibrate the temperature for the next time step. Furthermore,
no-slip boundaries are included such that any particle that
reflects off a boundary surface experiences a velocity reversal
(also called bounce-back). This ensures that particles have
a net zero velocity adjacent to the boundaries for long-time
steady-state averages.
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TABLE I. Simulation parameters used and their units.

Unit Expression

Length a0

Energy kBT

Mass of solvent mf

Time t0 = a0

√
kBT

mf

Diffusion coefficient D0 = a2
0

t0
= a0

√
kBT

mf

Fluid simulation parameters
γ : average number of particles per grid cell
�tc: SRD streaming time step
α: SRD rotation angle
W,H,L: Length of box along x, y, and z directions

The dimensionless mean-free path λ is important when
considering characteristic length scales. In our simulations
units, shown in Table I, the dimensionless mean-free path [18]
equals λ = �tc/t0.

The diffusion coefficient for a single particle in a pure
solvent has been calculated by Kapral [32]:

D

D0
= kBT �tc

2mf

[
3γ

(γ − 1 + e−γ )(1 − cos α)
− 1

]
. (3)

This equation is accurate for larger mean-free paths λ > 0.6.
However, deviations occur for smaller mean-free paths when
long-time kinetic correlations develop. In such a case, the
probability of two or more particles occupying the same grid
cell at subsequent time steps increases rapidly leading to an
underestimation of the diffusion coefficient given by Eq. (3).
The corrections have been studied by Ripoll et al. [16].

B. Reactor model

Introduction of a binary mixture in this reactor will pave
the way for the study of multicomponent flows in addition to
chemical reactions where a product formation is facilitated by
the presence of a catalytic strip in the system that leads to
concentration gradients of reactant and product components.
Since the aim of the paper lies in validating the use of SRD
model to carry out reactions, a study of a simple reaction
A → B will be undertaken when mA = mB . The diffusion
coefficient of both the components is therefore the same,
as can be seen from Eq. (3). The interactions between the
different species is assumed to be ideal, as is the case for
an ideal gas system. Extensions to nonideal interactions are
studied by Tuzel et al. [17] for phase separation behavior in
a mixture but are not implemented in this work. Including
complex reactions where reactants and products have different
masses and different mobilities will be the topic of a future
publication.

Figure 1 shows a schematic of the reactor model. The
simulation domain is rectangular, with dimensions W , H , and
L. Periodic boundaries are applied along the x axis and z

axis. If a product particle, B, crosses over the z-axis boundary,
it converts into a reactant molecule, A, while conserving
mass. For the x-axis boundary crossover, only the particle
position is updated. Walls are placed along the y axis at

FIG. 1. The catalyst is present at the center of the system with
dimensions Lcat × W , The kinetic rate constants for the first-order
Langmuir reaction for particle of type i are ki

ads and ki
des and the

diffusivity of particle of type i is Di .

y = 0 and y = H . The system is initialized by filling the
space with the reacting solvent, A, with a number density γ .
The particle coordinates are chosen at random, with velocity
fluctuations from a Maxwell-Boltzmann distribution with a
standard deviation of

√
kbT /mA. For longer time averages, the

net velocity will always be zero, unless an external body force
is applied. At y = 0, a region Lcat in width and W in length at
the center of the z axis is defined as the catalytic strip. This strip
contains Ncat open positions to collect particles. Any particle
that bounces on the strip has a probability pon of attaching
to the strip, i.e., the adsorption probability is controlled by
pon. The probability parameter is a measure of the enthalpy of
activation for adsorption and arises from the Eyring-Polanyi
equation in Transition State theory [33]. Having encountered
the wall, if the reactant particle does not meet the strip or does
not stick to it within that time step, it is reflected back with a
bounce-back rule to maintain a no-slip condition at the wall [7].

For any adsorption of A occurring on the surface, the posi-
tion of the particle on the strip is recorded. After adsorption, the
particle has three choices. There is a probability of desorption,
pdes, that the particle leaves the surface, a probability pr+ that it
reacts to form a product particle B (which might further desorb
from the surface), and a probability 1 − pdes − pr+ that it stays
adsorbed. Note that the probabilities pdes and pr+ apply to a
single time step �tc. We will relate them to a rate constant in
the next subsection. When the particle desorbs, it desorbs from
the recorded location, which is an accurate approximation for
diffusion-limited surface reactions. Particles desorbing from
the catalytic strip obtain a tangential and a normal velocity
component, the distribution of which is equivalent to the
velocity distributions of incoming particles that adsorbed on
the strip. This ensures reversibility in the system with respect
to the reactant and product species. Further details concerning
the treatment of adsorption and desorption at the catalytic strip
for different mass particles are presented in Appendix B.

Once product particles (B) are desorbed back inside the bulk
of the system, they diffuse towards the ends of the domain
along the z direction, from where they are taken out of the
system. In other words, at z = 0 and z = L, there is a reservoir
consisting of only particles of type A, and the concentration
of B falls down to zero.
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1. Linking probabilities to intrinsic rates

Implementing adsorption rates in a probabilistic manner
for either microscale or macroscale models has been shown
previously in Ref. [34]. Desorption is usually a chemically
activated step while adsorption takes place with comparative
ease. The rate constant for such processes can be determined
from the Eyring-Polanyi equation. The energy barrier de-
termines the thermodynamic ease and the pre-exponential
factor determines the kinetic ease of carrying out either of the
processes. The adsorption-desorption process will equilibrate
with a constant Keq = kads/kdes that determines the occupancy
of the available catalyst surface sites. Here kads is the adsorption
rate constant and kdes is the desorption rate constant for
a first-order adsorption-desorption scheme to and from the
catalytic strip, respectively.

We now calculate these intrinsic rates in terms of the SRD
simulation parameters we have discussed earlier in this section.
Pooley and Yeomans [10] have previously used a kinetic
theory approach in SRD to calculate viscosity and thermal
conductivity expressions. Here we extend the kinetic model
of an ideal gas to derive an expression for the collisional
rate at walls. The collisional frequency, Z, i.e., the number
of collisions occurring per unit area of the wall per unit time
step, has been shown in Ref. [35] to be

Z = 1

2

N

V
〈|vy |〉, (4)

where N is the total number of particles inside the system, V

is the volume, and 〈|vy |〉 is the first moment of the velocity
component of particles perpendicular to the wall. The above
expression is valid for a noninteractive surface where no
adsorption occurs on the wall, thus the number density N/V

is constant throughout the system. When adsorption occurs,
N/V should be replaced by Cs = γs , the local concentration
of particles near the surface. Cs will be a function of time
when adsorption over the catalyst starts and will be so until
the reaction attains a steady state. The use of the expression
Cs rather than γs in the follow-up sections is motivated by
the terminology followed when dealing with reaction kinetics.
Since the velocity distribution of the particles evolves to
a Maxwell-Boltzmann distribution [6], the average velocity
expectation is

〈vy〉 =
√

2kbT

πm
. (5)

Here m is the mass of the component species that is under
consideration.

Combining Eq. (4) and Eq. (5) leads to

Z = Cs

√
kbT

2πm
. (6)

The dimensions of Z are a−2
0 t−1

0 , or in SI, m−2 s−1. If the total
area of the catalyst surface is Acat, the number of catalytic sites
is Ncat, and the probability that a striking particle sticks is pon,
the attacking rate kon can be written as

kon = ponAyZ

Ncat
= Cs

√
kbT

2πm

ponAy

Ncat
(7)

The dimensions of kon are t−1
0 , or in SI, s−1. The adsorption rate

constant, with dimensions m3 s−1, can be found by dividing
out the local concentration of particles near the surface:

kads =
√

kbT

2πm

ponAcat

Ncat
. (8)

To derive an expression for kdes, the desorption rate,
consider an adsorbed particle on the catalytic surface. The
probability that such a particle does not desorb after n�tc time
steps is (1 − pdes)n. So with a probability 1 − (1 − pdes)n, the
particle can desorb at any time between 0 and n�tc. Since
the particle desorption is usually a first-order process [36],
the first-order desorption of a particle from the surface is
exponential with a decay rate kdes. Thus, for a continuum
process, the probability that a particle will desorb anytime
between 0 and n�tc is 1 − e−kdesn�tc . Equating the discrete
and continuum probabilities leads to

1 − (1 − pdes)
n = 1 − e−kdesn�tc , (9)

from which the desorption rate kdes is given as

kdes = − ln(1 − pdes)

�tc
. (10)

A similar analysis can be done for the reaction rate to obtain

kr+ = − ln(1 − pr+)

�tc
. (11)

The above analysis has been done in general for either of the
reactor or product particles. Any probability or the consecutive
rate constant for a specific component i from now will be
represented by using a superscript i.

III. SURFACE REACTION MODELS

Having described the multicomponent fluid and reactor
models, we now introduce a simple adsorption-desorption-
reaction scheme which extends the RMPC model for hetero-
geneous catalysis beyond the assumption of an instantaneous
reaction. Our model can therefore cover the the full spectrum
from simple first-order to highly nonlinear reactions.

A. Langmuir model

For a first-order Langmuir model, detailed equilibrium
expressions of occupancy of a catalytic surface have been
previously derived in Refs. [37,38]. With the knowledge of the
rate parameters described in Sec. II B 1, we can now solve the
Langmuir model with the following rate equation for fractional
occupancy of A on the surface given by

dθA/dt = kA
adsC

A
s θ − kA

desθA, (12)

where θA(t) is the fraction of adsorbed particles A at the surface
and θ = 1 − θA is the fraction of unbounded sites available for
adsorption. The solution to Eq. (12) is

θA(t) = θA,eq
(
1 − e−(kA

adsC
A
s +kA

des)t
)
, (13)

where θA,eq is the occupancy at equilibrium

θA,eq = KA
eqC

A
s

1 + KA
eqC

A
s

(14)
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TABLE II. Independent, dependent, and derived parameters in
the model.

Input parameter Expression

Sticking probability pi
on

Desorption probability pi
des

Reaction probability pr+
Bulk concentration Ci

0

Output parameter Expression

Local concentration above the catalytic strip Ci
s

Fractional surface coverage of component i θi

on catalyst
Fractional vacancy on catalyst θ

Derived rate constants Expression

Adsorption rate ki
ads =

√
kbT

2πmi

pi
onAcat
Ncat

Desorption rate ki
des = ln

(
1 − pi

des

)/
�tC

Reaction rate kr+ = ln(1 − pr+)/�tC

Equilibrium constant Ki
eq = ki

ads/ki
des

and KA
eq = kA

ads/kA
des. Table II summarizes the independent and

dependent parameters used in the model. When diffusion in the
fluid facilitates faster transport of particles to the surface than
adsorption and desorption can occur, CA

s ∼ CA
0 (concentration

near the surface is equal to concentration in the bulk).
The total rate of the combined phenomena is equal to kA

tot =
kA

adsC
A
s + kA

des and in terms of time scales, 1/τA
tot = 1/τA

ads +
1/τA

des, where τA
ads, τA

des are the time scales associated with
adsorption and desorption for the A particles. The same model
has been used by Squires et al. [28] to study surface reactions,
in a quasisteady state, within a reactor with flow. Here we will
expand on the model by allowing for the study of the temporal
and spatial evolution as it approaches equilibrium.

B. Langmuir Hinshelwood model

The Langmuir model can be extended to include a chemical
reaction once a particle is adsorbed on to the catalytic surface.
Consider the following Langmuir Hinshelwood reaction model
[39]:

A
kA

ads�
kA

des

A∗ kr+−→ B∗ kB
des�

konB

B.

The rate equations for this model are

dθA

dt
= kA

adsC
A
s θ − kA

desθA − kr+θA, (15a)

dθB

dt
= kr+θA − kB

desθB + kB
adsC

B
s θ, (15b)

where θA and θB are the surface coverages of adsorbed particles
A, referred to as A*, and adsorbed particles B, referred to as B*,
on the catalytic strip, respectively. kr+ is the rate constant for
the forward conversion reaction. ki

ads and ki
des are the adsorption

and desorption rate constants.

The steady-state coverage for θA and θB can be calculated
by solving Eq. (15) for long-time estimates:

θA,eq = KA
eqC

A
s

1 + KA
eqC

A
s + KB

eqC
B
s + kr+

(KA
eqC

A
s

kB
des

+ KB
eqC

B
s

kA
des

+ 1
kA

des

)
(16)

θB,eq =
KB

eqC
B
s + kr+

(KA
eqC

A
s

kB
des

+ KB
eqC

B
s

kB
des

)
1 + KA

eqC
A
s + KB

eqC
B
s + kr+

(KA
eqC

A
s

kB
des

+ KB
eqC

B
s

kA
des

+ 1
kA

des

) ,

(17)

By comparing these theoretical predictions with SRD results,
we can show the validity of the particle-based simulation
approach.

C. Dimensionless analysis

Mass transport to the catalyst surface and the consecutive
processes that occur determine the rate of product formation.
This conversion takes into account the presence of other
physical parameters, such as the length of the model reactor,
the area of the catalyst surface, and bulk concentration of the
reactant species. A convenient way to describe these quantities
is to define a series of dimensionless numbers that capture
the relative strengths of the competing processes involved. A
denser and larger system with low catalyst area might give
a similar output as a rarer and smaller system but with high
catalyst area. Therefore it will be more convenient to represent
these systems by the same dimensionless numbers.

Moreover, to facilitate comparison with real experimental
systems, in the following sections, we will present all physical
quantities in terms of DA, the diffusion coefficient of A, H , the
height of the model reactor, and kBT , the thermal energy. These
three dimensions are sufficient to generate all other relevant
physical quantities and parameters, as shown in Table III. For
example, the dimensionless time becomes to = tDA/H 2, the
dimensionless velocity vo = vH/DA, and so on.

1. Damkohler numbers

In general, the system complexity will increase with the
inclusion of additional intermediary processes as competition
between these processes will start. Invariably, only one or two
processes determine the rate of the reaction. We will compare

TABLE III. Physical quantities with their dimensions.

Physical quantities Dimensions

Time H 2

DA

Length H

Energy kBT

Mass kBT H 2

D2
A

Velocity DA

H

Diffusion DA

Number density H−3

022115-5



SENGAR, KUIPERS, VAN SANTEN, AND PADDING PHYSICAL REVIEW E 96, 022115 (2017)

TABLE IV. Flux of product B produced, when each of the
mentioned process is rate limiting.

Rate-limiting process Flux

Adsorption (A) kA
adsC

A
s θvac

Reaction (A) kr+θA,eqNcat

Desorption (B) kB
desθB,eqNcat

these rate-limiting processes with the mass transfer of the
reactants to the catalyst surface.

We note that for a first-order Langmuir model (see
Sec. III A), it can be imagined that A adsorbs on the catalytic
strip, followed by an instantaneous conversion to species
B and desorption of species B. The Langmuir model can
then be written as the Langmuir-Hinshelwood model where,
kr+ � Ki

eqC
i
s . Since A → B occurs almost instantaneously

now, the reactive flux is controlled by the adsorptive flux of A
on the strip.

For this approach, Squires et al. [28] has already shown that
the diffusive flux is

JD ∼ DA

(
CA

0 − CA
s

)
WH

δ
, (18)

where CA
0 is the concentration of solvent in the bulk, CA

s

is the concentration just near the catalyst surface, and δ is
the boundary layer thickness. δ is the length it requires for
the product particles to diffuse from the source, the catalytic
surface, to the exit, the boundary of the reactor along the
z direction. Since the catalyst has width Lcat along the z

direction, the effective length traversed by product particles
before being removed from the system is δ = (L − Lcat)/2.
The reactive flux (or the adsorptive flux) is given as

JR = kA
adsC

A
s θvac, (19)

where θvac is the fractional vacancy of sites on the catalytic strip
at a steady state. At steady-state conditions, the adsorptive and
the desorptive fluxes will be equal, leading to

CA
s

CA
0

=
(

1 + kA
adsθvacδ

DAWH

)−1

= 1

1 + Da
. (20)

The Damkohler number is here defined as

Da = kA
adsθvacδ

DAWH
. (21)

If Da 	 1, CA
s ∼ CA

0 and the system is reaction limited. If
Da � 1, CA

s ∼ 0 and the system is diffusion limited. Note that
θvac is also a function of CA

s . When KA
eqC

A
s 	 1, according to

Eq. (14), θvac = 1 − θA,eq ∼ 1, and the surface will equilibrate
quickly enough to enter a quasisteady state [28]. Outside this
regime, for a slow equilibration of the surface, the Da analysis
mentioned here is still valid. This gives the model a definite
edge as we are able to capture phenomena from a linear regime,
KA

eqC
A
s 	 1, to a nonlinear regime, KA

eqC
A
s � 1, with the

information about the overall reaction order being stored in
the expression of θvac.

For the Langmuir-Hinshelwood model presented in
Eq. (15), when a slow reaction is introduced, the competing
processes as stated in Table IV will determine the surface

coverages, θvac,θA,eq,θB,eq, and eventually the rate of formation
of B.

Again, if adsorption of A is the rate-determining step, the
reaction kinetics can be approximated to a Langmuir model
and the nonlinearity of the overall reaction can be studied by
looking at the magnitude of KA

eqC
A
s .

Desorption of A negatively influences the formation of
product B since fewer A* particles are available for conversion.
When adsorption of A is rate determining, and desorption
of A also negatively influences the process, the effective
rate of reaction becomes kA

adsC
A
s θvac − kA

desθA,eq. Under these
conditions equating the reactive flux to diffusive flux gives

CA
s

CA
0

=
1 + kA

desθA,eqNcatδ

CA
0 DAWH

1 + kA
adsθvacδ

DAWH

. (22)

When any other intermediary step determines the rate, we will
follow the approach outlined henceforth. If reaction of A is
rate limiting, the flux equation is given as

DA

(
CA

0 − CsA
)
WH

δ
= kr+θA,eqNcat. (23)

Rewriting this expression gives

CA
s

CA
0

= 1 − kr+θA,eqNcatδ

DACA
0 WH

= 1 − Dar. (24)

We refer to Dar as the modified Damkohler number for
the case where the reaction process is the limiting step.
The above equation provides a limitation on the expression,
kr+θA,eqNcatδ/DACA

0 WH < 1, which has to be true always
as JD,max = DACA

0 WH/δ is the maximum possible diffusive
flux from the bulk to the surface. If Dar 	 1, we can rewrite
Eq. (24) as Cs/C0 = 1/(1 + Dar), similar to Eq. (20) but using
the modified Damkohler number.

For a slow desorptive process, the relevant Damkohler
number can be written as

Dad = kB
desθB,eqδ/DACA

0 WH. (25)

Readsorption of B shifts the surface coverage over the
catalyst in favor of B* particles reducing the number of
A* particles. This in affect allows for an increase in the
production of B particles which get readsorbed over the
surface again. Therefore, the effective production of B does
not have a strong dependence on kB

ads, at least as long as
there is no convection. For our analysis which focuses on
reaction-diffusion system without convection, we will remain
in the regime with KB

eq 	 1, thereby concentrating more on
the effect of desorption of B rather than the adsorption of B.

The dimensionless analysis done here can be used to
generalize most of the reaction procedures falling within
the Langmuir or the Langmuir-Hinshelwood model. Having
described the model and the parameters involved, we now
validate the SRD model by comparing results with these
theoretical predictions and with previous studies.

IV. MODEL VALIDATION

Before the introduction of catalyst sites inside the system,
we validate the applicability of the model by looking at axial
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to A H

C
SA
H

(a)

to A H

C
SA
H

(b)

FIG. 2. Test of axial dispersion of B particles in a solvent of A particles under flow conditions. Here the time dependence of the B-particle
concentration in a measurement region in the center of the domain is shown, for Pe =1 (a) and Pe = 10 (b). At t = 0, B particles are introduced
in a single time step �tc at the left side of the domain. Inverted triangles represent simulation data, lines are analytical solutions.

dispersion, where convection and diffusion together influence
the spatial and temporal evolution of the concentration profile.
After this, reactions will be introduced on a catalytic strip.

A. Axial dispersion

The diffusion coefficient obtained from Eq. (3) can be
used for solving the convection-diffusion equation for binary
mixtures. Gill and Sankarasubramanian [40] and Kolev et al.
[41] have given an exact solution for the parallel plate laminar
flow problem for binary systems. For a fully developed laminar
profile, with flow occurring in the z direction, the spatial and
temporal distribution of concentration of any component (in
a binary mixture) will obey the following partial differential
equation:

∂Ci
0

∂t
+ ui

0

[
1 −

(
y

H

)2]
∂Ci

0

∂z
− DAB∇2Ci

0 = 0. (26)

Here DAB is the Maxwell-Stefan diffusion coefficient for
mutual diffusion in a binary mixture. When the diffusivity of
both species is the same, DAB = DA = DB , or the mutual
diffusivity equals diffusivity of either of the components [42].
Ci

0 represents the number density of particles of type i, and ui
0

is the maximum velocity of particles A or B in the center of
the slit. A solution to Eq. (26) is provided in Ref. [41].

For the SRD model, the solvent particles are the particles A.
Initially the system is full of solvent particles A until laminar
flow is achieved. This time is set as t = 0. Following this, B
particles, having the same mass as A, are introduced at t = 0
inside a narrow region from z = 0 to z = αL, where α = 0.05.
This is done by randomly replacing A particles in this narrow
region by B particles within a single time step until a number
density CB

0 is achieved for the B particles. For times t > 0, this
tracer region will disperse inside the system due to convection
and diffusion. The temporal and spatial concentration of this
tracer region has been studied in Ref. [41].

A sensor region is defined in the center of the domain
that records the time-dependent number density of particles of
type B.

To ensure a particle is not doubly counted in the tracer
region (since the system is periodic in the z direction), an
artificial coordinate zi,a stores the unfolded z coordinates
of B particles such that when a particle crosses a periodic
boundary, this coordinate is updated as if it encounters no
periodic boundary. This ensures an accurate calculation of
particles present in the tracer region at any time as zi,a acts
as a numerical check as to whether particles are entering the
tracer region for the first time.

We now look at the temporal concentration profile of B
particles measured in the tracer region for two cases with
different Péclet number. The Péclet number is defined as Pe =
Lu/2DB . Here L/2 is the length along the z axis from z = 0
until the position of sensor, u is the average z velocity of
particles B, i.e., 2uB

0 /3, and DB is the diffusion coefficient of
particles B.

In Figs. 2(a) and 2(b), the temporal concentration profile of
particles has been plotted for the case aforementioned. There
is a time lag observed before any concentration is recorded.
This dead zone is the time taken for the fastest particles to
reach the tracer region. The peak observed represents the most
probable time taken by particles to reach the sensor from the
start of the system, tmp = u/3L, which is the time required by
any particle with velocity equal to the average velocity 2uB

0 /3
to cover the distance L/2. The simulation results (inverted tri-
angles) are compared with the analytical formula mentioned in
Ref. [41] (lines). We find a good agreement between the simu-
lation model predictions and the analytical formula, indicating
that convection and diffusion are correctly modeled. Next we
validate the model for heterogeneous reactions and diffusion.

B. Adsorption-desorption reaction

With the introduction of a catalytic strip, as described in
Sec. II B, the time evolution of the surface coverage study
is a matter of interest. For a system consisting entirely of
A particles with number density CA

0 , when adsorption starts,
the adsorption rate is kA

adsC
A
0 . As adsorption and subsequent

processes progress towards a steady state, a fraction of particles
remain on the catalyst strip at all times. Even for a first-order
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Langmuir model, with no reaction, this results in a change in
local number density CA

s , which is different from CA
0 .

For a first-order Langmuir model, the surface coverage of
A, θA,eq was calculated with the simulations and compared
with Eq. (14). For low to moderate probabilities of desorption,
the results are in agreement with the expression. However,
for higher value of pA

des, i.e., pA
des > 0.5, discrepancies were

recorded in the calculation of θA,eq. This was found to be
caused by the discretized implementation of adsorption and
desorption in the model.

For a given time step, all particles that could be adsorbed
were allowed to adsorb on the strip, thus increasing θA. This
was immediately followed by desorptions from the strip. To
demonstrate how this approach changes θA,eq, let us consider
an example with a strip comprised of Ncat = 1000 catalytic
sites. Let 100 particles be permitted to be adsorbed on this
strip at a time step. Therefore, at this time step, θA increases
by a value of 0.1 before starting desorptions. When desorption
is tried, the number of particles on the catalytic strip is higher
than would have occurred had desorption been taking place
simultaneously with the adsorption [43]. This effect grows for
higher pdes, and the θA,eq obtained in this case is lower than
what is expected.

The above issue arises because of the treatment of ad-
sorption and desorption processes sequentially instead of
simultaneously. The difference can be made arbitrarily small
(for fixed adsorption and desorption rates) by subdividing the
simulation time step �tc in a number of smaller steps with
alternating adsorption and desorption steps. Here we propose
another approach, by which the same time step �tc can be
retained. To this end, we rewrite the differential equation for
θA [Eq. (14)] as

dθA

dt
= kA

adsC
A
s (1 − θA)

[
1 − kA

des

kA
adsC

A
s (1 − θA)

θA

]
. (27)

The equation can be interpreted as follows. For every particle
adsorbed, a subsequent kA

desθA/kA
adsC

A
s (1 − θA) number of

particles will be desorbed. As kA
desθA/kA

adsC
A
s (1 − θA) tends

to 1, the system approaches equilibrium. Thus, equilibrium
is said to be achieved when for every adsorption, there is

TABLE V. Observed values of θA,eq for increasing pA
des. Parameter

set used: kBT = 1.0, �tc = 1.0, mA = 1.0, γ = 8, Acat = 2.0, pA
on =

1.0, Ncat = 100.

pA
des KA

eqC
A
s θA,eq Eq. (14) θA,eq Eq. (12) θA,eq Eq. (27)

0.1 1.348 0.574 0.571 0.572
0.3 0.398 0.285 0.278 0.283
0.5 0.205 0.170 0.16 0.167
0.7 0.124 0.105 0.092 0.101

a corresponding desorption. By rewriting the expression for
dθA/dt as given by Eq. (27), the analytically expected results
are more accurately reproduced, as shown in Table V.

It has to be mentioned that there is an inherent error
percentage attached to this solution, which is of the order
of magnitude of 1/Ncat × 100. Increasing Ncat will reduce
this error but increase the computational time. Therefore it is
imperative that we select values of Ncat with error tolerance
that do not hinder the model computationally.

The rate equation for the Langmuir-Hinshelwood reaction
model [Eq. (15)] can similarly be rewritten to get a sequential
treatment of processes which resembles the simultaneous
processes better. The new rate equation is

dθA

dt
= kA

adsC
A
s θ

(
1 − kA

des

kA
adsC

A
s θ

θA − kr+
kA

adsC
A
s θ

θA

)
, (28a)

dθB

dt
= kr+θA

(
1 − kB

des

kr+θA

θB + kB
adsC

B
s

kr+θA

θ

)
. (28b)

For every adsorption of A, there are kA
desθA/kA

adsC
A
s θ desorp-

tions of A* and kr+θA/kA
adsC

A
s θ conversions from A* to B*.

Subsequently, for every conversion, there are kB
desθB/kr+θA

desorptions of B* and kB
adsC

B
s θ/kr+θA readsorptions of B.

In summary, by rewriting the continuum equations, we
can deduce how to treat adsorption, reaction and desorption
processes in a sequential fashion. We are now ready to study
reaction-diffusion systems for which analytical solutions are
unavailable.

FIG. 3. Product concentration profiles along the z and y directions of the model reactor for (a) small and (b) large wall-to-wall distance H

at steady state. The bottom and top walls are located along yo = 0 (H = 4) and yo = 1 (H = 40), respectively. γ = 100, �tc = 1.0 pA
ads = 1.0,

pA
des = 0.02, pr+ = 0.9, pB

des = 0.7, pB
ads = 0.01.
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(a)

(b)

FIG. 4. Adsorption of A is the rate-determining step, so the rate
of formation of B is controlled by A adsorbing on the surface. (a) The
depletion in local concentration of A, at steady state, across the reactor
length where the catalytic strip is present at the center of the system.
Da is varied by changing the probability of adsorption of A. (b) At
steady state, the production rate of B and adsorption rate of A are
compared. The parameter set used is γ = 10, �tC = 1.0, pA

des = 0.1,
pr+ = 0.7, pB

des = 0.7, H = 4, Wo = W/H = 0.5, Lo = L/H = 5,
Lo

cat = Lcat/H = 0.5, Ncat = 1000.

V. RESULTS

Reactions occur at the center of the system on the catalytic
strip. The product particles B diffuse out into the bulk of the
system after desorption. At z = 0 and z = L, particles B are
removed from the system. A concentration profile for both
reactants and products is formed with product concentration
going to 0 at the ends of the system.

Here we will consider a pseudo-one-dimensional (1D) case
where we examine the concentration gradient along a single
direction while there is effectively no gradient present in the
other two directions. To achieve this, we place an identical
catalyst along the wall at y = H sharing the same x and z

coordinates.
Figures 3(a) and 3(b) show that the distance H between

the two strips is relevant for replicating a pseudo-1D model.
Once product B is desorbed back into the system, it starts
diffusing from near the strip in all three directions. Because

(a)

(b)

FIG. 5. Reaction of A is the rate determining step. (a) The
depletion in local concentration of A, at steady state, across the reactor
length. Dar is varied by changing the probability of reaction of A. (b)
At steady state, the production rate of B and reaction rate of A are
compared. The parameter set used is the same as in Fig. 4 except
pA

on = 1.0, Ncat = 100, γ = 100. pr+ is varied from 0.1 to 0.9.

the catalytic strip covers the entire width W in the x direction
there will be no concentration gradient along this direction.
If the wall-to-wall distance H is sufficiently small, gradients
in the y direction will also be small. The following results
are for such a pseudo-1D system where z is the only relevant
coordinate.

In Fig. 4(a) the number density profile across the length of
the reactor in the z direction is shown. For increasing Da, the
dip in CA

s deepens representing an increasing concentration of
reactant getting extinguished near the surface as the probability
of adsorption for particles A increases.

In Fig. 4(b) the rate of adsorption of A and generation of B
is plotted for different probabilities of adsorption of A. As pA

on
increases, the surface coverage θA will increase. This will, in
turn, cause an increase in the desorption of particles from the
surface, and therefore the net production of B will effectively
be the difference between these two rates, as mentioned in
Sec. III C 1. The production of B is also seen to move from
a linear regime, for low pA

ads to a nonlinear regime for higher
pA

des as was also discussed in Sec. III C 1.
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FIG. 6. Product concentration profile across the length of the
reactor for different simulation times, tf . The dimensionless time,
to
f = tf DA/H 2.

A similar analysis has been done for the case when the
reaction rate becomes rate determining. Figure 5(a) shows the
variation of local number density of A across the length of
the reactor for different Dar by changing the probability of
reaction. The modified Damkohler number Dar can have a
maximum value of 1. In Fig. 5(b), the reaction rate and rate
of production of B have been plotted against the probability
of reaction, pr+. For low probabilities of reaction, the surface
coverage of B* is still low, causing a lower production rate of B,
and thus readsorption of B is not able to influence the reaction
kinetics much. However, with an increase in reaction probabil-
ity, B* coverage increases, increasing the local concentration
of B over the catalyst. Now KB

eqC
B
s becomes dominant enough

to play a part in the overall rate of production of B, which now
consists of the reactive term and the back-adsorption term.
Therefore, we see a net production rate of B slightly higher
than the net reaction rate occurring over the catalyst.

The two above cases expand the model applicability to
cases where multiple processes can compete to determine the
overall rate of production.

The evolution of the concentration profile of B across
the length of the reactor is a process governed by diffusion
entirely. The number density depends on the effective rate of
the reaction, but the time required to achieve a linear profile is
a diffusive process. The evolution happens according to Fick’s
second law, generating a error function solution of the number
density profile. For large reactor length, the diffusive time is
of the order of tD = L2/DB . In such cases, we need to make
sure that the simulations are run for a sufficiently long time to
achieve the steady state. Figure 6 shows the evolution of the
concentration profile of product particles inside the bulk. The
half maxima of the temporally varying concentration profile
was found to be proportional to

√
DBt , which is to be expected.

VI. CONCLUSION

Stochastic rotation dynamics has been used to bridge the
gap between the macroworld and the microworld by simulating
reactions at a catalytic surface with the products diffusing back
into the bulk of the system. The microworld knowledge about

the reaction has been used in the form of reaction models,
and the macroworld knowledge is obtained by looking at the
concentration profiles of the reactant and products obtained
due to the reaction.

We have outlined how a multicomponent SRD model
can be extended to describe heterogeneous reactions with
rate-limiting steps, such as adsorption, desorption, and slow
reactions, to observe real physical behavior for such mixtures
near the catalytic surface. This was implemented through
a special treatment of boundary cells. A reactor system
was modeled with the presence of a catalytic strip inside
the system. Adsorption on this strip would either result in
desorption after some time (Langmuir model) or lead to an
irreversible reaction leading to product generation (Langmuir-
Hinshelwood model). A parametric study was done to calculate
the different rates of adsorption, desorption, and reaction in
terms of the simulation parameters derived for the SRD model
in previous works.

A general approach to model simultaneous processes using
particle-based methods was outlined for a simple adsorption
desorption model, which was further extended to include a
reaction. At a microlevel, processes like adsorption, desorp-
tion, and reaction do happen discretely. However, when con-
sidering these processes within a mean-field approximation,
we need to rely on methods that will treat these processes
simultaneously.

Incorporating a reaction model involves numerous subpro-
cesses that compete to determine the overall concentration pro-
file of products in the bulk. The number of these subprocesses
will just increase with the increase in number of components
involved in the reaction. To facilitate this calculation, we
resorted to the use of a dimensionless analysis for all the
physical quantities and rate parameters. Damkohler numbers
were used to calculate the amount of reactant that will be
depleted at the catalyst surface. Three different Damkohler
numbers were defined in this work, depending on the rate-
limiting process, that stand as a measure of the flux of product
generated to the flux of products diffusing out of the system.
Given the reaction and simulation parameters combined with
these Damkohler numbers, the surface coverage of different
component species over the catalyst can be measured. This can
in turn be used to estimate the effective reaction order.

We ended the paper by analyzing the spatial and temporal
distribution of the concentration of product species across
the model system, and we interpreted the results using the
Damkohler numbers derived in the previous sections. We also
commented on the influence of processes like desorption of
reactant species from the catalytic surface and readsorption
of product species back on the surface on the overall rate of
production of products. As soon as products are desorbed back
into the system, it is the diffusive process that takes them to
the system boundaries where they are eventually extracted. We
analyzed the time needed for this process to reach steady-state
values across the bulk of the reactor system.

In our future work, we will include more complex reactions
and allow for different mobilities of the participating compo-
nents in the presence of an external body force. This will
allow us to model certain real-life reactive systems, capturing
the coupled hydrodynamics and reaction kinetics efficiently.
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APPENDIX A: BOUNDARY-FILLING RULE

For the simulation box with walls along y = 0 and y = H ,
the random grid shift procedure leads to an artificially low
number of particles in the grid cells overlapping with the
boundary, which we will refer to as boundary cells. This artifact
leads to a lower viscosity region along these boundaries,
leading to an effective slip layer. For a multicomponent fluid,
mbulk = ∑k

i=1 χimiN/V represents the average mass inside
a bulk grid cell for a k-component mixture. If the mass m′
recorded inside the boundary cell is less than mbulk , extra mass
has to be imparted to this cell to account for the collisional
part of the model. This can be done by adding the fluctuating
momentum of a single particle of mass (mbulk − m′) to the
total momentum of the boundary grid cell. This is simply
a Maxwell-Boltzmann distributed momentum of variance
(mbulk − m′)kBT . If N (0,1) is a Gaussian random number
with mean 0 and 1 variance, N (0,kBT /(mbulk − m′) will be
the random number that gives velocity of this artificial particle.
The modified net momentum of the grid cell will be

mvf = mvi + (mbulk − m′)N
(

0,
kBT

mbulk − m′

)
. (A1)

The center of mass velocity mvf /mbulk calculation is pro-
ceeded by the collisional step to get new velocities.

APPENDIX B: ADSORPTION-DESORPTION TREATMENT

When no reaction occurs inside the system, the collisions at
a boundary take place with a no-stick boundary condition. Ad-
sorption of particles leading to reaction and further desorption
of product particles involves a certain amount of time for which
these particles remain at the surface. It is therefore necessary
to simulate the desorption process effectively to maintain a net
zero velocity at the boundaries without changing the particle
interaction dynamics.

This is accomplished by matching the velocity distribution
of desorbing particles with that of the incoming particles. The
tangential component of velocity imparted to the desorbed
particles is the same as that of the incoming particles whereas
the normal component is just the reverse. For our particular
system with walls along the y direction, the velocities of
desorbing particles along the x and z directions follow a
Maxwell-Boltzmann distribution with mean 0 and a standard
deviation

√
kBT /m. However, the y component of the velocity

of the incoming particles collected during a time interval �tc
has a bias. Atkins [35] showed that this distribution in the

o

Zo

Zo

FIG. 7. Probability distribution of the z position of particles
desorbed within a time step �tc for different particle masses. The
catalyst is placed at the center of a system with a Lcat = 2.0,
�tc = 1.0.

normal direction is given by

P (vy) = m

kBT
vye

−mv2
y/2kBT . (B1)

A particle desorbs back into the system from its position
at the catalytic site into the bulk fluid. Particle desorption can
occur any time between the discrete time step (t,t + �tc),
therefore we choose a random time from the interval [0,�tc]
and displace the particle with its new velocity over this time.

In the case under discussion, the two catalysts are rect-
angular strips present homogenously along the x direction
and running from L/2 − Lcat/2 to L/2 + Lcat/2 along the
z direction, with the separation H between them in the y

direction effectively small. We therefore expect the product
formed to be uniformly distributed along the x and y directions
and with a gradient in the z direction.

Figures 7 and 8 show the probability distribution of the z

position and y position of particles after desorption. In Fig. 7
the catalytic strip is present along Zo ∈ (−1,1). In Fig. 8 the
catalyst is present at Y o = 0.

o

Yo

Yo

FIG. 8. Probability distribution of the y position of particles
desorbed within a time step �tc for different particle masses.
�tC = 1.0.
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