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This paper designs an incremental nonlinear dynamic inversion control law for free-flying flexible aircraft, which

can regulate rigid-body motions, alleviate gust loads, reduce the wing root bending moment, and suppress elastic

modes.By fully exploring the sensormeasurements, themodel dependency of the proposed control law canbe reduced

while maintaining desirable robustness, which simplifies the implementation process and reduces the onboard

computational load. The elastic states are observed online from accelerometer measurements, with a Padé

approximation tomodel the pure time delay. Theoretical analyses based on the Lyapunovmethods and the nonlinear

system perturbation theory show that the proposed control has inherent robustness to model uncertainties, external

disturbances, and sudden actuator faults. These merits are demonstrated by time-domain simulations in various

spatial turbulence and gust fields, as well as by a Monte Carlo study.

Nomenclature

Cf = matrix of direction cosines between �xf; yf; zf�
and �XE; YE; ZE�

Cuw, Cψw = damping matrices for the bending and torsion of
the wing

Cw = matrix of direction cosines between �xw; yw; zw�
and �xf; yf; zf�

EI, GJ = bending and torsional stiffnesses, N ⋅m2

Ef = matrix relating Eulerianvelocities to angular quasi
velocities

F,M = generalized resultant forces and moments, N and
N ⋅m

G = control effectiveness matrix
Kuw,KΨw = stiffness matrices for the bending and torsion of

the wing
Mr = wing root bending moment, N ⋅m
Mst = system mass matrix
nz = vertical load factor, m∕s2
pVf

, pωf
,

puw, pψw

= momentum vectors for aircraft translation,
rotation, bending, and torsion

q, ξ = vectors of generalized coordinates for the bending
and torsion

Rf = position vector of the origin of �xf; yf; zf� relative
to �XE; YE; ZE�, m

rw = nominal position vector of a point on the wing, m
s, η = vectors of generalized coordinates for the bending

and torsion velocities, m∕s and rad∕s

uw, ψw = bending and torsion displacements of the wing, m
and rad

Vf = translational velocity vectors of �xf; yf; zf�, m∕s
xr, xe = rigid and elastic states vectors
xrm = state reference vector
Δu = incremental control input
θf = Euler angles vector, rad
κ = fault indicator
ν = virtual control vector
Φ, Ψ = shape functionmatrices of the bending and torsion
ωf = angular velocity vector of �xf; yf; zf�, rad∕s

I. Introduction

WHILE enjoying the benefits provided by lightweight composite
materials, aircraft designers are facing the challenges of the

accompanying greater structural flexibility. As the structural flexibility
increases, not only do the interactions between aerodynamics and
structural dynamics become significant but the coupling effects
between rigid-body dynamics and structural dynamics are also
nonnegligible [1–4]. When a flexible aircraft encounters atmospheric
disturbances, both the rigid-body and flexible modes are excited,
which reduce pilot handling qualities, degrade passenger ride quality,
introduce extra structural loads, and shorten the structural fatigue life.
Traditionally, the flight control and structural vibration suppression are
performed separately, and notch filters are used to avoid interactions
between them. This design approach may be less appropriate for
modern flexible aircraft. Instead, an integrated control design, which
simultaneously accounts for rigid-body and aeroelastic control, can
lead to better overall performance.
The free-flying dynamics of flexible aircraft are nonlinear and time

varying (NLTV) [2,5]. The nonlinearities are contributed to by flight
dynamics, aeroelasticity, and the inertial couplings between them [2].
Even for a rigid aircraft, when the angle of attack is high or when the
aircraft is in transonic flight, the aerodynamics are nonlinear. Under the
small deformation assumption, the structural vibration dynamics are
described by a series of second-order linear differential equations, and
their inertial couplingswith rigid-body dynamics are negligible. These
canbe invalid for highly flexible aircraft, forwhich the consideration of
nonlinearity in flight control design becomes important [6,7].
In the literature of flexible aircraft flight control, it is a common

practice to linearize theNLTVsystemaround anequilibriumpoint, and
then execute a model reduction procedure. Based on the resulting low-
order and linear time-invariant (LTI) system, the linear quadratic
Gaussian (LQG) method was used for gust load alleviation (GLA) in
Refs. [8,9] and for flutter suppression in Refs. [10,11]. Although
both the linear quadratic regulator (LQR) and the Kalman filter are
optimal, as well as their combination, the LQG does not automatically
ensure good robustness properties. Linear robust control can improve
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the robustness of a closed-loop system. AnH∞ robust controller was
designed in Ref. [12] for reducing the wing root bending moment of a

very flexible aircraft. In Ref. [7], a mixed norm H2∕H∞ control was
used to alleviate the gust load of a flexible aircraft. However, it was

commented in Ref. [13] that LTI model-based robust control could be
either marginal or overly conservative in performance and stability
robustness. Moreover, to ensure desirable handling qualities over the

entire flight envelope, controllers based on LTImodels need to be used
alongwith the gain schedulingmethod,which can be cumbersome and
does not guarantee stability robustness [14].
Flexible aircraft control designs considering nonlinearities do exist

in the literature. In Ref. [15], the nonlinear dynamic inversion (NDI)
method was used to control a high-altitude long-endurance highly
flexible aircraft. Because the NDI design uses a nonlinear model, it

can be applied in the absence of gain scheduling. Nonetheless, the
robustness of NDI is impaired by its model dependency. An adaptive
backstepping (ABS) control was designed for an aeroservoelastic

system in Ref. [16], in which the plant was parameterized using
predefined model structures. However, the unknown parameters are

assumed to be constant or slowly time varying in ABS design [17],
which limits its applicability. Furthermore, not all the uncertainties
and external disturbances can be parameterized and, even if they can,

tuning of the resulting design can be tedious. AnLTI aeroservoelastic
system augmented by a nonlinear perturbation termwas regulated by
a model reference adaptive control (MRAC) in Ref. [16], in which it

was assumed that the perturbation satisfied the matching condition
and could be parameterized into the multiplication of regressors and
constant parameters. The reference model used in Ref. [16] was also

LTI; thus, model updates were necessary when the flight condition
changed or when a fault occurred. Because the flight envelope

shrinks in faulty conditions [18], enforcing the system to track an LTI
model designed in the nominal case can lead to instability. Last, but
not least, dynamic equations need to be solved for the parameter

adaptation in MRAC, which requires high computational resources,
especially for a high-order aeroservoelastic system.
Incremental nonlinear dynamic inversion (INDI) is a nonlinear

sensor-based control approach. After its proposal in Ref. [19], its

effectiveness has been demonstrated by real-world flight tests on a
tail-sitter unmanned aerial vehicle [20], quadrotors [21–23], and even
a CS-25 certified passenger aircraft [24]. The stability and robustness

of INDI was analyzed in Ref. [25] using Lyapunov methods and a
nonlinear system perturbation theory. As compared to the LTImodel-
based control methods, the gain scheduling technique is not needed

by INDI. The uncertainty parameterization process is also omitted in
INDI, which removes the slowly time-varying parameter assumption
and eliminates the tedious model structure selection procedure. INDI

has less model dependency than NDI, ABS, and MRAC, which
simplifies its implementation process. The tuning of INDI is

straightforward [26]. Being independent of the dynamic parameter
update laws, INDI also has lower computational cost.
Although themodel dependency of INDI is reduced, its robustness

is enhanced by the feedback of state derivatives. The robustness of
INDI to model uncertainties has been analyzed in Ref. [25] and

evaluated in Refs. [19,27]. By virtue of its sensor-based nature, INDI
is able to passively tolerate a wide range of actuator faults and

structural damages without using any additional robust or adaptive
techniques [28]. As analyzed in Ref. [25], INDI also has inherent
robustness to external disturbances. The wind-tunnel tests in

Ref. [21] showed that, under the INDI control, a damaged quadrotor
with complete loss of a single rotor can resist over 9 m∕s of wind
disturbance. A rigid aircraft GLA problem was considered in

Ref. [29], in which INDI outperformed the LQR control. These
merits of INDI inspired the idea of using it to solve the flexible

aircraft GLA problem, which has not been addressed in the literature.
Due to the complexity of aeroservoelastic systems, several research
questions emerge: How do we conduct a reasonable model simplifi-

cation based on the characteristics of flexible aircraft? How do we
make tradeoffs among different control objectives in the framework
of INDI? How do we obtain the state derivatives of flexible aircraft?

How is the robustness of the control to state estimation errors,

external disturbances, sudden faults, and model uncertainties? These
questions will be answered in this paper.
The main contributions of this paper are 1) an integrated nonlinear

control law for flexible aircraft aiming at rigid-bodymotion regulation,
gust load alleviation, wing root bending moment reduction, and elastic
mode suppression; 2) an online optimal state observer with a Padé
approximation tomodel the pure timedelay; and 3) theoretical analyses
and numerical validations for the robustness of the proposed control to
external disturbances, sudden faults, and model uncertainties.
The rest of the paper is organized as follows: Section II presents the

models for flexible aircraft and turbulence fields. Section III derives
the INDI GLA control law with the simulation results shown and
discussed in Sec. IV. The main conclusions are drawn in Sec. V.

II. Flexible Aircraft and Gust Models

A. Flexible Aircraft Equations of Motion

To capture both aerodynamic and inertial coupling effects between
the rigid-body and structural dynamics of free-flying flexible aircraft,
the dynamic equations derived in quasi coordinates [2] are adopted
in this paper. The flexible wings are modeled as cantilever beams
undergoing bending and torsional deformations. The remaining
components [namely, fuselage and empennage (horizontal and
vertical tails)] are assumed to be rigid. A set of body-fixed axes
�Oi; xi; yi; zi� with i � f;w; e are attached to the undeformed
aircraft as shown by Fig. 1.
The kinematic equations of this flexible aircraft are

_Rf � CT
fVf; _θf � E−1

f ωf (1)

whereVf andωf represent the �Of; xf; yf; zf� axes translational and
rotational velocities, whereas Rf and θf indicate the position and
Euler angles of the �Of; xf; yf; zf� axes relative to the inertia frame
�O;XE; YE; ZE�. Of can be an arbitrary fixed point in the aircraft
symmetrical plane, and there is no requirement on the coincidence of
Of and the center of mass. Cf�ϕ; θ;ψ� is the rotation transformation
matrix from the inertial frame �O;XE; YE; ZE� to �Of; xf; yf; zf�.
TheEf�ϕ; θ�matrix links angular velocitiesωf to Eulerianvelocities
_θf. For the flexible wings, the Galerkin method is used to discretize
the bending displacements uw and torsion angles ψw in the modal
form as

uw�rw; t� � Φ�rw�q�t�; _q�t� � s�t�
ψw�rw; t� � Ψ�rw�ξ�t�; _ξ�t� � η�t� (2)

where Φ�rw� and Ψ�rw� are bending and torsion shape function
matrices, respectively. Also, q�t� and ξ�t� are the generalized
coordinate vectors. The elastic deformations can also be discretized
using the finite elementmethod, and the resulting equations are in the

Fig. 1 Coordinate system definition [2].
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same form as Eq. (2). Denote the linear momentum of the aircraft as

p � �pT
Vf

pT
ωf

pT
uw pT

ψw �T , which also equals MstV, where

V � �VT
f ωT

f sT ηT �T is a velocity vector and Mst is a time-

varying mass matrix as a function of elastic deformations. The

translational, rotational, bending, and torsion dynamics of the

flexible aircraft are [2]

_pvf � − ~ωpvf � F

_pωf
� − ~Vfpvf − ~ωpωf

�M

_puw � ∂T ∕∂q −Kuwq − Cuws�Q

_pψw � −Kψwξ − Cψwη�Θ (3)

in which a tilde �~⋅� represents the skew-symmetric matrix of a vector.

Also, ∂T ∕∂q includes the Coriolis and centrifugal forces of thewing:

Kuw �
Z

EI�Φ 0 0�TΦ 0 0 dx; KΨw �
Z

GJ�Ψ 0 0�TΨ 0 0 dx

in which EI and GJ are the bending and torsion stiffnesses,

respectively. The structural damping matrices Cuw and CΨw are

assumed to be proportional toKuw andKψw. On the right–hand side

of Eq. (3), the total forceF, the total momentM, and the generalized

elastic forces Q and Θ are calculated from the distributed forces by

means of virtual work [2]. These distributed forces contain the

aerodynamic, gravitational, and thrust forces.

B. Unsteady Aerodynamic Models

In this paper, the unsteady aerodynamics of the wing and tails are

modeled using the modified strip theory. In this approach, the

considered lifting surface is discretized into a series of undeformable

strips. The aerodynamic force and moment on each strip are

calculated using its steady-flow aerodynamic properties and the

unsteady aerodynamic theories for a two-dimensional (2-D) airfoil.

Consider a 2-D airfoil exposed to disturbed atmosphere with three

degrees of freedom: heave h, pitching around the elastic axis ϵ, and a
flap deflection δ. The geometric parameters and the positive

directions ofmovements are indicated in Fig. 2. It is worth noting that

h and ϵ contain the contributions from both rigid-body and structural

motions. In incompressible flow, the sectional lift coefficient and

pitching moment coefficient around the elastic axis are formulated as

CL � Cc;hϵ
L � Cnc;hϵ

L � Cc;δ
L � Cnc;δ

L � Cc;g
L

Cm � Cc;hϵ
m � Cnc;hϵ

m � Cc;δ
m � Cnc;δ

m � Cc;g
m (4)

In Eq. (4), the superscripts c and nc, respectively, indicate the

circulatory and noncirculatory contributions. The circulatory terms

are caused by the vorticity in the flow, which is time-history

dependent. The noncirculatory terms result from the change in

momentum of the surrounding air caused by the airfoil motions and

flap deflections. In incompressible flow, the noncirculatory

contributions are instant and not subject to a time-history effect

[30]. The superscripts hϵ, δ, and g, respectively, denote the contri-
butions from the airfoil motions, flap deflections, and atmospheric

disturbances.Using the expressions ofTheodorsen [31], the circulatory

terms due to airfoil motions are as follows:

Cc;hϵ
L � CSF

Lα
C�k�α3∕4; Cc;hϵ

m �
�
1

4
� a

2

�
Cc;hϵ
L (5)

where CSF
Lα

is the lift curve slope in steady flow, which includes a

compressibility correction using the Prandtl–Glauert factor. It is

noteworthy that Theodorsen considered thin airfoils, thus the lift curve

slope CSF
Lα

was assumed to be 2π [31]. In this paper, more general

expressions are used in Eq. (5).

α3∕4 � ϵ�
_h

V
� c

2V

�
1

2
− a

�
_ϵ

is the angle of attack at the three-quarter-chord. C�k� is the

Theodorsen’s function, where k � ωc∕2V is the reduced frequency

[31]. For an airfoil with a lift curve slope of CSF
Lα

in steady flow, the

noncirculatory coefficients due to airfoil motions are as follows [31]:

Cnc;hϵ
L � CSF

Lα

2π

c

4V

�
_ϵ�

�h

V
− a

c

2V
�ϵ

�
;

Cnc;hϵ
m � −

CSF
Lα

2π

c

8V

��
1

2
− a

�
_ϵ − a

�h

V
� c

2V

�
1

8
� a2

�
�ϵ

�
(6)

The circulatory terms contributed by flap deflections also have time-

history effects; they are given as

Cc;δ
L � CSF

Lα
C�k�

�
T10

π
δ� T11

2π

c

2V
_δ

�
; Cc;δ

m �
�
1

4
� a

2

�
Cc;δ
L (7)

whereT10 andT11 are constant geometric parameters depending on the

hinge position [31]. The noncirculatory terms contributed by the flap

are functions of δ, _δ, and �δ. Their specific expressions can be found in
Ref. [31].C�k� in Eq. (7) is the same as used in Eq. (5), which depends

on the reduced frequency k. However, this formulation is less suitable

for simulating aircraft maneuvers under random turbulence excitations

in the time domain.Wagner’s function, which gives the lift response to

a step change in angle of attack due to airfoil motions, is the time-

domain counterpart of Theodorsen’s function [32]. An exponential

approximation of Wagner’s function is

ϕ�τ� � 1 − 0.165e−0.0455τ − 0.335e−0.3τ

where τ � 2Vt∕c is a nondimensional timevariable [33]. On the other

hand, the unsteady responses of an airfoil to a unit sharp-edged gust are

given by theKüssner function, which is exponentially approximated as

ψg�τ� � 1 − 0.5e−0.13τ − 0.5e−τ [32]. Bothϕ�τ� and ψg�τ� are in the
form of f�τ� � 1 − a1e

−b1τ − a2e
−b2τ. Using the Duhamel’s integral,

a system that has an indicial response function f�τ� can be realized in
the control canonical form as follows:"
_xa1

_xa2

#
�

"
0 1

−
�
2V
c

�
2
b1b2 −

�
2V
c

�
�b1 � b2�

#"
xa1

xa2

#
�

"
0

1

#
u

y �
�
�a1 � a2�b1b2

�
2V

c

�
2

; �a1b1 � a2b2�
�
2V

c

��" xa1

xa2

#
� �1 − a1 − a2�u (8)

Substituting the parameters of ϕ�τ� into Eq. (8) and choosing

u � α3∕4 �
�
T10

π
δ� T11

2π

c

2V
_δ

�
then, based on Eqs. (5) and (7), the circulatory lift coefficient

caused by arbitrary airfoil motions and flap deflections is

Cc;hϵ
L � Cc;δ

L � CSF
Lα
y. The corresponding circulatory moment

coefficient equals CSF
Lα
y multiplied with 1

4
� a

2
[Eqs. (5) and (7)].Fig. 2 2-D airfoil with a trailing-edge flap.
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On the other hand, consider that the airfoil encounters an arbitrary

vertical gust input wg�t� on the leading edge. Substituting the

parameters ofψg�τ� into Eq. (8), then the gust-induced lift coefficient
Cc;g
L equals CSF

Lα
y when the input u equals atan�wg�t�∕V�.

Analogously, Cc;g
m in Eq. (4) equals �0.25� 0.5a�Cc;g

L .
Note that xa1 and xa2 in Eq. (8) are known as the aerodynamic lag

states. Inviewof the precedingderivations, four aerodynamic lag states

are needed by each strip. Two of them are used for modeling the time-

history-dependent effects caused by motions and flap deflections, and

the other two are used to model unsteady gust responses.
This paper considers viscous flow, and the sectional drag

coefficient is modeled as

CD � CD0
� kD

�
Cc;hϵ
L � Cc;δ

L � Cc;g
L

�
2

CD0
is the drag coefficient corresponding to zero lift. Only the

circulatory part of the lift contributes to the quadratic drag [32].

Using the sectional aerodynamic coefficients CL, CD, and Cm the

distributed aerodynamic forces and moments can be calculated.

C. Gust and Turbulence Models

Two methods are often used to model atmospheric disturbances,

namely, the stochastic continuous turbulence and the deterministic

discrete gust. The continuous turbulence is often simplified into a

stationary, homogeneous, isotropic stochastic process with Gaussian

distribution. The power spectral density of the two commonly used

turbulence models, which are the Dryden (denoted by subscriptDw)

and von Kármán models (denoted by subscript vKw), are,

respectively, given by [34]

ΦDw�ω� � σ2
Lg

πV

1� 3�Lgω∕V�2
�1� �Lgω∕V�2�2

;

ΦvKw�ω� � σ2
Lg

πV

1� 8
3
�a�Lgω∕V��2

�1� �a�Lgω∕V��2�11∕6
(9)

where ω is the angular frequency, Lg is the turbulence scale length,

and σ is the turbulence intensity. Constant a � 1.339, and V is the

aircraft speed. Although the von Kármán model better fits the

available experimental and theoretical data, especially in the high-

frequency range [35], its irrational spectra require approximate

difference equations to generate turbulence velocities in the time

domain. As an alternative, it can be realized in the two-dimensional

spatial domain based on the 2-D von Kármán spectrum [35]

Swgwg
�Ωx;Ωy� �

4σ2�aLg�4
9π

Ω2
x � Ω2

y

�1� �aΩxLg�2 � �aΩyLg�2�7∕3
(10)

where Ωx and Ωy are the spatial frequencies along the XE and YE

directions. The vertical turbulence velocity wg as a function of the

spatial position �XE; YE� is calculated as

wg�XE; YE� � F−2
n ������������������������������

Swgwg
�Ωx;Ωy�

q
F 2fwn�XE; YE�g

o
(11)

in whichwn�XE; YE� represents the 2-DGauss white noise generated
in the spatial domain. F−2 represents the 2-D inverse Fourier
transform, whereas F 2 denotes the 2-D Fourier transform. For more
details about this 2-D realization, Ref. [36] is recommended for
readers. In this paper, the external disturbances are assumed to be
symmetrical to the aircraft �Of; xf; yf� plane, whereas the turbulence
velocities vary along the wing span. For example, a realization of the
2-D symmetrical von Kármán moderate turbulence field with Lg �
762 m and σ � 1.5 m∕s is shown in Fig. 3. This realization can be
verified by comparing the covariance function of the simulated field
with its theoretical values [35].
The rational spectra of the Dryden model allow it to be directly

realized in the time domain by passing a white noise through a filter
given by Eq. (12). This filter will be used in the state estimation
process (Sec. III.C):

HDw�s� � σ

�������
Lg

πV

r
1� � ���

3
p

Lg∕V�s
�1� �Lg∕V�s�2

(12)

The “1 − cos” gust model can more precisely capture the solitary
gust feature, as compared to the sharp-edged and the ramped gust
models. A 1 − cos gust is defined as Eq. (13) and can be broadened
into symmetric wgs and asymmetric wga gust fields, as described by
Eq. (14):

wg � wm

2

�
1 − cos

2πXE

λx

�
(13)

wgs �
wm

4

�
1 − cos

2πXE

λx

��
1 − cos

2πYE

λy

�
;

wga �
wm

2

�
1 − cos

2πXE

λx

�
sin

2πYE

λy
(14)

wherewm represents the maximum gust velocity, and λx and λy refer
to the gust lengths in the XE and YE directions, respectively. An
example of a symmetric gust field is given by Fig. 4, in which the
parameters of the first gust wg1 are λx1 � λy1 � 100 m and wm1

�
5 m∕s and of the second gust wg2 are λx2 � λy2 � 180 m and
wm2

� 5 m∕s.
During time-domain simulations, the flexible aircraft flies through

the 2-D spatial turbulence and gust fields. For each aerodynamic
strip, the local vertical gust velocitywg is independently interpolated
using the spatial location of the airfoil leading edge. In this way, the
gust penetration effect [35] is naturally captured. In short, this effect
means that the gust met by the wings at the current time instant will
only be encountered by the tail after a short time period.

III. Flexible Aircraft Gust Load Alleviation Control

A. Incremental Nonlinear Dynamic Inversion Control

Considering a nonlinear control-affine system,

_x � f�x; κ�t�� � G�x; κ�t��u� d�t� (15)

whered represents a bounded external disturbancevector. To indicate
a sudden fault at t � tf during flight, κ�t� ∈ R is designed as a step

Y
E

[m
]

XE[m]

-150
-100
-50

0
50

100
150

0 500 1000 1500 2000 2500 3000 3500
-3
-2
-1
0
1
2

Fig. 3 2-D symmetrical von Kármán vertical turbulence field (Lg � 762 m, and σ � 1.5 m∕s).
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function, with t < tf, κ � 0 indicating the fault-free case and t ≥ tf,
κ � 1 denoting the postfault condition.
Assumption 1: The partial derivatives of f and G in Eq. (15) with

respect to x up to any order are bounded.
Expanding f and G as

f � �f � �ff − �f�κ � f̂ ; G � �G� �Gf − �G�κ � Ĝ (16)

where �f and �G are the nominal dynamics used for controller design,

ff and Gf denote the postfault dynamics, and f̂ and Ĝ represent the

model uncertainties as continuous functions of x. Take the first-order
Taylor series expansion of Eq. (15) around the condition at t − Δt
(denoted by the subscript 0) as follows:

_x � _x0 � G�x0; κ0�Δu� ∂�f�x; κ� � G�x; κ�u�
∂x

				
0

Δx

� ∂�f�x; κ� � G�x; κ�u�
∂κ

				
0

Δκ � Δd�O�Δx2�

≜ _x0 � G�x0; κ0�Δu� Δd� δ�x; κ;Δt� (17)

In the preceding equation, Δx � x − x0 and Δu � u − u0,
respectively, denote the variations of the states and control inputs in

one incremental time stepΔt.Δκ � κ − κ0 denotes the changes of the
fault indicator κ, whereas Δd � d − d0 denotes the variations of the

external disturbances d in Δt. The remainder term O�Δx2� is only a
function of Δx2 because, according to Eqs. (15) and (16),

∂i _x∕∂ui � 0, ∂i _x∕∂di � 0, and ∂i _x∕∂κi � 0 for all i ≥ 2. Use the

nominal system control effectiveness matrix �G�x� to design the INDI
control increment as Δu � �G−1�x��ν − _x0�, where ν is the virtual

control. Then, based on Eq. (17), the closed-loop system dynamics

under INDI control are as follows:

_x � _x0 � G �G−1�ν − _x0� � Δd� δ�x; κ;Δt�
� ν� �G − �G�Δu� Δd� δ�x; κ;Δt� ≜ ν� εindi (18)

Note that εindi in Eq. (18) is a nonlinear perturbation term

remaining in the closed-loop system, which is caused by model

mismatches, external disturbances, and sudden faults. Using

Eq. (16), δ�x; κ;Δt� in εindi is further derived as follows:

δ�x; κ;Δt� � δb�x;Δt� � δd�x;Δt�κ0 � δκ�x�Δκ (19)

where

δb�x;Δt� �
∂� �f � f̂ � � �G� Ĝ�u�

∂x

				
0

Δx�O�Δx2�

δd�x;Δt� �
∂��ff − �f� � �Gf − Ĝ�u�

∂x

				
0

Δx

δκ�x� �
h
�ff − �f� � �Gf − �G�u

i			
0

(20)

Proposition 1:UnderAssumption 1, if kI −G �G−1k ≤ �b < 1 for all
t, and if δκ�x� is bounded when tf ≤ t ≤ tf � Δt, for a sufficiently
high sampling frequency, εindi given by Eq. (18) is ultimately
bounded.
Proof: Because x is continuously differentiable,

limΔt→0kΔxk � 0

Therefore, under Assumption 1, the perturbation terms satisfy

limΔt→0kδb�x;Δt�k � 0 and limΔt→0kδd�x;Δt�k � 0

Equivalently [25],

∀�δε > 0; ∃Δt > 0;

such that ∀Δt ∈ �0;Δt�; kδb�x;Δt�k ≤ �δε; kδd�x;Δt�k ≤ �δε

In other words, there exists a Δt that ensures the boundedness of
both δb�x;Δt� and δd�x;Δt�. Also, these bounds can be further
diminished by reducing the sampling interval.Moreover, becauseΔκ
is only nonzero for tf ≤ t < tf � Δt, then δκΔκ is bounded if, during
the short time interval, δκ�x� is bounded. Denote the bound of the
entire perturbation term δ�x; κ;Δt� as �δ. Because the virtual control
is continuous in time, similarly, there exists a Δt such that the
variations of ν in one time step are bounded. Denote this bound
as kν − ν0k ≤ Δν. For bounded external disturbances in the
physical world, their variations in Δt are also bounded. Denote
kd − d0k ≤ Δd. Analogous to the proof for theorem 1 in Ref. [28], it
can be proved recursively that εindi in Eq. (18) is bounded at each time
step, and it is ultimately bounded by

�εindi �
�bΔν��δ� Δd

1 − �b □

The virtual control ν can be designed for different control purposes
(e.g., command tracking, state stabilization, etc. [25]). Consider a
command tracking problem, where the first-order time derivative of
the reference vector xref is assumed to be bounded and piecewise
continuous.
Proposition 2: If kεindik ≤ �εindi for all x ∈ Rn, and design

ν � _xref � Kp�xref − x�, whereKp is a positive definite gain matrix,
then the tracking error e � xref − x for the systemgiven byEq. (18) is
globally ultimately bounded by a class K function of �εindi.
Proof: This proposition can be proved by considering a candidate

Lyapunov function V � �xref − x�T�xref − x� and using lemma A.3
and proposition B.1 in Ref. [25]. □

The INDI control is featured by its robustness to model
mismatches and reduced model dependency. For rigid aircraft
control, the estimated control effectiveness matrix �G is the only
model information needed by INDI. �G can be different from the real
G, and Proposition 1 only requires a diagonally dominant structure of
G �G−1. Even though the controller is independent of f�x�, its
robustness is improved by the feedback of _x0. As can be seen from
Proposition 1, only the disturbance increment Δd is perturbing the
closed-loop system, which is smaller than the bound of d when high
sampling frequency is used. The model uncertainty related terms
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Fig. 4 2-D symmetrical 1 − cos vertical gust field.
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δb�x;Δt� and δd�x;Δt� becomes negligible under a sufficiently high
sampling frequency.When a sudden fault occurs, the term δκ�x�Δκ is
only nonzero during a short time interval. For t ≥ tf � Δt, the main
influences of the fault have already been included in the
measurements/estimations of _x0. In the presence of model
uncertainties, external disturbances, sudden faults, and even
structural damages, εindi has a smaller bound than the bound on the
remaining perturbation term in nonlinear dynamic inversion control
[28]. As a consequence, the ultimate bound of the tracking errors
under INDI control is also smaller (Proposition 2).

B. INDI for Flexible Aircraft GLA

The flexible aircraft dynamics given by Eqs. (1) and (3) coupled
with unsteady aerodynamics (Sec. II.B) are nonlinear and of high
order. For an aircraft model with me elastic modes and na
aerodynamic strips, there are six kinematic states, six states for
pVf

and pωf
, me states for puw and pψw, me states for q and ξ in

Eq. (2), and 4na aerodynamic lag states (Sec. II.B). To reduce the
computational load of the onboard controller, and to ensure the
observability of the system, it is beneficial to reduce the number of
states in the model used for control design. Therefore, a reduced-
order nonlinear flexible aircraft model is established, for which the
kinematic and dynamic equations are still given by Eqs. (1) and (3),
but only the first me 0 < me structural modes are included. The
dynamics of the remaining me −me 0 modes are viewed as singular
perturbations [14,25] to the system. This is reasonable because the
high-frequency structural modes are more damped, and they are
less coupled with the rigid-body modes. The gust-related 2na
aerodynamic lag states are not needed in this reduced-order model
because gust inputs are viewed as external disturbances by the
controller, and they are uncorrelated with system dynamics. The
other 2na aerodynamic lag states related to motions are also viewed
as singular perturbations to the system [14,25]. The noncirculatory
aerodynamic terms do not increase the order of the system; thus, they
are viewed as regular perturbations [25,37]. This process reduces the
number of states from 12� 2me � 4na to 12� 2me 0 , and it reduces
the model information available to the controller. The characteristics
of the full- and reduced-order models will be compared in Sec. IV.A.
The reduced-order model will be used to design the INDI GLA
control law. This control law will be validated using the full-order
model in Sec. IV.D.
Define the rigid-body states as xr � �VT

f ωT
f �T and the elastic

states as xe � H� qT ξT �T . H is a boolean selection matrix to
choose part of the structural modes for control. Consider the
dynamics of the reduced-order model [Eq. (3)], and take the first-
order Taylor series expansion as follows:

_pVf
� _pVf0

�
�
−
∂ ~ωfpVf

∂xr

				
0

Δxr −
∂ ~ωfpVf

∂ _xe

				
0

Δ _xe �
∂F
∂xr

				
0

Δxr
�
� ∂F

∂xe

				
0

Δxe �
∂F
∂ _xe

				
0

Δ _xe �
∂F
∂u

				
0

Δu

≜ _pVf0
� Kr � Ke � Kde �Ku � ε1

_pωf
� _pωf0

�
�
−
∂ ~VfpVf

� ~ωfpωf

∂xr

				
0

Δxr −
∂ ~VfpVf

� ~ωfpωf

∂ _xe

				
0

Δ _xe �
∂M
∂xr

				
0

Δxr
�
� ∂M

∂xe

				
0

Δxe �
∂M
∂ _xe

				
0

Δ _xe �
∂M
∂u

				
0

Δu

≜ _pωf0
�Wr �We �Wde �Wu � ε2

_puw � _puw0
−KuwΔq − CuwΔs�

�
∂Q
∂xr

				
0

Δxr �
∂�∂T ∕∂q�

∂xr

				
0

Δxr �
∂�∂T ∕∂q�

∂xe

				
0

Δxe �
∂�∂T ∕∂q�

∂ _xe

				
0

Δ _xe

�
� ∂Q

∂xe

				
0

Δxe �
∂Q
∂ _xe

				
0

Δ _xe �
∂Q
∂u

				
0

Δu ≜ _puw0
� Uq � Us � Ur � Ue � Ude � Uu � ε3

_pψw � _pψw0
−KψwΔξ − CψwΔη�

∂Θ
∂xr

				
0

Δxr �
∂Θ
∂xe

				
0

Δxe �
∂Θ
∂ _xe

				
0

Δ _xe �
∂Θ
∂u

				
0

Δu

≜ _pψw0
� Yξ � Yη � Yr � Ye � Yde � Yu � ε4 (21)

In the preceding equations, the control vector is defined as
u � �δas ; δaa ; δe; δr�T . Note that δas and δaa , respectively, denote the
symmetrical and asymmetrical aileron deflections. Also, δe
indicates the elevator deflections, whereas δr represents the rudder
deflections. Lastly, εi, i � 1; 2; 3; 4 includes the Δκ-related terms,
the disturbance variations Δd, and the higher-order terms
in Eq. (17).
Based on the proof of Proposition 1, the norm of the state

variation Δx-related terms vanish as Δt approaches zero. In

practice, the sampling frequency is constrained by the hardware.

For a given Δt, the value of δ�x; κ;Δt� in Eq. (17) depends on the

specific system dynamics. It has been proved in Ref. [25] that, for

faster system dynamics, Δt should be smaller to ensure a desirable

ultimate bound. This alsomakes sense from a physical point of view

that the characteristics of rapidly changing dynamics can only be

captured by using a high sampling frequency. For flexible aircraft

dynamics, the variations of elastic states are typically faster than the

rigid-body states. In Eq. (21), partial derivatives are separately

taken with respect to xr, xe, and _xe. Although the state variation-

related terms can all be viewed as perturbations, in which way,

the only model information used by the control is �G�x� [Eq. (18)],
for relaxing the requirement on the sampling frequency while

maintaining the control performance, it is chosen in this paper to

include the terms related to the elastic state variations in control

design. Nevertheless, because the rigid-body states have slower

dynamics, the Δxr-related terms are viewed as perturbations by the

controller.
The complexity of the control can be further reduced by analyzing

the physics of the flexible aircraft. Although the mass matrix of the

flexible aircraft is a function of the elastic states, it is still diagonally

dominant. Consequently, in the translational and rotational

equations, the partial derivatives of the nonlinear coupling terms

with respect to _xe can become less significant in Δt. Moreover, the

partial derivatives of the Coriolis and centrifugal forces with respect

to xe and _xe have limited effects on the wing bending dynamics.

Therefore, these terms are also viewed as perturbations by the

controller. The specific expressions of these partial derivatives can be

found in Ref. [38]. For simplicity, the incremental terms in the

translational, rotational, bending, and torsion dynamic equations are,

respectively, denoted by K, W, U, and Y in Eq. (21). Based on the

preceding analyses, in one incremental time stepΔt, theKr,Wr,Ur,

and Yr terms are less influential; thus, they are viewed as

perturbations by the controller. The feasibility of this simplification

will be verified in Sec. IV.B. Consequently, Eq. (21) is simplified into

the following form:

1524 WANG ETAL.

D
ow

nl
oa

de
d 

by
 T

U
 D

E
L

FT
 o

n 
A

pr
il 

18
, 2

02
0 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/1

.G
00

39
80

 



where I and 0 are the identity matrix and zero matrix. Also, ε is the
augmented perturbation term. In view of Eq. (22), the partial
derivatives of the generalized forces with respect to xe and _xe
contribute to the aerodynamic stiffness and damping, respectively.
Furthermore, the control surface deflections directly lead to
acceleration variations.
For the convenience of the virtual control design, define

x �
h
pT
Vf

pT
ωf

pT
uw pT

ψw qT ξT
i
T

Velocities and deformations can also be used as states as

xV �
h
VT

f ωT
f sT ηT qT ξT

i
T

with a simple transformation of x � MsxV andMs � diag��Mst; I��.
Recalling Eq. (22), the system dynamic equation is represented as

_x � _x0 � Γj0ΔxV � ϒj0Δu� ε (23)

The preceding equation is different from the incremental dynamic
equation for rigid aircraft [19,26,27,29] because theΔxV-related term
still remains:

ΔxV ≈ M−1
s j0Δx� Δ�M−1

s �x0 � Δ�M−1
s �Δx

where Δ�M−1
s � is caused by the offdiagonal variations of Δq.

Because the mass matrix is diagonally dominant [38], the terms
containing Δ�M−1

s � and the higher-order terms can be viewed as
perturbations.Note that ε 0 is used to combine these termswith the ε in
Eq. (22). Denoting Ae ≜ �ΓM−1

s �j0 and Be ≜ ϒj0, Eq. (22) is then
simplified to

_x � _x0 �AeΔx� BeΔu� ε 0 (24)

The main control aim of this paper is load alleviation, and so a
reference model is designed to generate references for the states and
state derivatives for load control purposes. The internal loads, also
known as “stress resultants”, are caused by the externally applied
forces and moments. The strategy of this controller is to use control
surface deflections to compensate for the load variations caused by
perturbations so that the generalized forces are retained at their
nominal values ofF�,M�,Q� andΘ�. The subscript � indicates the
nominal trimmed condition. Expanding the total force as the nominal
force F�, the force’s variations due to aerodynamic uncertainties
ΔFa, caused by atmospheric disturbances ΔFd, and generated by
control inputs ΔFc are shown as

F � F� � ΔFa � ΔFd � ΔFc (25)

The moment M and the generalized elastic forces Q and Θ in
Eq. (3) can also be expanded in this form. To retain the forces and
moments at their nominal values, the desired forces generated by the
control surfaces should be

ΔFc � −Δ�Fa � Fd�; ΔMc � −Δ�Ma �Md�
ΔQc � −Δ�Qa �Qd�; ΔΘc � −Δ�Θa �Θd� (26)

Recalling Eq. (3), in order to satisfy the preceding equations,
assuming the Coriolis and centrifugal forces are small, the virtual
control

νrm �
h
νTPVf

νTPωf
νTPuw

νTPψw
νTq νTξ

i
T

can be designed as

νPVf
� − ~ωfpVf

� F�

νPωf
� − ~VfpVf

− ~ωfpωf
�M�

νPuw
� −Kuwq − Cuws�Q� � −Kuw�q − q�� − Cuw�s − s��

νPψw
� −Kψwξ − Cψwη�Θ� � −Kψw�ξ − ξ�� − Cψw�η − η��

νq � 0; νξ � 0 (27)

If the nominal condition is steady level flight, then
F� � M� � s� � η� � 0. The nominal condition can also be
constant speed climb and decent, level turn, etc. The desired _q and _ξ
are all equal to zero. The references for states are obtained by
integrating the virtual control as

xrm � xrm� �
Z

t

0

νrmdτ (28)

A proportional virtual control term νp is added to minimize the
reference tracking errors as

ν � νrm � νp � νrm � Kp�xrm − x� (29)

where Kp is a positive definite gain matrix (the same as in
Proposition 2). Using Eq. (24), and based on Sec. III.A, the INDI
GLA control law is designed as follows:

Δu � �BT
eWBe�−1BT

eW�ν − _x0 −AeΔx� (30)

For the reason that the number of control variables is less than the
number of states, the weighted least-squares method is used in the
present INDI control law. The weighting matrix W is chosen as a
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positive definite matrix, which can be tuned based on the control
priority. The total control command for the actuator is u � Δu� u0,
where u0 is the sampled actuator position vector [25]. A block
diagram is illustrated in Fig. 5, in which z−1 represents one time-step
delay, Ts∕�z − 1� is a discretized integrator using the forward Euler
method, and PID represents a proportional–integral–derivative
regulator.

C. Sensing and State Estimation

The INDIGLAcontrol lawgiven byEqs. (27) and (30) requires the
feedback of the states and state derivatives. The rigid-body states
xr � �VT

f ωT
f �T and _Vf can be obtained from the integrated inertial

navigation system. Angular accelerations can be directly measured
by angular accelerometers [39], numerically differentiated from
gyroscope measurements [22], predicted by a linear predictive filter
[19], etc.
The elastic states xe � H� qT ξT �T can be estimated using an

online observer. In this paper, the bending and torsion motions are
captured by nine accelerometers on the flexible aircraft. As shown by
the red dots in Fig. 1, one accelerometer is installed on the center of
mass and eight accelerometers are placed on the wings. On each
wing, the accelerometers are placed in pairs at the midspan and the
wing tip. For each pair, one accelerometer is placed in front of the
elastic axis, and the other one is behind, such that the torsional
deformations can be observed. The accelerometers on the wing are
placed along with the z axis of the local wing coordinate (Fig. 1).
Consider an infinitesimal mass element dm on thewing, for which

the absolute velocities are given as [38]

�vw�rw;t��CwVf�Cw ~r
T
fwωf�

�
~rw� fΦq

�
T
Cwωf� ~rTwΨη�Φs

(31)

By differentiating Eq. (31), the acceleration vector of the
infinitesimal mass element is

aw�rw; t� � Cw
_Vf � Cw ~r

T
fw _ωf �

�
~rw �gΦq

�
T
Cw _ωf

� fΦsTCwωf � ~rTwΨ_η�Φ_s (32)

Evaluating rw in Eq. (32) by the position vector of a wing
accelerometer then, theoretically, its measurement is given by the z
component of aw�rw; t�. In reality, the measurements always contain
noise v. Therefore, the system output equation is written as
y � h�x� � v, where h�x� is based on Eq. (32).
The extended Kalman filter and unscented Kalman filter are

widely used for the state estimation of nonlinear systems. However,
these two methods require high computational power. Because
the nonlinear INDI control is able to retain the states near the
equilibrium point, the linear Kalman filter is a reasonable and
efficient observer for systems under INDI control. It is noteworthy
that the accelerometer measurements are calculated using the full-
order nonlinear flexible aircraft model, whereas only the reduced-

order model is available for the observer design. Linearizing the

reduced-order model around the equilibrium point, the resulting

dynamics are written as

Arr

Aer

Are Br

Cr Cel

BelAee

The process noise �wT
r wT

e �T contains the model errors and

external disturbances. For GLA problems, it is common to augment

the linear systemmodels with the Dryden turbulencemodel as a prior

knowledge of the process noise [10,40]. In reality, however, the

turbulence spectrum is usually unknown. To get a satisfactory state

estimation while making the controller capable of handling a broad

range of disturbances, the Dryden model is augmented into the

system model with parametric uncertainties. These uncertain

parameters can bemodeled as randomwalks and be estimated online.

Recalling Eq. (12), the state-space realization of theDryden spectrum

can be given by

_xw � Agxw � Bgn

wgw � Cgxw (34)

where n is the Gaussian white noise. In view of Fig. 3, the gust

velocity varies on each strip. However, for maintaining the

observation efficiency, the gust velocities are assumed to be

uniformly distributed on the wing wgw and the tail wgH in the

observation process. Also, the gust penetration effect is roughly

modeled as a time shift ς from the wing to the tail in the observation

process. In other words, the current gust velocities on the tail equal

the gust velocities on the wing ς seconds ago, i.e., wgH � e−ςswgw .

The pure time delay e−ςs is approximated using the fifth-order Padé

approximation in the Laplace domain, which can be realized in the

time domain as

wgH � e−ςswgw ≈ H�ςs�wgw

_xς � Aςxς � Bςwgw � Aςxς � BςCgxw; wgH � Cςxς (35)

The influences of gust on the elastic modes are modeled as

we � Ewwgw �EHwgH � de, with de representing the aircraft and

turbulence model errors. Because the rigid states xr can be directly

measured, they are treated as inputs to the elastic state estimation

equation. In summary, the integrated linear model for Kalman filter

estimation is written as

Aeroservoelastic
System

Control
Surface 

Dynamics

Sensing and
State

Estimation

Reference
Generator

Throttle 
Dynamics

Fig. 5 Flexible aircraft INDI gust load alleviation control law structure.
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which is written in a more compact form as

_xkf � Akfxkf � Bkfukf � Gkfn� dkf

ykf � Ckfxkf �Dkfukf � v (37)

The measurement noise covariance matrix is Rkf � EfvvTg,
which is set based on the realistic noise level of the sensors.
The process noise covariance matrix is chosen as Qkf �
EfGkfnn

TGT
kfg �Qd, where Qd is an additive matrix tuned to

account for the aircraft and turbulence model errors. The
effectiveness of this state estimation approach will be shown in
Sec. IV.C.

IV. Simulation Results and Discussions

The effectiveness of the proposed controller on gust load
alleviation and its robustness to model uncertainties and actuator
faults will be evaluated in this section. A nonlinear full-order
benchmark flexible aircraft validation model is set up using the
geometry, inertia, and stiffness data published in Ref. [2]. The
dynamics of this aircraft have been discussed in Sec. II. Each side of
the wing model contains five bending modes and five torsion modes.
The eigenfunctions of a uniform cantilever beam and a uniform
clamped–free shaft are used as the bending shape functions Φ�rw�
and the torsion shape functions Ψ�rw�, respectively. The rest of the
aircraft components are assumed to be rigid.Different from the quasi-
steady strip theory used in Ref. [2], a modified strip theory (Sec. II.B)
is adopted in this paper. This validation model uses the steady-flow
lift curve slope [CSF

Lα
in Eq. (5)] provided by Ref. [2]. These values are

corrected using the Prandtl-Glauert factor to consider compressi-
bility. The distributed forces on the right and left lifting surfaces are
calculated independently; in which way, the lateral flight dynamic
modes can be considered.
All the control surface actuator dynamics are modeled as first-

order systems with time constants of 0.02 s. The deflection limits
of ailerons, elevators, and rudders are 	30 deg, 	20 deg, and
	20 deg respectively. The rate limits for ailerons are 100 deg ∕s,
and they are 60 deg ∕s for the elevator and rudder. The sampling
frequency is fs � 1000 Hz for capturing the high-frequency elastic
modes. For the load cases considered in this paper, the variations of
the airspeed are within 	0.2 m∕s in the open-loop responses,
and thus constant throttle is assumed in the subsequent simulations.
A simple proportional–integral–derivative throttle controller can
always be used if the airspeed has large deviations.

A. Trim and Model Analysis

To analyze the couplings between the structural and rigid-body
dynamics, a quasi-rigid aircraft model [2,29] is set up. This quasi-
rigid aircraft assumes infinitely high wing stiffness, and its kinematic

equations are equal to Eq. (1). The dynamics of this quasi-rigid
aircraft is described by the first two equations of Eq. (3), and all the
elastic motion-related terms are set to zero. The resulting six-degree-
of-freedom equations become identical to the conventional rigid
aircraft dynamic equations expressed in the body-fixed frame when
Of coincides with the center ofmass. Quasi-steady aerodynamics are
used by this quasi-rigid aircraft model.
The full-order flexible aircraft model contains 20 elastic modes

(10 for each wing) and 97 aerodynamic strips; thus, referring to
Sec. III.B, the total number of states equals 440. As presented in
Sec. III.B, a reduced-order nonlinear flexible aircraft model is used
for control design. This model only includes the first three structural
modes on each wing, coupled with quasi-steady aerodynamics; thus,
the total number of states is reduced to 24. The unsteady aerodynamic
effects are viewed as perturbations to the controller (Sec. III.B). The
control designed using the reduced-order model will be implemented
on the full-order model to evaluate its effectiveness.
Using the distributed inertia and stiffness data in Ref. [2], the

natural frequency of the first wing elastic mode is 36.4 rad∕s, which
may not be representative for a very flexible aircraft. To evaluate the
genericity of the proposed controller, amore flexible aircraft model is
set up, which reduces the bending and torsion stiffness of the
benchmark flexible aircraft model by 80%. Consequently, the natural
frequency of the first wing elastic mode becomes 16.34 rad∕s
(2.6 Hz). The structural damping matrices Cuw and Cψw are assumed
to be proportional to the stiffness matrices in Ref. [2]. Therefore,
these dampingmatrices are also reduced by 80% in this more flexible
aircraft model.
The quasi-rigid aircraft, the full-order benchmark flexible aircraft,

the reduced-order flexible aircraft, and the flexible aircraft with 80%
reduced stiffness are all trimmed at a steady level flight condition,
with h� � 25;000 ft, VE� � 127 m∕s, andMa� � 0.41. The steady
level flight trim constraints are given by

_Rf� � �VE� 0 0 �T; θf� � � 0 θ� 0 �T; Vf� � Cf�θ�� _Rf� ;

ωf� � 0; α� � θ�; β� � 0; s� � 0; η� � 0 (38)

In view of the symmetric characteristic of the steady level flight
condition, asymmetric states and control inputs are automatically set
to be zero. The trim solutions for the considered flight condition
satisfying Eq. (38) are summarized in Table 1.
FE� and δe� in Table 1, respectively, represent the thrust and

elevator deflections in the trim condition. For the present models, the
wing elastic axis coincides with the unswept wing beam; thus, the
bending and torsion modes are decoupled. Also, the aerodynamic
center of the wing is in front of the elastic axis. Consequently, in the
trim condition, the wing is bending upward with a noseup torsional
angle. Because of this noseup twist, α� of the flexible aircraft are
smaller than that of the quasi-rigid aircraft. The trim solutions of the

Table 1 Trim solutions for four aircraft models

α�, deg δe� , deg FE� , N q�, mm ξ�, deg

Quasi rigid 4.03 −3.71 2809 —— ——

Full-order flexible 3.98 −3.61 2782 �−34.96; 4.36;−0.36; 0.01;−0.03�T �0.114;−0.020; 0.008;−0.003; 0.002�T
Reduced-order flexible 3.98 −3.61 2782 �−34.29; 3.63�T 0.114
Full-order flexible with reduced stiffness 3.76 −3.23 2675 �−183.41; 23.57;−2.03; 0.07;−0.14�T �0.588;−0.111; 0.043;−0.014; 0.009�T

WANG ETAL. 1527

D
ow

nl
oa

de
d 

by
 T

U
 D

E
L

FT
 o

n 
A

pr
il 

18
, 2

02
0 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/1

.G
00

39
80

 



reduced-order and full-order flexible aircraft are close to each other.
Moreover, the flexible aircraft with reduced stiffness has larger
deformations than the benchmark flexible aircraft, which can be seen
from the values of q� and ξ� in Table 1.
An eigenvalue analysis is performed to show the characteristics of

the four models. Figure 6 compares the poles of the quasi-rigid
aircraft and two flexible aircraft. Due to the coupling effects, the rigid
mode poles of the flexible aircraft deviate from the poles of the quasi-
rigid aircraft. For all the models, there are four poles in the origin for
XE, YE, ZE, and ψ . The reduced-order model is able to maintain the
low–frequency characteristics of the full-order system. As can be
seen from Fig. 6, the poles of the reduced-order model are in
agreement with that of the full-order model in the low-frequency
range. The distinctions between these two models increase as the
frequency increases.
Figure 7 compares the poles of the quasi-rigid, the benchmark

flexible, and the flexible aircraft with reduced stiffness. It can be
observed that the elastic modes of the flexible aircraft with 80%
reduced stiffness have reduced frequency and a higher damping ratio.
For example, as the stiffness reduces, the first bending mode
frequency reduces from 42.5 to 23.1 rad∕s, whereas the damping
ratio increases from 0.101 to 0.153. Besides, the frequency of the first
torsion mode reduces from 263 to 115 rad∕s, whereas the damping
ratio increases from 0.029 to 0.033. As thewing flexibility increases,
the couplings between the structural and rigid-body dynamics
become more prominent. In view of the third subplot of Fig. 7, the
benchmark full-order flexible aircraft has a higher short-period
damping ratio than the quasi-rigid aircraft, which coincides with the
results in Refs. [41,42]. When 80% of the wing stiffness is reduced,
the pair of complex conjugate short-period poles merges to become

two real poles. The disappearance of the conventional oscillatory

short-period mode caused by thewing flexibility was also reported in

Refs. [5,43,44]. The dominant pitching pole of the more flexible

aircraft is -0.783, which is expected to move to the unstable region as

the wing stiffness further reduces [44]. The reduction of wing

stiffness also induces an unstable phugoid mode, which is observed

from the fourth subplot of Fig. 7. This phenomenon is in agreement

with the results in Refs. [5,43,45]. In addition, the lateral flight

dynamic modes are also influenced by the wing flexibility. These

couplings between the rigid-body and structural dynamics highlight

the necessity of an integrated controller, which can simultaneously

consider the aeroelastic and flight dynamic control objectives.

B. Validation of the Model Simplification

According to the analysis in Sec. III.B, the Kr, Wr, Ur, and Yr

terms in Eq. (21) are less influential in one incremental time step;

thus, they are viewed as perturbations by the controller. To validate

this process, the values of the terms in Eq. (21) will be numerically

compared in this subsection.

The benchmark flexible aircraft is initially trimmed in a steady

level flight condition. The 1 deg step elevator δe, rudder δr, symmetric

δas , and asymmetric δaa aileron deflection commands are separately

given to the aircraft. In one incremental time step of Δt � 0.001 s,
the norm values of the terms in Eq. (21) are shown in Fig. 8. For

clarity, only the terms in the translational, rotational, and right wing

vibration equations are shown in the figure. The left wing vibrations

are exactly symmetrical or asymmetrical to the right wing.

It can be seen from Fig. 8 that the elevator (δe blue circles) and

rudder (δr red cross) deflections directly lead to translational and
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rotational acceleration variations because kKuk and kWuk are at least
two orders of magnitude larger than kKrk, kKek, kKdek, kWrk,
kWek, and kWdek. Also, δe and δa do not directly influence the
generalized elastic forcesQ andΘ, thus kUuk � kYuk � 0. Even so,
the elevator and rudder deflections indirectly excite bending and
torsion motions due to the coupling effects because kUqk, kUsk,
kUrk, kUek,kUdek,kYξk, kYηk, kYrk, kYek, andkYdek are nonzero.
The symmetric aileron (δas green asterisks) deflections directly

lead to translational kKuk, bending kUuk, and torsion kYuk
accelerations, as well as small pitching accelerations kWuk. The u-
related terms are about 40, 4, and 40 times larger than the xe- and _xe-
related terms in the translational, rotational, and bending equations,
respectively. kYξk is comparablewith kYuk because thewing torsion
modes have a higher frequency and a smaller damping ratio than the
bending modes (Fig. 6). Nevertheless, under δas deflections, kKrk,
kWrk, kUrk, and kYrk are at least two orders of magnitude smaller

than the remaining terms.
The term values under the asymmetric aileron (δaa ; purple

diamonds) excitation show similar phenomena as under δas
excitation. Namely, the xe- and _xe-related terms have comparable

variations as compared to the u related terms, whereas kKrk, kWrk,
kUrk, and kYrk are at least two orders of magnitude smaller than the
remaining terms. The simulation results in this subsection further

verify the feasibility of viewing Kr,Wr, Ur, and Yr as perturbations
in the control design process (Sec. III.B).

C. State Estimation Results and Discussions

The method presented in Sec. III.C will be used to estimate the

elastic states xe and _xe while the flexible aircraft fly through a 2-D
von Kármán turbulence field (Fig. 3). The parameters of the
turbulence field are Lg � 762 m and σ � 1.5 m∕s. The

measurement noise v is modeled as white noise with a standard
deviation of 0.03 m∕s2. The turbulence parameters used by the
Dryden model are Lg � 800 m and σ � 1.8 m∕s, which are chosen
to be different from the actual turbulence field for including the
parametric uncertainties. As mentioned in Sec. III.C, these uncertain
parameters can be modeled as a random walk and be estimated
online. In this research, by tuning the process noise covariancematrix

Qkf, the Kalman filter already shows satisfactory results without
directly estimating these uncertain parameters.
Figure 9 illustrates the real and estimated deformation velocities of

the first and second bending modes, as well as the first torsion mode.
As can be seen from Figs. 9 and 10, the Kalman filter online

estimation converges within 0.02 s. The estimation errors are all
within the posterior estimate standard deviation boundary.
The deformation accelerations �xe can be reconstructed from

linear accelerometer measurements. As an alternative, �xe can
also be obtained by passing _xe through a “washout” filter:

sω2
n∕�s2 � 2ζnωns� ω2

n�. The estimation results of the deformation
accelerations are shown in Fig. 11, in which only small

disagreements between the real and estimated values present.

Figure 12 shows the estimated generalized elastic displacements xe.
Different from the elastic velocity and acceleration estimations,
perceptible errors are present in the displacement estimations. The

reason behind this can be revealed by Eq. (32), in which the

accelerometer measurements are less correlated with xe. The only

term in Eq. (32) that contains xe is gΦq
T
Cw _ωf, for which the z

component is almost zero under small deformations. As a
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Fig. 8 Norm value of the terms in Eq. (21) in one incremental time step.
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consequence, the estimation of xe has to depend more on the

linearized reduced-ordermodel, which is different from the nonlinear

full-order dynamics. Nevertheless, it will be shown in Sec. IV.D that

these estimation errors can be tolerated by the INDI control.

D. INDI GLA Simulation Results and Discussions

In this subsection, the INDI GLA control law derived in Sec. III.B

will be validated by the benchmark full-order nonlinear flexible

aircraft model. This aircraft flies through both a continuous

turbulence field (Fig. 3) and a discrete gust field (Fig. 4). The

deviation of the vertical load factor from its nominal value nz − nz�
and the deviations of the wing root bending moment Mr −Mr� are

chosen as two performance metrics.

Figures 13–17 illustrate the dynamic responses of the flexible

aircraft flying through a von Kármán turbulence field (Fig. 3), in

which “open-loop”means responses without control. “INDI”means

the closed-loop responses of the system under INDI GLA control, in

which the states and their derivatives are assumed to be available.

“INDI+Kalman filter (KF)” refers to the closed-loop system

responses, when the estimated elastic states and their derivatives are

used by the controller. The rootmean square (rms) value aswell as the

peaks of nz − nz� andMr −Mr� are summarized in Table 2. It can be

seen from Fig. 13 and Table 2 that the proposed INDIGLA controller

effectively alleviates both the vertical load and thewing root bending

moment. Because of the unsteady aerodynamic effects, the load

responses in Fig. 13 are smoother than the results in Ref. [38], in

which the quasi-steady aerodynamics were used. INDI is able to

tolerate the state estimation errors (Sec. IV.C) because the closed-

loop responses using the estimated states only have small

deteriorations as compared to the ideal case.

Figure 15 shows the responses of the generalized elastic

displacements, namely, the first bending qr1 , the second bending qr2 ,
and the first torsion ξr1 modes of the right wing. For this flexible

aircraft configuration, only one set of ailerons is available on the
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wing, which aims at wing bending and torsion modes suppression,
vertical load control, and roll rate control at the same time. However,
according to the controllability analysis, this configuration is unable
to achieve a decoupled control for all its missions. For example, in the
presence of an upwash gust, the wing lift increases, which results in
load increment, upward bending, and noseup torsion of the wing, as
can be seen in Figs. 18–20. The symmetric up deflections of ailerons
would alleviate the wing load and the bending deformation, but they
would degrade the torsion deformation because the aerodynamic
center of the aileron is behind the wing elastic axis. Because the
torsion stiffness is normally larger than the bending stiffness, the
vertical load and bending mode control are weighted heavier in

Eq. (30).Consequently, as shown in Fig. 14, the bendingmodes of the
flexible wing are successfully suppressed, whereas the torsion
deformations have reasonable increments. There are a couple ofways
to improve the torsion responses. The fundamental solutionwould be
adding control surfaces (e.g., inboard ailerons, flaperons, spoilers,
etc.) to achieve a synergetic control with the outboard ailerons. Novel
control surfaces like the variable-camber continuous trailing-edge
flap developed at NASAAmes Research Center [9,11] are beneficial
for elasticwing controls. It is noteworthy that, from the control design
point of view, increasing the number of control surfaces only expands
the dimension of theBe matrix [Eq. (24)]. Stiffening the wing box or
increasing the control weights on the torsionmotion are also possible
approaches.
The wing tip bending and torsion deformations are illustrated in

Fig. 15.When using the INDI control, the rms of ztip − ztip� is reduced
by 72.6%, whereas the rms �ϕtip;r − ϕtip;r� � is increased by 33%

owing to the lack of control surface numbers. Moreover, the rms of
the pitch rate is suppressed from 0.37 to 0.07 deg ∕s. The control
inputs are illustrated in Fig. 17, inwhich the left aileron deflections δal
equal the right δar in the symmetric turbulence field.
The dynamic responses of the flexible aircraft in a symmetric

1 − cos gust field (Fig. 4) are illustrated in Figs. 18–21. As shown in
Fig. 18 and Table 3. The vertical load factor and wing root bending
moment are alleviated by over 36 and 86%, respectively. In the
presence of upwash gusts, the ailerons deflect upward symmetrically
to alleviate the wing load, as shown in Fig. 22. Analogous to the
responses under turbulence excitations, the bending modes are
suppressed,whereas the torsionmodes have acceptable increments in
this gust field, as shown in Figs. 19 and 20. Inviewof Fig. 21, the peak
of the pitch rate q is reduced by 82.7%.

E. Validation by a More Flexible Aircraft Model

As discussed in Sec. IV.A, the benchmark aircraft may not be
representative for a very flexible aircraft; thus, amore flexible aircraft
model that reduces the stiffness of the benchmark aircraft by 80% is
also used to validate the proposed controller. It has been shown in
Fig. 7 that the increase of flexibility changes both the rigid-body and
elastic modes of the benchmark flexible aircraft. The normal control
design routine for this more flexible aircraft would be 1) build a
nonlinear reduced-order flexible aircraft model; 2) identify the Ae

andBe matrices in Eq. (30); and 3) retune the control parametersKp

in Eq. (29). In view of the analyses in Sec. III.A, the INDI control is
robust to model mismatches by virtue of its sensor-based nature.
Therefore, to simplify the implementation process and to assess the
robustness of this control, the controller designed for the benchmark
aircraft is directly applied to this more flexible aircraft model without
modifying the Ae, Be, and Kp matrices. During simulations, this
more flexible aircraft flies through the 2-D turbulence field shown in
Fig. 3 for 10 s. The results are presented in Figs. 23–27, in which
“MF” represents “more flexible.”As illustrated in Fig. 23, in spite of
the model mismatches and the nonoptimal control gains, the
maximum value of nz − nz� is still reduced by 36.8%. Moreover,
the maximum and rms values of the wing root bending moment
deviations are, respectively, reduced by 84.7 and 78.3%. The
performance of this control can be further improved by using more
accurate Ae and Be matrices and optimizing the control gains.
The generalized displacements and the wing tip deformations are

shown in Figs. 24 and 25. When compared to the open-loop
responses of the benchmark flexible aircraft (Figs. 14 and 15), this
more flexible aircraft has higher vibration magnitude and reduced
vibration frequency in the turbulence field. Figure 25 shows that the
wing tip of this more flexible aircraft bends up by 551 mm in the trim

Table 2 Maximum and rms values of the load deviation under turbulence excitation

max�nz − nz� �, g σ̂�nz − nz� �, g max�Mr −Mr� �, N ⋅m σ̂�Mr −Mr� �, N ⋅m

Open loop 0.186 0.0616 1.80 × 104 6.04 × 103

INDI 0.072 61.3% 0.0386 37.4% 1.63 × 103 90.9% 815 86.5%
INDI+KF 0.074 60.1% 0.0392 36.4% 2.71 × 103 84.9% 1.08 × 103 82.2%
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condition, and it oscillates in the range of �−606;−508� mm under
turbulence excitations. The INDI control can reduce the rms of
ztip − ztip� by 70.3%. The pitch rate magnitude of this more flexible
aircraft doubles the value of the benchmark aircraft (Fig. 16). When

INDI is applied, themagnitude ofq is reduced from2.5 to 0.5 deg ∕s.
The control surface deflections are illustrated in Fig. 27.

F. Tolerance to Actuator Faults

As proved in Propositions 1 and 2, the INDI control can passively
tolerate actuator sudden faults, provided G �G−1 remains diagonally
dominant in the postfault condition. In practice, the tolerance of the
control to actuator faults is also constrained by the rate and position
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Fig. 18 Vertical load factor and wing root bending moment responses under gust excitation.
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Fig. 20 Wing tip bending and torsion deformations under gust
excitation.

Table 3 Maximum and rms values of the load deviation under gust excitation

max�nz − nz� �, g σ̂�nz − nz� �, g max�Mr −Mr� �, N ⋅m σ̂�Mr −Mr� �, N ⋅m

Open loop 0.362 0.113 3.67 × 104 1.10 × 104

INDI 0.231 36.2% 0.070 38.1% 5.10 × 103 86.1% 1.50 × 103 86.4%
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Fig. 21 Rigid-body state responses to gust.
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Fig. 22 Control inputs in a gust field.
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limits of the actuators. In this subsection, a command-filtered actuator

compensator is used to handle the actuator nonlinear constraints. The

core idea of this technique is that the command given to the actuator is

passed through a command filter first, which considers the nonlinear

constraints and the bandwidth of the actuator.When the actuator limits

are reached, instead of enforcing the actuator to follow the physically

unachievable command, an actuator compensator can guarantee the

output of the command filter being tracked. For more details of this

technique, Ref. [46] is recommended to readers. The pseudocontrol

hedging (PCH) technique can also be used to deal with actuator

constraints [47,48]. Real-world flight tests have demonstrated the

applicability of the combination of PCH and INDI [24].

This subsection will test the robustness of the proposed INDI GLA
control to an actuator fault case: partial loss of control effectiveness.
When an actuator fault occurs, the circulatory and noncirculatory
aerodynamic coefficients related to control deflections in Eqs. (4) and
(7) are scaled. However, the control is not aware of the fault, and it still
uses the Be matrix estimated in the nominal case.
Figure 28 shows the load responses of the benchmark flexible

aircraft with partial loss of control effectiveness. The label σΔMr
is an

abbreviation for the rms value ofMr −Mr� . During simulations, this
aircraft flies through the turbulence field shown in Fig. 3 for 10 s, and
all the considered actuator faults occur at t � 0 s. As shown in
Fig. 28, without changing any control parameter, this controller is
able to passively tolerate both ailerons simultaneously losing 50% of
their effectiveness. When the fault percentage is larger than 50%, the
effectiveness of the control is limited by the rate constraints of the
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Fig. 23 Load responses of a more flexible aircraft under turbulence excitation.

-200

-190

-180

-170

0 2 4 6 8 10

0 2 4 6 8 10

0 2 4 6 8 10

20

25

t [s]

0

0.5

1

Open loop of MF INDI

q r
2 

[m
m

]
q r

1 
[m

m
]

r1
[

]

Fig. 24 Generalized displacements of the more flexible aircraft.

t [s]

-600

0 5 10 0 5 10

-550

-500

t [s]

0.2

0.4

0.6

0.8

1

Open loop of MF INDI

z t
ip

 [m
m

]

tip
 r
 [

]

Fig. 25 Wing tip bending and torsion deformations of the more flexible
aircraft.

3

0 2 4 6 8 10

0 2 4 6 8 10

4

5
Open loop of MF INDI

t [s]

-2

0

2

 [
]

q 
[

/s
]

Fig. 26 Rigid-body state responses.

-10

0

10
INDI

t [s]

-5

-4

-3

-2

ar
[

]
e

[
]

0 2 4 6 8 10

0 2 4 6 8 10

Fig. 27 Control inputs using INDI.

WANG ETAL. 1533

D
ow

nl
oa

de
d 

by
 T

U
 D

E
L

FT
 o

n 
A

pr
il 

18
, 2

02
0 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/1

.G
00

39
80

 



ailerons. The command-filtered actuator compensator can still

guarantee the stability, whereas the load alleviation performance

inevitably decreases with the increase of fault severity.

Apart from load alleviation, a more important mission of the

elevator is to trim the aircraft. As shown in Table 1, the elevator trim

angle δe� is nonzero in the considered flight condition. As a

consequence, when the elevator partially loses its effectiveness,

its deflection angle should increase in a timely manner to retrim the
aircraft. It can be observed from Fig. 28 that this controller can
passively tolerate up to 80% of the elevator effectiveness loss. For

more severe cases, the position limit of the elevator is reached, and a
retrim becomes physically impossible.
A more comprehensive fault case is illustrated in Fig. 29, in which

the elevator suddenly loses half of its effectiveness at t � 1 s;
following which, 50% of the right aileron effectiveness is also lost at
t � 3 s. This asymmetrical fault case challenges the lateral retrim
ability of this controller. The same as claimed before, neither the
model nor the control parameter is modified after the faults occur. In
view of Fig. 29, after the elevator fault occurs, the mean value of δe
doubles in 0.5 s to retrim the aircraft. The deflection angles of the
right δar and left δal ailerons are equal before t � 3 s (the positive sign
is defined as follows: right aileron deflects downward, and left aileron
deflects upward). After t � 3 s, the magnitude of δar increases to
compensate for its effectiveness loss. The lateral states p and r are
hardly influenced by the faults. As compared to the open-loop
responses (Figs. 13 and 16), the rms of q and Mr −Mr� are,
respectively, reduced by 80.6 and 86.4% in spite of the faults.

G. Robustness to Aerodynamic Model Uncertainties

As analyzed in Sec. III.A, the INDI control is designed via a
sensor-based approach; namely, a part of the dynamic model is
replaced by sensor measurements, which improves the robustness
of this controller to model mismatches. Regarding flight control, a
large proportion of themodel mismatches is caused by the difficulties
in estimating the aerodynamic coefficients. In view of this, the
robustness of the proposed INDI GLA control law to aerodynamic

model uncertainties will be evaluated in this subsection.
The flexible aircraft model used in this paper contains k lifting

surfaces, namely, the fuselage fu, engine pylon p, wings w,
horizontal tail ht, and vertical tail vt. Each aircraft component is
divided intonk strips, and the steady-flow lift curve slope of each strip
[CSF

Lα
in Eq. (5)] adopts the tabular data in Ref. [2]. In this subsection,

this model is augmented by the uncertain parameters ΔCSF
Lα

for
robustness validations. It is remarkable that, for the wings and tails,
the incorporation of ΔCSF

Lα
also changes the control effectiveness

becauseCc;δ
L is a function ofCSF

Lα
[Eq. (7)]. AMonte Carlo simulation

containing 1000 uncertain aerodynamic models is conducted, where

ΔCSF
Lα

is modeled by

ΔCSF
Lαk

≜
n
ΔCSF

Lαk
∈ R

		ΔCSF
Lαk

� N�0; σ2k�
o
; σk �

ρk
nk

Xi�nk

i�1

CSF
Lαi

;

k � fu; p;w; ht; vt (39)

For each lifting surface k, the mean value of the uncertainty is
zero and the standard deviation σk is chosen as ρk times the average
CSF
Lα

of this lifting surface. The perturbation range is chosen as
ρht � ρvt � 0.3, ρfu � ρp � 0.2 and ρw � 0.1. As shown in Fig. 30,
among all the 1000 samples, the median value of the vertical load
factor deviations nz − nz� under INDI GLA control is 0.0435 g,

which is alleviated by 29.4% as compared to the open-loop value
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Fig. 28 The rms values of the load deviations in the presence of actuator
effectiveness loss.
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0.0616 g (Table 2). The interquartile range ofnz − nz� is only 0.015 g.
Moreover, the rms of thewing root bendingmoment deviations using
INDI GLA control is lower than the open-loop value 6405 N ⋅m for
all the tested samples. The few larger rms of load variations are
caused by dramatic wing lift coefficient perturbations and long-term
actuator saturations. This Monte Carlo simulation further verifies
the robustness of the proposed controller to aerodynamic model
uncertainties.

V. Conclusions

In this paper, an incremental nonlinear dynamic inversion gust
load alleviation control law is designed for flexible aircraft. A high-
order flexible aircraft validation model is set up, which considers
unsteady aerodynamics and encompasses both inertia and aero-
dynamic couplings between rigid-body and structural dynamics.
This flexible aircraft model is compared with a quasi-rigid aircraft
model from the perspective of the trim and eigenvalue solutions. The
coupling effects lead to different trim solutions for these two models,
and they distinguish the rigid-bodymodes of the flexible aircraft from
the modes of the quasi-rigid aircraft. As the wing stiffness reduces,
the coupling effects become more prominent. The phugoid mode
becomes unstable if the wing stiffness is reduced by 80%.
To simplify the implementation process and reduce the onboard

computational load, a reduced-order model is used for control and
observer designs. By virtue of its sensor-based nature, incremental
nonlinear dynamic inversion (INDI) only needs part of the reduced-
order model information. In the presence of model uncertainties,
external disturbances, and sudden faults, the residual error of INDI is
proved to be ultimately boundedwhen the conditions in Proposition 1
are satisfied. This bound can be further reduced by increasing the
sampling frequency. Provided a bounded residual error, INDI can
guarantee the globally ultimate boundedness of the tracking errors
(Proposition 2). Due to the lack of control surfaces, the weighted-
least squares method is used along with INDI to make tradeoffs
among different control objectives. It is shown that the elastic states
and their derivatives can be observed from accelerometer
measurements using aKalman filter alongwith a Padé approximation
for modeling the pure time delay.
Time-domain simulations of a full-order flexible aircraft model

flying through various 2-D spatial turbulence and gust fields verify
that the proposed INDI gust load alleviation (GLA) controller can
effectively regulate the rigid-body motions, alleviate the gust loads,
reduce the wing root bending moment, and suppress the wing
bending modes. The INDI GLA control designed for the benchmark
flexible aircraft also shows effectiveness on another more flexible
aircraft model without control parameter adjustment. The robustness
of the proposed controller is also verified in faulty conditions. It can
tolerate sudden actuator faults without using any additional fault
detection/estimation method, unless a retrim becomes physically
unachievable. Moreover, a Monte Carlo study demonstrates the
robustness of the proposed controller to aerodynamic model
uncertainties. In conclusion, less model dependency, easy implemen-
tation, reduced computational cost, and robustness to external
disturbances, sudden faults, andmodel uncertaintiesmake the proposed
INDI control law promising for alleviating the gust loads of flexible
aircraft in real life.
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