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Estimating surface turbulent heat fluxes from land surface
temperature and soil moisture observations using the particle
batch smoother
Yang Lu1, Jianzhi Dong1, Susan C. Steele-Dunne1, and Nick van de Giesen1

1Department of Water Management, Faculty of Civil Engineering and Geosciences, Delft University of Technology, Delft,
Netherlands

Abstract Surface heat fluxes interact with the overlying atmosphere and play a crucial role in
meteorology, hydrology, and climate change studies, but in situ observations are costly and difficult. It has
been demonstrated that surface heat fluxes can be estimated from assimilation of land surface temperature
(LST). One approach is to estimate a neutral bulk heat transfer coefficient (CHN) to scale the sum of turbulent
heat fluxes, and an evaporative fraction (EF) that represents the partitioning between fluxes. Here the newly
developed particle batch smoother (PBS) is implemented. The PBS makes no assumptions about the prior
distributions and is therefore well-suited for non-Gaussian processes. It is also particularly advantageous for
parameter estimation by tracking the entire prior distribution of parameters using Monte Carlo sampling. To
improve the flux estimation on wet or densely vegetated surfaces, a simple soil moisture scheme is
introduced to further constrain EF, and soil moisture observations are assimilated simultaneously. This
methodology is implemented with the FIFE 1987 and 1988 data sets. Validation against observed fluxes
indicates that assimilating LST using the PBS significantly improves the flux estimates at both daily and
half-hourly timescales. When soil moisture is assimilated, the estimated EFs become more accurate,
particularly when the surface heat flux partitioning is energy-limited. The feasibility of extending the
methodology to use remote sensing observations is tested by limiting the number of LST observations.
Results show that flux estimates are greatly improved after assimilating soil moisture, particularly when LST
observations are sparse.

1. Introduction

The magnitude of available energy at the land surface and, particularly, its partitioning between sensible
and latent heat fluxes directly affects land-atmosphere interactions and boundary layer formation [Bateni
and Entekhabi, 2012]. Accurate estimates of surface turbulent heat fluxes are important in many fields such
as meteorology, hydrology, and climate change studies [Caparrini et al., 2004a; Rigden and Salvucci, 2015].

In situ measurements of surface heat fluxes are difficult and expensive, and they are only available from a
handful of sparse flux tower networks (e.g., FluxNet, AmeriFlux, and AsiaFlux) [Baldocchi et al., 2001]. Map-
ping regional heat fluxes from point measurements is hampered by strong spatial heterogeneity [Semmens
et al., 2015], which is influenced by factors such as vegetation cover, soil moisture, and local landscape
[Caparrini et al., 2004a]. Remote sensing techniques provide measurements of the land surface at various
spatial and temporal scales and are a promising data source for surface heat flux estimation. Unfortunately,
surface heat fluxes do not have a unique signature that can be detected directly by remote sensing instru-
ments [Sini et al., 2008].

In previous studies, surface heat fluxes have mainly been estimated using four groups of methods. In the
first group, empirical relationships are built between heat fluxes and local predictors such as land surface
temperature (LST) and vegetation indices (VI) [Gillies et al., 1997; Nagler et al., 2005a, 2005b; Tang et al.,
2010]. This group of methods is also referred to as the ‘‘triangle method’’ [Carlson, 2007]. In the second
group, surface heat fluxes are estimated by solving the surface energy balance (SEB) [Kustas et al., 1996;
Anderson et al., 1997; Bastiaanssen et al., 1998a, 1998b; Jiang and Islam, 2001; Su, 2002; Timmermans et al.,
2007; Allen et al., 2007; Anderson et al., 2011]. The SEB models often utilize instantaneous LST observations
to solve the instantaneous energy balance [Kalma et al., 2008]. Ancillary data such as surface roughness and
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leaf area index (LAI) are needed, and a closure assumption is often imposed [Sini et al., 2008]. A major
assumption is that ground heat flux is a fraction of net radiation.

In a departure from the diagnostic methods, the third group estimates surface heat fluxes by assimilating data
into land surface models (LSM) [Oleson et al., 2010; Niu et al., 2011] to update land surface states and parame-
ters [Yang et al., 2007; Li et al., 2012; Sawada and Koike, 2014; Han et al., 2014]. Data assimilation is the tech-
nique of combining complementary information from model simulation and observations into an optimal
estimate of the geophysical field of interest [Reichle, 2008]. The most commonly used methods are variational
methods, ensemble methods, and particle methods. Variational data assimilation (VDA) methods merge model
simulation with observations by constructing and minimizing a cost function derived from the forward model
within a time window [Alavi et al., 2009]. A VDA method can be one-dimensional (1-D-Var), three-dimensional
(3-D-Var), or four-dimensional (4-D-Var) depending on the spatial and temporal dimensions of the states.
Ensemble methods are based on the Monte Carlo theory and estimate state variables by propagating and
updating an ensemble of model states. They can be subdivided into sequential filtering (e.g., ensemble Kalman
filter (EnKF)) [Reichle et al., 2010, 2013] and smoothing methods (e.g., ensemble Kalman smoother (EnKS))
[Dunne and Entekhabi, 2005, 2006; Dunne et al., 2007; Bateni and Entekhabi, 2012]. Particle methods have their
origin in Bayesian estimation, and model states are estimated as the weighted sum of all particle estimates,
where the particle weights are derived from a likelihood function [Moradkhani et al., 2012; Yan et al., 2015].

In the fourth group, LST time series are assimilated into heat transfer models to estimate two key parame-
ters which characterize surface heat fluxes: neutral bulk heat transfer coefficient (CHN) and evaporative frac-
tion (EF). CHN scales the sum of available energy, while EF governs the partitioning between sensible and
latent heat fluxes. Sensible heat flux is calculated using CHN and meteorological data, and latent heat flux is
estimated using sensible heat flux and EF. In consequence of the simple model structure, this group of
methods greatly reduces the data demand compared to using LSMs. This group of methods has been
applied using variational [Castelli et al., 1999; Boni et al., 2001; Caparrini et al., 2003, 2004a, 2004b; Sini et al.,
2008; Bateni and Liang, 2012; Bateni et al., 2013a, 2013b; Xu et al., 2014, 2015] or ensemble smoothing
[Bateni and Entekhabi, 2012] methods. This study belongs to the fourth group, and a detailed description of
the method can be found in section 2.4.

The PBS has recently been introduced separately by Margulis et al. [2015] to estimate snow water equivalent
and by Dong et al. [2015] to estimate soil moisture from distributed temperature sensing. It can be seen as
an extension of the particle filter (PF) [Dong et al., 2015] as both algorithms use similar marginal distribution
to derive the particle weights in the updating process. The difference is that states and parameters within a
window are updated in a batch using all available observations in that window in the PBS, while the PF
assimilates observations sequentially. As the dimension of states of the PBS is usually higher than that of
the PF, the PBS requires a large amount of particles to avoid particle degeneracy. Despite the computational
demand, the PBS is unique in many aspects.

1. Compared to the variational methods [Caparrini et al., 2003, 2004a, 2004b; Sini et al., 2008; Bateni and
Liang, 2012; Bateni et al., 2013a, 2013b], the PBS requires no computation of model adjoint or back-
ground error covariance; hence, it is much easier to implement.

2. Compared to the ensemble (e.g., EnKF and EnKS) methods [Bateni and Entekhabi, 2012], the PBS makes
no assumptions about the prior distributions, which is theoretically more accurate for hydrological appli-
cations in which the prior distributions are often non-Gaussian (a demonstration of the prior distribution
of model states from this study is provided in Supporting Information) and the performance of ensemble
methods are often suboptimal [Moradkhani et al., 2005; Dong et al., 2015; Yan and Moradkhani, 2016]. It
is also better suited to parameter estimation [Dong et al., 2016a], as the PBS tracks the entire prior distri-
bution of parameters using Monte Carlo sampling, which performs more robustly when the Gaussian
error assumption is violated [DeChant and Moradkhani, 2012].

3. Compared to the PF, the PBS utilizes information contained not only in every single observation but also
in the temporal evolution of observations, as all available observations in the window are assimilated in
a batch. This makes the PBS preferable in estimating surface heat fluxes from LST time series.

In this study, the PBS is used to estimate surface heat fluxes by assimilating LST observations into a heat
transfer model through a joint state-parameter assimilation strategy in the first experiment (section
2.4.1). This is the first study that adopts the PBS to estimate surface heat fluxes by assimilating LST data.
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Although LST time series contains information about surface energy partitioning, many studies have dem-
onstrated that the assimilation strategy performs poorly on wet or densely vegetated surfaces [Caparrini
et al., 2004a; Crow and Kustas, 2005; Bateni and Entekhabi, 2012; Xu et al., 2014]. This happens because under
these conditions, the surface energy partitioning becomes more energy-limited, which weakens the con-
straint of LST on surface energy balance [Caparrini et al., 2004a]. Sini et al. [2008] demonstrated that using
soil wetness information to constrain EF could improve flux estimation under these conditions. Soil moisture
controls the partitioning of available energy into sensible and latent heat fluxes through its influence on
evapotranspiration [Entekhabi et al., 1996; Margulis et al., 2002; Koster et al., 2004; Entekhabi et al., 2010; Sene-
viratne et al., 2010; Crow et al., 2015]. Many studies have demonstrated a positive correlation between EF
and soil moisture at different depths [Kustas et al., 1993; Lhomme and Elguero, 1999; Dirmeyer et al., 2000;
Basara and Crawford, 2002; Wang et al., 2006; Gentine et al., 2007; Santanello et al., 2011]. Here we investi-
gate for the first time in depth the potential value of joint soil moisture and LST assimilation through com-
parative experiments. In the second experiment (section 2.4.2), a simple soil water transfer scheme is
introduced and coupled to the heat transfer model, and soil moisture observations are assimilated simulta-
neously with LST observations. To provide an additional constraint on EF, a soil wetness-EF relationship is
adopted.

A potentially interesting extension of this study is to use LST and soil moisture observations from remote
sensing. This would open the path to estimating surface heat fluxes consistently at larger scales. Soil mois-
ture products are available from L-band microwave remote sensing from missions such as the Soil Moisture
and Ocean Salinity (SMOS) mission and the Soil Moisture Active Passive (SMAP) mission, which provide
global soil moisture observations every 2–3 days [Kerr et al., 2001; Entekhabi et al., 2010]. However, the esti-
mation robustness may be affected by the number of available LST observations, in addition to the influ-
ence of spatial resolution and data accuracy, among others. Potential sources for LST observations include
the Advanced Very High Resolution Radiometer (AVHRR), the Moderate Resolution Imaging Spectroradiom-
eter (MODIS), and the Geostationary Operational Environmental Satellites (GOES), among others. Typically,
the same area is observed no more than twice each day by polar-orbiting satellites, and the observations
may fall outside the nominal assimilation window. For geostationary satellites, cloudy-sky conditions which
represent more than half of the day-to-day weather [Jin, 2000] can dramatically reduce the number of avail-
able observations. A simulation test is conducted to assess the influence of LST data availability on flux
estimates.

Based on the discussion above, there are three objectives of this study: (1) to investigate the performance
of the PBS on the assimilation of LST observations for surface heat flux estimation; (2) to introduce a soil
moisture transfer scheme to constrain EF and jointly assimilate LST and soil moisture observations to
improve the poor performance on wet and densely vegetated surfaces; (3) to explore the influence of LST
data availability on flux estimation in the potential application with remote sensing data. We aim to answer
the following three science questions: (1) What are the effects of assimilating LST observations to estimate
surface heat fluxes with the PBS? (2) Can the estimation be improved if soil moisture observations are assim-
ilated simultaneously with LST observations, particularly on wet or densely vegetated surfaces? (3) Given
the data availability issue in potential applications with remote sensing data, will the conclusions hold
when the number of LST observations is limited?

This paper is organized as follows: Section 2 describes the PBS algorithm, the models used, the experiment
design and the data sets. Section 3 provides the assimilation results and the discussion. Finally, the conclu-
sions are drawn in section 4.

2. Materials and Methods

2.1. Study Area and Data Sets
The experiments are conducted using data from the First ISLSCP (International Satellite Land Surface Clima-
tology Project) Field Experiment (FIFE) which took place in the summers of 1987 and 1988 in the prairies in
central Kansas [Sellers et al., 1992]. During FIFE, meteorological data were routinely measured with Portable
Automatic Meteorological (PAM) stations. LST was measured with a downward looking radiometer at each
PAM station, and surface fluxes were measured at 22 and 10 sites in 1987 and 1988 using either Bowen ratio
or eddy-covariance instruments. Considering the data quality and data sampling problems at individual
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sites [Duan et al., 1996], the site-averaged data sets of half-hourly forcing data, LST, and surface flux obser-
vations provided by Betts and Ball [1998] are used here. This study is comparable to the previous studies
using the same data sets [Caparrini et al., 2004a; Crow and Kustas, 2005; Bateni and Entekhabi, 2012; Bateni
and Liang, 2012; Bateni et al., 2013a].

Soil moisture was systematically measured using the gravimetric method for the top 10 cm soil and neutron
probes to a depth of up to 2 m. To generate a FIFE average, Betts and Ball [1998] first averaged measure-
ments at each site, then obtained one daily value for each site, and after that, averaged these values to get
a daily FIFE site average. The soil moisture values for the 0–5 cm soil are used, and the gravimetric values
are converted to volumetric soil moisture by multiplying a bulk soil density of 1.1 g=cm3 as suggested by
Betts and Ball [1998]. Soil texture falls in the texture classes of silty clay and silty clay loam, and the bulk den-
sities range from 0.96 to 1.5 g=cm3.

The longest contiguous periods during the FIFE experiment (day 148–243 for FIFE 87 and 160–243 for FIFE
88) are used for assimilation and validation. To facilitate intercomparison, the same time periods are
adopted as used in previous studies [Caparrini et al., 2004a; Bateni and Liang, 2012; Bateni and Entekhabi,
2012; Bateni et al., 2013a]. Figure 1 shows the time series of the half-hourly precipitation data and daily-
averaged volumetric soil moisture of the top 5 cm soil of FIFE 87 and 88. The data from the two campaigns
are very different. FIFE 87 experienced a very wet initial period and a long dry down (until day 166). After
that, soil moisture fluctuated with precipitation, and another long dry down ran from day 187 to day 211. In
contrast, during FIFE 88, the soil was in general much drier, and soil moisture responded more slowly to pre-
cipitation compared to FIFE 87. It should be noted that soil moisture was sampled less frequently during
FIFE 88 [Betts and Ball, 1998], which may reduce the accuracy of the site-average data.

2.2. Surface Energy Balance
The flux estimation theory is fundamentally based on the surface energy balance equation

Rn5H1LE1G; (1)

where Rn is net radiation, H is sensible heat flux, LE is latent heat flux, and G is ground heat flux. H can be
calculated from the vertical gradient of temperature between the land surface and the near-surface air by

H5qCpCHUðTs2TairÞ: (2)

Here q [kg/m3] is air density, Cp [J/kg/K] is specific heat capacity of air, CH is the bulk coefficient for heat
transfer, U [m/s] is wind speed, Ts [K], and Tair [K] are the temperature of land surface and near-surface air.

CH is mainly dependent on two factors: the landscape characteristics and the atmospheric stability. As the
influence of landscape depends mainly on the surface geometry and the vegetation phenology, it varies

Figure 1. Half-hourly precipitation and daily soil moisture (0–5 cm) time series of (a) FIFE 87 and (b) FIFE 88.
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slowly over time (e.g., monthly) [Caparrini et al., 2003, 2004a, 2004b; Crow and Kustas, 2005; Sini et al., 2008;
Bateni and Liang, 2012; Bateni and Entekhabi, 2012; Bateni et al., 2013a, 2013b; Xu et al., 2014, 2015]. Here we
adopt the stability correction function introduced by Caparrini et al. [2003] to estimate CH. The stability cor-
rection function has proved effective in several studies to estimate surface heat fluxes [Caparrini et al., 2003,
2004a, 2004b; Crow and Kustas, 2005; Sini et al., 2008; Bateni and Liang, 2012; Bateni and Entekhabi, 2012;
Bateni et al., 2013a, 2013b; Farhadi et al., 2014; Xu et al., 2014, 2015]. The function is given by

CH5CHN � f ðRiÞ5CHN � ð112ð12e10Ri ÞÞ; (3)

where CHN is the CH under neutral atmospheric condition, which represents the influence of land surface
characteristics on surface heat fluxes, and Ri is the Richardson number which is an indicator of the atmo-
spheric stability. Ri is estimated by

Ri5
g

Tpot

DTpot

Dz
Dz
DU

� �2

; (4)

where g [m/s2] is gravitational acceleration, Tpot [K] is potential temperature, z [m] is vertical height, and D
represents the difference across height difference Dz. Ri is dependent on atmospheric conditions and exhib-
its strong diurnal variation. When the atmosphere is unstable, DTpot is negative, which leads to a negative
Ri, and vice versa. H can be calculated if CHN and Ri are determined.

The EF is introduced to calculate LE. EF is defined as

EF5
LE

H1LE
; (5)

which renders

LE5H
EF

12EF
: (6)

The primary benefit of using EF is that it is almost constant for near-peak radiation hours (09:00–16:00) on
days without precipitation [Crago, 1996; Crago and Brutsaert, 1996; Gentine et al., 2007]. Therefore, using EF
greatly reduces the number of parameters to be estimated, and increases the robustness of the retrieval in
the data assimilation applications [Caparrini et al., 2004a].

2.3. The Particle Batch Smoother (PBS)
2.3.1. PBS Algorithm
Here the PBS formulations as outlined by Dong et al. [2015] are used. The update process of the PBS is simi-
lar to that of the PF. Initially, all particles are given the same weight. When observations are assimilated, the
updated weights are calculated using the prior distribution and likelihood of each particle. Consequently,
particles closer to the observations get larger weights.

The evolution of model states in time can be described by

xi
t5f ðxi

t21;ui
t;bi

tÞ1wi
t; (7)

where f is the forward model, xi
t is the model state (T and h in this study) vector of the ith particle at time

step t, ui
t is the perturbed forcing data, bi

t is the model parameter vector, and wi
t represents model error.

Here wi
t is assumed to be normally distributed.

The model states are related to the observations by

ŷ i
t5hðxi

tÞ1vi
t; (8)

where ŷ i
t is the simulated observation vector, h is the observation operator that translates modeled states

to the observations, and vi
t is the observation error.

For an assimilation window of length L, the updated particle weights are derived by

wi�
t / wi�

t2Lpðyt2L11:tjxi
t2L11:tÞ; (9)
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wi
t5

wi�
tXN

i51
wi�

t

; (10)

where wi
t is the weight of the ith particle for the entire assimilation window, wi�

t is the unnormalized weight
from importance sampling, and pðyt2L11:tjxi

t2L11:tÞ is the likelihood function, which is expressed as

pðyt2L11:tjxi
t2L11:tÞ /

Yt

j5t2L11

e 20:5ðyj2ŷ i
jÞ

T R21ðyj 2ŷ i
jÞ½ �: (11)

Here R is the error covariance matrix of observations, and yj is the observation vector. The reader is referred
to Dong et al. [2015] for a detailed derivation of the PBS.
2.3.2. The Tuning Factor
Particle degeneracy, which is the situation when most of the particles have negligible weights, can severely
weaken the performance of the PBS. To avoid this problem, resampling of the posterior after each update is
performed [Moradkhani et al., 2005]. However, for cases when the observations are nearly perfect (i.e., very
small R) or the model estimations are very inaccurate (e.g., in consequence of bad initialization), resampling
alone cannot prevent particle degeneracy [Stordal et al., 2011]. For such cases, the variance of particle
weights will be extremely high, giving too much importance to a few particles, and most of the particles
will be removed after resampling. As a result, the estimates will be unreliable. This problem also occurs
when the dimension of model states is high [Bengtsson et al., 2008]. Stordal et al. [2011] suggested that this
problem could be avoided by approximating the posterior with heavy tails. Although biases are introduced
in this process, the final estimates are almost surely to converge to the true posterior.

Dong et al. [2016a] introduced a tuning factor of b that modified the likelihood function (equation (11)) as

pðyt2L11:tjxi
t2L11:tÞ /

Yt

j5t2L11

e 20:5b2ðyj2ŷ i
jÞ

T R21ðyj 2ŷ i
jÞ½ �; (12)

where b ranges from 0 to 1, effectively reducing the variance of the particle weights after updates.
Small b values essentially allow the particle spread to be wide enough to encompass the observations
within the PBS assimilation window. When b 5 1 is used, the modified likelihood function is reduced to
that in equation (11). The optimal value of b depends on the specific application. The model is run for a
number of reasonable b values, and the b value that minimizes the RMSE of flux estimates is chosen as
the optimal value. In this study, the optimal b values are 0.8 and 0.5 for the first and the second
experiment.

2.4. Experimental Setup
Two experiments were conducted in this study. In the first experiment (section 2.4.1), the PBS was used to
assimilate LST into the force-restore model to estimate surface fluxes (hereafter PBST). In the second experi-
ment (section 2.4.2), a soil moisture transfer scheme was introduced, and LST and soil moisture data were
assimilated simultaneously using the PBS (hereafter PBSTh). Off-line convergence tests showed that there
was only marginal improvement in the RMSE of flux estimates when over 100 particles were used in both
experiments. As additional particles were not computationally expensive, to ensure sufficient particles for
state and parameter estimation, 300 particles were used in both experiments. Following the approaches of
Caparrini et al. [2003, 2004a], Sini et al. [2008], Bateni and Entekhabi [2012], Bateni and Liang [2012], and
Bateni et al. [2013a], the PBS was implemented using a daily assimilation window from 09:00 to 16:00, dur-
ing which the EF can reasonably be assumed to be a constant. At the beginning of each time period, the
CHN value for each particle was randomly sampled within a given range. Table 1 shows the valid ranges for
CHN initialization in each time period. The ranges were determined by the ‘‘optimal values’’ provided by
Caparrini et al. [2004a] plus a 61 3 1023 variation. Caparrini et al. [2004a] determined these ‘‘optimal val-
ues’’ by minimizing the cost function through a variational scheme. The CHN ranges imply considerable
uncertainty while maintaining the validity of CHN within a 30 day time period.
2.4.1. PBS With Only LST
In this experiment, the force-restore model was used to give the time evolution of LST in response to atmo-
spheric forcing and the restoring effect of the deep soil
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dT
dt

5
2
ffiffiffiffiffiffiffi
px
p

Pe
ðRn2H2LEÞ22pxðTs2TDÞ1�: (13)

Here Pe ½Jm22K21s21=2� is the effective thermal inertia, x ½s21� is the diurnal frequency, Ts [K] and TD [K] are
LST and deep soil temperature, and � represents model error. Pe is given a constant value of 750 Jm22K21

s21=2 following Caparrini et al. [2004a] and Sini et al. [2008]. It was shown that variations in Pe did not signifi-
cantly affect the results [Sini et al., 2008]. TD is estimated with a semidiurnal filter of the land surface follow-
ing Caparrini et al. [2003]. An additive Gaussian error with a standard deviation of 0.1 K is added at each
time step.

The soil texture particles were randomly sampled within the two texture classes and bulk density values
were sampled from the range shown in Table 2. The corresponding hydraulic properties were generated
from ROSETTA software [Schaap et al., 2001]. The forcing data in this experiment are net radiation, air tem-
perature, and wind speed. Different forms of perturbations have been applied to characterize the error dis-
tributions of forcing data [Reichle et al., 2008; Leisenring and Moradkhani, 2011; Dong et al., 2016a]. In this
experiment, the forcing data perturbations are described in Table 2 following Bateni and Entekhabi [2012]
and Dong et al. [2016a]. To make the perturbation less subjective, approaches such as the variable variance
multiplier can be used to dynamically adjust the ensemble spread of the state and parameter predictions in
future studies [Leisenring and Moradkhani, 2012].

The model was run from 09:00 to 16:00 local time at half-hourly time steps (i.e., 15 time steps per day). Each
day at 09:00, the LST particles need to be initialized. Here the first available observations, typically at 09:00,
were used to provide an initial condition for the assimilation window, and a 3 K additive Gaussian error was
used following Bateni and Entekhabi [2012]. If the in situ observations are not available, the particles can
also be initialized with data from other sources, such as geostationary satellites, land data assimilation sys-
tems, and reanalysis data. For each particle, a daily average EF was randomly sampled from a uniform distri-
bution with a range of 0.1–0.9. At every time step, H was first calculated from equation (2), and LE was
derived from H and EF using equation (6). The force-restore model was then used to propagate LST to the
next time step.

At 16:00, all available LST observations (14 observations in this experiment) of the day were assimilated
using the PBS. The state vector for particle i is

X5½T i
t1 T i

t2 . . . T i
tm�: (14)

Here t1 . . .tm are the time steps when LST observations are available. Particle weights are determined from
equation (10). The flux estimates at each time step were calculated as a weighted sum of all particles, and

Table 1. Initial Range of CHN for Each Time Perioda

FIFE 87 FIFE 88

Day Optimal CHN CHN Range Day Optimal CHN CHN Range

148–177 8.96 3 1023 (7.96–9.96) 3 1023 160–190 1.91 3 1023 (0.91–2.91) 3 1023

178–206 7.12 3 1023 (6.12–8.12) 3 1023 191–220 3.76 3 1023 (2.76–4.76) 3 1023

207–243 4.60 3 1023 (3.60–5.60) 3 1023 221–243 3.59 3 1023 (2.59–4.59) 3 1023

aThe Optimal CHN Values Were Derived by Caparrini et al. [2004a].

Table 2. Perturbation of Forcing Data and Soil Properties

Variable Perturbation Standard Deviation Bound

Silt [%] Uniform USDA texture class
Clay [%] Uniform USDA texture class
Bulk Density [g=cm3] Uniform [0.96,1.5]
Net Radiation [W/m2] Gaussian, 3 0.1 3 Net radiation
Air Temperature [K] Gaussian, 1 1
Wind Speed [m/s] Gaussian, 1 0.1
Precipitation [mm/s] Gaussian, 3 0.1 3 Precipitation
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CHN particles were resampled to give the prior estimates for the next day. Results are compared to an open-
loop (OL, i.e., no assimilation case) run (Figures 2–6).
2.4.2. PBS With Both LST and h

In the second experiment, a simple soil moisture transfer scheme was introduced. The aim is not to model
soil moisture transfer accurately but to further constrain the EF and flux estimation. The scheme used is tak-
en from the Simple Biosphere (SiB) model [Sellers et al., 1986]. For N soil layers, the soil moisture variation of
each layer is calculated by
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Figure 2. Estimated daily (09:00–16:00) average LST from PBST and OL versus observations for (a) FIFE 87 and (b) FIFE 88 with 14 LST observations assimilated.

Figure 3. Estimated daily (09:00–16:00) average EF from PBST and OL versus observations for (a) FIFE 87 and (b) FIFE 88 with 14 LST observations assimilated. Daily soil moisture data are
plotted in dashed line.
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Here Wk is the soil wetness of the kth layer, hs ½cm3=cm3� is the volumetric soil moisture at saturation, I1
[cm/s] is the infiltration into the first layer from precipitation, Dk [cm] is the thickness of the kth layer, Qk;k11

[cm/s] is the flow between the kth and k 1 1th layer, qw [g/cm3] is the water density, Es ½gcm22s21� is the
water loss from soil evaporation, Et;k ½gcm22s21� is the water loss from vegetation transpiration in the kth
layer, and QN [cm/s] is the gravitational drainage from the deepest layer. The additive modeling error was
assumed Gaussian with a standard deviation of 0.001 cm3=cm3. The scheme was run at a 30 min time step,
and runoff was neglected.

Wk is defined as

Wk5
hk2hr

hs2hr
; (16)

where hk ½cm3=cm3� is the soil moisture of the kth layer and hr ½cm3=cm3� is the residual moisture.

I1 is given by

I15minðPrate; KsatÞ; (17)

where Prate [cm/s] and Ksat [cm/s] are precipitation rate and the hydraulic conductivity at saturation.

Following the formulation in Sellers et al. [1986], the water transfer between adjacent layers is given by

Qk;k115
Dk Kk1Dk11Kk11

Dk1Dk11
2

wk2wk11

Dk1Dk11
11

� �
; k51 . . .N21; (18)

where K [cm/s] and w [cm] are hydraulic conductivity and soil moisture potential, which are derived using
the Van Genuchten [1980] method.

To implement the scheme, the estimated LE needs to be partitioned into soil evaporation Es and vegetation
transpiration Et. The partitioning is conducted by assuming

Et

LE
512eðc�LAIÞ: (19)

The LAI values in each time period can be found in Bateni and Entekhabi [2012]. These LAI values were
derived from the LAI-NDVI (Normalized Difference Vegetation Index) relationship [Aparicio et al., 2000] and
the site average NDVI data from Landsat and SPOT satellites [Hall et al., 1992]. The constant c governs the
radiation extinction on the basis of the canopy of sun angle, plant distribution, and the arrangement of
leaves [Simunek et al., 2005]. Values suggested for c vary from 20.82 [Campbell, 1985] to 20.5 [Kustas et al.,

Figure 4. CHN estimates from PBST and PBSTh for (a) FIFE 87 and (b) FIFE 88 with 14 LST observations assimilated.

Water Resources Research 10.1002/2016WR018943

LU ET AL. PBS FOR SURFACE FLUXES 9094



Figure 5. Scatterplot of daily (09:00–16:00) average modeled fluxes versus observations for (a–f) FIFE 87 and (g–l) FIFE 88 from OL (black), PBST (red), and PBSTh (blue) with 14 LST obser-
vations assimilated. The units of RMSE and Bias are W/m2. The results for the three time periods are plotted separately.
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Figure 6. Scatterplot of half-hourly (09:00–16:00) modeled fluxes versus observations for (a–f) FIFE 87 and (g–l) FIFE 88 from OL (black) and PBST (red) with 14 LST observations assimilat-
ed. The units of RMSE and Bias are W/m2. The estimates at 09:00 are plotted in large open circles and the other estimates in small dots. The results for the three time periods are plotted
separately.
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1996; Anderson et al., 1997] and 20.463 in HYDRUS-1D [Simunek et al., 2005; Sutanto et al., 2012]. Here c was
set to 20.5. Sensitivity tests demonstrated that small variations of c did not affect flux estimates
significantly.

The transpiration water loss from each layer is derived from the overall percentage of available moisture
(hk2hr ) weighted by root fraction

Et;k5
froot;kðhk2hrÞXN

k51
froot;kðhk2hrÞ

; (20)

where froot;k is the root fraction of the kth layer. The root distribution function adopted is the same as that
used in the Community Land Model (CLM) model

Y512
1
2
ðe2ad1e2bdÞ; (21)

where Y is the cumulative root fraction from the surface, and d is soil depth. a and b are empirical parame-
ters for different vegetation types. Values of 10.74 and 2.608 are assumed for a and b, as suggested by Zeng
[2001].

The modeled soil moisture data are used in two ways: to constrain daily EF and to serve as a model state in
the assimilation. Here the relationship proposed by Dirmeyer et al. [2000] is adopted as

EFref 5
2EFmax

p
arctanðaSWIÞ; (22)

where EFref is the prior guess of the reference daily EF, EFmax is the maximum possible EF and can be safely
assumed to be unity, a is a slope factor that controls the shape of the curve, and SWI is the soil wetness
index calculated from field capacity and wilting point based on soil texture. Here SWI was taken as the
mean of all particle estimates.

At 09:00 each day, the SWI of each particle was calculated, and a daily reference EFref was generated using
equation (22). The daily average EF of each particle was uniformly sampled within the range of EFref 6 �. In
this experiment, a 5 4 was used which proves effective to capture the arctangent EF-SWI relationship, and
�5 0.2 was shown to allow a reasonably large and valid range of EF variation.

From 09:00 to 16:00, fluxes are estimated using equations (2) and (6), and precipitation data and LE esti-
mates are used to force the water transfer scheme to propagate soil moisture. From 16:00 to 09:00 the
next day, LE cannot be derived as EF is no longer conservative. Here G is estimated randomly as a fraction
of Rn [Choudhury et al., 1987; French et al., 2003], and LE is calculated as the residual of surface energy
balance:

G5cG � u½0; 1� � Rn; (23)

where cG is a coefficient indicating the highest percentage of G in Rn, and u½0; 1� represents a random num-
ber between 0 and 1. Based on the statistics in Betts and Ball [1998], cG was assumed to be 0.3. In general,
fluxes between 16:00 and 09:00 were relatively low, and test showed that this simple scheme worked rea-
sonably well for flux estimation.

In this experiment, the soil column was divided into six layers. The layer thicknesses were 5, 10, 15, 15, 15,
and 30 cm, respectively. In contrast to PBST which requires state initialization every day, LST and h only
need to be initialized once at the beginning of the experiment in PBSTh . The model was then propagated
with perturbed forcing data shown in Table 2. At the end of the day, the available LST and 0–5 cm h obser-
vations were assimilated. We only assimilated h of the top 5 cm, which corresponds to the typical penetra-
tion depth of L-band microwave remote sensing observations, such as soil moisture products from SMOS
and SMAP. As only daily average h was available, the mean modeled h was calculated as the prior estimate.
The state vector for particle i is
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X5 T i
t1 T i

t2 . . . T i
tm

X48

j51
hi

j;1

48

2
4

3
5; (24)

where t1 . . .tm are the time steps when LST observations are available and hi
j;1 is the soil moisture of the

top layer of the ith particle at time step j. The observation errors for h was assumed 0.04 cm3=cm3, which is
typical for remote sensing observations [Das et al., 2011; Jackson et al., 2012]. After assimilation, LST and h
as well as CHN were resampled and acted as the prior estimates for the next day.

To assess the impact of LST data availability on flux estimation, the model was run multiple times with dif-
ferent number of available LST observations (1, 2, 3, 4, 5, 10, and 14, respectively) for both assimilation strat-
egies, and the corresponding mean RMSEs were calculated. The time of observations was randomly chosen
in the assimilation window to simulate the random occurrence of cloud contamination.

3. Results and Discussion

3.1. PBS With Only LST
Figure 2 shows the estimated daily (09:00–16:00) average LST from PBST and open-loop (OL) versus observa-
tions. The three time periods of each campaign are delineated with dash-dotted lines. It is evident that the
PBST captures the temporal trend of LST very well and is always closer to the observations than the OL for
both FIFE 87 and FIFE 88. The RMSE decreases from 3.00 K (OL) to 0.81 K (PBST) for FIFE 87, and from 4.01 K
(OL) to 0.53 K (PBST) for FIFE 88. The improvement is more evident for FIFE 88 than for FIFE 87. As the soil is
generally much drier in FIFE 88, the surface energy partitioning is more moisture-limited. This makes LST a
stronger constraint on surface heat flux partitioning for FIFE 88 than for FIFE 87.

Figure 3 shows the estimated daily (09:00–16:00) average EF from the PBST and OL versus EF calculated
from observed turbulent heat fluxes. The three time periods of each campaign are delineated with dash-
dotted lines. As EF is not constrained in OL runs, the estimated daily average EFs stay almost constant and
deviate a lot from the observations, especially for days when the actual EF is high. In the PBST, the estimated
EFs capture the daily variations in observed EFs, and the estimated EF values are generally much closer to
the observations.

Daily soil moisture observations are also plotted in Figure 3 to facilitate analysis. PBST performs less satisfac-
torily for days when the soil is very wet (e.g., day 148–177 in FIFE 87) and more accurately for dry-down
events (e.g., day 200–210 and 230–243 in FIFE 88). For wet soil, the soil moisture is high enough to supply
unlimited water for evaporation and transpiration, and the surface energy partitioning is controlled mainly
by surface properties and atmospheric conditions [Shokri et al., 2008; Bateni and Entekhabi, 2012]. Therefore,
the coupling between EF and LST becomes very weak, and the estimation of EF from LST is very uncertain.
In contrast, during a dry-down event, EF is mainly controlled by soil moisture availability, leaving plenty of
information of energy partitioning in LST time series, thus the estimation of EF is more accurate and robust.
It is noted that for day 199–206 in FIFE 87, the EF estimates capture the falling trend but quickly drift away
from the observations despite the dry-down event. This is caused by a sharp drop in CHN between time peri-
ods. A mean CHN of 7.12 3 1023 is initially used for day 177–206, but CHN quickly drops to 4.31 3 1023 for
day 192–221 according to Caparrini et al. [2004a]. This may be caused by the changing vegetation phenolo-
gy. According to Hall et al. [1992], the LAI quickly fell from about 1.5 to about 0.5 during day 180–215 in
FIFE 87, which may explain to some extent the dramatic fall of CHN. As is shown in the estimated CHN time
series in Figure 4, the PBS takes longer to converge to the much lower CHN value, leading to higher H and
lower LE estimates, therefore EFs are underestimated. When CHN is initialized reasonably well for the third
time period, EF is estimated more accurately (day 207).

Figure 5 shows the daily (09:00–16:00) average modeled H and LE versus observations for FIFE 87 and FIFE
88. Generally, significant improvement is seen for all time periods in both campaigns in terms of RMSE and
R. The overall RMSEs decrease from 100.7 to 70.7 W/m2 for H, and from 101.3 to 72.7 W/m2 for LE in FIFE 87.
In FIFE 88, the overall RMSEs decrease from 63.5 to 39.6 W/m2 for H, and from 103.4 to 56.1 W/m2 for LE.
The statistics are comparable to the results reported in Caparrini et al. [2004a] which also used the force-
restore model and variational assimilation. Besides, the improvement in estimation bias is also evident.
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Overall, the biases decrease from 86.4 to 51.2 W/m2 for H, and from 289.8 to 247.2 W/m2 for LE in FIFE 87.
In FIFE 88, the overall biases decrease from 45.8 to 8.8 W/m2 for H, and from 289.9 to 229.7 W/m2 for LE.

Figure 6 shows the half-hourly flux estimates versus observations. The estimates at 09:00 are plotted as
large open circles and the other estimates as small dots. This is to highlight the fact that some extremely
large and negative results are obtained at 09:00, especially in LE estimates. This is caused by the weak
hypothesis of constant EF at the very first time step of the assimilation window. In the early morning, LST is
sometimes close to or even lower than the air temperature. After particle initialization at 09:00 each day,
many particles will have values lower than air temperature. This leads to negative H estimates which are
then magnified by the constant EF hypothesis in LE estimation. The same problem was also reported in
Caparrini et al. [2004a]. The recalculated RMSE and R excluding estimates at 09:00 are shown in parenthesis.
The improvement is also remarkable even at half-hourly timescale. When estimates at 09:00 are excluded,
the overall RMSEs decrease from 116.9 to 83.6 W/m2 for H, and from 97.1 to 68.3 W/m2 for LE in FIFE 87. In
FIFE 88, the overall RMSEs decrease from 75.9 to 46.3 W/m2 for H, and from 104.3 to 58.6 W/m2 for LE. The
reduction in biases is also significant. In FIFE 87, the overall biases decrease from 97.4 to 60.6 W/m2 for H,
and from 282.2 to 233.3 W/m2 for LE. In FIFE 88, the overall biases decrease from 52.3 to 12.3 W/m2 for H,
and from 287.6 to 224.2 W/m2 for LE.

3.2. PBS With Both LST and h
Figure 7 shows the 0–5 cm daily soil moisture estimates from OL and PBSTh versus observations. Although
the subdaily dynamics are smoothed in the daily area average soil moisture data, improvement on soil
moisture estimates after assimilation is still evident, particularly in FIFE 87. After assimilation, the soil mois-
ture time series agrees better with observations. Despite the difference in absolute values, the PBS captures
the dry-down events of day 148–166 in FIFE 87 and day 200–210 in FIFE 88, and the fluctuations during day
176–192 in FIFE 87 are captured very well. These improved soil moisture estimates would benefit the esti-
mation of EFs.

A comparison of CHN estimates from PBST and PBSTh is shown in Figure 4. In general, CHN estimates from
both strategies follow similar temporal trends. In FIFE 87, the CHN estimates from PBST are always higher
than those from PBSTh, which explains the overall underestimation of EFs (Figure 3). In FIFE 88, the CHN esti-
mates from both strategies are comparable, particularly in the last time period (day 221–243). This implies
that LST time series is a strong constraint in surface energy partitioning, which is also demonstrated in the
EF estimates shown in Figure 3. The temporal evolution of CHN can be explained by vegetation phenology.
According to Hall et al. [1992], in FIFE 87 the LAI falls first until day 160, and then keeps rising until day 170–
180 followed by a long fall until about day 215. After that, LAI gradually rises until day 243. The temporal

Figure 7. 0–5 cm daily soil moisture estimates from OL and PBSTh versus observations for (a) FIFE 87 and (b) FIFE 88 with 14 LST observations assimilated.
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evolution of LAI agrees very well with the CHN estimates from PBSTh. In FIFE 88, the CHN estimates vary only
in a very small range in both strategies compared to FIFE 87. This may be explained by the small variation
of LAI (1.2–1.4) during FIFE 88 reported in Bateni and Entekhabi [2012].

Figure 8 shows the estimated EFs from PBST and PBSTh . The shaded area indicates the prior guess of the EF
range, and the blue and red lines are the estimates from PBSTh and PBST, respectively. Almost all observed
EFs fall in the shaded area, showing the validity of the EF-SWI relationship. The PBSTh estimates are generally
much closer to observations, demonstrating the benefit of also assimilating soil moisture observations. In
FIFE 87, the improvement is most evident in the first time period (day 148–177) when the soil is very wet
and for day 199–206 when CHN varies strongly. When the soil is wet enough to supply unlimited water, the
LST is no longer a strong constraint on energy partitioning. Adding soil moisture assimilation improves EF
estimation by forcing relatively high EF values. When CHN varies strongly, the soil moisture estimates pre-
vent sharp fluctuations in EF. This ensures that CHN converges to more realistic values. In FIFE 88, the
improvement is most evident in the first time period (day 160–190) which features many light rain events.
When soil moisture assimilation is included, EF is allowed to vary within a more reasonable range, which
has a great impact on EF and flux estimation.

Daily (09:00–16:00) average flux modeled by PBSTh is plotted against observations in Figure 5. The most sig-
nificant improvement over PBST is seen in the first two time periods (day 148–206) in FIFE 87 and the first
time period (day 160–190) in FIFE 88 as expected. For other time periods where PBST results are already
accurate, the benefit of including soil moisture is marginal. The overall RMSEs of H and LE are 26.7 and 41.7
W/m2 from PBSTh, compared to 70.7 and 72.7 W/m2 from PBST for FIFE 87. In FIFE 88, the overall RMSEs of H
and LE are 30.9 and 38.2 W/m2 from PBSTh, compared to 39.6 and 56.1 W/m2 from PBST. Similarly, the esti-
mation biases are to a large extent improved. The overall biases are reduced from 51.2 and 247.2 W/m2 for
H and LE from PBST to 1.0 and 24.8 W/m2 from PBSTh in FIFE 87. In FIFE 88, the overall biases vary from 8.8
and 229.7 W/m2 for H and LE from PBST to 210.9 and 21.7 W/m2 from PBSTh . There is also a small increase
in R compared to the results from the PBST.

Similar to Figure 6, the half-hourly fluxes from PBST and PBSTh are plotted against observations in Figure 9.
One great advantage of PBSTh is that the problem of erroneous estimates at 09:00 is to a large extent solved.
As LST particles are resampled at the end of the previous assimilation window and then modeled continu-
ously during the night, the particle spread of modeled LST at 09:00 will be smaller compared to randomly
generated particles from PBST. Therefore, it is less likely to result in large negative flux estimates. The
decrease of RMSEs is evident when considering the full 09:00–16:00 period. When estimates at 09:00 are
excluded, the improvement is more evident in H estimates. The RMSEs for H decrease from 83.6 to 33.7 W/

Figure 8. Estimated daily (09:00–16:00) average EF from PBSTh and PBST versus observations for (a) FIFE 87 and (b) FIFE 88 with 14 LST observations assimilated. The shaded area is the
prior guess of valid EF range from PBSTh .
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Figure 9. Scatterplot of half-hourly (09:00–16:00) modeled fluxes versus observations for (a–f) FIFE87 and (g–l) FIFE88 from PBST (red) and PBSTh (blue) with 14 LST observations assimilat-
ed. The units of RMSE and Bias are W/m2. The estimates at 09:00 are plotted in large open circles and the other estimates in small dots. The results for the three time periods are plotted
separately.
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m2 in FIFE 87 and from 46.3 to 38.5 W/m2 in FIFE 88. The RMSEs for LE decrease slightly from 68.3 to 63.8 W/
m2 in FIFE 87, and from 58.6 to 52.9 W/m2 in FIFE 88. Reduction in estimation biases are also dramatic. The
overall biases for H decrease from 60.6 to 1.3 W/m2 in FIFE 87 and from 12.3 to 210.6 W/m2 in FIFE 88. The
overall biases for LE decrease from 233.3 to 27.2 W/m2 in FIFE 87 and from 224.2 to 20.7 W/m2 in FIFE 88.

The time series of estimated daily (09:00–16:00) average flux estimates from the OL, PBST and PBSTh are
compared with the observations as well as Rn for FIFE 87 and FIFE 88 in Figure 10. The red and blue shaded
areas indicate the particle spread (i.e., the range between minimum and maximum particle estimates) of
PBST and PBSTh estimates. Compared to the results from PBST, the day-to-day variations of fluxes using PBSTh

are more consistent with those of observations. The particle spread of both PBS methods varies with the
magnitude of Rn. The particle spread gets larger when Rn is high (e.g., day 199–200 in FIFE 87), and smaller
when Rn is low (e.g., day 224 in FIFE 87). Both PBS methods provide valid ranges of flux estimates, while the
particle spread of PBSTh is smaller and more reasonable. Overall, the results show that the assimilation of
LST time series with PBS can successfully estimate turbulent heat fluxes, and that introducing soil moisture
constraints can improve the estimation, particularly when the surface energy partitioning is energy-limited.

Figure 11 shows the mean diurnal cycle of observed and estimated surface heat flux components for FIFE
87 and FIFE 88. In general, PBST overestimates H and underestimates LE in both campaigns, and this is also
demonstrated by the underestimated EFs in Figure 8. PBSTh restores the diurnal behavior of surface heat
fluxes better, particularly in FIFE 88. An evident deviation from the observations is seen at 09:00 using PBST

Figure 10. Estimated time series of daily (09:00–16:00) average H and LE from OL, PBST and PBSTh versus observations and Rn for (a, b) FIFE 87 and (c, d) FIFE 88 with 14 LST observations
assimilated. The shaded areas are the particle spread of PBST (red) and PBSTh (blue).
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as a result of the outliers at the very first time step of the assimilation window, especially in FIFE 87. When
soil moisture is assimilated, this problem is largely solved.

3.3. Influence of LST Availability
Results from the simulation test on LST data availability are shown in Figure 12. To eliminate the influence
of negative outliers at 09:00, only estimates during 09:30 and 16:00 are used. At the daily (09:30–16:00)
scale, the RMSEs of both H and LE decrease quickly with more available LST observations using PBST, partic-
ularly when the observations are sparse. When more than five LST observations are available, the benefit of
more LST observations becomes less evident. This indicates that the diurnal variation of LST and surface
heat fluxes can be restored reasonably well with as few as five LST observations using PBST. When soil mois-
ture observations are assimilated, the flux estimates are greatly improved, particularly when LST observa-
tions are limited.

The half-hourly results from 09:30 to 16:00 are shown in Figure 12e through 12h. Similar to the daily results,
the RMSEs decrease quickly with increasing number of LST observations at first, and stay almost constant
when over five LST observations are available each day using PBST. When soil moisture observations are
assimilated, the H estimates are significantly improved. When only one LST observation is available, the

Figure 11. Diurnal cycle of average observed and estimated surface heat fluxes for FIFE 87 and FIFE 88 with 14 LST observations
assimilated.
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RMSEs can be reduced by as much as �70 (�20) W/m2 for H and by �20 (�20) W/m2 for LE in FIFE 87 (FIFE
88). This demonstrates that assimilating soil moisture information greatly enhances the performance of flux
estimates even at half-hourly scale.

4. Conclusion

A new methodology was developed to estimate surface heat fluxes by assimilating land surface tempera-
ture (LST) and soil moisture observations using the particle batch smoother (PBS). The PBS uses all avail-
able observations within a window to update states and parameters in that window. The methodology
was based on the surface energy balance and aimed to estimate two parameters: a bulk heat transfer
coefficient (CHN) which scales the sum of surface heat fluxes, and evaporative fraction (EF) which repre-
sents the partitioning between sensible and latent heat fluxes. Two PBS strategies were implemented in
this study. First, LST observations were assimilated into the force-restore model using the PBS to estimate

Figure 12. Variation of the mean RMSE of flux estimates with available LST observations at daily (09:30–16:00) and half-hourly scales using PBST (red) and PBSTh (blue).
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surface heat fluxes. Second, to improve the estimation on wet or densely vegetated surfaces, soil mois-
ture was modeled with a simple scheme to further constrain EF, and soil moisture observations were also
assimilated.

The methodology was applied to data collected during the FIFE 87 and FIFE 88 experiments. When LST
observations were assimilated, the estimated EFs successfully captured the daily variations in observed EFs,
and the estimated EF values were much closer to the observations compared to OL results. The RMSEs of
flux estimates were significantly reduced at both daily and half-hourly scales. The assimilation results were
more accurate for drying events and less satisfactory for wetting events. When the surface was very wet or
densely vegetated, the surface heat flux partitioning became more energy-limited, thus the coupling
between EF and LST became weaker, and estimating EF from LST became very uncertain. In contrast, when
the surface was dry, the coupling between EF and LST was tight, and LST was a strong constraint on surface
heat flux partitioning.

When soil moisture observations were assimilated simultaneously, the EF estimates were greatly improved,
particularly for wet days. When the surface was wet or densely vegetated, soil moisture constrained EF by
forcing high EF values. The flux estimates were also improved at both daily and half-hourly scales, especially
for H estimates. This implies that assimilating soil moisture observations greatly benefits parameter estima-
tion. The time series of daily flux estimates demonstrated that the day-to-day variations of fluxes were more
consistent with observations after assimilating soil moisture observations.

Results from a simulation test in terms of data availability showed that when only LST observations were
assimilated, the RMSEs of flux estimates only improved marginally when over five LST observations were
available each day. This is instructive in the context of using remote sensing data, in which the availability
of observations is influenced by cloud cover. When soil moisture observations were assimilated, the flux
estimates were significantly improved, particularly when LST observations were sparse.

This study demonstrated the potential value of joint assimilation of soil moisture and LST observations for
flux estimation, and cast some light on potential applications with remote sensing data. However, the differ-
ences with a real remote sensing application should be noted. Our study used daily area-averaged soil
moisture, in which the subdaily dynamics were smoothed, while satellites provide instantaneous soil mois-
ture observations with a lower temporal resolution (2–3 days). In this study, a prior guess of CHN was avail-
able from previous studies. This information is generally not available, particularly over large areas. Future
studies will incorporate the approach of Farhadi et al. [2014, 2016] to initialize CHN with LAI, which ensures
that a prior guess of CHN can be obtained dynamically. The optimal b values may not be determined by trial
and error due to the limited availability of flux observations. In that case, an adaptive PBS developed by
Dong et al. [2016b] will be used, which determines the optimal b values automatically by maximizing the
reliability of particle estimates. Issues such as spatiotemporal resolution, data accuracy, and spatial hetero-
geneity will also be addressed.
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