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Adaptive Integral Sliding Mode Control in the
Presence of State-Dependent Uncertainty

Peng Li , Di Liu , Member, IEEE, and Simone Baldi , Senior Member, IEEE

Abstract—Adaptive integral sliding mode control
(AISMC) is an extension of adaptive sliding mode control
which is a way to ensure sliding motion while handling
system uncertainties. However, conventional AISMC
formulations require to different extent a priori knowledge
of the system uncertainty: either the upper bound of the
uncertainty or of its time derivative are assumed to be
bounded a priori, or the uncertainty is assumed to be
parametrized by some structure-dependent factorization.
This work proposes a variant of AISMC with reduced a
priori knowledge of the system uncertainty: it is shown that
Euler–Lagrange dynamics typical of sliding mode literature
admit a structure-independent parametrization of the
system uncertainty. This parametrization is not the result
of structural knowledge, but it comes from basic properties
of Euler–Lagrange dynamics, valid independently on the
structure of the system. The AISMC control method arising
from this parametrization is analyzed in the Lyapunov
stability framework, and validated in systems with different
structures: a surface vessel and an aerial vehicle.

Index Terms—Adaptive integral sliding mode, aerial ve-
hicle, Euler-Lagrange dynamics, state-dependent uncer-
tainty.

I. INTRODUCTION

EULER–LAGRANGE (EL) dynamics can be used to de-
scribe many real-world systems such as aircrafts [1], ma-

nipulators [2], mobile robots [3], multiagent networks [4], and
many more [5], [6]. In these and other applications, the dynamics
of the system may be not known exactly, e.g., due to unmodeled
dynamics [7], uncertain parameters [8]–[10], and parametric
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variations [11]–[13]. Control of EL systems in the presence of
such uncertainties is still a challenging subject.

Robust control of uncertain EL systems based on sliding mode
control (SMC) is one of the most popular methods to tackle
uncertainties [14], [15]. The standard SMC for EL systems uses
a proportional-derivative (PD) sliding surface and drives the
system trajectories on the surface by using a sign function control
action weighted by a fixed control gain. To avoid issues, such
as chattering, the sliding surface can be replaced by a boundary
layer by using a saturation function in place of the sign function.
The control gain of the sign (or of the saturation) function should
be as big as the upper bound of the uncertainties. Such prior
knowledge about the bounds of system uncertainties represents
a recognized drawback of SMC [16]. This has led to proposing
adaptive sliding mode control (ASMC) methods where, instead
of being fixed, the control gain of SMC is adapted online to cope
with the uncertainties.

ASMC can be divided into three categories, depending on
the way the control gain is adapted: monotonically increas-
ing ASMC [17], equivalent control ASMC [18], and increas-
ing/decreasing ASMC [19]. These methods assume that the
uncertainties [20] or their time derivative [18] are upper bounded
a priori by possibly unknown constants. Because uncertainties
are in practice state dependent, assuming a constant upper bound
is equivalent to assuming that the state is bounded before actually
proving stability. Efforts in relaxing this restrictive assump-
tion require structural knowledge of the system, e.g., linear-in-
parameters [21], [22] or nonlinear [23] structure. For example,
linear-in-parameters structure factorizes the uncertainty using a
constant matrix and a known regressor: such a regressor takes
a different form for aircrafts, manipulators, mobile robots, etc.,
and might even be unavailable.

Integral SMC (ISMC) [24] and PID-based SMC (PID-
SMC) [25] are other improvements to the standard SMC. Both
methods use a proportional-integral-derivative (PID) sliding
surface, i.e., they bring the advantages of integral control in
achieving smaller steady-state error [26]–[29]. It is worth notic-
ing that ISMC and PID-SMC are very close to each other: since
the 1980s, Slotine classified PID-SMC as an ISMC method [30],
[31, Ch. 7], and the only difference between the two methods
is that ISMC can choose the initial conditions to let the system
trajectory start directly from the sliding surface. See also recent
ISMC results using linear nominal dynamics perturbed by input
nonlinearities [32], [33].

The combination of integral control and adaptation has been
proposed under the name of adaptive integral sliding mode
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control (AISMC) [15], [34], [35]. Unfortunately, also AISMC
requires a priori bounded uncertainty [15], [27] or specific
structural knowledge [34], [35]. Summarizing, control of EL
systems with reduced knowledge of system uncertainties is
largely open. In this article, we propose a novel AISMC method
based on the following contributions:

1) the system uncertainty is not taken to be bounded a priori
by a constant;

2) the state-dependent structure we propose is not the result
of some structural knowledge, but it comes directly from
basic properties of EL dynamics (valid independently on
the structure of the system);

3) we show that the proposed AISMC framework provides
a systematic way to enhance robustness and adaptation in
PID-based loops.

Item a) is achieved by showing boundedness after the control
design (a posteriori), rather than before the control design (a
priori); item b) is achieved by deriving analytically an upper
bound structure for the uncertainty solely based on properties
of EL systems; and item c) derives from the structure of the
proposed control law: note that the standard SMC (or recent
advances [16]) cannot be systematically integrated in PID loops
due to their lack of integral action. The structure-independent
nature of the proposed method is tested in systems with differ-
ent structures: a surface vessel case, and software-in-the-loop
(SITL) experiments for an ArduPilot-based fixed-wing autopi-
lot. The ArduPilot-based autopilot is based on PID control
and thus provides an interesting test case for showing how the
AISMC framework enhances PID-based loops.

This article is organized as follows. Section II gives the EL
formulation. Section III covers control design and stability anal-
ysis. Validations are in Section IV. Finally, Section V concludes
this article.

Notations: The sets of real numbers, positive real numbers,
and real n×m matrices are denoted by R, R+ and Rn×m,
respectively; In is the n× n identity matrix; a bold notation
is used for vectors, i.e., σ = [σ1, . . . , σn]

T ; ‖(·)‖ and λmin(·)
denote the Euclidean-norm and the minimum eigenvalue of (·),
respectively.

II. SYSTEM DYNAMICS AND PROBLEM FORMULATION

Consider the class of Euler–Lagrange (EL) systems

M(q)q̈+C(q, q̇)q̇+G(q) + F(q̇) + d = u (1)

where q ∈ Rn is the state vector, and q̇ ∈ Rn is its time deriva-
tive; M(q) ∈ Rn×n denotes the mass/inertia matrix; C(q, q̇) ∈
Rn×n denotes the Coriolis term; G(q) ∈ Rn denotes the grav-
ity term; F(q̇) ∈ Rn denotes the damping and friction forces;
d ∈ Rn denotes bounded external disturbances and u ∈ Rn is
the control input.

For most real-world mechanical systems, the literature has
shown that some properties hold for the EL terms in (1) (cf. [1],
[16], [36]). These properties will be adopted for controller design
and stability analysis.

Property 1: There exist cu, gu, fu, du ∈ R+ such that
||C(q, q̇)|| ≤ cu||q̇||, ||G(q)|| ≤ gu, ||F(q̇)|| ≤ fu||q̇|| and
||d(t)|| ≤ du.

Property 2: Matrix M(q) is symmetric and uniformly posi-
tive, which implies that ∃mu,ml ∈ R+ such that

0 < mlIn ≤ M(q) ≤ muIn. (2)

Property 3: MatrixṀ(q)− 2C(q, q̇) is skew symmetric, i.e.,
xT (Ṁ(q)− 2C(q, q̇))x = 0 for any nonzero vector x.

Remark 1 (Uncertainty of the dynamics): Properties 1–3 hold
independently of the structure of the system: manipulators,
aircrafts, mobile robots, etc., satisfy the bounds in Properties 1–3
for possibly unknown constants (cf. [1], [16], [36]). Throughout
this work, M,C,F,G,d in (1) and mu,ml, cu, gu, fu, du in
their bounds are considered to be unknown.

Denote qd ∈ Rn as the desired states, which satisfy
‖q̇d(t)‖ ≤ qu,∀t and ‖q̈d(t)‖ ≤ quu ∀t. The following question
arises.

Problem: Find a control strategy u(·) such that the solutions
of the EL system (1) track the desired states qd, in the presence
of uncertainty of the dynamics as in Remark 1.

In the following, we will illustrate the derivation process of
the system uncertainty for two kinds of sliding surface: the
first one is commonly referred to as PID-based sliding mode
control (PID-SMC [25]); the other one is commonly refereed to
as integral sliding mode control (ISMC [24]). As detailed in [30],
[31, Ch. 7], the main difference between the two methods is a
particular choice of the initial conditions.

A. Uncertainty Structure for PID-Based Sliding Surface

Lete(t) = qd(t)− q(t) be the tracking error. The PID sliding
variable σ1 is defined in the literature as

σ1(t) � ė(t) + Γ1e(t) + Γ2

∫ t

0
e(τ)dτ (3)

where Γ1,Γ2 ∈ Rn×n are positive definite matrices. Take the
time derivative of (3) and multiply by M. Using (1), we obtain
(time and state dependence are omitted for compactness)

Mσ̇1 = M(q̈d − q̈+ Γ1ė+ Γ2e)

= −u−Cσ1 + δ1 (4)

where

δ1 � Cq̇+G+ F+ d

+Mq̈d +MΓ1ė+MΓ2e+Cσ1 (5)

represents an aggregate state-dependent uncertainty. Next, we
aim to find an appropriate (state-dependent) bound for such
uncertainty. By combining (3) and Properties 1 and 2, we obtain

‖δ1‖ ≤ cu‖q̇‖2 + gu + fu‖q̇‖+ du

+mu(‖q̈d‖+ ||Γ1||‖ė‖+ ‖Γ2‖‖e‖)

+ cu‖q̇‖(‖ė‖+ ‖Γ1‖‖e‖+ ‖Γ2‖‖
∫ t

0
e(τ)dτ‖). (6)
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Take

ξ(t) =
[
eT (t) ėT (t) (

∫ t
0 e(τ)dτ)T

]T
.

Then, the following inequalities hold:

‖ξ(t)‖ ≥ ‖e(t)‖, ‖ξ(t)‖ ≥ ‖ė(t)‖

‖ξ(t)‖ ≥ ‖
∫ t

0
e(τ)dτ‖.

(7)

Using these inequalities and substituting q̇ = −ė+ q̇d into (6),
we have

‖δ1‖ ≤ κ∗0 + κ∗1‖ξ(t)‖+ κ∗2‖ξ(t)‖2 (8)

where κ∗0, κ∗1, κ∗2 are unknown positive constants defined as

κ∗0 � cuq
2
u + gu + fuqu + du +muquu

κ∗1 � cuqu(3 + ‖Γ1‖+ ‖Γ2‖) + fu

+mu(‖Γ1‖+ ‖Γ2‖)
κ∗2 � cu(2 + ‖Γ1‖+ ‖Γ2‖).

(9)

B. Uncertainty Structure for Integral Sliding Surface

The integral sliding variable σ2 is defined in literature as

σ2(t) � ė(t) +Ω1e(t)

+Ω2

∫ t

0
e(τ)dτ − ė(0)−Ω1e(0) (10)

where Ω1,Ω2 ∈ Rn×n are positive definite matrices. It is worth
noticing that the main difference with (3) are the initial con-
ditions e(0), ė(0), which allow σ2(0) = 0, i.e., the system
starts from the sliding surface. Even for the sliding surface (10),
an appropriate (state-dependent) upper bound structure for the
uncertainty will be derived. Take the time derivative of (10) and
multiply by M. Using (1), we can obtain

Mσ̇2 = M(q̈d − q̈+Ω1ė+Ω2e)

= −u−Cσ2 + δ2 (11)

where

δ2 � Cq̇+G+ F+ d

+Mq̈d +MΩ1ė+MΩ2e+Cσ2. (12)

Combining (10) and Properties 1 and 2, we obtain the upper
bound

‖δ2‖ ≤ cu‖q̇‖2 + gu + fu‖q̇‖+ du

+mu(‖q̈d‖+ ||Ω1||‖ė‖+ ‖Ω2‖‖e‖)

+ cu‖q̇‖(‖ė‖+ ‖Ω1‖‖e‖+ ‖Ω2‖‖
∫ t

0
e(τ)dτ‖

+ ‖ė(0)‖+ ‖Ω1‖‖e(0)‖). (13)

Using (7) and substituting q̇ = −ė+ q̇d into (13), we have

‖δ2‖ ≤ ν∗0 + ν∗1‖ξ(t)‖+ ν∗2‖ξ(t)‖2 (14)

where ν∗0 , ν∗1 , ν∗2 are unknown positive constants defined as

ν∗0 � cuq
2
u + gu + fuqu + du +muquu

+ cuqu(‖ė(0)‖+ ‖Ω1‖‖e(0)‖)
ν∗1 � cu‖q̇d‖(3 + ‖Ω1‖+ ‖Ω2‖) + fu +mu(‖Ω1‖

+ ‖Ω2‖) + cu(‖ė(0)‖+ ‖Ω1‖‖e(0)‖)
ν∗2 � cu(2 + ‖Ω1‖+ ‖Ω2‖).

(15)

We have derived that both sliding surfaces σ1(·) and σ2(·)
share a similar upper bound structure as (8) and (14). Therefore,
in the following, we will analyze our proposed adaptive integral
sliding mode control (AISMC) method by simply using σ(·) to
denote either σ1(·) or σ2(·). Accordingly, we use

Mσ̇ = −u−Cσ + δ (16)

‖δ‖ ≤ θ∗0 + θ∗1‖ξ‖+ θ∗2‖ξ‖2 (17)

that is, θ∗i denotes either κ∗i in (8) or ν∗i in (14), and δ denotes
either δ1 in (8) or δ2 in (14). For both sliding surfaces, we will
refer to the proposed method simply as AISMC.

Remark 2 (No structural knowledge): The state-dependent
structure (17) is not the result of structural knowledge, but comes
directly from the basic Properties 1–3 of EL dynamics, which
are valid independently on the structure of the system.

Remark 3 (Bounded stability): Of the three families of
ASMC proposed in the literature (monotonically increasing
ASMC [17], equivalent control ASMC [18], and increas-
ing/decreasing ASMC [19]), the last two attain globally uni-
formly ultimately boundedness (GUUB). Only the first one can
achieve asymptotic tracking, provided a sign function is used
in the control. However, a sign function with monotonically
increasing gain can lead to undesirable chattering behavior with
large amplitude. This work will study stability in the sense of
GUUB, in line with the stability results of most ASMC designs.

Definition 1: (GUUB) Consider a signal σ(·). Assume there
exists ϑa, ϑc > 0 and for every 0 < ϑa < ϑc there exists T ≥ 0
and ϑ > 0 such that ‖σ(t0)‖ ≤ ϑa implies

‖σ(t)‖ ≤ ϑ ∀t ≥ t0 + T (18)

and ϑa can be arbitrarily large. Then, the signal σ(·) is called
global uniformly ultimately bounded with ultimate bound ϑ.

The following is a Lyapunov characterization of GUUB,
adopted from [37, Ch. 4].

Lemma 1: Let V be a continuously differentiable function
such that

c1‖σ‖2 ≤ V (σ) ≤ c2‖σ‖2

V̇ (σ) ≤ −c3V (σ) ∀‖σ‖ ≥ μ (19)

with c1, c2, c3 > 0. Take a ball Br of radius r and let

μ ≤ r

(
c1

c2

)1/2

. (20)

Define ϑa � r(c1/c2)
1/2. Then, for every initial state σ(t0)

satisfying ‖σ(t0)‖2 ≤ ϑa there is T ≥ 0 such that (18) holds
with ϑ � μ(c2/c1)

1/2 and ϑa can be arbitrarily large.
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Fig. 1. Block diagram of the proposed control framework.

III. AISMC DESIGN AND STABILITY ANALYSIS

To tackle the uncertainty (17), we propose the control law

u(t) = Υσ(t) + β(t) sat(σ(t)/ε) (21)

where Υ is a positive definite matrix, ε is a designed scalar,
sat(x) is the saturation function

sat(x) =

{
x if − 1 < x < 1

sign(x) else

and

β(t) = θ̂0(t) + θ̂1(t)||ξ(t)||+ θ̂2(t)||ξ(t)||2. (22)

The gains θ̂i (for i = 0, 1, 2) in (22) are the estimates of the
constants θ∗i in (17). These gains are updated according to the
following adaptive laws:

˙̂
θi(t) = ηi‖σ(t)‖‖ξ(t)‖i − αiηiθ̂i(t) (23)

where ηi, αi (i = 0, 1, 2) are positive gains, and the initial
conditions satisfy θ̂i(0) > 0.

For the proposed control framework summarized in Fig. 1,
the following stability result holds.

Theorem 1: The trajectories of the EL dynamics (1) with
Properties 1–3, implementing the control law (21) and (22), with
adaptive law (23), are GUUB, and an ultimate bound ϑ on σ is
given by

ϑ =

√∑2
i=0 αiθ

∗2
i

ml(ς − ω)
(24)

where ς � mini{λmin(Υ),αi/2}
max{mu/2,1/2ηi} > 0, and 0 < ω < ς .

Proof: Take the integral of the adaptive law (23) from 0 to t

θ̂i(t) = e−αiηitθ̂i(0)

+

∫ t

0
e−αi(t−τ)ηi‖σ(t)‖‖ξ(t)‖iηidτ. (25)

Since θ̂i(0) > 0 and ‖σ(t)‖‖ξ(t)‖i is positive, we obtain

θ̂i(t) ≥ 0 ∀t ≥ 0. (26)

Closed-loop stability is analyzed via the Lyapunov function

V =
1
2
σTMσ +

2∑
i=0

1
2ηi

(θ∗i − θ̂i)
2. (27)

Using (16), (21), and Property 3, we get the time derivative

V̇ = σT (−u−Cσ + δ) +
1
2
σTṀσ +

2∑
i=0

(θ̂i − θ∗i )
˙̂
θi/ηi

= σT (−Υσ − β sat(σ/ε) + δ)

+
1
2
σT (Ṁ− 2C)σ +

2∑
i=0

(θ̂i − θ∗i )
˙̂
θi/ηi

= σT (−Υσ − β sat(σ/ε) + δ) +

2∑
i=0

(θ̂i − θ∗i )
˙̂
θi/ηi.

(28)

Then, using (17) and the fact that β ≥ 0 from (26), we have

V̇ ≤ −σTΥσ −
2∑
i=0

(θ̂i − θ∗i )(||ξ||i||σ|| − ˙̂
θi/ηi). (29)

Using (23) yields

(θ̂i − θ∗i )
˙̂
θi/ηi = ||σ||(θ̂i − θ∗i )||ξ||i + αiθ̂iθ

∗
i − αiθ̂

2
i . (30)

Substituting (30) into (29) gives

V̇ ≤ −λmin(Υ)||σ||2 +
2∑
i=0

(αiθ̂iθ
∗
i − αiθ̂

2
i )

≤ −λmin(Υ)||σ||2 −
2∑
i=0

αi
2
((θ̂i − θ∗i )

2 − θ∗2
i ) (31)

where we have used the inequality

θ̂iθ
∗
i − θ̂2

i = −
(
θ̂i√

2
− θ∗i√

2

)2

+
θ∗2
i

2
− θ̂2

i

2

≤ −
(
θ̂i√

2
− θ∗i√

2

)2

+
θ∗2
i

2
.

From Lyapunov function (27), we have

V ≤ mu

2
||σ||2 +

2∑
i=0

1
2ηi

(θ̂i − θ∗i )
2 (32)

and substituting (32) into (31) gives

V̇ ≤ −ςV +
1
2

2∑
i=0

αiθ
∗2
i (33)

where ς � mini{λmin(Υ),αi/2}
maxi{mu/2,1/2ηi} > 0. Select a scalar 0 < ω < ς ,

V̇ can be further simplified as

V̇ ≤ −ωV − (ς − ω)V +
1
2

2∑
i=0

αiθ
∗2
i . (34)

Define a scalarΘ �
∑2

i=0 αiθ
∗2
i

2(ς−ω) such that, ifV ≥ Θ, then V̇ (t) ≤
−ωV . This is indeed the Lyapunov characterization of GUUB
in Lemma 1 [37, Ch. 4]. We conclude that

V ≤ max{V (0),Θ} ∀t ≥ 0
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and that V enters inside the ball Θ exponentially in finite time
and stays therein for all future time [37, Sec. 4.8]. From the
Lyapunov function (27) we have V ≥ (ml/2)||σ||2, which can
be used to obtain the ultimate bound (24) on σ. This bound is
global and uniform as it is independent on initial conditions.

Remark 4 (Difference with standard ISMC): The term (22)
can estimate the state-dependent bound of uncertainty without
requiring structural knowledge of the system: this marks a
major difference with standard ISMC [26], [27], or standard
AISMC [15], [34], [35].

Remark 5 (PID structure): The proposed control (21) with
PID-based sliding surface σ1(t) in (3) can be viewed as a PID
loop with embedded adaptation. More specifically, the control
(21) comprises a standard PID action Υσ1(t) and an adaptive
action β(t) for the sliding mode term sat(σ1(t)/ε).

IV. VALIDATION EXPERIMENTS

To evaluate the effectiveness of the proposed framework, we
consider two test cases with different system structures: a surface
vessel test case, and a fixed-wing unmanned aerial vehicle (UAV)
test case. A standard ISMC is used to compare the proposed
method

u(t) = Υσ(t) + β sat(σ(t)/ε) (35)

the main difference between the AISMC (21) and the standard
ISMC (35) is the upper bound structure β, which is a constant
instead of changing online in an adaptive way.

A. Surface Vessel Test Case

To illustrate the performance of the proposed controller with
integral sliding surface σ2 as in (10), consider the simplified
dynamics of a surface vehicle as in [31, Ch. 7]{

q̇1 = q2

q̇2 = −cq2|q2|/m+ u/m+ d(t)
(36)

where q1 and q2 are position and speed of the vehicle, respec-
tively; u is the control input, m is the mass of vehicle, and c
is the friction coefficient. As explained in [31, Ch. 7], m and
c are subject to uncertainty in practice. For simulations, we set
q(0) = [−1, 0]T and we consider a combination of the following
uncertainty scenarios. For the uncertain mass:

1) M0: constant unknown mass m = 3;
2) M1: unknown mass changes m = 3 → 5 at t = 3 s and
m = 5 → 1 at t = 5 s.

For the uncertain disturbance and friction:
1) D0: unknown c(t)=1.2 + 0.2 sin(|q2|t), d(t)=

3 sin(πt);
2) D1: unknown c(t)=1.2 + 0.4 sin(|q2|t), d(t)=

6 sin(πt);
3) D2: unknown c(t)=1.2 + 0.2|q2|n(t), d(t)=3 sin(πt);
4) D3: unknown c(t)=1.2 + 0.4|q2|n(t), d(t)=6 sin(πt);

where n(t) represents a random noise uniformly distributed
between -1 and 1. The term “unknown” denotes the fact that
the value of the mass, of the disturbance and of the friction are
not available for control design. By combining the situations
above, we obtain eight scenarios, which are also reported in

Table I. Note that the sinusoidal friction was proposed in [31,
Ex. 7.4], whereas the noise friction is further introduced for
additional comparisons: also, cases M1, D1, D2, and D3 have
been designed explicitly to test the capabilities of the controllers
to cope with larger uncertainty.

The desired trajectory qd is also taken from [31, Sec. 7]: it in-
cludes constant acceleration q̇d2 = 2 m/s2 at t ∈ [0, 2)s, constant
velocity qd2 = 4m/s at t ∈ [2, 4)s, and constant acceleration
q̇d2 = −2m/s at t ∈ [4, 6)s. To construct the proposed AISMC
in (21) and (10), we set Ω1 = 5.5,Ω2 = 12, e(0) = [1, 0]T ,
Υ = 50, and ε = 0.001. In addition, we set η = 385, α0 =
10−5, α1 = 250, α2 = 175 for the adaptive law in (23). Sim-
ulation are carried out using ode45 function in MATLAB with
maximum step size 0.1 ms.

For comparison purposes, the standard ISMC as in (35) is used
withβ = 15 orβ = 25. For compactness, tracking performance,
tracking error, and control input are reported in Figs. 2 and 3
only for the first two scenarios of Table I. Figs. 2(a) and 3(a)
display the position tracking error for the proposed AISMC and
the standard ISMC with β = 15 or β = 25, under constant mass
[see Fig. 2(a)] or mass change [see Fig. 3(a)]. For all tracking
transients arising at t = 2, t = 3 and t = 4 s, the proposed
AISMC gives a more accurate performance when compared
to the standard ISMC. This becomes evident from the error
norms ‖e‖ reported in Figs. 2(b) and 3(b), which show that
the proposed AISMC method has better tracking error with a
reasonable control effort.

Table I reports the tracking error costs for all eight scenarios:
the improvements of AISMC are consistent in all scenarios for
both types of friction. Most importantly, as compared to ISMC,
the proposed AISMC gives better percentage performance as
more and more uncertainty affects the system: the percent-
age degradation of ISMC increases from +10.9% to +30.2%
(β = 15), and from +2% to +13.3% (β = 25). This suggests
that the proposed AISMC can automatically adapt its gain to
the uncertainty situation, whereas the gain β of ISMC should be
tuned appropriately.

B. UAV Test Case

The proposed AISMC with PID-based sliding surface σ1 (3)
is tested in SITL environment for an ArduPilot-based autopilot
for fixed-wing UAV. Using the state variables in Table II, the
6-DOF motion equations of the UAV are expressed as [38]

⎛
⎝ṗnṗe
ṗd

⎞
⎠ = Rv

b (φ, θ, ψ)

⎛
⎝uava
wa

⎞
⎠+

⎛
⎝wnwe
wd

⎞
⎠ (37a)

⎛
⎝u̇av̇a
ẇa

⎞
⎠ =

⎛
⎝rva − qwa
pwa − rua
qua − pva

⎞
⎠ +

1
ma

⎛
⎝fxfy
fz

⎞
⎠ −Rv

b (φ, θ, ψ)

⎛
⎝ẇnẇe
ẇd

⎞
⎠

(37b)⎛
⎝φ̇θ̇
ψ̇

⎞
⎠ =

⎛
⎝1 sφsθ/cθ cφsθ/cθ

0 cφ −sφ
0 sφ/cθ cφ/cθ

⎞
⎠
⎛
⎝pq
r

⎞
⎠ (37c)
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Fig. 2. Surface vessel with constant (unknown) mass m = 3. (a) Tracking performance for position and velocity. (b) Norm of the tracking error and
control input.

Fig. 3. Surface vessel with (unknown) mass changes m = 3 → 5 at t = 3 s and m = 5 → 1 at t = 5 s. (a) Tracking performance for position and
velocity. (b) Norm of the tracking error and control input.

⎛
⎝ṗq̇
ṙ

⎞
⎠ =

⎛
⎝ Γ1pq − Γ2qr
Γ5pr − Γ6(p

2 − r2)
Γ7pq − Γ1qr

⎞
⎠+

⎛
⎝Γ3l + Γ4n

1
Jy
m

Γ4l + Γ8n

⎞
⎠ (37d)

with body-to-vehicle frame rotation matrix

Rv
b (φ, θ, ψ) = (Rb

v)
T (φ, θ, ψ)

=

⎛
⎝cθcψ sφsθcψ − cφsψ cφsθcψ + sφsψ
cθsψ sφsθsψ + cφcψ cφsθsψ − sφcψ
−sθ sφcθ cφcθ

⎞
⎠

where ma is the mass of UAV, wn, we, wd are the wind compo-
nents, fx, fy, fz are the forces exerted on the UAV in terms of its
body frame, l,m, n denote the three components of the moments
about the ib, jb, kb axes, Γ1 ∼ Γ8 and Jy are inertia terms. We

used the short notations cx � cosx and sx � sinx. More details
about (37) can be found in the literature, such as [38, Ch. 3].

The aerodynamic forces and moments can be decomposed
into longitudinal and lateral. Longitudinal aerodynamics include
lift force Flift, drag force Fdrag, and pitching moment m: they
can be expressed to be dependent on the angle of attack α, pitch
rate q and elevator angle δe as

Flift =
1
2
ρV 2

a SCL(α, q, δe) (38a)

Fdrag =
1
2
ρV 2

a SCD(α, q, δe) (38b)

m =
1
2
ρV 2

a ScCm(α, q, δe) (38c)
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TABLE I
SURFACE VESSEL: TRACKING ERROR COSTS (POSITION AND VELOCITY)

FOR PROPOSED AISMC AND STANDARD ISMC

TABLE II
STATE VARIABLES FOR UAV EQUATIONS OF MOTION

where ρ is air density and Va is the airspeed of UAV, CL, CD,
and Cm are nondimensional aerodynamic coefficients, S is the
planform area of the UAV wing, and c is the mean chord of
the wing. Generally, CL, CD, and Cm are considered uncertain
because they are significantly influenced by the airfoil shape,
Mach number, Reynolds number and the angle of attack. Flift
and Fdrag are related to fx and fz through an appropriate
transformation [38, Ch. 4]. Also, fx and fz are affected by the

gravity term, and by the propulsion forces from the throttle δt
(details not shown for lack of space).

Lateral aerodynamics include lateral force fy , roll moment l,
and yaw moment n, which can be expressed depending on the
sideslip angle β, roll rate p and yaw rate r, aileron angle δa, and
rudder angle δr as

fy =
1
2
ρV 2

a SCY (β, p, r, δa, δr) (39a)

l =
1
2
ρV 2

a SbCl(β, p, r, δa, δr) (39b)

n =
1
2
ρV 2

a SbCn(β, p, r, δa, δr) (39c)

where CY , Cl and, Cn are nondimensional aerodynamic coef-
ficients, and b is the UAV wingspan. Again, the nonlinear rela-
tionships in the coefficients CL, CD, and Cm are characterized
by nonlinear functions that are subject to uncertainty.

As the dynamical equations for UAV are complex, it is cus-
tomary to develop design models with significantly less math-
ematical complexity, but still capturing the essential behavior
of the system. In accordance with the literature (details can be
found in [38, Ch. 6 and 9]) the UAV dynamics are approximated
with reduced-order models stemming from the design of higher
level guidance strategies. The guidance models comprise an
airspeed-hold loop and an altitude-hold loop. The airspeed-hold
loop is represented by

V̇a = bVa
(V ca − Va) (40)

where bVa
is positive constant that depend on the implementation

of the autopilot and the state estimation scheme. The altitude-
hold loop is represented by

ḧ = bḣ(ḣ
c − ḣ) + bh(h

c − h) (41)

where bḣ, bh are positive constants that depend on the imple-
mentation of the autopilot and the state estimation schemes.

The airspeed-hold loop and the altitude-hold loop are adopted
in a so-called total energy control system (TECS) which aims to
control the kinetic energy and the potential energy (this is done
via a double PID loop, called TECS throttle and TECS pitch).
The constants bVa

, bḣ, bh are unknown since they depend on how
low-level controllers (roll/pitch/yaw loops) have been tuned. In
addition, unmodeled dynamics (e.g., couplings between velocity
and altitude) will certainly arise due to the reduced-order approx-
imation. Therefore, the fixed-wing autopilot scenario provides
a challenging test case for testing the proposed methodology in
PID-based loops.

The open-source SITL simulator allows to run autopilots
directly on PC and test their behavior in a realistic UAV simu-
lation environment [39]. The GUI of the simulator is shown in
Fig. 4. There are three windows in the GUI, the map window
showing the flight path (left), the terminal window used to type
flight mode commands (upper right), and the console real-time
feedback of UAV flight status parameters and wind disturbance
(bottom right). Fig. 5 displays the architecture of the attitude
controllers in SITL. The attitude controller modules can either
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Fig. 4. GUI of ArduPlane simulator: Map window, terminal window, and
console real-time window.

Fig. 5. Architecture of autopilot SITL set-up: TECS, roll controller, pitch
controller, yaw controller, and simulator.

TABLE III
PARAMETERS SELECTION FOR THE PROPOSED AISMC METHOD IN

ARDUPILOT AUTOPILOT

contain the original cascaded PID autopilot (original ArduPilot),
or a user-designed autopilot.

The original ArduPilot autopilot is used for comparison. The
TECS in ArduPilot is indeed a PID loop for kinetic energy
and a PID loop for potential energy. In addition, the low-level
roll/pitch/yaw loops are also PID loops. All these PID loops
can be modified according to the proposed theory, so that the
standard ISMC approach and the proposed AISMC approach
can all be used for comparison. Therefore,Υ,Ω1, andΩ2 in (21)
are chosen as the PID gains set in the ArduPilot code [39]. The
other parameters for the proposed AISMC approach are listed
in Table III and β for the standard ISMC are chosen as β = 80,
β = 100, β = 120. In addition, to the purpose of validating the
importance of the AISMC idea, we also implement the ASMC
method recently proposed in [16]: it is clear that, due to the lack
of integral action, this ASMC or any standard ASMC cannot

TABLE IV
TRACKING ERROR COSTS FOR ORIGINAL, PROPOSED AISMC AUTOPILOT,

AND AN ASMC VERSION

The improvements for AISMC (or the degradation for ASMC) in the cost are calculated
with respect to the original ArduPilot.

be embedded in PID loops. Therefore, the comparisons with
the ASMC will be useful to validate that the proposed AISMC
framework provides a systematic way to enhance robustness and
adaptation in PID-based loops.

To evaluate the performance of the proposed method in the
presence of large uncertainty, we change the mass of the UAV
during the flight (which can simulate a change in the payload
of the UAV). The initial mass of the UAV is 2 kg: during the
flight the mass can change to 1 kg (half mass), to 4 kg (double
mass), or remain 2 kg. The value of the mass and their changes
are uncertain, i.e., not used in the control design, which further
contributes to testing robustness to uncertainty of the different
autopilots. The flight tests include a take-off phase, after which
the UAV should follow an orbit at constant altitude (the mass
change occurs while the UAV is orbiting). In Table IV, we report
the tracking error cost for different autopilots: the tracking error
costs are five, one for each PID loop in the autopilot (roll, pitch,
yaw, TECS throttle, TECS pitch). We use the performance of
the original ArduPilot cost to normalize other error costs, so
that the original ArduPilot cost is 5.0. The tracking error costs
for all the five cascade loops are shown in Table IV for the orig-
inal ArduPilot, the proposed AISMC and the ASMC (without
integral action). The table shows that the tracking error costs of
the proposed AISMC approach are consistently smaller than the
original ArduPilot: the proposed method improves performance
up to 11% without mass change and more than 25% in the
presence of mass change. In addition, the table shows that ASMC
in unsuitable for autopilot implementation because the absence
of integral action makes it impossible to track appropriately the
desired set points (this explains the large values of the costs at
the end of Table IV).

To visualize some of the results, the experiments with half
mass and double mass are collected in Figs. 6 and 7 for both
the original autopilot and the proposed AISMC autopilot. As
shown in Fig. 6(a) and (b) and Fig. 7(a) and (b), the proposed
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Fig. 6. UAV, mass change 2.0 kg → 1.0 kg: Comparison of original and proposed autopilot. (a) Altitude and altitude error norm. The proposed
solution has negligible altitude drop after mass change. (b) Airspeed and airspeed error norm. The proposed solution converges faster to the desired
airspeed after mass change. (c) Aileron and elevator. The improvements of the proposed solution are achieved with all inputs in reasonable range.
(d) TECS throttle and pitch demand. The proposed solution is more reactive to mass change.

TABLE V
ALTITUDE COSTS COMPARISON FOR ORIGINAL, ADAPTIVE (AISMC, ASMC), AND NONADAPTIVE (ISMC) AUTOPILOT

The percentage degradation for all autopilots is calculated with respect to the proposed AISMC.

AISMC autopilot has negligible altitude drop after mass change
as compared to the original autopilot, while the airspeed is
more reactive and converges faster to the desired airspeed. It
is also worth mentioning that such an improved performance is
achieved while all inputs are in a reasonable range: Figs. 6(d)
and 7(d) show that the aileron and elevator deflections used to
control the UAV all operate in the expected range (e.g., note
that the elevator is maximum during take-off phase). On the

other hand, Figs. 6(c) and 7(c) report the TECS throttle and
pitch demand, i.e., the set points passed to the low-level control
loops: it can be seen that the demand for the proposed AISMC
is more reactive during the mass change.

Finally, since the altitude is another crucial parameter to
judge performance, Table V shows the altitude error costs
for all six autopilots (original ArduPilot, proposed AISMC,
standard ISMC with β = 80, standard ISMC with β = 100,
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Fig. 7. UAV, mass change 2.0 kg → 4.0 kg: Comparison of original and proposed autopilot. (a) Altitude and altitude error norm. The proposed
solution has negligible altitude drop after mass change. (b) Airspeed and airspeed error norm. The proposed solution converges faster to the desired
airspeed after mass change. (c) Aileron and elevator. The improvements of the proposed solution are achieved with all inputs in reasonable range.
(d) TECS throttle and pitch demand. The proposed solution is more reactive to mass change.

standard ISMC with β = 120). The proposed AISMC approach
has better performance than the nonadaptive ISMC, no matter
how β is chosen. This allows to say, similar to what we have
concluded in Table I for the surface vehicle, that the proposed
AISMC can automatically adapt its gain for any uncertain sce-
nario: on the other hand, the gain β of ISMC should be tuned
appropriately.

To conclude, the proposed AISMC outperforms standard
control approaches for systems with different structures (surface
vehicle and aerial vehicle), and in different scenarios (with
uncertain mass and uncertain mass changes).

V. CONCLUSION

This work explored a novel AISMC method with reduced a
priori knowledge of the EL system uncertainty. We have shown
that a state-dependent system uncertainty merely comes from
basic properties of EL dynamics, independent of the structure
of the system. It was shown that the proposed AISMC provides
a systematic way to enhance robustness and adaptation in PID-
based loops. Experiments on systems with different structures
have been presented, i.e., surface vehicle dynamics, and SITL
aerial vehicle autopilot.

A relevant future work is studying if reduced structural knowl-
edge can be tackled even in the presence of high-order sliding
mode, or in the presence of bounded inputs.
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