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Gestures In-The-Wild: Detecting Conversational
Hand Gestures in Crowded Scenes Using a

Multimodal Fusion of Bags of Video Trajectories
and Body Worn Acceleration

Laura Cabrera-Quiros , David M. J. Tax, Member, IEEE, and Hayley Hung, Member, IEEE

Abstract—This paper addresses the detection of hand gestures
during free-standing conversations in crowded mingle scenarios.
Unlike the scenarios of the previous works in gesture detection
and recognition, crowded mingle scenes have additional challenges
such as cross-contamination between subjects, strong occlusions,
and nonstationary backgrounds. This makes them more complex
to analyze using computer vision techniques alone. We propose
a multimodal approach using video and wearable acceleration
data recorded via smart badges hung around the neck. In the
video modality, we propose to treat noisy dense trajectories
as bags-of-trajectories. For a given bag, we can have good
trajectories corresponding to the subject, and bad trajectories
due for instance to cross-contamination. However, we hypothesize
that for a given class, it should be possible to learn trajectories
that are discriminative while ignoring noisy trajectories. We
do this by exploiting multiple instance learning via embedded
instance selection as our multiple instance learning approach. This
technique also allows us to identify which instances contribute
more to the classification. By fusing the decisions of the classifiers
from the video and wearable acceleration modalities, we show
improvements over the unimodal approaches with an AUC of 0.69.
We also present a static analysis and a dynamic analysis to assess
the impact of noisy data on the fused detection results, showing that
the moments of high occlusion in the video are compensated by the
information from the wearables. Finally, we applied our method to
detect speaking status, leveraging the close relationship found in
the literature between hand gestures and speech.

Index Terms—Hand gestures, crowded mingles, dense
trajectories, multiple instance learning, MILES, wearable
acceleration.
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I. INTRODUCTION

HAND gestures constitute one of the key elements of face to
face interactions. As described by Adam Kendon [1](1):

“Willingly or not, humans (...) [communicate] their intentions,
interests, feelings and ideas by means of visible bodily action.”
During a conversation there is a high probability of observing
conversational hand gestures, and their analysis can provide fur-
ther insights about the interaction itself [2], [3].

However, current efforts on the automatic detection and recog-
nition of gestures does not focus on the gestures that we all per-
form on a daily basis, which are mostly inherently conversational
as described by [1] and [2]. Instead, most works in the Multime-
dia, Computer Vision and Human Computer Interaction (HCI)
communities are focused on scenarios where the person is only
performing symbolic gestures1 that are clearly visible. For ex-
ample, over the last five years the gesture recognition Chalearn
challenge [4], [5] has provided over 40000 videos of one person
at a time performing sign language gestures in front of a Kinect
(see Figure 1(a)), either trimmed or with consecutive gestures.
Several works have used these datasets to address the problem
of gesture recognition under these conditions [6], [7].

Unfortunately, this does not reflect the majority of real life
situations where gestures are used. These works, although inter-
esting for certain applications (e.g. HCI), only address a subset
of the wide variety of gestures a human can perform, and this
subset has a consistent and discriminative pattern [3] (e.g. ‘hello’
in sign language is always the same). Also, they present rather
stationary backgrounds with a single subject, without any cross-
contamination between subjects.

In contrast, datasets for social interaction analysis in-the-wild
should maintain ecological validity. Hence, these types of sce-
narios have a crowded nature as the people come together to form
conversational groups. To better capture these events, a top view
is preferred (see Figure 1(c)). Side or elevated view tend to have
higher amounts of occlusions, particularly for those people away
from the camera (see Figure 1(b)).

The scenarios studied in this paper are crowded mingle events,
where people are inherently encouraged to interact in a real set-
ting (e.g. parties). Thus, they provide a perfect example of the use

1Symbolic gestures are those with a specific meaning (e.g. thumbs up).
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Fig. 1. Different scenarios for hand gesture detection. (a) Symbolic gesture
[4], [5], Conversational gestures: (b) Salsa Dataset [8] and (c) Our scenario.

of hand gestures during real conversations within a social con-
text in an in-the-wild scenario. Nonetheless, we hypothesize that
our method can be applied in other cases with related contexts.

From the visual modality perspective, mingle scenarios have
four main differences when compared to the symbolic gesture
scenarios: 1) cross-contamination between subjects, where using
a bounding box as it is done by most works in object/person
detection could include two or more people in one person’s box;
2) strong occlusions, making it impossible to see the subjects
in some cases; 3) strong changes in appearance for the same
subject; and 4) non-stationary backgrounds, which are affected
by the position of the subjects, lighting conditions or shadows. A
visual depiction of these challenges is shown in Figure 2. Thus,
the detection of gestures in such scenarios must deal with the
presence of noisy data.

Fortunately, these challenges can be addressed using multi-
ple modalities, as shown by previous work [9], [10]. Moreover,
works on free-standing conversational groups have shown that
wearable sensing alternatives can provide additional informa-
tion when learning with video [11]. Thus, each modality can
provide different information to understand the event, relying
on one modality when the other is missing or leveraging their
complementarity.

In this paper we detect conversational hand gestures in
crowded and strongly occluded scenarios using dense trajec-
tories from video and wearable acceleration.

Our main contributions are: (i) unlike previous works, we ad-
dressed the detection of conversational hand gesture in-the-wild,
using a dataset collected during a real mingle event with strong
interpersonal occlusions, (ii) we propose to use a multiple in-
stance learning approach (MILES [12]) representing gestures
as bags of trajectories to overcome subject cross-contamination
and to become robust against noisy backgrounds in video, (iii)
we leverage the MILES instance classification capability to an-
alyze which dense trajectories (in time and space) are more
representative for a gesture in video, (iv) we combine video
and wearable acceleration in a decision-level manner leveraging
the complementarity between modalities, particularly for cases
where occlusions in video are too strong to have a clear view

of the person performing the gesture, showing improvements
over unimodal approaches; (v) we analyze the impact of noisy
data (e.g. strong occlusions) of the participants on the overall
performance, both static and dynamically in time; and finally,
(vi) we use our method to detect speaking status, leveraging the
relationship between people’s gestures and speech [1], [2].

To the best of our knowledge we are the first to address the
problem of gesture detection in crowded scenes, emphasizing the
importance of the social context of the gestures and its impact
in the challenges for the detection of gestures.

The rest of the paper is divided as follows. Section II presents
related efforts about gesture detection in-the-wild. The dataset
used is described in Section III. Section IV gives a detailed
description of our approach, the feature extraction for video and
the wearable sensors, and the process of decision fusion of these
2 modalities. Our experiments are presented in Section V, and
its discussion in Section VI. Finally, we conclude in Section VII.

II. RELATED WORK

Most work on the detection and recognition of gestures fo-
cuses on cases where there is a clear view of the person per-
forming a symbolic gesture, generally from the front. For these
works the process is quite similar: 1) pose estimation or use of
its skeleton if available, and 2) gesture detection.

For instance, one of the datasets for gesture recognition for
the Chalearn 2016 [5] was the LAP Continous Gesture Dataset
(ConGD). This dataset consists of over 45000 RGB-D gestures
within over 22000 RGB-D videos. Each video may represent one
or more gestures, and there are 249 gestures labels performed
by 21 different individuals. For detecting the gestures segments
within the video, the teams with the best performances use slid-
ing windows of video as input for a convolutional 3D neural
network [13], or finding the start and end frames of each ges-
ture using quantity of movement (QOM), by assuming that all
gestures starts from a similar and clear pose [14].

Some works also include a more strict hand segmentation
step in this pipeline. Chai et al. [15] used hand detection and
their position for a temporal segmentation, achieving the best
performance for the Chalearn gesture detection and recognition
of 2016 [5]. Ren et al. [16] use hand detection and segmentation
for shape representation, in order to recognize hand gestures
using a Kinect. Something similar was proposed by Wang et al.
[17] using superpixels, and Liang et al. [18] proposed a parsing
scheme for hand representation on 3D, also based on superpixels.
Alon et al. [19] addressed the problem of spatiotemporal gesture
segmentation for the American Sing Language (ASL). To do
so, they presented an unified a framework for simultaneously
performing spatial segmentation, temporal segmentation, and
recognition, which also starts with a hand detection based on
motion detectors. Same as the works using the Chalearn dataset,
their dataset consist of videos of people gesturing in front of a
camera, and each video may represent one or more gestures.

These works, although relevant for its specific goal such as
interacting with a computer, do not address the same inherent
problem as our work and most do not share the same challenges
(eg. strong occlusions due to natural interactions).
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Fig. 2. Challenges while analyzing mingle scenarios with video (see better in color). (a) Interpersonal cross-contamination, (b) strong interpersonal (A to B) and
intrapersonal (A to herself) occlusions, (c) strong appearances variations for two subjects, and (d) Non-stationary background.

For a more comprehensive review of the domain, please refer
to any of the past Chalearn Challenges about gesture recognition
[4], [5] and to [20] for a review on gesture recognition for HCI
applications.

In contrast to the works above, here we focus on related works
with scenarios similar to ours. Xiong and Quek [21] presented
their work on the analysis of gestures during conversations for
the analysis of the frequency of gestures. To do so, they applied
a windowed Fourier transform and wavelet transform to detect
and extract gesticulatory oscillations. Although oriented to con-
versational gestures, this work is based on a dataset which has
a rather clear side view of the speaker and only 30 seconds of
video [22].

Similarly, Marco-Ramiro et al. [23], [24] addressed the detec-
tion of conversational gestures during seated encounters. Their
first work focused on the detection of upper body monocular mo-
tion including hands using an approximate 3D upper body pose,
while the latter used such features to look for adaptors (mean-
ing unintentional gestures, generally performed while fidgety)
or beat gestures in the context of an interview. Also, Cerekovic
et al. [25] detected the rapport between people and virtual agents
using as one of their features the hand gesture activity of the peo-
ple while interacting with the agent.

These efforts addressed the wide range of human gestures
during conversations. Nonetheless, they used a rather clear front
view of the participants while interacting, so they do not present
the same additional challenges regarding the visual perspective
(e.g. cross-contamination) as our mingle scenario.

The closest to our work, regarding the use of multiple instance
learning for detecting gestures, was presented by Ali and Shah
[26] and Yi and Lin [27]. Both works showed methods based on
multiple instances for general activity recognition. Nevertheless,
they did so in the KTH, UCF sports, Youtube and Hollywood
action data sets, which do not present crowded scenes and do
not include hand conversational gestures as part of their classes.

To the best of our knowledge we are the first to address the
problem of gesture detection during crowded scenes.

III. CROWDED MINGLE SCENARIO

We use the MatchNMingle dataset [28], a multimodal re-
source for the analysis of social interactions in the wild.2 This

2Dataset is openly available under an EULA and can be found in
http://matchmakers.ewi.tudelft.nl/matchnmingle/pmwiki/.

Fig. 3. (a) Wearable device used by participants. (b) Wearing method for
device. (c) Our crowded mingle scenario, with multiple conversations, and strong
interpersonal cross-contamination and occlusions [28].

dataset provides information for up to 70 people while mingling
freely for 30 minutes. Only 10 minutes are used in this work.

During one of three different day events, participants were
part of a speed date event, each followed by a mingle session.
As we focus on detection of gestures in-the-wild during standing
multi-party conversations, we will only use the mingle part of
MatchNMingle but we hypothesize that our insights here can be
also applied to a seated scenario, as the speed dates.

For the mingle session, the participants were not instructed
in any way, and they can move freely through the mingle area
or leave it at will (e.g. go to the bathroom). They can also order
food or drinks during the entire event. Thus, their gestures are
inherent to the social interactions they are having with other
participants or with members of the staff (e.g. waiters).

Each participant wore a smart badge hung around the neck
(see Figure 3(a-b)) recording triaxial acceleration at 20Hz during
the entire event. In addition, video was recorded at 20 FPS from
above (see snapshot on Figure 3(c)).

Finally, the dataset also provides the manual annotations of
the social actions (e.g. speaking, hand gestures) for all partici-
pants and the ground truth for their positions in the image. These
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Fig. 4. Process of clustering in space and time to create bags of trajectories.

were obtained from trained annotators, with an inter-annotator
agreement coefficient of 0.61 for hand gestures and 0.55 for
speaking, using the kappa-Fleiss coefficient.

IV. PROPOSED APPROACH

We apply a window-based approach that identifies if a time
interval (window) of length w contains a gesture or not. To do
so, it uses as inputs 1) RGB video and 2) the triaxial acceleration
on the wearable device of each participant.

For the video modality, we explain in Section IV-A the pro-
cess of extracting and clustering dense trajectories that are sub-
sequently used as bags of instances in a multiple instance learn-
ing classification. In Section IV-B we explain the extraction of
features and classification for the wearable modality (devices).
Finally, in Section IV-C we explain the process of fusing both
modalities in the decision level [29], by using the posterior prob-
abilities of the unimodal classifiers (one per modality) as input
to a third classifier.

A. Video Classification

Figure 4 summarizes the process of clustering trajectories in
space and time to create our bags of trajectories in video for
each subject. This process consists of the following steps:

1) Extraction of Dense Trajectories: Firstly, we extract tra-
jectories using the method of dense trajectories proposed by
Wang et al. [30]. These have proven to be an efficient repre-
sentation for human activity recognition [30]–[32]. The dense
trajectories are extracted for the entire frame using a length L
of 20 frames.

Using the bounding boxes for each participant on each frame
we create a voxel following the participant over time (see bottom
of Figure 5). Thus, we reduce the number of trajectories to those
around or from each participant by selecting only those inside
this voxel. This selection also accounts for trajectories that start
outside the voxel but enter it, and those that start within the voxel
and drift out.

For bounding box extraction one can use any existing tool
for this purpose [33], [34], however we use the ground truth
annotations to avoid further contamination. Our method uses

Fig. 5. Clustering of trajectories for a bag.

bags of video features, so it should be robust against small shifts
of the bounding boxes. Nonetheless, we leave the analysis of
the impact of the errors in the detection and tracking of people
on the overall gesture detection for future research, as this lies
outside of the scope of this paper.

Notice that, due to the crowdedness of the scene, bounding
boxes of different subjects can heavily overlap. A bounding box
can therefore contain trajectories of both the subject of interest
and of ‘background’ subjects. Fortunately, our multiple instance
learning (MIL) approach will account for this duality.

2) Selection of Trajectories for a Bag: First, define Bs as
the set of positive and negative bags created using the bound-
ing boxes for subject s, where s = {1, ..., S} and S is the to-
tal number of subjects. A bag from this set is then Bs

j , where
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j = {1..., Ns}, and Ns is the total number of bags possible for
subject s.

To create a given window Bs
j we 1) select the trajectories

corresponding to this bag (temporal clustering), and 2) cluster
the trajectories within a bag (spatio-temporal clustering). The
latter will be explained in the next subsection.

For the temporal clustering, given a sliding window in time
and the bounding boxes of subject s, all trajectories that fall in
this spatio-temporal box (or voxel) for at least 80% are collected
for this bag (Bs

j). This set of trajectories tsj is shown in Figure 5
in blue.

Note that the sliding window does not necessarily have to be
the same length L as the trajectories (as presented in Figure 5),
or the same shift. Also, the trajectories can start at any point
within the sliding window, but will always have a size L. This
size is fixed to L to avoid drift, as explained by Wang et al. [30].
So, if w > L there will be trajectories in the bag that are only
partially within the window.

It is important to emphasize that although the bounding boxes
for each subject swere used, the trajectories inside these boxes
do not necessarily belong to subject s. Instead, they could also
represent the background or other subjects. This is the main
motivation for using our MIL approach (more in Section IV-A4).

3) Clustering of Trajectories Within a Bag: A final cluster-
ing within the bags is important to create less noisy and more
representative trajectory prototypes. For practical purposes, it
also results in a more efficient memory usage, without losing
information. This is a common practice in works using dense
trajectories [31], [32], as these descriptors tend to be redundant
for similar local-temporal instances.

To cluster the trajectories within a bag, we use k-means
clustering. This way, the trajectories for each bag tsj are clus-
tered into the k most representative prototypes for the bag (xs

ij ;
i = 1, ..., k). The trajectories tsj are illustrated in blue in Fig-
ure 5. The prototypes xs

ij are represented in black, and become
the instances of our bags (Bs

j = {xs
ij ; i = 1, ..., k}).

The label of each bag ysj is set using the annotations provided
by the dataset, which are made every frame. To select a single
value for the bag we use majority voting.

Finally, we create the set of bags Bs (positive and negative)
for subject s by applying the procedure described above for a
window, then sliding it and repeating for the entire video, as
seen in Figure 5. Thus, each window becomes a bag (see the
rightmost part of Figure 4).

4) Multiple Instance Learning: As stated before, due to the
crowded nature of our scenes we opt for a multiple instance
learning approach using bags of trajectories. Thus, each bag Bs

j

consists of good trajectories corresponding to subject s, and bad
or noise trajectories which could be other subjects or shadows
and other background artifacts.

As our Multiple Instance Learning (MIL) approach we use
Multiple Instance Learning via Embedded Instance Selection
(MILES) [12]. MILES classifies a bag by considering both con-
tributing information (e.g. trajectories of subject s in our case)
and opposing information (e.g. trajectories from other subjects
or background). It does so by creating a concept in an embed-
ded space and comparing all instances to this concept. Instances

close to the concept will have a higher contribution (see more
on the explanation of Eq. 3).

Thus, unlike other MIL approaches where at least one positive
instance in a bag automatically converts it into a positive bag,
MILES does not have this restriction. This also allows us to
assess the role of individual instances in the classification of a
bag (see Section V-B1 for an analysis).

More specifically, MILES maps each bag into a feature space
defined by the instances in the training set using bag to instance
similarities. The bags are then classify in this space, depending
on how close the instances within the bag are to the concept
defined by the instances in the training.

Let us define B = {B1,B2, ...,BS}, as the set of bags for all
participants. Ba is then a bag of this set B, where a = {1..., A}
and A is the sum of the total number of bags for all S subjects.

For a given bagBa the measure of similarity between this bag
and all other instances in the training set3 (disregarding their bag)
is calculated by

s(xk,Ba) = max
b

exp

(
−||xab − xk||2

σ2

)
(1)

Thus, s(xk,Ba) is the measure of similarity between a concept
within the training set (a gesture, in our case) and the bag Ba,
which is determined by the closest instance in the bag to the
concept.

Using this similarity approach, any bag can be embedded into
a similarity space with coordinates m(Ba) defined as

m(Ba) = [s(x1,Ba), s(x
2,Ba), ..., s(x

na ,Ba)]
T (2)

where na is the total number of instances in the training set.
Applying the mapping in Eq. 2 for a training set of A bags
results in the matrix representation of all training bags in the
embedded space: m(B) = [m(B1), ...,m(BA)].

The creation of this similarity matrix, which is directly de-
pendent of the number of bags (A) and instances in the training
set (na), can be memory consuming. This is one of the main
reasons behind the spatio-temporal clustering within the bags
using k-means.

On this representation a (sparse) linear classifier is then
trained. The classification of new bags is done by:

y = sign

(∑
k∈I

w∗
ks(x

k,Bnew) + b∗
)

(3)

where I is the subset of instances with non-zero weights
(I = {k : |w∗

k| > 0}). Note that instances with contributing in-
formation will have positive weights w∗

k, while those with op-
posing information will have negative weights.

We are also interested in analyzing qualitatively which in-
stances in the bags contributed the most to the MILES classifier.
Our intention is to assess whether the instances chosen by the
classifier correspond in fact to trajectories of the correct sub-
ject, and that trajectories for changes in the background or other
subjects are ignored.

3The separation of B into train and test set is addressed in Section V.
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For this, we leveraged the instance classification capacity of
the MILES algorithm. Thus, for the classification of a given new
bag Bi with instances xij , j = 1, ..., ni (where ni is the total
number of instances in the bag), we can define which instances
contributed the most for the classification of the bag. To measure
this instance level contribution we use the following weight:

g(xij∗) =
∑
k∈Ij∗

w∗
ks(x

k,xij∗)

mk
(4)

where xk corresponds to the instances in the training set. Ij∗
corresponds to the subset of all instances in the new bag for
which there is a maximum similarity with one of the instances in
the training set (exp(||xij − xk||2/σ2)) and whose weights are
|w∗

k| > 0. Finally, mk is the number of instances in Ij∗ . Hence,
Eq. 4 determines the contribution of xij∗ on the classification of
the bag Bi. For more details about the MILES algorithm, please
refer to [12].

B. Wearable Acceleration Classification

Each wearable device (one per subject) recorded the triaxial
acceleration at 20 Hz. For each participant, we also calculate
the magnitude of the acceleration (|accel| =

√
x2 + y2 + z2);

resulting in 4 different time series (x, y, z and |accel|) for
which we can extract features using a sliding-window approach,
similarly to the video. With the triaxial time series we address
those movements where the direction is important, whereas with
the magnitude we focus on movement in a direction invariant
manner.

Then, for each the same sliding windows as defined in the
previous section, we extract features that have proven to be effi-
cient to analyze human actions from wearable acceleration [35].
These features are mainly statistical and spectral, where the sta-
tistical features focused on mean and variances from each axis
and from the magnitude, and spectral using the power spec-
tral density (PSD). All features are concatenated to obtain a
70-dimensional feature vector per window, and then classified
using a logistic regressor (see Section V for details).

C. Decision Fusion Classifier

For fusion, we selected a decision-level combining approach
[29]. Thus, the approximate posterior probability of the video
and wearable classifiers are used as input for a third classifier. We
opt for decision fusion instead of early fusion (e.g. concatenate
features) as we aim to maintain a constant and fair feature space.
This means that, while MILES will map each bag to a embedded
space defined by its instances similarities, this can not be applied
to the features from the wearable acceleration, thus making an
early fusion unfeasible.

Also, as the MILES classifier bases its output on the sum in
Eq. 3 instead of a proper probability, we applied Platt scaling
[36] to obtain the probability distribution of the classifier from
video, as is generally done for similar classifiers such as the
SVM.

TABLE I
SUMMARY OF GESTURE DETECTION RESULTS USING UNIMODAL CLASSIFIERS

AND THEIR FUSION IN A DECISION-LEVEL. MEAN AUC
(± DEVIATION) OF FOLDS

V. EXPERIMENTS

We now proceed to evaluate our classifiers, both separately
and combined using decision fusion. A summary of the results
is presented in Table I. All these values are statistically signif-
icant, with p < 0.01 when compared to a classifier assigning
labels at random. A detailed explanation of each classifier is
now presented.

A. Wearable Acceleration Classification

We selected a window size (w) of 60 samples (3 seconds) with
no overlap. Empirical tests shown that these values are optimal
for our task. For these windows, we extracted for each participant
in our dataset (70 in total) the features described in Section IV-B.
As a classifier we selected a linear logistic regressor and used a
leave-one-subject-out cross-validation strategy.

We obtained a mean AUC of 0.65± 0.08 for the 10 minute
interval. This result is similar to what has been found in the
past for the detection of other social actions using wearable
acceleration [37].

B. Video Classification

For each participant we extracted their set of bags of tra-
jectories Bs following the process described in Section IV-A.
Identical to the wearable acceleration, we selected a window
size (w) of 60 samples (3 seconds) and no overlap. Hence, for
a segment of 10 minutes we obtained a maximum of 200 bags
per participant. Some of the participants had less bags, as they
left the field of view of the camera for different intervals of time
during this interval.

Then, we proceeded to evaluate our MILES approach using
leave-one-subject-out. To do so, all bags are extracted for all S
participants (Bs, s = {1, ..., S}). The set of bags for one subject
is used for testing while the remaining sets of bags (for S − 1
participants) are used for training. This is repeated until all S
subjects are used for testing. The mean AUC of the folds (and
its deviation) is finally presented.

However, this procedure results in a training set of around
13,500 bags with a total of around 270,000 instances per train-
ing fold (exact number depends on the subjects), even when
applying the k-means clustering described in Section IV-A. Con-
sequently, the creation of the matrix of distance m(B) for the
MILES becomes expensive in terms of memory and computing
time.

To overcome this issue, we implemented an efficient training
where we randomly sample the training set of each fold so
the optimization of m(B) is manageable, while maintaining
samples from all subjects and enough information for classifier
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Fig. 6. Analysis of instances with higher contribution in the MILES classifier. From left to right: Original image, original dense trajectories, trajectories considered
as of high contribution. Different colors in right images represent different clusters (see Section IV-A). (a) MILES focusing on trajectories corresponding to the
hand/arm area (b) Background trajectories (e.g. shadows) beign omitted. (c) MILES handling cross-contamination of subjects. (d) Failure case, MILES also
considers gesture from another participant.

regularization. To find the optimal value for this trade-off
(enough samples versus memory limitations) we train with a
maximum number of bags ranging from 100 to 5,000. This
experiment showed that at 1,500 bags the results start saturating
and adding more samples has no evident benefit. Hence, we
chose this value for all our following experiments. Also, our
data has a strong imbalance between positive and negative bags
for most subjects (positive >> negative), resulting in a heavily
imbalanced training set. To overcome this we do the sampling
in a stratified manner.

In contrast, for the test set in each fold we used the entire set
of bags Bs for the subject left out. We used the AUC as evalua-
tion metric instead of the accuracy to account for the imbalance
in our samples. For the classification we used the MILES im-
plementation in PRTools [38]. Applying this methodology we
obtained a mean AUC of 0.67± 0.09 with 68 subjects (2 had
issues for the segment and had to be discarded).

In addition, using the same training samples given to the
MILES, we trained a Fisher classifier which is used as a base-
line comparison for the video. We can see in Table I that the use
of MILES with the same set of samples further improves the
classification, when compared to this baseline classifier.

1) Analysis of Bag Instances: As stated before, we are in-
terested in analyzing qualitatively which instances in the bags
contributed the most to the MILES classifier, to assess whether
they correspond to trajectories of the correct subject. We do so
by calculating the contribution of each instance in a new test
bag, using Eq. 4 as described in Section IV-A4.

Figure 6 shows example cases of instance importance used
by the MILES classifier. From left to right we have the origi-
nal image, the original dense trajectories, and those trajectories
considered by the MILES classifier to be of high contribution
following Eq. 4. To be considered as ’high’, the absolute value
of the instance contribution had to be higher than 0.0001 (to
filter noise). Different colors in the images showing trajectories
with high levels of contribution (right images) represent differ-
ent clusters. Thus, if a prototype trajectory (see Section V-B)
was selected as having a high contribution, all the trajectories in
that cluster are shown.

First, in Figure 6(a) we can see an example of MILES hav-
ing high contribution levels for trajectories corresponding to the
arm an hand region of the person while a gesture is performed.
This shows that the MILES classifier is learning the correct rep-
resentations. Figure 6(b) shows that background trajectories are
ignored while trajectories of the subject’s hands are important.

Figure 6(c) shows the case where the MILES approach han-
dles cross-contamination of subjects, assigning high contribu-
tions to the trajectories belonging to the subject owning the
bounding box and no contribution to the trajectories from to
the person causing the cross-contamination.

Finally, Figure 6(d) shows a failure case where trajecto-
ries corresponding to another subject (cross-contamination) are
given high contribution. We will discuss further about these qual-
itative results in Section VI.

C. Decision Fusion

As stated before, to leverage the complementarity of both
modalities we performed a decision level fusion using the pos-
terior probabilities of both unimodal classifiers. We chose deci-
sion fusion as the bags in MILES are embedded into a different
space than the features from the acceleration, so an early fusion
approach is not appropriate.

Similar to the experiments in the past sections, we applied a
leave-one-subject-out cross-validation, this time using Fisher’s
linear classifier to avoid overfitting.

This experiment gave us a mean AUC of 0.69± 0.10. So,
as we hypothesized, the use of the complementarity between
modalities increases the performance of the detection while
compared to the unimodal approaches (0.67 and 0.65 for video
and acceleration, respectively).

D. Impact of Noisy Data in Video on Performance

As seen in the deviation, there is still a high variability between
the participants’ results. Thus, we now proceed to analyze the
levels of noisiness of the data, due to the cross-contamination
between subjects and their occlusions, as a possible cause. This
will be done in a static (in time) and dynamic manner.
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TABLE II
ANALYSIS OF THE IMPACT OF DATA COMPLEXITY IN GESTURE DETECTION.

MEAN AUC (± DEVIATION) USING LEAVE-ONE-SUBJECT-OUT AND

DIFFERENT SUBSETS FOR TRAINING AND TESTING

1) Static Analysis of Noisy Data in Video: We first aimed to
analyze the impact of the noisy data using a static comparison.
Thus, we separated our set of subjects in 2 subsets: 1) the clean
and 2) the noisy subjects. To select the subjects belonging to the
clean subset we computed the overlapping ratio on each frame
for all subjects and then computed their mean over time. For the
visibility constraint, we used the annotations given by the dataset
for out of view. We also added as out of view those moments for
which the subject is too close to the borders of the frame and is
only partially visible. A subject is part of the clean subset if their
mean overlapping ratio is lower than 0.4 and is visible for 60%
of the time. On the contrary, will be part of the noisy subset.

Table II summarizes the results while training with one of the
subsets (or the entire set) and testing with another, using a leave-
one-subject-out cross-validation. When training for a given sub-
set we only used those subjects within the subset; leaving out
the subject only if this is part of the subset selected for testing.
For this table, the first row corresponds to the results presented
in the previous subsections.

First, we can see in these results that the fusion column has in
most cases a higher performance than the video classification.
The exception are the experiments trained with the clean subset
which suggests that the information added by the wearable de-
vices in this case is redundant as the MILES has learned clear
examples of gestures, and the information from the wearable is
redundant. Also, note that overall the classifier using the wear-
able acceleration information performs similarly to the video.
We will discuss this findings in Section VI.

2) Dynamic Analysis of Noisy Data in Video: Our aim with
such comparison is to determine if it exists a correlation between
those moments with high occlusion between participants (noisy
states) and the confidence of the MILES classifier.

Similar to the static analysis, for each participant we calcu-
lated the overlapping ratio at each frame. In addition, we com-
puted the distance of each person’s to the closest image border
and normalize it (border = 1, center of image = 0). The sum of
these two on each frame give us a ratio of occlusion for each
participant in time. Note that this ratio is not normalized as you
can have a person in the border and occluded, for which ratio of
occlusion >1.

Figure 7 shows the error analysis in time for a subject chosen
at random. Aside from the ratio of occlusion, these plots show
the confidence of each classifier and the error for the MILES
and the decision classifier.

Fig. 7. Error analysis in time for a participant’s errors and confidences.

TABLE III
SUMMARY OF SPEAK DETECTION RESULTS USING UNIMODAL CLASSIFIERS

AND THEIR FUSION IN A DECISION-LEVEL. MEAN AUC
(± DEVIATION) OF FOLDS

E. Detection of Speaking Status

Previous work in social psychology has found that there is a
relation between the people’s gestures and their speech [1], [2],
[39]. Furthermore, works on automatic computing have lever-
aged this relationship in order to detect speaking status from the
movement and/or gestures of the people while they interact [35],
[37], [40].

Following the same premise, in this section we use our
MIL method to detect binary speaking status (speaking/non-
speaking) from the movement trajectories from video. In
addition, we also applied our fusion approach with wearable
information, and compare the results with those obtained for
gesture detection.

Although MatchNMingle has groups interacting freely [28],
we treat each participant independently when detecting its
speaking status in a binary manner (speaking or not speaking).
This means that we assumed that only one person is expected
to speak at a time in our signals. Hence, as our method does not
accounts for overlapping behavior during group interactions,
more complex speaking concepts (such as speaker diarization
[41]) are out of the scope of this paper.

To detect speaking status, we use the labels for the speaking
status of all participants provided by the matchNMingle dataset.
Speech, as well as the hand gesture gestures, was annotated
every frame at 20 FPS. Table III summarizes the results for
the unimodal and multimodal approaches. All these values are
also statistically significant, with p < 0.01 when compared to a
classifier assigning labels at random.

We can see in the results of Table III that, unlike gesture detec-
tion, the classification using the information from the wearable
devices has the best performance. Moreover, this performance
is similar to what was found in previous work using the same
dataset [35]. In contrast, the results for the video (both base-
line and MILES) are considerably lower than those found for
gesture detection, and the fusion does not improve over the uni-
modal approaches. We will discuss more about these differences
in Section VI.
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VI. DISCUSSION

Instance contribution to the MILES
We can see in Figure 6 that most of the trajectories chosen by

the MILES as of high contribution are those corresponding to
hands or arms. This applies even if other regions of the body for
the subject, other subjects or the background are also moving
(see Figure 6(b-c)). Thus, our MILES approach achieves, up to
a certain level, its goal to compensate for cross-contamination
in video.

Nonetheless, we also see in Figure 6(d) a failure case
where trajectories corresponding to another subject (cross-
contamination) are given high contribution. This case in par-
ticular was interesting, as during those segments the two sub-
jects were engaged in a conversation and the subject causing
the cross-contamination was also gesturing. Thus, the MILES
learns correctly that these trajectories were corresponding to a
gesture but fails to discriminate the subject.

Video occlusion and complementary modalities
We could see from the experiments in Section V-D that oc-

clusion in video tends to affect the performance of the MILES
classification, while the fusion of modalities compensate for this
occlusion. First, in Figure 7 we can see how for those time with
high occlusion ratio the MILES classifier makes error while
the decision fusion compensates for these. In these intervals,
although MILES is having trouble with confidence due to the
noisy state, the wearable acceleration based classifier maintains
or increases its confidence and allows the fusion classifier to
correctly classify such moments.

This complementarity between the modalities can also be seen
in Table II. First, we can see in these results that the fusion
column has in most cases a higher performance than the video
classification. The exception are the experiments trained with
the clean subset which suggests that the information added by
the wearable devices in this case is redundant as the MILES has
learned clear examples of gestures, and the information from
the wearable is redundant. This might also be the reason of the
performance for the training with the clean subset and the test
with the noisy one.

Note also that overall the classifier using the wearable accel-
eration information performs similarly to the video. And these
values are also below the fusion except for the clean subset as
training. This suggests that the wearable devices are not affected
by the vision noisy states, and instead different factors cause the
differences between the subsets. We hypothesize that these dif-
ference might be due to interpersonal differences, as suggested
by Gedik et al. [35].

Gesture versus speaker status detection
Finally, we discuss the differences between the results find

for gesture detection (Table I) and the speak status detection
(Table III). This experiment tries to leverage the natural relation-
ship between speech and gestures during conversations [1], [2].

Results show that for the speak status detection, the wearable
device is more informative than video, and the values were sim-
ilar to those found in previous work using the same dataset [35].
Nonetheless, in contrast with the gesture detection, the results
for the video (both baseline and MILES) are considerably lower

than those found for gesture detection, and the fusion does not
improve over the unimodal approaches.

The frequency distribution of each action could help under-
standing why our method is only partially working for the speak-
ing status, when compared to the gesture detection.

We found that on average participants spent 407 seconds
speaking (deviation per participant of 259 seconds) and 308 ges-
turing (deviation of 200 seconds). Nevertheless, the two actions
overlap for only 196 seconds (deviation of 168). This analysis
shows that i) not all the gestures are related to speech and ii)
not all speech was strictly accompanied by a gesture. Thus, our
method could try to interpret a gesture always as part of the
conversation, which is not the case. Furthermore, as speech is
not necessarily accompanied by a gesture, we might have a high
number of false negatives for moments with only speech. This
could also explain why the wearable is more accurate on detect-
ing the speaking status than the video or fusion, as the devices
sense movement mainly from the torso, which is more likely to
move when a person speaks, and not necessarily the hands/arms.

VII. CONCLUSIONS

In this work we presented our method to detect gestures during
crowded mingle scenarios using bags of dense trajectories from
video and wearable acceleration. This detection is particularly
complex for mingle scenarios as they present high subject cross-
contamination and strong occlusions, among other additional
challenges.

To overcome the highly noisy video data we applied a multiple
instance learning approach (MILES), which showed to be able to
handle problems such as non-static backgrounds and the cross-
contamination between subjects up until certain point. Also, we
analyzed the contribution of the instances in the classifier show-
ing that this learns from trajectories representing a person ges-
turing and ignores those from the background, for example.

Leveraging the decision fusion of the video and wearable
modalities shows an improvement in the detection performance,
with a mean AUC of 0.69± 0.10 (compared to 0.67 and 0.65
for video and acceleration, respectively).

We also investigated the impact on the performance of noisy
data due to subject cross-contamination and occlusions, both in
a static and dynamic (in time) manner. This analysis showed that
fusing modalities also compensates for those moments where the
confidence of the MILES classifiers decays, due to occlussions.
Finally, we applied our method to detect binary speaking status,
leveraging the premise that gestures and speak are generally
intertwined.

REFERENCES

[1] A. Kendon, Gesture: Visible Action as Utterance. Cambridge, U.K.: Cam-
bridge Univ. Press, 2015.

[2] D. McNeill, Hand and Mind: What Gestures Reveal About Thought.
Chicago, IL, USA: Univ. Chicago Press, 1992.

[3] R. M. Krauss, Y. Chen, and P. Chawla, “Nonverbal behavior and nonverbal
communication: What do conversational hand gestures tell us?,” Adv. Exp.
Social Psychol., 1996.

[4] S. Escalera et al., “Multi-modal gesture recognition challenge 2013:
Dataset and results,” in Proc. Int. Conf. Multimodal Interact., 2013,
pp. 445–452.



CABRERA-QUIROS et al.: GESTURES IN-THE-WILD 147

[5] J. Wan et al., “ChaLearn looking at people RGB-D isolated and continuous
datasets for gesture recognition,” in Proc. IEEE Conf. Comput. Vision
Pattern Recognit. Workshops, 2016, pp. 761–769.

[6] P. Wang, W. Li, Z. Gao, C. Tang, and P. O. Obunbona, “Depth pooling based
large-scale 3-d action recognition with convolutional neural networks,”
IEEE Trans. Multimedia, vol. 20, no. 5, pp. 1051–1061, May 2018.

[7] M. Asadi-Aghbolaghi et al., “A survey on deep learning based approaches
for action and gesture recognition in image sequences,” in Proc. IEEE Int.
Conf. Autom. Face Gesture Recognit., 2017, pp. 476–483.

[8] X. Alameda-Pineda et al., “SALSA: A novel dataset for multimodal group
behavior analysis,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 38, no. 8,
pp. 1707–1720, Aug. 2016.

[9] A. Vinciarelli, M. Pantic, and H. Bourlard, “Social signal processing:
Survey of an emerging domain,” Image Vision Comput., vol. 27, no. 12,
pp. 1743–1759, 2009.

[10] Z. Yang, A. Metallinou, and S. Narayanan, “Analysis and predictive mod-
eling of body language behavior in dyadic interactions from multimodal
interlocutor cues,” IEEE Trans. Multimedia, vol. 16, no. 6, pp. 1766–1778,
Oct. 2014.

[11] X. Alameda-Pineda, Y. Yan, E. Ricci, O. Lanz, and N. Sebe, “Analyzing
free-standing conversational groups: A multimodal approach,” in Proc.
ACM Int. Conf. Multimedia, 2015, pp. 5–14.

[12] Y. Chen, J. Bi, and J. Z. Wang, “MILES: Multiple-instance learning via
embedded instance selection,” IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 28, no. 12, pp. 1931–1947, Dec. 2006.

[13] N. C. Camgoz, S. Hadfield, O. Koller, and R. Bowden, “Using convolu-
tional 3d neural networks for user-independent continuous gesture recog-
nition,” in Proc. 23rd Int. Conf. Pattern Recognit., 2016, pp. 49–54.

[14] P. Wang et al., “Large-scale continuous gesture recognition using convo-
lutional neural networks,” in Proc. 23rd Int. Conf. Pattern Recognit., 2016,
pp. 13–18.

[15] X. Chai, Z. Liu, F. Yin, Z. Liu, and X. Chen, “Two streams recurrent
neural networks for large-scale continuous gesture recognition,” in Proc.
Int. Conf. Pattern Recognit., 2016, pp. 31–36.

[16] Z. Ren, J. Yuan, J. Meng, and Z. Zhang, “Robust part-based hand gesture
recognition using kinect sensor,” IEEE Trans. Multimedia, vol. 15, no. 5,
pp. 1110–1120, Aug. 2013.

[17] C. Wang, Z. Liu, and S.-C. Chan, “Superpixel-based hand gesture recog-
nition with kinect depth camera,” IEEE Trans. Multimedia, vol. 17, no. 1,
pp. 29–39, Jan. 2015.

[18] H. Liang, J. Yuan, and D. Thalmann, “Parsing the hand in depth images,”
IEEE Trans. Multimedia, vol. 16, no. 5, pp. 1241–1253, Aug. 2014.

[19] J. Alon, V. Athitsos, Q. Yuan, and S. Sclaroff, “A unified framework
for gesture recognition and spatiotemporal gesture segmentation,” IEEE
Trans. Pattern Anal. Mach. Intell., vol. 31, no. 9, pp. 1685–1699, Sep. 2009.

[20] S. Rautaray and A. Agrawal, “Vision based hand gesture recognition
for human computer interaction: A survey,” Artif. Intell. Rev., vol. 43,
pp. 1–54, 2015.

[21] Y. Xiong and F. Quek, “Hand motion gesture frequency properties and
multimodal discourse analysis,” Int. J. Comput. Vision, vol. 69, pp. 353–
371, 2006.

[22] F. Quek et al., “Multimodal human discourse: Gesture and speech,” ACM
Trans. Comput.-Human Interact., vol. 9, pp. 171–193, 2002.

[23] A. Marcos-Ramiro, D. Pizarro-Perez, M. Marron-Romera, L. Nguyen, and
D. Gatica-Perez, “Body comunicative cue extraction for conversational
analysis,” in Proc. IEEE 10th Int. Conf. Workshops Autom. Face Gesture
Recognit., 2013, pp. 1–8.

[24] A. Marcos-Ramiro, D. P. Perez, M. Marron-Romera, and D. Gatica-Perez,
“Capturing upper body motion in conversation: An appearance quasi-
invariant approach,” in Proc. 16th Int. Conf. Multimodal Interact., 2014,
pp. 327–334.

[25] A. Cerekovic, O. Aran, and D. Gatica-Perez, “Rapport with virtual agents:
What do human social cues and personality explain?,” IEEE Trans. Affec-
tive Comput., vol. 8, no. 3, pp. 382–395, Jul.–Sep. 2017.

[26] S. Ali and M. Shah, “Human action recognition in videos using kinematic
features and multiple instance learning,” IEEE Trans. Pattern Anal. Mach.
Intell., vol. 32, no. 2, pp. 288–303, Feb. 2010.

[27] Y. Yi and M. Li, “Human action recognition with graph-based multiple-
instance learning,” Pattern Recognit., vo. 53, pp. 148–162, 2016.

[28] L. Cabrera-Quiros, A. Demetriou, E. Gedik, L. van der Meij, and H. Hung,
“The matchnmingle dataset: A novel multi-sensor resource for the analysis
of social interactions and group dynamics in-the-wild during free-standing
conversations and speed dates,” IEEE Trans. Affective Comput., to be
published.

[29] P. Atrey, M. A. Hossain, A. E. Saddik, and M. S. Kankanhalli, “Multi-
modal fusion for multimedia analysis: A survey,” Multimedia Syst., vol. 16,
pp. 345–379, 2010.

[30] H. Wang, A. Kläser, C. Schmid, and C.-L. Liu, “Action recognition
by dense trajectories,” Colorado Springs, CO, USA, pp. 3169–3176,
Jun. 2011. [Online]. Available: http://hal.inria.fr/inria-00583818/en

[31] H. Wang, A. Klaser, C. Schmid, and C.-L. Liu, “Dense trajectories and mo-
tion boundary descriptors for action recognition,” Int. J. Comput. Vision,
vol. 103, pp. 60–79, 2013.

[32] J. C. van Gemert, M. Jain, E. Gati, and C. Snoek, “APT: Action localization
proposals from dense trajectories,” in Proc. Brit. Mach. Vision Conf., 2015,
pp. 177-1–177-12.

[33] R. Stewart, M. Andriluka, and A. Y. Ng, “End-to-end people detection in
crowded scenes,” in Proc. IEEE Conf. Comput. Vision Pattern Recognit.,
2016, pp. 2325–2333.

[34] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look once:
Unified, real-time object detection,” in Proc. IEEE Conf. Comput. Vision
Pattern Recognit., 2016, pp. 779–788.

[35] E. Gedik and H. Hung, “Personalised models for speech detection from
body movements using transductive parameter transfer,” Pers. Ubiquitous
Comput., vol. 21, pp. 723–737, 2017.

[36] J. Platt, “Probabilistic outputs for support vector machines and compar-
isons to regularized likelihood methods,” Adv. Large Margin Classifiers,
1999, pp. 61–74.

[37] H. Hung and E. G., and L. Cabrera-Quiros, “Detecting conversing groups
with a single worn accelerometer,” in Proc. ACM Int. Conf. Multimodal
Interact., 2014, pp. 84–91.

[38] P. Duin et al., “Prtools4. 1, a matlab toolbox for pattern recognition.” Delft
University of technology, vol. 2600, 2007.

[39] A. Kendon, Conducting Interaction: Patterns of Behavior in Focused En-
counters. Cambridge, U.K.: Cambridge Univ. Press, 1990.

[40] M. Cristani, A. Pesarin, A. Vinciarelli, M. Crocco, and V. Murino, “Look
at who’s talking: Voice activity detection by automated gesture analysis,”
Int. Joint Conf. Ambient Intell., vol. 277, pp. 72-80, 2011.

[41] X. Anguera et al., “Speaker diarization: A review of recent research,”
IEEE Trans. Audio, Speech, Lang. Process., vol. 20, no. 2, pp. 356–370,
Feb. 2012.

Laura Cabrera-Quiros received the “Licenciatura”
and M.Sc. degrees from the Instituto Tecnólogico
de Costa Rica, in 2012 and 2014, respectively, and
the Ph.D. degree from the Delft University of Tech-
nology, Delft, The Netherlands, in 2018. She is a
Guest Postdoctoral Researcher with the Socially Per-
ceptive Computing Group, Delft University of Tech-
nology. She is also a Postdoctoral Researcher with
the Eindhoven University of Technology, Eindhoven,
The Netherlands and with the Maxima Medical Cen-
ter, Eindhoven, The Netherlands. Her main interests

are the use and fusion of wearable sensing and computer vision for applications
oriented to the analysis of human social behavior and health monitoring.

David M. J. Tax received the M.Sc. degree in physics
from the Radboud University Nijmegen, Nijmegen,
The Netherlands, in 1996, and the Ph.D. degree
from the Delft University of Technology, Delft, The
Netherlands, in 2001. He was a Marie Curie Fel-
low with the Intelligent Data Analysis Group, Berlin,
Germany. He is currently an Assistant Professor with
the Pattern Recognition Laboratory, Delft University
of Technology. His current research interests include
the learning and development of detection algorithms
and (one-class) classifiers that optimize alternative

performance criteria, and multiple instance learning.

Hayley Hung received the Ph.D. degree in computer
vision from Queen Mary University of London, Lon-
don, U.K., in 2007, and her first degree in electrical
and electronic engineering from the Imperial College
London, London, U.K. She is an Associate Professor
Head with the Socially Perceptive Computing Group,
Delft University of Technology, Delft, The Nether-
lands. Between 2010 and 2013, she held a Marie
Curie Fellowship with the Intelligent Systems Lab,
University of Amsterdam, Amsterdam, The Nether-
lands. Between 2007 and 2010, she was a Postdoc-

toral Researcher with the Idiap Research Institute, Martigny, Switzerland. Her
interests are social computing, social signal processing, computer vision, and
machine learning.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice




