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Summary

Fracture mechanics has grown to one of the most important disciplines within engineering
and is mainly focused on why and how structures fail. The fracture mechanisms in isotropic
materials are well understood, but for composite materials the developments are still ongo-
ing. There are several failure and fracture criteria available for composite materials that have
been proven to work. In this thesis a completely new simple failure criterion based on the
micromechanics of a Uni-Directional (UD) Carbon-Fiber Reinforced Plastic (CFRP) material
was developed. The resulting method provided a solid proof of concept. The goal was to in-
corporate microscopic fracture mechanisms, i.e. microcracks or fiber-matrix debonding, in a
macroscopic failure criterion by performing Two-Dimensional (2D) numerical experiments
on a Representative Volume Element (RVE) containing multiple fibers. The results of these
numerical experiments were correlated into a simple bilinear Traction-Separation Law (TSL)
that represents the failure criterion. This failure criterion was implemented on a macroscopic
scale such that the response of a single cohesive element is in line with the response of the
microscopic RVE.

The numerical experiments were performed in ABAQUS and fracture was simulated by the
use of cohesive elements. A fully scripted procedure in PYTHON and MATLAB was developed
that allowed for a fast and efficient pre- and post-processing. The ABAQUS input files were
generated by first initiating a MATLAB meshing script that ensured a random fiber distribu-
tion, random meshing of triangular elements and implemented the cohesive elements. Us-
ing PYTHON the remainder of the input file was written, i.e. material properties, Boundary
Conditions (BC) and step properties. By scripting this procedure the parameters for the nu-
merical experiments could easily be changed. For the post-processing scripting was used to
extract the relevant data from the ABAQUS output files and translate this data into an Effective
Traction-Separation Law (ETSL) that describes the fracture mechanism. This ETSL was ap-
proximated by a bilinear TSL that has three parameters: an initial slope K , cohesive strength
tu (peak) and fracture energy G f (area).
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The effect of five variables was studied: interface cohesive strength, fiber cohesive strength,
interface fracture energy, fiber fracture energy and fiber volume fraction (or fiber diameter for
the single fiber simulations). The first four cohesive element properties were studied relative
to the matrix cohesive element properties and the material properties were kept constant.
Single fiber numerical experiments were performed to test the above method, check mesh
convergence and to get a first insight in the effect of the five variables. From these simulations
the required mesh density was obtained and the scripts were optimised for the multiple fiber
numerical experiments.

Before the multiple fiber numerical experiments could be performed the dimensions of the
Microstructural Volume Element (MVE) had to be determined at which point it can be con-
sidered representative for the larger structure, i.e. a RVE. For this a convergence study was
performed by comparing the ETSL of different MVE dimensions. Due to the effects of arti-
ficial compliance two alternative approaches were studied and from the first alternative ap-
proach it was concluded that for a dimension of 75×75 µm the MVE can be considered a RVE.
The other two approaches did not verify this and the convergence study was performed for
fixed properties and a single mixed load case. Therefore, it was considered that these dimen-
sions might not be representative for the total envelope of the numerical experiments.

The multiple fiber numerical experiments were performed for six load cases: uni-axial ex-
tension, pure shear, simple shear and three mixed loadings. An average ETSL was obtained
by averaging four different realisations, i.e. fiber distributions. The results were comparable
with the single fiber simulations. It was concluded that the pure shear load case results were
spurious and therefore it was replaced with the simple shear load case. The bilinear TSL pa-
rameters from five load cases: uni-axial extension (mode I), simple shear (mode II) and three
mixed load cases were used for the correlation.

The correlation and curve fitting of the results consisted of two steps. First, the mode I and
II properties were fitted using the uni-axial extension and simple shear load case. Secondly,
these parameters were fitted, by using one mixed load case, as a function of the mode mixity
β. For the first step a multiple variable least squares fit was employed that provides the mode
I and II initial slope, cohesive strength and fracture energy as a function of the five variables.
For the mode mixity fitting of the initial slope an elliptical relation between the mode I and
II properties was proposed. The curve fitting of the cohesive strength used a power relation
between the mode I and II damage initiation at separation. For the mode mixity fitting of
the fracture energy a Benzeggagh-Kenane (BK) power relation was used because this could
easily be implemented in ABAQUS. As a result of the two step correlation the three bilinear
TSL parameters could be defined as a function of the five variables xi and the mode mixity β.

In the end the implementation of the macroscopic failure criterion in ABAQUS, in terms of a
bilinear TSL, was shown and verified for a single cohesive element. The damage initiation,
i.e. the combination of initial slope and cohesive strength, showed a perfect fit between the
response of the single cohesive element and the macroscopic failure criterion. However, the
fracture energy was underestimated for a mixed load cases and required further investiga-
tion. Along with some issues, further development and extension of the proposed method is
required to have a functional and generalised failure criterion.
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Chapter 1

Introduction

Throughout history, fracture of structures has always been present and this phenomena has
not always been well understood. With the increasing complexity of structures, as in the
aerospace sector, the demand of understanding fracture increased rapidly over the last sev-
eral decades. Nowadays, fracture mechanics has grown to one of the most important disci-
plines within engineering. By understanding why and how structures fail one can employ a
damage tolerant design philosophy. The understanding of fracture in isotropic materials, e.g.
metals, is already studied extensively by engineers and scientists like Inglis, Griffith, Irwin and
Rice [1, 2, 3, 4]. As a result of their work a range of models, criteria or theories are available
to predict the fracture mechanisms [5, 6]. Even for anisotropic materials like fiber-reinforced
composites, which have complex failure mechanisms, models are available [7, 8, 9, 10]. With
the increase in computational power, numerical models became more and more capable,
which supported the development and application of fracture mechanics technology [6]. Ex-
amples are the development of the Cohesive Zone Model (CZM) [11, 12, 13, 14] and later the
eXtended Finite Element Method (XFEM) [15, 16]. In order to relate the fracture mechanisms
on a microscopic scale to the macroscopic behaviour of the structure multiscale models be-
came of interest around the year 2000.

Over the past decades an astounding amount of research has been devoted to the develop-
ment of fracture models and computational methods in this field. However, there is still a
gap to fill in the area of failure theories and criteria. From this gap in knowledge the thesis
objective was formulated as presented on the next page.



2 Introduction

The thesis objective is to develop a new macroscopic failure criterion for fiber-reinforced
composites that incorporates distinct fracture mechanisms occurring at a microscopic level.

The microscopic information will be integrated into the macroscopic failure criterion through
multiscale finite element simulations on representative volume elements.

In order to achieve this objective in the scope of a masters thesis a few restrictions were estab-
lished. First, this masters thesis presents a proof of concept study. Further development and
modifications are required for a fully functioning and verified failure criterion. Secondly, the
CZM approach with the use of cohesive elements was chosen over the XFEM for the following
reasons. It is relatively simple to implement in the existing Finite Element Method (FEM) and
it allows for multiple crack branching and coalescence. The XFEM seems promising but is rel-
atively new and still in development to extend its capabilities. Thirdly, it was chosen to limit
this research to a Two-Dimensional (2D) framework with a Uni-Directional (UD) Carbon-
Fiber Reinforced Plastic (CFRP) material loaded transverse to the fibers. Further extension to
a Three-Dimensional (3D) framework is preferred but within the time available not achiev-
able. Research similar to the above is reported in [17, 18, 19] but this work is extended in this
thesis to multiple load cases and correlation of the data into a failure criterion.

The thesis is structured as follows. A literature review in Chapter 2 will present a clear overview
of subjects that contribute to the thesis objective along with the current understanding and
the gap in knowledge. In Chapter 3 the FEM will be introduced along with the numerical
implementation of the cohesive elements. The main methodology and the setup of the nu-
merical experiments will be discussed in Chapter 4. The first step in achieving the thesis
objective is to perform numerical experiments on a single fiber Microstructural Volume El-
ement (MVE), of which the methodology and results are presented in Chapter 5. In order to
extend this to a multiple fiber framework the sample size should be determined, see Chap-
ter 6 for the approach and results. The methodology and results of the numerical experiments
on the multiple fiber Representative Volume Element (RVE) will be given in Chapter 7. These
results are then correlated into a failure criterion that describes the fracture behaviour at a
macroscopic level, as will be explained in Chapter 8. In the end the conclusions and recom-
mendations will be presented in Chapter 9.



Chapter 2

Literature Review

In this chapter a literature review is presented on subjects that will contribute to achieving
the research objective. A clear overview of these subjects is given along with the current un-
derstanding and the gap in knowledge. As a start, in Section 2.1, some fundamental concepts
in fracture mechanics are discussed. In Section 2.2 the cohesive zone approach is presented
as the central method that will be used along the Finite Element Method (FEM) for this the-
sis. Another crucial aspect, the multiscale approach in fracture mechanics, is reviewed in
Section 2.3.

2.1 Basics of Fracture Mechanics

The field of fracture mechanics has become one of the most important divisions in engineer-
ing. As a result, fracture mechanics as a whole is quite broad. In this section some main
concepts, parameters and definitions are reviewed along with a few historic highlights.

2.1.1 Linear Elastic and Elastic Plastic Fracture Mechanics

The field of fracture mechanics was given a boost by the pioneering work of Griffith [2] in
Linear Elastic Fracture Mechanics (LEFM) during World War I. Griffith based his work on the
research Inglis [1] did a few years earlier. The main goal of both Griffith and Inglis was to
understand and predict the fracture behaviour of structures. For example, Inglis defined the
stress concentration factor (kt ) of an elliptical hole as follows.
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kt = σA

σ∞
= 1+ 2a

b
(2.1.1)

In this equationσ∞ is the far field stress,σA is the stress at the tip of the semi-major axis a and
b is the semi-minor axis of the elliptical hole. The work of Inglis is limited as mathematical
difficulties arose when dealing with sharp cracks (high a/b), in the limit the stresses would go
to infinity at the crack tip. To solve this non-physical behaviour Griffith used the energy bal-
ance in the structure. Although his work was neglected until the 1950’s it is considered as one
of the most famous developments in material science. Griffiths work has been generalised to
the Griffith’s failure criterion, i.e. the stress required to create a new surface (σ f ).

σ f =
√

2γsE

πa
(2.1.2)

for plane stress and,

σ f =
√

2γsE

(1−ν2)πa
(2.1.3)

for plane strain. In these equations, E is the materials Young’s Modulus, a is the crack length
and γs is the surface energy density. Griffith’s criterion agrees with experimental observations
if brittle materials, e.g. glass, are considered. For materials that experience ductility, e.g.
metals, the surface energy according to Griffith’s criterion is too high. Both Irwin [3] and
Orowan [20] independently modified Griffith’s criterion to account for the energy dissipation
in plastic flow, see Equation 2.1.4. The Critical energy release rate has been defined as two
times the surface energy density plus the plastic energy density (γp ), i.e. Gc = 2 · (γs +γp ).

σ f =
√

G f E

πa
(plane stress) (2.1.4)

As a result of Irwins work an important parameter in fracture mechanics has been defined,
the strain energy release rate, G , which is the rate of change in potential energy (Π) with
respect to the crack area (A).

G =−dΠ

d A
(2.1.5)

In the case the strain energy release rate reaches a critical value (G f ) the crack extends. This
critical value is generally referred to as the fracture energy or fracture toughness.
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Figure 2.1.1: Three loading modes for fracture [6].

An alternative approach to the strain energy release rate is the stress intensity approach in-
troduced by Westergaard and further developed by Irwin, Sneddon and Williams [6]. Their
work led to definitions of the Stress Intensity Factor (SIF), i.e. K I , K I I and K I I I for mode I,
II and III respectively. These three loading modes are given in Figure 2.1.1. For linear elastic
materials the stresses in the field ahead of the crack tip can be written in terms of the SIF as in
Equation 2.1.6 for mode I. Equal definitions can be written for mode II and III. The function
fi j (θ) is a trigonometric function depending on the stress σi j and the loading mode.

lim
x→0

σ(I )
i j = K(I )p

2πr
f (I )

i j (θ) (2.1.6)

The SIF can be used to determine the stresses around cracks and the fatigue properties. In
addition the SIF can be related to the strain energy release rate, if all three modes are present
this can be related as in Equation 2.1.7 [6]. Here, E

′
is either in plane stress or plane strain

and µ is the shear modulus.

G = K 2
I

E ′ +
K 2

I I

E ′ + K 2
I I I

2µ
(2.1.7)

In contrast to the definitions above that correspond to LEFM, the field of Elastic Plastic Frac-
ture Mechanics (EPFM) tries to solve problems with plasticity around the crack tip. For in-
stance, if the dimensions of a plastic region with non-linear material deformation is small
compared to the dimensions of the structure the fracture can be considered brittle and LEFM
is valid. According to Rabczuk [21] the size of the fracture process zone should be at least
two orders smaller than the critical dimension of the structure. If this is not the case, EPFM
methods should be applied. One important parameter in EPFM, introduced by Wells [22], is
the Crack-Tip-Opening Displacement (CTOD). Note that there are different definitions of the
CTOD, of which the most common is presented below.
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CTOD = 4

π

G

σY S
(2.1.8)

In addition to the CTOD, Rice [23] introduced a second important parameter in EPFM, the J
contour integral. The resulting value J is equal to the energy release rate in a nonlinear elastic
body that contains a crack [6]. For nonlinear elastic materials J is equal to G in Equation 2.1.5
and this value can be evaluated at an arbitrary path Γ around the crack tip by the following
integral [24]:

J =
∫
Γ

(
wd y −τi

∂ui

∂x
d s

)
(2.1.9)

where,

w =
∫ εi j

0
σi j dεi j (2.1.10)

τi is the traction vector and ui the displacement vector. J can be related to the CTOD by the
equation below [6]. Here m is a dimensionless constant.

J = mσY S ·CTOD (2.1.11)

2.1.2 Failure in Composite Materials

As the focus of this thesis is on composite materials and to be specific, fracture in Carbon-
Fiber Reinforced Plastic (CFRP), one ought to know the failure modes and criteria of this ma-
terial. Within a CFRP composite the following failure modes can occur,

• Matrix cracking
• Delamination
• Fiber/matrix debonding
• Fiber breakage

The matrix material can show brittle matrix cracking, i.e. the formation of microcracks, which
is an intralaminar fracture mechanism. The coalescence of these cracks can ultimately lead
to larger cracks and delamination. Delamination is one of the most common failure modes in
composite materials and can be described as interlaminar debonding or interface cracking.
Fiber/matrix debonding is an interesting failure mode for a microscopic model. This failure
mode describes the adhesive interface failure of the fiber/matrix interface. The last failure
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mode, which is probably the last failure mode that will occur is fiber breakage or fiber pull-
out. This failure criterion describes complete failure of one or multiple fibers [24].

At which point the material fails depends on several factors, i.e. laminate layup and loading
conditions. To predict failure several criteria have been developed. The most simple failure
criteria assume that a ply can be considered homogeneous. To obtain detailed failure crite-
ria one can look at the micromechanics, as has been done by Aboudi [25] who proposed a
micromechanical failure criteria for Uni-Directional (UD) fiber composites. For failure on a
macroscopic scale one generally refers to the homogeneous failure criteria. With these cri-
teria it is assumed that for an UD ply the strength values mentioned below can describe the
failure. In most cases these values are reduced to account for environmental effects and ma-
terial scatter, which results in material allowables [26].

Xt : Fiber tension strength
Xc : Fiber compression strength
Yt : Matrix tension strength
Yc : Matrix compression strength

S: Shear strength

The maximum stress failure theory compares the principal stresses (i.e. σx ,σy , τx y ) with their
corresponding (reduced) strengths mentioned above. If a value exceeds the strength the ply
fails. The same concept holds for the maximum strain failure theory where the principal
strains are compared to the allowable strains. To describe the interaction between principal
stresses (or strains) Hill [27] proposed a combined failure theory.

Fxσ
2
x +Fyσ

2
y +Fx yσxσy +Fsτ

2
x y = 1 (2.1.12)

Tsai modified Hill’s failure criterion by writing it in terms of the material strengths X , Y and
S (no difference in tension or compression), which lead to the Tsai-Hill failure criterion [26].
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In order to generalise the Tsai-Hill criteria, Tsai and Wu [7] added curve fitting to the Tsai-Hill
criterion, which resulted in the Tsai-Wu failure criterion.
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There is still an ongoing discussion on which failure criteria is best and several people tried
to come up with new failure criteria, for example, the Hashin-Rotem failure criteria [8] which
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distinguishes between fiber or matrix failure. More recently the LaRC03 failure criteria were
developed by Camanho and Dávila [10], which combine six separate failure criteria that de-
scribe fiber and matrix failure without the need of curve fitting. According to Dávila et al. this
method shows a significant improvement compared to other failure criteria. The only prob-
lem with this criteria is that it requires several if statements that may complicate the failure
assessment. There is a need for a simple and effective failure criterion, which is the objective
of this thesis.

2.2 Cohesive Zone Approach in Finite Element Analysis

One of the models in solving fracture problems is the Cohesive Zone Model (CZM). In this
section the CZM is reviewed with the focus on the numerical aspect. Two popular methods to
numerically solve a CZM problem are the eXtended Finite Element Method (XFEM) and the
interelement-separation method. However, for this thesis the focus is on the interelement-
separation method. This method allows for multiple crack nucleation, branching and coa-
lescence. It is true that the XFEM has advantages over the interelement-separation method,
which will be mentioned in this section of the literature review.

2.2.1 Cohesive Zone Model

The CZM has been introduced to cope with the stress singularities in LEFM and to approxi-
mate nonlinear material separations. These stress singularities especially become a problem
if the size of the cohesive zone becomes larger than the assumptions for LEFM, e.g. if the
length scale lcz (see Section 2.2.4) is larger than any characteristic length in the problem the
CZM are necessary [28].

The first contributions to the CZM were made by Barenblatt [5] for brittle materials and by
Dugdale [29] for yielding at the crack tip. A CZM describes the mechanisms in the damage
zone in front of the crack tip, called the cohesive zone1. In the framework of the FEM a CZM
can be implemented using cohesive elements. These elements are inserted between two bulk
elements and describe the connection between the two elements. Crack opening is simulated
by separation of the two connected elements. The amount of stress that can be transferred
between the two elements is gradually reduced by means of a cohesive law (i.e. Traction-
Separation Law (TSL)), Figure 2.2.2 shows some examples. For a Two-Dimensional (2D) el-
ement mesh the interface elements are 2D elements with zero-thickness and the thickness
increases when separation occurs.

1Within the cohesive zone it is assumed that microcracks (or voids) are formed which results in stiffness
degradation, see the top right of Figure 2.2.1.



2.2 Cohesive Zone Approach in Finite Element Analysis 9

Figure 2.2.1: Basic concept of the CZM representing interface elements and cohesive
laws [30].

A CZM is able to model multiple cracks, crack nucleation, crack bifurcation and complex
fracture mechanisms [30, 31]. Other advantages include the easy incorporation in the FEM,
its robustness and solving the model in parallel is straightforward [32]. Disadvantage include
its mesh dependency [33], as will be discussed later on.

2.2.2 Intrinsic vs. Extrinsic Implementation

A CZM can be implemented in two different ways, intrinsic and extrinsic, each with its advan-
tages and disadvantages. A few examples of an intrinsic implementation have been given in
[11, 13, 14, 34, 12, 35, 36] and are characterised by adding the cohesive elements to the mesh
prior to the simulation. An intrinsic TSL starts at zero traction, gradually increases until a
maximum traction (or onset of damage point) and decrease with a certain relation to a zero
traction at the maximum separation (softening), e.g. the TSL at the right of Figure 2.2.1. The
advantage of an intrinsic implementation is that it is relatively easy and it works successful
when the crack path is defined, for instance along interfaces [37]. A disadvantage is that the
presence of interface elements in a large part of the model can reduce the stiffness of the
model significantly. This is due to the initial slope (elastic part) of the TSL that results in an
artificial compliance. Artificial compliance will be discussed in Section 4.2. In addition the
number of Degrees of Freedom (DOF) is increased significantly by adding interface elements
[37, 32, 33]. One solution to deal with the artificial compliance is to increase the so called
dummy stiffness, i.e. the initial slope of the TSL. However, this brings along other issues with
stable time steps among other aspects [36, 31, 32].

In contrast to an intrinsic implementation, the extrinsic approach adds interface elements
adaptively to the mesh at the locations where failure occurs [38, 37, 32]. An extrinsic imple-
mentation eliminates the issues of the intrinsic implementation by initiating separation only
when a failure criterion (e.g. based on maximum cohesive strength) is met. At this point
the interface elements are added adaptively to the mesh, see for example in the article from
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Park et al. [39]. Once separation is initiated the cohesive traction decreases as the separa-
tion increases, see the next section. A disadvantage of an extrinsic implementation is that an
additional failure criteria is required and the adaptive implementation is more complex com-
pared to an intrinsic approach. Next to this, a sophisticated data structure is required to store
the Finite Element (FE) discretization as the mesh topology is changing over time [37, 32]. An
example of such a data structure (TopS) is given in [40] and was applied by Zhang et al. [37].
Due to the change in mesh topology it is also difficult to solve the model in parallel [41] and
there is a time discontinuity in the stress history [37]. In addition, numerical difficulties can
occur when the material is elastically unloaded at the start of separation [42, 21].

2.2.3 Traction-Separation Laws

In this section an overview of the available TSLs will be given. A TSL is the cohesive law
describing the non-linear separation mechanism between two elements. Some general ex-
amples are given in Figure 2.2.2. The initially elastic model, or intrinsic model, can be seen
in Figure 2.2.2e. This TSL is linear and examples are given in [17, 19]. The other models can
be considered as initially rigid, or extrinsic models, for example the Dugdale model [29] in
Figure 2.2.2a. The decreasing slope models softening due to void growth and coalescence of
cracks [30]. The case where the cohesive traction is increasing for an increasing crack open-
ing (Figure 2.2.2f) is considered not feasible as the elements will have the tendency to close
for an increasing stress.

Figure 2.2.2: Examples of TSLs [21].

According to [30, 43, 17] the exact form of the TSL has only minor influence on the fracture
characteristics. An advantage of the CZM is that only two parameters that describe a TSL
are relevant for the fracture characteristics: e.g. the fracture energy and a cohesive strength
[28, 17]. The fracture energy is equal to the area of the TSL and describes the energy that
is required to form a new surface, see the equation below where τc is the cohesive traction
and δ the crack opening or separation. The maximum crack opening δmax is defined as the
characteristic opening that results in a fully damaged element [30, 44].
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G f =
∫ δmax

0
τc (δ)dδ (2.2.1)

The form of the TSL describes the difference between ductile and brittle fracture. For exam-
ple, (Quasi-)brittle fracture is usually described by a TSL as given in [11, 13, 12, 17, 19] and
ductile fracture by a trapezoidal TSL [30, 45]. In general two categories, with sub-categories,
of TSLs can be distinguished [31].

• One-Dimensional (1D) effective displacement TSL

– Cubic polynomial [13]

– Trapezoidal [34]

– Smoothed trapezoidal [46]

– Exponential [36]

– Linear softening [38, 35]

– Bi-linear softening

• General potential-based TSL

– Polynomials [11, 47]

– Based on universal binding energy [48, 49, 50]

– Park-Paulino-Roesler polynomial based [51]

1D Effective Displacement Traction Separation Laws

1D effective displacement TSLs are represented by one effective displacement (separation)
and traction. Tvergaard [13] proposed one of the first effective displacement TSLs in the form
of a cubic polynomial (Figure 2.2.3a), which is based on the original TSL from Needleman [11]
that only contained normal separation. This effective traction can be modified to represent
other shapes of the TSL. A trapezoidal TSL has been proposed by Tvergaard and Hutchingson
[34] (Figure 2.2.3b). This model is unable to account for different fracture energies in the
normal and tangential direction [31]. In order to provide continuity in the derivatives the
trapezoidal model of Tvergaard and Hutchingson has been modified by Scheider and Brocks
[46], see Figure 2.2.3c. An exponential TSL as in Figure 2.2.3d is given by Ortiz and Pandolfi
[36]. This model was modified by Camacho and Ortiz [38] to an extrinsic linear softening
TSL by excluding the initial elastic slope of the TSL. According to Ortiz and Pandolfi [36] this
extrinsic version is preferred as this deals with the stable time step difficulties [31]. A general
application was published by Zhang et al. [37]. An intrinsic linear softening TSL proposed by
Geubelle and Baylor [35], as in Figure 2.2.3e, which is a special case of the cubic polynomial
TSL. Applications of the linear softening TSL can be found in [17, 19].
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Figure 2.2.3: Examples of 1D effective displacement TSLs [31]: (a) cubic polynomial TSL
proposed by Tvergaard [13] (b) trapezoidal TSL proposed by Tvergaard and Hutchingson
[34] (c) modified trapezoidal TSL by Scheider and Brocks [46] (d) exponential TSL by
Ortiz and Pandolfi [36] (e) linear softening TSL proposed by Geubelle and Baylor [35].

Overall there are limitations to the 1D effective displacement TSLs, of which the main limi-
tation is that they represent only the fracture energy of one mode. This makes these models
limited for mixed-mode calculations if the fracture energy in mode I is different than in mode
II. In addition these models are unable to distinguish between positive or negative separation
[31].

General Potential Based Traction Separation Laws

To overcome some of the limitations of 1D effective displacement TSLs the general potential-
based TSLs have been introduced. These models are based on a potential that is a function
of both the separation in normal direction and in tangential direction instead of an effec-
tive separation. A cubic-linear version of a potential-based TSL was introduced by Needle-
man [11]. The problem of this TSL is that it has issues with large shear, a large shear sepa-
ration weakens the material behaviour [48, 31]. Therefore the model was revised by Freed
and Banks-Sills [47], with initial applications for a bi-material interface. The difference with
the model of Needleman that no tangential softening occurs, i.e. the traction in tangential
direction can go to infinity [31].
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In addition to the two models mentioned above models were introduced that are based on
the universal binding energy between particles. A exponential-periodic version is given by
Needleman [48] to cope with the large shear displacement issues of the above mentioned
models. The problem is that only mode I fracture parameters are used, it does not include
mode II parameters [31]. Therefore it was generalised by Beltz and Rice [49] to account for
shear. The only difficulty using this model is that an additional length scale parameter is re-
quired that is hard to obtain [31]. In order to improve the model, Xu and Needleman [50]
used exponential relations (i.e. Figure 2.2.2d) for both normal and shear traction, and there-
fore can represent fracture energy and cohesive strength in mode I and II.

The last mentioned model has been used extensively, but there are still Boundary Condi-
tions (BC) related limitations, stiffness reduction due to the initial linear elastic part and a
unrealistic finite crack opening [31]. Recently a new model, the general unified potential-
based model or Park-Paulino-Roesler model, has been developed to tackle the problems of
the former potential-based TSLs [51]. This model uses four fracture parameters for each
mode: fracture energy, cohesive strength, shape parameters and an initial slope. The shape
parameters are used because according to Park and Paulino [31] the shape has a significant
influence on the fracture results, which is in direct contradiction with the statement made
by Li et al. [43]. There are still limitations to the Park-Paulino-Roesler model, e.g. the four
parameters are difficult to obtain, especially for shearing [51, 31].

To conclude, the choice of TSL should be made with caution, especially with respect to mode-
mixity. It is also worth to mention that the CZM is a phenomenological approach so the
choice of TSL is free as the correlation between the TSL and the results is unambiguous [30].

2.2.4 Numerical Implementation and Considerations

The type of CZM and the corresponding TSLs were discussed above and require a specific
implementation in numerical software, like ABAQUS .

At first the smeared cohesive elements were introduced. With smeared cohesive element the
interface between elements is represented by a thin film. These thin elements are not suit-
able to study interfacial crack growth as the thin elements have a high aspect ratio resulting in
numerical difficulties, especially with convergence [28]. To overcome these problems zero-
thickness elements have been introduced that are more suitable, these elements are nowa-
days known as cohesive elements. In [52, 32] the cohesive elements are implemented in
ABAQUS and in addition an open source program [53] is available that can implement the
interface elements in an existing mesh.

One of the drawbacks of the intrinsic methods is the mesh dependency [28, 33], i.e. a crack
can only propagate along the element boundaries which might not be the preferred direc-
tion. This issue is minimised when the preferred crack direction is known, but up until now
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the mesh dependency is still an active area of research. Rimoli and Rojas [33] performed an
analysis of several meshing strategies. They compared a random mesh with a so called 4K
mesh. For a structured mesh certain paths are preferred and the paths in other directions are
less favourable. This is called mesh-induced anisotropy. In addition, the energy released by
forming cracks is higher with a discrete mesh compared to a continuum, this effect is called
the mesh-induced toughness [33].

For a random triangular mesh the mesh-induced anisotropy effect is smaller compared to a
4K mesh but the mesh-induced toughness effect is larger (due to a higher mean). Rimoli and
Rojas proposed a compromise, i.e. a conjugate-directions mesh which is a basic k-mesh with
barycentric subdivision. This mesh has a smaller relative error and a less mesh dependent
crack path compared to a conventional 4K mesh. The mesh dependency is reduced but is
still there.

To remove the before mentioned limitations of the intrinsic implementation of a CZM, ex-
trinsic implementations were introduced as in [32, 38, 37]. In the framework of the extrinsic
implementation, Park et al. [39] introduced an adaptive mesh refinement and coarsening
scheme for a 4K mesh. This computational method is interesting as it reduces the computa-
tional cost significantly and removes the limitations of the intrinsic approach.

An important parameter within a CZM is the cohesive zone length. According to Turon et al.
several definitions of the cohesive zone length are available and in general have the form
indicated below where M is a certain coefficient [54]. In the end the cohesive zone length is a
function of the Young’s Modulus (E), fracture energy (G f ) and cohesive strength (tu).

lcz = ME
G f

t 2
u

(2.2.2)

2.3 Multiscale Approach for Fracture

Novel engineering materials like fiber-reinforced composites have an increasing complexity,
which in turn lead to a structural assessment on different length scales. Therefore, to study
the fracture mechanisms of a large complex structure on a macroscopic scale, the behaviour
on a microscopic scale should be considered to get an appropriate representation.

2.3.1 Types of Multiscale Modelling

It can be said that a Finite Element Analysis (FEA) of composites requires at least a mesh as
fine as the size of the fiber [55]. For instance, the microcracks in an epoxy or fiber-matrix



2.3 Multiscale Approach for Fracture 15

debonding on a microscopic scale can eventually result in a damage zone that on a macro-
scopic scale appears as a crack. One can model the full structure in detail on a single scale
(brute-force) but this is computational expensive [56]. An alternative is to retrieve informa-
tion on two length scales to give detailed information where needed. The coupling of the
information at different length scales is the main goal of multiscale methods. Length scales
range from nanoscopic (atomistic), microscopic (single fiber), mesoscopic (multiple fibers),
macroscopic (laminate) to the full structure.

There are different methods available to couple the length scales and the fundamentals of
these methods are in most cases for structures without damage, i.e. without discontinuities
like cracks, delaminations etc. In general one can distinguish between the following three
categories of multiscale methods:

• Concurrent methods
• Semi-concurrent methods
• Hierarchical or homogenisation based methods

Each of these methods have their distinct coupling techniques as can be seen in Figure 2.3.1.
The hierarchical methods, as illustrated in Figure 2.3.1c, only exchange information from the
fine scale to the coarse scale and are based on homogenisation methods. Homogenisation
methods can be considered as numerical homogenisation as in [57, 17, 19], i.e. based on a unit
cell. On the other hand there is computational homogenisation as in [58, 59, 60, 61, 62, 63, 64].
The latter seems promising according to the recent developments and will be discussed in
more detail in Section 2.3.4.

(a)

RVE 1 RVE 2

RVE 3 RVE 4

(b) (c)

Figure 2.3.1: Categories of multiscale methods; (a) concurrent, (b) semi-concurrent and
(c) hierarchical. The coarse scale is indicated in black and the fine scale in red.

For a fully concurrent method the information on fine- and coarse scale is simulated on both
scales simultaneously. A fine scale simulation is for instance needed at locations with stress
concentrations, discontinuities or other domains of interest. The coupling of the two scales
is performed by linking the two scales at their interface. Examples can be found in [65, 66, 67,
68, 69] and applications to fracture originated later on as in [56, 70, 71]. A review of concurrent
multiscale methods will be given in Section 2.3.2.
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In contrast to concurrent multiscale methods, the semi-concurrent methods exchange the
information from fine- to coarse scale and vice versa, as can be seen in Figure 2.3.3. The sim-
ulations at both scales is done separately, i.e. the coarse scale is localised to fine scale con-
stitutive equations that can be solved and through homogenisation be translated back to the
coarse scale. Semi-concurrent methods are generally more flexible compared to concurrent
methods and can easily be solved in parallel [21]. One of the most used methods is FE2 as in-
troduced by Feyel and Chaboche [55] and extensions for fracture are reported in [58, 57, 72].
It should be noted that semi-concurrent methods like FE2 are based on unit cell methods
which can be classified as numerical homogenisation methods and thus show overlap with
hierarchical multiscale methods.

Up until now there are some challenges regarding multiscale modelling, especially when dis-
continuities like cracks are concerned. There is still the need of an efficient method to trans-
fer information between the length scales [21]. The most effective methods that have recently
been published are the continuous-discontinuous computational homogenisation methods
as in [62, 63, 64] but are still computationally expensive.

2.3.2 Concurrent Multiscale Methods

Concurrent multiscale methods as in Figure 2.3.1a analyse both scales simultaneously. The
first concurrent multiscale methods originated for intact materials, especially in the field of
atomistic modelling. Atomistic modelling is considered as the exact representation of the ma-
terial behaviour. A full atomistic model is generally not computationally feasible with respect
to computational cost. Examples of atomistic models include the quasi-continuum method
and MAAD (Macroscopic, Atomistic, Ab initio Dynamics). The quasi-continuum method
is a direct coupling method where the FE mesh aligns with the atoms, i.e. an atomistic-
continuum coupling [68]. Due to the fact that there exists a domain that intersects the coarse
and fine domain, concurrent methods are seen as a so called "handshake" methods.

In order to describe the undamaged domain by continuum models and the discontinuities by
detailed models several methods were developed that are in line with the XFEM [56, 70, 71].
Loehnert and Belytschko [56] developed a multiscale project method for macro/micro-crack
simulations. They considered two scales, a fine scale (l1) and a coarse scale (l0) where l0 À l1.
On the coarse scale only cracks that are longer than a typical FE size are explicitly considered
whereas in the fine scale both microcracks and coarse scale discontinuities are considered
[56]. Conclusions of Loehnert and Belytschko were that the coarse scale mesh density had
almost no influence on the SIF at the macro crack. The fine mesh density has more influence
but between the densest and coarsest fine scale mesh only a 5% difference was observed. The
fine scale domain size has only little (1%) influence on the accuracy of the SIF. In general the
proposed method is effective when there is a significant separation of scales [56]. Guidault
et al. [70] proposed a similar method based on a mixed domain decomposition method, i.e.
there consist multiple domains with different length scales. Finer length scale domains are
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obtained by refining the mesh in vicinity of the crack. The XFEM is required to describe the
geometry of the crack independently of the mesh (on both scales) and the mixed domain
coupling method provides coupling between the two scales.

2.3.3 Semi-concurrent Multiscale Methods

Semi-concurrent multiscale methods as in Figure 2.3.1b exchange data from the fine to coarse
scale and vice versa. In contrast to concurrent multiscale methods it is not required to solve
both scales simultaneously as the scales are decoupled, providing more flexibility. This avoids
difficulties with the rapid transition from fine to coarse scale elements that result in ill-conditioned
equilibrium equations and spurious reflections of the interface [68]. Compared to concurrent
methods the reduction in computational effort is not significant [55, 68].

One method that is widely used as a basis for semi-concurrent multiscale methods is the
FE2 method proposed by Feyel and Chaboche [55], where the superscript "2" stands for the
number of scales. For fiber-reinforced composites in most cases the microscopic and macro-
scopic scale are employed. Before the development of the FE2 method phenomenological
models were used. Phenomenological models define the constitutive equations based on ex-
perimental observations. The transition from microscopic to macroscopic scale is done us-
ing complex averaging processes to the constitutive equations [55]. This method is sufficient
for materials with a random microstructure (metals) but not in the case of fiber-reinforced
composites.

Figure 2.3.2: Schematic representation of the FE2 methodology [55].

With the FE2 method the constitutive equations are only defined on the microscopic scale
and through homogenisation and localisation the macroscopic stresses and strains are com-
puted, see Figure 2.3.2. The scale transition is realised by using the periodic homogenisation
theory that describes a volume element by an infinite number of basic patterns (fibers) that
are ordered periodically in space [55]. The first step is to localise the macroscopic strains by
using periodic BCs on the basis cell, see more on period BCs in Section 2.3.5. The second
step solves the microscopic Boundary Value Problem (BVP) resulting in microscopic stresses
and strains. In the third step the microscopic stresses and strains are translated to the macro-
scopic scale through homogenisation techniques.
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The FE2 methodology is used as a starting point for semi-concurrent multiscale method
for fracture. Kouznetsova was one of the first to extend the FE2 methodology for fracture
(gradient models) for her PhD thesis [73] and subsequently published by Kouznetsova et al.
[58]. Later, others followed, like in [57, 72, 74]. The up-scaling from fine to coarse scale,
i.e. step three in the FE2 procedure, is realised using computational homogenisation. Com-
putational homogenisation is classified as a hierarchical multiscale method. Therefore the
semi-concurrent multiscale methods will be further discussed in Section 2.3.4 as part of hi-
erarchical multiscale modelling.

2.3.4 Hierarchical or Homogenisation Based Multiscale Methods

Hierarchical multiscale methods as in Figure 2.3.1c are superposition based and translate the
information from the fine scale to the coarse scale. Numerical or computational homogeni-
sation techniques are used to translate this information. Compared to (semi-)concurrent
multiscale methods hierarchical multiscale methods are widely used and most efficient [68].
The problem is that hierarchical models rely on the assumption of dissimilar length scales,
i.e. lcr ¿ lMV E ¿ lspec for crack length, Microstructural Volume Element (MVE) dimensions
and specimen dimensions respectively. For fracture problems this assumption is violated as
the crack length can be in the same order as the dimensions of the MVE [57, 21].

One solution is to "hierarchically" enrich the discontinuities, which is similar to the XFEM.
An example of multiscale hierarchical decomposition for intact materials is the Multiscale
Enrichment method based on Partition of Unity (MEPU) given by Fish and Yuan [75]. The
goal of Fish and Yuan was to develop a method for problems where there is no scale separa-
tion, i.e. lcr ∼ lMV E . The MEPU method showed significantly better results than the quasi-
continuum method that was discussed in Section 2.3.2 when heterogeneous materials are
considered [75].

Homogenisation methods can generally be divided in numerical and computational homogeni-
sation that will be discussed in the subsequent subsections.

Numerical Homogenisation

Numerical homogenisation is based on the repetition of a unit cell, which should not be con-
fused with a Representative Volume Element (RVE)2. A unit cell is considered to represent a
heterogeneity, like a single or multiple fiber(s), and is periodically repeated throughout the
structure. This results in a ordered representation of the microstructure. A general prob-
lem of unit cell methods is that assumptions regarding the form of macroscopic constitutive

2The difference between MVE and RVE is that a RVE is considered representative for the material at a macro-
scopic level.
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behaviour are made which are not valid for nonlinear problems [72, 74]. In addition, the rep-
resentation of periodically spaced unit cells is not realistic for fiber-reinforced composites.
Computational homogenisation is an alternative technique that overcomes the limitations
of unit cell methods and is therefore discussed in more detail.

Computational Homogenisation

Computational homogenisation for the realisation of multiscale modelling is required when
the behaviour of the structure becomes nonlinear, i.e. with large deformations and com-
plex loading paths. Multiscale computational homogenisation, or global-local analysis, can
be considered as a FE2 method as mentioned in Section 2.3.3. In contrast to the numerical
homogenisation that is based on the assumption of global periodicity, computational ho-
mogenisation is based on local periodicity. Local periodicity allows to model the effect of a
non-uniform distribution of the microstructure on the macroscopic behaviour [73].

In general four categories of computational homogenisation techniques can be considered:

• First-order computational homogenisation
• Second-order (gradient enhanced) computational homogenisation
• Computational homogenisation for cohesive/adhesive interface problems
• Continuous-discontinuous computational homogenisation

The first two categories as reported in [73, 58] are generally applicable for intact materials.
The first attempts to use computational homogenisation for fracture are related to adhesive
or cohesive interfaces as in [59, 60, 72, 74]. Recently another extension to fracture problems
is realised by continuous-discontinuous computational homogenisation as in [61, 62, 63, 64].

(a) Macroscopic model. (b) Microscopic model.

Figure 2.3.3: Schematic representation of the computational homogenisation method
according to Verhoosel et al. [72].

One interesting computational homogenization technique for adhesive or cohesive interface
problems worth mentioning is given by Verhoosel et al. [72]. Their method is based on an FE2

setting where two scales are considered, macroscopic and microscopic scale. The macro-
scopic model is schematically represented in Figure 2.3.3a and can represent cohesive and
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adhesive discontinuities. These discontinuities are then evaluated on a microscopic scale as
in Figure 2.3.3b.

As can be seen there are two types of interfaces, adhesive and cohesive. For the adhesive layer
averaging relations relate the macroscopic TSL to the response of the microscopic model. For
the cohesive interface the relation is different. On the macroscopic scale a cohesive zone is
only inserted when a failure criterion is met. On the microscopic scale the point of failure is
not defined as interface elements are readily present. The model of Verhoosel et al. assumes
that the macroscopic constitutive behaviour, before a failure criterion is met, is described
by the homogenised microscopic properties [72]. For cohesive failure in Figure 2.3.4a the
macroscopic crack is homogenised in the direction the microscopic crack. The same holds
for adhesive failure but Verhoosel et al. considered two cases as in Figure 2.3.4b.

(a) Cohesive failure. (b) Adhesive failure. Case I: the interface is considered as one
RVE. Case II: periodicity of the RVE is taken into account

Figure 2.3.4: Details of the Verhoosel et al. homogenisation method [72].

In the end the homogenised macroscopic TSL is independent of the MVE dimensions [72].
This method is only applicable for a simple microstructure with discrete cracking. Therefore,
it was modified by Nguyen et al. [74]. They employed a similar framework that shows modi-
fications to allow diffusive damage and random microstructures with various loading condi-
tions. In this model, next to the fiber and matrix phase there is an interfacial transition zone.
In the model of Nguyen et al. a macroscopic TSL is obtained from the microscopic response
that is independent of the MVE size. These macroscopic TSLs can be used in two ways; in a
sequential homogenisation scheme3 or in a semi-concurrent FE2 scheme. For a FE2 scheme
there is direct coupling between the macroscopic and microscopic model. Nguyen et al. eval-
uated mixed loading and concluded that the macroscopic TSLs are independent of the MVE
size. In addition the MVE was evaluated for two MVE sizes and the same conclusion have
been drawn.

3In a sequential homogenisation scheme several simulations with different loading conditions are performed
on the MVE, the resulting TSLs are saved and later used on the macroscopic scale as standard phenomenological
constitutive laws, known as micromechanically derived TSLs.
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2.3.5 Representative Volume Element Considerations

According to the former sections in this chapter it can be seen that at a microscopic scale in
the majority of the methods a MVE is used. A MVE can be called representative if it accurately
represent the higher scale structure when it is periodically reproduced. One can ask which
conditions need to apply when a MVE can be considered a RVE. A study on the existence and
size determination was performed by Gitman et al. [76]. According to them a RVE is defined
as a sample that:

• is statistically representative for the macroscopic response
• contains sufficient inclusions and microscopic information
• increasing this volume should not lead to changes of the macroscopic behaviour
• is sufficiently smaller than the macroscopic structural dimensions

According to Kouznetsova [73] the second condition can lead to a considerably large RVE
when all microstructural configurations of a random structure are considered. Therefore, a
RVE is in most cases sufficiently defined by the third condition. In this case the minimum
required size of the RVE depends on the material behaviour in addition to the microscopic
constituents [73].

Gitman et al. compared different sizes of examples, with each different realisations, and sam-
ples with different volume fractions. A statistical analysis was performed on different sam-
ples in terms of stiffness, which is motivated by the fact that stiffness is relevant in multiscale
homogenisation techniques [76]. According to analytical results the RVE should be approxi-
mately two times as large as the particle size to get a 95% accuracy and 4.5 times to get a 99%
accuracy [76]. A short discussion on the sample shape was given by Cid Alfaro et al. [19] where
a square and rectangular RVE are considered. Their conclusion was that there was almost no
influence of the shape on the resulting traction-separation response. Analogous in [18] the
effect of fiber volume fraction was investigated. For an increasing fiber volume fraction the
peak of the traction-separation curve decreases and the softening slope increases [18].

Periodicity and Boundary Conditions

According to Gitman et al. there are two main aspects that determine a correct periodic rep-
resentation of a RVE; periodicity of BCs and periodicity of the material. Periodicity of the
material can be described as the wall effect. When there is a wall effect the particles are un-
able to penetrate through the boundaries of the RVE. Without the wall effect it is considered
that the RVE belongs to a larger sample, thus inclusions are crossing the boundary of the RVE
and reappear on the opposite side, for instance as on the right side of Figure 2.3.5. Periodicity
of BCs prescribe that the displacement (or stress) should be equal on opposite edges as in the
left of Figure 2.3.5. In general it should be taken into account that the RVE is part of a bulk
structure.
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(a) (b)

Figure 2.3.5: Illustration of the (a) PBC and (b) the "no wall effect"

For a BC to be periodic the microscopic fluctuation field (∆u) needs to satisfy the following
conditions,

∆uL(s) =∆uR (s) (2.3.1)

∆uT (s) =∆uB (s) (2.3.2)

where s is the position on the left (L), right (R), top (T) or bottom (B) boundary. Gitman et
al. concluded that the periodic BCs have almost no influence for tension loading and some
influence for shear loading. For tension the periodic BCs are dominant and for shear the wall
effect is dominant when considering the size of the RVE.

PBC provide a good estimation of the effective stiffness and respect periodicity [62]. Next
to PBC alternative BC can be used for a RVE, of which an overview was given by Coenen et
al. [62]. Taylor BC indicate that the fluctuation field should be zero at each point within
the RVE, i.e. ∆w m = 0. This results in a strong overestimation of the effective stiffness and
fully suppresses the localisation band. For linear BC the same holds but then only for the
boundary of the RVE, which still overestimates the stiffness and the localisation band is only
constrained at the boundaries. Minimal or traction BC ensure that the traction normal to
the boundary is equal for both sides, but it underestimates the effective stiffness and the
localisation band is sensitive to spurious (false) localisation [62]. PBC have been employed
by [73, 58, 59, 60, 72, 19, 74, 61, 62, 63]. It should be taken into account that the displacement
may be periodic but the stress distribution may not be.



Chapter 3

Finite Element Method for Fracture
Mechanics

The simulations performed for this thesis will be highly dependent on the Finite Element
Method (FEM) due to the fact that these simulations are performed in ABAQUS, a Finite El-
ement Analysis (FEA) package. This chapter will present the numerical aspect of the FEM.
Starting with the basics in Section 3.1 and afterwards the numerical implementation of cohe-
sive elements in Section 3.2.

3.1 Basics of the Finite Element Method

Computational methods have been developed to be able to numerically solve a Boundary
Value Problem (BVP) on an arbitrary domain. In general these methods divide the continuum
domain in small parts that can be numerically solved and the solution thereof gives an ap-
proximate representation of the continuum solution. Examples of the computational meth-
ods are the Discrete Element Method, Boundary Element Method, Finite Difference Method,
Finite Volume Method. Beside these models the FEM has been developed. For structural
analysis this method is preferred over the previous mentioned methods. Most methods for
modelling crack growth are based on the FEM and the method is able to handle a complex
geometry and loading [6]

With the FEM the structure is divided in a finite number of elements which are connected at
the nodes, see Figure 3.1.1 for a Two-Dimensional (2D) example. The BVP consisting of the
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governing equations and boundary conditions is discretized in a finite set of equations that
can be solved. An example of the discretization of a domain including cohesive elements is
illustrated in Figure 3.2.1.

Figure 3.1.1: Local (ζ,η) and global coordinates (x, y) for a 2D FE [6].

The global coordinates (x, y) of any point in space are given as a function of the surrounding
nodes (i = 1, ...,n) and shape functions (Ni ) that are a function of the local coordinates (ζ,η),

x =
n∑

i=1
Ni (ζ,η)xi (3.1.1a)

y =
n∑

i=1
Ni (ζ,η)yi (3.1.1b)

Analogous to the equations above the displacements u and v , in x and y direction respec-
tively, can be interpolated. Shape functions can be polynomials of any order (i.e. linear,
quadratic, cubic, etc) and have to satisfy certain conditions. For example the condition in
Equation 3.1.2 that describes that the value of the shape function (Ni ) should be equal to one
on node i and zero on the other nodes [77].

Ni (ζ j ,η j ) = δi j =
{

1, for i = j

0, for i 6= j
(3.1.2)

The main principle of FEM is solving the system described in Equation 3.1.3. In the case of an
elastic analysis K is the global stiffness matrix which describes the properties of the structure,
u is a vector containing all the Degrees of Freedom (DOF) (i.e. displacements) which are
unknown and F are the forces applied to the system. With Equation 3.1.3 the displacement
can be determined at any node, from which the stresses and strains can be determined. Next
to elastic parameters, thermal, fluid or electrostatic parameters can be solved.

K u = F → u = K −1F (3.1.3)
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The global stiffness matrix is an assembly of the elemental stiffness matrices (k) as in Equa-
tion 3.1.4 [6].

k =
∫ ∫

B T DB ·det|J |dζη (3.1.4)

where the D matrix contains the stress-strain constitutive relations and J is the Jacobian,

J =


∂x

∂ζ

∂y

∂ζ

∂x

∂η

∂y

∂η

 (3.1.5)

the partial derivatives of the shape functions are given in the matrix B , for 2D this results in,

B =



∂Ni

∂x
0

0
∂Ni

∂y

∂Ni

∂y

∂Ni

∂x


(3.1.6)

Short Discussion on Mesh Density

As a finite number of elements is used there is the discussion of mesh1 density. In the frame-
work of this thesis the choice of mesh density depends on the cohesive zone length as dis-
cussed in Section 2.2.4. In this part of the literature review it was concluded that the general
form of the equation that determines the cohesive zone length is as given in Equation 2.2.2.
In literature it is argued that a certain number of elements are required per cohesive zone
length. This number ranges from two to ten but in most literature a value of three is used.
The worst case is defined by the smallest cohesive zone length, which is determined using
a value of 2/3π for the coefficient M [54], the smallest Young’s modulus and fracture energy
and the highest cohesive strength in the model. This results in an approximate cohesive zone
length of 0.034 mm. Taking three elements per cohesive zone length, the mesh density in
terms of millimeter2 should have a value of at least smaller than 0.011 mm.

1A mesh is the collection of all the finite elements.
2The mesh density in terms of millimeter indicates the edge length, which is specified by the node spacing in

the MATLAB meshing script.
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3.2 Numerical Implementation of Cohesive Elements

In the case cohesive elements are embedded within the mesh an additional term is added to
the governing equations. In this case, the weak form in the domain Ω can be formulated as
the variation in external, internal and cohesive surface work [53, 32].

δW ext = δW int +δW coh (3.2.1)

When discretizing the system as in Figure 3.2.1, the embedded cohesive elements will result
in additional displacement DOF. In their turn these DOF result in additional components in
the stiffness matrix, displacement vector and force vector as in Equation 3.1.3.

Figure 3.2.1: Discretization of the solid into bulk elements and zero-thickness cohesive
elements [53].

The faces of the cohesive element are connected to the neighbouring bulk elements, i.e. the
nodes are shared. Other options like tie constraints are available but not used in this thesis.
The upper (node 3,4) and lower face (node 1,2) of the interface element can move relative to
each other in thickness direction3. There are two integration points within the cohesive ele-
ment, on the midpoint of face 2-3 and face 1-4. In each integration point a thickness direction
is defined as in Figure 3.2.2.

The displacement fields of the cohesive element can be given by the equation below [53].
Here "+" stands for the upper face and "-" for the lower face.

u+ = N1u3 +N2u4 (3.2.2a)

u− = N1u1 +N2u2 (3.2.2b)

3The thickness direction of the cohesive element is by default from the lower face towards the upper face.
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Figure 3.2.2: A 2D cohesive element with two integration points on the midpoints of
face 2-3 and face 1-4. Indicated are the thickness directions in each integration point in

the local (n, s) coordinate system.

The displacement jump can then be written in terms of the displacement fields,

u(x) = N int(u+−u−) (3.2.3)

Implementing the above in the weak form gives a relation between the external, internal and
cohesive force.

F ext = F int +F coh (3.2.4)

Assembly of the relations of each component and linearization of the cohesive force vectors,
by differentiating with respect to the displacement vector u, results in the stiffness matrix of
the cohesive elements as below [53].

K coh
i =


∫
Γd

N T QT QT N dΓ −
∫
Γd

N T QT QT N dΓ

−
∫
Γd

N T QT QT N dΓ
∫
Γd

N T QT QT N dΓ

 (3.2.5)

The assembly of the stiffness matrices of the bulk elements and cohesive elements results in
a system of equations as in Equation 3.1.3 that can be solved.

In the case the cohesive elements are defined in terms of a Traction-Separation Law (TSL)
the initial linear elastic behaviour is defined somewhat different to the bulk elements. The
elements that have not been activated have a zero geometric thickness, but in ABAQUS a con-
stitutive thickness4 of 1.0 is used to ensure that the nominal strain is equal to the separation.

4The constitutive thickness of the cohesive element is the thickness that is used to define the constitutive
behaviour. It can either be equal to the geometric (actual) thickness based on nodal coordinates or it can be
defined.
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In 2D the nominal traction stress vector has two components τn and τs , which represent the
normal and shear traction respectively. Analogous the normal and shear separation are de-
fined as δn and δs . The elastic behaviour of 2D cohesive elements is defined as below.

τ=
[
τn

τs

]
=

[
Enn Ens

Ens Ess

][
εn

εs

]
= Eε (3.2.6)

Once the cohesive elements meet the damage initiation criteria (peak of TSL) they are acti-
vated. From this point the stiffness of the cohesive elements is degraded by means of a dam-
age evolution law (softening slope of TSL). For this a scalar damage variable, D, is defined
that ranges from 0 to 1. Damage evolution can be defined in different ways, for this thesis a
simple linear evolution based on energy is used.

In some cases the crack closes when the cohesive elements are unloaded. Within ABAQUS it is
assumed that the unloading is always linear towards the origin of the TSL. Reloading occurs
along the same line as the unloading path.



Chapter 4

Numerical Experiments:
Methodology

In order to come up with a failure criterion that uses detailed information about the fracture
mechanisms of a Carbon-Fiber Reinforced Plastic (CFRP) at a microscopic1 level numerical
experiments have to be performed. The samples that are considered for these numerical
experiments are in the order of 1/10th of a millimeter and are therefore difficult to be tested.
There are methods available to test samples at this scale, but these methods are not always
available and expensive in time and money. In Section 4.1 the general top-level methodology
will be presented. An important issue with cohesive elements is artificial compliance, as was
stipulated in Chapter 2, which is discussed in Section 4.2 along with the elastic stiffness of
cohesive elements. In the end all the details of the pre- and post-processing will be given in
Sections 4.3 and 4.4 respectively. The units used throughout the numerical experiments2 are
mm and MPa. Any load cases that are mentioned are summarized in Table 4.2.

4.1 General Outline

The top-level methodology in achieving the thesis objective is presented in this section. A
failure criterion in this thesis is considered as mathematical relations that describe the frac-
ture mechanisms in terms of a Traction-Separation Law (TSL) and can predict when a ma-

1The microscopic scale is used when the terms Microstructural Volume Element (MVE) and Representative
Volume Element (RVE) are considered, i.e. it is at a level where one can distinguish the fibers and matrix material.

2Numerical experiments are simulations in ABAQUS that evaluate the behaviour, i.e. fracture mechanisms,
for different input variables.
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terial fails. A parametric study has to result in these mathematical relations. In the intro-
duction it has already been mentioned that this parametric study will be performed on Two-
Dimensional (2D) samples with an Uni-Directional (UD) CFRP material. In addition the ma-
terial properties of the fiber and matrix will be kept constant, only the cohesive and adhesive
properties3 will be studied along with the fiber volume fraction.

δfδi
0

K

tu

Gf

Figure 4.1.1: Bilinear intrinsic TSL used as input for the microscopic cohesive elements.

For this research it is chosen to pick a simple bilinear intrinsic TSL4 (One-Dimensional (1D)
effective) to describe the brittle fracture mechanisms as in Figure 4.1.1. This TSL will be used
as input for the microscopic cohesive elements. There are three cohesive properties that
define a bilinear intrinsic TSL; cohesive strength (tu), fracture energy (G f ) and the elastic
stiffness of the cohesive elements (K ). It is chosen keep the elastic stiffness of the cohesive
elements fixed, as will be discussed in Section 4.2. The cohesive strength is the maximum
traction and is usually the point where damage initiates. The area of the TSL, or fracture
energy, describes the amount of energy or work that is used to create the crack.

Pre-

processing
Analysis

Post-

processing

Single fiber 

simulations

Determine RVE 

dimensions

Run multiple fiber 

RVE simulations

Determine bilinear 

TSL parameters

Failure criterion

Correlation and 

curve fitting

Figure 4.1.2: General outline of the thesis in terms of activities.

3The term cohesive is used for the interaction between similar materials (i.e. cracks in matrix material) and
the term adhesive is used for the interaction between dissimilar materials (fiber-matrix debonding).

4Intrinsic indicates that the traction starts at zero for zero separation. Bilinear implies a linear initial slope
and a linear softening slope.
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In Figure 4.1.2 an overview of the steps towards the failure criterion are given. As a start single
fiber simulations will be performed to get insight in the the effects of several parameters. Next
to this, each simulation will be performed for a coarse, medium and fine mesh density to
study the effect of mesh convergence. Each simulation will go through the three steps: pre-
processing, analysis and post-processing. After the single fiber simulations the dimensions
of the multiple fiber RVE, i.e. when it is considered representative, will be determined based
on a convergence study. Once the dimensions are known the simulations on the multiple
fiber RVE will be performed to study the effect of several variables. The fracture behaviour of
each single simulation is summarised in a bilinear TSL that consists of three parameters. The
three bilinear parameters of all simulations will be correlated using curve fitting which will
result in the macroscopic failure criterion.

As mentioned above the single fiber simulations will study the variablessadf as listed below
and in addition a mesh convergence study is performed.

• Interface cohesive strength (t (i )
u )

• Fiber cohesive strength (t ( f )
u )

• Interface fracture energy (G (i )
f )

• Fiber fracture energy (G ( f )
f )

• Fiber diameter (dF )

The interface properties define the cohesive elements between the fiber and matrix. In ad-
dition, all cohesive variables are changed relative to the cohesive properties of the matrix
material (i.e. smaller, equal, greater). Changing the five variables has an influence on the
input TSL of the fiber and interface cohesive material. All the results are compared to a ref-
erence model. With preliminary simulations and the paper of Cid Alfaro [18] as a reference it
was concluded that the reference model should have the properties as in Table 4.1.

Table 4.1: Cohesive element properties of the reference model.

Material Parameter Value Units

Interface cohesive elements t (i )
u 25 N/mm2

G (i )
f 0.025 N/mm

E (i )
c / K (i ) 109 N/mm3

Matrix cohesive elements t (m)
u 50 N/mm2

G (m)
f 0.05 N/mm

E (m)
c / K (m) 109 N/mm3

Fiber cohesive elements t ( f )
u 100 N/mm2

G ( f )
f 0.1 N/mm

E ( f )
c / K ( f ) 109 N/mm3
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The elastic stiffness of the cohesive elements is listed in the table, in Section 4.2 a discussion
on how this parameter is obtained is given. It is assumed that the crack opening is mode
independent5, so the values in Table 4.1 that describe the input TSLs are applicable for both
mode I and II. The absence of material properties in Table 4.1 is due to the confidentiality of
these properties.

The second step in Figure 4.1.2 is to determine the RVE dimensions. The methodology and
results are presented in Chapter 6. In addition to the original approach two other cases are
considered for determining the RVE dimensions. For all the simulations in this chapter an
arbitrary mixed load case (LC0 in Table 4.2) and the reference cohesive properties are used.

Table 4.2: Overview of the load cases with the components of the strain tensor as given
in Equation 4.3.5.

Load case: ε11 ε22 ε12 ε21 Description
LC0 0.05 0.1 0.07 0.07 arbitrary mixed
LC1 0.21 0 0 0 uni-axial extension
LC2 0 0 0.21 0.21 pure shear
LC3 0.07 0.07 0.07 0.07 equally mixed
LC4 0.035 0.07 0.105 0.105 high shear mixed
LC5 0.105 0.07 0.035 0.035 high uni-axial extension mixed
LC6 0 0 0.21 0 simple shear

The inputs for the curve fitting will result from the multiple fiber RVE simulations. Five load-
ing cases, i.e. LC1 to 5 in Table 4.2, will be studied. The mode I load case is uni-axial exten-
sion6 and initially the mode II load case is pure shear. During the curve fitting it became clear
that the pure shear load case had to be be replaced by the simple shear load case. The strain
components in Table 4.2 are in the microscopic coordinate system, i.e. (1,2) as indicated in
Figure 4.1.3. The local coordinate system (n, s) is aligned with the crack line. The same co-
hesive parameters as studied during the single fiber simulations will be studied, but now the
fiber diameter is replaced with the fiber volume fraction.

5Mode independent indicates that there is no distinction between the mechanisms of normal (mode I) and
shear (mode II) opening

6Uni-axial extension, in contrast to uni-axial tension, indicates that no Poisson’s effect is present. The top
and bottom edge nodes are pinned in y-direction due to the Periodic Boundary Conditions (PBC).
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Figure 4.1.3: Illustration of the microscopic (1,2) and local (n, s) coordinate systems.
The crack angle θ is defined as the angle between the crack line and crack normal.

4.2 Artificial Compliance: Cohesive Element Elastic Stiffness

It has been mentioned that a bilinear intrinsic TSL will be used as input to the simulations.
According to the discussion in Section 2.2.2 it was concluded that an issue with intrinsic TSLs
is artificial compliance7. The severity of this issue increases with an increasing number of
elements, or in this case sample size and mesh density. The only purpose of the cohesive
elements is to simulate fracture, but in addition it has a significant effect on the global defor-
mation. In a simple 1D linear-elastic case the strain (ε) can be determined as a function of
the applied stress.

ε= σ

Eb
(4.2.1)

Eb is the Young’s modulus of the bulk elements8. In the case a cohesive interface element is
implemented an additional term has to be considered,

ε= σ

Eb
+ σ

Ec
(4.2.2)

As one can see this term can be minimised by increasing the elastic stiffness of the cohesive
elements (Ec ). The elastic stiffness of the cohesive elements is also called the penalty stiffness
parameter that ensures a stiff connection before damage occurs. Ideally a value Ec → ∞ is

7Artificial compliance is the apparent Young’s modulus as a result of the implemented cohesive elements.
8Bulk material or elements refers to the fiber and matrix material or elements, distinguishing them from the

cohesive material or elements.
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preferred but this is not feasible because stable time step issues arise for too high values,
resulting in convergence problems [36, 31, 32].

According to literature [78, 54] the elastic stiffness of the cohesive elements has to be suffi-
ciently high compared to the maximum elastic stiffness of the bulk material. Blal et al. [79]
proposed a relation for the factor that will result in an ’invisible’ implementation of the cohe-
sive elements.

Ec

Eb
≥ 75

lmesh
(4.2.3)

The above equation is valid for a Poisson’s ratio (ν) of 0.3. For the proposed mesh density
for the simulations of lmesh = 0.0005 mm this will result in a factor of 150000. This value is
unfeasible high compared to the values used in literature, in common practice a factor of
1000 should be sufficient. A factor of 1000 results in a coarse mesh in which the fibers are not
properly defined. With the above discussion and after the first simulations there was doubt
about the exact value and therefore a small parametric study was performed.

In Figure 4.2.1 the results of this parametric study can be found for two load cases, uni-axial
extension (LC1) and a mixed loading case (LC0) as in Table 4.2. The load cases will be ex-
plained in Section 4.3 and the post-processing procedure to obtain the above plots in Sec-
tion 4.4. A sample with dimensions 25×25 µm is used because for a high factor convergence
problems arise for samples with a higher number of elements.

One can see that when a factor of 100 is employed the fracture behaviour is not properly de-
fined, i.e. the results show high artificial compliance resulting in a low apparent stiffness and
a high resulting strain (Equation 4.2.2). For higher factors the fracture behaviour is better
defined, resulting in a peak. Especially for LC1 this peak increases for higher factors and no
convergence can be observed. To ensure stable simulations of models with a high number
of cohesive elements the factor should not be too high. This is due to the numerical prob-
lems that arise when there are large differences in stiffness within the system that leads to an
ill-conditioned Boundary Value Problem (BVP). Therefore, for the subsequent simulations
in this thesis an elastic stiffness (Ec ) of 109 MPa is used for the cohesive elements, which
corresponds to a factor of 3623 (red line). In ABAQUS this is the value of Enn and Ess as in
Equation 3.2.6. It is known that the results will be different for higher values, but in the end
one cannot say for certain that those result will be correct without further investigating this
issue.
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(a) Uni-axial extension (LC1).
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Figure 4.2.1: Effect of the elastic stiffness of the cohesive elements for two load cases.
Simulations were performed on a 25×25 µm multiple fiber sample and the factor is given

by Equation 4.2.3.

4.3 Pre-Processing: Model Setup

In this section the pre-processing of the single and multiple fiber models will be discussed.
In Section 4.3.1 the mesh generation script is explained followed by the implementation of
cohesive elements in Section 4.3.2. The implementation of each PBC and the verification is
presented in Section 4.3.3 followed by the generation of the ABAQUS input file in Section 4.3.4.
At the end of the pre-processing the job9 is submitted to the Delft University of Technology
(DUT) cluster10 for analysis, as explained in Section 4.3.5. All the separate steps in the pre-
processing are bundled in one PYTHON script.

Define input 
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Figure 4.3.1: Activities of the pre-processing as part of Figure 4.1.2.
9The term job indicates the model that has to be analysed.

10The DUT cluster is a remote server on which calculations can be performed.
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4.3.1 Mesh Generation

For the generation of multiple fiber meshes a random fiber distribution is required and for
each simulation several realizations (i.e. different fiber distributions with the same amount
of fibers) have to be generated. In addition the implementation of PBC is more convenient
when utilizing an own made meshing script. In order to achieve this two options are avail-
able: either write a PYTHON script that generates a mesh in combination with ABAQUSor write
a script in MATLAB. Because the implementation of cohesive elements is done MATLAB the
second option is preferred. The MATLAB script consists of the steps shown in the bottom of
Figure 4.3.1 and is explained below.

Using inputs like fiber volume fraction (V f ), mesh density and MVE dimensions the script
starts with determining the number of fibers and node spacing. After this the location of each
fiber origin is randomly picked from a predefined set of locations. From these locations the
nodes on the fiber edge are generated. An important part in this step is that the no wall effect
(see Section 2.3.5) is implemented, i.e. the fibers that go through the edge have to appear at
the other side of the MVE. Analogous the nodes inside those fibers are generated with no wall
effect and aligned with the edges of the MVE. In addition a random perturbation is added to
the nodes inside the fiber, see Figure 4.3.2a and 4.3.3a for an example node distribution for a
single and multiple fiber model respectively.

(a) Node distribution. (b) Final triangular mesh.

Figure 4.3.2: Example result of the matlab meshing script for a single fiber model.

The next step is to generate the matrix nodes between the fibers, which is done using two
overlapping node distributions. The first distribution contains nodes that are radially ex-
trapolated from the fiber edge nodes and the second distribution is a rectangular to fill up
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the gaps. Nodes that are too close are removed and it is ensured that there are always some
nodes between the neighbouring fibers. Just as with the fiber nodes, random perturbations
are added to the matrix nodes. Together with the fiber perturbation this ensures a random
mesh

In the end the node distribution is generated from which a triangular mesh is generated using
the delaunay function of MATLAB. The choice for a random triangular mesh is proved to be
essential when studying fracture with cohesive elements. For a quadrangular mesh the direc-
tions in which a crack can go at a node is limited (i.e. 0◦, 90◦ or -90◦). For a triangular mesh
there are more directions in which the crack can go and therefore the mesh dependency is re-
duced, especially with a random mesh. An example node distribution for a single fiber MVE
can be found in Figure 4.3.2a along with the final mesh in Figure 4.3.2b.

(a) Node distribution. (b) Final triangular mesh.

Figure 4.3.3: Example result of the matlab meshing script for a multiple fiber model.

In order to verify the mesh a quality check is done. For each element the aspect ratio is
checked and it is ensured that its value is below 3.0. Elements that have a higher aspect ratio
are corrected. At the end of the MATLAB script the node coordinates and element connectivity
is written to an ABAQUS input file. The bulk elements are of the type CPE3, which is a three
node linear plane strain element. Plain strain is chosen because one dimension, i.e. out-of-
plane fiber length, is significantly larger than the width and height of the MVE. The cohesive
elements are of the type COH2D4, a four node 2D cohesive element.
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4.3.2 Implementation of Cohesive Elements

In the same MATLAB script as the mesh generation from the previous section, the implemen-
tation of cohesive elements is processed. The fundamentals of this part of the script were pro-
vided by two PhD students from the DUT, Sathiskumar Anusuya Ponnusami and Jayaprakash
Krishnasamy. For this thesis modifications were made to make it more suitable and to de-
crease the computational time significantly. The script looks for common faces of the bulk
elements. On these common faces the nodes are duplicated and subsequently the cohesive
elements are defined, as illustrated in Figure 3.2.1. After this the all the nodes and elements,
bulk and cohesive, are divided in sets.

4.3.3 Implementation of Periodic Boundary Conditions

As mentioned in Section 2.3.5 PBC are the preferred option for multiscale simulation and are
implemented by the condition below. This condition states that the deformation field on the
left edge should be equal to the deformation field on the right edge, same as for the top and
bottom edge. This way the MVE can be repeated through space.

∆uL(s) =∆uR (s) (4.3.1)

∆uT (s) =∆uB (s) (4.3.2)

In a Finite Element (FE) model this translates to enforcing the displacement of node pairs.
For example, a left-right node pair is defined as the nodes on the left and right edge that have
the same y-coordinate. The meshing script from Section 4.3.1 already ensured that these
node pairs exist at the correct location. Note that node pairs are only defined for nodes on
the edge, not for the corner nodes.

For a model that does not contain cohesive elements the implementation is straightforward.
Two dummy nodes are created, a left-right (LR) dummy and a top-bottom (TB) dummy node.
The exact location of these nodes is not relevant. The displacement of each node pair is re-
lated to the displacement of one of these dummy nodes. Due to this the deformation loading
can be applied to the dummy nodes only instead of each node pair separately. A deformation
vector is applied to the dummy node, see Figure 4.3.4. For example, for a random left-right
node pair this gives the two equations below.

u(R)
1 −u(L)

1 −ε11w = 0 (4.3.3)

u(R)
2 −u(R)

2 −ε21w = 0 (4.3.4)
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(c) Mixed loading.

Figure 4.3.4: Illustration of the BC for three distinct load cases. The BC are given for
the four corner nodes, the left-right dummy node (D-LR) and the top-bottom dummy

node (D-TB).

For each node pair two equations exist, i.e. in 1 and 2 direction, and in the next section it is
explained how to write this to the ABAQUS input file. The combination of different deforma-
tion loadings enforced on the dummy nodes result in a specific load case. In general the load
case is described by the strain tensor (ε).

ε=
[
ε11 ε12

ε21 ε22

]
(4.3.5)
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The strain is determined from the deformation by using the original geometry as a reference,
i.e. Lagrangian strain. When calculating the displacement loading from the strain tensor
input, small strains are assumed. In general this assumption is only valid for strains less
than 1%. However, for fracture problems the strain can go up to 20%. This assumption will
thus result in a certain error, but this error is equal for all the models that are compared and
therefore it is assumed to have no effect on the correlation of the results. In the end the
2D displacement PBC for ABAQUS are calculated as below, where w and h are the width and
height of the MVE respectively.

u =
[
ε11 ε12

ε21 ε22

][
w
h

]
=

[
ε11w +ε12h
ε21w +ε22h

]
(4.3.6)

The above explanation is valid for models without cohesive elements, the implementation
for models with cohesive elements is similar. However, the nodes are duplicated a number
of times, depending on the number of elements that connect to the original node. Therefore
the node pairs are defined different compared to the model without cohesive elements. The
issue is that, for example, on the top edge at coordinates (x,h/2) the node is duplicated four
times because four elements connect to that node, whereas on the bottom edge at location
(x,−h/2) the node is duplicated only three times. In this case there is an unequal number of
nodes on the top and bottom edge. Several methods were tested to correctly define the node
pairs, as a result the method illustrated in Figure 4.3.5 is preferred.

Figure 4.3.5: Method for defining the node pairs for a mesh with embedded cohesive
elements. On the left a part of the top and bottom mesh is illustrated, with a detailed

illustration on the right. The defined node pairs are indicated in red.

The left side of Figure 4.3.5 gives a part of the top and bottom mesh and on the right a detail
of the left is given. It can be seen that only the nodes of the bulk elements that have a face on
the edge are coupled, indicated in red. The bulk elements with nodes on the edge but all faces
inside the MVE are coupled to the bulk elements through the cohesive elements. This method
ensures identical node pairs and enforces the PBC. It should be mentioned that enforcing the
displacement does not guaranty traction continuity along the boundaries, more on this in the
next section.
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Verification of Periodic Boundary Conditions

The implementation of PBC is verified by running three separate models. One single fiber
model without cohesive elements and two multiple fiber element with and without cohesive
elements. The results for the single fiber model can be seen in Figure 4.3.6 for two load cases;
uni-axial extension and a mixed loading case, LC1 and 3 in Table 4.2 respectively. From these
contour plots it is concluded that the displacement is indeed periodic, which is confirmed
by checking the exact values at each node. For example, the difference in displacement of
each left-right node pair in Figure 4.3.6a is exactly the imposed displacement of 5.88e-4 mm
in x-direction and 0 mm in y-direction as determined in Equation 4.3.7 and 4.3.8.

ε11w +ε12h = (0.21) · (28e-3)+ (0) · (28e-3) = 5.88e-4 mm (4.3.7)

ε21w +ε22h = (0) · (28e-3)+ (0) · (28e-3) = 0 mm (4.3.8)

(a) LC1 displacement. (b) LC1 Von Mises stress.

(c) LC3 displacement. (d) LC3 Von Mises stress.

Figure 4.3.6: Verification of the PBC for a single fiber model without cohesive elements.
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The same holds for the mixed loading case. In terms of traction periodicity along the bound-
ary it seems that the Von Mises stresses are periodic. However, comparing the exact element
values shows a difference of approximately 0.2% for the Von Mises, σ11 and σ22 components.
This is explained by the fact that the stresses are averaged with nodes inside that have no PBC
applied. The error in theσ12 component is very high as there is almost no shear stress present
at the edges (i.e. ≈ 0). Overall it is concluded that there is traction periodicity for this model.

(a) LC1 displacement. (b) LC1 Von Mises stress.

(c) LC3 displacement. (d) LC3 Von Mises stress.

Figure 4.3.7: Verification of the PBC for a 75×75 µm multiple fiber model (V f = 40%)
without cohesive elements.

The multiple fiber model without cohesive elements is shown above. Compared to the single
fiber model the same conclusions are drawn. As the stress periodicity in Figure 4.3.7d is not
clear the top and bottom locations indicated in Figure 4.3.8a are shown next to each other in
Figure 4.3.8b. The stress field seems periodic but there are differences up to 10% in the exact
value, again due to the interpolation with nodes that are not periodic. The difference is higher
compared to the single fiber model because fibers are located at the edge resulting in higher
stress differences. It is concluded that the traction along the boundary is semi-periodic.
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(a) (b)

Figure 4.3.8: Detailed contour plot for the verification of PBC of the multiple fiber
model without cohesive elements; (a) top and bottom locations of which the detailed

contour plot is shown in (b) for the Von Mises stress, σ11, σ22 and σ12.

At last the PBC verification of the multiple fiber model with cohesive elements is performed,
see Figure 4.3.9. On the general contour plots the displacement periodicity is visible, even
with the discontinuity. The traction periodicity along the boundary is less clear, therefore
the detail plots are given in Figure 4.3.9. The stresses do not align, which is due to the dis-
continuities. There are cohesive elements present between the bulk elements that result in
a discontinuity in the stress, especially around cracks. In addition the definition of the node
pairs as in Figure 4.3.5 has an influence on the traction at the boundary. Therefore, the trac-
tion along the boundary is not periodic.

(a) (b)

Figure 4.3.9: Detailed contour plot for the verification of PBC of the multiple fiber
model with cohesive elements; (a) left and right locations of which the detailed contour

plot is shown in (b) for the Von Mises stress, σ11, σ22 and σ12.
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4.3.4 ABAQUS Input File

Once the MATLAB script is finished a basic input file has been written that includes the node
coordinates, (cohesive) elements connectivity, element and node sets, sections and PBC equa-
tions. In this section each component in the ABAQUS input file is explained.

The first lines of the ABAQUS input file contain the heading that specifies the job and model
name, the ABAQUS version and a preprint which is non-relevant for the current input files.
After this the parts of the model are printed that include the nodes, elements, element sets
and sections that belong to this specific part. In total there are three parts: the MVE part and
two dummy parts. The definition of the MVE part is given above.

**
** PARTS
**
*PART, NAME=EXAMPLE
*NODE

1, X-COORD, Y-COORD
...
*ELEMENT, TYPE=CPE3
1, NODE 1, NODE 2, NODE 3,
...
*ELEMENT, TYPE=COH2D4
Nb + 1, NODE 1, NODE 2, NODE 3, NODE 4,
...
*ELSET, ELSET=NAME
ELEMENT 1, ELEMENT 2, ...
...
** SECTION: EXAMPLE-1
*SOLID SECTION, ELSET=ELSET-1, CONTROLS=EC-1, MATERIAL=MATERIAL-1
...
*SECTION: EXAMPLE-2
*COHESIVE SECTION, ELSET=ELSET-2, CONTROLS=EC-2, MATERIAL=MATERIAL-2, RESPONSE=TRACTION SEPARATION
...
*END PART

After the *END PART statement the dummy parts are printed that only contain one node and
nothing else. Either a solid section or a cohesive section is generated that refers to the mate-
rial and controls generated later on. After the parts the assembly is printed that includes the
main and dummy instances, node sets and equations.

**
** ASSEMBLY
**
*ASSEMBLY, NAME=ASSEMBLY

**
*INSTANCE, NAME=EXAMPLE, PART=EXAMPLE
*END INSTANCE

...
*NSET, NSET=NAME, INSTANCE=EXAMPLE
NODE 1, NODE 2, ...
...
*EQUATION

3
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RIGHT_NODE_X, 1, 1, LEFT_NODE_Y, 1, -1, DUMMY_LR, 1, -1,
*EQUATION

3
RIGHT_NODE_X, 2, 1, LEFT_NODE_Y, 2, -1, DUMMY_LR, 2, -1,
...
*END ASSEMBLY

The equation statements describe Equation 4.3.4 where the first value after NODE is the
Degrees of Freedom (DOF) and the second value the factor. The displacements of [0.1,0.0] in
Equation 4.3.4 are replaced with the DUMMY_LR node on which the displacements are en-
forced. The above is as far as the MATLAB script goes, after this the PYTHON script takes over
and writes the element controls, material properties, steps, boundary conditions and output
requests. This is done so that these values can be easily modified by the PYTHON script for the
parametric study. First the section controls are printed.

**
** ELEMENT CONTROLS
**
*SECTION CONTROLS, NAME=EC-X, ELEMENT DELETION=NO, VISCOSITY=0.001
1., 1., 1.

The above shows an example where element deletion is off and viscosity is added. In general
for all the models in this thesis element deletion11 is off and a viscosity of 0.001 is added to
the cohesive elements. The viscosity is required to cope with the convergence problems with
cohesive elements that have a high initial elastic stiffness.

**
** MATERIALS
**
*MATERIAL, NAME=EXAMPLE_BULK
*ELASTIC, E, ν
..
*MATERIAL, NAME=EXAMPLE_COHESIVE
*DAMAGE INITIATION, CRITERION=MAXS
tu1 , tu2 , tu3
*DAMAGE EVOLUTION, TYPE=ENERGY
G f
*ELASTIC, TYPE=TRACTION
Ec1 , Ec2 , Ec3
...

The example above of describes the material definition of the bulk material is a simple elastic
material. For the cohesive elements a damage initiation criterion has to be defined, which is
a maximum stress criterion. When the stress in the element is greater or equal to the cohesive
strength (tu) it is activated, the cohesive strength is assumed to be equal in normal, shear 1
and shear 2 direction. Next to this a damage evolution has to be defined that together with the
damage initiation describes the input TSL. The type of the damage evolution is energy which
requires the fracture energy (G f ) as input. The softening is linear as discussed before and
opening is assumed mode independent. This is an important assumption because a mode

11With element deletion set to on the cohesive elements that are fully damaged are removed.
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dependent model will require multiple input TSLs. In addition, no relation between mode I
(normal) and mode II (opening) is defined.

**
STEP: GENERAL_STEP
**
*STEP, NAME=GENERAL_STEP, NLGEOM=YES, INC=Nmax
*STATIC, STABILIZE, ALLSDTOL=0.005
∆ti ni t , 1, ∆tmi n , ∆tmax , 1

The load step is defined as given above. The maximum number of increments is given by
nmax and is used to terminate a model. There is stabilization in order for the model to be
able to converge and the time steps; initial, minimum and maximum are in general; 0.001,
1e-24, 0.1 respectively. Next to the stabilization the number of attempts for each iteration is
increased to 30. As part of the step input, the boundary conditions are written.

**
** BOUNDARY CONDITIONS
**
** NAME: BC_DUMMY_LR TYPE: DISPLACEMENT/ROTATION

*BOUNDARY

DUMMY_LR, 1, 1, ε11w
DUMMY_LR, 2, 2, ε21w

The above shows as an example the BC for the left-right dummy node which has a displace-
ment loading of [ε11w ,ε21w]. The BC for the top-bottom node can be written analogous with
a displacement loading of [ε12h,ε22h]. The BC on the dummy nodes enforce the BC on the
edge nodes through the equations discussed before. In addition to these BC the BC of the
corner nodes are written. The bottom left corner node is fixed, the bottom right corner node
has a displacement loading equal to the left-right dummy node, the top left corner node a
displacement loading equal to the top-bottom dummy node and the top right corner node
BC is described by Equation 4.3.6. All the boundary conditions for a uni-extension loading,
pure shear loading and a mixed load case are visually illustrated in Figure 4.3.4.

After the BC the field output request are written, which are element stress (S), element volume
(EVOL) and node displacement (U). The output is only requested each approximate 0.001
time step for pure shear and 0.002 otherwise, in order to minimise the size of the output file.
No history output is required and at *END STEP line the ABAQUS input file is finished.

**
** OUTPUT REQUESTS
**
*RESTART, WRITE, FREQUENCY=0
**
FIELD OUTPUT: F-OUTPUT-1
**
*OUTPUT, FIELD, TIME INTERVAL=0.001, TIME MARKS=NO
* NODE OUTPUT

U,
*ELEMENT OUTPUT, DIRECTION=YES
S, EVOL,
*END STEP
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4.3.5 Submitting the Jobs

Once the ABAQUS input file is written with all required parameters the job is submitted to
the DUT cluster for an ABAQUS 6.14-1 standard analysis. The operating system of this cluster
is Fedora Core 12 in a Linux environment and is accesses via a secure shell. For the here
are 25 multi-cpu compute nodes available. Each node has two Intel Xeon E5520 (quadcore)
processors and 24 GB1333 ECC RAM. A Portable Batch System (PBS) script is used to manage
the job on the cluster and an example is given below. The PBS file and ABAQUS input file are
copied to the cluster using an sftp client within PYTHON. Subsequently the job is submitted
by the command QSUB EXAMPLE.PBS.

#PBS -O JOB_NAME

#PBS -L NODES=1:PPN=1
#PBS -L MEM=3GB

#PBS -L WALLTIME=75:00:00
#PBS -N JOB_NAME

#PBS -S /BIN/CSH

#PBC -W STAGEOUT=$TMPDIR/MODEL_NAME.ODB@HPC12:OUTPUT_LOCATION

#PBC -W STAGEOUT=$TMPDIR/MODEL_NAME.MSG@HPC12:OUTPUT_LOCATION

#PBS -W STAGEOUT=$TMPDIR/MODEL_NAME.DAT@HPC12:OUTPUT_LOCATION

CD $PBS_O_WORKDIR
CP INP_LOCATION $TMPDIR
CD $TMPDIR
MODULE LOAD ABAQUS

ABAQUS JOB=JOB_NAME INTERACTIVE CPUS=1
EXIT 0

A small investigation was done to study the effect of parallel analysis, which concluded that
a single core analysis is the most efficient (nodes=1:ppn=1). Using for example 16 cores can
reduce the total computational time, but in total 20 ABAQUS tokens are required and instead
of 4 parallel jobs (requires 20 tokens) only one job can be submitted at once.

In general 3gb of memory was more than enough. The simulations are performed in a tem-
porary directory on the local disc of the node ($TMPDIR). The stageout commands state that
at the end of the PBS script, no matter how it ends, the indicated files are copied to the output
location. This is useful when the walltime12 is reached.

4.4 Post-Processing Approach

In this section the post-processing of the single and multiple fiber models will be discussed.
The first step is to extract the relevant data from the ABAQUS output file, see Section 4.4.1.
From extracted data the Effective Traction-Separation Law (ETSL) can be plotted as explained
in Section 4.4.2. In the end additional plotting is discussed in Section 4.4.3. All the separate
steps in the pro-processing are bundled in one PYTHON script.

12Walltime is the maximum amount of time the job is allowed to run, after exceeding the walltime the job is
aborted.
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Figure 4.4.1: Activities of the post-processing as part of Figure 4.1.2.

4.4.1 Extract Data

For determining the traction at each iteration the average stress of all the elements is re-
quired. In addition to determine the crack orientation angle the node displacement at the
last iteration is needed. In the end the following data is extracted using a PYTHON script;

• Load Proportionality Factor (LPF) at each iteration
• Average stress components at each iteration
• Node displacement at last iteration

The extraction of the LPF at each frame (i ) and node displacement of each element ( j ) at the
last iteration (n f r ames −1) is quite straightforward as shown below.

LPF[I] = ODB_FILE.STEPS[’GENERAL_STEP’].FRAMES[I].FRAMEVALUE

U_NODE[ J] = ODB_FILE.STEPS[’GENERAL_STEP’].FRAMES[n f r ames −1].FIELDOUTPUTS[’U’].VALUES[ J].DATA

The extraction of the average stress is done by averaging the stress of all the bulk elements
(i.e. j = 1,2, ..,n) using the equation below.

σav g ,i = 1

w ·h

n∑
j=1

(
σ j · A j

)
(4.4.1)

where,

σ j =
[
σ11 σ12

σ12 σ22

]
(4.4.2)

The stress tensor (σ) contains the three stress components of and A j is the area each bulk
element j . At each iteration i the stress tensor and element volume of each bulk element j
are extracted using the ABAQUS command below.

EVOL[ J] = ODB_FILE.STEPS[’GENERAL_STEP’].FRAMES[I].FIELDOUTPUTS[’EVOL’].VALUES[ J].DATA

S_ELEM[ J] = ODB_FILE.STEPS[’GENERAL_STEP’].FRAMES[I].FIELDOUTPUTS[’S’].VALUES[ J].DATA
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4.4.2 Micro- to Macroscopic Coupling

The coupling between the microscopic MVE and the resulting macroscopic behaviour is done
in terms of an ETSL13. The first step in determining the ETSL is to define the crack line orien-
tation in terms of a crack normal vector, i.e. n as in Figure 4.1.3. This normal vector can then
be multiplied with the average stress tensor, in microscopic coordinates, to get the traction
along the crack line at each increment.

σ=
[
σ11 σ12

σ12 σ22

][
n1

n2

]
=

[
n1σ11 +n2σ12

n1σ12 +n2σ22

]
=

[
τ1

τ2

]
(4.4.3)

In order to get the crack normal it is determined which elements have failed at the last incre-
ment. For this the displacement of each node is used together with the element connectivity.
First the critical opening or separation (δ f ) is determined based on the fracture energy, max-
imum cohesive strength and elastic stiffness of the cohesive elements.

δ f =
2G f

tu
− tu

Ec
(4.4.4)

Note that for each cohesive element set, i.e. matrix, fiber or interface, the critical opening
is different as the input properties vary. When either the normal (δn) or shear (δs) opening,
see Figure 4.4.2, is larger than the critical value the element has failed. In the case that no
elements have reached the critical opening a certain percentage of the elements with the
highest opening is selected.

1 2

3

4

s

nδn

δs

Figure 4.4.2: Illustration of the normal and shear opening of a cohesive element. The
opening separations are the components of the vertex between the mid nodes of edge 1-2

and 3-4 in the local (n, s) coordinate system.

For each failed element the opening direction in terms of a unit vector can be determined.
After transforming these unit vectors to the microscopic (1,2) coordinate system the weighted
average, of all the unit vectors, results in the crack opening normal in (1,2) coordinates. For

13In this context, effective indicates that it is an average fracture response of the MVE.



50 Numerical Experiments: Methodology

the weight the total opening of the cohesive interface element is considered. An example for
a single fiber model subject to LC1 see Figure 4.4.3.

θ = tan−1
(

n2

n1

)
(4.4.5)
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Figure 4.4.3: Example crack opening normal (arrow) for a single fiber model subject to
LC1 based on the individual opening direction of the failed cohesive elements.

From the crack opening normal the crack angle (θ) as in Figure 4.1.3 is determined by Equa-
tion 4.4.5. Moreover, the traction vector at each increment can be determined using Equa-
tion 4.4.3. The total traction (i.e. magnitude) at each increment (i ) is subsequently deter-
mined with;

τi =
√
τ2

1 +τ2
2 (4.4.6)

and at each increment the average separation is determined by multiplying the applied dis-
placement with the LPF of that increment. Once this is done the final ETSL can be plotted.

δi = LPFi

√
(ε11w +ε12h)2 + (ε21w +ε22h)2 (4.4.7)
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4.4.3 Plotting and Curve Fitting

For the single fiber models a combined plot with the coarse, medium and fine mesh density
ETSL are plotted along with the input TSL of the fiber, matrix and interface cohesive elements,
see Appendix A.

For the multiple fiber models identical plots are made but now instead of the coarse, medium
and fine mesh models the different realisations are plotted. In addition an average of the the
realisations is required, which is obtained using data averaging on the data points of all re-
alisations. The data averaging is performed for separation values ranging from zero to the
maximum available separation14. At each separation value the average traction of all realisa-
tions is determined, if no data point is present at this separation value it is determined using
linear interpolation between the data points of the corresponding realisation.

In some cases extrapolation of the ETSL is required. The slope of the linear extrapolated part
is based on the average fracture energy of all realisations. Examples of multiple fiber ETSLs,
curve fitting and extrapolation can be found in Appendix B.

When results have to be compared, plots are generated that contain the fitted ETSL (or ETSL
of the fine mesh density models in the case of single fiber comparison) of models that are
to be compared. In this case the maximum cohesive strength and fracture energy are to be
compared. The fracture energies are determined using a simple trapezoidal rule up until the
maximum available separation as indicated in the plot. In order to study the crack patterns
of the models that are compared an additional PYTHON script is written that prints the crack
patterns at relevant frames.

14The maximum available separation is defined as the value at which data of all realisations is available. For
example, realisation 1 goes up to a separation of 0.1 mm but realisation 2 only to 0.08 mm. In this case the data
averaging is performed up until 0.08 mm.
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Chapter 5

Single Fiber Results and Discussion

The results of the single fiber numerical experiments will be presented in this chapter. The
pre- and post-processing are performed according to the methods described in Chapter 4.
Additional information will be provided in Section 5.1 after which the results are presented
in the subsequent sections. In the end some concluding remarks will be given in Section 5.7.
The detailed Effective Traction-Separation Law (ETSL) of each model can be found in Ap-
pendix A.

5.1 Methodology

As mentioned in Section 4.1 the single fiber numerical experiments have to provide insight
in the effect of the cohesive properties and fiber diameter1 as listed below. The results will be
presented by means of an ETSL and the fine mesh density models will be compared.

• Section 5.2: interface cohesive strength
• Section 5.3: fiber cohesive strength
• Section 5.4: interface fracture energy
• Section 5.5: fiber fracture energy
• Section 5.6: fiber diameter

1The effect of fiber diameter in the single fiber simulations is equivalent to the effect of fiber volume fraction
for the multiple fiber simulations.
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Based on the paper of Cid Alfaro [18] a fiber diameter (dF ) of 10 µm is chosen, see Fig-
ure 5.1.1a. The width and height of the Microstructural Volume Element (MVE) are 28 µm
resulting in a fiber volume fraction of 10%. To study the effect of fiber diameter the diameter
is increased to 20 µm as in Figure 5.1.1b, resulting in a fiber volume fraction of 40%. The fiber
is located exactly in the center of the MVE.

(a) Reference model (dF = 10 µm). (b) Modified model (dF = 20 µm).

Figure 5.1.1: Fiber distributions for a 28×28 µm single fiber model.

The cohesive properties are changed with respect to the reference properties as in Table 4.1.
The properties are normalised with the properties of the matrix cohesive elements. In this
way the properties are tested for values smaller (0.5), equal (1.0) and greater (2.0) compared
to the properties of the matrix cohesive elements.

Each effect is studied for three load cases; uni-axial extension (LC1), pure shear (LC2) and
an arbitrary mixed loading case (LC0). Refer to Table 4.2 for the applied strain values. In
addition, three mesh densities will be evaluated: a coarse, medium and fine mesh density.
According to the short discussion on mesh density in Section 3.1 a mesh density of at least
11 µm is required. For a fiber radius of 5 µm this results in 3 nodes on the fiber arc, which
is not feasible and thus more are nodes are required. This indicates that the mesh density is
fine enough in any case. For the coarse, medium and fine mesh it was chosen to place 20,
40, 80 nodes on the fiber arc resulting in a mesh density of 1.57 µm , 0.785 µm and 0.393 µm
respectively.

(a) Coarse mesh density. (b) Medium mesh density. (c) Fine mesh density.

Figure 5.1.2: FE meshes of the reference single fiber model.
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(a) Coarse mesh density. (b) Medium mesh density. (c) Fine mesh density.

Figure 5.1.3: FE meshes of the increased fiber diameter single fiber model.

The FE mesh of the coarse, medium and fine models are illustrated in Figure 5.1.2. These
meshes will be used for all the single fiber simulations except for the simulations with an
increased fiber diameter of which the meshes are shown in Figure 5.1.3. It can be observed
that the node distribution around the fiber is not totally random. This is due to the fact that no
random perturbation is applied to the nodes yet at the point in the research where the single
fiber meshes where generated. If the node distribution is not totally random the fracture
pattern will be too mesh dependent. For the multiple fiber simulations the MATLAB meshing
script was improved. The properties of the six meshes shown above are given in Table 5.1.
Note that the number of nodes are excluding the two dummy nodes.

Table 5.1: Properties of the single fiber meshes shown in Figure 5.1.2 and 5.1.3.

Mesh density # nodes # bulk elements # cohesive elements
REFERENCE MODEL

Coarse: 1.57 µm 840 280 400
Medium: 0.785 µm 3900 1300 1910
Fine: 0.393 µm 9426 3142 6433

INCREASED FIBER DIAMETER MODEL

Coarse: 1.57 µm 1326 442 643
Medium: 0.785 µm 5094 1698 2507
Fine: 0.393 µm 14370 4790 7105

Of all the nodes only about 17-18% are the original nodes, thus due to the cohesive elements
the number of nodes is increased about a factor 5.5. This indicates the significant effect the
cohesive elements have on the Degrees of Freedom (DOF). About 40% of the elements are
bulk elements and the linear increase in mesh density results in a linear increase in nodes
and elements. The model with an increased fiber diameter has an increased number of nodes
and elements compared to the reference model, which is explained by the denser mesh at the
fiber arc.
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5.2 Effect of Interface Cohesive Strength

The first effect on single fiber models that is studied is the effect of interface cohesive strength.
Compared to the reference model this value is changed from 25 MPa, factor 0.5 compared to
the matrix cohesive strength, to a factor 1.0 and 2.0. The results for LC1 are given in Fig-
ure 5.2.1.

It is clearly observed that the maximum cohesive strength and fracture energy of the ETSL
with a factor 1.0 and 2.0 is higher compared to the reference model. There is no difference
in the initial slope of the ETSL and the models with a factor 1.0 and 2.0 are almost identical.
Looking at the crack patterns in Figure 5.2.4a explains why these two models are almost iden-
tical. In the case the cohesive strength of the interface cohesive elements is equal than the
matrix material the crack is more likely to initiate in the matrix material. For the factor 2.0
the fiber-matrix interface is not the weak point anymore and the damage will always initiate
in the matrix. For the pure shear load case and mixed load case, in Figure 5.2.2 and 5.2.2
respectively, the same can be concluded.
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Figure 5.2.1: Effect of interface cohesive strength (t (i )
u ) on the fracture mechanism, in

terms of a ETSL, of the single fiber model subjected to uni-axial extension (LC1).
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Figure 5.2.2: Effect of interface cohesive strength (t (i )
u ) on the fracture mechanism, in

terms of a ETSL, of the single fiber model subjected to pure shear (LC2).
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Figure 5.2.4: Crack patterns corresponding to; (a) Figure 5.2.1, (b) Figure 5.2.2 and (c)
Figure 5.2.3.

5.3 Effect of Fiber Cohesive Strength

The second effect that is studied is the effect of the fiber cohesive strength, of which the re-
sults are presented in this section. In contrast to the previous section the cohesive strength
of the fiber cohesive elements is changed from 100 MPa (factor 2.0) in the reference model to
50 MPa (factor 1.0) and 25 MPa (factor 0.5). The results of the three load cases are given in
Figure 5.3.1 to 5.3.3.

In general the maximum cohesive strength decreases for lower factors. Especially for 0.5 due
to the crack initiating in the fiber, see Figure 5.3.4. Moreover, for LC1 and 0 the fracture energy
is higher in this case. This is due to the higher input fracture energy of the fiber cohesive
elements, i.e. once the crack initiates in the fiber it takes more energy to propagate compared
to crack initiation in the matrix or interface. For LC2 the fracture energy is lower when the
crack initiates in the fiber. However, it is expected that if the ETSL goes up to zero traction2

runs the same effect as for the other load cases will be present. Again, there is not much
difference between factor 2.0 and 1.0 because in these cases the fiber-matrix interface is still
the weak point.

2Due to convergence problems the simulations of the pure shear load case abort early.
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Figure 5.3.1: Effect of fiber cohesive strength (t ( f )
u ) on the fracture mechanism, in terms

of a ETSL, of the single fiber model subjected to uni-axial extension (LC1).
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of a ETSL, of the single fiber model subjected to a mixed loading (LC0).
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5.4 Effect of Interface Fracture Energy

Next to the maximum cohesive strength, the fracture energy is the second parameters that
defines the input Traction-Separation Law (TSL). Starting with the effect of interface fracture
energy for the three load cases. The reference value of 0.025 N/mm (factor 0.5) is increased to
0.05 N/mm (factor 1.0) and 0.1 N/mm (factor 2.0). For uni-axial extension and the mixed load
case almost no difference is observed in the maximum cohesive strength. A small difference
is observed for LC0 due to a different fracture pattern, see Figure 5.4.4c. There is a small
increase in fracture energy visible in the ETSLs of Figure 5.4.1 and 5.4.3, which indicates that
more energy is required to fully crack the model. For pure shear in Figure 5.4.2 there is a
difference in maximum cohesive strength as well as the fracture energy, which is due to the
shearing behaviour.
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Figure 5.4.2: Effect of interface fracture energy (G (i )
f ) on the fracture mechanism, in

terms of a ETSL, of the single fiber model subjected to pure shear (LC2).
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Figure 5.4.4: Crack patterns corresponding to; (a) Figure 5.4.1, (b) Figure 5.4.2 and (c)
Figure 5.4.3.

5.5 Effect of Fiber Fracture Energy

The fourth effect that is studied is the effect of fiber fracture energy. The reference value of 0.1
N/mm (factor 2.0) is decreased to 0.05 N/mm (factor 1.0) and 0.025 N/mm (factor 0.5). From
the results presented in Figure 5.5.1 to 5.5.4 it can be concluded that there is no noticeable
difference when changing the fiber fracture energy. This is due to the fact that there is no
interaction with the fiber cohesive elements because no cracks are initiated in the fiber. For
LC1 and LC0 there is a small difference in fracture energy which can be explained by a small,
although not visible, change in fracture pattern.
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Figure 5.5.1: Effect of fiber fracture energy (G ( f )
f ) on the fracture mechanism, in terms

of a ETSL, of the single fiber model subjected to uni-axial extension (LC1).
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Figure 5.5.2: Effect of fiber fracture energy (G ( f )
f ) on the fracture mechanism, in terms

of a ETSL, of the single fiber model subjected to pure shear (LC2).
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Figure 5.5.3: Effect of fiber fracture energy (G ( f )
f ) on the fracture mechanism, in terms

of a ETSL, of the single fiber model subjected to a mixed loading (LC0).
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Figure 5.5.4: Crack patterns corresponding to; (a) Figure 5.5.1, (b) Figure 5.5.2 and (c)
Figure 5.5.3.
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5.6 Effect of Fiber Diameter

The last effect that is studied is the increase in fiber diameter. The diameter is increased
by a factor two, from 10 µm to 20 µm . For each load case it is observed that for a higher
fiber diameter the initial slope of the ETSL increases and the fracture energy decreases. The
increase in initial slope is due to a higher effective stiffness of the model as a results of more
fiber compared to the reference model. The fracture energy decreases because less energy is
required to fully crack the model, there is less matrix material available. For the pure shear
load case in Figure 5.6.2 it is observed that also the maximum cohesive strength decreases as
a result of a larger fiber-matrix interface. In addition the crack pattern is different according
to Figure 5.6.4b.
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Figure 5.6.1: Effect of fiber diameter on the fracture mechanism, in terms of a ETSL, of
the single fiber model subjected to uni-axial extension (LC1).
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Figure 5.6.2: Effect of fiber diameter on the fracture mechanism, in terms of a ETSL, of
the single fiber model subjected to pure shear (LC2).
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Figure 5.6.3: Effect of fiber diameter on the fracture mechanism, in terms of a ETSL, of
the single fiber model subjected to a mixed loading (LC0).
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Figure 5.6.4: Crack patterns corresponding to; (a) Figure 5.6.1, (b) Figure 5.6.2 and (c)
Figure 5.6.3.

5.7 Concluding Remarks

The effect of the cohesive parameters of the interface and fiber cohesive elements relative to
the cohesive properties of the matrix cohesive properties has been presented in this chapter.
In addition the effect of fiber diameter was studied. The results were given by comparing the
ETSLs of the fine mesh density models. Overall the single fiber simulations gave insight in
the influence of cohesive parameters and the choice of mesh density for the multiple fiber
models.

Increasing the interface cohesive strength has a strong influence on the maximum cohesive
strength and fracture energy. In the case this value is higher or equal to the matrix cohesive
strength the crack will initiate within the matrix or at the fiber-matrix interface. This results
in a higher maximum cohesive strength and fracture energy. There is only a small difference
between a factor 1.0 and 2.0.

Decreasing the fiber cohesive strength has a strong influence on the maximum cohesive
strength and a small influence on the fracture energy. In the case the fiber is the weak point,
i.e. for a factor 0.5, the crack will initiate within the fiber. It is expected that for a factor greater
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than 0.5 but smaller than 1.0 the crack will initiate on the fiber-matrix interface but will first
propagate through the fiber before propagating within the matrix. Although cracks within
the fiber are not expected to occur in ’real life’ it is good to get a complete overview.

Increasing the interface fracture energy has almost no influence on the maximum cohesive
strength, except when some small changes in fracture patterns occur. The total fracture en-
ergy increases for higher factors as more energy is required to fully open a interface cohesive
element. The decrease in fiber fracture energy has no influence on the ETSL. An increasing
fiber diameter increases the initial slope of the ETSL and decreases the fracture energy.

In Appendix A a comparison of the coarse, medium and fine mesh density models can be
found. It is difficult to identify mesh convergence when looking at each simulation separately.
The results for pure shear are spurious, there is no clear convergence visible in most cases.
From the uni-axial extension and mixed load case it is concluded that the coarse or medium
mesh density is not sufficient. However, in the case a fine mesh density a multiple fiber model
will result in a high number of DOF. The simulations would simply take up too much time.
Therefore, a compromise between the medium and fine mesh density was chosen for the
remainder of the simulations, i.e. 0.5 µm.
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Chapter 6

Size Determination of
Microstructural Volume Elements

Before the multiple fiber numerical experiments can be performed the dimensions of the
Microstructural Volume Element (MVE) has to be determined that ensures it is representative
for the larger structure. In Section 2.3.5 of the literature review some Representative Volume
Element (RVE) considerations were mentioned that will be used in this chapter. First in Sec-
tion 6.1 the methodology of three approaches mentioned in the three subsequent sections is
explained. At the end of this chapter some concluding remarks are given.

6.1 Methodology

Obviously, the methodology to determine the dimensions of the RVE is to determine the frac-
ture response for different MVE dimensions. It is expected that convergence can be seen for
an increasing MVE size. The first step is to determine the variables like cohesive parameters,
fiber volume fraction, load cases, number of realisations1 and MVE dimensions.

If all of these parameters are variable the number of simulations would be too high. There-
fore, it is chosen to limit the simulations to a fixed volume fraction and only one load case
with the cohesive properties as listed in Table 4.1. A volume fraction of 40% is chosen and an

1The fiber distribution of multiple fiber models can be realised in different ways. In order to get an average
response a certain number of realisations are simulated.
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arbitrary mixed load case is applied, see LC0 in Table 4.2. The response is averaged over five
realisations for six different sample sizes ranging from 25×25 µm to 150×150 µm .

It was mentioned that there are three approaches, this is due to problems related to artificial
compliance. For a discussion on artificial compliance one can refer to Section 4.2. During
the first comparison of the results obtained with the original approach it was concluded that
no clear conclusion could be drawn, as will be explained in Section 6.2. In order to tackle the
problem with artificial compliance two alternative approaches were studied.

• Case I: Keep the number of cohesive elements constant over all the MVE sizes
• Case II: Reduce the elastic stiffness of the cohesive elements for smaller MVE sizes

The first case ensures that there is an equal amount of cohesive elements and thus an equiv-
alent artificial compliance on all the MVE sizes. The second case lowers the elastic stiffness
of the cohesive elements to ensure an equal amount of artificial compliance, even when the
number of cohesive elements is not equal. Due to limited time the 125 and 150 µm models
were excluded in the alternative approaches, because the analysis of these models took the
longest. As the results are compared to the 100×100 µm model of the original approach only
the 25, 50 and 75 models have to be analysed in the alternative approaches.

6.2 Original Approach

In this section the results and discussion of the original approach in determining the MVE
size is presented. An overview of the fiber distributions are given in Figure 6.2.1 to 6.2.6 for
25, 50, 75, 100, 125 and 150 µm MVEs respectively.

(a) R1 (b) R2 (c) R3 (d) R4 (e) R5

Figure 6.2.1: Different realisations for the 25×25 µm MVE.

(a) R1 (b) R2 (c) R3 (d) R4 (e) R5

Figure 6.2.2: Different realisations for the 50×50 µm MVE.
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(a) R1 (b) R2 (c) R3 (d) R4 (e) R5

Figure 6.2.3: Different realisations for the 75×75 µm MVE.

(a) R1 (b) R2 (c) R3 (d) R4 (e) R5

Figure 6.2.4: Different realisations for the 100×100 µm MVE.

(a) R1 (b) R2 (c) R3 (d) R4 (e) R5

Figure 6.2.5: Different realisations for the 125×125 µm MVE.

(a) R1 (b) R2 (c) R3 (d) R4 (e) R5

Figure 6.2.6: Different realisations for the 150×150 µm MVE.

The individual ETSLs of each realisation and the averaging is given in Appendix B.1. The av-
erage Effective Traction-Separation Law (ETSL) of each MVE size is compared in Figure 6.2.7.
The effect of artificial compliance increases for an increasing MVE size, as can clearly be ob-
served by a decreasing slope of the linear elastic part. Moreover, the softening slope of the
ETSL is significantly higher resulting in an increase in fracture energy. Due to the additional
cohesive elements more energy can be absorbed before the model is fully cracked. No con-
clusions regarding convergence can be obtained from these results.
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Figure 6.2.7: Comparison of the ETSLs of different MVE sizes, original approach.

A conclusion that can be drawn from the above results is that after damage initiation (first
peak) the traction drops but increases again afterwards. After a thorough investigation it is
concluded that this is due to the following. The first time the traction drops the elements
along the fiber-matrix interface are activated and start opening, because this is the weak
point with the lowest cohesive strength. At some point the interface of each fiber is fully sep-
arated and the crack has to propagate into the matrix material. Due the fact that the cohesive
strength of the matrix cohesive elements is higher it is harder to propagate and therefore the
traction is able to increase again. The second drop in traction indicates matrix cracking.

6.3 Alternative Approach: Case I

For the first alternative approach the number of elements is kept constant for each MVE size.
In order to achieve this it is infeasible to change the mesh density. For the 25×25 µm model
this will simply result in a too small mesh density resulting in numerical difficulties within the
MATLAB meshing script. An alternative is to keep the MVE dimensions constant, i.e. 100×100
µm , and increase the fiber diameter to represent smaller MVE sizes. This approach is justified
by the fact that it has to be determined how many details, i.e. fibers, have to be present within
the MVE in order to be representative. Due to the fact that the mesh is changed different
realisations have been generated and are presented in Figure 6.3.1 to 6.3.3.
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(a) R1 (b) R2 (c) R3 (d) R4 (e) R5

Figure 6.3.1: Different realisations for the 25×25 µm MVE.

(a) R1 (b) R2 (c) R3 (d) R4 (e) R5

Figure 6.3.2: Different realisations for the 50×50 µm MVE.

(a) R1 (b) R2 (c) R3 (d) R4 (e) R5

Figure 6.3.3: Different realisations for the 75×75 µm MVE.

In order to check if the number of cohesive elements is equal for each MVE dimension the
resulting meshes are compared to the meshes of the 100×100 µm MVEs of the original ap-
proach in Table 6.1. It can be seen that there is a maximum difference of 2% in the number of
cohesive elements, which is acceptable.

Table 6.1: Difference in number of cohesive elements in the models of the alternative
approach case I, compared to the 100×100 µm model.

Realisation 25×25 µm 50×50 µm 75×75 µm 100×100 µm
1 86384 86266 87451 87604
2 86542 86331 87656 87904
3 87355 85764 87594 87541
4 87484 85310 87651 87607
5 86038 85811 87661 87517

average 86761 85896 87603 87635
error [%] -1,00 -1,98 -0,04 0,00

The detailed results can be found in Appendix B.2 and the average ETSL of each MVE size is
plotted in Figure 6.3.4. In contrast to the original approach the initial slope of each ETSL
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aligns, which indicates an equal amount of artificial compliance. For an increasing MVE
size the maximum cohesive strength decreases, which is due to a higher probability of fiber-
matrix interface cracks due to an increasing number of fibres. In addition the fracture energy
increases for an increasing MVE size. From these results conclusions can be drawn, which
will be given in Section 6.5.
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Figure 6.3.4: Comparison of the ETSLs of different MVE sizes, alternative approach:
case I.

6.4 Alternative Approach: Case II

For the second alternative approach the elastic stiffness of the cohesive elements is decreased
for a decreasing MVE size. In this way the initial slope will be aligned, just as in the previous
section. As there is no clear relation between the number of cohesive elements and the initial
slope of the ETSL the elastic stiffness has to be obtained by trial and error. Compared to the
original elastic stiffness of 10e9 N/mm3 it is concluded that the elastic stiffness should be
decreased to 1.2e7, 6e7 and 1.15e8 N/mm3 for the 25, 50 and 75 µm models respectively. The
same fiber distributions as for the original approach are used as only a material parameter is
changed, not the geometry.
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Figure 6.4.1: Comparison of the ETSLs of different MVE sizes, alternative approach:
case II.

The results of the second alternative approach are given in Figure 6.4.1 and details on the
ETSLs can be found in Appendix B.3. Again the initial slope is quite in line with the 100×100
µm model. However, no clear convergence in the maximum cohesive strength can be seen.
The only aspect that can be observed is the nature of the ETSL after the first peak. For exam-
ple, only one peak is present for the smallest MVE in contrast to two peaks for the other MVE
sizes. The overall conclusions of this chapter are presented in the next section.

6.5 Concluding Remarks

The goal of this chapter was to determine the dimensions of the MVE in which it contains
enough microstructural details in order to be representative for a larger part of the structure,
i.e. a RVE. Three approaches have been presented of which for only one convergence was
observed. According to the first alternative approach, where the number of cohesive ele-
ments was kept constant, it can be concluded that a MVE size of 75×75 µm is representative.
However, this is not observed for the other two approaches.

Due to the limited time available within a masters thesis it was chosen to continue with the
75×75 µm as RVE dimensions. It is recognized that this might not be representative for all
load cases, fiber volume fractions and for changes in material/cohesive properties. A more
detailed study should be performed in order to give a definitive conclusion on this matter.
For now these RVE dimensions are suitable to demonstrate the method that is proposed in
this thesis.
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Chapter 7

Multiple Fiber Representative
Volume Element Simulations and

Results

According to the results from the previous chapter the dimensions of the Representative Vol-
ume Element (RVE) is determined to be 75×75 µm . In this chapter the results of the numeri-
cal experiments, similar to Chapter 5, will be presented. The methodology of this parametric
study will be explained in Section 7.1, followed by the results of the effects of: interface co-
hesive strength, fiber cohesive strength, interface fracture energy, fiber fracture energy and
fiber volume fraction in Section 7.2 to 7.6. Concluding remarks on the results of this chapter
will be given in Section 7.7.

7.1 Methodology

To determine the sensitivity of the cohesive variables and the fiber volume fraction the prop-
erties below are evaluated using the procedure discussed in Section 4.1:

• Section 7.2: interface cohesive strength
• Section 7.3: fiber cohesive strength
• Section 7.4: interface fracture energy
• Section 7.5: fiber fracture energy
• Section 7.6: fiber volume fraction
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First, a reference model with properties as in Table 4.1 and a fiber volume fraction of 40%
is generated. These reference properties and fiber volume fraction are evaluated, indepen-
dently of each other, for values smaller, equal and greater to the matrix reference properties.
Instead of five realisations used before now only four realisations are averaged. This is done
to limit total the number of simulations.

To study the effect of fiber volume fraction three volume fractions are used; 30%, 40% and
50%. This results in 12 fiber distributions as given in Figure 7.1.1, Figure 7.1.2 and 7.1.3. To
study the effects of cohesive variables the fiber distributions as in Figure 7.1.2 is used. Note
that the fiber distributions below are different compared to Figure 6.2.3 due to the fact that
improvements to the meshing script were made.

(a) R1 (b) R2 (c) R3 (d) R4

Figure 7.1.1: Four realisations used for the 30% fiber volume fraction simulations.

(a) R1 (b) R2 (c) R3 (d) R4

Figure 7.1.2: Four realisations used for the 40% fiber volume fraction simulations.

(a) R1 (b) R2 (c) R3 (d) R4

Figure 7.1.3: Four realisations used for the 50% fiber volume fraction simulations.

The meshes of the above fiber distributions have the mesh properties listed in Table 7.1,
where the average of all four realisations is given. The number of nodes, thus Degrees of
Freedom (DOF), and elements increase for a higher volume fraction due to the increase in
number of fibers, resulting in a longer computational time and a higher influence of artificial
compliance. However, it is assumed that this influence is negligible for the purpose of this
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thesis. For future simulations an alignment factor is implemented in the meshing script that
ensures an approximate equal number of nodes and elements for each volume fractions.

Table 7.1: Average properties of all four realisations of the multiple fiber meshes shown
in Figure 7.1.1, Figure 7.1.2 and Figure 7.1.3.

Fiber volume fraction # nodes # bulk elements # cohesive elements
30% 105335 35112 52488
40% 112454 37485 56036
50% 116547 38849 58070

As mentioned in Section 4.1 the multiple fiber simulations will be done for the five load cases
given in Table 4.2. However, during the post-processing of the results and curve fitting (Chap-
ter 8) it was observed that there is a significant difference in simple shear (ε12 6= 0 and ε21 = 0)
and pure shear (ε12 = ε21 6= 0), see Figure 7.1.4 for the reference model. In addition, for the
implementation of the failure criterion in ABAQUS the mode II properties correspond to a
simple shear loading of the cohesive element. More details will be given in Chapter 8.
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Figure 7.1.4: Difference in ETSL for a simple and pure shear loading.

Due to the above an additional load case is evaluated, i.e. a simple shear case with ε12 = 0.21
and ε21 = 0, denoted by LC6. The ETSL plots are generated using the procedure mentioned
in Section 4.4.3 and detailed plots can be found in Appendix B.4 to B.8.
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7.1.1 Short Discussion on Fiber Distribution

A short study on the effect of fiber distribution is performed that in addition gives the oppor-
tunity to verify mesh dependency. A fiber volume fraction of 35% for the 75×75 µm results
in 25 fibers that can be structurally placed. The realisations of the random fiber distribution
models are given in Figure 7.1.5a to 7.1.5d and the structured distribution as in Figure 7.1.5e.
Note that for the results of the structured distribution also the average of four identical reali-
sations, but with different meshes, is used.

(a) R1 (b) R2 (c) R3 (d) R4 (e) Structured

Figure 7.1.5: Effect of fiber distribution; (a) - (d) random fiber distributions and (e) a
structured distribution for a fiber volume fraction of 35%.

For the uni-axial extension load case the results are given in Figure 7.1.6. The random fiber
distribution results in an approximate 10% lower maximum cohesive strength and fracture
energy. For the pure shear and mixed load case, LC2 and LC3, similar results are observed.
The lower strength is explained by the fact that the stress is not evenly distributed for a ran-
dom fiber distribution, resulting in earlier damage initiation at stress concentrations. As a
result the fracture energy is also lower for a random fiber distribution.

The structured fiber distribution simulations have been averaged over four identical realisa-
tions with different meshes. Looking at the ETSL of each realisation, as in Figure 7.1.7, the
effect of mesh dependency can be investigated. Again these results are for uni-axial exten-
sion. The ETSLs align perfectly until δ̃/δm

f ≈ 1.0, after which they deviate. This is explained
by the difference in fracture pattern. The mesh has a strong influence on the fracture pattern
but almost no effect on the resulting ETSL. For the mixed load case the same conclusions
can be drawn. However, for the pure shear load case there is already a significant difference
between the peak of each ETSL. From this it is concluded that for pure shear the results are
spurious and unreliable.
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Figure 7.1.6: Effect of fiber distribution: comparing the ETSL of a random and
structured fiber distribution subjected to uni-axial extension (LC1).
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7.2 Effect of Interface Cohesive Strength

As with the single fiber results the first effect studied is the effect of interface cohesive strength,
i.e. the bonding strength between the fiber and matrix. Compared to the reference model this
value is changed from 25 MPa, factor 0.5 compared to the matrix cohesive strength, to a fac-
tor 1.0 and 2.0. From the single fiber results it was concluded that once the factor t (i )

u /t (m)
u is

larger or equal to 1.0 the crack propagates through the matrix and thus there is an increase
in maximum cohesive strength and fracture energy. In addition, there is not much difference
between a factor 1.0 and 2.0.

The same is observed during the multiple fiber simulations as can be seen in Figure 7.2.1 to
7.2.6. The difference in maximum cohesive strength and fracture energy between a factor 0.5
and 1.0 (or 2.0) is higher compared to the single fiber results due to a higher volume fraction
(40% vs. 10%). In general the above applies for each load case. However, for the shear loading
(LC2 and LC6) there is a difference between a factor 1.0 and 2.0. This is explained by the larger
spread in ETSL between each realisation.
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Figure 7.2.1: Effect of interface cohesive strength (t (i )
u ) on the fracture mechanism, in

terms of a ETSL, of the multiple fiber model subjected to uni-axial extension (LC1).
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Figure 7.2.2: Effect of interface cohesive strength (t (i )
u ) on the fracture mechanism, in

terms of a ETSL, of the multiple fiber model subjected to pure shear (LC2).
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Figure 7.2.3: Effect of interface cohesive strength (t (i )
u ) on the fracture mechanism, in

terms of a ETSL, of the multiple fiber model subjected to a mixed loading (LC3).
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Figure 7.2.4: Effect of interface cohesive strength (t (i )
u ) on the fracture mechanism, in

terms of a ETSL, of the multiple fiber model subjected to a mixed loading (LC4).
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Figure 7.2.5: Effect of interface cohesive strength (t (i )
u ) on the fracture mechanism, in

terms of a ETSL, of the multiple fiber model subjected to a mixed loading (LC5).
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Figure 7.2.6: Effect of interface cohesive strength (t (i )
u ) on the fracture mechanism, in

terms of a ETSL, of the multiple fiber model subjected to simple shear (LC6).

7.3 Effect of Fiber Cohesive Strength

The second effect that is studied is the effect of the fiber cohesive strength. In contrast to
the previous section the cohesive strength of the fiber cohesive elements is changed from 100
MPa (factor 2.0) in the reference model to 50 MPa (factor 1.0) and 25 MPa (factor 0.5). The
results can be observed in Figure 7.3.1 to 7.3.6. In Section 5.3 it was observed that for a factor
0.5 the maximum cohesive strength was lower and the fracture energy higher compared to a
factor of 1.0 and 2.0. In addition there is not much difference in a factor 1.0 and 2.0 due to the
fact that the crack does not initiate in the fiber for these factors.

Identical results are observed in this section. Again, for pure shear in Figure 7.3.2 the results
are spurious and not suitable for future use (fitting). The simple shear results in Figure 7.3.6
are in line with the other load cases and therefore suitable for the curve fitting. The difference
in fracture energy between a factor 0.5 and 1.0 (or 2.0) is significant, especially compared to
the single fiber results, which is due to the increased number of fibers compared to the single
fiber models.
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Figure 7.3.1: Effect of fiber cohesive strength (t ( f )
u ) on the fracture mechanism, in terms

of a ETSL, of the multiple fiber model subjected to uni-axial extension (LC1).
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Figure 7.3.2: Effect of fiber cohesive strength (t ( f )
u ) on the fracture mechanism, in terms

of a ETSL, of the multiple fiber model subjected to pure shear (LC2).
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Figure 7.3.3: Effect of fiber cohesive strength (t ( f )
u ) on the fracture mechanism, in terms

of a ETSL, of the multiple fiber model subjected to a mixed loading (LC3).
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Figure 7.3.4: Effect of fiber cohesive strength (t ( f )
u ) on the fracture mechanism, in terms

of a ETSL, of the multiple fiber model subjected to a mixed loading (LC4).
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Figure 7.3.5: Effect of fiber cohesive strength (t ( f )
u ) on the fracture mechanism, in terms

of a ETSL, of the multiple fiber model subjected to a mixed loading (LC5).
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Figure 7.3.6: Effect of fiber cohesive strength (t ( f )
u ) on the fracture mechanism, in terms

of a ETSL, of the multiple fiber model subjected to simple shear (LC6.
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7.4 Effect of Interface Fracture Energy

The effect of interface fracture energy is the third cohesive parameters that is studied. The
reference value of 0.025 N/mm (factor 0.5) is increased to 0.05 N/mm (factor 1.0) and 0.1
N/mm (factor 2.0). The single fiber results showed a small change in fracture energy, but
almost no change in maximum cohesive strength.

For the results in Figure 7.4.1 to 7.4.6 with respect to the maximum cohesive strength the
same can be concluded. Also, for LC1, LC3, LC4 and LC5 the softening slope of the ETSL
increases for a higher factor, as expected. For the shear load cases, LC2 and LC6, this is not
the case. In the case of pure shear the fracture energy decreases for a higher factor and for
the simple shear case there is not much difference. This is mainly explained by the different
fracture mechanism, i.e. there are shear bands along which the elements slide along each
other.
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Figure 7.4.1: Effect of interface fracture energy (G (i )
f ) on the fracture mechanism, in

terms of a ETSL, of the multiple fiber model subjected to uni-axial extension (LC1).



92 Multiple Fiber Representative Volume Element Simulations and Results

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

δ/δ
(m)
f

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

t̃/
t(

m
)

u

G
(i)

f /G
(m)

f = 0.5  (K = 55372 N/mm3 , tu = 35.70 N/mm2 , Gf = 0.099 N/mm)

G
(i)

f /G
(m)

f = 1.0  (K = 55287 N/mm3 , tu = 30.48 N/mm2 , Gf = 0.087 N/mm)

G
(i)

f /G
(m)

f = 2.0  (K = 55266 N/mm3 , tu = 30.15 N/mm2 , Gf = 0.075 N/mm)

Figure 7.4.2: Effect of interface fracture energy (G (i )
f ) on the fracture mechanism, in

terms of a ETSL, of the multiple fiber model subjected to pure shear (LC2).
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Figure 7.4.3: Effect of interface fracture energy (G (i )
f ) on the fracture mechanism, in

terms of a ETSL, of the multiple fiber model subjected to a mixed loading (LC3).
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Figure 7.4.4: Effect of interface fracture energy (G (i )
f ) on the fracture mechanism, in

terms of a ETSL, of the multiple fiber model subjected to a mixed loading (LC4).
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Figure 7.4.5: Effect of interface fracture energy (G (i )
f ) on the fracture mechanism, in

terms of a ETSL, of the multiple fiber model subjected to a mixed loading (LC5).
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Figure 7.4.6: Effect of interface fracture energy (G (i )
f ) on the fracture mechanism, in

terms of a ETSL, of the multiple fiber model subjected to simple shear (LC6).

7.5 Effect of Fiber Fracture Energy

The last cohesive parameter that is studied is the fiber fracture energy. The reference value
of 0.1 N/mm (factor 2.0) is decreased to 0.05 N/mm (factor 1.0) and 0.025 N/mm (factor 0.5).
The single fiber results showed little to no effect due to the fact that the crack does not interact
with the fiber.

For the results in Figure 7.5.1 to 7.5.6 the same can be concluded, except for the pure shear
load case in Figure 7.5.2 due to the spurious effects. These effects are not visible with the
simple shear results. It is expected that the fiber fracture energy will have an influence similar

to the interface fracture energy in the case the crack initiates in the fiber, i.e. for a t ( f )
u /t (m)

u < 1.
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Figure 7.5.1: Effect of fiber fracture energy (G ( f )
f ) on the fracture mechanism, in terms

of a ETSL, of the multiple fiber model subjected to uni-axial extension (LC1).
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Figure 7.5.2: Effect of fiber fracture energy (G ( f )
f ) on the fracture mechanism, in terms

of a ETSL, of the multiple fiber model subjected to pure shear (LC2).
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Figure 7.5.3: Effect of fiber fracture energy (G ( f )
f ) on the fracture mechanism, in terms

of a ETSL, of the multiple fiber model subjected to a mixed loading (LC3).
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Figure 7.5.4: Effect of fiber fracture energy (G ( f )
f ) on the fracture mechanism, in terms

of a ETSL, of the multiple fiber model subjected to a mixed loading (LC4).
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Figure 7.5.5: Effect of fiber fracture energy (G ( f )
f ) on the fracture mechanism, in terms

of a ETSL, of the multiple fiber model subjected to a mixed loading (LC5).
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Figure 7.5.6: Effect of fiber fracture energy (G ( f )
f ) on the fracture mechanism, in terms

of a ETSL, of the multiple fiber model subjected to simple shear (LC6).
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7.6 Effect of Fiber Volume Fraction

Next to the parameters of the cohesive element the effect of fiber volume fraction is studied.
The reference model has a volume fraction of 40%, which is changed to 30% and 50% by in-
creasing the number of fibers. Note that the cohesive parameters are kept constant. Similar
to the effect of fiber diameter for the single fiber results it is expected that the slope will in-
crease for a higher fiber volume fraction, the maximum cohesive strength is about constant
and the fracture energy decreases.

In Figure 7.6.1 to 7.6.6 the result of each load case is presented. The slope increases for a
higher volume fraction in all cases, as expected. However, changes in the maximum cohe-
sive strength are observed. For most load cases the maximum cohesive strength increases
for a higher volume fraction. In addition, the fracture energy decreases for a higher volume
fraction except for the shear load cases due to identical reasons as mentioned in the previous
sections.

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6

δ/δ
(m)
f

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

t̃/
t(

m
)

u

30%  (K = 115916 N/mm3 , tu = 46.59 N/mm2 , Gf = 0.091 N/mm)

40%  (K = 141637 N/mm3 , tu = 46.21 N/mm2 , Gf = 0.084 N/mm)

50%  (K = 177135 N/mm3 , tu = 47.49 N/mm2 , Gf = 0.070 N/mm)

Figure 7.6.1: Effect of fiber volume fraction (V f ) on the fracture mechanism, in terms of
a ETSL, of the multiple fiber model subjected to uni-axial extension (LC1).
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Figure 7.6.2: Effect of fiber volume fraction (V f ) on the fracture mechanism, in terms of
a ETSL, of the multiple fiber model subjected to pure shear (LC2).
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Figure 7.6.3: Effect of fiber volume fraction (V f ) on the fracture mechanism, in terms of
a ETSL, of the multiple fiber model subjected to a mixed loading (LC3).
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Figure 7.6.4: Effect of fiber volume fraction (V f ) on the fracture mechanism, in terms of
a ETSL, of the multiple fiber model subjected to a mixed loading (LC4).
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Figure 7.6.5: Effect of fiber volume fraction (V f ) on the fracture mechanism, in terms of
a ETSL, of the multiple fiber model subjected to a mixed loading (LC5).
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Figure 7.6.6: Effect of fiber volume fraction (V f ) on the fracture mechanism, in terms of
a ETSL, of the multiple fiber model subjected to simple shear (LC6).

7.7 Concluding Remarks

In this chapter the effect of cohesive parameters and fiber volume fracture on the fracture
mechanisms of the multiple fiber RVE were studied for a total of six load cases. In general
the results are similar to the single fiber results and therefore identical conclusions can be
drawn, see Section 5.7. The only additional conclusion that is drawn is that the effect of fiber
fracture energy method is flawed. Due to the fact that the crack does not initiate in the fiber it
appears to have no influence on the fracture response. During a future study the effect should
be studied with a fiber cohesive strength equal to a factor 0.5. In addition, it is concluded
that the results of the pure shear load case are spurious and therefore not suitable for future
use. Instead the simple shear load case gives far better results. The other load cases show
consistent results.

The computational time for each model was quite high due to a large number of DOF, i.e.
ranging from approximately 20 hours (uni-axial extension) to 70 hours (pure/simple shear).
However, due to the fact that these simulations only have to be performed once the compu-
tational time is less important to the required accuracy.

For the curve fitting it is important that all the results of the multiple fiber simulations are
combined into a single equation for each parameter of the failure criterion in terms of a
Traction-Separation Law (TSL). It is observed that the fracture pattern has a strong influ-
ence on the effect of the cohesive parameters, for instance there is almost no effect of fiber
fracture energy because the crack does not interact with the fibers. In the next chapter it is
discussed how the results are assembled into one equation.
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Chapter 8

Effective Model: Correlation and
Results

From the results presented in Chapter 7 a failure criterion has to be formulated. The first step
is to determine the effective parameters for each data point1, see Section 8.1. After this there
are two separate stages of curve fitting in Section 8.2 and 8.3. On the one hand the results of
mode I (LC1) and mode II (LC6) are fitted and on the other hand the mode mixity is fitted us-
ing the mixed load cases. In the end the assembly of the failure criterion and implementation
in ABAQUS is discussed in Section 8.4.

8.1 Determining Effective Parameters

In this section the effective parameters of the resulting Effective Traction-Separation Law
(ETSL) for each data point are determined. For each load case there are 11 data points, i.e.
the reference case and per effect studied two cases. The parameters of each data point are
given in Table 8.1. For each data point an ETSL has been generated and from this ETSL three
parameters can be determined that describe a bilinear Traction-Separation Law (TSL); the
initial slope (K ), maximum cohesive strength (tu) and fracture energy (G f ). A bilinear TSL is
chosen as it is the most simple TSL and can easily be implemented in ABAQUS . It should be
noted that the results of pure shear LC2 are neglected because the results were spurious and
unreliable, instead the results of simple shear LC6 are utilised.

1A data point is the result of a simulation in terms of the three parameters of a bilinear TSL.
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Table 8.1: Description of the data points corresponding to all simulations. For each load
case the data points are identical.

# t (i )
u /t (m)

u t ( f )
u /t (m)

u G (i )
f /G (m)

f G ( f )
f /G (m)

f V f Description

1 0.5 2.0 0.5 2.0 0.4 Reference case

2 1.0 2.0 0.5 2.0 0.4 t (i )
u ×2

3 2.0 2.0 0.5 2.0 0.4 t (i )
u ×4

4 0.5 1.0 0.5 2.0 0.4 t ( f )
u ×0.5

5 0.5 0.5 0.5 2.0 0.4 t ( f )
u ×0.25

6 0.5 2.0 1.0 2.0 0.4 G (i )
f ×2

7 0.5 2.0 2.0 2.0 0.4 G (i )
f ×4

8 0.5 2.0 0.5 1.0 0.4 G ( f )
f ×0.5

9 0.5 2.0 0.5 0.5 0.4 G ( f )
f ×0.25

10 0.5 2.0 0.5 2.0 0.3 V f = 30%

11 0.5 2.0 0.5 2.0 0.5 V f = 50%

The goal is to find a versatile and consistent method that determines the parameters of the
ETSL and can be scripted using PYTHON . The first parameter, the initial slope, is relatively
easy to determine by dividing the traction by the separation of the first increment point. Just
as simple is the determination of the maximum cohesive strength, which is just the maximum
of the ETSL. The fracture energy of the resulting bilinear TSL is assumed equal to the fracture
energy of the ETSL.
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Figure 8.1.1: Illustration of the bilinear TSL for the reference model subjected to
uni-axial extension (LC1).
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The procedure above gives an overall good bilinear approximation, of which examples are
shown in Figure 8.1.1 and 8.1.2, i.e. the bilinear TSL for the model with reference proper-
ties for LC1 and LC6 respectively. From the data points of all realisations an average ETSL is
determined, which is extrapolated to zero traction and from this curve the effective bilinear
TSL is derived. In Figure 8.1.1 the maximum cohesive strength aligns perfectly with the peak
of the ETSL. However, for the case in Figure 8.1.2 the bilinear TSL starts deviating from the
ETSL. Although the shape of the bilinear TSL is different, the physical behaviour in terms of
maximum cohesive strength and fracture energy is assumed similar to the ETSL.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0

δ/δ
(m)
f

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

t̃/
t(

m
)

u

Average fit

Extrapolation

Bilinear approximation

Data points of all 4 realisations

K  = 27744 N/mm3

tu  = 55.11 N/mm2

Gf = 0.280 N/mm

Figure 8.1.2: Illustration of the bilinear TSL for the reference model subjected to simple
shear (LC6).

The above are just two examples, the bilinear TSL of each data point is given in Appendix B.
For each data point and load case the three parameters that describe a bilinear TSL are listed:
the initial slope in Table 8.2, the maximum cohesive strength Table 8.3 and the fracture energy
in Table 8.5. In addition the initiation at separation (δi ) is determined using Equation 8.1.1
and is given in Table 8.4. All these values will be used for the curve fitting in Section 8.2 and
8.3.

δLCi
i = t LCi

u

K LCi
(8.1.1)
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Table 8.2: Initial slope of the bilinear
TSL for each data point and load case.

Units are N/mm3.

# K LC 1 K LC 3 K LC 4 K LC 5 K LC 6

1 141637 100562 84530 118969 27744
2 139524 100623 84450 120572 27709
3 141588 100628 84369 120454 27714
4 141565 100556 84312 117925 27738
5 141639 100632 85259 120666 27825
6 141622 100586 84959 120747 27749
7 141546 100571 85149 120876 27704
8 141640 100596 84793 118953 27751
9 141629 100596 84707 119028 27746

10 115916 81472 67364 99094 21083
11 177135 126697 105694 150395 35962

Table 8.3: Maximum cohesive
strength, i.e. peak, of the bilinear TSL
for each data point and load case.

Units are N/mm2.

# tu
LC 1 tu

LC 3 tu
LC 4 tu

LC 5 tu
LC 6

1 46.21 41.58 40.31 40.93 55.11
2 65.12 60.25 57.12 62.08 61.90
3 66.89 61.18 57.68 62.92 66.92
4 45.75 41.55 40.15 39.26 53.78
5 38.33 36.39 37.58 34.71 47.75
6 46.30 42.19 41.34 41.70 55.92
7 46.20 42.44 41.81 41.74 51.78
8 46.21 41.61 40.42 40.93 54.75
9 46.21 41.63 40.38 40.96 56.20

10 46.59 44.47 43.67 43.06 43.83
11 47.49 40.43 38.05 40.96 61.89

Table 8.4: Separation at damage
initiation for each data point and load

case. Units are µm.

# δi
LC 1 δi

LC 3 δi
LC 4 δi

LC 5 δi
LC 6

1 0.326 0.413 0.477 0.344 1.986
2 0.467 0.599 0.676 0.515 2.234
3 0.472 0.608 0.684 0.522 2.415
4 0.323 0.413 0.476 0.333 1.939
5 0.271 0.362 0.441 0.288 1.716
6 0.327 0.419 0.487 0.345 2.015
7 0.326 0.422 0.491 0.345 1.869
8 0.326 0.414 0.477 0.344 1.973
9 0.326 0.414 0.477 0.344 2.025

10 0.402 0.546 0.648 0.435 2.079
11 0.268 0.319 0.360 0.272 1.721

Table 8.5: Fracture energy, i.e. area,
of the bilinear TSL for each data point

and load case. Units are N/mm.

# G f
LC 1 G f

LC 3 G f
LC 4 G f

LC 5 G f
LC 6

1 0.084 0.134 0.140 0.137 0.280
2 0.113 0.157 0.210 0.164 0.252
3 0.113 0.177 0.224 0.186 0.269
4 0.084 0.135 0.146 0.137 0.294
5 0.099 0.196 0.167 0.167 0.303
6 0.103 0.171 0.173 0.163 0.304
7 0.133 0.214 0.191 0.222 0.298
8 0.083 0.136 0.128 0.137 0.278
9 0.080 0.136 0.141 0.139 0.285

10 0.091 0.148 0.156 0.131 0.246
11 0.070 0.113 0.140 0.116 0.267

8.2 Mode I and II Parameter Curve Fitting

Now that the bilinear TSL parameters of each data point are known from the previous section,
the correlation and curve fitting can be performed. In this section the parameters of the mode
I and mode II load case are fitted, i.e. the uni-axial extension and simple shear load case
respectively. The goal is to define an equation for each parameter that can reproduce the
values for any data point with random variables2. For instance as in the form shown below.

2In this context a parameter is either the initial slope (K ), maximum cohesive strength (tu ) or fracture energy
(G f ). The term variable refers to the four cohesive input variables and the fiber fraction.
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In the end the mode I and mode II properties are used in ABAQUS for fracture simulations on
a macroscopic scale.

K I ,I I = f I ,I I (x1, x2, x3, x4, x5) (8.2.1)

t I ,I I
u =g I ,I I (x1, x2, x3, x4, x5) (8.2.2)

G I ,I I
f =h I ,I I (x1, x2, x3, x4, x5) (8.2.3)

where,

x1 = t (i )
u

t (m)
u

, x2 = t ( f )
u

t (m)
u

, x3 =
G (i )

f

G (m)
f

, x4 =
G ( f )

f

G (m)
f

, x5 =V f

The equations above are fitted to the bilinear TSL parameters of the uni-axial extension and
simple shear load case using a multiple variable least squares fit. A multiple variable least
squares fit is performed by solving a linear system of equations as given below.

AT Ac = AT y (8.2.4)

where c is a vector containing the unknown coefficients of the multiple variable equation, y
is a vector with the data points to which the curve is fitted and A contains the values of each
variable xi . For instance, if each variable is assumed to vary linearly as in Equation 8.2.5 the
linear system of equations can be assembled for n data points.

y = c0 + c1x1 + c2x2 + c3x3 + c4x4 + c5x5 (8.2.5)


1 x(1)

1 x(1)
2 x(1)

3 x(1)
4 x(1)

5
1 x(2)

1 x(2)
2 x(2)

3 x(2)
4 x(2)

5
...

...
...

...
...

...
1 x(n)

1 x(n)
2 x(n)

3 x(n)
4 x(n)

5


︸ ︷︷ ︸

A



c0

c1

c2

c3

c4

c5


︸ ︷︷ ︸

c

=


y (1)

y (2)

...
y (n)


︸ ︷︷ ︸

y

(8.2.6)

The linear system in Equation 8.2.6 can easily be solved for the unknown coefficients in c
using the A matrix and its transpose and the data points in the y vector to which the data
has to be fitted. However, the dependence on a variable may not always be linear and an-
other function might give a better fit. Therefore the Equation 8.2.5 is generalised to be able to
accommodate for power laws3, see Equation 8.2.7.

3A power law is preferred over a polynomial or exponential as the behaviour is more monotonic. In addition
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y = c0 + c1xb1
1 + c2xb2

2 + c3xb3
3 + c4xb4

4 + c5xb5
5 (8.2.7)

The above relation is nonlinear, i.e. the A matrix becomes of the form below where each
column xi = x(1)

i , x(2)
i , ..., x(n)

i has an unknown power bi .

A = (
1 x1

b1 x2
b2 x3

b3 x4
b4 x5

b5
)

(8.2.8)

In order to solve this nonlinear system of equations each power bi is determined separately
for each variable. Before this is done tolerances are used to determine if the dependence on
an individual variable is constant (bi = 0), linear (bi = 1) or otherwise. In the case bi = 0 the
column of the corresponding variable in the A matrix is removed. In case it is otherwise, a
power law fit of an individual variable is performed.

An example for the effect of variable x1 = t (i )
u /t (m)

u on the maximum cohesive strength for LC1
will be shown below. The effect of variable x1 is given by the first three data points in Ta-
ble 8.1, i.e. x1 = 0.5,1.0,2.0. The corresponding maximum cohesive strengths from Table 8.3
are 46.21, 65.12, 66.89 respectively. In this case the power law fit is described by;

t LC 1
u = y = c1xb1

1 (8.2.9)

which is linearised by taking the natural logarithmic of both sides;

log(y) = log(c1xb1
1 ) = log(c1)+b1 · log(x1) (8.2.10)

which is a linear equation that can be solved using Equation 8.2.4 where;

A =
1 log(0.5)

1 log(1.0)
1 log(2.0)

 (8.2.11)

y =
log(46.21)

log(65.21)
log(66.89)

 (8.2.12)

As a result a value of 0.267 is found for b1. In some cases a simple shift of the power law, i.e.
xi − x0i , can result in a better fit. Therefore another minimisation over the above method is

the effect of each individual variable is represented by only three data points. A polynomial with order two can
produce a perfect fit through those three data points but outside the range of these data points the polynomial fit
may be significantly off.
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performed for x0i in the range from -4 to 0. If x0,i is not zero this value has to be subtracted
from the corresponding vector (xi −x0,i )b

i in Equation 8.2.8.

The above procedure is performed for each variable separately and the resulting bi can now
be implemented in Equation 8.2.8. Subsequently the multiple variable system as in Equa-
tion 8.2.4 is solved.
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Figure 8.2.1: Multiple variable least squares fit of the three bilinear TSL parameters as a
function of the five variables for mode I (uni-axial extension). The effect of each variable
is shown individually. Note that the five x-axes are applicable for the subplots in vertical
direction and the three y-axes are applicable for the subplots in horizontal direction.

With the above procedure the results for the mode I parameters can be illustrated as in in
Figure 8.2.1. Here the values of K , tu and G f for each data point of LC1 from Table 8.2 to
8.5 are plotted. In addition the fitted curves, as in the equations Equation 8.2.13 to 8.2.15,
are plotted for each variable separately4. From these equations it is observed that the initial
slope, K I , is only depending on the fiber volume fraction x5, which is expected because the
cohesive properties do not change the linear elastic behaviour of the Representative Volume
Element (RVE). The maximum cohesive strength, t I

u depends only on the input cohesive
strengths. The fracture energy G I

f depends on all variables except the fiber fracture energy
x4. However, this is mainly due to the fracture pattern that does not interact with the fiber

4One variable (xi ) is evaluated for the range 0 to 4 (or 0.2 to 0.6 for V f ) while keeping the other variables
constant at the reference value of data point 1.
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cohesive elements. It is expected that if the effect of fiber fracture energy was studied with
x2 = 0.5 instead of 1.0 a similar effect as the effect of interface fracture energy will be observed.
This is one of the limitations of the method, the fracture pattern has a significant influence
on the parameters, especially the fracture energy.

K I =−19874+306096 · x5 (8.2.13)

t I
u =−48.71+62.00 · x0.267

1 +40.43 · x0.135
2 (8.2.14)

G I
f =−0.200+0.125 · x0.210

1 +0.088 · x−0.113
2 +0.034 · x3 +0.048 · x−0.499

5 (8.2.15)

Table 8.6: Comparison of the mode I bilinear TSL parameters of the original data points
and the predicted values of the curve fit functions; Equation 8.2.13, 8.2.14 and 8.2.15.

#
K LC 1

N/mm3
K I

N/mm3 error
tu

LC 1

N/mm2
tu

I

N/mm2 error
G f

LC 1

N/mm
G f

I

N/mm
error

1 141637 142313 0.48% 46.21 47.21 2.16% 0.084 0.083 2.22%
2 139524 142313 2.00% 65.12 57.68 11.43% 0.113 0.100 11.57%
3 141588 142313 0.51% 66.89 70.27 5.05% 0.113 0.119 5.39%
4 141565 142313 0.53% 45.75 43.25 5.47% 0.084 0.089 5.93%
5 141639 142313 0.48% 38.33 39.64 3.42% 0.099 0.097 2.39%
6 141622 142313 0.49% 46.30 47.21 1.97% 0.103 0.100 3.40%
7 141546 142313 0.54% 46.20 47.21 2.18% 0.133 0.135 0.95%
8 141640 142313 0.47% 46.21 47.21 2.16% 0.083 0.083 0.98%
9 141629 142313 0.48% 46.21 47.21 2.16% 0.080 0.083 3.25%

10 115916 111703 3.63% 46.59 47.21 1.34% 0.091 0.094 3.13%
11 177135 172922 2.38% 47.49 47.21 0.60% 0.070 0.075 5.93%

Comparing the values of the original data points and the values determined by the equations
above gives the results in Table 8.6. Overall the error is acceptable, for the maximum cohe-
sive strength and fracture energy prediction of data point 2 the highest error is observed. In
Figure 8.2.1 the difference between the data point and multiple variable curve fit is clearly vis-
ible. This is due to the change in fracture pattern, i.e. for x1 ≥ 1 the crack propagates through
the matrix and thus the effective maximum cohesive strength and fracture energy is higher.
As mentioned before, there is only little difference between a factor 1.0 or 2.0. In order to fit
this data better more data points are required.
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Figure 8.2.2: Multiple variable least squares fit of the three bilinear TSL parameters as a
function of the five variables for mode II (simple shear). The effect of each variable is
shown individually. Note that the five x-axes are applicable for the subplots in vertical
direction and the three y-axes are applicable for the subplots in horizontal direction.

For the mode II curve fitting the results are summarised in Figure 8.2.2, with the correspond-
ing equations in Equation 8.2.16 - 8.2.18. Again the initial slope, K is only dependent on the
fiber volume fraction. The maximum cohesive strength, tu , is now also depending on the in-
terface fracture energy and fiber volume fraction. The same holds for the fracture energy. This
is partly explained by the difference in loading condition. The other part is due to the method
used for the determination of the bilinear TSL parameters in Section 8.1. In the end the errors
between the original data points and predicted values, listed in Table 8.7, are acceptable.

K I I =−1873+74393 · x5 (8.2.16)

t I I
u =−118.84+64.56 · x0.140

1 +42.22 · x0.103
2 +32.63 · x−0.045

3 +90.26 · x5 (8.2.17)

G I I
f =−0.750+0.263 · (x1 +0.04)−0.030 −0.021 · x2 +0.541 · x0.045

3 +0.317 · x0.173
5 (8.2.18)
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Table 8.7: Comparison of the mode II bilinear TSL parameters of the original data points
and the predicted values of the curve fit functions; Equation 8.2.16, 8.2.17 and 8.2.18.

#
K LC 2

N/mm3
K I I

N/mm3 error
tu

LC 2

N/mm2
tu

I I

N/mm2 error
G f

LC 2

N/mm
G f

I I

N/mm
error

1 27744 27884 0.51% 55.11 54.87 0.44% 0.280 0.272 2.88%
2 27709 27884 0.63% 61.90 60.84 1.72% 0.252 0.267 5.85%
3 27714 27884 0.61% 66.92 67.42 0.75% 0.269 0.261 2.75%
4 27738 27884 0.53% 53.78 51.73 3.81% 0.294 0.293 0.31%
5 27825 27884 0.21% 47.75 48.81 2.22% 0.303 0.303 0.18%
6 27749 27884 0.49% 55.92 53.84 3.72% 0.304 0.288 5.10%
7 27704 27884 0.65% 51.78 52.83 2.04% 0.298 0.305 2.54%
8 27751 27884 0.48% 54.75 54.87 0.22% 0.278 0.272 2.21%
9 27746 27884 0.50% 56.20 54.87 2.37% 0.285 0.272 4.59%

10 21083 20445 3.03% 43.83 45.84 4.58% 0.246 0.259 5.05%
11 35962 35323 1.78% 61.89 63.90 3.25% 0.267 0.282 5.75%

8.3 Mode Mixity Curve Fitting

In the previous section the bilinear TSL parameters for pure mode I and pure mode II were
fitted. At this point a mode I and II TSL can be generated for a data point with random vari-
ables. In this section the mode mixity is fitted, i.e. how do the mode I and II TSL interact with
each other in the case of a mixed loading. The resulting equations for the three bilinear TSL
parameters will represent the resulting failure criterion.

The first step is to find a method to determine the expected crack opening normal (n) as a
function of the input strain tensor, see Equation 4.3.5. The crack opening normal is required
to determine the macroscopic strain tensor, which in turn is required to determine the mode
mixity. The idea is that the microscopic RVE represents one single cohesive element on the
macroscopic scale. The response of the macroscopic cohesive element loaded with εL should
be equal to the response of the microscopic RVE loaded with ε. The relation between the
microscopic and macroscopic scale is illustrated in Figure 8.3.1.

t0= 0

MACRO
1

2 3

4

en/δn

es/δs

MICRO

1

2
n

RVE

crack line

θ

Figure 8.3.1: Illustration of the relation between the microscopic RVE and the single
macroscopic cohesive element. The macroscopic strains are described by Equation 8.3.4

and the cohesive element has an initial thickness of zero mm (t0 = 0).
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It is expected that the crack opening normal (n) aligns with the highest principal strain direc-
tion, which is obtained by solving the eigenvalue problem below.

(ε−λI ) = 0 (8.3.1)

Solving this eigenvalue problem gives two eigenvalues;

λ1,2 =
(e11 +e22)±

√
e2

11 +e2
22 +4e12e21 −2e11e22

2
(8.3.2)

With the maximum eigenvalue, λm = max(λ1,2), the crack opening direction is equal to the
eigenvector corresponding to the largest eigenvalue. Which is equivalent to the equation
below.

n =
[

n1

n2

]
=

[
(λm −e22)/e21

1

]
(8.3.3)

The crack angle as in Figure 4.1.3 is determined by Equation 4.4.5. Comparing this angle with
the actual average crack angle from the simulations in Chapter 7 gives the results in Table 8.8.
The error is acceptable and thus the above method is valid.

Table 8.8: Comparison of the predicted crack angle (θ) and the average crack angle of
the simulations (θsi m) subjected to a mixed loading.

θ θsi m error
LC3 45.0◦ 44.2◦ 1.18%
LC4 49.7◦ 48.7◦ 2.05%
LC5 31.7◦ 32.6◦ 2.76%

εL =
[

en

es

]
= ε · n

|n| (8.3.4)

Multiplying the normalised expected crack opening normal with the applied strain tensor
gives the normal (mode I) and shear (mode II) strain along the crack, i.e. εL as in the equation
above. The |n| is the magnitude of n.

As discussed in Section 3.2 the constitutive thickness of the cohesive element is equal to 1.0,
the default setting in ABAQUS , so that δn = en and δs = es . From this fact the macroscopic
separation ratio can be determined using Equation 8.3.5. For pure mode I this ratio is 0 (δs =
0) and for pure mode II it is ∞ (δn = 0).
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Table 8.9: Macroscopic strain fractions (α) and mode mixity parameter (β) for each load
case.

α [-] β [rad] Description
LC1 0 0 Mode I
LC3 1 0.25π Mixed mode equal
LC4 1.18 0.28π Mixed mode (e12 > e11)
LC5 0.62 0.18π Mixed mode (e12 < e11)
LC6 ∞ 0.50π Mode II

α= δs

δn
= n2

n1

(n2=1)= e21

λm −e22
(8.3.5)

β= tan−1α (8.3.6)

The resulting mode mixity parameter (β) is expressed as in Equation 8.3.6 in terms of an
angle. As a result the mode mixity for each load case can be determined as listed in Table 8.9.
The goal of this section is to find the three parameters of a bilinear TSL as a function of the
mode mixity, the mode I and the mode II properties, for example in the form as shown below.

K β = f β(β,K I ,K I I ) (8.3.7)

tβu = gβ(β, t I
u , t I I

u ) (8.3.8)

Gβ

f = hβ(β,G I
f ,G I I

f ) (8.3.9)

8.3.1 Initial Slope Mode Mixity Fitting

In order to find the initial slope as a function of the mode mixity, mode I and II properties
curve fitting has to be performed. It is chosen to go with an elliptical relation between the
mode I and II properties, i.e. as illustrated in Figure 8.3.2. In this way the mode I and II
properties will always be exact. This elliptical curve is described by Equation 8.3.10 where
examples for the variable mk are illustrated in Figure 8.3.2.

(
K I∗

K I

)mk

+
(

K I I∗

K I I

)mk

= 1 (8.3.10)

where,

K I∗ = K I cosβ2/mk (8.3.11)

K I I∗ = K I I sinβ2/mk (8.3.12)
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As a result K β is described by,

K β =
√(

K I cosβ2/mk
)2 + (

K I I sinβ2/mk
)2 (8.3.13)

In the above relation only the power mk is unknown and this is the parameter that is fitted
using to one or multiple mixed load cases by minimising the sum of squared residuals (S).
The sum of squared residuals is determined by Equation 8.3.14 where n are the number of
data points, yi is the actual value and ri is the predicted value. It was studied if better results
would be obtained if multiple load cases were used for fitting. Therefore, for the results in the
subsequent sections either LC3 or LC4 and LC5 are used for the curve fitting. Any combina-
tion of load cases can be used but ideally only one load case is required. The other load cases
are used for verification.

S =
n∑

i=1

(
yi − ri

)2 (8.3.14)

KI

KII

KI*

KII*

mk = 0.5

β

K
β

mk = 1.0
mk = 2.0

Figure 8.3.2: Illustration of the elliptical
relation in Equation 8.3.10 between the

mode I and II parameters. The angle β is a
function of the mode mixity and K β is equal
to the distance between the origin and any

point on the ellipse.
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Figure 8.3.3: Example of the
initial slope mode mixity fitting
of data point 1 using only LC3.
The curve fit is described by
Equation 8.3.13 with mk

determined by Equation 8.3.15.

Applying the above procedure to the initial slopes (K ) of the TSL for mode I and II as listed
in Table 8.2 gives a power mk for each data point. There are several ways one can deal with
these powers for each data point; take the individual value, the mean value or use a multiple
variable least squares fit (MLSQ) to describe the power by a function. Using the individual
power of each data point gives the best curve fit but multiple definitions for the power mk .
Taking the mean value gives a single definition but the results will be less accurate. For the
multiple variable least squares fit the same procedure as in Section 8.2 is used, which gives
the power as a function of the five variables.
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Table 8.10: Powers mk , corresponding to Equation 8.3.13, that result in the best initial
slope fit for each data point.

LC3 LC4 AND LC5
# mk mk

1 1.918 1.642
2 2.002 1.730
3 1.924 1.661
4 1.921 1.622
5 1.921 1.689
6 1.920 1.682
7 1.922 1.692
8 1.920 1.649
9 1.921 1.648

10 1.879 1.621
11 1.951 1.655

avg 1.927 1.663

For each data point and load case the actual value for K and guessed value can be compared
and verified using the load cases that are not used for the fitting. The average errors of all
data points for using either the individual, mean or MLSQ value of the power are listed in
Table 8.11. Either LC3 or both LC4 and LC5 are used for the fitting and as a comparison
mk = 1 and mk = 2 (independent of load case used) given. Note that for LC1 (mode I) and
LC6 (mode II) the error is always 0% due to the elliptical relation between the mode I and II
properties.

Table 8.11: Average error between the actual and predicted initial slope of all data points
using several methods. Using Equation 8.3.13 and either mk from Table 8.10, the mean or

a multiple variable least squares fit as a function of the variables.
LC3 LC4 AND LC5

Individual Mean MLSQ Individual Mean MLSQ mk = 1 mk = 2
LC1 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
LC3 0.00% 0.33% 0.21% 5.57% 5.55% 5.56% 28.35% 1.33%
LC4 9.26% 9.27% 9.27% 1.80% 1.82% 1.81% 27.51% 11.05%
LC5 0.82% 0.83% 0.90% 2.37% 2.36% 2.36% 14.45% 1.18%
LC6 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

It can be seen that there is not much difference when either the individual value for each
data point, the mean or a multiple variable least square fit is used. Using only LC3 gives a
good fit except for LC4, using both LC4 and LC5 gives better results for LC4. However, the
results of using only LC3 are preferred, especially when taking into account that only one
mixed load case is required which reduces the number of simulations. The mean value gives
good results and because this value is close to a power of 2, using mk = 2 also gives acceptable
results. In the end it is chosen to go with the multiple variable least squares fit using LC3 as
in Equation 8.3.15 as this gives the best results. Here it is also taken into account that if more
data points are added the mean value might result in higher errors.

mk =−9.781+11.576 · x0.002
1 +0.359 · x5 (8.3.15)
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8.3.2 Maximum cohesive strength mode mixity fitting

The second parameter of the bilinear TSL is the maximum cohesive strength. In order to fit
this parameter the separation at damage initiation (δi ) was determined as in Table 8.4. This
is done because the curve fitting of the maximum cohesive strength is not straightforward
due to the fact that the values of the mixed cases are lower compared to the values of both
mode I and II. In the end the maximum cohesive strength is determined by multiplying the

fitted slope (K β) with the fitted separation at damage initiation (δβi ), as will be discussed in
Section 8.3.4.

Table 8.12: Powers md ,1 and
md ,2, corresponding to

Equation 8.3.16, that result in the
best separation at damage

initiation fit for each data point.

LC3 LC4 AND LC5
# md ,1 md ,2 md ,1 md ,2

1 0.244 4.250 0.247 4.332
2 0.326 3.743 0.361 3.463
3 0.343 3.841 0.381 3.523
4 0.246 4.165 0.212 4.850
5 0.239 3.989 0.240 4.222
6 0.255 4.189 0.256 4.313
7 0.252 4.012 0.250 4.170
8 0.243 4.236 0.246 4.324
9 0.246 4.279 0.250 4.356

10 0.339 3.543 0.339 3.750
11 0.164 4.833 0.140 5.550

avg 0.263 4.098 0.265 4.262
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Figure 8.3.4: Example of the separation at
initiation (δi ) mode mixity fitting of data

point 1 using only LC3. The curve fit in the
form of a power law as described by
Equation 8.3.16 with md ,1 and md ,2

determined by Equation 8.3.17 and 8.3.18.

From the results in Table 8.4 it can be seen that the mode II (LC6) separation is significantly
higher compared to the other separations. In this case it is reasonable to use a power law that
has an y-intercept at δI

i as in Equation 8.3.16. The power fitting is done using a simple least
squares fit as has been done with Equation 8.2.9 in Section 8.2. An example for data point 1 is
given in Figure 8.3.4, where the two parameters md ,1 and md ,2 are determined using only LC3
and fitted with the multiple variable least squares fit equations in Equation 8.3.17 and 8.3.18.

δ
β

i = md ,1 ·βmd ,2 +δI
i (8.3.16)

Just as with the fitting in Section 8.3.1 either the individual value for md ,1 and md ,2 of each
data point, the mean values or the values as a result of a multiple variable least squares fit
can be taken. The resulting average errors of all data points are listed in Table 8.13. The error
with LC1 (mode I) is always zero, in contrast with the initial slope fitting the results of LC6
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(mode II) are not zero. Overall the curve fit using only LC3 gives better results and it is best to
approximate the constants md ,1 and md ,2 using a multiple variable least squares fit.

Table 8.13: Average error between the actual and predicted separation at damage
initiation of all data points using several methods. Using Equation 8.3.16 and either the
individual md ,1 and md ,2 from Table 8.12, the mean values or a multiple variable least

squares fit as a function of the variables.

LC3 LC4 AND LC5
Individual Mean MLSQ Individual Mean MLSQ

LC1 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
LC3 0.00% 4.83% 0.61% 2.16% 3.99% 2.07%
LC4 3.96% 5.79% 3.92% 5.32% 6.12% 5.52%
LC5 1.66% 2.98% 1.78% 0.53% 2.65% 0.99%
LC6 0.00% 5.07% 1.32% 6.90% 10.12% 7.52%

The multiple variable least squares fit of the two parameters as in Table 8.12 is given by
the equations below. These equations are depending on more variables compared to Equa-
tion 8.3.15 due to the fact that the power law fit is sensitive to small changes in the constants
md ,1 and md ,2. Therefore, the tolerance that is used to determine if the dependence on a vari-
able is constant is lowered. However, the main dependence is still on the variable x5 =V f .

md ,1 =−0.590+0.297 · x0.245
1 +0.689 · x0.015

2 −0.005 · x0.025
3 −0.933 · x−0.007

4 −0.874 · x5 (8.3.17)

md ,2 =−18.397+4.571 · x−0.073
1 +2.758 · x0.046

2 −0.110 · x3 +12.454 · x−0.005
4 +6.450 · x5 (8.3.18)

8.3.3 Fracture energy mode mixity fitting

For the mode mixity fitting of the fracture energy a method that is compatible with an ABAQUS

implementation is preferred. One of the methods to relate the mode I and II fracture en-
ergy (i.e. critical energy release rate) is the Benzeggagh-Kenane (BK) expression, see Equa-
tion 8.3.19 [80]. For the implementation in ABAQUS only the mode I and II fracture energy
and a power mg have to be specified.

Gβ

f =G I
f +

(
G I I

f −G I
f

)(
Gshear

Gtot al

)mg

(8.3.19)

Here, Gshear is the work done due to shear (i.e. G I I ) and Gtot al is the total work done, i.e.
Gtot al = G I +G I I . These parameters are not known before the simulation and thus a differ-
ent expression is required. Using the derivation from Turon et al. [80] the relation in Equa-
tion 8.3.20 is determined.
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Gshear

Gtot al
= α2

s

1+2α2
s −2αs

(8.3.20)

where αs is given by:

αs = δs

δn +δs

δs=δn tanβ= δn tanβ

δn +δn tanβ
= tanβ

1+ tanβ
(8.3.21)

The relation between αs and β is derived above and substituted in Equation 8.3.20. After
some trigonometry simplifications the resulting modified BK law is given as a function of β.

Gβ

f =G I
f +

(
G I I

f −G I
f

)(
1−cos

(
2β

)
2

)mg

(8.3.22)

Table 8.14: Powers mg , corresponding
to Equation 8.3.22, that result in the
best fracture energy fit for each data

point.

LC3 LC4 AND LC5
# mg mg

1 1.970 1.750
2 1.658 0.732
3 1.294 0.599
4 2.033 1.745
5 1.072 1.384
6 1.557 1.428
7 1.021 0.882
8 1.900 2.011
9 1.884 1.627

10 1.449 1.338
11 2.224 1.574

avg 1.642 1.370
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Figure 8.3.5: Example of the fracture
mode mixity fitting of data point 1

using only LC3. The curve fit is in the
form of a BK law described by

Equation 8.3.22 with mg determined by
Equation 8.3.23.

The resulting power of the curve fit where the sum of squared residuals is minimised is listed
in Table 8.14. Subsequently the actual values can be compared with the predicted value using
Equation 8.3.22 by either taking the individual power mg for each data point, the mean or a
multiple variable least squares fit. See Table 8.15 for the average error over all data points.
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Table 8.15: Average error between the actual and predicted fracture energy of all data
points using several methods. Using Equation 8.3.22 and either mg from Table 8.14, the

mean or a multiple variable least squares fit as a function of the variables.

LC3 LC4 AND LC5
Individual Mean MLSQ Individual Mean MLSQ mg = 1 mg = 2

LC1 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
LC3 0.00% 9.03% 2.81% 10.40% 12.64% 10.53% 23.01% 8.93%
LC4 13.18% 13.56% 13.61% 12.21% 19.44% 13.13% 29.11% 9.08%
LC5 22.44% 22.85% 22.72% 16.35% 16.58% 17.21% 6.32% 28.37%
LC6 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

It is observed that the errors in Table 8.15 are significantly higher compared to the errors ob-
served in the previous two subsections. This is because the BK law does not perfectly align
with the values for LC4 and LC5 as in Figure 8.3.5. However, using only LC3 for fitting and
taking the multiple variable least squares fit of the power mg gives results that are tolera-
ble. Especially due to the fact that this is easily implemented in ABAQUS, onwhich will be
discussed further in Section 8.4.

mg =−1.649−0.432 · x1 +0.961 · x0.439
2 −0.615 · x3 +0.945 · x0.032

4 +3.984 · x0.850
5 (8.3.23)

8.3.4 Results Summary

Overall it is determined that when performing the parameter mode mixity fitting using only
one mixed load case, i.e. LC3, is sufficient. The powers for each parameter are determined
using a multiple variable least squares fit with the result as in Equation 8.3.15, 8.3.17, 8.3.18
and 8.3.23. The maximum cohesive strength is determined using Equation 8.1.1. Using this
procedure the predicted parameters for each data point can be determined and compared
to the actual parameter, see Table 8.16, 8.17 and 8.18. Note that only the mixed load cases
are compared due to the fact that the mode I and mode II properties always align with the
LC1 and LC6 properties, except for the mode II separation at crack initiation. This is due to
the power fit, which will result in a small error (average 1.35%) in the predicted maximum
cohesive strength of mode II.

Overall the results are acceptable with the highest errors in the initial slope of LC4 and the
fracture energies of LC4 and LC5. At this point the comparison between the data points is
performed using the data points from the simulations, but in theory the bilinear TSL param-
eters of a random data point (i.e. with random variables) can be determined for any load
case.
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Table 8.16: Comparison actual and predicted initial slope for the mixed load cases. The
initial slope is predicted using Equation 8.3.13 and the powers mk are determined with

Equation 8.3.15.

#
K LC 3

N/mm3
K 0.25π

N/mm3
error

%
K LC 4

N/mm3
K 0.28π

N/mm3
error

%
K LC 5

N/mm3
K 0.18π

N/mm3
error

%
1 100562 100650 0.09 84530 92371 9.28 118969 120547 1.33
2 100623 99496 1.12 84450 91394 8.22 120572 118944 1.35
3 100628 101210 0.58 84369 93013 10.24 120454 120852 0.33
4 100556 100600 0.04 84312 92325 9.50 117925 120486 2.17
5 100632 100662 0.03 85259 92386 8.36 120666 120554 0.09
6 100586 100640 0.05 84959 92362 8.71 120747 120535 0.18
7 100571 100583 0.01 85149 92308 8.41 120876 120469 0.34
8 100596 100653 0.06 84793 92374 8.94 118953 120550 1.34
9 100596 100645 0.05 84707 92366 9.04 119028 120541 1.27

10 81472 81601 0.16 67364 74692 10.88 99094 98236 0.87
11 126697 126883 0.15 105694 116687 10.40 150395 151324 0.62

avg 0.21 9.27 0.90

Table 8.17: Comparison actual and predicted maximum cohesive strength for the mixed
load cases. The maximum cohesive strength is predicted using the predicted initial slope,

Equation 8.1.1, Equation 8.3.16 and the powers md ,1 and md ,2 are determined with
Equation 8.3.17 and 8.3.18.

#
tu

LC 3

N/mm2
tu

0.25π

N/mm2
error

%
tu

LC 4

N/mm2
tu

0.28π

N/mm2
error

%
tu

LC 5

N/mm2
tu

0.18π

N/mm2
error

%
1 41.58 42.08 1.20 40.31 43.04 6.75 40.93 41.88 2.31
2 60.25 57.90 3.90 57.12 58.29 2.04 62.08 58.95 5.04
3 61.18 62.39 1.99 57.68 63.40 9.92 62.92 61.81 1.75
4 41.55 41.68 0.31 40.15 42.52 5.90 39.26 41.55 5.82
5 36.39 36.34 0.13 37.58 37.48 0.27 34.71 35.29 1.67
6 42.19 42.26 0.16 41.34 43.19 4.47 41.70 42.04 0.82
7 42.44 42.43 0.01 41.81 43.32 3.61 41.74 42.13 0.94
8 41.61 41.82 0.49 40.42 42.72 5.70 40.93 41.77 2.06
9 41.63 41.55 0.17 40.38 42.41 5.02 40.96 41.67 1.74

10 44.47 44.58 0.24 43.67 45.40 3.95 43.06 43.58 1.19
11 40.43 40.54 0.28 38.05 41.02 7.79 40.96 42.00 2.55

avg 0.81 5.04 2.35
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Table 8.18: Comparison actual and predicted fracture energy for the mixed load cases.
The fracture energy is predicted using Equation 8.3.22 and the powers mg are determined

with Equation 8.3.23.

#
G f

LC 3

N/mm
G f

0.25π

N/mm
error

%
G f

LC 4

N/mm
G f

0.28π

N/mm
error

%
G f

LC 5

N/mm
G f

0.18π

N/mm
error

%
1 0.134 0.136 1.19 0.140 0.153 9.83 0.137 0.101 26.37
2 0.157 0.155 0.97 0.210 0.168 20.15 0.164 0.128 21.95
3 0.177 0.177 0.43 0.224 0.191 14.64 0.186 0.143 23.12
4 0.135 0.154 13.83 0.146 0.173 18.90 0.137 0.112 18.81
5 0.196 0.180 8.14 0.167 0.198 18.76 0.167 0.136 18.72
6 0.171 0.169 1.60 0.173 0.187 7.80 0.163 0.128 21.07
7 0.214 0.215 0.53 0.191 0.229 19.57 0.222 0.179 19.46
8 0.136 0.135 0.07 0.128 0.153 19.22 0.137 0.100 26.85
9 0.136 0.136 0.05 0.141 0.154 9.26 0.139 0.098 29.46

10 0.148 0.145 2.04 0.156 0.159 2.08 0.131 0.113 13.74
11 0.113 0.110 2.07 0.140 0.127 9.47 0.116 0.081 30.35

avg 2.81 13.61 22.72

8.4 Failure Criterion

The procedure in the previous three sections resulted in equations that represent the effec-
tive bilinear TSL for random variables xi and β. As mentioned before this bilinear TSL is
considered as the resulting fracture mechanism on the macroscopic scale that incorporates
details from the microscopic RVE. The equations that represent the failure criterion are the
following:

K β =
√(

K I cosβ2/mk
)2 + (

K I I sinβ2/mk
)2 (8.4.1)

tβu = K β ·md ,1 ·βmd ,2 + t I
u

K I
(8.4.2)

Gβ

f =G I
f +

(
G I I

f −G I
f

)(
1−cos

(
2β

)
2

)mg

(8.4.3)

where,

K I =−19874+306096 · x5 (8.4.4)

K I I =−1873+74393 · x5 (8.4.5)

mk =−9.781+11.576 · x0.002
1 +0.359 · x5 (8.4.6)

t I
u =−48.71+62.00 · x0.267

1 +40.43 · x0.135
2 (8.4.7)

md ,1 =−0.590+0.297 · x0.245
1 +0.689 · x0.015

2 −0.005 · x0.025
3 −0.933 · x−0.007

4 −0.874 · x5 (8.4.8)

md ,2 =−18.397+4.571 · x−0.073
1 +2.758 · x0.046

2 −0.110 · x3 +12.454 · x−0.005
4 +6.450 · x5 (8.4.9)
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G I
f =−0.200+0.125 · x0.210

1 +0.088 · x−0.113
2 +0.034 · x3 +0.048 · x−0.499

5 (8.4.10)

G I I
f =−0.750+0.263 · (x1 +0.04)−0.030 −0.021 · x2 +0.541 · x0.045

3 +0.317 · x0.173
5 (8.4.11)

mg =−1.649−0.432 · x1 +0.961 · x0.439
2 −0.615 · x3 +0.945 · x0.032

4 +3.984 · x0.850
5 (8.4.12)

In the above xi is given by the variables in Section 8.2 and the mode mixity β by Equa-
tion 8.3.6. Now this has been established a suggested implementation in ABAQUS is discussed.
For the microscopic RVE the input TSL for the fiber, matrix or interface cohesive elements
was assumed mode-independent. For the implementation of the cohesive elements in the
macroscopic model a mode-dependent approach is presented.

8.4.1 Macroscopic Implementation

The macroscopic failure criterion in the previous represents the fracture mechanism by means
of a bilinear TSL. The goal is to give this fracture behaviour as input for a single cohesive el-
ement on the macroscopic scale, such that the behaviour is equal to the microscopic RVE.
During the simulation the mode mixity of each individual macroscopic cohesive element is
variable, each load step a different mode mixity will be observed.

The softening part of the TSL can easily be implemented in ABAQUS using the BK mode mixity
behaviour as in Equation 8.4.3. Only the power mg , mode I and mode II properties have to
be specified by the user and then ABAQUS ensures a fracture energy depending on the mode
mixity. In order to align the initial slope of the TSL, i.e. damage initiation, with the mode
mixity the following procedure is proposed. The elastic stiffness of the cohesive element is
defined by K I and K I I , or Enn and Ess in ABAQUS as in Equation 3.2.6. The maximum cohesive
strength is aligned using the MAXE damage initiation criterion. For this criterion the mode I

and mode II separation at initiation have to be defined, see below. Here δβi is obtained using
Equation 8.3.16.

δI
i =

δ
β

i√
1+ tanβ2

(8.4.13)

δI I
i = δI

i · tanβ (8.4.14)

The dependency of the above relations on the mode mixity is given in Figure 8.4.1 where the

effective separation (δβi ) is obtained for data point 1.
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Figure 8.4.1: Relation between mode mixity and effective separation, mode I and mode II
separation for data point 1.

In ABAQUS it is possible to define material properties on an user defined field variable. For
example, if we take five points from the above plot the material definition as below can be
written in the ABAQUS input file.

*MATERIAL, NAME=COHESIVE
*DAMAGE INITIATION, CRITERION=MAXE, DEPENDENCIES=1, TOLERANCE=0.001

0.0003317, 1E-10, 0., , 0.
0.0003111, 0.0001289, 0., , 0.3927
0.0002995, 0.0002995, 0., , 0.7854
0.0003194, 0.0007711, 0., , 1.1781
1E-10., 0.0020128, 0., , 1.5708

*DAMAGE EVOLUTION, TYPE=ENERGY, MIXED MODE BEHAVIOR=BK, POWER=1.9244
0.0826, 0.2717, 0.

*DEPVAR

1,
*ELASTIC, TYPE=TRACTION

142313., 27884.1, 0.
*USER DEFINED FIELD

*INITIAL CONDITIONS, TYPE=SOLUTION
COHESIVE_ELEMENTS, 0.7854

The damage initiation has one dependency, which is β, ranging from 0 to π/2 in the last
column. ABAQUS determines the actual value for δI

i and δI I
i , first and second column respec-

tively, by interpolating between the given data. The value of the normal and shear separation
can never be zero. Therefore, a value of 1e-10 is used. Note that more points should be added
to increase the accuracy. All values in the above example correspond to the cohesive proper-
ties of data point 1.

The user defined field statement refers to a field variable that is given by use of the USDFLD

subroutine5. In this subroutine the mode mixity β has to be defined, i.e. as in Equation 8.3.6.

5The USDFLD subroutine is called at the start of the increment for each material point, i.e. elements that
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Also the initial conditions of this variable have to be specified for each cohesive element. It
is preferred to start at a mode mixity of π/4 (LC3) because the extremes (0 or π/2) can result
in damage initiation at the first iteration. The proposed USDFLD subroutine that defines the
mode mixity β is presented below.

SUBROUTINE USDFLD(FIELD,STATEV,PNEWDT,DIRECT,T,CELENT,TIME,DTIME,CMNAME,ORNAME,NFIELD,

1 NSTATV,NOEL,NPT,LAYER,KSPT,KSTEP,KINC,NDI,NSHR,COORD,JMAC,JMATYP,MATLAYO,LACCFLA)
C

INCLUDE ’ABA_PARAM.INC’
C

CHARACTER*80 CMNAME,ORNAME

CHARACTER*3 FLGRAY(15)

DIMENSION FIELD(NFIELD),STATEV(NSTATV ),DIRECT(3,3),T(3,3),TIME(2)

DIMENSION ARRAY(15),JARRAY(15),JMAC(*),JMATYP(*),COORD(*)
C GET ELASTIC STRAIN AND SAVE IT INTO ’ARRAY ’

CALL GETVRM(’E’,ARRAY,JARRAY,FLGRAY,JRCD,JMAC,JMATYP,MATLAYO,LACCFLA)
C ASSIGN STRAIN VALUE TO FIELD VARIABLE: ARRAY(1) = E11, ARRAY(4) = E12

IF (ARRAY(1) == 0 .AND. ARRAY(4) == 0) THEN

FIELD(1) = 0.7854

ELSE

FIELD(1) = ATAN(ABS(ARRAY(4))/ABS(ARRAY(1)))

END IF

C ASSIGN STATE VARIABLES

STATEV(1) = FIELD(1)
C

RETURN

END

Using the above procedure the response a cohesive element should align with the input fail-
ure criterion as in Equation 8.4.1 to 8.4.3. In order to verify this a single zero-thickness co-
hesive element is modeled in ABAQUS. The model contains a single COH2D4 element as in
Figure 8.3.1. Nodes 1 and 2 are fixed and on nodes 3 and 4 a displacement load (en ,es) is
applied. The material properties are equal to the example above but now a total of 50 lines
are used to define the initiation criterion as a function of β.

In ABAQUS the output stress of the cohesive element has two components: normal and shear
stress. The effective maximum cohesive strength (t ABQ

u ) is determined analogous as in Equa-
tion 4.4.6. The separation at damage initiation and failure are determined with the nor-
mal and shear separation, which are in turn determined with the Load Proportionality Fac-
tor (LPF) and applied loading. The effective separation is determined similar to the effective
maximum cohesive strength. From the effective separation at initiation and effective maxi-
mum cohesive strength the initial slope (K ABQ ) is determined using Equation 8.1.1.

have the corresponding material properties assigned. Using GETVRM the data from the previous increment can
be obtained.



126 Effective Model: Correlation and Results

Table 8.19: Verification of the bilinear TSL parameters in Equation 8.4.1 to 8.4.3 and
the response of a single cohesive element in abaqus. The parameters are determined

using (xi ) corresponding to data point 1 in Table 8.1.

Kβ

N/mm3
K ABQ

N/mm3 error
tβu

N/mm2
t ABQ

u

N/mm2 error
Gβ

f

N/mm

G ABQ
f

N/mm
error

LC1 142313 135057 5.10% 47.21 48.22 2.13% 0.083 0.085 2.80%
LC3 101131 99639 1.48% 42.83 43.94 2.59% 0.132 0.108 18.36%
LC4 92810 89938 3.09% 43.75 45.03 2.92% 0.149 0.126 15.81%
LC5 121121 117669 2.85% 42.74 43.58 1.96% 0.099 0.094 4.93%
LC6 27884 27694 0.68% 56.12 56.27 0.26% 0.272 0.273 0.45%

The single cohesive element is subjected to the five load cases used earlier for the curve fit-
ting and the results are given in Table 8.19. In general the maximum cohesive strength of the
single cohesive element in ABAQUS is a little higher compared to the result of the failure cri-
terion, which is due to a small tolerance in ABAQUS. The errors in damage initiation, i.e. the
combination of K and tu , are acceptable and thus it can be verified that the method proposed
in this section is verified. However, there is a relative large error in the fracture energy of LC3

and LC4. For LC3 Gβ

f and G ABQ
f should align as this is the load case used for the mode mixity

fitting. The issue might be in the relation between Gshear /Gtot al and β in Equation 8.3.20. In
order to solve this an alternative relation to the BK law can be used for the curve fitting. In
ABAQUS the damage evolution can then be given by means of a tabular input with a depen-
dence on β, similar to the definition of the separation at damage initiation. Unfortunately
there is not enough time to investigate and verify this method.



Chapter 9

Conclusions and Recommendations

9.1 Conclusions

Fracture models and criteria for composite materials have seen a significant development
over the past decades. In addition, the increase in computational power supported the devel-
opment of computational methods to solve fracture problems. One approach in predicting
fracture is the multiscale approach, which uses microscopic details for the macroscopic frac-
ture behaviour. Failure criteria in this area are often limited to simple load cases and are not
able to distinguish different fracture mechanisms, i.e. matrix or interface cracking. In order
to fill this gap in knowledge the thesis objective was formulated as follows:

The thesis objective is to develop a new macroscopic failure criterion for fiber-reinforced
composites that incorporates distinct fracture mechanisms occurring at a microscopic level.

The microscopic information will be integrated into the macroscopic failure criterion through
multiscale finite element simulations on representative volume elements.

A single macroscopic failure criterion was developed that accounts for, in a unified format,
the distinct microscopic failure mechanisms such as matrix cracking, fiber debonding, fiber
cracking and combinations thereof. In a Two-Dimensional (2D) framework multiple fiber
numerical experiments were performed on a microscopic scale. The general outline of these
numerical experiments was discussed in Chapter 4 and showed a fully scripted procedure for
efficient pre- and post-processing. Fracture was simulated using an intrinsic implementa-
tion of cohesive elements that follow a simple bilinear Traction-Separation Law (TSL). The
resulting fracture mechanism was expressed in terms of an Effective Traction-Separation
Law (ETSL).
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The fundamentals for the numerical experiments were established during the single fiber
simulations in Chapter 5. The effect of five variables xi was studied: the interface cohesive
strength, fiber cohesive strength, interface fracture energy, fiber fracture energy and fiber di-
ameter (or fiber volume fraction). The four cohesive properties were studied relative to the
matrix cohesive properties. Three load cases were investigated: uni-axial extension, pure
shear and a mixed load case. Over the course of these numerical experiments the method
and corresponding scripts were improved. A mesh convergence study was performed from
which the mesh density for further simulations was established. In addition, the initial effects
of the five variables were observed.

Before the multiple fiber numerical experiments could be performed the Representative Vol-
ume Element (RVE) dimensions had to be determined. After the convergence study in Chap-
ter 6 it was concluded that the RVE can be considered representative for a dimension of 75×75
µm. However, it was taken into account that these dimensions might not be representative for
all load cases, fiber volume fractions and for changes in material/cohesive properties. These
RVE dimensions were considered suitable to demonstrate the method that was proposed in
this thesis.

For the multiple fiber numerical experiments a total of six load cases were studied: uni-axial
extension, pure shear, simple shear and three mixed load cases. The five variables studied
were identical to the variables during the single fiber numerical experiments. During the nu-
merical experiments it was concluded that the pure shear results were spurious and therefore
not suitable for correlation, the simple shear load case was used instead. For both the single
and multiple fiber numerical experiments the following was concluded. The interface cohe-
sive strength has a strong influence on the maximum cohesive strength and fracture energy
due to the change in fracture pattern. For factors 1.0 and 2.0 the crack initiates in the matrix
and thus a higher maximum cohesive strength and fracture energy is observed. There is al-
most no difference between a factor 1.0 and 2.0. The fiber cohesive strength has an identical
influence, for a factor 0.5 the crack initiates in the fiber resulting in a higher maximum cohe-
sive strength and a small increase in fracture energy. There is almost no difference between
a factor 1.0 and 2.0. A higher interface fracture energy only has an influence on the fracture
energy as more energy is required for the crack to propagate. The fiber fracture energy has
almost no influence on the ETSL due to the fact that the crack does not interact with the fiber,
this effect should have been studied with a fiber cohesive strength factor of 0.5. The increase
in fiber volume fraction (or fiber diameter) results in a higher initial slope of the ETSL and
decreases the fracture energy.

The main objective of this thesis was to use the microscopic results for the development of a
macroscopic failure criterion. Therefore, each ETSL as a result of the multiple fiber numerical
experiments was approximated by a bilinear TSL that has three parameters: an initial slope K ,
cohesive strength tu (peak) and fracture energy G f (area). For each data point and load case
these three parameters were determined. On the macroscopic scale the mode I and mode
II properties were to be defined. The uni-axial extension (mode I) and simple shear (mode
II) bilinear TSL parameters were correlated using a multiple variable least squares fit. Due
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to this all the mode I and II parameters could be given as a function of the five variables xi .
Overall the error between the curve fit and the actual data points turned out to be acceptable.

In addition to the mode I and II properties the mode mixity was implemented in the failure
criterion. A mode mixity parameter β was introduced. The initial slope was fitted using an
elliptical relation between the mode I and II parameters, the cohesive strength was defined
by a power relation between the separation at damage initiation and the fracture energy was
approximated by a Benzeggagh-Kenane (BK) power relation. Only LC3 was used for the mode
mixity fitting and LC4 and LC5 were used for verification. The resulting equations showed a
good fit for the damage initiation, but there was a relatively large error in the fracture en-
ergy. In the end the three bilinear TSL parameters were described by the five variables xi and
the mode mixity β. The relatively simple equations for the three parameters of the bilinear
TSL resemble the macroscopic failure criterion. Returning to the thesis objective, it can be
seen that the resulting macroscopic failure criterion indeed incorporates the distinct fracture
mechanisms at the microscopic scale. For this proof of concept study the level of detail and
applicability of this failure criterion is considered sufficient. However, in order for this fail-
ure criterion to be used as a functional tool in the design process some issues encountered
during this thesis have to be solved and the method should be extended.

To complete the procedure proposed in this thesis the implementation of the macroscopic
failure criterion was discussed. The proposed implementation in ABAQUS was verified with a
single macroscopic cohesive element model. The resulting response of this cohesive element
showed a perfect alignment of the damage initiation with the macroscopic failure criterion.
However, the fracture energy was underestimated, which lead to one of the recommendations
in the next section.

Overall the proposed method for the development of the macroscopic failure criterion is in-
novative and efficient. Additional data points can easily be added to the curve fitting, by
running additional simulations, to increase the accuracy. The main advantage is that these
simulations only have to be performed once. Moreover, the effect of other variables can be
added in order to generalise the failure criterion.

9.2 Recommendations

In the previous section it was concluded that the thesis objective has been achieved. How-
ever, during the research some issues were encountered that could not be solved within the
time available.

• The fiber fracture energy had no effect on the fracture mechanisms, i.e. there was no
dependence on variable x4. This was due to the fact that the crack does not interact
with the fiber. In order to capture the effect of fiber fracture energy additional simula-
tions with a fiber cohesive strength factor (x2) of 0.5 should be performed and added to
the curve fitting.
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• During the implementation of the macroscopic failure criterion it was discovered that
the fracture energy of a cohesive element subjected to a mixed loading is underesti-
mated. This problem should be investigated and resolved before the method is imple-
mented on a full macroscopic model.

• Some simulations were aborted before the traction dropped to zero, in which case an
extrapolation of the ETSL was performed. In order to increase the accuracy the maxi-
mum number of steps should be increased and convergence problems should be miti-
gated. This will increase the computational time.

Next to the above issues there is always room for improvement. The ultimate goal is to gener-
alise the proposed method to a fully functional tool that can be applied for fracture control in
composite materials. For the recommendations proposed below the increase in complexity
should not be underestimated.

• For this thesis a 2D framework was assumed. To generalise the proposed method the
extension to Three-Dimensional (3D) should be made, which is considered relatively
easy. Howerver, this will increase the number of load cases, variables and will result in
an additional fracture mode (III).

• The extension to 3D will implicate a significant increase in the number of cohesive ele-
ments. To reduce, or completely remove, the effect of artificial compliance an extrinsic
implementation of cohesive elements is preferred. This will result in a more complex
data structure and post-processing procedure.

• For the implementation of cohesive elements in the RVE mode-independent properties
were assumed. It would be interesting to see the effect of the mode I and mode II (and
mode III for 3D) cohesive properties. This will increase the number of variables, and
thus number of simulations, significantly.

• A better evaluation of the RVE dimensions should be performed. A similar procedure
as proposed in this thesis can be used but it should be extended to multiple load cases.
This procedure can only be successful when utilising an extrinsic implementation of
cohesive elements to remove the effects of artificial compliance.

• For this thesis a simple bilinear TSL was assumed as input and as output. According to
each resulting ETSL of the multiple fiber models a more sophisticated TSL might give
better results. However, this will probably increase the number of parameters to define
this TSL.

• A generalised failure criterion will require the effect of more variables, i.e. all cohesive
properties separately instead of relative to the matrix properties. In addition, the effect
of material properties of the fiber and matrix should be taken into account. For this
thesis only three data points per variable were used, i.e. smaller, equal and greater.
This should be increased to increase the accuracy of the curve fitting.

• At last, for the multiple fiber simulations only the average of four realisations was con-
sidered. To increase the accuracy this number should be increased at least above five.



Appendix A

Single Fibre Effective
Traction-Separation Laws

In this appendix the detailed Effective Traction-Separation Law (ETSL) of all the single fiber
simulations, discussed in Chapter 5, are presented. Each simulation is performed for three
mesh densities; coarse, medium and fine as indicated in Table 5.1. In total three load cases
are considered; uni-axial extension (LC1), pure shear (LC2) and a mixed load case (LC0) as
listed in Table 4.2.

For each load case the effect of five variables is studied with respect to the reference case in
Figure A.1 to A.3.

• Figure A.4 to A.9: interface cohesive strength
• Figure A.10 to A.15: fiber cohesive strength
• Figure A.16 to A.21: interface fracture energy
• Figure A.22 to A.27: fiber fracture energy
• Figure A.28 to A.30: fiber diameter
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Figure A.1: Reference, LC1: ETSLs of the
coarse, medium and fine mesh models combined.
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Figure A.2: Reference, LC2: ETSLs of the
coarse, medium and fine mesh models combined.
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Figure A.3: Reference, LC0: ETSLs of the
coarse, medium and fine mesh models combined.
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Figure A.4: t (i )
u × 2, LC1: ETSLs of the coarse,

medium and fine mesh models combined.
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Figure A.5: t (i )
u × 2, LC2: ETSLs of the coarse,

medium and fine mesh models combined.
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Figure A.6: t (i )
u × 2, LC0: ETSLs of the coarse,

medium and fine mesh models combined.
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Figure A.7: t (i )
u × 4, LC1: ETSLs of the coarse,

medium and fine mesh models combined.
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Figure A.8: t (i )
u × 4, LC2: ETSLs of the coarse,

medium and fine mesh models combined.
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Figure A.9: t (i )
u × 4, LC0: ETSLs of the coarse,

medium and fine mesh models combined.
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Figure A.10: t ( f )
u × 0.5, LC1: ETSLs of the

coarse, medium and fine mesh models combined.
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Figure A.11: t ( f )
u × 0.5, LC2: ETSLs of the

coarse, medium and fine mesh models combined.
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Figure A.12: t ( f )
u × 0.5, LC0: ETSLs of the

coarse, medium and fine mesh models combined.
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Figure A.13: t ( f )
u × 0.25, LC1: ETSLs of the

coarse, medium and fine mesh models combined.
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Figure A.14: t ( f )
u × 0.25, LC2: ETSLs of the

coarse, medium and fine mesh models combined.

0.0 0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2 3.6 4.0 4.4

δ̃/δ
(m)
f

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

t̃/
t(

m
)

u

Fibre input TSL

Matrix input TSL

Interface input TSL

Coarse mesh density

Medium mesh density

Fine mesh density

Figure A.15: t ( f )
u × 0.25, LC0: ETSLs of the

coarse, medium and fine mesh models combined.
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Figure A.16: G (i )
f × 2, LC1: ETSLs of the

coarse, medium and fine mesh models combined.
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Figure A.17: G (i )
f × 2, LC2: ETSLs of the

coarse, medium and fine mesh models combined.
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Figure A.18: G (i )
f × 2, LC0: ETSLs of the

coarse, medium and fine mesh models combined.
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Figure A.19: G (i )
f × 4, LC1: ETSLs of the

coarse, medium and fine mesh models combined.
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Figure A.20: G (i )
f × 4, LC2: ETSLs of the

coarse, medium and fine mesh models combined.
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Figure A.21: G (i )
f × 4, LC0: ETSLs of the

coarse, medium and fine mesh models combined.
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Figure A.22: G ( f )
f × 0.5, LC1: ETSLs of the

coarse, medium and fine mesh models combined.
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Figure A.23: G ( f )
f × 0.5, LC2: ETSLs of the

coarse, medium and fine mesh models combined.
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Figure A.24: G ( f )
f × 0.5, LC0: ETSLs of the

coarse, medium and fine mesh models combined.
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Figure A.25: G ( f )
f × 0.25, LC1: ETSLs of the

coarse, medium and fine mesh models combined.
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Figure A.26: G ( f )
f × 0.25, LC2: ETSLs of the

coarse, medium and fine mesh models combined.
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Figure A.27: G ( f )
f × 0.25, LC0: ETSLs of the

coarse, medium and fine mesh models combined.
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Figure A.28: dF × 2, LC1: ETSLs of the
coarse, medium and fine mesh models combined.
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Figure A.29: dF × 2, LC2: ETSLs of the
coarse, medium and fine mesh models combined.
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Figure A.30: dF × 2, LC0: ETSLs of the
coarse, medium and fine mesh models combined.



Appendix B

Multiple Fibre Effective
Traction-Separation Laws

In this appendix the detailed Effective Traction-Separation Law (ETSL) of all the multiple fiber
simulations are presented. First the detailed ETSL of the Representative Volume Element
(RVE) size determination is presented in Section B.1, B.2 and B.3 for the three approaches as
in Chapter 6.

Subsequently the detailed ETSL of the results presented in Chapter 7 are presented for a total
of six load cases, i.e. LC1 to LC6 as in Table 4.2. For each load case the effect of five variables
is studied with respect to the reference case, i.e. the models with a fiber volume fraction of
40% in Section B.8.

• Section B.4: interface cohesive strength
• Section B.5: fiber cohesive strength
• Section B.6: interface fracture energy
• Section B.7: fiber fracture energy
• Section B.8: fiber volume fraction
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B.1 Size Determination of Microstructural Volume Elements:
Original Approach
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Figure B.1.1: 25×25 µm: ETSLs.
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Figure B.1.2: 25×25 µm: average fit.
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Figure B.1.3: 50×50 µm: ETSLs.
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Figure B.1.4: 50×50 µm: average fit.
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Figure B.1.5: 75×75 µm: ETSLs.

0.0 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3.0 3.3

δ/δ
(m)
f

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

t̃/
t(

m
)

u

Average fit

Data points of all 5 realisations

Figure B.1.6: 75×75 µm: average fit.
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Figure B.1.7: 100×100 µm: ETSLs.
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Figure B.1.8: 100×100 µm: average fit.
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Figure B.1.9: 125×125 µm: ETSLs.
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Figure B.1.10: 125×125 µm: average fit.
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Figure B.1.11: 150×150 µm: ETSLs.
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Figure B.1.12: 150×150 µm: average fit.
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B.2 Size Determination of Microstructural Volume Elements:
Case I
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Figure B.2.1: 25×25 µm: ETSLs.
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Figure B.2.2: 25×25 µm: average fit.
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Figure B.2.3: 50×50 µm: ETSLs.
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Figure B.2.4: 50×50 µm: average fit.
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Figure B.2.5: 75×75 µm: ETSLs.
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Figure B.2.6: 75×75 µm: average fit.
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Figure B.3.1: 25×25 µm: ETSLs.
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Figure B.3.2: 25×25 µm: average fit.
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Figure B.3.3: 50×50 µm: ETSLs.
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Figure B.3.4: 50×50 µm: average fit.
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Figure B.3.5: 75×75 µm: ETSLs.
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Figure B.3.6: 75×75 µm: average fit.
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Figure B.4.1: LC1, t (i)
u /t (m)

u = 1.0: ETSLs.
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Figure B.4.2: LC1, t (i)
u /t (m)

u = 1.0: average fit.
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Figure B.4.3: LC1, t (i)
u /t (m)

u = 2.0: ETSLs.
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Figure B.4.4: LC1, t (i)
u /t (m)

u = 2.0: average fit.
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Figure B.4.5: LC2, t (i)
u /t (m)

u = 1.0: ETSLs.
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Figure B.4.6: LC2, t (i)
u /t (m)

u = 1.0: average fit.
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Figure B.4.7: LC2, t (i)
u /t (m)

u = 2.0: ETSLs.
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Figure B.4.8: LC2, t (i)
u /t (m)

u = 2.0: average fit.
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Figure B.4.9: LC3, t (i)
u /t (m)

u = 1.0: ETSLs.
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Figure B.4.10: LC3, t (i)
u /t (m)

u = 1.0: average fit.
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Figure B.4.11: LC3, t (i)
u /t (m)

u = 2.0: ETSLs.

0.0 0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2 3.6 4.0 4.4

δ/δ
(m)
f

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

t̃/
t(

m
)

u

Average fit

Extrapolation

Bilinear approximation

Data points of all 4 realisations

K  = 100628 N/mm3

tu  = 61.18 N/mm2

Gf = 0.177 N/mm

Figure B.4.12: LC3, t (i)
u /t (m)

u = 2.0: average fit.
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Figure B.4.13: LC4, t (i)
u /t (m)

u = 1.0: ETSLs.
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Figure B.4.14: LC4, t (i)
u /t (m)

u = 1.0: average fit.
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Figure B.4.15: LC4, t (i)
u /t (m)

u = 2.0: ETSLs.
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Figure B.4.16: LC4, t (i)
u /t (m)

u = 2.0: average fit.
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Figure B.4.17: LC5, t (i)
u /t (m)

u = 1.0: ETSLs.
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Figure B.4.18: LC5, t (i)
u /t (m)

u = 1.0: average fit.
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Figure B.4.19: LC5, t (i)
u /t (m)

u = 2.0: ETSLs.
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Figure B.4.20: LC5, t (i)
u /t (m)

u = 2.0: average fit.
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Figure B.4.21: LC6, t (i)
u /t (m)

u = 1.0: ETSLs.
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Figure B.4.22: LC6, t (i)
u /t (m)

u = 1.0: average fit.
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Figure B.4.23: LC6, t (i)
u /t (m)

u = 2.0: ETSLs.
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Figure B.4.24: LC6, t (i)
u /t (m)

u = 2.0: average fit.
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Figure B.5.1: LC1, t (f)
u /t (m)

u = 1.0: ETSLs.
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Figure B.5.2: LC1, t (f)
u /t (m)

u = 1.0: average fit.
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Figure B.5.3: LC1, t (f)
u /t (m)

u = 0.5: ETSLs.
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Figure B.5.4: LC1, t (f)
u /t (m)

u = 0.5: average fit.
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Figure B.5.5: LC2, t (f)
u /t (m)

u = 1.0: ETSLs.
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Figure B.5.6: LC2, t (f)
u /t (m)

u = 1.0: average fit.
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Figure B.5.7: LC2, t (f)
u /t (m)

u = 0.5: ETSLs.
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Figure B.5.8: LC2, t (f)
u /t (m)

u = 0.5: average fit.
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Figure B.5.9: LC3, t (f)
u /t (m)

u = 1.0: ETSLs.
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Figure B.5.10: LC3, t (f)
u /t (m)

u = 1.0: average fit.
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Figure B.5.11: LC3, t (f)
u /t (m)

u = 0.5: ETSLs.
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Figure B.5.12: LC3, t (f)
u /t (m)

u = 0.5: average fit.
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Figure B.5.13: LC4, t (f)
u /t (m)

u = 1.0: ETSLs.
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Figure B.5.14: LC4, t (f)
u /t (m)

u = 1.0: average fit.
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Figure B.5.15: LC4, t (f)
u /t (m)

u = 0.5: ETSLs.
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Figure B.5.16: LC4, t (f)
u /t (m)

u = 0.5: average fit.
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Figure B.5.17: LC5, t (f)
u /t (m)

u = 1.0: ETSLs.
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Figure B.5.18: LC5, t (f)
u /t (m)

u = 1.0: average fit.
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Figure B.5.19: LC5, t (f)
u /t (m)

u = 0.5: ETSLs.
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Figure B.5.20: LC5, t (f)
u /t (m)

u = 0.5: average fit.
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Figure B.5.21: LC6, t (f)
u /t (m)

u = 1.0: ETSLs.
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Figure B.5.22: LC6, t (f)
u /t (m)

u = 1.0: average fit.
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Figure B.5.23: LC6, t (f)
u /t (m)

u = 0.5: ETSLs.
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Figure B.5.24: LC6, t (f)
u /t (m)

u = 0.5: average fit.
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Figure B.6.1: LC1, G (i)
f /G (m)

f = 1.0: ETSLs.
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Figure B.6.2: LC1, G (i)
f /G (m)

f = 1.0: average fit.
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Figure B.6.3: LC1, G (i)
f /G (m)

f = 2.0: ETSLs.
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Figure B.6.4: LC1, G (i)
f /G (m)

f = 2.0: average fit.
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Figure B.6.5: LC2, G (i)
f /G (m)

f = 1.0: ETSLs.
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Figure B.6.6: LC2, G (i)
f /G (m)

f = 1.0: average fit.
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Figure B.6.7: LC2, G (i)
f /G (m)

f = 2.0: ETSLs.
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Figure B.6.8: LC2, G (i)
f /G (m)

f = 2.0: average fit.
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Figure B.6.9: LC3, G (i)
f /G (m)

f = 1.0: ETSLs.
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Figure B.6.10: LC3, G (i)
f /G (m)

f = 1.0: average fit.
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Figure B.6.11: LC3, G (i)
f /G (m)

f = 2.0: ETSLs.
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Figure B.6.12: LC3, G (i)
f /G (m)

f = 2.0: average fit.
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Figure B.6.13: LC4, G (i)
f /G (m)

f = 1.0: ETSLs.
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Figure B.6.14: LC4, G (i)
f /G (m)

f = 1.0: average fit.
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Figure B.6.15: LC4, G (i)
f /G (m)

f = 2.0: ETSLs.
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Figure B.6.16: LC4, G (i)
f /G (m)

f = 2.0: average fit.
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Figure B.6.17: LC5, G (i)
f /G (m)

f = 1.0: ETSLs.
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Figure B.6.18: LC5, G (i)
f /G (m)

f = 1.0: average fit.



B.6 Effect of Interface Fracture Energy 153

0.0 0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2 3.6 4.0 4.4

δ̃/δ
(m)
f

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

t̃/
t(

m
)

u

Fiber input TSL

Matrix input TSL

Interface input TSL

Effective TSL realisation 1

Effective TSL realisation 2

Effective TSL realisation 3

Effective TSL realisation 4

Figure B.6.19: LC5, G (i)
f /G (m)

f = 2.0: ETSLs.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0

δ/δ
(m)
f

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

t̃/
t(

m
)

u

Average fit

Extrapolation

Bilinear approximation

Data points of all 4 realisations

K  = 120876 N/mm3

tu  = 41.74 N/mm2

Gf = 0.222 N/mm

Figure B.6.20: LC5, G (i)
f /G (m)

f = 2.0: average fit.
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Figure B.6.21: LC6, G (i)
f /G (m)

f = 1.0: ETSLs.
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Figure B.6.22: LC6, G (i)
f /G (m)

f = 1.0: average fit.
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Figure B.6.23: LC6, G (i)
f /G (m)

f = 2.0: ETSLs.
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Figure B.6.24: LC6, G (i)
f /G (m)

f = 2.0: average fit.
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Figure B.7.1: LC1, G (f)
f /G (m)

f = 1.0: ETSLs.
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Figure B.7.2: LC1, G (f)
f /G (m)

f = 1.0: average fit.
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Figure B.7.3: LC1, G (f)
f /G (m)

f = 0.5: ETSLs.
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Figure B.7.4: LC1, G (f)
f /G (m)

f = 0.5: average fit.
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Figure B.7.5: LC2, G (f)
f /G (m)

f = 1.0: ETSLs.
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Figure B.7.6: LC2, G (f)
f /G (m)

f = 1.0: average fit.
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Figure B.7.7: LC2, G (f)
f /G (m)

f = 0.5: ETSLs.
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Figure B.7.8: LC2, G (f)
f /G (m)

f = 0.5: average fit.
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Figure B.7.9: LC3, G (f)
f /G (m)

f = 1.0: ETSLs.
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Figure B.7.10: LC3, G (f)
f /G (m)

f = 1.0: average fit.

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8

δ̃/δ
(m)
f

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

t̃/
t(

m
)

u

Fiber input TSL

Matrix input TSL

Interface input TSL

Effective TSL realisation 1

Effective TSL realisation 2

Effective TSL realisation 3

Effective TSL realisation 4

Figure B.7.11: LC3, G (f)
f /G (m)

f = 0.5: ETSLs.
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Figure B.7.12: LC3, G (f)
f /G (m)

f = 0.5: average fit.
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Figure B.7.13: LC4, G (f)
f /G (m)

f = 1.0: ETSLs.
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Figure B.7.14: LC4, G (f)
f /G (m)

f = 1.0: average fit.
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Figure B.7.15: LC4, G (f)
f /G (m)

f = 0.5: ETSLs.
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Figure B.7.16: LC4, G (f)
f /G (m)

f = 0.5: average fit.
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Figure B.7.17: LC5, G (f)
f /G (m)

f = 1.0: ETSLs.
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Figure B.7.18: LC5, G (f)
f /G (m)

f = 1.0: average fit.
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Figure B.7.19: LC5, G (f)
f /G (m)

f = 0.5: ETSLs.
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Figure B.7.20: LC5, G (f)
f /G (m)

f = 0.5: average fit.
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Figure B.7.21: LC6, G (f)
f /G (m)

f = 1.0: ETSLs.
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Figure B.7.22: LC6, G (f)
f /G (m)

f = 1.0: average fit.
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Figure B.7.23: LC6, G (f)
f /G (m)

f = 0.5: ETSLs.
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Figure B.7.24: LC6, G (f)
f /G (m)

f = 0.5: average fit.
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Figure B.8.1: LC1, V f = 30%: ETSLs.
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Figure B.8.2: LC1, V f = 30%: average fit.

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2

δ̃/δ
(m)
f

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

t̃/
t(

m
)

u

Fiber input TSL

Matrix input TSL

Interface input TSL

Effective TSL realisation 1

Effective TSL realisation 2

Effective TSL realisation 3

Effective TSL realisation 4

Figure B.8.3: LC1, V f = 40%: ETSLs.
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Figure B.8.4: LC1, V f = 40%: average fit.
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Figure B.8.5: LC1, V f = 50%: ETSLs.
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Figure B.8.6: LC1, V f = 50%: average fit.
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Figure B.8.7: LC2, V f = 30%: ETSLs.
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Figure B.8.8: LC2, V f = 30%: average fit.
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Figure B.8.9: LC2, V f = 40%: ETSLs.
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Figure B.8.10: LC2, V f = 40%: average fit.
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Figure B.8.11: LC2, V f = 50%: ETSLs.
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Figure B.8.12: LC2, V f = 50%: average fit.
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Figure B.8.13: LC3, V f = 30%: ETSLs.
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Figure B.8.14: LC3, V f = 30%: average fit.
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Figure B.8.15: LC3, V f = 40%: ETSLs.
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Figure B.8.16: LC3, V f = 40%: average fit.
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Figure B.8.17: LC3, V f = 50%: ETSLs.
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Figure B.8.18: LC3, V f = 50%: average fit.
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Figure B.8.19: LC4, V f = 30%: ETSLs.
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Figure B.8.20: LC4, V f = 30%: average fit.
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Figure B.8.21: LC4, V f = 40%: ETSLs.
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Figure B.8.22: LC4, V f = 40%: average fit.
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Figure B.8.23: LC4, V f = 50%: ETSLs.

0.0 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3.0 3.3 3.6 3.9

δ/δ
(m)
f

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

t̃/
t(

m
)

u

Average fit

Extrapolation

Bilinear approximation

Data points of all 4 realisations

K  = 105694 N/mm3

tu  = 38.05 N/mm2

Gf = 0.140 N/mm

Figure B.8.24: LC4, V f = 50%: average fit.
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Figure B.8.25: LC5, V f = 30%: ETSLs.
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Figure B.8.26: LC5, V f = 30%: average fit.
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Figure B.8.27: LC5, V f = 40%: ETSLs.
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Figure B.8.28: LC5, V f = 40%: average fit.
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Figure B.8.29: LC5, V f = 50%: ETSLs.
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Figure B.8.30: LC5, V f = 50%: average fit.
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Figure B.8.31: LC6, V f = 30%: ETSLs.
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Figure B.8.32: LC6, V f = 30%: average fit.
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Figure B.8.33: LC6, V f = 40%: ETSLs.
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Figure B.8.34: LC6, V f = 40%: average fit.
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Figure B.8.35: LC6, V f = 50%: ETSLs.
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Figure B.8.36: LC6, V f = 50%: average fit.
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