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Randomized benchmarking (RB) is an efficient and robust method to characterize gate errors in quantum
circuits. Averaging over random sequences of gates leads to estimates of gate errors in terms of the average
fidelity. These estimates are isolated from the state preparation and measurement errors that plague other methods
such as channel tomography and direct fidelity estimation. A decisive factor in the feasibility of randomized
benchmarking is the number of sampled sequences required to obtain rigorous confidence intervals. Previous
bounds were either prohibitively loose or required the number of sampled sequences to scale exponentially
with the number of qubits in order to obtain a fixed confidence interval at a fixed error rate. Here, we show
that, with a small adaptation to the randomized benchmarking procedure, the number of sampled sequences
required for a fixed confidence interval is dramatically smaller than could previously be justified. In particular,
we show that the number of sampled sequences required is essentially independent of the number of qubits
and scales favorably with the average error rate of the system under investigation. We also investigate
the fitting procedure inherent to randomized benchmarking in light of our results and find that standard
methods such as ordinary least squares optimization can give misleading results. We therefore recommend
moving to more sophisticated fitting methods such as iteratively reweighted least squares optimization. Our
results bring rigorous randomized benchmarking on systems with many qubits into the realm of experimental
feasibility.

DOI: 10.1103/PhysRevA.100.032304

I. INTRODUCTION

One of the central problems in the creation of large-scale,
functioning quantum computers is the need to accurately and
efficiently diagnose the strength and character of the various
types of noise affecting quantum operations that arise in
experimental implementations. This noise can be due to many
factors, such as imperfect manufacturing, suboptimal calibra-
tion, or uncontrolled coupling to the external world. Tools that
diagnose and quantify these noise sources provide vital feed-
back on device and control design, leading to better quantum
devices. They are also used as certification tools, quantifying
a device’s ability to, e.g., perform successful error correction
or implement quantum algorithms. A variety of tools have
been developed for this purpose, including state and channel
tomography [1,2], direct fidelity estimation (DFE) [3,4], gate
set tomography [5,6], and randomized benchmarking (RB)
[7–9] together with its tomographic extension, randomized
benchmarking tomography [10]. All of these tools have differ-
ent strengths and weaknesses. State and channel tomography
allow the user to get a full characterization of the quantum
state or channel of interest but are subject to state preparation
and measurement (SPAM) errors, which place a noise floor
on the accuracy of these characterizations. Moreover, these
protocols require resources that scale exponentially with the
number of qubits even for the more efficient variants us-
ing compressed sensing [11,12], making them prohibitively

expensive for use in multiqubit systems. Randomized bench-
marking tomography and gate set tomography remedy the
SPAM issue but require even more resources.

This exponential scaling with the number of qubits is
problematic because even though on most quantum comput-
ing platforms multiqubit gates are generally performed as
circuits composed of one- and two-qubit gates, it is still vitally
important to obtain aggregate measures of the behavior of
multiqubit quantum circuits. One can in principle gauge the
behavior of these circuit by characterizing their component
gates, but such a characterization will typically give only loose
bounds [13] on the behavior of the full circuit (even disre-
garding the possibility of correlated errors inside the circuit
[14]). Therefore, there is a need for diagnostic tools that scale
efficiently in the number of qubits. Protocols designed with
such efficiency in mind, like DFE and RB, do not aspire
to a full characterization of the system, but instead aim to
estimate a single figure of merit that ideally captures relevant
properties of the system under investigation. The figure of
merit estimated by both DFE and RB is the average gate
fidelity to some target state or gate. However, RB is also
robust to SPAM errors (as opposed to DFE). This makes
RB the protocol of choice for characterizing many candidate
quantum computing platforms [8,15–18]. Variants of RB that
estimate output purity [19] and leakage [20–22] have also
been devised.
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An important practical problem when using RB is choosing
a number of random gate sequences that is sufficiently small
to be practical experimentally and yet gives a good estimate
of the gate fidelity. This problem becomes increasingly rel-
evant as error rates improve since estimating small errors
accurately ordinarily requires more samples. Early treatments
of this problem demanded numbers of sequences that were
orders of magnitude larger than were feasible in experiments
[23]. A more specialized analysis allowed rigorous confidence
intervals to be derived for a number of random sequences
comparable to the number used in experiments [24]. However,
this analysis only provided reasonable bounds on the number
of sequences for short sequence lengths and for single-qubit
experiments while more general multiqubit bounds had an
unfavorable exponential scaling with the number of qubits
being benchmarked. The restriction to short sequence lengths
is also problematic because long sequences generally lead to
better experimental fits [25,26].

In this paper, we propose an adapted version of the stan-
dard RB protocol on the set of Clifford gates that requires
little experimental overhead. For this protocol, we provide
a bound on the number of random sequences required to
obtain rigorous confidence intervals that is several orders
of magnitude sharper than previous multiqubit bounds. Our
result makes rigorous and efficient randomized benchmarking
of multiqubit systems possible using a reasonable amount of
experimental resources. In particular, our bounds are approx-
imately independent of the number of qubits being bench-
marked. As a special case, we also obtain bounds for the
single-qubit version of RB that are valid for all sequence
lengths and improve on the bounds of Ref. [24] for long
sequence lengths. The key to the analysis of the statistical
performance is an understanding of the representations of the
Clifford group, developed in a companion paper [27]. Simi-
lar representation-theoretic questions have also been studied
independently by Zhu et al. [28]. We also prove a precise
sense in which the derived bounds are optimal. Finally, we
analyze the fitting procedure inherent to randomized bench-
marking in light of our results. We conclude that randomized
benchmarking yields data that violate the core assumptions of
the ordinary least squares (OLS) fitting procedure, a standard
tool for processing randomized benchmarking data [25]. This
means using OLS to analyze RB data can lead to misleading
results. As an alternative, we propose using the more sophis-
ticated method of iteratively reweighted least squares opti-
mization, which can be guaranteed to lead to correct results
[29,30].

In Sec. II, we present an overview of the contributions
of this paper [equations of note here are Eqs. (9) and (11)]
and explain their context. In Sec. III, we discuss the impli-
cations of this bound for experiments and investigate it in
various limits. Finally, in Sec. IV, we discuss the derivation
of these bounds and how to apply them in practice, notably
with regard to the RB fitting procedure. We also prove that
our results are optimal in some well specified sense. We
focus on intuition and displace most of the technical proofs
to the Appendices. We make heavy use of techniques from
group and representation theory, which are of independent
interest, but were derived in a more general setting than
needed for the purpose of this paper. Readers interested in

the details of this part of the derivation are invited to the
companion paper [27] or the closely related work of Zhu et al.
[28].

A. Figure of merit

We begin by introducing the essential quantities we will
use to state and derive our results. The central problem that
RB addresses is how to efficiently obtain a rigorous figure of
merit quantifying how close a physically performed operation
Ũ (represented by a completely positive, trace-preserving
(CPTP) map [1]) is to an ideal target operation U , which is
generally taken to be unitary, that is, U (ρ) = UρU † for some
unitary U and for all density matrices ρ. The quality of a
noisy implementation Ũ relative to its ideal implementation
U is quantified by the average (gate) fidelity,

Favg(U , Ũ ) :=
∫

dφ Tr(U (|φ〉〈φ|)Ũ (|φ〉〈φ|)), (1)

where dφ is the uniform Haar measure over pure quantum
states.

It is convenient (and always possible) to write the phys-
ically performed operation Ũ as the ideal operation U up
to composition with a “noise operation;” that is, we write
Ũ = E ◦ U where E is a CPTP map. Note that in general
the map E can depend on the unitary U being implemented.
However, in this paper, we shall always consider E to be
the same for all possible unitary operations U . This is called
a gate-independent noise model. We will also work with
the more general noise model Ũ = L ◦ U ◦ R, where R,L
are CPTP maps. This ensures compatibility of our results
with recent results on RB with gate-dependent noise [31,32].
However, we can always recover the presentation given here
by choosing the right gauge. This is explained in Sec. IV D.
Because the map U is unitary, we can also write

Favg(U , Ũ ) = Favg(E, I ), (2)

where I is the identity operation. A useful quantity is the
average infidelity r defined as

r(E ) := 1 − Favg(E, I ). (3)

We also use the quantity f = f (E ) defined as

f (E ) := dFavg(E, I ) − 1

d − 1
, (4)

where d is the dimension of the state space. One can think of
f as the “depolarizing parameter” associated to the quantum
channel E . It is this quantity which randomized benchmarking
can estimate. In the text, we will often drop the channel E from
the (in)fidelity and depolarizing parameter and simply write
r(E ) = r because the only channel considered in the text is E
(or equivalently RL; see Sec. IV D).

We will also use another quantity associated to quantum
channels called the unitarity:

u(E ) := d

d − 1

∫
dφ Tr[|E (|φ〉〈φ| − 1/d )|2]. (5)

The unitarity has the property that u(E ) = 1 if and only if the
quantum channel E is unitary [19]. We will again drop the ar-
gument and write u(E ) = u. Introducing this extra parameter
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1. Choose a random sequence �G = (G1, . . . , Gm) of m gates independently and uniformly at random from
the q-qubit Clifford group C and compute the gate Gm+1 = (Gm . . . G1)†.

2. Prepare q qubits in a state ρ that maximizes Tr(ρP) [e.g., ρ ≈ 2−q(I + P)].

3. For t = 1, . . . , m + 1, apply the gate Gt to ρ.

4. Measure the expectation value pm(�G)(ρ) of some observable Q ≈ P to a suitable precision (By repeating
1-3 for the same sequence L times)

5. Repeat these steps for the same string �G but for a different state ρ̂ [ideally, ρ ≈ 2−q(I −P)]. and compute
km(�G) = 1

2 (pm(�G)(ρ) − pm(�G)(ρ̂)).

6. Repeat steps 1–5 a total of N times to estimate

�G(Km) = |C|−m
∑

�G∈Cm

km(�G)

to a suitable precision (implicitly regarding the km(�G) as realizations of a random variable Km). We call
the empirical average over the N sampled Clifford sequences km,N

7. Repeat steps 1–6 for multiple values of m and fit to the decay model

�G(Km) = Afm,

where f = (dFavg(E , I) − 1)/d − 1 is the depolarizing parameter as given in eq. (4) [23] (and d = 2q).

FIG. 1. Randomized benchmarking protocol. We perform randomized benchmarking using the Clifford group C; i.e., all gates that can be
constructed by successive application of CNOT gates, Hadamard gates, and π/4 phase gates. We assume the input states ρ, (ρ̂) to be noisy
implementations of the states 2−q(I + P), [2−q(I − P)], and Q is a noisy implementation of the observable P where P is a Pauli operator. We
denote the length of an RB sequence by m, the amount of random sequences for a given m by N , and the amount of times a single sequence is
repeated by L. The goal of this paper is to provide confidence intervals around the empirical average km,N assuming that individual realizations
km( �G) are estimated to very high precision (corresponding to the case L → ∞). In experimental implementations, running the same sequence
many times (L) is typically easy, but running many different sequences (N ) is hard [25], meaning that the quantity that we want to minimize
is N . See Sec. IV for a detailed discussion of the construction of confidence regions around the empirical average km,N .

allows us to differentiate between situations where the noise
is coherent or incoherent. Randomized benchmarking behaves
fundamentally differently in each of these situations, as we
explain in Sec. IV G.

B. The randomized benchmarking protocol

In Fig. 1, we lay out our version of the randomized
benchmarking protocol as it was analyzed in Refs. [8,23,24].
We will perform randomized benchmarking over the Clifford
group on q qubits C. This is the group of unitary operations
that can be constructed by considering all possible products of
controlled-NOT (CNOT) gates, Hadamard gates, and π/4 phase
gates on the q qubits [33]. We make two essential changes
to the standard randomized benchmarking protocol, both of
which lead to better guarantees on the precision of randomized
benchmarking:

(1) A first modification is to perform each randomized
benchmarking sequence twice, but with different input states
ρ, ρ̂, and then subtracting the result. This is equivalent to
performing standard randomized benchmarking with the “in-
put operator” ν = 1

2 (ρ − ρ̂ ). A similar idea was suggested in
Refs. [8,26,34,35]. The factor (1/2) is not strictly necessary

but it allows for a fairer comparison between the original
benchmarking protocol and our proposal [36].

(2) Second, we do not assume the ideal measurement
operator to be the projector on the |0 . . . 0〉 state. Instead, we
perform some stabilizer measurement related to a prechosen
Pauli matrix P. An experimentally good choice would be,
for instance, P = Z⊗q but our results hold for any choice of
Pauli operator. Correspondingly we pick the input states to
be some (impure) states ρ, ρ̂ with support on the positive,
respectively negative, eigenspaces of the Pauli operator P.
That is, we would like to prepare the impure states ρ = I+P

2d ,

ρ̂ = I−P
2d .

Both of these adjustments are done with the purpose of
lowering the experimental requirements for rigorous random-
ized benchmarking. Our first change to the RB protocol,
performing randomized benchmarking with a state difference,
has two beneficial effects: (1) It changes the regression prob-
lem inherent to randomized benchmarking from an exponen-
tial fit with a nonzero offset to an exponential fit [see Eq. (7)].
This eliminates a fitting parameter, lowering experimental
requirements. (2) It lowers the statistical fluctuations of ran-
domized benchmarking regardless of what input states are
actually used. This improvement is mostly noticeable in the
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limit of long sequence lengths. We discuss this in more detail
in Sec. IV I.

A much stronger improvement to the statistical fluctuations
inherent to randomized benchmarking stems from our second
change to the RB protocol, preparing states and performing
measurements proportional to 1 + P, where P is a Pauli
operator. This change allows us to prove a radically sharper
bound on the statistical fluctuations induced by finite sampling
relative to preparing other input states. This is discussed in
Sec. IV E [see in particular Eq. (36)]. In Sec. IV G, we argue
that this behavior is not an artifact of our proof techniques
but rather inherent to the statistical behavior of randomized
benchmarking. Note that for a single qubit the state (I ± P)/2
is in fact a pure state for any choice of P [in particular, (I +
Z )/2 = |0〉〈0|]. Note that (1) and (2) both reduce the amount
of resources needed in a different and independent manner.
Using a difference of two input states amounts to effectively
“preparing” a traceless input operator. The tracelessness of
this operator has two distinct effects. The first effect is that
it fixes the constant offset of the decay to be zero, thereby
eliminating a fitting parameter. The second effect, which is
more subtle, is that it eliminates in the variance expression
a representation (which has support on the identity matrix),
and hence an extra term in the sequence variance. This means
the sequence variance is reduced compared to the sequence
variance of standard RB. This effect remains even in the case
of imperfect state preparation, as the difference of two density
matrices is always traceless (assuming no leakage during the
preparation).

As seen in Fig. 1, the RB protocol starts by, for a given
sequence of Clifford operations �G of length m, computing
the expectation value pm( �G)(ρ) of an observable Q for two
different input states ρ and ρ̂. We subtract these two num-
bers to obtain a number km( �G) := 1

2 [pm( �G)(ρ) − pm( �G)(ρ̂)].
Next, we obtain an average of this quantity over all possible
sequences �G:

E �G(Km) = |C|−m
∑
�G∈Cm

km( �G). (6)

This average over all possible Clifford strings of length m can
be fitted for various values m to the exponential decay curve

E �G(Km) =fit A f m, (7)

with two fitting parameter A and f . In the case where all gates
performed in the experiment suffer from the same noise, that
is, Ĝ = E ◦ G for all Clifford operations G, the number f can
be interpreted as the depolarizing parameter of the channel
E [as defined in Eq. (4)], giving an estimate of the average
fidelity of the noisy operation Ĝ with regard to its ideal
version G.

In practice, the number of possible sequences for a given
m is too large to average over completely. Instead, one av-
erages over a randomly sampled subset of sequences, which
generates an empirical estimate km,N , the validity of which we
can interpret using confidence regions. A confidence region,
for some set confidence level 1 − δ and size ε, is an interval
[km,N − ε, km,N + ε] around the estimate km,N such that the
probability that the (unknown) parameter E �G(Km) lies in this

interval with probability greater than 1 − δ, i.e.,

Prob[E �G(Km) ∈ [km,N − ε, km,N + ε]] � 1 − δ.

These confidence intervals, obtained for various values
of sequence length during the experiment can then be used
in the fitting procedure, Eq. (7), to generate a confidence
interval around the empirical estimate F̂ for the true channel
average fidelity Favg(E, I ). This can be done using standard
statistical procedures (see, e.g., Ref. [37]). The number of
random sequences N used to obtain km,N will depend on ε

and δ, which are set before the beginning of the experiment,
and in general also on some prior estimate of the infidelity
r and unitarity u. The rest of the paper will be concerned
with making this N as small as possible given δ and ε and
(if possible) an a priori bound on the average infidelity r.

II. RESULTS

In this section, we state the main contributions of the
paper. We present practical bounds on the number of se-
quences required to obtain rigorous confidence intervals for
randomized benchmarking using the Clifford group under the
assumption that the expectation value difference km( �G) for a
given Clifford sequence �G is estimated easily to a very high
precision. This means we assume that any uncertainty on the
number km is mostly due to the fact that we only sample
N sequences �G [24,25] or equivalently that the uncertainty
on the number km( �G) for a fixed sequence �G is negligible.
In order to construct a 1 − δ confidence interval of size ε

around a randomized benchmarking sequence average km,N

with sequence length m, system dimension d , and a prior
estimate of the channel infidelity r and unitarity u, one needs
to average over N random sequences where N is given by [38]

N (δ, ε, m, r, χ, d ) = − ln(2/δ)

[
ln

(
1

1 − ε

)
1 − ε

V 2 + 1

+ ln

(
V 2

V 2 + ε

)
V 2 + ε

V 2 + 1

]−1

, (8)

where V 2 is the variance of the distribution of the samples
km( �G) from a uniform distribution over the Clifford sequences
�G. This variance is given below.

A. The variance of randomized benchmarking

The most important contribution of this paper is a bound on
the number of sequences N needed for multiqubit randomized
benchmarking. Previous bounds for multiqubit RB [23,24]
are either prohibitively loose or scale exponentially with the
number of qubits. Our bounds, which are derived in detail in
Theorem 1 of the Appendices, resolve both these issues using
techniques from representation theory, enabling multiqubit
RB with practical numbers of random sequences.

1. Variance bound for SPAM-free multiqubit RB

For states and measurements that are (very close to) ideal,
Sec. IV E yields a bound on the variance in terms of the
sequence length m, the infidelity r, the unitarity u, and the

032304-4



MULTIQUBIT RANDOMIZED BENCHMARKING USING FEW … PHYSICAL REVIEW A 100, 032304 (2019)

FIG. 2. Improvements in dimensional and sequence length scaling. The number of sequences needed (on a log scale) to obtain a 99%
confidence interval around pm,N with ε = 10−2 for a prior infidelity r = 10−3 as a function of (a) the sequence length m for a single qubit
(q = 1) from Eq. (9) (full line red) compared to the single-qubit bound from Ref. [24, Eq. (6)] (dashed green) and a trivial bound that arises
from noting that the distribution sampled from is bounded on the interval [0,1] and hence has a variance at most 1/4 (dot-dashed blue)
and (b) the number of qubits from Eq. (11) (full line) for sequence length m = 100 compared to the multiqubit bound from from Ref. [24,
Eq. (4)] (dashed green). In both cases, our bounds are asymptotically constant while the bounds from Ref. [24] diverge. Our bounds are also
substantially smaller than the trivial bound. For multiple qubits, we set the SPAM contribution to η = 0.05 while for a single qubit we set
the SPAM contribution to η = 0 in both bounds. We also assumed the unitarity to be u = (1 + f 2 )/2, where f is the depolarizing parameter,
corresponding to somewhat but not fully coherent noise.

system size d . It is given by

V 2
m � d2 − 2

4(d − 1)2
r2m f m−1 + d2

(d − 1)2
r2um−2

× (m − 1)
( f 2

u

)m − m
( f 2

u

)m−1 + 1

(1 − f 2/u)2
. (9)

This bound is asymptotically independent of system size d .
To illustrate the improvements due to our bound, consider

a single qubit (d = 2) RB experiment with sequences of
length m = 100 and average infidelity r � 10−4. To obtain
a rigorous 99% confidence interval of size ε = 10−2 around
pm,N , Ref. [24] reported that N = 145 random sequences
were needed (in the case of perfect state preparation and
measurement), while our bounds imply that N = 173 random
sequences are sufficient. However, our bound has substantially
better scaling with m. For instance, with m = 5000, ε = 0.05,
and other parameters as above, our bound only requires N =
470 compared to the N = 1631 required by the single-qubit
bound of Ref. [24]. We illustrate the difference in scaling
of the number of sequences needed for a given confidence
interval with respect to sequence length m in Fig. 2.

A notable upper bound on Eq. (9), which is easier to work
with, is

V 2
m � f m−1 (d2 − 2)m

4(d − 1)2
r2 + um−2 d2m(m − 1)

2(d − 1)2
r2. (10)

This bound can be further weakened and simplified by set-
ting u = 1, yielding an upper bound on the variance that is
independent of the unitarity. This bound will, however, rapidly
become trivial with increasing sequence length.

2. Variance bound including SPAM

The above variance bound is sensitive to SPAM errors,
which introduce terms into the variance which scale linearly
in the infidelity r. In Theorem 1 of the Appendices, we prove
that in the presence of SPAM errors the variance is bounded
by

V 2
SPAM � d2 − 2

4(d − 1)2
r2m f m−1

+ d2(1+ 4η)r2

(d − 1)2

(m −1)
( f 2

u

)m − m
( f 2

u

)m−1+1

(1 − f 2/u)2
um−2

+ 2ηdmr

d − 1
f m−1. (11)

The correction factor η only depends on SPAM. As we
show in Sec. IV H, this SPAM dependence is impossible to
avoid if one wants to retain the preferred quadratic scaling in
infidelity r. This bound is also asymptotically independent of
the number of qubits. This means we can perform rigorous
randomized benchmarking even in the limit of very many
qubits. We illustrate the difference in scaling with respect to
system size in Fig. 2.

To illustrate the improvements our methods yield, we can
again compare to Ref. [24]. Consider a system with four
qubits, that is, d = 16, with sequence length m = 100, an
a priori estimate of r � 10−4, and η = 0.05. For a 99%
confidence region of size ε = 10−2, the previous best-known
bound for multiple qubits [24] would require N = 3 × 105

random sequences, while our dimension-independent bound
from Eq. (11) only requires N = 249.

3. Optimality of results

We also prove (see Sec. IV) that for arbitrary SPAM a
bound on the variance which is linear in the infidelity r
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is in fact optimal. This means the result stated above is in
some sense the best possible bound on the variance of a
randomized benchmarking sequence. It is important to note
that this optimality result also holds when RB is performed
using a different set of gates than the Clifford group and also
when one considers the standard protocol [8,9] as opposed to
the protocol involving differences of quantum states which we
presented in this paper.

Both the SPAM and SPAM-free variance bound also ap-
proach a constant independent of the infidelity r in the limit
of large sequence length m when the unitarity is 1, that is,
when the noise in the system is purely coherent. In Sec. IV H,
we argue that this behavior is not an artifact of the proof
techniques used but is in fact a generic feature of a randomized
benchmarking procedure with a unitary noise process.

4. Fitting procedure

In Sec. IV C, we discuss the consequences of Eqs. (9)
and (11) on the fitting procedure used to fit the data {km,N }
generated by Fig. 1 to the RB fitting relation, Eq. (7). Our
results show that the variance of randomized benchmarking
data is strongly heterogeneous with respect to the sequence
length m. This invalidates the key assumption of homogeneity
of variance (homoskedasticity) [30] that is necessary for the
correct functioning of ordinary least squares (OLS), the stan-
dard method used for fitting RB data [25]. Because of this,
inferences drawn from OLS can give misleading results when
applied to RB data. We recommend switching from OLS to
the more sophisticated method of iteratively reweighted least
squares, which can deal with nonhomoskedastic data.

III. DISCUSSION

In this section, we will discuss the behavior of the variance
bound Eqs. (9) and (11) in various regimes. Of interest are
its scaling with respect to the number of qubits in the system,
the presence of state preparation and measurement noise, and
varying amounts of coherence in the noise process.

A. Scaling with number of qubits.

We begin by discussing the effect of the number of qubits
in the system on the variance and the number of necessary
sequences.

As illustrated in Fig. 2 (red full line) and as can be seen
from Eq. (9), the derived bound is almost independent of
the number of qubits q (where d = 2q). In fact, the bound
on the variance decreases asymptotically to a constant in the
limit of many qubits despite the number of possible sequences
(that is, |C|m) increasing exponentially with the number of
qubits. This constitutes a notable improvement over previous
multiqubit variance bounds with an explicit dependence on the
infidelity (dashed green in Fig. 2), given in Ref. [24], which
had a linear scaling with infidelity but scaled exponentially
with the number of qubits. The qualitative behavior of the
variance bound in terms of dimension matches a trivial bound
on the number of sequences, which can be made by noting that
the numbers km,N are sampled from a distribution bounded on
an interval of unit size (and hence has variance at most 1/4

[dashed blue in Fig. 2]) but is much sharper in absolute terms
due to its quadratic dependence on the infidelity r.

To further illustrate the behavior of the bound, Fig. 3(a)
shows the number of sequences needed for a 99% confidence
interval around km,N of size 5r versus the number of qubits in
the system for various values of r ranging from 5 × 10−3 to
10−4 and sequence length m = 100. The size of ε was chosen
to reflect that for fixed sequence length a smaller infidelity
will lead to the need for greater precision around km.N for a
successful fit to the exponential Eq. (7) [25]. This plot was
made using the unitarity independent bound in Eq. (10) for
ideal SPAM, but similar plots can be made for non-negligible
SPAM errors using Eq. (11). Note also that greater numbers of
sequences are needed when the infidelity is small even though
the variance in Eq. (9) decreases with infidelity. This is due to
our setting of the size of the confidence interval and reflects
the statistical truism that more samples are in general needed
to detect small differences.

B. Effects of SPAM terms

In practice, it will always be the case that the input state
difference ν and the output measurement POVM element Q
are not ideal. This means that in general we must take into
account the contributions from nonideal SPAM when calcu-
lating the number of required sequences. These contributions
scale linearly in the infidelity r [see Eq. (11)] rather than
quadratically and so will increase the amount of required
sequences. The degree to which ν and Q deviate from the
ideal situation is captured by the prefactor η (see Sec. IV for
more on this factor). To illustrate the effect of the SPAM terms
on the variance, we plot in Fig. 3(b) the variance versus the
infidelity r using Eq. (11), taking the sequence length m =
100 and the dimension of the system d = 16 (four qubits) for
SPAM of size η ∈ {0, 0.01, 0.05, 0.1, 0.5}. From this plot, we
note that for nonzero η the variance and hence the amount of
sequences needed increase rapidly, especially in the regime
of small r. This is due to the fact that increasing the SPAM
contribution interpolates the variance between a regime where
the terms quadratic in infidelity r are dominant and a regime
where the terms linear in infidelity r are dominant. This
means that, especially when dealing with systems with very
small r, it is advantageous to try to suppress SPAM errors.
In Sec. IV G, we show that this type of quadratic-to-linear
interpolation behavior is in fact optimal for the variance of
randomized benchmarking.

C. Scaling with sequence length

Of more immediate relevance is the scaling of the bound
with the sequence length. It is easy to see that the variance
bound Eq. (9) scales quadratically in the sequence length m
for any noise process when the sequence length is small [see
also Eq. (10)] but when the sequence length is very long
the precise nature of the noise under consideration heavily
impacts the variance. If the noise is purely coherent, i.e., the
unitarity u = 1, we see that the scaling of the second term in
Eq. (9) is set by the factor

(m − 1) f 2m − m f 2(m−1) + 1

(1 − f 2)2
. (12)
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FIG. 3. (a) Number of sequences needed for a 99% confidence interval of size ε = 5r for various infidelities r (ranging from r = 5 × 10−3

to r = 10−4), number of qubits q ∈ [1, 10], and sequence length m = 100 using Eq. (10) under the assumption of negligible SPAM. (similar
plots can be made without this assumption). The number of sequences needed increases with decreasing infidelity, reflecting the generic
statistical rule that higher precision requires more samples. Note that even in the case of infidelity r = 2 × 10−4 the number of sequences
required is within experimental limits. (b) Variance, as given by Eq. (11), vs infidelity r (taking d = 16 and m = 100 for illustration) for
various levels of SPAM η ∈ {0, 0.01, 0.05, 0.1, 0.5}. Note that the size of the SPAM term has a strong influence on the variance and hence
the number of sequences required, especially in the small-r limit. As indicated by the visual aids, this is due to the transition from a variance
scaling quadratically in infidelity r (small η) to a variance scaling linearly in the infidelity r (large η).

In the limit of m going to infinity, this factor goes to

1

(1 − f 2)2
≈ O(1/r2), (13)

which means the variance Eq. (9) converges to a constant
independent of the infidelity r. This behavior for unitary noise
is strikingly different from the behavior for incoherent noise,
that is, u < 1. Here, we see that the variance in the limit
of long sequences is dominated by the exponential terms
um−2 and f 2(m−1). Since f and u are strictly less than 1
by the assumption of incoherence, the variance will decay
to zero in the limit of long sequences. As u � f 2 for all
possible noise processes [19], the decay rate will be dom-
inated by the size of the unitarity. This is also evident in
Fig. 4(a). In this figure, we see the number of sequences
needed [as given by Eq. (9)] versus sequence length m for
fixed infidelity r = 0.1 and dimension d = 16, and a fixed
confidence interval δ = 0.99, ε = 0.01 but for different values
of the unitarity u. Here, we have chosen u = [κ + (1 − κ ) f 2]
for κ ∈ {0.2, 0.4, 0.6, 0.8, 1} corresponding to the situations
where the noise is relatively incoherent going all the way up
to a situation where the unitarity is 1. We see that for u < 1
the number of sequences needed first rises quadratically, tops
out, and subsequently decays to zero, whereas in the case
of u = 1 the number of sequences needed keeps rising with
sequence length m until it tops out at some asymptotic value.
In Sec. IV H, we argue that this behavior is not a feature of the
variance bound but rather a feature of the variance of ran-
domized benchmarking itself. Therefore, in the case of highly
unitary noise, we recommend performing more experiments
at shorter sequence lengths rather than trying to map out the
entire decay curve.

Another noteworthy feature of the variance bound Eq. (9)
is the fact that, for nonunitary noise (that is, u < 1), it is in
general not monotonically increasing in infidelity r. Rather,
for a fixed sequence length, the variance increases at first

with increasing infidelity but then peaks and decays toward
zero. This behavior is illustrated in Fig. 4(b). Here, we plot
a contour plot of the variance with infidelity on the y axis
(r ∈ [0.01, 0.1]) and sequence length m on the y axis (m ∈
[1, 100]) and have set the unitarity to u = ( f 2 + 1)/2 corre-
sponding to relatively incoherent noise. The takeaway from
this plot is that it is not enough to have an upper bound on the
infidelity to get an upper bound on the variance; rather, one
must have both upper and lower bounds on the variance to
make full use of the bound Eq. (9). Note that the looser upper
bound Eq. (10) does not share this behavior and always yields
an upper bound on the variance given an upper bound on the
infidelity r.

On the other hand, when the underlying noise process is
unitary, that is, u = 1, the variance does increase monotoni-
cally with increasing r. This strikingly different behavior is
illustrated in Fig. 4(c). Here, we plot a contour plot of the
variance with infidelity on the y axis (r ∈ [0.01, 0.1]) and
sequence length m on the y axis (m ∈ [1, 100]) and have set
the unitarity to u = 1 corresponding to fully coherent noise.

D. Future work

An important caveat when applying the confidence bounds
is the assumption of gate- and time-independent noise (this
can be relaxed to Markovian, gate-independent noise [24]).
This is an assumption that many analyses of RB suffer from
to various degrees; hence, a major open problem would be
to generalize the current bounds to encompass more general
noise models. Note, however, that since our upper bound cap-
tures the correct functional behavior of the RB variance with
respect to sequence length (for gate- and time-independent
noise) one could in principle check if these assumptions hold
true by computing estimates for the variance at each sequence
length (from the measured data) and checking if these esti-
mates deviate significantly from the proposed functional form.

032304-7



HELSEN, WALLMAN, FLAMMIA, AND WEHNER PHYSICAL REVIEW A 100, 032304 (2019)

Number of sequence vs sequence length
for different levels of coherence

Contour plot of variance for incoherent
noise

Contour plot of variance for coherent
noise

FIG. 4. (a) Number of sequences needed for a 99% confidence interval of size ε = 0.01 around km,N for various values of the unitarity
[given by a linear interpolation between f 2 and 1 where κ = 1 corresponds to u = 1 (unitary noise) and κ = 0 corresponds to u = f 2

(depolarizing noise)] for fixed infidelity r = 0.01 and sequence length in the interval m ∈ [1, 10000] (log scale) using the variance Eq. (9).
We also assume d = 16 (four qubits) and ideal SPAM (η = 0). Note that the number of sequences differs radically for u = 1 (unitary noise).
In the case of u < 1, the number of sequences needed rises with increasing sequence length m, peaks, and then decays to zero but for u = 1
the number of sequences keeps rising with increasing sequence length m until it converges to a nonzero constant (which will be independent
of r). In Sec. IV H, we argue that this is expected behavior for randomized benchmarking with unitary noise. [(b), (c)] Contour plot of the
variance bound with infidelity on the y axis (r ∈ [0.01, 0.1]) and sequence length m on the y axis (m ∈ [1, 100]). For panel (b), we have set
the unitarity to u = (1 + f 2)/2 corresponding to relatively incoherent noise, and for panel (c), we have set the unitarity u = 1 corresponding
to coherent noise. Note again the radical difference in behavior. For u = 1, the variance rises monotonically in the sequence length m to a
constant independent of the infidelity r. Moreover, the variance is monotonically increasing in infidelity r. However, for incoherent noise, the
variance will peak strongly around mr ≈ 1 and then decay to zero with increasing sequence length m. This means that both upper and lower
bounds on the infidelity are required to make full use of the bound in Eq. (9). The looser bound of Eq. (10) does not share this property and
can be used with only an upper bound on the infidelity r.

Recent work has also argued that the exponential behavior
of randomized benchmarking is robust against Markovian
gate-dependent fluctuations [31]. This, however, comes at
a substantial increase in mathematical complexity. We sus-
pect that similar robustness statements can be made for the
variance of randomized benchmarking but new mathematical
tools will be needed (perhaps using the Fourier analysis
framework proposed recently in Ref. [39]) to make this suspi-
cion rigorous.

Our work can be straightforwardly extended to interleaved
RB (IRB) [40]. However, the dominant source of error in
the interleaved RB protocol is usually systematic rather than
stochastic (because the protocol does not yield an estimate
of the interleaved gate fidelity but rather provides upper and
lower bounds). Interleaved RB essentially consists of two
RB experiments: a reference experiment and an interleaved
experiment, the latter of which has an extra “interleaved gate”
inserted between the random gates of the standard RB proto-
col. Hence, the fidelity extracted from the second experiment
corresponds to the fidelity of the composition of the noise
due to the random gates and the noise due to the interleaved
gate. An estimate of the fidelity of the interleaved gate is then
extracted by considering the ratio of the fidelity of the random
gates (from the reference experiment) and the fidelity of the
above composition. However, the fidelity of a composition of
two noise maps is in general not equal to the product of the
fidelities of the individual maps and can, depending on the
specifics of the noise processes, differ quite radically. Hence,
in the absence of more knowledge about the underlying noise
processes, IRB gives an inaccurate estimate of the fidelity
of the interleaved gate. This inaccuracy is not remedied by

reducing the imprecision of the fidelity estimates (for a fixed
amount of resources), which is what we provide here. And
since the inaccuracy due to this lack of fidelity composition
can be much larger than the imprecision for even a modest
amount of resources, it is less useful to spend significant
energy on increasing precision in IRB.

Moreover, it should be noted that while randomized bench-
marking is efficient in the complexity theoretical sense (i.e.,
the amount of resources needed scales polynomially with the
number of qubits in the system), the amount of resources
required is still significant, and no RB experiment has been
performed beyond three qubits so far [14]. Recently, several
protocols have been devised and implemented that are sim-
ilar to randomized benchmarking but less resource intensive
[41–43], making larger scale characterization of multiqubit
systems possible. We suspect the bounds derived in this paper
can be adapted to these new proposal but we leave this for
future work.

Also, successful and rigorous randomized benchmarking
not only depends on the number of random sequences needed
per sequence length but also on the fitting procedure used to fit
the points generated by randomized benchmarking of various
lengths to a decay curve in order to extract an estimate of the
average gate fidelity. Finding the optimal way to perform this
fitting procedure is still an open problem [25]. Accounting for
heteroskedasticity, as we have done here, can be considered
a first step in this direction. Performing this accounting is
standard practice in statistics but does not seem to be in
widespread use in the experimental community. One could
also consider directly estimating the variance at each sequence
length from obtained data and then using these estimates
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directly as inputs to a weighted least-squares fitting procedure.
We, however, believe that the parametric model we propose
here will be more efficient in terms of data needed for a fixed
precision.

Finally, a major theoretical open problem is the extension
of the present bounds to nonqubit systems, different varieties
of randomized benchmarking [44–46], and different 2-designs
[44,47,48] or even orthogonal 2-designs [49,50]. If these 2-
designs are assumed to be groups, similar techniques from
representation theory might be used [51], but how this would
be done is currently unknown.

IV. METHODS

In this section, we will discuss our contributions in detail
and explain how to apply them in an experimental setting.
We will give a high-level overview of the proof of the bound
on the variance of a randomized benchmarking sequence;
full details can be found in the Appendices. We will also
discuss the behavior of noise terms in the case of non-ideal
SPAM and prove that the bounds we obtain are in some sense
optimal. Finally, we briefly comment on how the variance
changes when performing regular randomized benchmarking
[using an input state ρ rather than an input state difference
ν = 1

2 (ρ − ρ̂ )].

A. Estimation theory

In this section, we review confidence intervals and relate
the bounding of confidence intervals to the bounding of the
variance of a distribution. The first thing of note is that all
the variance bounds stated in Sec. II are dependent on the
infidelity r. The appearance of r in the bound might strike one
as odd since this is precisely the quantity one tries to estimate
through RB. It is, however, a general feature of estimation
theory that one needs some knowledge of the quantity one
tries to estimate in order to use nontrivial estimation methods
[37]. Note also that while our results are stated in frequentist
language, they should also be translatable to Bayesian lan-
guage, that is, as credible regions on the infidelity given prior
beliefs as in Ref. [26], for example. Bayesian methods are
more natural because our bounds depend on prior information
about the infidelity; however, a full Bayesian treatment would
involve the fitting process, obscuring our primary technical
result, i.e., the variance bounds.

Let us now discuss how to use the variance bounds to
construct confidence intervals around numbers km,N . We can
in general define a 1 − δ confidence interval of size ε to be

Pr[|km,N − E �G(Km)| � ε] � 1 − δ. (14)

Once we have an upper bound on the variance V 2
m of an RB

distribution, we can relate this to an upper bound on num-
ber of required sequences through the use of concentration
inequalities.

Note that for the case of randomized benchmarking there
are two sets of confidence parameters. (δN , εN ) is associ-
ated with estimating the average over all possible Clifford
sequences, where the relevant parameter is the number of
performed sequences N and (δL, εL ) is associated with getting
an estimate for the survival probability difference km( �G) for a

given fixed sequence. Here, the relevant parameter is L, the
number of times a single sequence is performed. Since in
practice L < ∞, there will be some finite (δL, εL ) confidence
region around the survival probability difference km( �G) for
a given sequence �G. So in general, when looking at a ε, δ

confidence region for an RB procedure of a given length, one
should look at (εN + εL, δN + δL ) confidence regions. In what
follows, we will assume that L is high enough such that εL, δL

are negligible relative to (δN , εN ). This approach is motivated
by experimental realities where it is usually much easier to
perform a single string of Cliffords many times quickly than it
is to generate, store, and implement a large number of random
sequences.

For a given variance V 2, we can relate the number of
sequences N needed to obtain 1 − δ confidence intervals of
size ε using the following concentration inequality due to
Hoeffding [38]:

Pr[|km,N − E �G(Km)| � ε] � δ � 2H (V 2, ε)N , (15)

with

H (V 2, ε) =
(

1

1 − ε

) 1−ε

V2+1
(

V 2

V 2 + ε

)V2+ε

V2+1

. (16)

We can invert this statement to express the number of neces-
sary sequences N as a function of δ, r, ε as

N = − ln(2/δ)

ln (H (V 2, ε))
. (17)

Note that this expression can also be inverted to yield a bound
on δ, ε in terms of a given number of samples N . This identity
heavily depends on the size of the variance V 2

m.

B. State preparation and measurement costs

We have argued that our adapted RB protocol allows for a
reduction in the number of needed sequences to make rigorous
estimates. However, implicit in this cost reduction argument is
the assumption that estimating the number km( �G) for a fixed
sequence �G is not more costly than estimating the number
pm( �G). Here, we justify this assumption for the two changes
we made to the randomized benchmarking protocol: using a
state difference as input and using an impure input state de-
fined by a single Pauli matrix. In the following, we forgo rigor
in favor of intuition. We are, however, only applying standard
statistical techniques that can easily be made rigorous.

1. State difference

At first glance, one might think that estimating the same
sequence twice for difference input states as we propose yields
a twofold overhead in the number of samples per sequence.
To see that this is not the case, consider the variance V 2

ρ

associated with estimating the expectation value for a single
sequence for a single state ρ. From the standard rules of error
addition, we now have for the state difference ν = (ρ − ρ̂)/2
that

V 2
ν = V 2

(ρ−ρ̂ )/2 = 1
22

(
V 2

ρ + V 2
ρ̂

)
, (18)

since the random variables associated to ρ and ρ̂ are in-
dependently distributed (making the covariance zero). Now
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assuming that ρ incurs the largest variance, we get

V 2
ν � 1

2V
2
ρ , (19)

which means that estimating the expectation value of a single
sequence for a difference of states is statistically not harder
than estimating it for a single state.

2. Optimal input state and measurement

In our adapted RB procedure, we call for preparing the
input states ρ = 1+P

2 , ρ = 1−P
2 for some Pauli matrix P and

measuring the output operator P. This is different from stan-
dard RB where one is asked to prepare and project onto
the all zero state |0 . . . 0〉〈0 . . . 0|. We argue that performing
RB this way is not more costly than using the standard
approach. For concreteness, we shall set P = Z⊗q. Measuring
the expectation value of the operator Z⊗q is trivial; one simply
measures all qubits in the standard basis (as one would do in
standard RB) and then computes the parity of the outcome.
Since standard basis states with even parity precisely span
the positive eigenspace of Z⊗q, this amounts to measuring the
expectation value of Z⊗q. Preparing the states ρ = 1+Z⊗q

2 , ρ =
1−Z⊗q

2 is a little more involved. The state ρ is a probabilistic
mixture of all computational basis states |x〉 of even parity. By
the linearity of expectation, one could compute (for a fixed
Clifford sequence �G) the survival probability pm( �G, |x〉) and
then compute pm( �G, ρ) = 2−q/2∑

x pm( �G, |x〉). This requires
measuring 22/q expectation values pm( �G, |x〉), making this ap-
proach not scalable. We can remedy this by realizing that we
are only interested in a good estimate of the mean pm( �G, ρ).
Considering pm( �G, |x〉) to be the mean of a Bernoulli random
variable with outcomes 0 and 1, and thus pm( �G, ρ) to be the
mean of a normalized binomial distribution, we can estimate
this mean efficiently by sampling |x〉 at random (with even
parity), estimating pm( �G, |x〉), and then computing the em-
pirical mean. Moreover, since we do not need to know the
means pm( �G, |x〉) very well to get a good estimate of pm( �G, ρ)
the amount of single data points (clicks) gathered to estimate
pm( �G, ρ) is not higher than it would be to accurately estimate
pm( �G, |ψ〉) for |ψ〉 some pure state.

C. The fitting procedure

In the previous section, we outlined how to use the bound
Eq. (9) to construct confidence intervals around km,N . How-
ever, we have not yet discussed how to integrate the variance
bound Eq. (9) into the fitting procedure required by Eq. (7).
A fitting procedure is any method that takes in the set of
data points {km,N }m, with m ∈ M, where M is some set of
integers and outputs a tuple (A∗, f ∗) such that A∗ f ∗m is a
“good” description of the data {km,N }m. There are many ways
to approach this problem (we refer readers to Ref. [30] for a
good overview), and finding an optimal procedure is outside
the scope of this paper. However, we would like to discuss the
most commonly used fitting procedure: ordinary least squares
(OLS) in the light of the bounds Eqs. (9) and (11).

1. Ordinary least squares

Given data {km,N }m and the function F (A, f ) = A f m,
the OLS procedure returns estimates (Â, f̂ ). Through a

linearization procedure, as outlined for RB in Ref. [25],
confidence intervals can then be constructed around these
estimates. However, for this procedure to yield correct results,
each data point km,N must be distributed around E �G(Km) with
the same variance [30, Chapter 2.8]. This assumption, called
homoskedasticity in the statistics literature, is not universally
valid for randomized benchmarking data {km,N }m. This shows
in the functional form of the upper bound Eq. (9), which
strongly depends on the sequence length, and from Eq. (36)
one can see that this is not an artifact of bounding tech-
niques but rather an innate feature of RB data. Moreover,
OLS assumes that the variance of km,N is independent of the
fitting parameters A, f , an assumption which is also explicitly
violated in RB data. The violation of these two assumptions
(homoskedasticity and independence of fitting parameters)
creates problems when performing OLS on the RB data
{km,N }m. In particular, OLS no longer provides an unbiased
estimate of the standard error on the fitting parameters ( f , A)
[30, Chapter 3.3], which can lead to misestimation of confi-
dence intervals around the fitting parameters. Therefore, we
recommend using a more sophisticated approach.

2. Iteratively reweighted least squares

Heteroskedasticity (violation of homoskedasticity) and
functional dependence of the data distribution on the fitting
parameters are well-studied problems, and many robust so-
lutions are available. Here, we will focus on one particular
solution called Iteratively Reweighted Least-Squares (IRLS).
For the purposes of this construction, we will assume that
the data {km,N }m is drawn from a random variable with mean
E �G(Km) and variance V 2

m(m, r)/N . IRLS constructs estimates
for the parameters (A, f ) by minimizing the function

min
A, f

∑
m∈M

wm(km,N − A f m)2, (20)

where the weights wm can depend on f and A. Under the
assumption that Eq. (9) is the actual variance V 2

m up to a
constant factor we can set the weights [30, Sec. 2.8.8] to be
wm = w( f , u, m) = 1/σ ( f , u, m) where σ is the right-hand
side of Eq. (9) [if one suspects that η �= 0, Eq. (11) can be used
instead]. We note that this procedure is fairly robust against
misspecification of the weights, and moreover that σ captures
the behavior of V 2

m with respect to the sequence length very
well (see Sec. IV E). IRLS now proceeds in the following
manner:

It as been shown [29, p. 45] (under some mild regularity
conditions) that this algorithm converges to estimates Â, f̂ .
If the weights wm are exactly proportional to the variance
V 2

m, then these estimates are asymptotically consistent. In
Appendix B 3, we provide a detailed estimate of how close
the estimate f̂ is to the real depolarizing parameter f in terms
of the number of data points in {km,N }m and the number of
sequences N sampled per data point.

Finally, we would like to note that we have in this pro-
cedure kept the number of sequences N constant for varying
N . It is, however, possible to let N depend on the sequence
length m. One choice would be to vary N proportionally to V 2

0
(assuming a good estimate of f is available). In this scenario,
since km,N is drawn from a distribution with variance V 2

m/N ,
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this would remedy the issue with heteroskedasticity and OLS
could be used to provide reliable fitting.

D. Gate-dependent noise and gauge invariance

In recent work [31,32], it has been noted that the relation
between the parameter estimated by randomized benchmark-
ing and the average fidelity is less than straightforward when
the noise channel is allowed to depend on the gate being
implemented, that is, G̃ = EGG. At the heart of the issue is that
the only quantities measurable in the laboratory, probabilities
of the form Tr (QG̃(ρ)) for a state ρ and an observable Q, are
gauge invariant. That is, for any invertible superoperator S ,
we have that

Tr (QG̃(ρ)) = Tr(S−1(Q)SG̃S−1(S (ρ))). (21)

This difficulty can be remedied by considering a more gen-
eral noise model. Instead of choosing G̃ = EG, one chooses
G̃ = LGGRG for superoperators RG,LG [31]. The individual
operators RG,LG are not gauge invariant but the combined
operator RGLG is. Since in this paper we deal exclusively
with gate-independent noise, we can choose the gauge such
that L = I and R = E but our results also hold for the more
general choice of gauge with the express caveat that our
bounds then work in terms of the infidelity r and unitarity
u of the noise in between gates RL. That is, we have r =
r(RL) and u = u(RL). It is possible to see this explicitly by
making the substitution E → RL in all steps of the derivation
of the variance bound in Sec. IV E (and Theorem 1 in the
Appendices).

E. Variance bound

In this section, we present a derivation of the multiqubit
variance bound in Eq. (9) under the assumption of ideal input
difference operator ν = 1

2 (ρ − ρ̂ ) and output POVM element
Q, i.e.,

ν = P
2d

, (22)

Q = 1

2
(1 + P), (23)

where P is some prespecified target Pauli matrix (Fig. 1).
Under these ideal conditions, we can guarantee that the vari-
ance scales quadratically in the infidelity r. We will focus on
intuition and relegate most technical work to the Appendices.
For the remainder of the text, we will choose a basis for
the space of linear operators Md . This means we can think
of density matrices and POVM elements as column and row
vectors which we denote with a Diraclike notation, i.e., ν →
|ν〉〉 and Q → 〈〈Q|. Quantum channels can then be though
of as matrices acting on vectors (which represent density
matrices). Moreover, in this picture, composition of channels
corresponds to matrix multiplication. When measuring the
state E (ρ) using a two-component POVM {Q, 1 − Q} for
some quantum channel E , state ρ, and positive operator Q, we
can write the expectation value Tr (QE (ρ)) as a vector inner
product,

Tr (QE (ρ)) = 〈〈Q|E (ρ)〉〉 = 〈〈Q|E |ρ〉〉 (24)

where we abuse notation by referring to the matrix represen-
tation of the quantum channel E as E as well. This is variously
called the affine or Liouville representation [24,52].

We assume that every experimental implementation of a
Clifford gate G̃ can be written as G̃ = EG for some fixed
CPTP map E , where G is the ideal Clifford gate. That is,
we assume the noise is Markovian, constant, and independent
of the target gate. These assumptions can be relaxed partially
[24,25,31,53].

The key to randomized benchmarking is that randomly
applying elements of the Clifford group C and then inverting
produces, on average, the depolarizing channel [54]

D f (ρ) = f ρ + 1 − f

d
1d ; (25)

that is, we have ∑
G∈Cq

G†EG = D f (26)

with the depolarizing parameter f related to the fidelity
by [55]

Favg(E, I ) = (d − 1) f + 1

d
. (27)

Therefore, applying a sequence of independently random
gates and then inverting produces D f m on average. Hence, the
expectation value of any operator decays as f m on average.

The value of km( �G) for a fixed sequence of Clifford gates
�G (as defined in Fig. 1), and the variance over �G ∈ Cq are

km( �G) = 〈〈Q|G†
mEGm · · ·G†

1EG1|ν〉〉, (28)

V 2
m = E �G[km( �G)2] − [E �G(km( �G))]2, (29)

respectively. We can use the identity a2 = a ⊗ a for a ∈ C,
the distributivity and associativity of the tensor product, and
the linearity of quantum channels to write this as [24,56]

V 2
m = 〈〈Q⊗2

∣∣TC(E⊗2)m − [TC(E )m]⊗2
∣∣ν⊗2〉〉, (30)

where

TC(E ) = 1

|Cq|
∑
G∈Cq

G†EG = D f , (31)

TC(E⊗2) = 1

|Cq|
∑
G∈Cq

G†⊗2E⊗2G⊗2. (32)

The superoperator TC(E ) is often referred to as the twirl of the
quantum channel E .

At this point, our analysis diverges from that of Ref. [24].
First, note that for our modified scheme, ν⊗2 is traceless and
symmetric under the interchange of the tensor factors (we will
refer to such a matrix as a traceless symmetric matrix) so

[TC(E )m]⊗2|ν⊗2〉〉 = f 2m
∣∣ν⊗2〉〉. (33)

Furthermore, TC(E⊗2) preserves the trace and symmetry un-
der interchange of tensor factors. Therefore, we can define
TTS(E⊗2) to be the restriction of TC(E⊗2) to the space of
traceless symmetric matrices. As we prove in Lemma 2
and Ref. [27], the representation G⊗2 of the Clifford group
restricted to the traceless symmetric subspace decomposes
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into inequivalent irreducible representations. Therefore, by
Schur’s lemma (see the Appendices for an explanation of
Schur’s lemma),

TTS(E⊗2) =
∑
i∈Z

χiPi, (34)

where Z indexes the irreducible subrepresentations of G⊗2 on
the space of traceless symmetric matrices, Pi are projectors
associated to each representation, and χi = χi(E ) ∈ R are
numbers that depend on the quantum channel E [57]. As the
Pi are orthogonal projectors that span the space of traceless
symmetric matrices, we can write the variance as

V 2
m =

∑
i∈Z

〈〈Q⊗2|Pi|ν⊗2〉〉(χm
i − f 2m). (35)

Now we use a telescoping series trick (Lemma 7 and in
particular Corollary 1) on the last factor to write this as

V 2
m =

∑
i∈Z

〈〈Q⊗2|Pi|ν⊗2〉〉
⎡
⎣m f 2(m−1)(χi − f 2) (36)

+ (χi − f 2)2
m∑

j=1

( j − 1)χm− j
i f 2( j−2)

⎤
⎦. (37)

Here, we see that getting a sharp bound on the variance will
depend on getting sharp bounds on the difference between the
χi prefactors and the square of the depolarizing parameter f 2.
Before we start giving upper bounds to Eq. (36), we would
like to note that the behavior of Eq. (36) with respect to the
sequence length m is very well matched to that of the final
upper bounds given in Eqs. (9) and (11). This justifies the use
of Eqs. (9) and (11) to set the weights in Algorithm 1.

Algorithm 1 Iteratively reweighted least squares.

Input: Initial estimates f0, u0, A0 and a dataset km,N

Output: Final estimates f̂ , Â
1: Set f−1 = 0
2: Set i = 0
3: // Optimization loop (here ε is some preset sensitivity)
4: while | fi−1 − fi| � ε do
5: Set wm = w( fi, ui, m) = σ( fi, ui, m)−1

6: Optimize Eq. (20) with weights wm to get Ai+1, fi+1

7: Estimate ui+1 by fitting σ ( fi+1, ui, m)/N to the empirical
variance of km,N

8: Set i = i + 1
9: end while

10: Set Â = Ai, f̂ = fi

11: return Â, f̂

Up to this point, the derivation has been valid for any input
state difference ν and output positive operator Q. However,
now we will restrict discussion to the case of ideal Q and ν.
For the general case of nonideal Q and ν, see the Appendices.
In the case of ideal Q and ν, we can use Lemmas 3 and 4 to

upper bound

∑
i∈Z

〈〈Q⊗2|Pi|ν⊗2〉〉(χi − f 2) � 1

4

d2 − 1

(d − 1)2
r2, (38)

where r = 1 − Favg(E, I ) is the infidelity of the quantum
channel. We would like to note here that Lemma 3 can only
be applied if ν (Q) are proportional to P (1 + P). Moreover,
we will see in Sec. IV G that without this assumption the
variance of RB will scale linearly in infidelity r. Continuing
the calculation, for r � 1

3 , we can say that (Lemma 6)

|χi − f 2| � 2dr

d − 1
. (39)

Hence, we can say

V 2
m �m f 2(m−1) d2 − 2

4(d − 1)2
r2 +

∑
i∈Z

4d2r2〈〈Q⊗2|Pi|ν⊗2〉〉
(d − 1)2

×
m∑

j=1

( j − 1)χm− j
i f 2( j−2) (40)

for ideal Q and ν. Now, we only need to deal with the χi

factors in the sum. To do this, we will use the fact that every
χi term is upper bounded by the unitarity u of the quantum
channel E . This is derived in Lemma 5 in the Appendices.
Inserting this, we get

V 2
m �m f 2(m−1) d2 − 2

4(d − 1)2
r2 +

∑
i∈Z

4d2r2〈〈Q⊗2|Pi|ν⊗2〉〉
(d − 1)2

×
m∑

j=1

( j − 1)um− j f 2( j−2). (41)

Now, we factor um−2 out of the sum over j and use the fact
that this sum has a closed form. Using this and Lemma 3 to
bound the projector inner products, we obtain a final bound on
the variance

V 2
m �m f 2(m−1) d2 − 2

4(d − 1)2
r2 + d2

(d − 1)2
r2um−2

× (m − 1)
( f 2

u

)m − m
( f 2

u

)m−1 + 1[
1 − ( f 2

u

)]2 , (42)

which is the bound we set out to find. To obtain from this
the bound given in Eq. (10), we note that u � f 2 and more-
over that the fractional term in Eq. (42) is monotonically
decreasing in u (for fixed f 2) and reaches a limiting value of
m(m − 1)/2 in the limit of u → f 2. (This can be seen by using
l’Hôpital’s rule).

F. State preparation and measurement

When Q, ν do not satisfy Eq. (22) (which will always
happen in practice), the above derivation will not hold exactly
and the deviation of Q, ν from their ideal forms will introduce
terms of order ηr, i.e., terms which scale linearly and not
quadratically in the infidelity r. Deriving an expression of the
variance taking into account these these contributions is a little
tedious so we will relegate it to the Appendices and instead
discuss the form of the prefactor η. Let ν be some nonideal
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input state difference and let Q be some nonideal observable.
Note from Eq. (22) that the ideal input state difference ν

and output POVM Q are related to a prechosen “target Pauli
matrix” P. We hence have

Qid = 1

2
(1 + P), (43)

νid = P
2d

, (44)

the ideal Q and ν. Suppressing some prefactors [the exact
expression can be found in Eq. (B34) in the Appendices],
we get the following approximate expression for the SPAM
factor η:

η ≈ ‖Q − Qid‖2‖ν − νid‖2

+ ‖Q − Qid‖2
2 + ‖ν − νid‖2

2, (45)

where ‖ · ‖2 is the Schatten-2 norm [52] and Q, ν are the
nonideal operators that are actually implemented. There are
several important things to notice here:

(1) η goes to zero in the limit of ideal Q, ν. This justifies
our choice of the ideal Q and ν as being defined in terms
of a single Pauli matrix rather than preparing and measuring
in the |0〉 state as was the case in the original randomized
benchmarking proposal [23].

(2) η scales quadratically in the deviation from the ideal
of Q and ν. This means that for small deviations η is likely to
be small.

(3) η is nonzero for nonideal Q even when ν is ideal and
vice versa. This is unfortunate as it means that both state
preparation and measurement must be good to ensure small
variance. However, as we argue in Sec. IV G, this is actually
optimal.

To get a feel for how the parameter η behaves, we discuss
a particular error model for state preparation and measure-
ment errors, inspired by recent research in superconducting
qubits [58]. Here, we see that the dominant error source
when preparing states in the computational basis is given by
decay to the ground state when in the excited (|1〉) state and
residual excitations when preparing the ground (|0〉) state. The
dominant contribution to measurement errors when measuring
in the computational basis are here discrimination errors
(mistaking 0 for 1 and vice versa) as well as errors due to finite
sampling. When performing our version of RB and choosing
P = Z , we see that νid = (|0〉〈0| − |1〉〈1|)/2 and hence we
want to ideally prepare the states |0〉〈0| and |1〉〈1|. Follow-
ing Ref. [58], we assume 0.5% residual excitations when
preparing the |0〉〈0| state, 0.8% decay to the ground when
preparing |1〉〈1|, and a 1% discrimination error (modeled by a
symmetric bit-flip channel). (Here we use the discrimination
fidelity given in Ref. [59]). Plugging these numbers into the
assumed error models and calculating η using Eq. (B34) in
the Appendices, we see that in this case η = 0.001. Hence, we
can say that under realistic scenarios η will be quite small. It
is possible to make a more fine-grained analysis of the SPAM
term η as it is defined under Eq. (B13), as opposed to upper
bounding it. However, this is likely to be rather involved and
given that η is already small in realistic scenarios we have
opted not to pursue this here.

G. Optimality of maximal variance

In this section, we will argue that the bounds on the
variance in the case of nonideal SPAM are optimal in the
sense that it is impossible for the variance to scale better than
linearly in the infidelity r for arbitrary noise maps when the
input POVM element Q is nonideal, even when the input state
difference ν is ideal. The same reasoning will also hold for
nonideal ν even when Q is ideal. (More generally, the reason-
ing below will also work when randomized benchmarking is
performed using a state rather than a state difference but we
will not show this explicitly here).

Consider the variance as in Eq. (30) for a randomized
benchmarking experiment with a quantum channel E with
infidelity r and for simplicity set the sequence length m = 1
(the argument will work for general m). Then, we have an
expression for the variance

V 2 = 〈〈Q⊗2|TC(E⊗2) − TC(E )⊗2|ν⊗2〉〉 (46)

with the TC(E⊗2), TC(E )⊗2 defined in Eq. (31). Now, consider
setting ν = νid and maximizing over the POVM element Q.
That is, consider

V 2 = max
0�Q�1

〈〈Q⊗2|TC(E⊗2) − TC(E )⊗2
∣∣ν⊗2

id

〉〉
.

Now, note that for any unitary U the operator U (Q) = UQU †

is also a POVM element. This means we can write

V 2 = max
0�Q�1

〈〈Q⊗2|TC(E⊗2) − TC(E )⊗2
∣∣ν⊗2

id

〉〉
= max

0�Q�1
〈〈(U (Q))⊗2|TC(E⊗2) − TC(E )⊗2

∣∣ν⊗2
id

〉〉

� max
0�Q�1

〈〈 ∫
dU (U (Q))⊗2

∣∣TC(E⊗2) − TC(E )⊗2
∣∣ν⊗2

id

〉〉
,

where we used the linearity of the inner product and the
definition of maximum and the integral is taken over the
uniform or Haar measure of the unitary group. Now, we use a
well-known fact from the representation theory of the unitary
group which states that the integrated operator

∫
dU (U (Q))

is precisely proportional to one of the projectors defined in
Eq. (34). [19]. In particular, it is proportional to the rank
1 projector Ptr = |〉〉〈〈|, where  ∈ Md is some matrix
operator (see Lemma 2 in the Appendices) and tr is an element
of the set Z which indexed the irreducible representations of
the Clifford group in Eq. (34). This means we can write using
Eq. (35)

V 2 � max
0�Q�1

∑
i∈Z

α(Q)〈〈|Pi|ν〉〉(χi − f 2)

= max
0�Q�1

α(Q)〈〈|Ptr|ν〉〉(χtr − f 2),
(47)

where α(Q) is some positive prefactor function of Q. From
Lemma 5 and Ref. [19], it can be seen that χtr is precisely the
unitarity u of the quantum channel E . If we now consider E
to be a unitary channel (that is, u = 1), we get (ignoring the
prefactors, which can be proven to be strictly positive),

V 2 ≈ 1 − f 2 = dr

d − 1

(
2 − dr

d − 1

)
, (48)
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which is linear in infidelity r. Hence, when the POVM element
Q is allowed to vary freely, a linear scaling of the variance
with the infidelity r cannot be avoided even when the input
state difference ν is ideal. One can perform a similar thought
experiment maximizing over ν while setting Q = Qid and get
the same result. Hence, the expression for η we discussed in
the above section is essentially optimal.

H. Asymptotic behavior of the variance

When looking at the bound on the variance, Eq. (9), the
difference between unitary and nonunitary noise is striking.
When the noise is nonunitary, and thus u < 1, the upper
bound on the variance (and hence the variance itself) decays
exponentially to zero in the sequence length m, but when
the noise process is unitary the variance keeps increasing
and eventually saturates on a constant that is independent of
the infidelity of the noise process. Here, we argue that this
is not an artifact of the bounding techniques but rather a
fundamental feature of performing randomized benchmarking
over unitary noise. Moreover, this effect is independent of
whether RB is performed using a state difference input ν or
a state input ρ (as in standard RB).

Consider a unitary noise process U (X ) = UXU † for all
X ∈ Md with infidelity r > 0 (that is, U is not the identity).
Now consider a randomized benchmarking experiment of
sequence length m. That is, for a random sequence of Clifford
unitaries G1, . . . Gm, we perform the unitary

Vm = U (Gm . . . G1)†UGmU . . .UG1. (49)

Following the reasoning of Ref. [23], we can write Vm as

Vm = UG′†
mUG′

m . . . G′†
1UG′

1, (50)

where the unitaries G′
m . . . G′

1 are sampled uniformly at ran-
dom from the Clifford group. We can equally well think of
the unitary U †Vm as being the product of m uniformly random
samples from the set

GU = {G†UG‖G ∈ C}. (51)

Note that this set depends on the unitary U . In Ref. [60], it
was shown that the distribution of the product of m unitaries
sampled uniformly at random from a set of unitaries converges
to the Haar measure (uniform measure) on the unitary group
in the limit of large m as long as this set contains a universal
set of gates. Note that this convergence phenomenon is inde-
pendent of the initial set [61].

Note now that as long as the unitary U is not a Clifford
gate, the set GU will contain a universal gate set [1]. This
means that the distribution from which Vm is sampled will
converge to the Haar measure in limit of long sequence length
(the extra U † factor gets absorbed into the Haar measure). This
will happen independently of the unitary U (as long as U is
not Clifford). From this, we can conclude that the variance
of randomized benchmarking with unitary noise must, in
the limit of long sequences, converge to the variance of the
randomized benchmarking expectation value over the Haar
measure independently of what the original unitary noise
process is. Note again that the above argument is independent
of whether RB is performed using a state difference input or a
state input.

I. Relation to regular randomized benchmarking

When performing regular randomized benchmarking, that
is, using an input state ρ = 1

2 (1 + P) rather than an input state
difference ν = P

2 , the upper bounds on the variance given in
Eqs. (9) and (11) still hold provided an extra additive term
is added to them. This term will stem from the addition of
an extra superoperator (that is not a projector) in the sum in
Eq. (34), which stem from the appearance of two equivalent
trivial subrepresentations of the two-copy representation G⊗2

of the Clifford group. This term is of the form

T = 1

4
‖E (1/d ) − 1/d‖2

2
1 − um

1 − u

� (d + 1)2

2d2
r2 1 − um

1 − u
, (52)

where E is the noise process under investigation, with
infidelity r, unitarity u, and system dimension d . Here,
‖E (1/d ) − 1/d‖2

2 is a measure of how “nonunital” the quan-
tum channel E is, that is, how far its output deviates from
the identity when the identity is the input. This measure
can be upper bounded using Ref. [62, Theorem 3] and is
already implicitly analyzed in Ref. [24]. We will not prove
the above explicitly but it can be derived straightforwardly by
following the derivation in Theorem 1 using ρ as input state.
Note, however, that the upper bound on T does not decay to
zero exponentially but rather converges to a nonzero constant
even for nonunitary channels. This is not a feature of the
upper bound itself but rather of the long sequence behavior
of standard randomized benchmarking. It was proven in Ref.
[24, Theorem 17] that the upper bound T is actually saturated
for almost all nonunitary channels. Moreover, for physically
relevant noise models such as amplitude damping T can be
quite substantial. This very different behavior in the limit
of long sequence lengths further motivates the use the state
difference ν for rigorous randomized benchmarking.
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APPENDIX A: PRELIMINARIES

1. Clifford and Pauli groups

In this section, we recall definitions for the Pauli and
Clifford groups on q qubits. We begin by defining the Pauli
group.
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Definition 1 (Pauli group). Let {v0, v1} be an orthonormal
basis of C2 and in this basis define the following linear
operators by their action on the basis

Xvl = vl+1, Zvl = (−1)lvl , Y vl = iZXvl = i(−1)l+1vl+1,

for l ∈ {0, 1} and addition over indices is taken modulo 2.
Note that X,Y, Z ∈ U (2). The q-qubit Pauli group Pq is
now defined as the subgroup of the unitary group U(2q)
consisting of all q-fold tensor products of q elements of P1 :=
〈X, Z, i12〉. �

Elements P, P′ of the Pauli group have the property that
they either commute or anticommute, that is

[P, P′] := PP′ − P′P = 0 or {P, P′} := PP′ + P′P = 0.

(A1)

We also define P̂q as the subset of Pq consisting of all q-
fold tensor products of element of the set {1, X,Y, Z}, i.e.,
P̂q = {1, X,Y, Z}⊗q. Note that the Hermitian subset P̂q of the
Pauli group forms a basis for the Hilbert space Md . We can
turn this into an orthonormal basis under the Hilbert-Schmidt
inner product, which is defined as

〈A, B〉 := Tr(A†B), ∀A, B ∈ Md . (A2)

To see this, note that Tr(P) = 0 for all P ∈ Pq/{1} and that
Tr(1) = d . We introduce the set of normalized Hermitian
Pauli matrices,

σ0 := 1√
d

, σq :=
{

P√
d

|P ∈ P̂q\{1}
}
, (A3)

where we have given the normalized identity its own sym-
bol for later convenience. We will denote the elements of
the set σq by Greek letters (σ, τ, ν, ...). We also, for later
convenience, introduce the normalized matrix product of two
normalized Pauli matrices as

σ · τ :=
√

dστ σ, τ ∈ σq ∪ σ0. (A4)

Note that σ · τ ∈ ±σq ∪ σ0 if [σ, τ ] = 0 and iσ · τ ∈ ±σq

if {σ, τ } = 0. Lastly, we define the following parametrized
subsets of σq. For all τ ∈ σq, we define

Nτ := {σ ∈ σq|{σ, τ } = 0}, (A5)

Cτ := {σ ∈ σq\{τ }|[σ, τ ] = 0}. (A6)

Note that we have |Nτ | = d2

2 , |Cτ | = d2

2 − 2, and Cτ and Nτ

are disjoint for all τ ∈ σq. We also have for σ, σ ′ ∈ σq and
σ �= σ ′ that |Cσ ∩ Cσ ′ | = d2

4 − 3. For a proof of this, see Ref.
[27, Lemma 1].

Next we define the Clifford group:
Definition 2. The q-qubit Clifford group Cq is the normal-

izer (up to complex phases) of Pq in U(2q), that is,

Cq := {U ∈ U(2q)|UPqU † ⊆ Pq}/U (1).

�
The Clifford group is also often introduced as the group

generated by the Hadamard (H), π/4 phase gate and CNOT

gates on all qubits. These are equivalent definitions (up to
global phases) [63].

For a more expansive introduction to the Pauli and Clifford
groups, see, e.g., Ref. [63] and references therein.

2. Representation theory

We recall some useful facts about the representations of
finite groups. For a more in depth treatment of this topic,
we refer to Refs. [64,65]. Let G be a finite group and let V
be some finite-dimensional complex vector space. Let also
GL(V ) be the group of invertible linear transformations of V .
We can define a representation φ of the group G on the space
V as a map

φ : G → GL(V ) : g �→ φ(g) (A7)

that has the property

φ(g)φ(h) = φ(gh), ∀g, h ∈ G. (A8)

In general, we will assume the operators φ(g) to be unitary. If
there is a nontrivial subspace W of V such that

φ(g)W ⊂ W, ∀g ∈ G, (A9)

then the representation φ is called reducible. The restriction of
φ to the subspace W is also a representation, which we call a
subrepresentation of φ. If there are no nontrivial subspaces
W such that Eq. (A9) holds, the representation φ is called
irreducible. Two representations φ, φ′ of a group G on spaces
V,V ′ are called equivalent if there exists an invertible linear
map T : V → V ′ such that

T ◦ φ(g) = φ′(g) ◦ T, ∀g ∈ G. (A10)

We can also define the twirl Tφ (A) of a linear map A : V → V
with respect to the representation φ to be

Tφ (A) := 1

|G|
∑
g∈G

φ(g)Aφ(g)†. (A11)

The following corollary of Schur’s lemma, an essential result
from representation theory [64,65], allows us to evaluate
twirls over certain types of representations.

Lemma 1. Let G be a finite group and let φ be a represen-
tation of G on a complex vector space V with decomposition

φ(g) �
⊕

i

φi(g), ∀g ∈ G, (A12)

into inequivalent irreducible subrepresentations φi. Then, for
any linear operator A from V to V , the twirl of A over G takes
the form

Tφ (A) = 1

|G|
∑
g∈G

φ(g)Aφ(g)† =
∑

i

Tr(APi )

Tr(Pi )
Pi, (A13)

where Pi is the projector onto the subspace carrying the
irreducible subrepresentation φi. In the rest of the text, we will
often denote the prefactor Tr(APi )/ Tr(Pi ) by χi. �

3. Liouville representation of quantum channels

Quantum channels [1] are completely positive and trace-
preserving (CPTP) linear maps E : Md → Md . We will de-
note quantum channels by calligraphic font throughout. The
canonical example of a quantum channel is conjugation by a
unitary U , which we denote by the corresponding calligraphic
letter, i.e., U (ρ) = UρU † for all density matrices ρ. We will
denote the noisy implementation of a channel by an overset
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tilde; e.g., G̃ denotes a noisy implementation some ideal
quantum channel channel G.

It is often useful to think of quantum channels as matrices
acting on vectors. This is variously known as the Liouville
[24] or affine [52] representation. This representation corre-
sponds to fixing an orthonormal basis for Md according to the
Hilbert-Schmidt or trace-inner product and then expressing
elements of Md as vectors in Cd2

. The Hilbert-Schmidt inner
product is again defined as

〈A, B〉 := Tr(AB†), ∀A, B ∈ Md . (A14)

Now, let {Bj} j for j ∈ Zd2 be an orthonormal basis for Cd×d

with respect to the Hilbert-Schmidt inner product. We can
construct a map |.〉〉 : Md → Cd2

by setting |Bj〉〉 = e j , where
e j is the jth canonical basis vector for Cd2

. Linearly extending
the map |·〉〉 to all elements M ∈ Md , we get

|M〉〉 =
∑

j

Tr(B†
j M )|Bj〉〉. (A15)

Defining 〈〈M| = |M〉〉†, we then have

〈〈M|N〉〉 = 〈M, N〉 = Tr(M†N ), (A16)

so that the Hilbert-Schmidt inner product is equivalent to the
standard vector inner product.

We will generally construct the Liouville representation
using the basis spanned by the normalized (with respect to
the Hilbert-Schmidt inner product) Pauli matrices {σ0} ∪ σq,
where σ0 := Id/

√
d with d = 2q is the normalized identity

matrix and

σq := 1√
d

{I2, X,Y, Z}⊗q\{σ0}, (A17)

is the set of normalized Hermitian Pauli matrices excluding
the identity.

As any quantum channel E is a linear map from Md to
Md , we have

|E (ρ)〉〉 =
∑

σ∈σq∪σ0

|E (σ )〉〉〈〈σ |ρ〉〉, (A18)

so that we can represent E by the matrix

E =
∑

σ∈σq∪σ0

|E (σ )〉〉〈〈σ |, (A19)

where we abuse notation by using the same symbol to refer to
an abstract channel and its matrix representation. The action
of a channel E on a density matrix ρ now corresponds to the
standard matrix action on the vector |ρ〉〉; hence, for a density
matrix ρ and a POVM element Q in Md , we have

E |ρ〉〉 = |E (ρ)〉〉, (A20)

Tr(QE (ρ)) = 〈〈Q|E |ρ〉〉. (A21)

The Liouville representation has the nice properties (as can
be easily checked) that the composition of quantum channels
is equivalent to matrix multiplication of their Liouville matri-
ces and that tensor products of channels correspond to tensor
products of the corresponding Liouville matrices, that is, for

all channels E1 and E2 and all A ∈ Md ,

|E1 ◦ E2(A)〉〉 = E1E2|A〉〉,
(A22)

|E1 ⊗ E2(A⊗2)〉〉 = E1 ⊗ E2|A⊗2〉〉.
In the Liouville picture, the depolarizing parameter and the
unitarity [19] of a quantum channel E are

f (E ) = 1

d2 − 1

∑
τ∈σq

〈〈σ |E |σ 〉〉, (A23)

u(E ) = 1

d2 − 1

∑
τ∈σq

〈〈σ |EE†|σ 〉〉, (A24)

and the Liouville representation of a depolarizing channel
with depolarizing parameter f is given by [24]

D f = |σ0〉〉〈〈σ0| + f
∑
τ∈σq

|τ 〉〉〈〈τ |. (A25)

4. Traceless-symmetric representation

In the rest of the text, we will often work with quantum
channels which have a tensor product structure. That is, we
will often be dealing with channels of the form

W :=
∑

i

λiE⊗2
i , (A26)

where Ei is a CPTP map for all i and λi ∈ C is some abstract
parameter. Note that W is now a linear map from M⊗2

d

to M⊗2
d . Maps of these forms have a number of useful

properties which we will now consider. We begin by defining
the traceless-symmetric subspace VTS, which is a subspace of
M⊗2

d of the form

VTS := Span

{
Sσ,τ := 1√

2
(|στ 〉〉 + |τσ 〉〉)|σ, τ ∈ σq

}
,

(A27)

where we have suppressed the tensor product (that is, στ :=
σ ⊗ τ ). The traceless-symmetric subspace has several desir-
able properties which we note here. First, let ρ, ρ̂ ∈ Md be
density matrices and call their difference ν := ρ − ρ̂; then,
we have that

|ν⊗2〉〉 = |(ρ − ρ̂ )⊗2〉〉 ∈ VTS. (A28)

Moreover, for any quantum channel W of the form defined in
Eq. (A26), we have that

W|v〉〉 ∈ VTS, ∀|v〉〉 ∈ VTS, (A29)

or equivalently we have that

PTSW = WPTS, (A30)

where PTS is the projector onto the space VTS (note that PTS

is a linear map from M⊗2
d to M⊗2

d ). This observation follows
from the fact than W is a linear combination of twofold tensor
products of quantum channels (which preserve the trace and
map operators that are symmetric under interchange of the
two copies of M⊗2

d to operators that are symmetric under
interchange of the two copies of M⊗2

d ).
We will in particular be interested in how a representation

of of the Clifford group C behaves on the traceless symmetric
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subspace. Define the twofold tensor product representation of
the Clifford group on M⊗2

d as

φ2 : G −→ G⊗2 (A31)

for all G in G is the Liouville representation of G for all G ∈
C. This representation has a natural restriction to the subspace
VTS since G⊗2 is of the form described in Eq. (A26). We can
define the subrepresentation φTS of φ2 as

φTS : G −→ PTSG⊗2PTS (A32)

for all G ∈ C. This representation is in general not irreducible
but decomposes further into a collection of irreducible sub-
representations. In Ref. [27], we derived these irreducible
subrepresentations of φTS and studied their properties. In the
following lemma, we will quote several results from Ref. [27]
which will be useful for our purposes.

Lemma 2. Let C be the Clifford group and let φTS be
the traceless symmetric representation. This representation is
a direct sum of three subrepresentations φd (diagonal), φ[S]

(symmetric commuting), and φ{S} (symmetric anticommuting)
acting on the spaces

Vd := Span{|σσ 〉〉|σ ∈ σq}, (diagonal)

V[S] := Span{Sν,ν·τ |τ ∈ σq, ν ∈ Cτ },
(symmetric commuting)

V{S} := Span{Sν,iν·τ |τ ∈ σq, ν ∈ Nτ }.
(symmetric anticommuting)

The diagonal subrepresentation φd decomposes into three
subrepresentations denoted by φtr, φ1, φ2 with φtr the trivial
representation spanned by

Vtr =
⎧⎨
⎩ 1√

d2 − 1

∑
τ∈σq

|ττ 〉〉
⎫⎬
⎭. (trivial)

We will index these representations by the set Zd :=
{tr, 1, 2}. �

The symmetric commuting representation φ[S] decom-
poses into three irreducible subrepresentations denoted as
φ[adj], φ[1], φ[2]. We will index these representations by the
set Z[S] := {[adj], [1], [2]}. The spaces carrying these repre-
sentations can be written as a direct sum of subspaces in the
following way:

Vi =
⊕
τ∈σq

V τ
i , (A33)

where V τ
i ⊂ V [τ ] with

V [τ ] := Span{Sν,ν·τ |ν ∈ Cτ }. (A34)

The symmetric anticommuting representation φ{S} decom-
poses into two irreducible subrepresentations denoted as
φ{1}, φ{2}. We will index these representations by the set
Z{S} := {{1}, {2}}. The spaces carrying these representations
can be written as a direct sum of subspaces in the following
way:

Vi =
⊕
τ∈σq

V τ
i , (A35)

where V τ
i ⊂ V {τ } with

V {τ } := Span{Sν,iν·τ |ν ∈ Nτ }. (A36)

Finally, we denote the set indexing all irreducible sub-
representations of φTS as Z = Zd ∪ Z[S] ∪ Z{S} and we note
that all irreducible representations indexed by Z are mutually
inequivalent.

Note that we have only given an explicit basis for the space
on which the representation φtr acts. It is possible to write
down explicit bases for all relevant vector spaces but we will
not need to do so (see, however, Ref. [27]).

APPENDIX B: RANDOMIZED BENCHMARKING

1. Variance bound

In this section, we prove the main theorem of the paper.
Concretely, we prove the following.

Theorem 1. Let Q be an observable and ρ, ρ̂ density ma-
trices and set ν = 1

2 (ρ − ρ̂ ). Consider a randomized bench-
marking experiment using the Clifford group C with noisy
implementation G̃ = EG for all G ∈ C. Then, the variance V 2

m
of this experiment is upper bounded by

V 2
m �m f m−1 d2 − 2

(d + 1)2
r2 + d2

(d − 1)2
r2um−2

× (m − 1)( f 2/u)m − m( f 2/u)m−1 + 1

[1 − ( f 2/u)]2

+ η(Q, ν)m f m−1r + η(Q, ν)r2um−2

× (m − 1)( f 2/u)m − m( f 2/u)m−1 + 1

[1 − ( f 2/u)]2
, (B1)

where u = u(E ) is the unitarity, r = r(E ) is the infidelity, d is
the system dimension, m is the sequence length, f = 1 − dr

d−1
is the depolarizing parameter, and η is a function capturing
the deviation from the ideal Q and ν. This bound is valid for
r � 1

3 . �
Proof. We begin from an exact expression of the variance

expressed in the Liouville representation Eq. (30):

V 2
m = 〈〈Q⊗2|Tφ2 (E⊗2)m|ν⊗2〉〉 − 〈〈Q⊗2|(Tφ (E )⊗2)m|ν⊗2〉〉,

(B2)

where Tφ2 is the twirl over the two-copy representation of the
Clifford group as defined in Eq. (A31) and Tφ is the twirl
over the (single-copy) Liouville representation. Note now that
|ν⊗2〉〉 ∈ VTS and that both Tφ2 (E⊗2) and Tφ (E )⊗2 are CPTP
maps of the form described in Eq. (A26). This means we can
restrict both twirls to the traceless symmetric subspace. In this
subspace, we have from Lemmas 1 and 2 that Tφ2 (E⊗2) and
Tφ (E )⊗2 are of the form

Tφ2 (E⊗2) =
∑
i∈Z

χiPi, (B3)

Tφ (E )⊗2 =
∑
i∈Z

f 2Pi, (B4)

where Z (as defined in Lemma 2) indexes the irreducible
subrepresentations of the traceless symmetric representation
of the Clifford group and χi = Tr(PiE⊗2)/ Tr(Pi ) are the
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prefactors associated to the different subrepresentations. We
also used that Tφ (E ) is a depolarizing channel with depolar-
izing parameter f [24]. Using that P2

i = Pi and PiP j = 0 for
i, j ∈ Z, i �= j, we can rewrite the variance as

V 2
m = 〈〈Q⊗2|

∑
i∈Z

χm
i Pi|ν⊗2〉〉 − 〈〈Q⊗2|

∑
i∈Z

f 2mPi|ν⊗2〉〉

=
∑
i∈Z

〈〈Q⊗2|Pi|ν⊗2〉〉(χm
i − f 2m

)
. (B5)

We now apply a telescoping series identity, which is proven in
Corollary 1 of Lemma 7, to the factor χm

i − f 2m in the above
equation (for all i ∈ Z). This gives

V 2
m = m f 2(m−1)

∑
i∈Z

〈〈Q⊗2|Pi|ν⊗2〉〉(χi − f 2) (B6a)

+
∑
i∈Z

〈〈Q⊗2|Pi|ν⊗2〉〉(χi − f 2)2

×
m∑

s=2

(s − 1)χm−s
i f 2(s−2). (B6b)

This equation contains two terms, Eqs. (B6a) and (B6b),
which we will bound separately. We now proceed to upper
bound the first term, that is, Eq. (B6a). For this, we will split
the the input and output operators Q, ν into their ideal parts
(that is, the Pauli operator σP := P/

√
d) and deviations from

that ideal. We define the functions

Hi(Q, ν) := 〈〈Q⊗2|Pi|ν⊗2〉〉 − Q2
Pν2

P

〈〈
σ⊗2

P

∣∣Pi

∣∣σ⊗2
P

〉〉
(B7)

for all i ∈ Z , where QP = Tr(QσP ), and similarly for νP.
Using this, we can write Eq. (B6a) as

m f 2(m−1)
∑
i∈Z

〈〈Q⊗2|Pi|ν⊗2〉〉(χi − f 2)

= Q2
Pν2

Pm f 2(m−1)
∑
i∈Z

〈〈
σ⊗2

P

∣∣Pi

∣∣σ⊗2
P

〉〉
(χi − f 2) (B8a)

+ m f 2(m−1)
∑
i∈Z

Hi(Q, ν)(χi − f 2). (B8b)

Now consider the first term of the right-hand side, Eq.
(B8s). First note from Lemma 3 that for i �∈ Zd = {tr, 1, 2}
we have Pi|σ⊗2

P 〉〉 = 0. Hence, we have

Q2
Pν2

Pm f 2(m−1)
∑
i∈Z

〈〈
σ⊗2

P

∣∣Pi

∣∣σ⊗2
P

〉〉
(χi − f 2)

= Q2
Pν2

Pm f 2(m−1)
∑
i∈Zd

〈〈
σ⊗2

P

∣∣Pi

∣∣σ⊗2
P

〉〉
(χi − f 2)

= Q2
Pν2

Pm f 2(m−1)
∑
i∈Zd

Tr(Pi )

d2 − 1

(
Tr(PiE⊗2)

Tr(Pi )
− f 2

)

= Q2
Pν2

Pm f 2(m−1)

⎡
⎣ 1

d2 − 1
Tr

⎛
⎝∑

i∈Zd

PiE⊗2

⎞
⎠− f 2

⎤
⎦

= Q2
Pν2

Pm f 2(m−1)

⎡
⎣ 1

d2 − 1

∑
τ∈σq

〈〈τ⊗2|E⊗2|τ⊗2〉〉 − f 2

⎤
⎦,

(B9)

where we used Lemma 3 in the first and second equalities and
the fact that ∑

i∈Zd

Pi =
∑
τ∈σq

|τ⊗2〉〉〈〈τ⊗2| (B10)

in the last equality (this can be seen from Lemma 2). Now, we
use Lemma 4 and the fact that QPνP � 1/4 to obtain an upper
bound:

Q2
Pν2

Pm f 2(m−1)
∑
i∈Z

〈〈σ⊗2|Pi|σ⊗2〉〉(χi − f 2)

� m f 2(m−1) d2 − 2

4(d − 1)2
r2. (B11)

This leaves us with the second term in the right-hand side,
Eq. (B8b). Here, we cannot attain a bound that is quadratic in
r. Instead, we will attempt a bound that is linear in r using
Lemma 6. We can write

m f 2(m−1)
∑
i∈Z

Hi(Q, ν)(χi − f 2)

� m f 2(m−1)
∑
i∈Z

|Hi(Q, ν)||χi − f 2|

� m f 2(m−1) 2dr

d − 1

∑
i∈Z

|Hi(Q, ν)| (B12)

subject to the condition r � 1
3 . Writing η(Q, ν) :=∑

i∈Z |Hi(Q, ν)|, we have a bound on Eq. (B6a).
We continue by upper bounding the second term in the

variance, that is, Eq. (B6b). We again split off the ideal
components of Q and ν and write

∑
i∈Z

〈〈Q⊗2|Pi|ν⊗2〉〉(χi − f 2)2
m∑

s=2

(s − 1)χm−s
i f 2(s−2)

= Q2
Pν2

P

∑
i∈Z

〈〈
σ⊗2

P

∣∣Pi

∣∣σ⊗2
P

〉〉
(χi − f 2)2

×
m∑

s=2

(s − 1)χm−s
i f 2(s−2)

+
∑
i∈Z

Hi(Q, ν)(χi − f 2)2
m∑

s=2

(s − 1)χm−s
i f 2(s−2)

� 1

4

∑
i∈Zd

Tr(Pi )

d2 − 1
(χi − f 2)2

m∑
s=2

(s − 1)χm−s
i f 2(s−2)

+
∑
i∈Z

|Hi(Q, ν)|(χi − f 2)2χm−2
i

m∑
s=2

(s −1)χm−s
i f 2(s−2),

(B13)

where we have used the definition of the function Hi(Q, ν),
Lemma 3, and the triangle inequality. Now, we use Lemma 6
to upper bound this quantity as

∑
i∈Z

〈〈Q⊗2|Pi|ν⊗2〉〉(χi − f 2)2
m∑

s=2

(s − 1)χm−s
i f 2(s−2)

�
∑
i∈Zd

Tr(Pi )

d2 − 1

(
dr

d − 1

)2 m∑
s=2

(s − 1)χm−s
i f 2(s−2)
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+
∑
i∈Z

|Hi(Q, ν)|
(

2dr

d − 1

)2 m∑
s=2

(s − 1)χm−s
i f 2(s−2)

� d2r2

(d − 1)2

m∑
s=2

(s − 1)χm−s
i f 2(s−2)

+ 4d2r2

(d − 1)2

∑
i∈Z

|Hi(Q, ν)|
m∑

s=2

(s − 1)χm−s
i f 2(s−2),

(B14)

where we have used the fact that
∑

i∈Zd
Tr(Pi ) = d2 − 1. It

remains to deal with the last factor. This we do by using
Lemma 5, which states that χi � u for all i ∈ Z , where u
is the unitarity of the channel E . Writing again η(Q, ν) :=∑

i∈Z |Hi(Q, ν)|, we then have

∑
i∈Z

〈〈Q⊗2|Pi|ν⊗2〉〉(χi − f 2)2
m∑

s=2

(s − 1)χm−s
i f 2(s−2)

� d2r2

(d − 1)2

m∑
s=2

(s − 1)um−s f 2(s−2)

+ 4d2r2

(d − 1)2

∑
i∈Z

|Hi(Q, ν)|
m∑

s=2

(s − 1)um−s f 2(s−2).

(B15)

We can further make sense of this quantity by using the well-
known series identity

m∑
k=1

(k − 1)xk−2 = (m − 1)xm − mxm−1 + 1

(1 − x)2
, m ∈ N. (B16)

Factoring out a factor of um−2 and setting x = f 2/u, we obtain
the following:

∑
i∈Z

〈〈Q⊗2|Pi|ν⊗2〉〉(χi − f 2)2
m∑

s=2

(s − 1)χm−s
i f 2(s−2)

� d2r2

(d − 1)2
[1 + 4η(Q, ν)]um−2

× (m − 1)( f 2/u)m − m( f 2/u)m−1 + 1

[1 − ( f 2/u)]2
. (B17)

This finishes the upper bounding of Eq. (B6b). Gathering all
terms, we come to a final bound

V � m f m−1 d2 − 2

4(d + 1)2
r2 + d2

(d − 1)2
r2um−2

× (m − 1)( f 2/u)m − m( f 2/u)m−1 + 1

[1 − ( f 2/u)]2

+ η(Q, ν)m f m−1r + η(Q, ν)r2um−2

× (m − 1)( f 2/u)m − m( f 2/u)m−1 + 1

[1 − ( f 2/u)]2
, (B18)

which is the bound we set out to find.
Noting that f 2 � u and that the factor

(m − 1)( f 2/u)m − m( f 2/u)m−1 + 1

[1 − ( f 2/u)]2
(B19)

is monotonically decreasing in u, we can upper bound this
factor by taking the limit u → f 2. This gives

lim
u→ f 2

(m − 1)( f 2/u)m − m( f 2/u)m−1 + 1

[1 − ( f 2/u)]2
= m(m − 1)

2
,

(B20)

which can be confirmed by an application of l’Hôpital’s rule.
Plugging this in to Eq. (B18), we obtain Eq. (10). �

2. State preparation and measurement (SPAM) terms

In the central bound on the variance (Theorem 1), we had
to account for the fact that the variance can depend on how
well the input states ρ, ρ̂ and the output POVM Q can be
implemented. The ideal behaviors of ν = 1

2 (ρ − ρ̂) and Q are
given by

Qid = 1

2
(1 + P), (B21)

νid = P
2d

, (B22)

where P is a prespecified element of the Pauli group (see
Fig. 1). The deviation of Q and ν from this ideal can be
captured by writing

Q = Qid + Qspam, (B23)

ν = νid + νspam, (B24)

where 〈Qid, Qspam〉 = 〈νid, νspam〉 = 0.
In the variance bound, the deviation from the ideal has

an effect which is measured by the parameter η(Q, ν). This
parameter η(Q, ν) was defined as

η(Q, ν) =
∑
i∈Z

Hi(Q, ν) =
∑
i∈Z

∣∣〈〈Q⊗2|Pi|ν⊗2〉〉

− 〈〈Q⊗2
id

∣∣Pi

∣∣ν⊗2
id

〉〉∣∣, (B25)

where Z indexes the irreducible representations of the trace-
less symmetric representation of the Clifford group and the Pi

are projectors onto the spaces carrying these subrepresenta-
tions (Lemma 2). Let us now analyze these terms further. For
i ∈ Zd, we have

Hi(Q, ν) = ∣∣〈〈(Qid + Qspam )⊗2|Pi|(νid + νspam )⊗2〉〉
− 〈〈Q⊗2

id

∣∣Pi

∣∣ν⊗2
id

〉〉∣∣
= ∣∣〈〈Q⊗2

id

∣∣Pi

∣∣ν⊗2
spam

〉〉+ 〈〈Q⊗2
id

∣∣Pi

∣∣ν⊗2
id

〉〉
+ 〈〈Q⊗2

spam

∣∣Pi

∣∣ν⊗2
spam

〉〉∣∣, (B26)

where we have used that 〈Qid, Qspam〉 = 〈νid, νspam〉 = 0,
which implies that 〈〈Qid ⊗ Qspam|Pi = Pi|νid ⊗ νspam〉〉 = 0
for i ∈ Zd. Using the triangle inequality and the Cauchy-
Schwarz inequality, we can get

Hi(Q, ν) �
∣∣〈〈Q⊗2

id

∣∣Pi

∣∣ν⊗2
spam

〉〉∣∣+ ∣∣〈〈Q⊗2
spam

∣∣Pi

∣∣ν⊗2
id

〉〉∣∣
+ ∣∣〈〈Q⊗2

spam

∣∣Pi

∣∣ν⊗2
spam

〉〉∣∣
�
∥∥Q⊗2

id

∥∥
2

∥∥Pi
(
ν⊗2

spam

)∥∥
2 + ∥∥Q⊗2

spam

∥∥
2

∥∥Pi
(
ν⊗2

id

)∥∥
2

+ ∥∥Q⊗2
spam

∥∥
2

∥∥Pi
(
ν⊗2

spam

)∥∥
2

� ‖Pi‖2→2
(‖Qid‖2

2‖νspam‖2
2 + ‖Qspam‖2

2‖νid‖2
2

+‖Qspam‖2
2‖νspam‖2

2

)
, (B27)
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where ‖Pi‖2→2 is the induced 2-norm of the superoperator Pi.
It is well known that this norm is equal to the largest singular
value of the Liouville representation of Pi [24], which, since
the Liouville representation of Pi is an orthonormal projec-
tion, is equal to 1. This means we have for i ∈ Zd that

Hi(Q, ν) � ‖Qid‖2
2‖νspam‖2

2 + ‖Qspam‖2
2‖νid‖2

2

+‖Qspam‖2
2‖νspam‖2

2

= ‖Qid‖2
2‖ν − νid‖2

2 + ‖Q − Qid‖2
2‖νid‖2

2

+‖Q − Qid‖2
2‖ν − νid‖2

2. (B28)

Note that this expression is zero when both Q and ν are
ideally implemented but is nonzero when either of them is
not. This behavior is in general unavoidable, as we argue
in the main text (Sec. IV G). But first, we will consider the
functions Hi(Q, ν) for i ∈ Z[S] ∪ Z{S}. Note first that since
supp(Pi ) ⊂ Span{Sσ,σ ′ ‖ σ, σ ′ ∈ σq, σ �= σ ′}, we must have
that Pi|ν⊗2

id 〉〉 = 〈〈Q⊗2
id |Pi = 0. This means we can write

Hi(Q, ν) = ∣∣〈〈Q⊗2|Pi|ν⊗2〉〉 − 〈〈Q⊗2
id

∣∣Pi

∣∣ν⊗2
id

〉〉∣∣ (B29)

= ∣∣〈〈Q⊗2
spamPi

∣∣νid ⊗ νspam + νspam ⊗ νid
〉〉

+〈〈Qid ⊗ Qspam + Qspam ⊗ Qid|Pi

∣∣ν⊗2
spam

〉〉
+ 〈〈Q⊗2

spam

∣∣Pi

∣∣ν⊗2
spam

〉〉+ 〈〈Qid ⊗ Qspam

+ Qspam ⊗ Qid|Pi|νid ⊗ νspam + νspam ⊗ νid〉〉
∣∣ (B30)

� ‖Pi‖2→2
(∥∥Q⊗2

spam

∥∥
2

∥∥ν⊗2
spam

∥∥
2 + 2‖Qspam‖2‖Qid‖2

∥∥ν⊗2
spam

∥∥
2

+ 2‖νspam‖2‖νid‖2

∥∥Q⊗2
spam

∥∥
2

+ 4‖νspam‖2‖νid‖2‖Qspam‖2‖Qid‖2
)
, (B31)

which we can rewrite as

Hi(Q, ν) � ‖Q − Qid‖2‖ν − νid‖2(‖Q − Qid‖2‖ν − νid‖2

+ 2‖ν − νid‖2‖Qid‖2 + 2‖Q − Qid‖2‖νid‖2

+ 4‖νid‖2‖Qid‖2), (B32)

which makes manifest that Hi(Q, ν) = 0 if Q and ν are ideal
and moreover that this term actually scales with the product
of the deviations in Q and ν (as measured in the 2-norm).
Hence, we see that to lowest order in Qspam and νspam the
SPAM parameter η(Q, ν) is proportional to

η ≈ ‖Q − Qid‖2‖ν − νid‖2 + ‖Q − Qid‖2
2 + ‖ν − νid‖2

2

(B33)

with the exact expression being

η(Q, ν) � 3
[‖Qid‖2

2‖ν − νid‖2
2 + ‖Q − Qid‖2

2‖νid‖2
2

+‖Q − Qid‖2
2‖ν − νid‖2

2

]
+ 5[‖Q − Qid‖2‖ν − νid‖2(‖Q − Qid‖2‖ν − νid‖2

+ 2‖ν − νid‖2‖Qid‖2 + 2‖Q − Qid‖2‖νid‖2

+ 4‖νid‖2‖Qid‖2)], (B34)

where the factors 3 and 5 arise from the fact that |Zd| = 3
and |Z[S] ∪ Z{S}| = 5 respectively (this is for q � 3; for q = 1,

we get the significantly better |Zd| = 2 and |Z[S] ∪ Z{S}| = 1
instead [27]).

3. Sample complexity of iteratively reweighted
least squares

In this section, we analyze the sample complexity of
the RB fitting procedure using iteratively reweighted least
squares, as outlined in Sec. IV C. Given a set of sequence
lengths M, we will assume that N random sequences are
sampled for each sequence length. It is possible to let N be
a function of the sequence length m and prove a more general
version of the theorem presented here but we will not pursue
this here. We will also only be interested in the uncertainty
around the estimate for the depolarizing parameter f , and it
is straightforward to extend our analysis to also include the
uncertainty around estimate for the prefactor A. The methods
we use are all standard and can be found in Refs. [29,30].
See also Ref. [25] for an earlier calculation of this form
in the context of randomized benchmarking (not taking into
account the heteroskedasticity of randomized benchmarking
data).

Theorem 2. Let M be a set of integers denoting sequence
lengths and let {km,N }m∈M be a set of RB data points obtained
by sampling N random sequences for each sequence length
m ∈ M. Denote by f ∗, A∗ the true values for the RB fitting
parameters and denote by fest, Aest their estimates as obtained
by the iteratively reweighted least squares procedure outlined
in algorithm 1. We then have that

Pr[| f ∗ − fest| � ε] � 1 − δ, (B35)

where δ is upper bounded by

δ � 2H[Vfit, εfit]
N |M| (B36)

with H defined in Eq. (15) and

Vfit = 1

|M|
∑
m∈M

Vm( f ∗)w( fest, m), (B37)

εfit = ε[JT J]

J1
, (B38)

and

J =
[
− 1

|M|
∑
m∈M

mA∗ f ∗m−1
w( f ∗) ,

× 1

|M|
∑
m∈M

f ∗m
w( f ∗, m)

]
, (B39)

and J1 is the first entry of this vector.
Proof. The starting point for this proof is given by Eq.

(1.6.19) in Ref. [29, p. 45], which states that the outcome of
the IRLS procedure satisfies the following equality

1

|M|
∑
m∈M

(
km,N − Aest f m

est

)
w( fest, m) = 0, (B40)
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where w( f , m) is the weight function given by the inverse of
Eq. (30) (we suppress the dependency on the unitarity here for
notational simplicity). We can rewrite Eq. (B40) as

1

|M|
∑
m∈M

(
km,N + A∗ f ∗m − A∗ f ∗m − Aest f m

est

)
w( fest, m) = 0,

(B41)

⇐⇒ 1

|M|
∑
m∈M

(
A∗ f ∗m − Aest f m

est

)
w( fest, m)

= − 1

|M|
∑
m∈M

(km,N − A∗ f ∗m)w( fest, m). (B42)

We can now think of the left-hand side of Eq. (B42) as a
function of the vector [ fest, Aest]. Assuming [ fest, Aest] is close
to [ f ∗, A∗], we can expand the left-hand side of Eq. (B42) to
first order to get

1

|M|
∑
m∈M

(
A∗ f ∗m − Aest f m

est

)
w( fest, m)

≈ J[ f ∗ − fest, A∗ − Aest]
T , (B43)

where J is the Jacobian associated to the left-hand side of
Eq. (B42), that is,

J =
[
− 1

|M|
∑
m∈M

mA∗ f ∗m−1
w( f ∗) ,

× 1

|M|
∑
m∈M

f ∗m
w( f ∗, m)

]
. (B44)

Taking the Moore-Penrose inverse JMP = (JT J )−1JT of J and
inserting this in the first entry of Eq. (B43), we can say that

f ∗ − fest ≈ (JJT )−1J1
1

|M|
×
∑
m∈M

(
A∗ f ∗m − Aest f m

est

)
w( fest, m), (B45)

where J1 is the first entry of J . Now, we can say that

Prob[| f ∗ − fest| � ε]

≈ Prob

[∣∣∣∣∣[JJT ]−1J1
1

|M|
∑
m∈M

(
A∗ f ∗m − Aest f m

est

)

×w( fest, m)

∣∣∣∣∣ � ε

]
(B46)

= Prob

[∣∣∣∣∣[JJT ]−1J1
1

|M|
∑
m∈M

(km,N − A∗ f ∗m)w( fest, m)

∣∣∣∣∣�ε

]
.

(B47)

Now note that km,N can be seen as a number drawn from
a random variable Km with mean A∗( f ∗)m and variance
Vm( f ∗)/N2, where N is the number of random sequences
drawn for each data point km,N . Moreover, km,N and kN,m′ for
m �= m′ are drawn from independent random variables Km and
Km′ . Hence, we can apply the concentration inequality given

in Eq. (15) to Eq. (B47) to get

Prob[| f ∗ − fest| � ε] � 2H[Vfit, εfit]
N |M| (B48)

with Vfit, εfit given by

Vfit = 1

|M|
∑
m∈M

Vm( f ∗)w( fest, m), (B49)

εfit = ε[JJT ]

J1
, (B50)

which completes the proof.
Using Eqs. (9) or (11) then gives an upper bound on total

amount of data that needs to be gathered for rigorous RB. �

APPENDIX C: TECHNICAL LEMMAS

In this section, we give proofs of all technical lemmas used
in the main result, Theorem 1.

1. Projectors in the traceless symmetric subspace

In Lemma 3, we prove a series of useful upper bounds
on the trace overlap between the superoperator projectors
associated to the traceless-symmetric representation of the
Clifford group and the normalized Pauli matrices. The satu-
rated versions of these inequalities are critical to establishing
the quadratic scaling with infidelity of the variance bound in
the case of SPAM-free RB.

Lemma 3. Let E : Md → Md be a quantum channel and
consider the twirled operator TφTS (E⊗2) with respect to the
traceless-symmetric representation. This operator can then be
written as (Lemmas 1 and 2)

TφTS (E⊗2) =
∑
i∈Z

Tr(EPi )

Tr(Pi )
Pi, (C1)

with Z = {tr, 1, 2, [1], [2], [3], {1}, {2}} and Pi the projector
onto the spaces Vi ⊂ M⊗2

d . Let I (x ∈ A) be the indicator
function for the set A [that is I (x ∈ A) = 1 if x ∈ A and I (x ∈
A) = 0 otherwise]. We have the following statements:

(1) For i ∈ Z and σ, σ ′ ∈ σq, we have that

|〈〈σ⊗2|Pi|σ ′⊗2〉〉| = |〈〈σ⊗2|Pi|σ ′⊗2〉〉|I (i ∈ Zd )

� Tr(Pi )I (i ∈ Zd )

d2 − 1
(C2)

with equality when σ = σ ′.
(2) For i ∈ Z , τ, τ ′ ∈ σq and σ ∈ Cτ , σ

′ ∈ Cτ ′ , we have
that

|〈〈Sσ,σ ·τ |Pi|Sσ ′,σ ′ ·τ ′ 〉〉| = |〈〈Sσ,σ ·τ |Pi|Sσ ′,σ ′ ·τ 〉〉|I (i ∈ Z[S] )δτ,τ ′

� 2 Tr(Pi )I (i ∈ Z[S] )δτ,τ ′

(d2 − 1)(d2/2 − 2)
(C3)

with equality when σ = σ ′.
(3) For i ∈ Z , τ, τ ′ ∈ σq and σ ∈ Nτ , σ

′ ∈ Nτ ′ we have
that

|〈〈Sσ,iσ ·τ |Pi|Sσ ′,iσ ′ ·τ ′ 〉〉| = |〈〈Sσ,iσ ·τ |Pi|Sσ ′,iσ ′ ·τ 〉〉|I (i ∈ Z{S})δτ,τ ′

� 2 Tr(Pi )I (i ∈ Z{S})δτ,τ ′

(d2 − 1)(d2/2)
(C4)

with equality when σ = σ ′.
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The sets Zd,Z[S],Z{S} are defined in Lemma 2. �
Proof. We begin by proving the first claim. Let Pi be a

projector as defined in the lemma statement with i ∈ Z and
take σ, σ ′ ∈ σq. From Lemma 2, we have immediately that

〈〈σ⊗2|Pi|σ ′⊗2〉〉 = 〈〈σ⊗2|Pi|σ ′⊗2〉〉I (i ∈ Zd ). (C5)

Now consider i ∈ Zd. Note that since Pi is a projector it is
a real matrix and we have that Pi � 0, that is Pi is a positive
semidefinite matrix. This means that we have, by the Sylvester
principal minor conditions, that

|〈〈σ⊗2|Pi|σ ′⊗2〉〉| �
√

〈〈σ ′⊗2|Pi|σ ′⊗2〉〉〈〈σ⊗2|Pi|σ⊗2〉〉 (C6)

for all σ, σ ′ ∈ σq. Now consider the case σ = σ ′. Note that for
all τ, σ ∈ σq there is a Gσ

τ ∈ C such that Gσ
τ (τ ) = ±σ . That

is, the Clifford group acts transitively on σq [66]. This means
we can write

〈〈σ⊗2|Pi|σ⊗2〉〉 = 1

d2 − 1

∑
τ∈σq

〈〈
Gσ

τ (τ )⊗2
∣∣Pi

∣∣Gσ
τ (τ )

〉〉

= 1

d2 − 1

∑
τ∈σq

〈〈τ⊗2|(Gσ
τ

)†⊗2
Pi
(
Gσ

τ

)⊗2|τ⊗2〉〉

= 1

d2 − 1

∑
τ∈σq

〈〈τ⊗2|Pi|τ⊗2〉〉

= Tr(Pi )

d2 − 1
, (C7)

where we used the fact that Pi commutes with G⊗2 for all G ∈
C and the fact that Vi ⊂ Vd (where Vd is defined in Lemma 2).
This proves the first claim of the lemma.

Next, we consider the second claim of the lemma.
Let τ, τ ′ ∈ σq and take σ ∈ Cτ and σ ′ ∈ Cτ ′ . Again, from
Lemma 2, we have immediately that

〈〈Sσ,σ ·τ |Pi|Sσ ′,σ ′ ·τ ′ 〉〉 = 〈〈Sσ,σ ·τ |Pi|Sσ ′,σ ′ ·τ ′ 〉〉I (i ∈ Z[S] ).

(C8)

Now consider i ∈ Z[S]. From Lemma 2, we can write

Pi =
∑
τ∈σq

Pτ
i , (C9)

where Pτ
i has support in the space

V [τ ] = {Sσ,σ ·τ |σ ∈ Cτ }. (C10)

From this, we immediately get

〈〈Sσ,σ ·τ |Pi|Sσ ′,σ ′ ·τ ′ 〉〉 = 〈〈Sσ,σ ·τ |Pi|Sσ ′,σ ′ ·τ ′ 〉〉δτ,τ ′ . (C11)

Now consider τ = τ ′. Again, from the Sylvester minor condi-
tions we get for all σ, σ ′ ∈ Cτ that

|〈〈Sσ,σ ·τ |Pi|Sσ ′,σ ′ ·τ 〉〉|
�
√〈〈Sσ ′,σ ′ ·τ |Pi|Sσ ′,σ ′·τ 〉〉〈〈Sσ,σ ·τ |Pi|Sσ,σ ·τ 〉〉. (C12)

Now consider the case σ = σ ′. From Ref. [66], we can see
that the action of the Clifford group on the set A = {(σ, σ ·
τ ) ‖ τ ∈ σq, σ ∈ Cτ } is 2-transitive. That is, for all pairs
(ν, μ) ∈ A, there is a Gσ,τ

ν,μ ∈ C such that

Gσ,τ
ν,μ

⊗2(Sσ,σ ·τ ) = Sν,ν·μ. (C13)

This implies we can make essentially the same argument as
before, that is,

〈〈Sσ,σ ·τ |Pi|Sσ,σ ·τ 〉〉 = 1

|A|
∑

(μ,ν)∈A

〈〈Sν,ν·μ|(Gσ,τ
ν,μ

)†⊗2

×PiGσ,τ
ν,μ

⊗2|Sν,ν·μ〉〉

= 1

|A|
∑

(μ,ν)∈A

〈〈Sν,ν·μ|Pi|Sν,ν·μ〉〉

= 2 Tr(Pi )

(d2 − 1)(d2/2 − 2)
, (C14)

where we have used the fact that G⊗2 commutes with Pi for
all G ∈ C and also the definition of the space V[S] (given in
Lemma 2). The factor of 2 appears from the fact that the
set A counts the basis of V[S] twice since Sν,ν·μ = Sν·μ,ν for
all (μ, ν · μ) ∈ A. We have also used that |A| = |σq||Cτ | =
(d2 − 1)(d2/2 − 2). This proves the second claim of the
lemma.

The proof of the third claim of the lemma proceeds in the
same way as the proof of the second claim with the difference
that anticommuting rather than commuting elements of the
Pauli group must considered. We will not write it down
explicitly. �

2. Bound on sum of squares of the diagonal elements of a
quantum channel

This lemma (Lemma 4) proves that the diagonal elements
of a CPTP map are generically quite close to their mean. The
key technique used here is the fact that the diagonal elements
of a CPTP map are invariant under Pauli twirling. This is a
structural result about quantum channels on arbitrarily many
qubits and might be of independent interest. We use it to
establish the quadratic scaling of the variance in the infidelity
in the case of SPAM-free RB.

Lemma 4. Let E : Md → Md be a quantum channel with
infidelity r and depolarizing parameter f = 1 − dr

d−1 . The
quantity

1

d2 − 1

∑
τ∈σq

E2
τ,τ , (C15)

where Eτ,τ = 〈τ, E (τ )〉, has the following upper and lower
bounds in terms of the infidelity r:

f 2 = 1 − 2d

d − 1
r + d2

(d − 1)2
r2 � 1

d2 − 1

∑
τ∈σq

E2
τ,τ

� 1 − 2d

d − 1
r + 2(d + 1)

(d − 1)
r2. (C16)

�
Proof. We begin by noting that upper and lower bounds

of the quantity Eq. (C15) can be found by maximizing and
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minimizing respectively the following optimization:

max (min)
{Eττ }τ

∑
τ∈σq

E2
τ,τ

subject to
∑
τ∈σq

Eτ,τ = (d2 − 1) f

E a CPTP map.

(C17)

Here, we maximize (minimize) the quantity Eq. (C15) over
all possible CPTP maps which have depolarizing parameter f .
Solving this optimization problem is not easy since it not clear
how to express the CP condition in terms of the optimization
parameters Eττ . We will therefore relax this problem to an
easier one which we can solve. We begin by noting that the
optimization variables Eττ are invariant under the action of a
Pauli channel; i.e., for all G ∈ P with P the Pauli group, we
have that

(G†EG)τ,τ = 〈τ, GE (G†τG)G†〉 = 〈G†τG, E (G†τG)〉
= [sgn(τ, G)]2〈G†Gτ, E (G†Gτ )〉
= 〈τ, E (τ )〉 = Eτ,τ , (C18)

for all τ ∈ σq ∪ σ0, where sgn(τ, G) is defined as

sgn(τ, G) =
{−1 if {τ, G} = 0,

+1 if [G, τ ] = 0,
(C19)

which, since τ ∈ σq ∪ σ0 is a normalized element of the Pauli
group, is well defined because elements of the multiqubit
Pauli group can either commute ([.,.]) or anticommute ({., .})
with each other [33]. By Eq. (C18) and linearity, we can
now note that the optimization variables in the optimization
Eq. (C17) are invariant under twirling over the Pauli group P,
i.e.,

TP(E )τ,τ = 1

|P|
∑
G∈P

〈G†τG, E (G†τG)〉

= 1

|P|
∑
G∈P

Eτ,τ = Eτ,τ . (C20)

Note also that the “twirl” operation, for any group, preserves
complete positivity [52]. This means we can relax the opti-
mization Eq. (C17) to

max (min)
{TP(E )τ,τ }τ

∑
τ∈σq

TP(E )2
τ,τ

subject to
∑
τ∈σq

TP(E )τ,τ = (d2 − 1) f

TP(E ) a CPTP map.

(C21)

Note that this is a relaxation of the previous optimization
because while the twirl of a CP map will always be CP, the
opposite need no be true. Now, we use the following result
due to Holevo [67], which states that any CPTP map E , twirled
over the Pauli group, is of the form

TP(E )(X ) =
∑
G∈P

pGGXG† ∀X ∈ Cd×d , (C22)

where {pG}G is a probability distribution, i.e., pG � 0,∀G ∈
P and

∑
G∈P pG = 1. Let us now rewrite the optimization

Eq. (C21) in terms of this probability distribution. We begin
by noting that since E is TP we have that Eσ0σ0 = 1 and hence
we can write the depolarizing constraint in Eq. (C21) as∑

τ∈σq

TP(E )τ,τ = (d2 − 1) f ⇐⇒
∑

τ∈σq∪σ0

TP(E )τ,τ

= (d2 − 1) f + 1. (C23)

Now, using the form of the Pauli-twirled channel, we can write
the right-hand side of this equivalence as∑

τ∈σq∪σ0

TP(E )τ,τ =
∑

τ∈σq∪σ0

∑
G∈P

pG〈τ, GτG†〉

=
∑
G∈P

pG

∑
τ∈σq∪σ0

sgn(τ, G)

= pI d
2, (C24)

where in the last line we used that the identity Pauli element I
commutes with all Pauli matrices τ ∈ σq ∪ σ0, whereas every
nonidentity Pauli G commutes with exactly the elements of
σq ∪ σ0 and anticommutes with the other half. We also used
that |σq ∪ σ0| = d2. We can make a similar calculation for the
objective of Eq. (C21), which gives∑
τ∈σq

TP(E )2
τ,τ =

∑
τ∈σq∪σ0

TP(E )2
τ,τ − 1

= (−1) +
∑

τ∈σq∪σ0

(∑
G∈P

pG〈τ, GτG†〉
)2

= (−1)

+
∑

G,Ĝ∈P

pG pĜ

∑
τ∈σq∪σ0

sgn(τ, G)sgn(τ, Ĝ†)

= (−1) +
∑
G∈P

p2
G

∑
τ∈σq∪σ0

sgn(τ, GG†)

+
∑

G, Ĝ ∈ P
G �= Ĝ

pG pĜ

∑
τ∈σq∪σ0

sgn(τ, GĜ†)

= (−1) + d2
∑
G∈P

p2
G, (C25)

where we have used that sgn(τ, G)sgn(τ, Ĝ) = sgn(τ, GĜ),
that GG† = I,∀G ∈ P, and again that the Pauli identity I
commutes with all elements of σq ∪ σ0 while every noniden-
tity Pauli GĜ†, G �= GĜ commutes with exactly half of the
elements of σq ∪ σ0 and anticommutes with the other half. We
have now rewritten the optimization Eq. (C21) completely in
terms of the probability distribution {pG}G. This becomes

max (min)
{pG}G

(−1) + d2
∑
G∈P

p2
G

subject to d2 pI = (d2 − 1) f + 1∑
G∈P

pG = 1

pG � 0 G ∈ P.

(C26)

Noting that the element pI is essentially fixed, we can elim-
inate this element from the optimization and obtain an even
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simpler optimization:

max (min)
{pG}G

(−1) + d2
∑

G∈P/{I}
p2

G + d2

(
d2 − 1

d2
f + 1

d2

)2

subject to
∑

G∈P/{I}
pG = 1 − d2 − 1

d2
f − 1

d2

pG � 0 G ∈ P/{I}.
(C27)

The above optimization is a well-studied instance of a class of
optimization problems called quadratic programs [68]. This
problem has the minimum [68, Chapter 4, Section 4]:

pG,min = 1

d2 − 1

(
1 − d2 − 1

d2
f − 1

d2

)
∀G ∈ P/{I} (C28)

and has d2 − 1 degenerate maxima indexed by the nonidentity
Pauli elements G̃ of the form

pG,max =
{

1 − d2−1
d2 f − 1

d2 if G = G̃
0 otherwise.

(C29)

This means we can lower bound the quantity Eq. (C15), for
any CPTP map E , by

1

d2 − 1

∑
τ∈σq

E2
τ,τ � d2

d2 − 1

(
d2 − 1

d2
f + 1

d2

)2

+ d2

(d2 − 1)2

(
1 − d2 − 1

d2
f − 1

d2

)2

− 1

d2 − 1
. (C30)

By using the relation f = 1 − dr
d−1 , we can rewrite this lower

bound in terms of the infidelity r. This process is straightfor-
ward but rather tedious so we will not write it down. At the
end of the calculation, we obtain

1

d2 − 1

∑
τ∈σq

E2
τ,τ � 1 − 2dr

d − 1
+ d2r2

(d − 1)2
. (C31)

Similarly, we can write for the upper bound

1

d2 − 1

∑
τ∈σq

E2
τ,τ � d2

d2 − 1

(
d2 − 1

d2
f + 1

d2

)2

+ d2

d2 − 1

(
1 − d2 − 1

d2
f − 1

d2

)2

− 1

d2 − 1
, (C32)

which, by essentially the same tedious but straightforward
calculation, yields

1

d2 − 1

∑
τ∈σq

Eττ � 1 − 2
dr

d − 1
+ 2(d + 1)

(d − 1)
r2, (C33)

which completes the lemma. �

3. Eigenvalues of twirled quantum channels

Lemma 5 proves that the unitarity upper bounds the eigen-
values of the twirled superoperator TφTS (E⊗2). This resolves
an open question posed in Ref. [24] and allows us to establish
the long sequence length behavior of the variance of RB.

Lemma 5. Let E : Md → Md be a quantum channel with
unitarity u and consider the twirled operator TφTS (E⊗2) with
respect to the traceless-symmetric representation. This opera-
tor can then be written as (Lemmas 1 and 2)

TφTS (E⊗2) =
∑
i∈Z

χiPi (C34)

with Z = {tr, 1, 2, [1], [2], [3], {1}, {2}}, Pi the projector onto
the spaces Vi ⊂ M⊗2

d and

χi := Tr(EPi )

Tr(Pi )
, (C35)

where the trace is taken over superoperators. We now have for
all i ∈ Z that

χi � u. (C36)

�
Proof. We begin by considering i ∈ Zd. Note first that for

i = tr we have that

χi = Tr(PtrE⊗2)

Tr(Ptr )
= 1

d2 − 1

∑
τ,τ ′∈σq

〈〈τ⊗2|E⊗2|τ ′⊗2〉〉, (C37)

where we have used the definition of Ptr (Lemma 2). We can
calculate

1

d2 − 1

∑
τ,τ ′∈σq

〈〈τ⊗2|E⊗2|τ ′⊗2〉〉 = 1

d2 − 1

∑
τ,τ ′∈σq

〈〈τ |E |τ ′〉〉2

= 1

d2 − 1

∑
τ,τ ′∈σq

〈〈τ |E |τ ′〉〉

× 〈〈τ ′|E†|τ 〉〉
= 1

d2 − 1

∑
τ,τ ′∈σq

〈〈τ |EuE†
u |τ 〉〉

= u(E ), (C38)

where we have used the definition of the unitarity. Now
consider i ∈ Zd. We have

χi = Tr(PiE⊗2)

Tr(Pi )

= 1

Tr(Pi )

∑
τ∈σq

〈〈τ⊗2|PiE⊗2|τ⊗2〉〉

= 1

Tr(Pi )

∑
τ,τ ′∈σq

〈〈τ⊗2|Pi|τ ′⊗2〉〉〈〈τ ′⊗2|E⊗2|τ⊗2〉〉, (C39)

where we have used that the support of Pi lies in Vd (defined
in Lemma 2). Now, we can use Lemma 3 to upper bound this
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quantity. We have

χi �
1

Tr(Pi )

∑
τ,τ ′∈σq

Tr(Pi )

d2 − 1)
〈〈τ ′⊗2|E⊗2|τ⊗2〉〉

= 1

d2 − 1

∑
τ,τ ′∈σq

〈〈τ ′|E |τ 〉〉〈〈τ |E†|τ ′〉〉

= u, (C40)

where we have again used the definition of the unitarity.
Next, we consider the case of i ∈ Z[S]. We have

χi = Tr(PiE⊗2)

Tr(Pi )
= 1

4

1

Tr(Pi )

∑
τ,τ ′∈σq

∑
σ ∈ Cτ

σ ′ ∈ Cτ ′

〈〈Sσ,σ ·τ |Pi|Sσ ′,σ ′ ·τ ′ 〉〉〈〈Sσ ′,σ ′ ·τ ′ |E⊗2|Sσ,σ ·τ 〉〉, (C41)

where we have used that the support of Pi lies in V[S] (defined in Lemma 2) and the factor of 1/4 accounts for the fact that we
are double counting the basis of V[S] since Sσ,σ ·τ = Sσ ·τ,σ (we double count twice: once in the definition of the trace and once in
the resolution of the identity on V[S]). From Lemma 3, we can lose one of the sums and get

χi = 1

4

1

Tr(Pi )

∑
τ,τ ′∈σq

∑
σ ∈ Cτ

σ ′ ∈ Cτ ′

〈〈Sσ,σ ·τ |Pi|Sσ ′,σ ′·τ ′ 〉〉δτ,τ ′ 〈〈Sσ ′,σ ′·τ ′ |E⊗2|Sσ,σ ·τ 〉〉

= 1

4

1

Tr(Pi )

∑
τ∈σq

∑
σ,σ ′∈Cτ

〈〈Sσ,σ ·τ |Pi|Sσ ′,σ ′·τ 〉〉〈〈Sσ ′,σ ′ ·τ |E⊗2|Sσ,σ ·τ 〉〉. (C42)

We can further use Lemma 3 to upper bound this quantity as

χi �
1

4

1

Tr(Pi )

∑
τ∈σq

∑
σ,σ ′∈Cτ

|〈〈Sσ,σ ·τ |Pi|Sσ ′,σ ′·τ 〉〉||〈〈Sσ ′,σ ′·τ |E⊗2|Sσ,σ ·τ 〉〉|

� 1

4

1

Tr(Pi )

∑
τ∈σq

∑
σ,σ ′∈Cτ

2 Tr(Pi )

(d2 − 1)(d/2 − 2)
|〈〈Sσ ′,σ ′·τ |E⊗2|Sσ,σ ·τ 〉〉|

= 1

2

1

(d2 − 1)(d2/2 − 2)

∑
τ∈σq

∑
σ,σ ′∈Cτ

|〈〈σ |E |σ ′〉〉〈〈σ · τ |E |σ ′ · τ 〉〉 + 〈〈σ · τ |E |σ ′〉〉〈〈σ |E |σ ′ · τ 〉〉|, (C43)

where we have also used the triangle inequality for the absolute value. Using the triangle inequality again, together with the fact
that 2|ab| � a2 + b2 for all a, b ∈ R, we can write

χi �
1

2

1

(d2 − 1)(d2/2 − 2)

∑
τ∈σq

∑
σ,σ ′∈Cτ

|Eσ,σ ′Eσ ·τ,σ ′·τ | + |Eσ ·τ,σ ′Eσ,σ ′ ·τ |

� 1

4

1

(d2 − 1)(d2/2 − 2)

∑
τ∈σq

∑
σ,σ ′∈Cτ

E2
σ,σ ′ + E2

σ ·τ,σ ′·τ + E2
σ ·τ,σ ′ + E2

σ,σ ′ ·τ . (C44)

Now, since σ ∈ Cτ ⇐⇒ σ · τ ∈ Cτ we can roll the four
sums in the above expression into one, that is,

χi �
1

(d2 − 1)(d2/2 − 2)

∑
τ∈σq

∑
σ,σ ′∈Cτ

E2
σ,σ ′

=
∑

σ,σ ′∈σq

∑
τ∈Cσ ∩Cσ ′

E2
σ,σ ′

� 1

(d2 − 1)

∑
σ,σ ′∈σq

E2
σ,σ ′

= u, (C45)

where we used the fact that σ ∈ Cτ ⇐⇒ τ ∈ Cσ , the fact
that |Cσ ∩ Cσ ′ | � |Cσ | = d2/2 − 2, and the definition of the
unitarity. This means we have χi � u for all i ∈ Z[S]. The
argument for i ∈ Z{S} is conceptually the same as that for
i ∈ Z[S], so we will not write it down.

Lemma 6 proves that the eigenvalues of the twirled super-
operator TφTS (E⊗2) are close to the depolarizing parameter f .
This fact is key in our analysis of the variance of RB in the
presence of SPAM.

Lemma 6. Let E : Md → Md be a quantum channel with
infidelity r and depolarizing parameter f = 1 − dr

d−1 and
consider the twirled operator TφTS (E⊗2) with respect to the
traceless-symmetric representation. This operator can then be
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written as (Lemmas 1 and 2)

TφTS (E⊗2) =
∑
i∈Z

χiPi (C46)

with Z = {tr, 1, 2, [1], [2], [3], {1}, {2}}, Pi the projector onto
the spaces Vi ⊂ M⊗2

d , and

χi := Tr(EPi )

Tr(Pi )
, (C47)

where the trace is taken over superoperators. We now have for
all i ∈ Zd

|χi − f 2| � 2dr

d − 1
(C48)

and for all i ∈ Z[S] ∪ Z{S}

|χi − f 2| � 2dr

d − 1
. (C49)

subject to the constraint r � 1
3 .

Proof. From Lemma 5, we have that χi � u for all i ∈ Z .
And since u � 1 for all quantum channels [19], we certainly
have that

χi − f 2 � 1 −
(

1 − dr

d − 1

)2

� 2dr

d − 1
. (C50)

Hence, we are only interested in upper bounding f 2 − χi, and
thus lower bounding χi for all i ∈ Z . First, consider i ∈ Zd.
We proceed in much the same way as Lemma 5. We have

χi = Tr(PiE⊗2)

Tr(Pi )
= 1

Tr(Pi )

∑
τ,τ ′∈σq

〈〈τ⊗2|Pi|τ ′⊗2〉〉〈〈τ ′⊗2|E |τ⊗2〉〉

= 1

Tr(Pi )

∑
τ∈σq

〈〈τ⊗2|Pi|τ⊗2〉〉E2
τ,τ + 1

Tr(Pi )

∑
τ, τ ′ ∈ σq

τ �= τ ′

〈〈τ⊗2|Pi|τ ′⊗2〉〉E2
τ ′,τ . (C51)

We begin by considering the first term in Eq. (C51). Using Lemma 3, we can say

1

Tr(Pi )

∑
τ∈σq

〈〈τ⊗2|Pi|τ⊗2〉〉E2
τ,τ = Tr(Pi )

(d2 − 1) Tr(Pi )

∑
τ∈σq

E2
τ,τ � f 2, (C52)

where we have also used the lower bound from Lemma 4. Now let us consider the second term in Eq. (C51). We have

1

Tr(Pi )

∑
τ, τ ′ ∈ σq

τ �= τ ′

〈〈τ⊗2|Pi|τ ′⊗2〉〉E2
τ ′,τ � − 1

Tr(Pi )

∑
τ, τ ′ ∈ σq

τ �= τ ′

|〈〈τ⊗2|Pi|τ ′⊗2〉〉|E2
τ ′,τ

� − 1 Tr(Pi )

(d2 − 1) Tr(Pi )

∑
τ, τ ′ ∈ σq

τ �= τ ′

E2
τ ′,τ

= − 1

d2 − 1

∑
τ,τ ′∈σq

E2
τ ′,τ + 1

d2 − 1

∑
τ∈σq

E2
τ,τ

� −u + f 2, (C53)

where we have again used Lemma 3, the lower bound from Lemma 4, and the definition of unitarity. We can now see that for
i ∈ Zd we have

f 2 − χi � f 2 − 2 f 2 + u = u − f 2 � 1 −
(

1 − dr

d − 1

)2

� 2dr

d − 1
. (C54)

Now, consider i ∈ Z[S] (note that we are implicitly taking d � 4 for this part of the proof; this is justified as the set Z[S] is
empty for q = 1). From Lemma 5 and in particular Eq. (C42), we get

χi = 1

4

1

Tr(Pi )

∑
τ∈σq

∑
σ,σ ′∈Cτ

〈〈Sσ,σ ·τ |Pi|Sσ ′,σ ′ ·τ 〉〉〈〈Sσ ′,σ ′ ·τ |E⊗2|Sσ,σ ·τ 〉〉. (C55)

We can rewrite this a little bit as follows:

χi = 1

4

1

Tr(Pi )

∑
τ∈σq

∑
σ,σ ′∈Cτ

〈〈Sσ,σ ·τ |Pi|Sσ ′,σ ′ ·τ 〉〉(Eσ ′,σEσ ′ ·τ,σ ·τ + Eσ ′,σ ·τEσ ′ ·τ,σ ) (C56)

= 1

4

1

Tr(Pi )

∑
τ∈σq

∑
σ,σ ′∈Cτ

〈〈Sσ,σ ·τ |Pi|Sσ ′,σ ′ ·τ 〉〉Eσ ′,σEσ ′ ·τ,σ ·τ + 1

4

1

Tr(Pi )

∑
τ∈σq

∑
σ,σ ′∈Cτ

〈〈Sσ,σ ·τ |Pi|Sσ ′,σ ′ ·τ 〉〉Eσ ′,σ ·τEσ ′ ·τ,σ (C57)
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= 1

4

1

Tr(Pi )

∑
τ∈σq

∑
σ,σ ′∈Cτ

〈〈Sσ,σ ·τ |Pi|Sσ ′,σ ′ ·τ 〉〉Eσ ′,σEσ ′ ·τ,σ ·τ + 1

4

1

Tr(Pi )

∑
τ∈σq

∑
σ,σ ′∈Cτ

〈〈Sσ,σ ·τ |Pi|Sσ ′·τ,(σ ′·τ )·τ 〉〉Eσ ′ ·τ,σ ·τE(σ ′ ·τ )·τ,σ

(C58)

= 1

2

1

Tr(Pi )

∑
τ∈σq

∑
σ,σ ′∈Cτ

〈〈Sσ,σ ·τ |Pi|Sσ ′,σ ′ ·τ 〉〉Eσ ′,σEσ ′·τ,σ ·τ , (C59)

where we used that σ ′ ∈ Cτ ⇐⇒ σ ′ · τ ∈ Cτ , that (σ ′ · τ ) · τ = σ ′, and that Sσ ′,σ ′ ·τ = Sσ ′·τ,σ ′ . We can again separate off the
“diagonal” terms to get

χi = 1

2

1

Tr(Pi )

∑
τ∈σq

∑
σ∈Cτ

〈〈Sσ,σ ·τ |Pi|Sσ,σ ·τ 〉〉Eσ,σEσ ·τ,σ ·τ (C60a)

+ 1

2

1

Tr(Pi )

∑
τ∈σq

∑
σ, σ ′ ∈ Cτ σ �= σ ′

〈〈Sσ,σ ·τ |Pi|Sσ ′,σ ′·τ 〉〉Eσ ′,σEσ ′·τ,σ ·τ . (C60b)

We will analyze the terms Eqs. (C60a) and (C60b) separately. We begin with Eq. (C60a). We can use Lemma 3 to get

Eq. (C60a) = 1

(d2 − 1)
(

d2

2 − 2
) ∑

τ∈σq

∑
σ∈Cτ

Eσ,σEσ ·τ,σ ·τ . (C61)

Now, we use the generic statement 2ab = a2 + b2 − (a − b)2 for all a, b ∈ R to write

Eq. (C60a) = 1

2

1

(d2 − 1)
(

d2

2 − 1
) ∑

τ∈σq

∑
σ∈Cτ

E2
σ,σ + E2

σ ·τ,σ ·τ − 1

2

1

(d2 − 1)
(

d2

2 − 2
) ∑

τ∈σq

∑
σ∈Cτ

(Eσ,σ − Eσ ·τ,σ ·τ )2 (C62)

= 1

(d2 − 1)
(

d2

2 − 2
) ∑

τ∈σq

∑
σ∈Cτ

E2
σ,σ − 1

2

1

(d2 − 1)
(

d2

2 − 2
) ∑

τ∈σq

∑
σ∈Cτ

(Eσ,σ − Eσ ·τ,σ ·τ )2 (C63)

= 1

(d2 − 1)
(

d2

2 − 2
) ∑

σ∈σq

∑
τ∈Cσ

E2
σ,σ − 1

2

1

(d2 − 1)
(

d2

2 − 2
) ∑

τ∈σq

∑
σ∈Cτ

(Eσ,σ − Eσ ·τ,σ ·τ )2 (C64)

= 1

d2 − 1

∑
σ∈σq

E2
σ,σ − 1

2

1

(d2 − 1)
(

d2

2 − 2
) ∑

τ∈σq

∑
σ∈Cτ

(Eσ,σ − Eσ ·τ,σ ·τ )2 (C65)

� f 2 − 1

2

1

(d2 − 2)
(

d2

2 − 1
) ∑

τ∈σq

∑
σ∈Cτ

(Eσ,σ − Eσ ·τ,σ ·τ )2, (C66)

where we again used that σ ∈ Cτ ⇐⇒ σ · τ ∈ Cτ , that σ ∈
Cτ ⇐⇒ τ ∈ Cσ , and also the lower bound from Lemma 4.
It remains to bound the second term in Eq. (C66). To do this,
we will maximize the quantity (Wν,ν − Wν·μ,ν·μ)2 for μ ∈ σq

and ν ∈ Cμ subject to the constraint that W is a CPTP map
with depolarizing parameter f . That is, we will try to solve
the maximization problem

max (Wν,ν − Wμ,μ)2

subject to
∑
τ∈σq

Wττ = (d2 − 1) f

W a CPTP map.

(C67)

As in Lemma 4, we can restrict ourselves to W being a
Pauli channel (since the optimization function is a function
of only the diagonal elements of W). That is, we can consider
W (X ) =∑G∈P pGGXG†, where {pG}G is a probability dis-
tribution over the Pauli group. We can write the optimization

objective as

(Wν,ν − Wν·μ,ν·μ)2

=
[∑

G∈P

pG〈ν, GνG†〉 − 〈ν · μ, Gν · μG†〉
]2

=
[∑

G∈P

pG〈ν, GνG†〉 − 〈ν · μ, (GνG†) · (GμG†)〉
]2

=
{∑

G∈P

pGsgn(ν, G)[1 − sgn(μ, G)]

}2

, (C68)

where the sgn(ν, G) [as defined in Eq. (C19)] encodes the
commutation relations of the elements of the Pauli group.
Note that the above quantity does not depended on p1 (the
weight associated with the Pauli identity) since sgn(μ, 1) = 1
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for all μ ∈ σq. Hence, we can solve the optimization problem

max

⎡
⎣ ∑

G∈P/{1}
pGsgn(ν, G)[1 − sgn(μ, G)]

⎤
⎦

2

subject to
∑

G∈P/{1}
pG = 1 − d2 − 1

d2
f 2 − 1

d2

pG � 0 ∀G ∈ P. (C69)

This problem has an easily spotted maximum in that we
want to put all probability weight on a single G ∈ Cν ∩ Nμ

and set all other pG to zero [subject to the constraint that
the overall channel must have depolarizing parameter f ,
which is encoded in the first constraint of Eq. (C69)]. Hence,
we have[∑

G∈P

pGsgn(ν, G)[1 − sgn(μ, G)]

]2

�
[

d2 − 1

d2
(1 − f 2)

]2

.

(C70)

We can feed this back into Eq. (C66) to obtain

Eq. (C60a) � f 2 − 1

2

1

(d2 − 1)
(

d2

2 − 2
)

×
∑
τ∈σq

∑
σ∈Cτ

[
d2 − 1

d2
(1 − f 2)

]2

= f 2 − 1

2

[
d2 − 1

d2
(1 − f 2)

]2

. (C71)

This is a suitable lower bound on Eq. (C60a). Next, we
consider Eq. (C60b). We have

Eq. (C60b) � − 1

(d2 − 1)
(

d2

2 − 2
) ∑

τ∈σq

∑
σ, σ ′ ∈ Cτ

σ �= σ ′

|Eσ,σ ′Eσ ·τ,σ ′ ·τ |

� − 1

(d2 − 1)
(

d2

2 − 2
) ∑

τ∈σq

∑
σ, σ ′ ∈ Cτ

σ �= σ ′

× 1

2

(
E2

σ,σ ′ + E2
σ ·τ,σ ′·τ

)
= − 1

(d2 − 1)
(

d2

2 − 2
) ∑

σ, σ ′ ∈ σq

σ �= σ ′

∑
τ∈Cσ ∩Cσ ′

E2
σ,σ ′

= −
d4

4 − 3

(d2 − 1)
(

d2

2 − 2
)
⎡
⎣ ∑

σ,σ ′∈σq

E2
σ,σ ′ −

∑
σ∈σq

E2
σ,σ ′

⎤
⎦

� −
d4

4 − 3
d2

2 − 2
(u − f 2), (C72)

where we used an array of steps that have been used before:
the triangle inequality and Lemma 3 for the first inequality,
the fact that 2|ab| � a2 + b2 for all a, b ∈ R for the second
inequality, the fact that σ ∈ Cτ ⇐⇒ τ ∈ Cσ for the third
equality, the fact that |Cσ ∩ Cσ | = d2/4 − 3 for σ �= σ ′ [27]

for the fourth equality, and Lemma 4 and the definition of
unitarity for the last equality. This is a good lower bound on
Eq. (C60b). We can now combine the lower bounds on Eqs.
(C60a) and (C60b) to get

χi � f 2 − 1

2

[
d2 − 1

d2
(1 − f 2)

]2

−
d4

4 − 3(
d2

2 − 2
) (u − f 2)

(C73)

for i ∈ Z[S]. This gives a final bound (using u � 1)

f 2 − χi � f 2 − f 2 + 1

2

[
d2 − 1

d2
(1 − f 2)

]2

+
d4

4 − 3
d2

2 − 2
(1 − f 2), (C74)

which we can rewrite to yield

f 2 − χi �
2dr

d − 1

[
d4

4 − 3
d2

2 − 2

(
1 − 1

2

dr

d − 1

)

+ 1

2

(d2 − 1)2

d4

2dr

d − 1

(
1 − 1

2

dr

d − 1

)2
]
. (C75)

Setting (1 − 1
2

dr
d−1 ) � 1 and working out, we get

f 2 − χ � 2d

d − 1
r (C76)

for

r �
(

1 −
d4

4 − 3
d2

2 − 2

)
d3(d − 1)

(d2 − 1)2
. (C77)

This completes the proof for i ∈ Z[S]. The proof for i ∈ Z{S} is
conceptually the same as that of i ∈ Z[S] and yields the same
bound so we will not write it down here. The only notable
difference is the difference in size for the sets Nτ and Nτ ∩ Nτ ′

for τ, τ ′ ∈ σq, which gives a different area of validity for the
bound, namely

r � 1

3
�
(

1 −
d4

4
d2

2

)
d3(d − 1)

(d2 − 1)2
. (C78)

Choosing r � 1/3 satisfies both constraints for all d and thus
completes the proof. �

4. Telescoping series

Lemma 7 and Corollary 1 provide us with a powerful tool
to break up the analysis of the variance of RB into manageable
pieces.

Lemma 7. For two arbitrary ordered lists of m elements
{a1, . . . , am} and {b1, . . . , bm} of an algebra with associative
and distributed addition and multiplication, we have

am:1 − bm:1 =
m∑

j=1

am: j+1(a j − b j )b j−1:1, (C79)

where a j:k with j � k is defined with respect to the list
{a1, . . . , am} as

a j:k = a ja j+1 . . . ak−1ak . (C80)
�
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Proof. We will prove this by induction. For m = 1, the
statement is trivial. For m + 1, we have

am+1:1 − bm+1:1

= am+1am:1 − am+1bm:1 + am+1bm:1 − bm+1bm:1

= am+1(am:1 − bm:1 ) + (am+1 − bm+1)bm:1

=
m+1∑
j=1

am: j+1(a j − b j )b j−1:1

by induction hypothesis. This proves the lemma. �
Corollary 1. For a, b, c ∈ C with c � a, we have

am − bm = mbm−1(a − b) + (a − b)2am−2

× (m − 1)(b/a)m − m(b/a)m−1 + 1

[1 − (b/a)]2

� mbm−1(a − b) + (a − b)2

× (m − 1)bm − mcbm−1 + cm

(c − b)2
.

�
Proof. Note first that the statement is trivial if a = b.

Therefore, assume a �= b. We begin by applying Lemma 7 to
am − bm. This gives

am − bm =
m∑

j=1

am− j (a − b)bj−1. (C81)

We now perform the following manipulation:

am − bm =
m∑

j=1

am− j (a − b)bj−1

=
m∑

j=1

(am− j − bm− j + bm− j )(a − b)bj−1

= (a − b)
m∑

j=1

bm− j+ j−1 +
m∑

j=1

(am− j − bm− j )

× (a − b)bj−1

= mbm−1(a − b) +
m∑

j=1

(am− j − bm− j )(a − b)bj−1.

(C82)

Note that be have used the fact that a, b ∈ C are commutative.
Now, we can apply Lemma 7 again to the factors (am− j −
bm− j ) in the second term in the above to obtain

am − bm = mbm−1(a − b)

+
m∑

j=1

m− j∑
t=1

am− j−t (a − b)bj−t−1(a − b)bj−1

= mbm−1(a − b) + (a − b)2
m∑

j=1

m− j∑
t=1

am−( j+t )bj+t−2.

(C83)

Performing the substitution s = j + t and working out, we
obtain

am + bm = mbm−1(a − b) + (a − b)2
m∑

j=1

m− j∑
t=1

am−( j+t )bj+t−2

= mbm−1(a − b) + (a − b)2
m∑

j=1

m∑
s= j+1

am−sbs−2

= mbm−1(a − b) + (a − b)2
m∑

s=2

s−1∑
j=1

am−sbs−2

= mbm−1(a − b) + (a − b)2
m∑

s=2

(s − 1)am−sbs−2.

(C84)

Now, we can factor out am−1 from the second term to obtain

am + bm = mbm−1(a − b)

+ (a − b)2am−2
m∑

s=2

(s − 1)(b/a)s−2. (C85)

We can further rewrite this using the standard series identity

m∑
k=1

(k − 2)xk−2 = (m − 1)xm − mxm−1 + 1

(1 − x)2
. (C86)

The upper bound follows by upper bounding each term in the
sum. �
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