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Abstract

This study investigates the connection between macro-scale parameters (MSP) and micro-
scale water quality parameters (MSWQP) in the Brantas River, employing a multivariate
linear regression (MLR) modelling approach. The analysis reveals several critical insights
into the complex dynamics of water quality in this river system.

Key findings indicate that high-quality input data, both in terms of quantity and measure-
ment frequency, play a key role in the effectiveness of predictive models. Seasonality is a
useful predictor and is recommended to be supplemented with rainfall data to better capture
its influence on runoff and water quality. The study introduces the concept of basin accu-
mulation and the implementation of buffer areas, demonstrating that these enhancements
lead to improved model performance.

In conclusion, it can be said that relying just on macro-scale parameters is insufficient to
generate an effective linear regression model. However, with the right optimizations and
useful input data, it can be an insightful and valuable tool for water quality prediction.

Keywords: Multivariate Linear Regression, Dissolved Oxygen, Land cover, Macro-scale pa-
rameters, Micro-scale parameters, Water quality, Brantas River

vi



Contents

Preface v

Abstract vi

List of Figures ix

List of Tables xi

List of Symbols xii

Acronyms xiii

1 Introduction 1
1.1 Multivariate linear regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Multivariate linear regression in the Brantas . . . . . . . . . . . . . . . . . . . . 1
1.3 The objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.4 Report set up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Study Area 3
2.1 The study area of the Brantas River . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1.1 Seasonality and Climate . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Water sampling and analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.2.1 Water quality monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2.2 Water quality sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.3 Spatial analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3 Method 6
3.1 Using multivariate linear regression . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.2 Choosing the water quality parameters . . . . . . . . . . . . . . . . . . . . . . . 6
3.3 Mapping the land cover data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3.3.1 Creating the (sub-)basins in the Brantas catchment . . . . . . . . . . . . 7
3.3.2 Analysing the geographical data focusing on land-use . . . . . . . . . . 7

3.4 Setting up the multivariate linear regression model . . . . . . . . . . . . . . . . 8
3.5 Validating the results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.5.1 T-statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.5.2 Probability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.5.3 R-squared and adjusted R-squared . . . . . . . . . . . . . . . . . . . . . . 10

3.6 Evaluating the results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.7 Optimizing the results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.7.1 Implementing seasonality . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.7.2 Simplifying the land cover classes . . . . . . . . . . . . . . . . . . . . . . 11
3.7.3 Accumulating the sub-basins . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.7.4 Generating the buffer area . . . . . . . . . . . . . . . . . . . . . . . . . . 12

vii



Contents

4 Results 13
4.1 Water quality parameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.2 Land cover maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.3 The (sub-)basin(s) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

4.3.1 The sub-basins based on PJT measurement points . . . . . . . . . . . . . 14
4.3.2 The sub-basins based on EPA measurement points . . . . . . . . . . . . 14
4.3.3 The sub-basins based on BBWS measurement points . . . . . . . . . . . 16
4.3.4 Accumulating the sub-basins . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.3.5 The buffer area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4.4 Multivariate linear regression model . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.4.1 The first run . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.4.2 Adding seasonality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.4.3 Simplifying the land cover classes . . . . . . . . . . . . . . . . . . . . . . 20
4.4.4 Accumulating the sub-basins . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.4.5 Implementing the buffer . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

5 Evaluation and Discussion 22
5.1 Assessing the value of the optimization . . . . . . . . . . . . . . . . . . . . . . . 22

5.1.1 Seasonality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
5.1.2 Combining land cover . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
5.1.3 Accumulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
5.1.4 Buffer size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

5.2 Assessing the realism of the results . . . . . . . . . . . . . . . . . . . . . . . . . . 23
5.3 Assessing the input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

5.3.1 Water quality parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
5.3.2 Land cover data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
5.3.3 Number of observations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
5.3.4 Measurement points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
5.3.5 Data input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

6 Conclusion and Recommendation 26
6.1 Summary of the findings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
6.2 Recommendations for future research . . . . . . . . . . . . . . . . . . . . . . . . 27

Bibliography 30

Appendix A - Available data for the Brantas Basin 31
A.1 The measured parameters per agencie . . . . . . . . . . . . . . . . . . . . . . . . 31
A.2 Creating the (Sub-)Basins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
A.3 ESRI Landover . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
A.4 Globcover landcover . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

Appendix B - Results 37
B.1 EPA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

A.1.1. ESRI Land cover map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
B.1.1. GlobCover Land cover map . . . . . . . . . . . . . . . . . . . . . . . . . . 43

B.2 BBWS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
B.2.1. ESRI Land cover map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
B.2.2. GlobCover Land cover map . . . . . . . . . . . . . . . . . . . . . . . . . . 53

viii



List of Figures

2.1 Map of the Brantas, based on data from WorldBank (2021) . . . . . . . . . . . . 4
2.2 Two different land cover maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3.1 Water quality measurement locations of the three main agencies in the Brantas
river basin. (Willard, 2022) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3.2 The Brantas River main channel and its corresponding buffers . . . . . . . . . . 12

4.1 The Brantas Basin based on DEM with a resolution of 8 by 8 meters. . . . . . . 14
4.2 The sub-basins based on the 11 measurement points of EPA . . . . . . . . . . . 15
4.3 Results ESRI EPA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.4 Results Glob EPA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.5 The sub-basins based on the 16 measurement points of BBWS . . . . . . . . . . 17
4.6 Results ESRI BBWS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.7 Results Glob BBWS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

A.1 The different subbasins based on an 8 by 8 meter digital elevation model (DEM) 32
A.2 The ESRI land cover map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
A.3 The GlobCover land cover map . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

B.1 Reading guide for the tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
B.2 The division of the land cover types for the sub-basins of EPA, based on the

ESRI land cover map. The x-axis is the number of the sub-basin . . . . . . . . . 38
B.3 The division of the land cover types for the sub-basins of EPA, based on the

GlobCover land cover map. The x-axis is the number of the sub-basin . . . . . 43
B.4 The division of the land cover types for the sub-basins of BBWS, based on the

ESRI land cover map. The x-axis is the number of the sub-basin . . . . . . . . . 48
B.5 The division of the land cover types for the sub-basins of BBWS, based on the

GlobCover land cover map. The x-axis is the number of the sub-basin . . . . . 53

ix



List of Tables

4.1 The accumulation pattern of BBWS, representing the sub-basins of Fig. 4.5 . . 16
4.2 The results for the EPA measurement points and the ESRI land cover map. . . 18
4.3 The results for the EPA measurement points and the GlobCover land cover map. 19
4.4 The results for the EPA measurement points, the ESRI land cover map and

seasonality added. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.5 The results for the EPA measurement points, the ESRI land cover map, with

seasonality added and simplified land cover classes. . . . . . . . . . . . . . . . 20
4.6 The results for the EPA measurement points, the ESRI land cover map, sea-

sonality added and the sub-basins accumulated. . . . . . . . . . . . . . . . . . . 20
4.7 The results for the EPA measurement points, the ESRI land cover map, sea-

sonality added, the sub-basins accumulated and the 4 km buffer implemented. 21

A.1 The different parameters as measured by the different agencies . . . . . . . . . 31
A.2 Description of the legend as provided by Esri (2022) . . . . . . . . . . . . . . . . 34
A.3 Land cover percentage within the Basin, based on the ESRI land cover map . . 35
A.4 The legend of the GlobCover with the description as provided by Martucci

(2023) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
A.5 Land cover percentage within the Basin, based on the GlobCover land cover

map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

B.1 Results of the MLR, based on the EPA measurement points, the ESRI land
cover map and the entire basin . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

B.2 Results of the MLR, based on the EPA measurement points, ESRI land cover
map and the 4km Buffer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

B.3 Results of the MLR, based on the EPA measurement points, ESRI land cover
map and the 500 m Buffer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

B.4 Results of the MLR, based on the EPA measurement points, ESRI land cover
map and the 100 m Buffer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

B.5 Results of the MLR, based on the EPA measurement points, GlobCoverland
cover map and the entire bassin . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

B.6 Results of the MLR, based on the EPA measurement points, GlobCoverland
cover map and the 4km buffer . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

B.7 Results of the MLR, based on the EPA measurement points, GlobCoverland
cover map and the 500m buffer . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

B.8 Results of the MLR, based on the EPA measurement points, GlobCoverland
cover map and the 100m buffer . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

B.9 Results of the MLR, based on the BBWS measurement points, ESRI land cover
map and the entire basin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

B.10 Results of the MLR, based on the BBWS measurement points, ESRI land cover
map and the 4km buffer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

B.11 Results of the MLR, based on the BBWS measurement points, ESRI land cover
map and the 500m buffer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

x



List of Tables

B.12 Results of the MLR, based on the BBWS measurement points, ESRI land cover
map and the 100m buffer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

B.13 Results of the MLR, based on the BBWS measurement points, GlobCover land
cover map and the entire basin . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

B.14 Results of the MLR, based on the BBWS measurement points, GlobCover land
cover map and the 4km buffer . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

B.15 Results of the MLR, based on the BBWS measurement points, GlobCover land
cover map and the 500m buffer . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

B.16 Results of the MLR, based on the BBWS measurement points, GlobCover land
cover map and the 100m buffer . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

xi



List of Symbols

The next list describes several symbols that will be later used within the body of the docu-
ment

βi The regression coefficients

ϵ The error term, the part of y that the independent variables of y cannot explain

R2 A statistical measure in a regression model that determines the proportion of vari-
ance in the dependent variable that can be explained by the independent variable

p-value Represents the probabilty

xn The independent variables

y The dependent variable

xii



Acronyms

BOD Biochemical Oxygen Demand . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

COD Chemical Oxygen Demand . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

Cr6+ Chromium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

DEM digital elevation model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

DO Dissolved Oxygen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

EC Electrical Conductivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

MLR Multivariate Linear Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

MSP macro-scale parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

MSWQP micro-scale water quality parameters . . . . . . . . . . . . . . . . . . . . . . . . . 1

NH3 Ammonia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

NO2 Nitrite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

NO3 Nitrate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

QGIS Open Source Geographic Information System . . . . . . . . . . . . . . . . . . . . . 7

TDS Total Dissolved Solids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

Temp Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

TP Total Phosphorus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

TSS Total Suspended Solids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

WQI Water Quality Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

xiii



1 Introduction

Water quality is often highly dependent on landscape characteristics. Deforestation for agri-
culture and an increasing population influence macro-scale parameters (MSP) and micro-
scale water quality parameters (MSWQP). The influence of these MSP’s, such as land cover
and population, on MSWQP’s has been analysed in a few studies but not for the Brantas River
in Indonesia (Bostanmaneshrad et al., 2018). The surface water quality is below standards
(Roosmini et al., 2018), and more research needs to be done on the origin of this pollution.
Research that has been done, for example, by Fulazzaky (2009), suggests that water qual-
ity will decrease due to an increase in wastewater production as well as forests and land
degradations resulting from population growth, urbanisation and economic and industrial
developments. It is important to understand the influence of each land use in the basin com-
pared to the water pollution to steer the agencies responsible for water quality towards the
right policies. That is where research on the influence of MSP on the MSWQP can help show
the different contributions of land use on the overall water quality in the Brantas River.

1.1 Multivariate linear regression

Numerous studies, such as those conducted by Chen et al. (2016), Wang et al. (2014), Wang
and Zhang (2018), have explored the potential link between land cover and water qual-
ity using linear regression analysis. Multivariate Linear Regression (MLR) models are a
straightforward and insightful method for investigating these relationships, making them
an outstanding initial choice for gaining insights (Hope, 2020). Additionally, linear regres-
sion offers advantages in terms of computational efficiency, making it well-suited for smaller
datasets and quick analyses. MLR models are transparent, providing clear visibility into the
variables and coefficients integrated into the model. This transparency is valuable for iden-
tifying significant predictors and understanding their contributions to the outcome.

MLR proves effective when working with datasets featuring a limited number of obser-
vations or when the relationship between variables is expected to be relatively uncompli-
cated. Furthermore, MLR can serve as a valuable reference or foundational model compared
to more intricate machine learning algorithms. It establishes a baseline against which to
evaluate whether advanced models deliver substantial enhancements over a simple linear
regression approach.

1.2 Multivariate linear regression in the Brantas

The Indonesian government aims to enhance water quality in the Brantas River. In pursuit
of this goal, they need insight into the contribution of different pollution sources. While MLR
is a known model, it should be noted that it does not automatically generate trustworthy
results. Consequently, several tests and a critical evaluation are needed. Nonetheless, the
MLR model for this purpose holds significance, as it offers a cost-effective and straightfor-
ward approach compared to the complexities of more elaborate Water Quality Index (WQI)
models.

1



1 Introduction

1.3 The objective

Hence, this research aims to test whether the water quality can be predicted by using a
MLR model, by using MSP as independent variables and MSWQP as the dependent variable.
A successful modelling of this relationship will generate valuable insights into the sources
of pollution and their respective magnitudes. A helpful aspect of regression modelling
for this purpose is its cost-effectiveness and relative simplicity, especially compared to the
elaborateness of more complex WQI models.

1.4 Report set up

The report is set up as follows. In chapter 2, a more elaborate description of the study area
will be given. In chapter 3, the methodology is described. In chapter 4, the results of the
geographical analysis and the regression models are described. Chapter 5 evaluates and dis-
cusses the interesting findings. This is then followed by chapter 6 in which the conclusions
are documented.

Please ignore this piece of text as for some unknown reason some of the citations in chapter
2 only show up when used in the introduction. References that otherwise don’t show up:
(Mariyanto et al., 2019) (Blais, 2022) (Fujimoto, 2013) (Marini and Weilguni, 2003) (Arum
et al., 2019) Houser et al. (2022) (Statistik, 2009) (Pak et al., 2021)
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2 Study Area

This chapter aims to present the Brantas River Basin and its characteristics regarding water
quality. Section 2.1 gives insight into the Brantas River and its relationship to water quality,
including its climate. Section 2.2 describes the different agencies that monitor the water
quality of the Brantas River. The last section gives an spatial analysis of the Brantas River
basin.

2.1 The study area of the Brantas River

The Brantas hydrographic basin is situated in East Java, Indonesia. Stretching 320 kilome-
tres, the Brantas River ranks as the second-longest river in East Java, draining an expan-
sive area exceeding 11,000 square kilometres. Its primary water source originates from the
Mount Arjuno water deposits, feeding its flow clockwise direction as depicted in Figure 2.1.
(Mariyanto et al., 2019)

The upstream region is characterized by deforestation to make way for agriculture, which
provides income but brings about issues such as erosion and a declining groundwater level.
The downstream area faces water scarcity challenges, while businesses in this region rely on
water originating from upstream sources. Managing water resources and maintaining water
quality are key concerns for upstream and downstream communities to ensure economic
growth and a high quality of life. (Blais, 2022)

A water quality assessment shows that the Brantas River has been classified as lightly and
moderately polluted. The parameters that exceeded acceptable levels, listed from the most
to the least, include Total Suspended Solids (TSS), Dissolved Oxygen (DO), Chromium (Cr6+),
Total Dissolved Solids (TDS), and pH. These pollution issues are primarily attributed to
wastewater and solid waste discharge from domestic sources and industries.(Roosmini et al.
(2018); Arum et al. (2019); Marini and Weilguni (2003))

2.1.1 Seasonality and Climate

The region is in a predominantly tropical monsoon climate, characterized by March as the
wettest month and August as the driest (Fujimoto, 2013). Annually, the area receives a pre-
cipitation range of 1100 to 3600 mm, with approximately 80 percent of this rainfall occurring
during the monsoon season, which typically extends from November to March.

2.2 Water sampling and analysis

2.2.1 Water quality monitoring

Different agencies are monitoring the water quality of the Brantas. Amongst the different
agencies, three key agencies measure constantly. The first of these three is Dinas Lingkungan
Hidup Provinsi Jawa Timur (Environmental Protection Agency of East Java) or EPA. The
second one is Balai Besar Wilayah Sungai Brantas (BBWS), or Grand Office of the Brantas
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2 Study Area

Figure 2.1: Map of the Brantas, based on data from WorldBank (2021)

River Basin. The third is Perum Jasa Tirta I (Water Service Company 1) or PJT 1. All three
have different goals and focuses. Willard (2022) describes the agencies as follows.

EPA has three main goals: control pollution, increase waste management services and in-
crease the river’s water quality. EPA does have the authority to enforce pollution standards,
but the actual enforcement is relatively weak.

The main focus of BBWS is mostly on policies regarding water resources for both quantity
and quality. However, the goals for water quality are unclear, and its main target to improve
water quality throughout the Brantas River has no testable goals.

PJT 1 is a state-owned company that manages water resources in the Brantas. The primary
responsibility is water allocation and maintenance of the water infrastructure. Furthermore,
PJT 1 is directly involved in providing water supply services to both utilities and industries.
However, this means significant expenses as it involves treating contaminated water to meet
quality standards.

The three agencies are directly influenced by terrible water quality as they have to ensure
that it is of good enough quality for industries and drinking water companies. Simultane-
ously, they possess limited authority and influence to improve water quality. While BBWS
Brantas and PJT1 provide most water resource management functions related to develop-
ment, utilization, irrigation, and flood control, their involvement in water quality control
is relatively secondary. Provincial and municipal agencies provide many functions of wa-
ter quality management, including water pollution control, spatial planning, development
of wastewater treatment facilities and sanitation services, and solid waste management.
(Houser et al., 2022)
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(a) Globecover landcover map (b) ESRI landcover map

Figure 2.2: Two different land cover maps

2.2.2 Water quality sampling

The three agencies measure in different parts of the Brantas and use different units for the
same parameters. Table A.1 in Appendix A shows an overview of the different parameters.
It should also be noted that the interval they measure is different. EPA measures monthly,
BBWS quarterly and PJT also monthly. Willard (2022) ordered the agencies’ data for his
thesis, and the same data will be used for this research.

2.3 Spatial analysis

In 2004, East Java could be classified as densely populated, boasting a population density
ranging from 500 to 1000 individuals per square kilometre (Statistik, 2009). When examining
land cover maps, this high population density might not always be apparent. Figure 2.2
provides a comparison between two datasets: Figure 2.2 presents the Globcover dataset,
illustrating the land cover for the year 2005 (Martucci, 2023). Figure 2.2bdisplays the ESRI
land cover dataset, showcasing the land cover information for the year 2017 (Esri, 2022).
A more detailed description can be found in Appendix 6.2 for both landcover maps. Both
figures use the colour red to indicate urban areas. However, there is a notable contrast
between the two datasets regarding urban coverage. In Figure 2.2a, urban areas occupy
only 1 percent of the total area, whereas, in Figure 2.2b, they cover a significantly larger
percentage, accounting for 25 percent of the landscape. In Chapter 4, this will be examined
further as to where this difference comes from and how it could influence the results.
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This chapter aims to present the methodology used to analyze the data of the Brantas River
in Indonesia to disclose if using multivariate linear regression is a good way of predicting
water quality based on macro-scale parameters. Section 3.1 gives a brief explanation into
using MLR for this study. The next section elaborates on the chosen parameters for the
model. The last step before starting the model is mapping the land cover data. With the
input clarified, section 3.4 describes how the model is constructed. Ìn the next section it is
shown how the results are validated, after which the method for evaluating the results is
shown. The last step in this chapter is to describe how the results are further optimized.

3.1 Using multivariate linear regression

Multivariate linear regression (MLR) is a statistical technique for modelling the relationship
between multiple independent variables and a single dependent variable. It is an extension
of simple linear regression, which deals with the relationship between two variables. In
multivariate linear regression, the goal is to find a linear equation that best describes the
relationship between the independent and dependent variables. For this research, the de-
pendent variable is the micro-scale water quality parameter, and the independent variables
are the macro-scale land cover parameters.

To do this for a river basin in which the dependent variable is measured at different points
along the river, it is essential to delineate the sub-basins. Sub-basin delineation involves
dividing the entire river basin into smaller, manageable sub-basins based on how rainfall
would runoff into the river. The heterogeneity can be captured in both the micro-scale water
quality and macro-scale land cover parameters by breaking down the river basin into sub-
basins. This allows for a more precise analysis, as it recognizes that different parts of the
basin may have unique characteristics that affect water quality differently. Water quality
parameters may vary significantly along the length of a river due to various factors like
urbanization, industrial activities, or natural landscape. Sub-basin delineation helps account
for this spatial variation by segmenting the river into distinct sections. This ensures that the
relationships between land cover and water quality are appropriately assessed within each
sub-basin, considering local variations.

3.2 Choosing the water quality parameters

The three different agencies have measured different parameters in the past 15 years (see
table in Appendix 6.2). Therefore, a lot of different data for different parameters is available.
However, not all of these are measured consistently. Therefore, the same procedure for
selecting the parameters was followed as described by Willard (2022) in his report.

6



3 Method

The parameters that are considered for MLR model are:

• Temperature (Temp)

• Electrical Conductivity (EC)

• Dissolved Oxygen (DO)

• Total Suspended Solids (TSS)

• Biochemical Oxygen Demand (BOD)

• Chemical Oxygen Demand (COD)

• Ammonia (NH3)

• Nitrite (NO2)

• Nitrate (NO3)

• Total Phosphorus (TP)

Generating satisfactory results with Multiple Linear Regression (MLR) proved more chal-
lenging than initially expected. It was therefore decided to streamline the approach by
focusing solely on one key water quality parameter: Dissolved Oxygen (DO).

The choice for DO has several reasons. Firstly, it is a parameter for which data is consis-
tently available from all three agencies, spanning multiple years of measurements. Secondly,
Dissolved Oxygen levels can serve as an indicator of pollution linked to land cover and us-
age. For instance, reduced DO levels can be attributed to factors such as sewage (associated
with urban landscapes) and agricultural runoff (Fitri et al., 2021).

3.3 Mapping the land cover data

3.3.1 Creating the (sub-)basins in the Brantas catchment

The MSPs are provided using different land cover maps in QGIS. For the land cover to be
analysed and used in the MLR model, it must be divided into smaller subbasins within
the Brantas Basin. First, the Brantas basin must be recreated based on a DEM to create the
subbasins. This is done using Open Source Geographic Information System (QGIS) and the
PCRaster tool following the instructions provided by van der Kwast et al. (2022).

The three agencies in this study have distinct measurement points, which are visually
represented in Figure 3.1. As this study is an experimental setup, the approach involves
examining each agency’s data separately. The sub-basins have been delineated based on the
measurement points and the DEM to facilitate this analysis. This means that if a water droplet
descends and travels over the terrain, it will eventually reach the nearest measurement point,
thus defining the boundaries of these sub-basins.

3.3.2 Analysing the geographical data focusing on land-use

Two maps are used within the QGIS software to analyse the complete land cover. These maps
enable the visualization of land-use data within the Brantas catchment area. Subsequently,
the area for each specific land cover type is calculated, measured in square kilometres. This
analysis is performed individually for each sub-basin, allowing a better understanding of
land cover distribution within distinct catchment regions.
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Figure 3.1: Water quality measurement locations of the three main agencies in the Brantas
river basin. (Willard, 2022)

3.4 Setting up the multivariate linear regression model

Having completed the analysis of macro-scale parameters, the attention now turns to micro-
scale parameters and their interactions with the MSP, using the multivariate linear regression
model. The fundamental equation for Multivariate Linear Regression is expressed as follows
(Holder, 1985):

y = β0 + β1x1 + β2x2 + ... + βnxn + ϵi (3.1)

where:

• y is the dependent variable (the variable that is being predicted or explained)

• x1, x2, ..., xn are the independent variables (the independent variables that are used to
predict the value

• β1, β2, ..., βi are the regression coefficients (the parameters that determine the slope of
the regression line)

• ϵ is the error term (the part of y that cannot be explained by the independent variables)
of y)
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The standard error is a fundamental concept that quantifies the uncertainty and is calcu-
lated is depicted as:

ϵ =

√
∑n

i=1(yi − ŷi)2

n − p
(3.2)

In this equation:

• ϵ represents the standard error of the regression.

• n is the number of observations.

• p is the number of predictors (independent variables) in the model.

• yi is the actual observed value for the i-th observation.

• ŷi is the predicted value for the i-th observation based on the regression model.

3.5 Validating the results

To validate the results, looking at the t-statistics, probability and R-squared is interesting. By
examining and interpreting these measures, insight can be gained into the statistical signifi-
cance of individual macro-scale parameters and the overall fit of the model. These validation
techniques help ensure that the regression model provides meaningful and reliable insights
into the relationship between the macro-scale and micro-scale parameters.

3.5.1 T-statistics

T-statistics are used in hypothesis testing to assess whether the coefficients of the predictor
variables are significantly different from zero. The formula for the t-statistic is:

t =
Coefficient

Standard Error of Coefficient
(3.3)

A higher absolute value of the t-statistic indicates greater evidence against the null hy-
pothesis (that the coefficient is zero), suggesting a more significant impact of the coefficient
on the water quality parameter.

3.5.2 Probability

Probability values, often called p-values, are used to determine the statistical significance
of the coefficients of the macro-scale parameters in the regression model. Each coefficient
represents the relationship between the independent (land cover) and the dependent (water
quality) parameters. A low p-value (typically less than 0.05) indicates that the relationship
between the dependent and independent parameters is statistically significant. A low p-
value indicates a high statistical confidence in the relationship between the dependent and
independent variables. It means the probability that the observed relationship between a
given independent variable and the dependent variable is not only a random chance. In
other words, a low p-value suggests a strong likelihood that there is indeed a meaningful
and non-random connection between the independent and dependent variables. This is the
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probability that any given independent variable does not correlate. A low p indicates a high
probability that there is a relationship between the independent and dependent variables.

p-value = P(|T| > |tobserved|) = 2 · P(T > |tobserved|) (3.4)

Where:

• p-value represents the probability.

• T is a t-distributed random variable.

• tobserved is the observed t-statistic associated with the coefficient.

3.5.3 R-squared and adjusted R-squared

R-squared is a measure that indicates the proportion of the variance in the response variable
that is explained by the independent parameters of the model. It ranges between 0 and 1. An
R-squared value closer to 1 indicates that the independent parameters account for a more
significant proportion of the variability in the dependent parameter. However, R-squared
doesn’t consider the number of predictor variables, which can lead to overfitting.

R2 = 1 − SSR
SST

(3.5)

Where:

• SSR is the sum of squared residuals

• SST is the total sum of squares

Adjusted R-squared addresses the limitation of the standard R-squared by considering the
number of predictor variables in the model. It penalizes the addition of unnecessary pre-
dictor variables that might not contribute much to explaining the variance in the response.
Adjusted R-squared provides a more balanced evaluation of model fit, helping to prevent
overfitting. It is calculated using the following formula:

Adjusted R-squared = 1 − (n − 1)
(n − p)

× (1 − R2) (3.6)

Where:

• n is the number of observations.

• p is the number of predictor variables.

• R2 is the regular R-squared value.
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3.6 Evaluating the results

The multivariate linear regression (MLR) model is optimized using the backward elimina-
tion method, where parameters with the highest p-values are iteratively removed until all
remaining parameters have p-values below 0.05, signifying their significance. Subsequently,
an evaluation is conducted by considering the impact of the buffer, aggregating macro-scale
parameters, and assessing the influence of seasonality. This step is repeated after every step
following the MLR.

3.7 Optimizing the results

Four additional steps are incorporated into the multivariate linear regression model to try
and optimise the results. These improvements aim to account for the Brantas basin’s unique
characteristics and improve the prediction accuracy.

3.7.1 Implementing seasonality

Firstly, incorporating Seasonality, given that the Brantas basin experiences a tropical climate
with distinct dry and monsoon seasons, seasonality is included as a factor in the model.
The weather likely influences the water quality since the Brantas is in a tropical climate
with a monsoon season. Research has shown that land use influence on water quality was
greater during the wet season (Pak et al., 2021). The monsoon season in the Brantas basin is
from November until March. The model incorporates the monsoon season by categorizing
measurements during the monsoon season as ’1’ and those taken in the dry season as ’0’.

3.7.2 Simplifying the land cover classes

Secondly, simplifying land cover categories will streamline the model and improve efficiency.
Various land cover types are categorized into three broader categories: Natural Vegetation,
Agricultural Landscape, and Urban Landscape. This simplification might help to reduce the
complexity while retaining the essential characteristics of land use within the basin. The
Urban Landscape was just the urban/built area category for both land cover maps. For
the ESRI land cover map, the Natural Vegetation is the summation of Trees, Bare ground,
Clouds and Rangeland. The Agricultural landscape is the summation of Flooded vegetation
and Crops. For the GlobCover land cover map, the Natural Vegetation is the summation of
Mosaic Vegetation, Semi Forest, Shrubland, and Forest. The Agricultural Landscape is the
summation of Irrigated Cropland, Rainfed Cropland, and Mosaic Cropland.

3.7.3 Accumulating the sub-basins

Next, accumulating basin land cover types, instead of only looking at the sub-basin con-
nected to the measurement point, all the upstream sub-basins are accumulated into one
bigger sub-basin for that specific measurement point.
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3.7.4 Generating the buffer area

Lastly, because not all precipitation within a sub-basin runs off to the river, the entire (sub)-
basin is unlikely to influence the water quality. As the focus of this research is to see if a
simple multivariate linear regression model can be used to predict water quality, the choice
was made to generate a buffer around the river based on three different scales since the
impact of land cover patterns and water quality differs on different spatial scales. The scale
with the most significant impact on the river water quality is still a controversial issue (Peng
and Li, 2021). For example, (Wang et al., 2017) found that the surface landscape pattern
of the 4 km buffer zone has a solid descriptive ability for regional water quality in Aibi
Lake, Xinjiang. However, the 100 m buffer zone is often considered the scale with the most
significant impact on water quality (Huang et al., 2011). For this experiment, three distinct
buffer area scales are selected: 4 kilometres, 500 meters and 100 meters. The 4 kilometres
and 100 meters were determined based on the research. The 500-meter is an intermediary
scale between the 4-kilometre and 100-meter buffers.

The buffer was created around the main channel. This can be seen in Fig. 3.2. Using
the main channel as the basis for the buffer results in the loss of the two most upstream
measurement points for both EPA and BBWS, as will later be shown in Chapter 4.3.

Figure 3.2: The Brantas River main channel and its corresponding buffers
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The research result of the method described in chapter 3 will be displayed and explained in
this chapter. First, the selection of the water quality parameter will be presented in section
4.1 The outcome of mapping land cover using QGIS will then be presented in section 4.2.
This will be followed by section 4.3 in which the creation of the sub-basins will be presented,
followed by the accumulation of the sub-basins. Lastly section 4.4 presents the results of the
multivariate linear regression model, including the results of the optimization steps.

4.1 Water quality parameter

As mentioned before, generating satisfactory results with Multiple Linear Regression (MLR)
proved more challenging than initially expected. It was therefore decided to streamline
the approach by focusing solely on one key micro-scale water quality parameter: Dissolved
Oxygen (DO). Therefore, the dependent variable in all results mentioned below always
remains DO.

4.2 Land cover maps

The two different landcover maps were introduced in section 2.3. The multivariate linear
regression model incorporates the two distinct land cover maps to see if data input from the
different map make sense. These maps generate the macro-scale parameters.

To briefly recap, the first map is sourced from ESRI (Esri, 2022), while the second is
obtained from GlobCover (Martucci, 2023). The key difference between these maps is the
classification of urban areas: ESRI’s land cover classification designates approximately 25
percent of the region as urban, whereas GlobCover assigns only 1 percent of the Basin as an
urban landscape. Appendix A.3 and A.4 have more details about the two maps.

Several factors contribute to this difference. Firstly, the data was collected 13 years apart,
which can account for changes in urbanization. Secondly, the resolution differs significantly,
with one map at 300 by 300 meters and the other at 10 by 10 meters. The coarser 300 by 300
resolution makes it easier to misclassify areas. Lastly, it remains somewhat unclear when a
region is classified as urban; is it when a structure is present or when a certain percentage
of land is paved? These reasons are not mutually exclusive and may produce the observed
differences.

4.3 The (sub-)basin(s)

Creating a basin and sub-basin is essential to use the landcover data as the basis for macro-
scale parameters. The initial step involves recreating the Brantas Basin, as illustrated in
Figure 2.1. This requires using a DEM, which is then employed to delineate the basin and its
main river network, determined by the Strahler Order.
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Numerous attempts were made with different DEM’s, but it proved impossible to generate
the complete basin. The most satisfactory outcome can be observed in Figure 4.1. This
representation is based on a DEM provided by Prof. O. Hoes, with a resolution of 8 by 8
meters. Consequently, the bifurcation of the river is not depicted, and data from Surabaya
and measurements taken in Surabaya locations are not integrated into the MLR model.

Figure 4.1: The Brantas Basin based on DEM with a resolution of 8 by 8 meters.

4.3.1 The sub-basins based on PJT measurement points

In the basin illustrated in Figure 4.1, the agency PJT has only three measurement points
available. Given that the precision of the MLR model depends on the quantity of input data,
the information from this agency is excluded from the scope of this research.

4.3.2 The sub-basins based on EPA measurement points

The EPA has collected data on DO from 11 measurement points, corresponding to the defined
basins as illustrated in Figure 4.2.

In Figures 4.2a and 4.3a, the distribution of the macro-scale parameter within these basins
can be observed. The four most dominant land cover types are range, built area, crops and
trees for the ESRI land cover map. The GlobCover land cover map’s biggest contributors are
shrubland, semi forest, mosaic cropland and rainfed cropland.
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Figure 4.2: The sub-basins based on the 11 measurement points of EPA

(a) ESRI not accumulated (b) ESRI Accumulated

Figure 4.3: Results ESRI EPA

(a) Glob not accumulated (b) Glob Accumulated

Figure 4.4: Results Glob EPA
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4.3.3 The sub-basins based on BBWS measurement points

The BBWS has collected data on DO from 16 measurement points, which correspond to the
defined Basins as illustrated in Figure 4.5.

In Figures 4.5a and 4.6a, the distribution of the macro-scale parameter within these basins
can be observed. The same as for the EPA measurement points, the four most dominant land
cover types are range, built area, crops and trees for the ESRI land cover map. The Glob-
Cover land cover map’s biggest contributors are shrubland, semi forest, mosaic cropland
and rainfed cropland.

4.3.4 Accumulating the sub-basins

The data from the subbasins is used in two different ways. From here on, the first is purely
looking at the land cover within the subbasin, called the not accumulated data. In the second
one, the land cover is accumulated. In the context of the EPA and BBWS, the accumulation
of sub-basins occurs in a downstream manner. For EPA the sub-basins are numbered from
one, representing the most upstream basin, to eleven, which signifies the most downstream
basin. Sub-basin eleven is the cumulative sum of sub-basins one through eleven. BBWS
follows a different accumulation pattern, see table 4.1. This is because BBWS measures
before confluences, and EPA does not. This is one of the optimizations mentioned in section
3.7. The result of this accumulation is illustrated in Figures 4.2b, 4.3b, 4.5b and 4.6b. For both
agencies and both land cover maps, this results in smaller differences between the subbasins.

Table 4.1: The accumulation pattern of BBWS, representing the sub-basins of Fig. 4.5
Basin number Accumulation pattern
1 1
2 1-2
3 1-2-3
4 1-2-3-4
5 1-2-3-4-5
6 6
7 1-2-3-4-5-6-7
8 1-2-3-4-5-6-7-8
9 1-2-3-4-5-6-7-8-9
10 1-2-3-4-5-6-7-8-9-10
11 1-2-3-4-5-6-7-8-9-10-11-15
12 1-2-3-4-5-6-7-8-9-10-11-12-15
13 1-2-3-4-5-6-7-8-9-10-11-12-14-15
14 14
15 15
16 1-2-3-4-5-6-7-8-9-10-11-12-13-14-15-16
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Figure 4.5: The sub-basins based on the 16 measurement points of BBWS

(a) ESRI not accumulated (b) ESRI Accumulated

Figure 4.6: Results ESRI BBWS

(a) Glob not accumulated (b) Glob Accumulated

Figure 4.7: Results Glob BBWS
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4.3.5 The buffer area

The buffer is generated as mentioned in section 3.7.4. To recap, there are three distinct
buffer area scales: 4 kilometres, 500 meters and 100 meters. However, because of the many
tributaries, the choice was made to increase the Strahler order and focus more on the main
channel. This makes the 4 km buffer effective because otherwise, it would still cover almost
all of the basin. This resulted, however, in the two most upstream measurement points from
both agencies being eliminated.

The same land cover distribution figures as mentioned above are also generated for the
different buffer areas, land cover maps, and the accumulated and not accumulated basins for
both agencies. The corresponding Figures B.2, B.3, B.4 and B.5 can be found in Appendix B.
These visualizations provide insights into the entire basin and different buffer areas within
the basins and the distribution of the macro-scale parameters.

4.4 Multivariate linear regression model

The presentation of this experimental research results follows best practices, where the weak-
est or least favourable results were excluded. However, it’s important to note that no data
was removed or eliminated at any analysis stage for a comprehensive comparison. All re-
sults, including those not mentioned below, can be found in Appendix B and are available
for reference and comparison. In all the tables below, NS stands for not significant.

4.4.1 The first run

After running the first MLR model, four results were compiled on the two available land
cover maps and the two different agencies. Two results were acceptable after validating the
results by looking at R-squared and the probability, and these are the models connected to
the EPA measurement points; see tables 4.2 and 4.3. The other two results had an R-squared
so low that these independent variables could not explain the dependent variable. Both
models had the input data for the dependent variables from BBWS.

Table 4.2: The results for the EPA measurement points and the ESRI land cover map.
R-squared 0.3491 n = 396
Adjusted R-squared 0.3408

Variable Coefficient Std. Error t-Stastic Probability
CONSTANT 7.49 0.10 75.99 <0.01
Water -0.18 0.01 -12.49 <0.01
Trees 0.00 0.00 -6.80 <0.01
Flooded Vegetation 4.35 0.40 10.95 <0.01
Crops NS
Built NS
Bare 2.10 0.28 7.55 <0.01
Clouds 0.25 0.04 6.61 <0.01
Range NS
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Table 4.3: The results for the EPA measurement points and the GlobCover land cover map.
R-squared 0.3423 n = 396
Adjusted R-squared 0.3304

Variable Coefficient Std. Error t-Stastic Probability
CONSTANT 7.90 0.13 59.10 <0.01
Irrigated Cropland -2.41 0.25 -9.48 <0.01
Rainfed Cropland -0.01 0.00 -2.57 <0.05
Mosaic Cropland 0.01 0.00 5.54 <0.01
Mosaic Vegetation -0.09 0.04 -2.45 <0.05
Semi Forest -0.02 0.00 -7.05 <0.01
Shrubland NS
Forest 2.45 0.35 6.97 <0.01
Urban 0.14 0.02 6.80 <0.01
Water Bodies

4.4.2 Adding seasonality

The first optimisation step is applied to improve the MLR results, adding seasonality to
the model. This improves the R-squared of all four of the initial results. Again, the most
promising results were for the EPA measurement points. The ESRI landcover map had again
the highest r-squared. This result can be found in table 4.4.

Table 4.4: The results for the EPA measurement points, the ESRI land cover map and season-
ality added.

R-squared 0.3604 n=396
Adjusted R-squared 0.3505

Variable Coefficient Std. Error t-Stastic Probability
CONSTANT 7.62 0.11 70.33 <0.01
Seasonality -0.29 0.11 -2.61 <0.01
Water -0.18 0.01 -12.58 <0.01
Trees 0.00 0.00 -6.85 <0.01
Flooded Vegetation 4.35 0.39 11.03 <0.01
Crops NS
Built NS
Bare 2.10 0.28 7.60 <0.01
Clouds 0.25 0.04 6.66 <0.01
Range NS
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4.4.3 Simplifying the land cover classes

The eight results generated in the previous steps are again trying to be optimized by simpli-
fying the land cover classes. This did not generate satisfactory results. It always decreased
the r-squared significantly. When keeping the same conditions as in table 4.4, the results are
as follows, see table 4.5

Table 4.5: The results for the EPA measurement points, the ESRI land cover map, with sea-
sonality added and simplified land cover classes.

R-squared 0.0468 n = 396
Adjusted R-squared 0.0396

Variable Coefficient Std. Error t-Stastic Probability
CONSTANT 6.67 0.11 59.51 <0.01
Seasonality -0.29 0.14 -2.15 <0.05
Natural Vegetation 0.00 0.00 -3.13 <0.01
Argriculturale Landscape 0.00 0.00 3.76 <0.01
Urban Landscape NS

4.4.4 Accumulating the sub-basins

Accumulating the area of sub-basins for further optimization does not significantly improve
R-squared, but it does make more macro scale parameters significant. This can be seen
across almost all results that use the input from EPA for the dependent variable. When
keeping the same conditions as in table 4.4, the results are as follows, see table 4.6

Table 4.6: The results for the EPA measurement points, the ESRI land cover map, seasonality
added and the sub-basins accumulated.

R-squared 0.3660 n = 396
Adjusted R-squared 0.3529

Variable Coefficient Std. Error t-Stastic Probability
CONSTANT 8.10 0.17 48.14 <0.01
Seasonality -0.29 0.11 -2.62 <0.01
Water -0.11 0.02 -6.42 <0.01
Trees -0.01 0.00 -7.62 <0.01
Flooded Vegetation 10.45 1.81 5.76 <0.01
Crops NS
Built 0.00 0.00 2.46 <0.05
Bare 5.22 0.42 12.42 <0.01
Clouds 0.35 0.07 4.67 <0.01
Range -0.02 0.00 -4.20 <0.01
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4.4.5 Implementing the buffer

With the optimizations tested for the best result, the last step in improving the model is
implementing the buffer size. This also slightly improves the R-squared value. The best
result is generated using a 4 km buffer size. When keeping the same conditions as in table
4.6, the results are as follows, see table 4.7

Table 4.7: The results for the EPA measurement points, the ESRI land cover map, seasonality
added, the sub-basins accumulated and the 4 km buffer implemented.

R-squared 0.3776 n = 324
Adjusted R-squared 0.3618

Variable Coefficient Std. Error t-Stastic Probability
CONSTANT 5.63 0.23 24.81 <0.01
Seasonality -0.33 0.12 -2.68 <0.01
Water -0.34 0.03 -10.38 <0.01
Trees -0.09 0.01 -6.03 <0.01
Flooded Vegetation -12.43 3.39 -3.67 <0.01
Crops -0.01 0.00 -5.64 <0.01
Built 0.06 0.01 7.91 <0.01
Bare NS
Clouds -67.33 6.86 -9.82 <0.01
Range 0.29 0.03 8.58 <0.01
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5 Evaluation and Discussion

In this chapter, the aim is to evaluate the different aspects of this study. In section 5.1, the
discussion is started on the value of optimization. Next, in section 5.2, the actual results of
the model are discussed to see if they make sense. Lastly, in section 5.3, the different input
is discussed.

5.1 Assessing the value of the optimization

The results outlined in Chapter 4 do not readily lend themselves to straightforward catego-
rization as good or bad outcomes. This ambiguity complicates whether employing Multi-
variate Linear Regression for predicting Dissolved Oxygen (DO) using macro-scale parame-
ters is feasible. If this were a straightforward task, substantial resources wouldn’t be invested
in developing more complex models. Therefore, assessing the methodology used and ex-
ploring options for enhancement is required.

5.1.1 Seasonality

Seasonality consistently positively influences the model, as indicated by its ability to improve
its fit, resulting in an improved R-squared value. The monsoon season consistently has a
negative impact on Dissolved Oxygen (DO). This negative effect can be attributed to the
monsoon season leading to an increased runoff, elevating the levels of suspended solids in
the water. This increase in suspended solids tends to decrease the concentration of DO in
the water (Fitri et al., 2021). To further enhance the accuracy of utilizing seasonal influence,
it is advised to incorporate additional variables such as discharge and/or rainfall into the
analysis.

5.1.2 Combining land cover

The initial idea behind combining the landcover classes into broader categories was to poten-
tially mitigate the influence of small, specific classes that might disproportionately affect the
results. The hope was that doing so would reduce overestimations of these smaller classes
and, in turn, provide more accurate estimates for the larger, more general classes, effectively
reducing noise in the analysis. However, this approach did not yield the expected results. It
led to a significantly lower R-squared value than more detailed models.

This outcome suggests that the more detailed distinctions provided by the specific land-
cover classes are important for capturing the nuances in the relationship between land cover
and DO. Therefore, the detailed classification of landcover classes appears crucial for a more
accurate representation of the underlying dynamics in your analysis. This, in turn, shows
the importance of the land cover data input.
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5 Evaluation and Discussion

5.1.3 Accumulation

The research conducted by Bostanmaneshrad et al. (2018) also uses the accumulation of
basins, similar to the approach taken in the study. However, their paper lacks a clear ex-
planation for the motivation behind the methodology. In this study, however, the same
approach was chosen because of the interconnectedness of a river, where factors upstream
can influence downstream parameters. The results indicate that while the accumulation of
basins does not significantly improve the R-squared value, it does render several macro-
scale parameters statistically significant. This suggests that including this method in the
MLR model represents a useful step towards optimization.

5.1.4 Buffer size

For this specific area, the 4 km buffer stands out as a strong choice. Higher R-squared
values indicate that it consistently outperforms the 500-meter and 100-meter buffers in most
models. However, it’s worth noting that the model coefficients showed unexpected and
unusable magnitudes when using the smaller buffer sizes (500 meters and 100 meters). This
suggests that using a buffer area is a good step in optimizing the MLR model. This is also
suggested by Wang et al. (2017).

5.2 Assessing the realism of the results

Even though the steps above optimize the results in terms of R-squared, most of the results
reveal a lack of consistency, with most parameter coefficients consistently showing a negative
impact on DO. Occasional instances of parameters exhibiting a positive impact appear almost
randomly. Given this inconsistency, it is reasonable to question the realism of these results.

Interestingly, most models indicate that natural vegetation has a negative effect, which
seems counterintuitive given that natural vegetation should, according to other research,
positively influence DO (Shi et al., 2017). This observation raises questions about the authen-
ticity of the natural vegetation in this context.

Similarly, the influence of different land cover parameters seems to exhibit variability
across various models. For instance, urban areas demonstrate a positive effect in some
models, while in others, it appears negative. This variability poses challenges when arriving
at definitive conclusions and comparing different models’ outcomes.

5.3 Assessing the input

The lower R-squared values and the variability in coefficients mentioned above might in-
dicate that the model’s effectiveness is in question, even though some improvements are
observed through optimization efforts. It is crucial to analyse the input variables to critically
evaluate these results, as garbage in could lead to garbage out.
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5 Evaluation and Discussion

5.3.1 Water quality parameters

The choice for Dissolved Oxygen (DO) was made because it is a good indication of water
quality. However, based on the results, DO can not simply be explained by only land cover.
In other research, water temperature and pH were identified as the primary predictors of
DO. (Ahmed and Lin (2021); Ouma et al. (2020)) Notably, upstream water temperatures
typically tend to be cooler than downstream. Given that higher temperatures are associated
with lower DO levels, it is reasonable that the temperature variations might influence the
observed negative correlations with land cover parameters. This shows that using more than
just macro-scale parameters for the model could eliminate much uncertainty in the results.

5.3.2 Land cover data

The ESRI land cover map is a better fit for these models than the GlobCover land cover
map, with, for most models, a higher R-squared and adjusted R-squared. It is unexpected as
the Globcover is timewise closer to the data. This might be explained by the lack of data on
population density, as in the thirteen years between the two land cover maps, the population
has increased at a different rate compared to the urban areas. This addition has the potential
to yield improved results and a more comprehensive understanding of the factors affecting
water quality, as is done in a similar study by Bostanmaneshrad et al. (2018)

It is worth noting that the ESRI land cover map provides yearly updated maps from
2017 onward. Therefore, if more recent water quality data becomes available in the future,
it could be intriguing to incorporate yearly changing land cover data into the analysis to
capture potential temporal variations.

5.3.3 Number of observations

In contrast to many other studies, the dataset used in this research has a notably larger
number of observations, over 300 measurements. For instance, Bostanmaneshrad et al. (2018)
worked with only 45 measurements collected from 15 stations over three seasons, while
Wang et al. (2014) based their study on 40 measurements from 20 locations over two months.
Despite the higher number of observations in this research, it is worth noting that some of
these other studies achieved a higher R-squared value.

Notably, when setting up the model for this study, the average measurements per mea-
surement point was used to test the model. This approach yielded results comparable to
studies reporting an R-squared value exceeding 0.9. Consequently, a larger dataset can be
challenging to directly compare the results with those of other studies due to variations in
sample size and methodology, but it also questions the realism of the other studies.

Furthermore, it is important to consider studies Xu et al. (2020), which reported a relatively
lower R-squared value of 0.4 despite having a limited dataset of 76 measurements gathered
from 38 stations over two seasons. This example highlights that more observations do not
necessarily guarantee more reliable or accurate results. Therefore, it is crucial to critically
assess studies with lower observation counts, as the quality of the methodology and data
collection processes may play a significant role in interpreting the findings.
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5 Evaluation and Discussion

5.3.4 Measurement points

The EPA measurement points demonstrate a better alignment with the models than the
BBWS measurement points, as shown by the significantly higher R-squared and adjusted
R-squared values. The EPA dataset also tends to yield more statistically significant land
cover parameters in most models.

A notable contributing factor to this difference lies in the geographical distribution of mea-
surement locations between the upstream and downstream sub-basins. In the downstream
sub-basins based on BBWS measurement points, there are noticeable differences in the size
and characteristics of the basins compared to the upstream sub-basins. This variation in-
creases the influence of specific land cover types in the downstream regions, potentially
explaining the consistently lower R-squared values observed for BBWS data across all the
models.

5.3.5 Data input

The likely reason for the observed differences between the EPA and BBWS measurements
could be the quarterly measurement schedule followed by BBWS compared to the monthly
schedule followed by EPA. BBWS conducts measurements primarily in February, May, Au-
gust, and November. This sampling strategy may introduce irregularities, particularly in the
November measurements, due to the onset of the monsoon season. The beginning of the
monsoon season can lead to fluctuations in both the timing and intensity of river processes,
potentially affecting the data quality and consistency.

As is the case with all constructed models, it is crucial to recognize that the quality and
quantity of input data substantially influence the model’s outcomes. This principle holds
for the data available for the Brantas River, where variations in measurement frequency and
potential seasonal effects can impact the reliability and robustness of the models.
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6 Conclusion and Recommendation

In this chapter, the key findings of this study on the relationships between macro-scale pa-
rameters (MSP) and micro-scale water quality parameters (MSWQP) in the Brantas River, as
analyzed through a multivariate linear regression model, will be summarized. Additionally,
recommendations will be provided for future research and actions based on the findings.

6.1 Summary of the findings

The research into the Brantas River’s water quality dynamics using multivariate linear re-
gression has yielded several insights. Notably, the following key findings have been identi-
fied:

• Importance of input data: High-quality input data is important, as the principle ”garbage
in, garbage out” holds true. When dealing with micro-scale water quality parameters,
not only the quantity of observations matters, but also the interval between measure-
ments is significant.

• Seasonality as a predictor: Seasonality is a good indicator, but it is proposed to in-
tegrate rainfall data into the model. Precipitation, particularly the amount of rainfall
within a specific timeframe (e.g., daily or weekly preceding the measurement), should
be considered. Rainfall can significantly influence river runoff, potentially increasing
pollution and affecting dissolved oxygen levels.

• Combining macro-scale landcover parameters: Combining macro-scale landcover pa-
rameters does not yield favourable results and is not recommended for use in predic-
tive models

• Accumulation for improved results: The accumulation of sub-basin data can enhance
results, albeit with marginal improvements in R-squared values. However, it notably
enhances the statistical significance of coefficients in nearly all cases.

• Implementing a buffer: Introducing a buffer area is a beneficial addition, leading to
improved R-squared values.

• Dissolved Oxygen (DO) Prediction: Accurate prediction of DO levels based solely on
macro-scale parameters is challenging. However, it is clear that macro-scale parameters
have a significant influence on DO levels.

The objective of this research was to test whether the water quality can be predicted by
using a MLR model, by using MSP as independent variables and MSWQP as the dependent
variable. It can be concluded that relying just on macro-scale parameters is insufficient to
generate an effective linear regression model. However, with the right optimizations and
useful input data, it can be an insightful and valuable tool for water quality prediction.
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6 Conclusion and Recommendation

6.2 Recommendations for future research

Based on the findings of this study, the following recommendations for future research are
proposed:

• Fine-tuned sub-basin analysis: Conduct a more comprehensive analysis of sub-basins,
with a focus on creating sub-basins of comparable size. This avoids overestimating
certain parameters by selecting measurement locations based on the size of the sub-
basin they represent rather than solely relying on available bridges for measurements.

• Precipitation Inclusion: Integrate rainfall data into the analysis, focusing on quantify-
ing the amount of precipitation within defined time intervals. This will provide a more
detailed understanding of the impact of rainfall on water quality, further optimizing
the modelling framework.

• Expanded with micro-scale parameters: Expand the list of independent variables with
micro-scale parameters and run linear regression with micro-scale parameters, includ-
ing pH and temperature measurements, to enrich the model’s capacity to predict DO
levels.

• Population density: To enhance the urban landscape parameter’s accuracy, consider
incorporating population density data instead of only urban landscape. This addition
will account for increased waste production in urban areas and improve the model’s
fit.

These recommendations should guide future research efforts to improve the understand-
ing of the complex relationships between macro-scale parameters and micro-scale water
quality parameters in the Brantas River. Ultimately, this will contribute to more effective
water quality management and conservation initiatives.
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A - Available data for the Brantas Basin

A.1 The measured parameters per agencie

Table A.1: The different parameters as measured by the different agencies
Agencies EPA BBWS PJT
Year 2013 2014 2015 2016 2017 2009 2010 2011 2012-2014 2015-2019 2010-2019
Measurement Points 30 30 0 28 28 12 - 36 36 36 20
Temperature - Y - Y Y Y - Y Y Y Y
pH - Y - Y Y Y - Y Y Y Y
DO Y Y - Y Y Y - Y Y Y Y
COD Y Y - Y Y Y - Y Y Y Y
Turbidity - - - - - - - Y Y Y Y
BOD - Y - Y Y Y - Y Y Y Y
NO3 - Y - Y Y Y - - Y Y Y
NO2 - - - Y Y Y - - Y Y Y
Detergent - Y - Y Y Y - - - - Y
NH3 - Y - Y Y Y - - Y Y Y
Oil and Grease - Y - Y Y Y - - - - Y
Phenol - - - Y Y Y - - - - Y
TP - - - - - Y - - Y Y Y
Fecal Coli Y Y - Y Y Y - Y Y - Y
Total Coli Y Y - Y Y Y - Y Y - Y
Copper - - - - - - - - - - Y
Chromium - - - - - - - - - - Y
TSS Y Y - Y Y Y - Y Y Y Y
TDS - Y - Y Y - - Y Y Y Y
TP Y Y - Y Y - - - - - Y
EC - Y - Y Y - - Y Y Y Y
Free Chlorine - Y - Y Y - - - - - Y
Cyanide - Y - Y Y - - - - - Y
Hydrogen Sulfide - Y - Y Y - - - - - Y
NH4 - - - Y - - - - - - -
Co - - - Y Y - - - - - Y
Cd - - - Y Y - - - - - Y
Cr - - - Y Y Y - - Y - Y
Cu - - - Y Y Y - - Y - Y
Fe - - - Y Y - - - - - Y
Pb - - - Y Y - - - - - Y
Mn - - - Y Y - - - - - Y
Zn - - - Y Y - - - - - Y
Fluoride - - - Y Y - - - - - Y
SO4 - - - Y Y - - - - - Y
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A - Available data for the Brantas Basin

A.2 Creating the (Sub-)Basins

Different attempts to recreate the Brantas Basin as can be found on the world bank website
(WorldBank, 2021) (the pink outline in figure A.1, called Brantas Basin) resulted in different
results but never came close to generating the full Basin. The best result can be seen in Fig.
4.1

Figure A.1: The different subbasins based on an 8 by 8 meter DEM
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A - Available data for the Brantas Basin

A.3 ESRI Landcover

The land cover dataset from ESRI is generated with Impact Observatory’s deep learning AI
land classification model. This dataset, which depicts the year 2017 and has a resolution of
10 by 10 meters. (Esri, 2022). The land cover map can be seen in Fig. A.2. The explanation
of the legend can be found in table A.2

Figure A.2: The ESRI land cover map
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A - Available data for the Brantas Basin

Table A.2: Description of the legend as provided by Esri (2022)
Value Name Description
1 Water Areas where water was predominantly present through-

out the year; may not cover areas with sporadic or
ephemeral water; contains little to no sparse vegetation,
no rock outcrop nor built-up features like docks; exam-
ples: rivers, ponds, lakes, oceans, flooded salt plains.

2 Trees Any significant clustering of tall (∼15 feet or higher)
dense vegetation, typically with a closed or dense
canopy; examples: wooded vegetation, clusters of dense,
tall vegetation within savannas, plantations, swamp or
mangroves (dense/tall vegetation with ephemeral water
or canopy too thick to detect water underneath).

4 Flooded vegetation Areas of any type of vegetation with obvious intermix-
ing of water throughout a majority of the year; season-
ally flooded area that is a mix of grass/shrub/trees/bare
ground; examples: flooded mangroves, emergent vegeta-
tion, rice paddies and other heavily irrigated and inun-
dated agriculture.

5 Crops Human planted/plotted cereals, grasses, and crops not
at tree height; examples: corn, wheat, soy, fallow plots of
structured land.

7 Built Area Human made structures; major road and rail networks;
large homogenous impervious surfaces including park-
ing structures, office buildings and residential housing;
examples: houses, dense villages / towns / cities, paved
roads, asphalt.

8 Bare ground Areas of rock or soil with very sparse to no vegetation
for the entire year; large areas of sand and deserts with
no to little vegetation; examples: exposed rock or soil,
desert and sand dunes, dry salt flats/pans, dried lake
beds, mines.

9 Snow/Ice Large homogenous areas of permanent snow or ice, typ-
ically only in mountain areas or highest latitudes; exam-
ples: glaciers, permanent snowpack, snow fields.

10 Clouds No land cover information due to persistent cloud cover.
11 Rangeland Open areas covered in homogenous grasses with little to

no taller vegetation; wild cereals and grasses with no ob-
vious human plotting (i.e., not a plotted field); examples:
natural meadows and fields with sparse to no tree cover,
open savanna with few to no trees, parks/golf cours-
es/lawns, pastures. Mix of small clusters of plants or sin-
gle plants dispersed on a landscape that shows exposed
soil or rock; scrub-filled clearings within dense forests
that are clearly not taller than trees; examples: moderate
to sparse cover of bushes, shrubs and tufts of grass, sa-
vannas with very sparse grasses, trees or other plants.
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A - Available data for the Brantas Basin

Table A.3: Land cover percentage within the Basin, based on the ESRI land cover map
Legend number Area (kmˆ2) Percentage
1 55.509 0.57
2 3088.78 31.78
4 0.793 0.01
5 3384 34.82
7 2364.064 24.32
8 3.566 0.04
10 18.056 0.19
11 805.121 8.28

A.4 GlobCover landcover

The land cover dataset from GlobCover results from the European Space Agency’s (ESA)
initiative launched in 2004. This dataset, which depicts the year 2005 and has a resolution of
300 by 300 meters, was initially published in 2008. (Martucci, 2023) The land cover map can
be seen in Fig. A.3 the explanation of the legend can be found in table A.4

Figure A.3: The GlobCover land cover map
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A - Available data for the Brantas Basin

Table A.4: The legend of the GlobCover with the description as provided by Martucci (2023)
Number Number Descriptions
11 Post-flooding or irrigated croplands
14 Rainfed croplands
20 Mosaic cropland (50-70%) / vegetation (grassland/shrubland/forest) (20-50%)
30 Mosaic vegetation (grassland/shrubland/forest) (50-70%) / cropland (20-50%)
40 Closed to open (>15%) broadleaved evergreen and/or semi-deciduous forest (>5m)
130 Closed to open (>15%) shrubland (<5m)
160 Closed (>40%) broadleaved forest regularly flooded, fresh water
190 Artificial surfaces and associated areas (Urban areas >50%)
210 Water bodies

Table A.5: Land cover percentage within the Basin, based on the GlobCover land cover map
Legend number Area (kmˆ22) Percentage
11 23.336 0.24
14 1575.159 16.21
20 5125.52 52.73
30 81.213 0.84
40 1558.741 16.04
130 1231.328 12.67
160 5.267 0.05
190 87.601 0.90
210 31.338 0.32
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B - Results

This appendix presents an overview of all the research results. It is divided into four sub-
sections, each focusing on one of the two land cover maps in combination with one of the
sub-basins based on the two agencies. Within each subsection, you will find four tables: one
for the results obtained when considering the entire basin and three additional tables for dif-
ferent buffer areas. Each table contains information on the three optimizations, as illustrated
in Figure B.1. Furthermore, four figures are included to visually depict the changes in land
cover concerning the various buffer zones. Please keep in mind that the two most upstream
measurement points have been excluded from the analysis due to the buffer’s configuration
and can not be found in the figures.

(a) First run (b) Seasonality (c) Simplifying (d) Accumulated

Figure B.1: Reading guide for the tables
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B.1 EPA

B.1.1. ESRI Land cover map

Figure B.2: The division of the land cover types for the sub-basins of EPA, based on the ESRI
land cover map. The x-axis is the number of the sub-basin
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Table B.1: Results of the MLR, based on the EPA measurement points, the ESRI land cover
map and the entire basin

Basin
Not Accumulated Not Accumulated + Seasonality
R-squared 0.3491 R-squared 0.3604
Adjusted R-squared 0.3408 Adjusted R-squared 0.3505

Variable Coefficient Std. Error t-Stastic Probability Variable Coefficient Std. Error t-Stastic Probability
CONSTANT 7.49 0.10 75.99 <0.01 CONSTANT 7.62 0.11 70.33 <0.01
Water -0.18 0.01 -12.49 <0.01 Seasonality -0.29 0.11 -2.61 <0.01
Trees 0.00 0.00 -6.80 <0.01 Water -0.18 0.01 -12.58 <0.01
Flooded Vegetation 4.35 0.40 10.95 <0.01 Trees 0.00 0.00 -6.85 <0.01
Crops NS Flooded Vegetation 4.35 0.39 11.03 <0.01
Built NS Crops NS
Bare 2.10 0.28 7.55 <0.01 Built NS
Clouds 0.25 0.04 6.61 <0.01 Bare 2.10 0.28 7.60 <0.01
Range NS Clouds 0.25 0.04 6.66 <0.01

Range NS

Not Accumulated + Combined Not Accumulated + Combined + Seasonality
R-squared 0.0356 R-squared 0.0468
Adjusted R-squared 0.0307 Adjusted R-squared 0.0396

Variable Coefficient Std. Error t-Stastic Probability Variable Coefficient Std. Error t-Stastic Probability
CONSTANT 6.55 0.10 67.24 <0.01 CONSTANT 6.67 0.11 59.51 <0.01
Natural Vegetation 0.00 0.00 -3.12 <0.01 Seasonality -0.29 0.14 -2.15 <0.05
Argriculturale Landscape 0.00 0.00 3.74 <0.01 Natural Vegetation 0.00 0.00 -3.13 <0.01
Urban Landscape NS Argriculturale Landscape 0.00 0.00 3.76 <0.01

Urban Landscape NS

Accumulated Accumulated + Seasonality
R-squared 0.3548 R-squared 0.3660
Adjusted R-squared 0.3432 Adjusted R-squared 0.3529

Variable Coefficient Std. Error t-Stastic Probability Variable Coefficient Std. Error t-Stastic Probability
CONSTANT 7.98 0.16 48.95 <0.01 CONSTANT 8.10 0.17 48.14 <0.01
Water -0.11 0.02 -6.37 <0.01 Seasonality -0.29 0.11 -2.62 <0.01
Trees -0.01 0.00 -7.57 <0.01 Water -0.11 0.02 -6.42 <0.01
Flooded Vegetation 10.45 1.83 5.72 <0.01 Trees -0.01 0.00 -7.62 <0.01
Crops NS Flooded Vegetation 10.45 1.81 5.76 <0.01
Built 0.00 0.00 2.44 <0.05 Crops NS
Bare 5.22 0.42 12.33 <0.01 Built 0.00 0.00 2.46 <0.05
Clouds 0.35 0.08 4.64 <0.01 Bare 5.22 0.42 12.42 <0.01
Range -0.02 0.00 -4.17 <0.01 Clouds 0.35 0.07 4.67 <0.01

Range -0.02 0.00 -4.20 <0.01

Accumulated + Combined Accumulated + Combined + Seasonality
R-squared 0.0204 R-squared 0.0112
Adjusted R-squared 0.0154 Adjusted R-squared 0.0087

Variable Coefficient Std. Error t-Stastic Probability Variable Coefficient Std. Error t-Stastic Probability
CONSTANT 6.5743557 0.12 55.06 <0.01 CONSTANT 6.83 0.09 77.12 <0.01
Natural Vegetation NS Seasonality -0.29 0.14 -2.12 <0.05
Argriculturale Landscape NS Natural Vegetation NS
Urban Landscape NS Argriculturale Landscape NS

Urban Landscape NS
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Table B.2: Results of the MLR, based on the EPA measurement points, ESRI land cover map
and the 4km Buffer

4km Buffer
Not Accumulated Not Accumulated + seasonality

R-squared 0,3634 R-squared 0,3776
Adjusted R-squared 0,3493 Adjusted R-squared 0,3618

Variable Coefficient Std. Error t-Stastic Probability Variable Coefficient Std. Error t-Stastic Probability
CONSTANT 5,24 0,38 13,90 <0.01 CONSTANT 5,38 0,38 14,27 <0.01
Water -0,24 0,02 -11,74 <0.01 Seasonality -0,33 0,12 -2,68 <0.01
Trees -0,09 0,01 -6,47 <0.01 Water -0,24 0,02 -11,85 <0.01
Flooded Vegetation -17,70 3,11 -5,70 <0.01 Trees -0,09 0,01 -6,53 <0.01
Crops -0,01 0,00 -2,62 <0.01 Flooded Vegetation -17,70 3,08 -5,75 <0.01
Built 0,07 0,01 5,62 Crops -0,01 0,00 -2,64 <0.01
Bare NS Built 0,07 0,01 5,67 <0.01
Clouds -60,23 9,08 -6,63 <0.01 Bare NS
Range 0,18 0,03 6,81 <0.01 Clouds -60,23 9,00 -6,70 <0.01

Range 0,18 0,03 6,88 <0.01

Not Accumulated + combined Not Accumulated + Combined + Seasonality
R-squared 0,0679 R-squared 0,0821
Adjusted R-squared 0,0621 Adjusted R-squared 0,0735

Variable Coefficient Std. Error t-Stastic Probability Variable Coefficient Std. Error t-Stastic Probability
CONSTANT 6,29 0,12 52,37 <0.01 CONSTANT 6,43 0,13 47,68 <0.01
Natural Vegetation -0,01 0,00 -3,29 <0.01 Seasonality -0,33 0,15 -2,22 <0.05
Argriculturale Landscape 0,00 0,00 4,71 <0.01 Natural Vegetation -0,01 0,00 -3,31 <0.01
Urban Landscape NS Argriculturale Landscape 0,00 0,00 4,74 <0.01

Urban Landscape NS

Accumulated Accumulated + seasonality
R-squared 0,3634 R-squared 0,3776
Adjusted R-squared 0,3493 Adjusted R-squared 0,3618

Variable Coefficient Std. Error t-Stastic Probability Variable Coefficient Std. Error t-Stastic Probability
CONSTANT 5,49 0,22 24,62 <0.01 CONSTANT 5,63 0,23 24,81 <0.01
Water -0,34 0,03 -10,28 <0.01 Seasonality -0,33 0,12 -2,68 <0.01
Trees -0,09 0,01 -5,97 <0.01 Water -0,34 0,03 -10,38 <0.01
Flooded Vegetation -12,43 3,42 -3,64 <0.01 Trees -0,09 0,01 -6,03 <0.01
Crops -0,01 0,00 -5,59 <0.01 Flooded Vegetation -12,43 3,39 -3,67 <0.01
Built 0,06 0,01 7,83 <0.01 Crops -0,01 0,00 -5,64 <0.01
Bare NS Built 0,06 0,01 7,91 <0.01
Clouds -67,33 6,92 -9,72 <0.01 Bare NS
Range 0,29 0,03 8,50 <0.01 Clouds -67,33 6,86 -9,82 <0.01

Range 0,29 0,03 8,58 <0.01

Accumulated + combined Accumulated + Combined + Seasonality
R-squared 0,0877 R-squared 0,1001
Adjusted R-squared 0,082 Adjusted R-squared 0,0945

Variable Coefficient Std. Error t-Stastic Probability Variable Coefficient Std. Error t-Stastic Probability
CONSTANT 5,9728616 0,14 44,07 <0.01 CONSTANT 6,10 0,15 41,40 <0.01
Natural Vegetation NS Seasonality -0,33 0,15 -2,25 <0.05
Argriculturale Landscape NS Natural Vegetation 0,00 5,54 <0.01
Urban Landscape NS Argriculturale Landscape NS

Urban Landscape NS
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Table B.3: Results of the MLR, based on the EPA measurement points, ESRI land cover map
and the 500 m Buffer

500m Buffer
Not Accumulated Not Accumulated + seasonality

R-squared 0,3606 R-squared 0,3747
Adjusted R-squared 0,3485 Adjusted R-squared 0,3609

Variable Coefficient Std. Error t-Stastic Probability Variable Coefficient Std. Error t-Stastic Probability
CONSTANT 6,62 0,15 44,64 <0.01 CONSTANT 6,76 0,16 43,38 <0.01
Water NS Seasonality -0,33 0,13 -2,68 <0.01
Trees -1,42 0,17 -8,13 <0.01 Water NS
Flooded Vegetation 395,17 41,22 9,59 <0.01 Trees -1,42 0,17 -8,21 <0.01
Crops 0,02 0,00 4,46 <0.01 Flooded Vegetation 395,17 40,82 9,68 <0.01
Built NS Crops 0,02 0,00 4,51 <0.01
Bare 18,47 5,78 3,20 <0.01 Built NS
Clouds 52,96 6,68 7,93 <0.01 Bare 18,47 5,72 3,23 <0.01
Range 6,59 1,08 6,11 <0.01 Clouds 52,96 6,61 8,01 <0.01

Range 6,59 1,07 6,17 <0.01

Not Accumulated + combined Not Accumulated + Combined + Seasonality
R-squared 0,0574 R-squared
Adjusted R-squared 0,0544 Adjusted R-squared

Variable Coefficient Std. Error t-Stastic Probability Variable Coefficient Std. Error t-Stastic Probability
CONSTANT 6,23 0,11 57,66 <0.01 CONSTANT 6,37 0,12 51,17 <0.01
Natural Vegetation NS Seasonality -0,33 0,15 -2,21 <0.05
Argriculturale Landscape 0,02 0,00 4,43 <0.01 Natural Vegetation NS
Urban Landscape NS Argriculturale Landscape 0,02 0,00 4,45 <0.01

Urban Landscape NS

Accumulated Accumulated + seasonality
R-squared 0,3573 R-squared 0,3714
Adjusted R-squared 0,3472 Adjusted R-squared 0,3595

Variable Coefficient Std. Error t-Stastic Probability Variable Coefficient Std. Error t-Stastic Probability
CONSTANT 6,23 0,18 35,07 <0.01 CONSTANT 6,37 0,18 34,71 <0.01
Water -0,16 0,03 -6,30 <0.01 Seasonality -0,33 0,13 -2,67 <0.01
Trees -0,39 0,06 -6,91 <0.01 Water -0,16 0,03 -6,36 <0.01
Flooded Vegetation 169,59 29,07 5,83 <0.01 Trees -0,39 0,06 -6,97 <0.01
Crops NS Flooded Vegetation 169,59 28,80 5,89 <0.01
Built 0,05 0,00 10,21 <0.01 Crops NS
Bare 64,43 6,78 9,50 <0.01 Built 0,05 0,00 10,31 <0.01
Clouds NS Bare 64,43 6,72 9,59 <0.01
Range NS Clouds NS

Range NS

Accumulated + combined Accumulated + Combined + Seasonality
R-squared 0,0956 R-squared 0,1097
Adjusted R-squared 0,0928 Adjusted R-squared 0,1042

Variable Coefficient Std. Error t-Stastic Probability Variable Coefficient Std. Error t-Stastic Probability
CONSTANT 5,82 0,15 39,02 <0.01 CONSTANT 5,96 0,16 37,12 <0.01
Natural Vegetation 0,01 5,83 <0.01 Seasonality -0,33 0,15 -2,26 <0.05
Argriculturale Landscape NS Natural Vegetation 0,01 5,87 <0.01
Urban Landscape NS Argriculturale Landscape NS

Urban Landscape NS
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Table B.4: Results of the MLR, based on the EPA measurement points, ESRI land cover map
and the 100 m Buffer

100m Buffer
Not Accumulated Not Accumulated + seasonality

R-squared 0,3616 R-squared 0,3758
Adjusted R-squared 0,3496 Adjusted R-squared 0,362

Variable Coefficient Std. Error t-Stastic Probability Variable Coefficient Std. Error t-Stastic Probability
CONSTANT 6,38 0,12 52,12 <0.01 CONSTANT 6,52 0,13 49,42 <0.01
Water NS Seasonality -0,33 0,12 -2,68 <0.01
Trees NS Water NS
Flooded Vegetation 152,69 21,68 7,04 <0.01 Trees NS
Crops 0,07 0,02 3,02 <0.01 Flooded Vegetation 152,69 21,47 7,11 <0.01
Built 0,27 0,05 5,45 <0.01 Crops 0,07 0,02 3,04 <0.01
Bare 1110,68 99,97 11,11 <0.01 Built 0,27 0,05 5,50 <0.01
Clouds 280,36 25,20 11,12 <0.01 Bare 1110,68 99,01 11,22 <0.01
Range -92,65 8,60 -10,77 <0.01 Clouds 280,36 24,96 11,23 <0.01

Range -92,65 8,52 -10,88 <0.01

Not Accumulated + combined Not Accumulated + Combined + Seasonality
R-squared 0,0961 R-squared 0,1102
Adjusted R-squared 0,0876 Adjusted R-squared 0,0991

Variable Coefficient Std. Error t-Stastic Probability Variable Coefficient Std. Error t-Stastic Probability
CONSTANT 6,07 0,13 46,34 <0.01 CONSTANT 6,21 0,14 43,09 <0.01
Natural Vegetaion 0,06 2,73 <0.01 Seasonality -0,33 0,15 -2,25 <0.05
Argriculturale Landscape 0,14 0,03 5,41 <0.01 Natural Vegetaion 0,06 2,75 <0.01
Urban Landscape 0,04 -2,54 <0.05 Argriculturale Landscape 0,14 0,03 5,45 <0.01

Urban Landscape 0,04 -2,56 <0.05

Accumulated Accumulated + seasonality
R-squared 0,3554 R-squared 0,3696
Adjusted R-squared 0,3432 Adjusted R-squared 0,3556

Variable Coefficient Std. Error t-Stastic Probability Variable Coefficient Std. Error t-Stastic Probability
CONSTANT 6,13 0,19 32,56 <0.01 CONSTANT 6,27 0,19 32,37 <0.01
Water -0,10 0,04 -2,38 <0.05 Seasonality -0,33 0,13 -2,66 <0.01
Trees NS Water -0,10 0,04 -2,41 <0.05
Flooded Vegetation 206,02 33,76 6,10 <0.01 Trees NS
Crops NS Flooded Vegetation 206,02 33,44 6,16 <0.01
Built 0,41 0,06 7,17 <0.01 Crops NS
Bare 1331,27 129,46 10,28 <0.01 Built 0,41 0,06 7,24 <0.01
Clouds 292,44 32,76 8,93 <0.01 Bare 1331,27 128,24 10,38 <0.01
Range -101,14 10,47 -9,66 <0.01 Clouds 292,44 32,45 9,01 <0.01

Range -101,14 10,37 -9,75 <0.01

Accumulated + combined Accumulated + Combined + Seasonality
R-squared 0,0976 R-squared 0,1100
Adjusted R-squared 0,0920 Adjusted R-squared 0,1045

Variable Coefficient Std. Error t-Stastic Probability Variable Coefficient Std. Error t-Stastic Probability
CONSTANT 5,84 0,17 34,48 <0.01 CONSTANT 5,92 0,17 35,78 <0.01
Natural Vegetaion 0,04 2,12 <0.05 Seasonality -0,33 0,15 -2,26 <0.05
Argriculturale Landscape NS Natural Vegetaion 0,02 5,88 <0.01
Urban Landscape NS Argriculturale Landscape NS

Urban Landscape NS
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B.1.2. GlobCover Land cover map

Figure B.3: The division of the land cover types for the sub-basins of EPA, based on the
GlobCover land cover map. The x-axis is the number of the sub-basin
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Table B.5: Results of the MLR, based on the EPA measurement points, GlobCoverland cover
map and the entire bassin

Basin
Not Accumulated Not Accumulated + seasonality

R-squared 0,3423 R-squared 0,3535
Adjusted R-squared 0,3304 Adjusted R-squared 0,3401

Variable Coefficient Std. Error t-Stastic Probability Variable Coefficient Std. Error t-Stastic Probability
CONSTANT 7,90 0,13 59,10 <0.01 CONSTANT 8,02 0,14 57,02 <0.01
Irrigated Cropland -2,41 0,25 -9,48 <0.01 Seasonality -0,29 0,11 -2,59 <0.01
Rainfed Cropland -0,01 0,00 -2,57 <0.05 Irrigated Cropland 0,25 -9,55 <0.01
Mosaic Cropland 0,01 0,00 5,54 <0.01 Rainfed Cropland -0,01 0,00 -2,59 <0.01
Mosaic Vegetation -0,09 0,04 -2,45 <0.05 Mosaic Cropland 0,00 5,59 <0.01
Semi Forest -0,02 0,00 -7,05 <0.01 Mosaic Vegetation -0,09 0,04 -2,47 <0.05
Shrubland NS Semi Forest -0,02 0,00 -7,10 <0.01
Forest 2,45 0,35 6,97 <0.01 Shrubland NS
Urban 0,14 0,02 6,80 <0.01 Forest 2,45 0,35 7,02 <0.01
Water Bodies Urban 0,14 0,02 6,85 <0.01

Water Bodies

Not Accumulated + combined Not Accumulated + Combined + Seasonality
R-squared 0,1289 R-squared 0,1401
Adjusted R-squared 0,1222 Adjusted R-squared 0,1313

Variable Coefficient Std. Error t-Stastic Probability Variable Coefficient Std. Error t-Stastic Probability
CONSTANT 0,11 63,82 <0.01 CONSTANT 7,20 0,12 58,70 <0.01
Natural Vegetaion 0,00 0,00 2,33 <0.05 Seasonality 0,13 -2,26 <0.05
Argriculturale Landscape 0,00 -2,30 <0.05 Natural Vegetaion 0,00 0,00 2,35 <0.05
Urban Landscape -0,04 0,01 -6,59 <0.01 Argriculturale Landscape 0,00 -2,32 <0.05

Urban Landscape -0,04 0,01 -6,62 <0.01

Accumulated Accumulated + seasonality
R-squared 0,3446 R-squared 0,3558
Adjusted R-squared 0,3310 Adjusted R-squared 0,3408

Variable Coefficient Std. Error t-Stastic Probability Variable Coefficient Std. Error t-Stastic Probability
CONSTANT 9,77 0,58 16,81 <0.01 CONSTANT 9,90 0,58 17,09 <0.01
Irrigated Cropland -2,07 0,46 -4,45 <0.01 Seasonality -0,29 0,11 -2,59 <0.01
Rainfed Cropland -0,06 0,01 -4,93 <0.01 Irrigated Cropland -2,07 0,46 -4,49 <0.01
Mosaic Cropland 0,04 0,01 5,62 <0.01 Rainfed Cropland -0,06 0,01 -4,97 <0.01
Mosaic Vegetation -0,60 0,08 -7,19 <0.01 Mosaic Cropland 0,04 0,01 5,66 <0.01
Semi Forest -0,05 0,01 -4,20 <0.01 Mosaic Vegetation -0,60 0,08 -7,25 <0.01
Shrubland 0,04 0,01 3,36 <0.01 Semi Forest -0,05 0,01 -4,23 <0.01
Forest -2,81 0,68 -4,15 <0.01 Shrubland 0,04 0,01 3,38 <0.01
Urban NS Forest -2,81 0,67 -4,18 <0.01
Water Bodies 0,45 0,16 2,88 <0.01 Urban NS

2,90 <0.01

Accumulated + combined Accumulated + Combined + Seasonality
R-squared 0,1699 R-squared 0,1811
Adjusted R-squared 0,1656 Adjusted R-squared 0,1748

Variable Std. Error t-Stastic Probability Variable Coefficient Std. Error t-Stastic Probability
CONSTANT 0,14 53,18 <0.01 CONSTANT 0,15 50,76 <0.01
Natural Vegetaion NS Seasonality 0,13 -2,32 <0.05
Argriculturale Landscape 0,00 8,93 <0.01 Natural Vegetaion NS
Urban Landscape -0,06 0,01 -8,79 <0.01 Argriculturale Landscape 0,00 8,98 <0.01

Urban Landscape -0,06 0,01 -8,83 <0.01
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Table B.6: Results of the MLR, based on the EPA measurement points, GlobCoverland cover
map and the 4km buffer

4km Buffer
Not Accumulated Not Accumulated + seasonality

R-squared 0,3626 R-squared 0,3763
Adjusted R-squared 0,3525 Adjusted R-squared 0,3645

Variable Coefficient Std. Error t-Stastic Probability Variable Coefficient Std. Error t-Stastic Probability
CONSTANT 8,27 0,21 38,64 <0.01 CONSTANT 8,41 0,22 38,50 <0.01
Irrigated Cropland NS Seasonality -0,33 0,12 -2,64 <0.01
Rainfed Cropland -0,01 0,00 -5,21 <0.01 Irrigated Cropland NS
Mosaic Cropland NS Rainfed Cropland -0,01 0,00 -5,25 <0.01
Mosaic Vegetation 0,77 0,11 6,79 <0.01 Mosaic Cropland NS
Semi Forest -0,13 0,02 -7,01 <0.01 Mosaic Vegetation 0,77 0,11 6,85 <0.01
Shrubland NS Semi Forest -0,13 0,02 -7,07 <0.01
Forest -1,11 0,16 -6,82 <0.01 Shrubland NS
Urban -0,12 0,02 -7,90 <0.01 Forest -1,11 0,16 -6,88 <0.01
Water Bodies Urban -0,12 0,02 -7,97 <0.01

Water Bodies

Not Accumulated + combined Not Accumulated + Combined + Seasonality
R-squared 0,1774 R-squared 0,1911
Adjusted R-squared 0,1697 Adjusted R-squared 0,1809

Variable Coefficient Std. Error t-Stastic Probability Variable Coefficient Std. Error t-Stastic Probability
CONSTANT 0,12 54,37 0 CONSTANT 6,87 0,14 50,35 <0.01
Natural Vegetaion 0,00 0,00 5,54 <0.01 Seasonality 0,14 -2,32 <0.05
Argriculturale Landscape 0,00 -5,00 <0.01 Natural Vegetaion 0,00 0,00 5,58 <0.01
Urban Landscape -0,05 0,01 -4,17 <0.01 Argriculturale Landscape 0,00 -5,04 <0.01

Urban Landscape -0,05 0,01 -4,20 <0.01

Accumulated Accumulated + seasonality
R-squared 0,3623 R-squared 0,376
Adjusted R-squared 0,3482 Adjusted R-squared 0,3601

Variable Coefficient Std. Error t-Stastic Probability Variable Coefficient Std. Error t-Stastic Probability
CONSTANT 0,24 0,92 0,26 0,79 CONSTANT 0,38 0,92 0,41 0,68
Irrigated Cropland -2,35 0,24 -9,90 <0.01 Seasonality -0,33 0,13 -2,63 <0.01
Rainfed Cropland 0,02 0,00 8,71 <0.01 Irrigated Cropland -2,35 0,23 -10,00 <0.01
Mosaic Cropland -0,35 0,18 -2,02 <0.05 Rainfed Cropland 0,02 0,00 8,79 <0.01
Mosaic Vegetation -0,21 0,03 -6,49 <0.01 Mosaic Cropland -0,35 0,17 -2,04 <0.05
Semi Forest 0,03 0,01 3,41 <0.01 Mosaic Vegetation -0,21 0,03 -6,55 <0.01
Shrubland NS Semi Forest 0,03 0,01 3,44 <0.01
Forest 1,24 0,28 4,39 <0.01 Shrubland 1,24 0,28 4,43 <0.01
Urban 0,49 0,07 7,35 <0.01 Forest NS
Water Bodies NS Urban 0,49 0,07 7,42 <0.01

Accumulated + combined Accumulated + Combined + Seasonality
R-squared 0,1312 R-squared 0,1449
Adjusted R-squared 0,1258 Adjusted R-squared 0,1369

Variable Std. Error t-Stastic Probability Variable Coefficient Std. Error t-Stastic Probability
CONSTANT 0,36 20,50 <0.01 CONSTANT 0,36 20,72 <0.01
Natural Vegetaion 0,00 5,32 <0.01 Seasonality 0,15 -2,26 <0.05
Argriculturale Landscape NS Natural Vegetaion 0,00 5,35 <0.01
Urban Landscape -0,08 0,02 -3,82 <0.01 Argriculturale Landscape NS

Urban Landscape -0,08 0,02 -3,84 <0.01
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Table B.7: Results of the MLR, based on the EPA measurement points, GlobCoverland cover
map and the 500m buffer

500m Buffer
Not Accumulated Not Accumulated + seasonality

R-squared 0,3600 R-squared 0,3737
Adjusted R-squared 0,3540 Adjusted R-squared 0,3659

Variable Coefficient Std. Error t-Stastic Probability Variable Coefficient Std. Error t-Stastic Probability
CONSTANT 6,82 0,11 64,04 <0.01 CONSTANT 6,95 0,12 59,14 <0.01
Irrigated Cropland NS Seasonality -0,33 0,12 -2,64 <0.01
Rainfed Cropland 0,01 0,01 2,63 <0.01 Irrigated Cropland NS
Mosaic Cropland NS Rainfed Cropland 0,01 0,01 2,66 <0.01
Mosaic Vegetation NS Mosaic Cropland NS
Semi Forest NS Mosaic Vegetation NS
Shrubland NS Semi Forest NS
Forest -2,34 0,21 -11,23 <0.01 Shrubland NS
Urban -0,22 0,06 -3,72 <0.01 Forest -2,34 0,21 -11,33 <0.01
Water Bodies NS Urban -0,22 0,06 -3,76 <0.01

Water Bodies

Not Accumulated + combined Not Accumulated + Combined + Seasonality
R-squared 0,1002 R-squared 0,1139
Adjusted R-squared 0,0945 Adjusted R-squared 0,1055

Variable Coefficient Std. Error t-Stastic Probability Variable Coefficient Std. Error t-Stastic Probability
CONSTANT 0,11 54,48 <0.01 CONSTANT 6,37 0,13 49,24 <0.01
Natural Vegetaion 0,02 0,00 5,55 <0.01 Seasonality 0,15 -2,22 <0.05
Argriculturale Landscape NS Natural Vegetaion 0,02 0,00 5,58 <0.01
Urban Landscape -0,28 0,07 -3,90 <0.01 Argriculturale Landscape

Urban Landscape -0,28 0,07 -3,93 <0.01

Accumulated Accumulated + seasonality
R-squared 0,3473 R-squared 0,3754
Adjusted R-squared 0,3391 Adjusted R-squared 0,3596

Variable Coefficient Std. Error t-Stastic Probability Variable Coefficient Std. Error t-Stastic Probability
CONSTANT 4,64 0,22 21,36 <0.01 CONSTANT 2,05 1,03 1,98 <0.05
Irrigated Cropland 0,44 0,12 3,62 <0.01 Seasonality -0,33 0,13 -2,63 <0.01
Rainfed Cropland NS Irrigated Cropland 1,96 0,60 3,24 <0.01
Mosaic Cropland NS Rainfed Cropland 0,04 0,02 2,39 <0.05
Mosaic Vegetation 19,93 2,13 9,36 <0.01 Mosaic Cropland -0,06 0,02 -2,62 <0.01
Semi Forest NS Mosaic Vegetation 45,65 9,83 4,64 <0.01
Shrubland -0,05 0,02 -3,05 <0.01 Semi Forest 7,82 2,96 2,64 <0.01
Forest -2,38 0,25 -9,35 <0.01 Shrubland -0,40 0,14 -2,92 <0.01
Urban NS Forest -13,17 4,07 -3,24 <0.01
Water Bodies NS Urban

Accumulated + combined Accumulated + Combined + Seasonality
R-squared 0,0958 R-squared 0,1095
Adjusted R-squared 0,0930 Adjusted R-squared 0,1039

Variable Std. Error t-Stastic Probability Variable Coefficient Std. Error t-Stastic Probability
CONSTANT 0,12 52,39 <0.01 CONSTANT 0,13 47,48 <0.01
Natural Vegetaion 0,00 5,84 <0.01 Seasonality 0,15 -2,22 <0.05
Argriculturale Landscape NS Natural Vegetaion 0,00 5,88 <0.01
Urban Landscape NS Argriculturale Landscape

Urban Landscape
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B - Results

Table B.8: Results of the MLR, based on the EPA measurement points, GlobCoverland cover
map and the 100m buffer

100m Buffer
Not Accumulated Not Accumulated + seasonality

R-squared 0,3618 R-squared 0,3755
Adjusted R-squared 0,3497 Adjusted R-squared 0,3616

Variable Coefficient Std. Error t-Stastic Probability Variable Coefficient Std. Error t-Stastic Probability
CONSTANT 2,40 0,60 3,98 <0.01 CONSTANT 2,54 0,60 4,23 <0.01
Irrigated Cropland NS Seasonality -0,33 0,13 -2,63 <0.01
Rainfed Cropland 0,81 0,10 8,50 <0.01 Irrigated Cropland NS
Mosaic Cropland 0,12 -7,67 <0.01 Rainfed Cropland 0,81 0,09 8,58 <0.01
Mosaic Vegetation 0,98 -5,05 <0.01 Mosaic Cropland 0,12 -7,74 <0.01
Semi Forest 2,24 0,28 7,93 <0.01 Mosaic Vegetation NS
Shrubland NS Semi Forest -4,92 0,97 -5,09 <0.01
Forest NS Shrubland 2,24 0,28 8,01 <0.01
Urban 5,89 1,00 5,89 <0.01 Forest NS
Water Bodies 1,09 0,19 5,67 <0.01 Urban 5,89 0,99 5,94 <0.01

Water Bodies 1,09 0,19 5,72 <0.01

Not Accumulated + combined Not Accumulated + Combined + Seasonality
R-squared 0,0801 R-squared 0,0137
Adjusted R-squared 0,0744 Adjusted R-squared 0,0106

Variable Coefficient Std. Error t-Stastic Probability Variable Coefficient Std. Error t-Stastic Probability
CONSTANT 0,12 52,89 <0.01 CONSTANT 6,71 0,10 66,74 <0.01
Natural Vegetaion 0,07 0,01 5,03 <0.01 Seasonality 0,16 -2,11 <0.05
Argriculturale Landscape NS Natural Vegetaion NS
Urban Landscape -0,76 0,32 -2,36 0,0186364 Argriculturale Landscape NS

Urban Landscape NS

Accumulated Accumulated + seasonality
R-squared 0,3627 R-squared 0,3764
Adjusted R-squared 0,3486 Adjusted R-squared 0,3605

Variable Coefficient Std. Error t-Stastic Probability Variable Coefficient Std. Error t-Stastic Probability
CONSTANT 14,28 0,98 14,60 <0.01 CONSTANT 14,42 0,97 14,86 <0.01
Irrigated Cropland -8,78 2,26 -3,88 <0.01 Seasonality -0,33 0,13 -2,63 <0.01
Rainfed Cropland 0,09 -7,21 <0.01 Irrigated Cropland -8,78 2,24 -3,92 <0.01
Mosaic Cropland 0,09 10,38 <0.01 Rainfed Cropland -0,64 0,09 -7,28 <0.01
Mosaic Vegetation -7,88 2,63 -3,00 <0.01 Mosaic Cropland 0,93 0,09 10,48 <0.01
Semi Forest -12,83 3,62 -3,55 <0.01 Mosaic Vegetation
Shrubland Semi Forest -7,88 2,60 -3,03 <0.01
Forest -12,18 1,75 -6,97 <0.01 Shrubland
Urban Forest -12,83 3,58 -3,58 <0.01
Water Bodies 1,12 0,25 4,48 <0.01 Urban -12,18 1,73 -7,03 <0.01

4,52 <0.01

Accumulated + combined Accumulated + Combined + Seasonality
R-squared 0,0952 R-squared 0,1089
Adjusted R-squared 0,0924 Adjusted R-squared 0,1033

Variable Std. Error t-Stastic Probability Variable Coefficient Std. Error t-Stastic Probability
CONSTANT 0,12 52,33 <0.01 CONSTANT 0,13 47,43 <0.01
Natural Vegetaion 0,00 5,82 <0.01 Seasonality 0,15 -2,22 <0.05
Argriculturale Landscape NS Natural Vegetaion 0,00 5,85 <0.01
Urban Landscape NS Argriculturale Landscape NS

Urban Landscape NS

47



B - Results

B.2 BBWS

B.2.1. ESRI Land cover map

Figure B.4: The division of the land cover types for the sub-basins of BBWS, based on the
ESRI land cover map. The x-axis is the number of the sub-basin
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B - Results

Table B.9: Results of the MLR, based on the BBWS measurement points, ESRI land cover
map and the entire basin

Basin
Not Accumulated Not Accumulated + seasonality

R-squared 0,0475 R-squared 0,0774
Adjusted R-squared 0,0393 Adjusted R-squared 0,0668

Variable Coefficient Std. Error t-Stastic Probability Variable Coefficient Std. Error t-Stastic Probability
CONSTANT 7,09 0,08 91,92 <0.01 CONSTANT 7,26 0,09 79,24 <0.01
Water 0,01 -2,49 <0.05 Seasonality -0,31 0,09 -3,35 <0.01
Trees NS Water 0,01 -2,53 <0.05
Flooded Vegetation NS Trees NS
Crops NS Flooded Vegetation NS
Built 0,00 0,00 -2,53 <0.05 Crops NS
Bare 0,59 0,20 2,98 <0.01 Built 0,00 0,00 -2,56 <0.05
Clouds NS Bare 0,59 0,19 3,02 <0.01
Range NS Clouds NS

NS Range NS

Not Accumulated + combined Not Accumulated + Combined + Seasonality
0,0141

Adjusted R-squared 0,0113 Adjusted R-squared 0,0385

Variable Coefficient Std. Error t-Stastic Probability Variable Coefficient Std. Error t-Stastic Probability
CONSTANT 7,05 0,07 105,40 <0.01 CONSTANT 7,22 0,08 85,99 <0.01
Natural Vegetation 0,00 -2,24 <0.05 Seasonality -0,31 0,10 -3,31 <0.01
Argriculturale Landscape NS Natural Vegetation 0,00 -2,27 <0.05
Urban Landscape NS Argriculturale Landscape NS

Urban Landscape

Accumulated Accumulated + seasonality
0,0165 0,0464

Adjusted R-squared 0,0108 Adjusted R-squared 0,0382

Variable Coefficient Std. Error t-Stastic Probability Variable Coefficient Std. Error t-Stastic Probability
CONSTANT 7,03 0,09 76,35 <0.01 CONSTANT 7,20 0,10 68,84 <0.01
Water NS Seasonality -0,31 0,10 -3,30 <0.01
Trees 0,00 0,00 -2,37 <0.05 Water NS
Flooded Vegetation NS Trees 0,00 0,00 -2,40 <0.05
Crops NS Flooded Vegetation NS
Built NS Crops NS
Bare 0,53 0,22 2,41 <0.05 Built NS
Clouds NS Bare 0,53 0,22 2,45 <0.05
Range NS Clouds NS

Range NS

Accumulated + combined Accumulated + Combined + Seasonality
R-squared - R-squared 0,0299
Adjusted R-squared - Adjusted R-squared 0,0271

Variable Std. Error t-Stastic Probability Variable Std. Error t-Stastic Probability
CONSTANT NS CONSTANT 7,11 0,07 100,53 <0.01
Natural Vegetation NS Seasonality -0,31 0,10 -3,29 <0.01
Argriculturale Landscape NS Natural Vegetation NS
Urban Landscape NS Argriculturale Landscape NS

Urban Landscape NS
Urban Landscape NS Argriculturale Landscape NS

Urban Landscape NS
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B - Results

Table B.10: Results of the MLR, based on the BBWS measurement points, ESRI land cover
map and the 4km buffer

4km Buffer
Not Accumulated Not Accumulated + seasonality

R-squared 0,0388 R-squared 0,0741
Adjusted R-squared 0,0325 Adjusted R-squared 0,0649

Variable Coefficient Std. Error t-Stastic Probability Variable Coefficient Std. Error t-Stastic Probability
CONSTANT 6,73 0,09 72,19 <0.01 CONSTANT 6,92 0,11 64,49 <0.01
Water 0,05 2,59 <0.01 Seasonality -0,35 0,10 -3,40 <0.01
Trees NS Water 0,05 2,64 <0.01
Flooded Vegetation NS Trees NS
Crops NS Flooded Vegetation NS
Built NS Crops NS
Bare -9,97 3,18 -3,13 <0.01 Built NS
Clouds NS Bare -9,97 3,13 -3,18 <0.01
Range NS Clouds NS

Range NS

Not Accumulated + combined Not Accumulated + Combined + Seasonality
R-squared 0,0154 R-squared 0,0507
Adjusted R-squared 0,0122 Adjusted R-squared 0,0445

Variable Coefficient Std. Error t-Stastic Probability Variable Coefficient Std. Error t-Stastic Probability
CONSTANT 6,97 0,06 109,68 <0.01 CONSTANT 7,16 0,08 85,00 <0.01
Natural Vegetation 0,00 -2,19 <0.05 Seasonality -0,35 0,10 -3,37 <0.01
Argriculturale Landscape NS Natural Vegetation 0,00 -2,22 <0.05
Urban Landscape NS Argriculturale Landscape NS

Urban Landscape NS

Accumulated Accumulated + seasonality
R-squared 0,0221 R-squared 0,0574
Adjusted R-squared 0,0157 Adjusted R-squared 0,0481

Variable Coefficient Std. Error t-Stastic Probability Variable Coefficient Std. Error t-Stastic Probability
CONSTANT 6,72 0,10 64,21 <0.01 CONSTANT 6,91 0,12 58,88 <0.01
Water NS Seasonality -0,35 0,10 -3,37 <0.01
Trees NS Water NS
Flooded Vegetation NS Trees NS
Crops NS Flooded Vegetation NS
Built NS Crops NS
Bare NS Built NS
Clouds -2,09 0,88 -2,38 <0.05 Bare NS
Range 0,01 0,00 2,60 <0.01 Clouds -2,09 0,86 -2,42 <0.05

Range 0,01 0,00 2,64 <0.01

Accumulated + combined Accumulated + Combined + Seasonality
R-squared - R-squared 0,0353
Adjusted R-squared - Adjusted R-squared 0,0321

Variable Std. Error t-Stastic Probability Variable Std. Error t-Stastic Probability
CONSTANT NS CONSTANT 7,08 0,08 92,01 <0.01
Natural Vegetation NS Seasonality -0,35 0,10 -3,35 <0.01
Argriculturale Landscape NS Natural Vegetation NS
Urban Landscape NS Argriculturale Landscape NS

Urban Landscape NS
Urban Landscape NS Argriculturale Landscape NS

Urban Landscape NS
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B - Results

Table B.11: Results of the MLR, based on the BBWS measurement points, ESRI land cover
map and the 500m buffer

500m Buffer
Not Accumulated Not Accumulated + seasonality

R-squared 0,0833 R-squared 0,1186
Adjusted R-squared 0,065 Adjusted R-squared 0,098

Variable Coefficient Std. Error t-Stastic Probability Variable Coefficient Std. Error t-Stastic Probability
CONSTANT 6,79 0,12 56,20 <0.01 CONSTANT 6,98 0,13 53,39 <0.01
Water 0,07 3,62 <0.01 Seasonality -0,35 0,10 -3,46 <0.01
Trees -0,17 0,07 -2,30 <0.05 Water 0,07 3,69 <0.01
Flooded Vegetation 24,37 2,67 <0.01 Trees -0,17 0,07 -2,34 <0.05
Crops 0,01 -3,53 <0.01 Flooded Vegetation 23,94 2,72 <0.01
Built NS Crops 0,01 -3,60 <0.01
Bare -38,84 9,21 -4,22 <0.01 Built NS
Clouds NS Bare -38,84 9,05 -4,29 <0.01
Range 1,68 0,56 2,98 <0.01 Clouds NS

Range 1,68 0,55 3,04 <0.01

Not Accumulated + combined Not Accumulated + Combined + Seasonality
R-squared - R-squared 0,0353
Adjusted R-squared - Adjusted R-squared 0,0321

Variable Coefficient Std. Error t-Stastic Probability Variable Coefficient Std. Error t-Stastic Probability
CONSTANT NS CONSTANT 7,08 0,08 92,01 <0.01
Natural Vegetation NS Seasonality -0,35 0,10 -3,35 <0.01
Argriculturale Landscape NS Natural Vegetation NS
Urban Landscape NS Argriculturale Landscape NS

Urban Landscape NS

Accumulated Accumulated + seasonality
R-squared 0,0480 R-squared 0,0833
Adjusted R-squared 0,0354 Adjusted R-squared 0,0681

Variable Coefficient Std. Error t-Stastic Probability Variable Coefficient Std. Error t-Stastic Probability
CONSTANT 6,98 0,12 56,52 <0.01 CONSTANT 7,17 0,13 53,68 <0.01
Water 0,19 0,05 3,55 <0.01 Seasonality -0,35 0,10 -3,41 <0.01
Trees NS Water 0,19 0,05 3,62 <0.01
Flooded Vegetation NS Trees NS
Crops NS Flooded Vegetation NS
Built -0,04 0,01 -3,37 <0.01 Crops NS
Bare -33,72 10,58 -3,19 <0.01 Built 0,01 -3,43 <0.01
Clouds NS Bare -33,72 10,40 -3,24 <0.01
Range 0,87 0,32 2,73 <0.01 Clouds NS

Range 0,87 0,31 2,78 <0.01

Accumulated + combined Accumulated + Combined + Seasonality
R-squared - R-squared 0,0353
Adjusted R-squared - Adjusted R-squared 0,0321

Variable Std. Error t-Stastic Probability Variable Std. Error t-Stastic Probability
CONSTANT NS CONSTANT 7,08 0,08 92,01 <0.01
Natural Vegetation NS Seasonality -0,35 0,10 -3,35 <0.01
Argriculturale Landscape NS Natural Vegetation NS
Urban Landscape NS Argriculturale Landscape NS

Urban Landscape NS
Urban Landscape NS Argriculturale Landscape NS

Urban Landscape NS
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B - Results

Table B.12: Results of the MLR, based on the BBWS measurement points, ESRI land cover
map and the 100m buffer

100m Buffer
Not Accumulated Not Accumulated + seasonality

R-squared 0,0777 R-squared 0,9254
Adjusted R-squared 0,0593 Adjusted R-squared 0,1130

Variable Coefficient Std. Error t-Stastic Probability Variable Coefficient Std. Error t-Stastic Probability
CONSTANT 6,68 0,12 54,13 <0.01 CONSTANT 6,87 0,13 51,61 <0.01
Water 0,07 3,09 <0.01 Seasonality -0,35 0,10 -3,45 <0.01
Trees -0,46 0,18 -2,60 <0.01 Water 0,07 3,14 <0.01
Flooded Vegetation NS Trees -0,46 0,18 -2,65 <0.01
Crops NS Flooded Vegetation NS
Built -0,14 0,05 -2,88 <0.01 Crops NS
Bare -1173,50 364,97 -3,22 <0.01 Built -0,14 0,05 -2,93 <0.01
Clouds -310,62 98,18 -3,16 <0.01 Bare -1173,50 358,51 -3,27 <0.01
Range 93,83 30,43 3,08 <0.01 Clouds -310,62 96,45 -3,22 <0.01

Range 93,83 29,89 3,14 <0.01

Not Accumulated + combined Not Accumulated + Combined + Seasonality
R-squared - R-squared 0,0353
Adjusted R-squared - Adjusted R-squared 0,0321

Variable Coefficient Std. Error t-Stastic Probability Variable Coefficient Std. Error t-Stastic Probability
CONSTANT NS CONSTANT 7,08 0,08 92,01 <0.01
Natural Vegetation NS Seasonality -0,35 0,10 -3,35 <0.01
Argriculturale Landscape NS Natural Vegetation NS
Urban Landscape NS Argriculturale Landscape NS

Urban Landscape NS

Accumulated Accumulated + seasonality
R-squared 0,0316 R-squared 0,0668
Adjusted R-squared 0,0220 Adjusted R-squared 0,0545

Variable Coefficient Std. Error t-Stastic Probability Variable Coefficient Std. Error t-Stastic Probability
CONSTANT 6,60 0,11 57,72 <0.01 CONSTANT 6,79 0,13 54,03 <0.01
Water NS Seasonality -0,35 0,10 -3,38 <0.01
Trees NS Water NS
Flooded Vegetation NS Trees NS
Crops NS Flooded Vegetation NS
Built NS Crops NS
Bare -351,87 130,16 -2,70 <0.01 Built NS
Clouds -106,12 38,70 -2,74 <0.01 Bare -351,87 127,98 -2,75 <0.01
Range 27,06 9,77 2,77 <0.01 Clouds -106,12 38,05 -2,79 <0.01

Range 27,06 9,61 2,82 <0.01

Accumulated + combined Accumulated + Combined + Seasonality
R-squared - R-squared 0,0476
Adjusted R-squared - Adjusted R-squared 0,0413

Variable Std. Error t-Stastic Probability Variable Std. Error t-Stastic Probability
CONSTANT NS CONSTANT 6,91 0,11 60,18 <0.01
Natural Vegetation NS Seasonality -0,35 0,10 -3,36 <0.01
Argriculturale Landscape NS Natural Vegetation 0,01 1,98 <0.05
Urban Landscape NS Argriculturale Landscape NS

Urban Landscape NS
Urban Landscape NS Argriculturale Landscape NS

Urban Landscape NS
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B - Results

B.2.2. GlobCover Land cover map

Figure B.5: The division of the land cover types for the sub-basins of BBWS, based on the
GlobCover land cover map. The x-axis is the number of the sub-basin
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B - Results

Table B.13: Results of the MLR, based on the BBWS measurement points, GlobCover land
cover map and the entire basin

Basin
Not Accumulated Not Accumulated + seasonality

R-squared 0,0893 R-squared 0,1192
Adjusted R-squared 0,0735 Adjusted R-squared 0,1013

Variable Coefficient Std. Error t-Stastic Probability Variable Coefficient Std. Error t-Stastic Probability
CONSTANT 6,99 0,09 81,99 <0.01 CONSTANT 7,16 0,10 73,19 <0.01
Irrigated Cropland 0,17 2,32 <0.05 Seasonality -0,31 0,09 -3,42 <0.01
Rainfed Cropland 0,00 0,00 3,13 <0.01 Irrigated Cropland 0,16 2,35 <0.05
Mosaic Cropland 0,00 -4,01 <0.01 Rainfed Cropland 0,00 0,00 3,17 <0.01
Mosaic Vegetation NS Mosaic Cropland 0,00 -4,07 <0.01
Semi Forest 0,00 0,00 2,85 <0.01 Mosaic Vegetation
Shrubland 0,00 0,00 2,06 <0.05 Semi Forest 0,00 0,00 2,89 <0.01
Forest -1,16 0,33 -3,52 <0.01 Shrubland 0,00 0,00 2,09 <0.05
Urban NS Forest -1,16 0,32 -3,58 <0.01
Water Bodies NS Urban

Water Bodies

Not Accumulated + combined Not Accumulated + Combined + Seasonality
R-squared 0,0332 R-squared 0,0449
Adjusted R-squared 0,0304 Adjusted R-squared 0,0394

Variable Std. Error t-Stastic Probability Variable Coefficient Std. Error t-Stastic Probability
CONSTANT 0,06 116,93 <0.01 CONSTANT 7,25 0,09 79,81 <0.01
Natural Vegetaion 0,01 -3,47 <0.01 Seasonality 0,10 -3,31 <0.01
Argriculturale Landscape NS Natural Vegetaion 0,00 -2,34 <0.05
Urban Landscape NS Argriculturale Landscape

Urban Landscape

Accumulated Accumulated + seasonality
R-squared 0,0891 R-squared 0,1190
Adjusted R-squared 0,0759 Adjusted R-squared 0,1037

Variable Coefficient Std. Error t-Stastic Probability Variable Coefficient Std. Error t-Stastic Probability
CONSTANT 6,82 0,09 76,19 <0.01 CONSTANT 6,99 0,10 68,94 <0.01
Irrigated Cropland 0,77 0,15 5,02 <0.01 Seasonality -0,31 0,09 -3,42 <0.01
Rainfed Cropland 0,00 5,30 <0.01 Irrigated Cropland 0,77 0,15 5,10 <0.01
Mosaic Cropland 0,00 -5,73 <0.01 Rainfed Cropland 0,00 5,38 <0.01
Mosaic Vegetation 0,01 0,00 5,26 <0.01 Mosaic Cropland -0,01 0,00 -5,82 <0.01
Semi Forest NS Mosaic Vegetation 0,00 5,35 <0.01
Shrubland NS Semi Forest
Forest -1,92 0,36 -5,38 <0.01 Shrubland
Urban NS Forest -1,92 0,35 -5,47 <0.01
Water Bodies NS Urban

Accumulated + combined Accumulated + Combined + Seasonality
R-squared - R-squared 0,0299
Adjusted R-squared - Adjusted R-squared 0,0271

Variable Std. Error t-Stastic Probability Variable Coefficient Std. Error t-Stastic Probability
CONSTANT NS CONSTANT 0,07 100,53 <0.01
Natural Vegetation NS Seasonality 0,10 -3,29 <0.01
Argriculturale Landscape NS Natural Vegetaion NS
Urban Landscape NS Argriculturale Landscape NS

Urban Landscape NS
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B - Results

Table B.14: Results of the MLR, based on the BBWS measurement points, GlobCover land
cover map and the 4km buffer

4km Buffer
Not Accumulated Not Accumulated + seasonality

R-squared 0,0578 R-squared 0,1098
Adjusted R-squared 0,0517 Adjusted R-squared 0,092

Variable Coefficient Std. Error t-Stastic Probability Variable Coefficient Std. Error t-Stastic Probability
CONSTANT 7,07 0,07 105,66 <0.01 CONSTANT 7,18 0,12 61,20 <0.01
Irrigated Cropland NS Seasonality -0,35 0,10 -3,45 <0.01
Rainfed Cropland NS Irrigated Cropland NS
Mosaic Cropland NS Rainfed Cropland -0,01 0,00 -1,98 <0.05
Mosaic Vegetation 0,04 -3,62 <0.01 Mosaic Cropland 0,00 2,30 <0.05
Semi Forest NS Mosaic Vegetation 0,06 -3,79 <0.01
Shrubland NS Semi Forest -0,03 0,02 -2,00 <0.05
Forest -0,25 0,10 -2,46 <0.05 Shrubland NS
Urban NS Forest -0,22 0,11 -2,01 <0.05
Water Bodies NS Urban NS

Water Bodies NS

Not Accumulated + combined Not Accumulated + Combined + Seasonality
R-squared 0,0391 R-squared 0,0743
Adjusted R-squared 0,0359 Adjusted R-squared 0,0683

Variable Std. Error t-Stastic Probability Variable Coefficient Std. Error t-Stastic Probability
CONSTANT 0,07 107,06 <0.01 CONSTANT 7,22 0,09 84,66 <0.01
Natural Vegetaion 0,04 -3,53 <0.01 Seasonality 0,10 -3,41 <0.01
Argriculturale Landscape NS Natural Vegetaion 0,04 -3,59 <0.01
Urban Landscape NS Argriculturale Landscape NS

Urban Landscape NS

Accumulated Accumulated + seasonality
R-squared 0,0525 R-squared 0,0878
Adjusted R-squared 0,0400 Adjusted R-squared 0,0727

Variable Coefficient Std. Error t-Stastic Probability Variable Coefficient Std. Error t-Stastic Probability
CONSTANT 6,71 0,11 58,76 <0.01 CONSTANT 6,90 0,13 55,09 <0.01
Irrigated Cropland NS Seasonality -0,35 0,10 -3,42 <0.01
Rainfed Cropland 0,00 -2,81 <0.01 Irrigated Cropland NS
Mosaic Cropland 0,00 3,67 <0.01 Rainfed Cropland 0,00 -2,86 <0.01
Mosaic Vegetation -0,16 0,06 -2,49 <0.05 Mosaic Cropland 0,01 0,00 3,73 <0.01
Semi Forest -0,05 0,02 -3,16 <0.01 Mosaic Vegetation 0,06 -2,54 <0.05
Shrubland NS Semi Forest -0,05 0,01 -3,21 <0.01
Forest NS Shrubland NS
Urban NS Forest NS
Water Bodies NS Urban NS

Water Bodies NS

Accumulated + combined Accumulated + Combined + Seasonality
R-squared 0,0226 R-squared 0,0578
Adjusted R-squared 0,0161 Adjusted R-squared 0,0485

Variable Std. Error t-Stastic Probability Variable Coefficient Std. Error t-Stastic Probability
CONSTANT 0,11 60,64 <0.01 CONSTANT 0,12 56,22 <0.01
Natural Vegetaion 0,05 -2,13 <0.05 Seasonality 0,10 -3,37 <0.01
Argriculturale Landscape 0,00 2,38 <0.05 Natural Vegetaion 0,05 -2,16 <0.05
Urban Landscape NS Argriculturale Landscape 0,00 2,42 <0.05

Urban Landscape NS
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B - Results

Table B.15: Results of the MLR, based on the BBWS measurement points, GlobCover land
cover map and the 500m buffer

500m Buffer
Not Accumulated Not Accumulated + seasonality

R-squared 0,0697 R-squared 0,1049
Adjusted R-squared 0,0605 Adjusted R-squared 0,0931

Variable Coefficient Std. Error t-Stastic Probability Variable Coefficient Std. Error t-Stastic Probability
CONSTANT 6,96 0,06 115,03 <0.01 CONSTANT 7,15 0,08 88,27 <0.01
Irrigated Cropland NS Seasonality -0,35 0,10 -3,46 <0.01
Rainfed Cropland NS Irrigated Cropland NS
Mosaic Cropland NS Rainfed Cropland NS
Mosaic Vegetation 1,67 3,68 <0.01 Mosaic Cropland NS
Semi Forest NS Mosaic Vegetation 1,64 3,75 <0.01
Shrubland NS Semi Forest NS
Forest -0,96 0,23 -4,11 <0.01 Shrubland NS
Urban -0,32 0,09 -3,65 <0.01 Forest -0,96 0,23 -4,18 <0.01
Water Bodies Urban -0,32 0,09 -3,71 <0.01

Water Bodies

Not Accumulated + combined Not Accumulated + Combined + Seasonality
R-squared 0,0453 R-squared 0,0795
Adjusted R-squared 0,0390 Adjusted R-squared 0,0704

Variable Std. Error t-Stastic Probability Variable Coefficient Std. Error t-Stastic Probability
CONSTANT 0,06 116,46 <0.01 CONSTANT 7,12 0,08 88,76 <0.01
Natural Vegetaion 1,74 2,93 <0.01 Seasonality 0,10 -3,36 <0.01
Argriculturale Landscape NS Natural Vegetaion 1,71 3,00 <0.01
Urban Landscape 0,17 -3,77 <0.01 Argriculturale Landscape NS

Urban Landscape 0,17 -3,78 <0.01

Accumulated Accumulated + seasonality
R-squared 0,0635 R-squared 0,0988
Adjusted R-squared 0,0512 Adjusted R-squared 0,0839

Variable Coefficient Std. Error t-Stastic Probability Variable Coefficient Std. Error t-Stastic Probability
CONSTANT 6,62 0,12 57,26 <0.01 CONSTANT 6,81 0,13 53,91 <0.01
Irrigated Cropland 0,31 3,65 <0.01 Seasonality -0,35 0,10 -3,44 <0.01
Rainfed Cropland NS Irrigated Cropland 0,30 3,71 <0.01
Mosaic Cropland NS Rainfed Cropland NS
Mosaic Vegetation 9,87 2,45 4,03 <0.01 Mosaic Cropland NS
Semi Forest NS Mosaic Vegetation 2,40 4,10 <0.01
Shrubland NS Semi Forest NS
Forest NS Shrubland NS
Urban -0,76 0,20 -3,92 <0.01 Forest NS
Water Bodies 0,07 -3,31 <0.01 Urban -0,76 0,19 -3,99 <0.01

Water Bodies 0,07 -3,37 <0.01

Accumulated + combined Accumulated + Combined + Seasonality
R-squared 0,0508 R-squared 0,0861
Adjusted R-squared 0,0414 Adjusted R-squared 0,0740

Variable Std. Error t-Stastic Probability Variable Coefficient Std. Error t-Stastic Probability
CONSTANT 0,11 61,67 <0.01 CONSTANT 0,12 57,16 <0.01
Natural Vegetaion 1,86 3,67 <0.01 Seasonality 0,10 -3,42 <0.01
Argriculturale Landscape 0,00 2,55 <0.05 Natural Vegetaion 1,83 3,74 <0.01
Urban Landscape 0,21 -3,34 <0.01 Argriculturale Landscape 0,00 2,60 <0.01

Urban Landscape 0,21 -3,40 <0.01
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B - Results

Table B.16: Results of the MLR, based on the BBWS measurement points, GlobCover land
cover map and the 100m buffer

100m Buffer
Not Accumulated Not Accumulated + seasonality

R-squared 0,0666 R-squared 0,1018
Adjusted R-squared 0,0542 Adjusted R-squared 0,0870

Variable Coefficient Std. Error t-Stastic Probability Variable Coefficient Std. Error t-Stastic Probability
CONSTANT 6,86 0,08 80,83 <0.01 CONSTANT 7,05 0,10 70,51 <0.01
Irrigated Cropland 0,67 2,07 <0.05 Seasonality -0,35 0,10 -3,44 <0.01
Rainfed Cropland NS Irrigated Cropland 0,66 2,11 <0.05
Mosaic Cropland NS Rainfed Cropland NS
Mosaic Vegetation NS Mosaic Cropland NS
Semi Forest 1,73 3,53 <0.01 Mosaic Vegetation NS
Shrubland NS Semi Forest 6,13 1,70 3,60 <0.01
Forest -7,90 1,85 -4,28 <0.01 Shrubland NS
Urban -2,53 0,65 -3,87 <0.01 Forest -7,90 1,81 -4,36 <0.01
Water Bodies Urban -2,53 0,64 -3,94 <0.01

Water Bodies

Not Accumulated + combined Not Accumulated + Combined + Seasonality
R-squared - R-squared 0,0353
Adjusted R-squared - Adjusted R-squared 0,0321

Variable Std. Error t-Stastic Probability Variable Coefficient Std. Error t-Stastic Probability
CONSTANT NS CONSTANT 7,08 0,08 92,01 <0.01
Natural Vegetation NS Seasonality 0,10 -3,35 <0.01
Argriculturale Landscape NS Natural Vegetaion NS
Urban Landscape NS Argriculturale Landscape NS

Urban Landscape NS

Accumulated Accumulated + seasonality
R-squared 0,0532 R-squared 0,0884
Adjusted R-squared 0,0407 Adjusted R-squared 0,0733

Variable Coefficient Std. Error t-Stastic Probability Variable Coefficient Std. Error t-Stastic Probability
CONSTANT 6,80 0,12 55,70 <0.01 CONSTANT 6,99 0,13 52,86 <0.01
Irrigated Cropland NS Seasonality -0,35 0,10 -3,42 <0.01
Rainfed Cropland NS Irrigated Cropland NS
Mosaic Cropland NS Rainfed Cropland NS
Mosaic Vegetation 5,28 1,55 3,41 <0.01 Mosaic Cropland NS
Semi Forest 0,20 0,06 3,34 <0.01 Mosaic Vegetation 1,52 3,47 <0.01
Shrubland NS Semi Forest 0,20 0,06 3,40 <0.01
Forest -8,06 2,44 -3,31 <0.01 Shrubland NS
Urban -2,87 0,89 -3,24 <0.01 Forest -8,06 2,40 -3,36 <0.01
Water Bodies Urban -2,87 0,87 -3,30 <0.01

Water Bodies

Accumulated + combined Accumulated + Combined + Seasonality
R-squared - R-squared 0,0353
Adjusted R-squared - Adjusted R-squared 0,0321

Variable Std. Error t-Stastic Probability Variable Coefficient Std. Error t-Stastic Probability
CONSTANT NS CONSTANT 0,08 92,01 <0.01
Natural Vegetation NS Seasonality 0,10 -3,35 <0.01
Argriculturale Landscape NS Natural Vegetaion NS
Urban Landscape NS Argriculturale Landscape NS

Urban Landscape NS
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