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ABSTRACT 

Fixed support structures for offshore wind turbines are commonly used for shallow water (till 45 

meters). In many countries shallow-waters are rare. Floating support structures may be the solution 

for these areas. Many concepts have been developed but three concepts have been analyzed (spar, 

semi-submergible and the tension leg platform (TLP)) in the literature. This study focuses on the TLP, 

which has the lowest weight of these concepts but the dynamic system is complex and has significant 

more risk than the other support structures, for example the risk of resonance of structural 

elements.  

The structural integrity of the total structure is important for the tension leg platform wind turbine 

(TLPWT). This study investigates the modelling techniques of the flexible TLPWT, with the aim to 

model the dynamics of floating wind turbine correctly. An Aero-hydro-elastic-servo model is 

implemented in Matlab, which includes aerodynamics of the wind turbine, hydrodynamic loads on 

the floating structure and mooring system, the flexibility of the total structure and the control system 

of the wind turbine. This model solves the equation of motion with the Houbolt numerical time 

integration method. In addition, the validity of the model is confirmed by validation using an Orcaflex 

model. The model is used to analyze the effect of the gyroscopic moments and the non-harmonic 

periodic load oscillations on the motion responses.  

Steel structures are vulnerable to cyclic loading. Small cracks may initiate and grow in the structure, 

this is called fatigue. Fatigue is stress driven and resonance drives stresses. The fatigue performance 

can be improved by avoiding resonance of structural elements. A method has been developed to find 

a design with the natural frequencies outside the wind, wave and passing blade frequencies. The 

method consists of two algorithms, mode tracking algorithm and the selection algorithm. The 

method is used for a North-Sea site and the result of this an improved design, which has the natural 

frequencies outside the frequencies where wave and wind have energy. This design has better 

dynamic characteristics, which indicate better fatigue performance, in comparison of the reference 

TLPWT, which is predominantly designed to prevent slack tendons. The approach has shown to be 

successful but the method can only assist in the preliminary design phase of a TLPWT for any given 

site.   
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MATRIX 
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Symbol Definition Symbol Definition 

𝐴 Area 𝑎 Acceleration structure  

𝐶 Coefficient 𝐷 Diameter 

𝑑 depth 𝐹 Force  

𝑓 frequency 𝑓 Force per unit length 

𝑔 Gravity acceleration 𝐻 Transfer function 

ℎ Time step 𝐼 Mass moment of inertia  

𝑘 Wave number 𝐿 Momentum 

𝑙 Lift force per unit length 𝑃 Power 

𝑝 pressure 𝑝 Design parameter 

𝑅 Radius rotor blade 𝑟 radius 

𝑆 Spectrum 𝑇 period 

𝑡 Time 𝑢 Environmental velocity 

𝑣 Velocity TLPWT 𝑥 Displacement TLPWT 

GREEK  
Symbol Definition Symbol Definition 

𝛼 Angle of attack 𝛽 Numerical parameter  

𝛾 Numerical parameter  𝛾 Peak enhancement factor 

𝜀 Error  𝜀 strain 

𝜁 Wave amplitude 𝜃 Numerical parameter 

𝜃 Flow angle  𝜃 Pitch angle  

𝜂 Surface elevation 𝜅 Shear correction factor 
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𝜆 Eigenvalue 𝜆 Wave length 

𝜇 Direction  𝜈 Poisson ratio  

𝜉 Damping ratio 𝜌 Density 

Φ Velocity potential  𝜎 Standard deviation  

𝜙 Phase angle Ψ Mode shape 

Ω Rotational speed disk 𝜔 Angular velocity 
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Symbol Definition Symbol Definition 

⋆𝑎 Added mass ⋆𝑑 drag 

⋆𝑒 Element matrix ⋆𝑙 lift 

⋆
→ vector ⋆̇ Derivative with respect to time 

⋆𝑇 transpose ⋆𝐻 Complex conjugate 

ABBREVIATIONS 
Symbol Definition Symbol Definition 

BFWT Bottom Founded Wind Turbine EoM Equation of Motion 

FLS Fatigue limit state FPO Floating Production Offloading 

FPSO 
Floating Production Storage 

Offloading 
FWT Floating Wind Turbine 

MAC Modal assurance criterion MSL Mean Sea Level 

PI Proportional and Integral  ODE Ordinary Differential Equation 

RMSE Root Mean Square Error RNA Rotor Nacelle Assembly 

SPM Single Point Mooring TLP Tension Leg Platform 

TLPWT Tension Leg Platform Wind Turbine TSR Tip-speed ratio 

ULS Ultimate limit state   
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1 INTRODUCTION 

1.1 BACKGROUND 
Fixed support structures for offshore wind turbines are commonly used for shallow water, till a water 

depth of approximately 45 meter. In the United States, China, Scotland and many other countries 

shallow-water areas are rare. For these countries floating support structures may be a solution to 

expanding offshore wind in deeper waters [1]. Different floating offshore wind turbine (FOWT) 

concepts are developed, but three main concepts have been investigated, namely the spar (see 

Figure 1-1, a), semi-submersible (see Figure 1-1, b) and tension leg platform (TLP) (see Figure 1-1, c) 

concepts. The floating principle for these concepts are in other existing offshore oil and gas 

applications.  

   
(a) (b) (c) 

Figure 1-1: Floating wind turbine concepts [2] 

The difference between these concepts is the way how they stabilize. The spar is ballast stabilized, 

the semi-submersible is buoyancy stabilized and the TLP is mooring stabilized. The spar concept is 

used in the Hywind windfarm [3], worlds first floating offshore wind farm. For stability requirements, 

the draft of the spar should be larger than the hug height. The hug height is the distance from the 

mean water level (MWL) till the rotor height. This makes the spar applicable for larger water depths. 

However, a major challenge of this concept is the pitch motion. Large pitch motion can affect the 

gyroscopic stability of the hull [4]. The semi-submersible is a promising concept and lighter than the 

spar concept. For maximal performance, active ballast systems should be used to compensate for the 

change wind speed and direction [4]. The TLP is stiffer in heave, roll and pitch motion in comparison 

to the other concepts. This results in a lower natural period [5], typically outside the frequencies 

where waves have energy. A summary of the concepts is given in Table 1-1.  
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Table 1-1: Qualitative assessment [6] of offshore wind turbine platform classes:  + advantages, 0 neutral - disadvantage 

 TLP Spar Semi-submergible 

Stability Mooring Ballast Buoyancy 

Natural periods + 0 - 

Coupled motions + 0 - 

Wave sensitivity 0 + - 

Turbine weight 0 - + 

Moorings + - - 

Anchors - + + 

1.1.1 Tension-Leg-Platform Concept 

The TLP has the lowest weight of all three concepts and is expected to result in a better cost-effective 

design. The TLP concept has many similarities with the mini-TLP, used for the offshore oil and gas 

industry. A mini-TLP is a single surface-piercing column structure (Figure 1-2, b). The mini-TLP is 

designed for deep-water applications, especially for smaller oil and gas fields [7]. The structure 

consists of a tower and three legs, supported by six tendons. A tendon can be made of chains, steel 

wire or synthetic lines. Other than the mini-TLP, which is designed to minimize the heave motion to 

allow the application of steel catenary riser, the tension leg platform wind turbine (TLPWT) is 

designed to avoid resonance of the waves, wind and passing blade frequencies of the wind turbine 

[4]. 

  
(a) (b) 

Figure 1-2: (a) Tension leg turbine platform concept [4]. (b) SeaStar mini-TLP [7].  

The dynamic system of the TLPWT is complex. Tracy [8] investigated the motions of the TLPWT in 

time domain simulations. This study showed that high pitch motions can lead to slack tendons and 

snap loads. Snap loads are shock loads on the mooring lines due to a slack wire becoming taut caused 

by large wave- and wind-induced motions. Slack tendons can result in total failure of the TLPWT. A 

slack tendon should be avoided under all conditions. In extreme cases, the TLPWT can be confronted 

with 50% higher loads than a fixed offshore wind turbine. The simulations of Tracy’s also show the 

possibility of a number of resonance excitation of the TLP. The design of a TLPWT has significant 

more risk to encounter resonance in structural elements than the other support structures. However, 

if a successful design can be developed for offshore wind turbines, than the design is a light-weight 

and cost-effective offshore foundation, which can be used for a large range of water depths [9].  
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The study of Tracy’s shows the possibility of resonance excitations of the TLPWT, but also time 
simulations of Bluewater show resonance excitations. Figure 1-3 gives an example of resonance 
motions of the wind turbine tower. The TLPWT with natural period of the tower bending mode equal 
to the wave peak period (blue) shows large motion amplitude in comparison of the TLPWT with the 
natural period of the tower bending mode lower than the wave peak period.  
 

 
Figure 1-3: Example resonance 

The dynamic properties of a TLP are shown in the list below [9].  

• A TLP structure is unstable and is depending on the mooring lines, which provide the stability 

of the system. 

• The tendons of the TLP limit the motions. In case of a large motion, the TLP will also have a 

displacement in vertical plane.   

• Low stiffness in surge and sway directions, but high stiffness in heave. The high stiffness is 

provided by the pretension and the high mooring stiffness.    

1.2 WINDFLO 
Bluewater Energy Services, hereafter called Bluewater, is a company, which is specialized in 

designing and operating Floating Production Storages and Offloading (FPSO) tankers, Floating 

Production and Offloading (FPO) and Single Point Mooring (SPM) systems for the oil and gas industry. 

Currently Bluewater investigates the floating wind energy market and started the WindFlo project in 

2017, to develop a TLP-type floating wind turbine concept. The WindFlo concept is a three legged 

TLP-type support structure. The TLPWT is the lightest TLPWT in the market and includes innovative 

solutions for the mooring system and anchoring. The TLPWT has three rectangular shaped pontoons 

with each two tendons. A cylindrical shaped centre column connects the wind turbine tower and the 

pontoons. The WindFlo concept has no active systems. The TLPWT is suitable for water depths, 

deeper than 60 to 80 meters, depending on the wave conditions of the offshore site.   

  
(a) (b) 

Figure 1-4: WindFlo wind turbine concept illustrations 
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1.3 PROBLEM STATEMENTS 

1.3.1 Statement 1: Resonating motions of structural elements 

A cost competitive floating wind structure has to operate for at least 25 years in a harsh 

environment. The aerodynamic and hydrodynamic loads acting on the TLPWT are oscillating loads. It 

is known that steel structures are vulnerable for cyclic loads. Small cracks may initiate and grow in 

the structure. This phenomena is called fatigue. Fatigue is defined as the damage accumulation due 

to the oscillating stress and strains in the material [10]. A fatigue assessment should be performed to 

prove the fatigue life of at least 25 years is assured. Possible fatigue damage growth over time can be 

computed with a spectral fatigue analysis or time domain fatigue analysis. Spectral fatigue analysis 

can only be used for linear dynamical systems. However, the TLPWT is a nonlinear dynamical system, 

which means that a time-consuming time domain fatigue analysis needs to be performed.   

In the design phase of the TLPWT many design iteration are needed, to optimize the design. 

Linearization of the equation of motion may help to reduce the computation time and cost. Kim [11] 

proposed an innovative method to analyze the fatigue of a floating wind turbine. The transfer 

function of the combined wave and wind forces is approximated by artificial neural networks. Salih 

[12] investigated several methods to linearize the equation of motion for a TLPWT, using a rigid-body 

model to compute the fatigue damage. Salih successfully developed a method to predict the fatigue 

damage of a rigid TLPWT, but many research questions are still unanswered, especially if the 

structure can be assumed to be rigid.   

The dynamic interaction of the fluctuating loads and the moving structure is complex, for example 

the interaction of the wind- and wave response cannot be ignored. Engineering practice shows that 

the effect of cyclic loading can be reduced significantly by avoiding the resonating motions or 

providing sufficient damping in the system. This can be illustrated by the dynamic amplification 

factor (DAF), which is defined as the ratio between the dynamic response and the quasi-static 

response. Figure 1-5 gives the DAF for a single degree-of-freedom dynamic system, showing the 

impact upon the DAF for difference damping ratios.   

 
Figure 1-5: Dynamic amplification factor 

1.3.2 Statement 2: Absence of elastic model 

Adequate computation model to quantify the motions of a TLPWT including its own deformations is 

required. This model needs to meet the requirements of modelling structural damping, 

hydrodynamics, aerodynamics, flexibility of the structure and the control system of the wind turbine. 

This model needs to capture the complex dynamic system of the TLPWT, for example the wave- and 
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wind coupling. Two commonly used time domain programs are coupled: FAST-Orcaflex, but this 

coupling only works for rigid models in Orcaflex. Orcaflex [13] is a commercial software package, 

developed by Orcina, for dynamic analysis of marine systems. FAST [14] is an open-source software 

package, developed by National Renewable Energy Laboratory (NREL), for simulating the coupled 

dynamic response of wind turbine. In this situation, Orcaflex is used to compute the hydrodynamic 

loading and the mooring line responses of the TLPWT and FAST is used to compute the blade 

responses and the aerodynamic loading. The Fast-Orcaflex coupling is highly time consuming because 

the response of the wind turbine defines the time step size that is used to the complete system 

The equation of motion (EoM) is a very stiff ordinary differential (ODE) equation due to the large 

differences in stiffness. It may be expected that the MATLAB build-in first-order ODE-solvers become 

numerical instable. Non-physical oscillations may be visible in the time simulations or the entire 

simulation is blown up. Several numerical time integration methods will be investigated and a 

numerical time integration method will be studied of that perform time simulation which take the 

flexibility of the total structure into account.   

1.4 GOALS OF THIS THESIS 
The fatigue lifetime of the structure is key dependent of the number of oscillations and the stress 

amplitudes. The number of oscillations is depending on the force frequencies and these are site 

dependent. The stress amplitudes are depending on the force amplitude, frequency and geometry of 

the structure. The stress amplitudes can be reduced by avoiding resonance of structural members. 

Therefore, the aim of this study is to automate the design exploration and find a good starting point 

to design a TLPWT with the critical natural frequencies outside the frequency spectrum of the 

environmental loads and wind turbine as well.    

In order to find design parameters for a TLPWT with the critical natural frequencies outside the 

frequency spectrum, first the critical natural frequencies are identified. Secondly, the influence of the 

gyroscopic effect and the nonlinear stiffness on the natural frequencies are investigated. Finally, the 

dynamical system is analyzed to identify the frequency spectrum of the environmental loads and 

passing blade frequencies, which may be different for a floating offshore wind turbine.   

The main research question can be formulated as:  
‘’Given a site, how to achieve a primary design in the tender phase of a TLP-type floating wind 

turbine with the critical frequencies outside the loading frequencies?’’  

1.5 SCOPE OF WORK 
First, in order to quantify the natural frequencies of the TLPWT and for computing the motion 

responses of a TLPWT, an aero-hydro-elastic-servo model has to be developed. The focus of this 

model is correctly describe the interaction of the floating support structure, the mooring system and 

the wind turbine. The Aero-hydro-elastic-servo model includes the aerodynamics of the wind turbine 

(aero), the hydrodynamics and hydrostatics loads (hydro), the elasticity of the floating support 

structure, tendons and wind turbine tower (elastic) and the control system of the wind turbine 

(servo).  

The current study does not include the wind turbine blade responses. The wind turbine is modelled 

as a rigid actuator disk. Blade response is especially of interest for the blade-nacelle and the nacelle-

tower connection, but is expected to have limited impact on the pontoon-tower connection, due to 

the large flexible tower. The control system is modelled as a closed-form linear control system based 

on the NREL control system. A more advanced control system can be incorporated in further studies. 
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The NREL control system may not be suitable for a floating wind turbine, but investigating the control 

system for floating wind turbine is outside the scope of this study.  

Bluewater has developed a wind turbine external function for their time simulations. This function 

models the aerodynamics loads of the wind turbine, tower shadow effect and the control system of 

the wind turbine. This function is included in the Matlab model. 

This study investigates four hydrodynamic models (First-order hydromechanics, second-order 

hydromechanics, third-order hydromechanics and Morison equation) to compute the hydrodynamic 

loads. The model uses the Morison equation, which is suitable for slender structures where 

diffraction can be neglected. This assumption is not investigated in this study, but a study of 

Bluewater shows that diffraction can be neglected [15].   

It is well known that third-order wave loads are important for structures when the wave-amplitudes 

have the same magnitude as the cross-sectional dimensions, the structure a has surface-piercing 

column and has natural periods between 1 and 5 seconds [16]. The responses of these loads are 

called ringing vibrations and are observed in full-scale TLPs used in the oil and gas industry. The 

TLPWT complies these criteria, depending on the offshore site ringing loads may be important. 

However, these loads are omitted in this study, but ringing responses should be investigated in 

further studies.  

1.6 THESIS OUTLINE 
 Chapter 2: Theoretical Review  
A theoretical background of wind turbine dynamics, wind turbine loads computation methods, 

hydromechanics models, environmental modelling, nonlinear dynamics and numerical time 

integration methods are investigated in this chapter.  

 Chapter 3: Development of Aero-Hydro-Elastic-Servo model 
This chapter explains the aerodynamics, structural, hydrodynamic and the servo model. This 

chapter is finalized with validation of the Aero-hydro-elastic-servo model. The Aero-Hydro-Elastic-

Servo model is validated with Orcaflex. Orcaflex is multiple times used for floating wind turbines 

studies.  

 Chapter 4: Dynamical  analysis 
In this chapter the effects of the rotating blades on the natural periods and motions are 

investigated, including the effect of the nonlinearities on the natural periods and non-harmonic 

periodic loads of wind turbines are investigated.  

 Chapter 5: Development and application of the algorithms 
The design process is automated. Two algorithms are developed to track the natural frequencies 

and select a good starting point. In addition, a design case is performed on the reference TLPWT 

for a North-Sea site to verify and to possible improve the design of the TLPWT from a resonance 

point of view.  

 Chapter 6: Conclusions and Recommendations 
From the applications results conclusions are drawn about the algorithms, finalized by 

recommendations for further research, improvements for the model and improvements of the 

algorithms.  
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2 THEORETICAL REVIEW 

2.1 INTRODUCTION 
The following chapter focuses on the underlying principles of the wind turbine dynamics, including 

typical phenomena of wind turbine like passing blade frequencies, gyroscopic moment, aerodynamic 

damping and the control system. Also this chapter focuses on the commonly accepted modelling 

techniques for the environment, computation methods of aerodynamics loads, hydrodynamics 

models and the modelling techniques of mooring system. In addition, the fundamentals of numerical 

time integration methods are explained in detail and investigated. Last, the numerical analysis 

techniques of nonlinear and linear dynamics are investigated and explained.  

2.2 WIND TURBINE 
The wind turbine is the most important part of the TLPWT. Firstly, the principles of the wind turbine 
are explained. The dynamics of the wind turbine should be correct implemented in the model and 
the typical phenomena of the wind turbine are investigated with respect to the fatigue lifetime of the 
TLPWT. The following phenomena of the wind turbine are investigated:  

• Passing blade frequencies 

• Gyroscopic moments 

• Aerodynamic damping 

• Control system 

2.2.1 Principles of wind turbine 

A wind turbine converts kinetic energy of the wind into electric energy. The total power in the wind 

can be determined with equation (2-1). By removing kinetic energy from the wind, the wind speed 

will decrease, but only the air mass of the wind that is passing the rotor disk. The air mass that slows 

down will stay separated from the air mass that did not pass the rotor disk. A boundary layer can be 

drawn, which is illustrated in Figure 2-1. By assuming that atmospheric pressure remains constant, 

then the area of the air flow upstream should increase to accommodate the slower moving air [17]. 

The area increases because the continuity of mass flow remains constant.  

𝑃𝑤𝑖𝑛𝑑 =
1

2
𝜌𝑎𝑖𝑟𝐴𝑑𝑢𝑤𝑖𝑛𝑑

3  (2-1) 

 𝑃𝑤𝑖𝑛𝑑 Power wind 𝜌𝑎𝑖𝑟 Density air 
 𝑢𝑤𝑖𝑛𝑑  Wind speed 𝐴𝑑 Area rotor disk 

 
Figure 2-1: Energy extracting stream-tube of a wind turbine [17] 
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The presence of the wind turbine causes the wind speed to drop. In addition, the wind that is 

approaching the rotor disk is already slower than the free-stream wind. After passing the rotor disk, 

there is a pressure drop. At a certain distance behind the wind turbine, the pressure reaches the 

atmospheric pressure to satisfy equilibrium. To reach equilibrium static pressure rises, which is 

caused by a decrease in velocity (see Figure 2-2). Thus a loss of kinetic energy of the wind [17]. The 

total power that is produced by the rotor disk can be calculated by equation (2-2).  

𝑃𝑝𝑟𝑜𝑑𝑢𝑐𝑒 =
1

4
𝜌𝑎𝐴𝑑(𝑢1

2 − 𝑢2
2)(𝑢1 + 𝑢2) (2-2) 

 𝑃𝑝𝑟𝑜𝑑𝑢𝑐𝑒 Power production 𝜌𝑎𝑖𝑟 Density air 

 𝑢 Wind speed 𝐴𝑑 Area rotor disk 

 

Figure 2-2: Energy extracting actuator disk and streamtube 

The theory of a rotor disk only explains how kinetic energy from the wind is converted to rotor 

energy in an ideal situation. The fundamental difference with the reality is that the actual power 

depends on the aerodynamic lift and drag forces [18]. Aerodynamic lift and drag forces are caused by 

air flow crossing the blades. The physical explanation of the reaction force is that the streamline 

curves around the wind turbine blade. The pressure far from the blade is equal to the atmospheric 

pressure. Thus, a pressure difference is present between the fore and aft of the blade. Integrating of 

the pressure around the blade gives a reaction force, the orthogonal component is the lift force and 

the parallel component the drag force (Figure 2-3). The lift/drag-ratio of the blade is a key indicator 

for the aerodynamic efficiency. However, the drag force for a wind turbine blade is very low [19].  

The free-stream velocity is defined as the wind speed infinitely far away from the wind turbine when 

the wind turbine is kept as referential and thus the free-stream velocity is the vector sum of the 

angular velocity of the blade and the wind velocity. The angle between the airfoil chord and the free-

stream velocity is the aerodynamics angle of attack. As explained above, the lift force is 

perpendicular and the drag force is parallel to free-stream velocity. The lift force can be resolved in 

the plane of the rotation. The tangential component, Ltorque (Figure 2-3, b), constitutes the driving 

torque of the rotor and the normal components, Lthrust, (Figure 2-3, b), are the thrust force of the wind 

turbine. The torque on the wind turbine drives the generator of the wind turbine [19]. The drive train 

of a wind turbine that converts the rotational energy into electricity is outside the scope of this 

thesis, but can be found in many books, for example [19].  
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(a)  (b)  

Figure 2-3: (a) Pressures around a rotor blade [19] (b) Velocities and aerodynamic forces acting on a turbine blade – like 
rotor [19] 

2.2.2 Passing blade frequencies 

The thrust force variations are due to wind turbulence and non-harmonic periodic processes. These 

non-harmonic periodic processes are mainly due to the tower shadow effect and the wind shear 

effect. These processes occur even in wind without wind turbulence and can be approximated by a 

Fourier series [20]. The thrust force oscillations are for a three bladed wind turbine the 3P and it 

multiples. The passing blade frequencies are important for the power quality, control system and 

fatigue life of the blades [21]. The power output of the wind turbine fluctuates at a frequency thrice 

that of the rotational speed of the rotor [22]. The influence of passing blade frequencies on power 

and the thrust force is depending on the control region, especially when blade-pitch controller is 

active [22]. Also the control system can be used to avoid resonance of the tower bending modes 

caused by the passing blade frequencies.   

2.2.2.1 Tower shadow effect 

The tower shadow effect is the dynamic interaction between the tower and the blades. The tower 

shadow effect for downwind turbines is larger than for upwind wind turbines. For upwind wind 

turbines the wind velocity decreases close to the tower. The lower velocity is due to the reflection of 

the wind through the tower. Due to the lower wind speed, the trust force is slightly lower. The 

oscillations in the thrust force due to the tower shadow effect are important for the fatigue 

assessment of the wind turbine [23].   

  
(c)  (d)  

Figure 2-4: (a) Velocity of the wind in the vicinity of the tower (b) Geometric of the equation 
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The tower shadow effect for wind turbines occurs even at constant wind speed. The most common 

method to model the tower shadow effect is to use a doublet [24]. A doublet is a potential flow 

element. Superposing the stream function of the doublet and the uniform flow, the equation of the 

reflected wind can be derived and is expressed by the equation (2-3) and the definitions are given in 

Figure 2-4.  

𝑢𝑡𝑠 = 𝑢𝑤𝑖𝑛𝑑 ((
𝐷

2
)
2 (𝑟 sin 𝜃)2 − 𝑏2

𝑏2 + (𝑟 sin 𝜃)2)   (2-3) 

 𝑢𝑡𝑠 Tower shadow wind velocity 𝑢𝑤𝑖𝑛𝑑  Wind velocity 
 𝐷 Diameter tower 𝑟 radius 
 𝜃 Azimuth of wind turbine blade 𝑏 Distance tower and rotor plane 

The tower shadow effect has two important parameters. The distance from the blade to the centre 

of the tower (b in Figure 2-4) and the diameter of the tower (D, in Figure 2-4). Decreasing b, the 

influence of presence of the tower increases, meaning that the redirected wind velocity is higher. 

Figure 2-5 shows the influence of the presences of the tower.   

 
(a)  (b)  

Figure 2-5: (a) Dimensionless Uts with varying r (b) Dimensionless Uts with varying b 

2.2.2.2 Wind shear effect 

The main wind speed increases with height, this is called the shear effect. The rotating blades 

encounter different wind conditions through a complete cycle. For example, a blade rotating 

upwards would encounter higher wind speed than a blade rotating downwards (see Figure 2-6). 

During each complete cycle, the thrust force is oscillating with the same number of blades. The 

influence of the wind shear effect on the thrust force is depending on the tower height and the wind 

shear profile. 
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Figure 2-6: Schematic of blade and wind shear [25] 

2.2.2.3 Conclusions 

The tower shadow effect and the wind shear effect are the main source of the non-harmonic periodic 

loads, which oscillations are in 3P and its multiples. The influence of these periodic oscillations are 

important for the fatigue life of the wind turbine blades, but the effect of these periodic oscillations 

on the motion response of the RNA and the pontoon-centre column connection (PC-connection) are 

investigated in chapter 4 of this study.  

2.2.3 Gyroscopic effect 

When a rotating structure is subjected to a rotation perpendicular to the plane of a rotation, then the 

structure experiences gyroscopic effects. The motions involved are very complex and are difficult to 

analyze. The gyroscopic effect takes place in every system where there is a rotating mass part and it 

is defined as follows by Shilovskii [26]: ‘’Any couple, apparently tending to incline the axis of rotation 

body in a given direction, actually causes an inclination of the axis in the plane perpendicular to that 

given direction’’.  

Instead of a fixed rotation axis system, a rotation axis system is used that is moving with the rotating 

structure. When the rotating structure is rotating with a constant angular velocity, then the angular 

moment is constant. The angular moment is a vector quantity, because it has a direction and a 

magnitude. The magnitude of the angular momentum is equal to equation (2-4) and the direction of 

the angular momentum is perpendicular to the angular velocity.  

�⃗� = 𝑱Ω⃗⃗  (2-4) 

 𝑱 = [

𝐼𝑥𝑥 𝐼𝑥𝑦 𝐼𝑥𝑧

𝐼𝑦𝑥 𝐼𝑦𝑦 𝐼𝑦𝑧

𝐼𝑧𝑥 𝐼𝑧𝑦 𝐼𝑧𝑧

] 

 𝐿 Angular momentum Ω Angular velocity 
 𝑱 Inertia tensor   

If an external moment is working on the system and results into a change of motion, the direction 

and the magnitude of the angular moment change. The change of angular momentum is equivalent 

to the angular impulse caused by the change in orientation. The change of angular momentum is a 

torque. The derivative with respect to time of a rotating structure with respect to a fixed axis system 

consist two parts, the angular acceleration of the structure and the correction term of the rotating 

reference frame. These equations are also known as Euler rotation equations of a rigid body 

(equation (2-5)). The last term in the equation is known as the gyroscopic moment.  
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𝜕�⃗� 

𝜕𝑡
=

𝜕𝑱Ω

𝜕𝑡
+ Ω × 𝑱Ω (2-5) 

 𝐿 Angular momentum Ω Angular velocity 
 𝑱 Inertia tensor   

Under some circumstances, the floating wind turbine is effected by gyroscopic moments. There are 

two motions of the wind turbine that generate a gyroscopic moment; a yaw motion and a pitch 

motion. For the first motion, the gyroscopic moment occurs when the rotating blades are moved into 

the direction of the wind or the floating wind turbine is rotating around the z-axis. For the second 

motion, the TLPWT is tilting upwards and downwards or the tower is bending around the y-axis [26].    

The angular velocity of the wind turbine and the angular velocities of the floating support structure 

are uncoupled. The angular velocity of the wind turbine is constant, the angular momentum vector 

changes only due to rotation of the floating support structure. Filling in equation (2-5) gives equation 

(2-6). With this equation is concluded that a rotation of the floating support structure around the z-

axis gives a moment around the y-axis and vice versa [20].  

𝜕�⃗� 

𝜕𝑡
=

𝜕𝑱Ωw

𝜕𝑡
+ Ωw × 𝑱Ω𝑇𝐿𝑃 = Ω𝑤 [−

0
𝐽𝑧�̇�𝑧

𝐽𝑦�̇�𝑦

] (2-6) 

 Ω𝑤 = [Ω 0 0]𝑇 

 Ω𝑇𝐿𝑃 = [�̇�𝑥 �̇�𝑦 �̇�𝑧]
𝑇

 

 𝐿 Angular momentum Ωw Angular velocity wind turbine 
 𝑱 Inertia tensor Ω𝑇𝐿𝑃 Angular velocity TLP 
 �̇�𝑖  Angular velocity in direction i   

For a three blade wind turbine the inertia tensor is constant and diagonal, also the inertia is the same 

in the symmetry plane (Iyy = Izz). Therefore, the gyroscopic moments are written as matrix equation, 

as (2-7).  

𝑀𝑔𝑦𝑟𝑜 = Ω𝑤 [
0 0 0
0 0 𝐼
0 −𝐼 0

] [

�̇�𝑥

�̇�𝑦

�̇�𝑧

] (2-7) 

 Ω𝑤 Angular velocity wind turbine blades 
 𝐼 Mass moment of inertia rotor 
 �̇�𝑖  Angular velocity TLP in direction i 

The wind turbine is following the motions of the nacelle-tower connection. A gyroscopic moment is 

generated perpendicular to plane of rotation. For a fixed offshore wind turbine the gyroscopic 

moments are small, and can be neglected. The yaw motions and pitch motions of a FWT are much 

larger than the motions of BFWT, therefore the gyroscopic moments may be relevant for the motion 

responses of the TLPWT. The effect of the gyroscopic moment is further investigated in chapter 4 of 

this study.   
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2.2.4 Aerodynamic damping 

The interaction of the blades and the airflow cannot be neglected. The aerodynamic forces and 

moments depend on the relative velocity with respect to the structure, especially for flexible 

structures like wind turbines blades. The structural motions affect the airflow and in general this lead 

to a reduction of the aerodynamic moments and forces. This effect is called damping because the 

force and moment reduction is related to the velocity term in the equation of motion [27].  

The aerodynamic forces and moments are depending on the angle of attack of the wind flow and 

variation in this angle can reduce or increase the aerodynamic forces. The aerodynamic forces can 

increase with the structural response, the increase of the forces is called negative damping. This 

means that the flow supplies energy to the system [28]. The aerodynamics are coupled with the 

surge and pitch motions of the floating support structure. Those motions are the most dominant 

motions with respect to the yaw and heave motions of the system, because the moments in yaw-

direction and forces in heave-direction are smaller [29]. The aerodynamic damping reduces the 

aerodynamic forces. The aerodynamic damping is higher than the hydrodynamic damping, more 

pronounced for high winds.  

2.2.5 Control system 

The control system of the wind turbine includes of multiple control systems. The primary function of 

the control system is to ensure that the wind turbine operates at preferred settings. The control 

system maximizes the power production within the constraints of the grid power input capability, 

prevent extreme loads, minimizes fatigue damage and ensure safe operations.  

The control system of the wind turbine can be split in the safety control system, the supervisory 

control system and the power control system. The safety control system checks if the power control 

and supervisory control are working correctly. The safety control system activates when the power 

control and supervisory control are failing. The system works independent of the power control 

system and supervisory control system. If a failure is detected, the braking action of the generator is 

used to assist the shutdown of the wind turbine in a safe manner [17].  

The supervisory control system manages the wind turbine between the different operation stages. 

The operations stages are the stand-by, start-up, power production, shutdown stage. The switch 

from an operation state to another operation state is divided into stages. The supervisory control 

checks for each stage if it is successfully completed. The supervisory controller shuts the wind turbine 

down if a stage is not completed in a certain time or if a fault is detected [17].  

2.2.5.1 Power control system 

The power control system controls the blade-pitch controller, variable-speed controller and the yaw 

controller. The blade-pitch controller controls the pitch of the blade in order to control the power 

output. However, changing the pitch angle of the blade takes time, the change is typically in the 

order of a degree per second. The variable-speed controller controls the generator torque, the 

generator torque can change with a negligible decay. The yaw controller keeps the nacelle aligned 

with the wind direction [30].  
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The variable-speed controller and blade-pitch controller are independent control loops. The variable-

speed controller uses the generator speed to calculate generator speed error and the generator 

speed demand. The blade-pitch controller also uses the generator speed to calculate a blade-pitch 

error and a blade-pitch demand. The yaw controller uses the wind direction to calculate a nacelle-

yaw-error and calculates a nacelle-yaw demand. The demands are used to update the yaw angle of 

the nacelle, pitch angle of the blades and the rotational speed of the wind turbine to control the 

aerodynamic torque, which constitutes the generator [17]. When the wind speed varies close to the 

rated speed, it is possible that both control systems are active and the controllers are conflicting. 

However, this is outside the scope of this study.  

The power controller operates in 6 wind speed regions. Region 1 spans the operation between 

startup and the cut-in wind speed. The cut-in wind speed is defined as the wind speed when the 

generator is turned on and the wind turbine starts producing power. Region 2 uses the variable-

speed controller to maximize the power production. The blade pitch angle is kept constant and the 

rotor speed varies. The goal of the variable-speed controller is to keep the tip speed ratio optimal. 

Region 1.5 is the transition region between region 1 and region 2. Region 3 is the constant power 

region, by adjusting the blade pitch angle it becomes possible to have a constant energy production. 

In region 3, the control system reduces the thrust when there is an increased wind velocity. Region 

2.5 is the transition region between region 2 and region 3. Region 4 is the last region and is the cut-

out region. The wind speeds are above the cut-out wind speed [31]. 

 
Figure 2-7: Steady-state rotor thrust as function of the wind speed for the 5-MW turbine  

2.2.5.2 Conclusions 

The control system regulates the power production in high winds and optimizes the production in 

low winds, however the blade-pitch controller and the variable-speed controller have major impact 

on the wind turbine loads. The controller also prevents extreme loads and minimizes the fatigue 

damage by controlling repeated bending caused by the weight of the rotor and unsteady 

aerodynamics loads [17]. It is concluded that the variable-speed controller and blade-pitch controller 

of the wind turbine should be taken into account. Neglecting the control system gives unreliable 

loads and motion responses. However, the yaw controller has negligible effect on the loads and 

motions and can be neglected.   
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2.3 AERODYNAMIC LOAD 
The aerodynamic loads are split in the aerodynamic loads on the tower and the wind turbine loads. 

The wind turbine loads are given in Figure 2-8 and the loads are computed by a momentum analyses. 

The wind turbine loads can be computed by an actuator disk, blade element theory (BET) or by 

computation fluid dynamics (CFD). Actuator disk is a one-dimensional momentum method, BET is a 

two-dimensional momentum method [32]. Both methods are explained in detail.  

 

Figure 2-8: Global wind turbine loads 

2.3.1 Actuator disk 

If the actuator disk is used, then the wind turbine is simplified by assuming an infinite number of 

blades, meaning that the turbine has infinite number of lifting lines. The momentum theory assumes 

a steady incompressible flow and axisymmetric, the fluid is homogeneous and inviscid [32]. The 

Bernoulli equation can be used with the given assumptions.  

 

Figure 2-9: One-dimensional momentum analysis 

The pressure drop at the rotor of wind turbine is uniform over the actuator disk. The flow is assumed 

to be in axial direction of the actuator disk. The Bernoulli equation for the control volumes 1 and 

2((see Figure 2-10)) are given in equation (2-8) and equation (2-9) respectively, where the definitions 

are given in Figure 2-9.  



Theoretical review 

16 

November 2018 

𝑝1 +
1

2
𝜌𝑎𝑖𝑟𝑢1

2 = 𝑝𝑑+ +
1

2
𝜌𝑎𝑖𝑟𝑢𝑑

2  (2-8) 

𝑝𝑑− +
1

2
𝜌𝑎𝑖𝑟𝑢𝑑

2 = 𝑝2 +
1

2
𝜌𝑎𝑖𝑟𝑢2

2 (2-9) 

 𝑝 pressure 𝑢 Wind velocity 
 𝜌𝑎𝑖𝑟 Density air   

The pressure at the start of the streamtube and the pressure far away are equal to the atmospheric 

pressure. The pressure drop at the actuator disk can then be expressed with equation (2-10).  

Δ𝑝 = 𝑝1 − 𝑝2 =
1

2
𝜌𝑎𝑖𝑟(𝑢1

2 − 𝑢2
2) (2-10) 

 𝑝 pressure 𝑢 Wind velocity 
 𝜌𝑎𝑖𝑟 Density air   

The trust force is equal to the pressure drop along the actuator disk, which is assumed to be 

constant. Substituting the function of the pressure drop in the function of the thrust force gives 

equation (2-11).    

𝐹𝑡ℎ𝑟𝑢𝑠𝑡 = AdΔ𝑝 =
1

2
𝜌𝑎𝑖𝑟𝐴𝑑(𝑢1

2 − 𝑢2
2) (2-11) 

 𝐴𝑑 Area actuator disk 𝑝 pressure 
 𝑢 Wind velocity 𝜌𝑎𝑖𝑟 Density air 

 

 
Figure 2-10: Control volume of the streamtube 

The equations of power and forces can be rewritten with dimensionless coefficients, which results in 

derivations of the more common equations for power and force. Using the power and thrust 

coefficients of the wind turbine gives a reasonable and accurate result. The loads can be non-

conservative.   

𝑃 =
1

2
𝐶𝑝𝜌𝑎𝑖𝑟𝐴𝑑𝑢1

3 (2-12) 

𝐹𝑡ℎ𝑟𝑢𝑠𝑡 =
1

2
𝐶𝑡𝜌𝑎𝑖𝑟𝐴𝑑𝑢1

2 
(2-13) 

 𝐴𝑑 Area actuator disk 𝑝 pressure 
 𝑢 velocity 𝜌𝑎𝑖𝑟 Density air 

Figure 2-8 gives global wind turbine forces and moments. The non-axial forces (Fy and Fz) cannot be 

calculated with the actuator disk, because only one-dimensional momentum is considered. Also the 

non-torsional moments (My and Mz) cannot be calculated, for a similar reason as the non-axial forces 

[20].  



Modelling and dynamic analyses of TLP-type floating wind turbine 

17 

T.P. van Ommen 

2.3.2 Blade element theory 

Blade element theory (BET) is most commonly used in the wind turbine industry due to the high 

computational efficiency and high accuracy [33]. BET was first proposed by W. Froude in 1878 and 

later improved by D.W. Taylor and S. Drzewiecki [34]. BET calculates the load and the flow velocity 

around the blade assuming that the load on an arbitrary point at the blade can be computed 

independently from any other point. The loads can be computed with a dimensionless lift, drag and 

moment coefficient. The inflow angle of the wind with respect to the blade is known. The lifting-line 

theory is used. This theory yields states that lift distribution is depending on the blade geometry and 

the air flow conditions [32].  

 
 

(a) (b) 

 
(c) 

Figure 2-11: definitions of (a) pressure field [19] (b) forces on a blade [32] (c) geometrical parameter turbine blade [32] 

The loads on the blade and the induced wind speed are calculated for a finite number of radial 

locations, called elements. For each element, with thickness dr (Figure 2-12 (a)), a steam tube is 

defined. If the wind speed V0 at the location of an element and the angular frequency of the blades 

are known. The effective velocity can be computed by the vector sum of the velocity of the incoming 

flow and the velocity of that element. The induced velocity is the reaction of the incoming wind and 

angular velocity of the blade. The induced velocity needs to be determined by an iterative process. 

For the first iteration step an estimation of the induced velocity is required.  

  
(a) (b) 

Figure 2-12: (a) Stream tube with de thickness dr cross the radial location r on the rotor plane [35]. (b)  Velocities and forces 
on a blade element on the radial distance r. 
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Figure 2-12 (b) gives the velocity vectors on a blade. The axial velocity is perpendicular to the rotor 

plane and the tangential velocity is parallel to the rotor plane. The induced velocity W is parallel to 

the relative velocity. The axial and tangential velocity need to be computed using equation (2-14) and 

equation (2-15) respectively.   

𝑉𝑎𝑥𝑖𝑎𝑙 = 𝑉0 − 𝑎𝑉0 = (1 − 𝑎)𝑉0 (2-14) 

𝑉𝑡𝑎𝑛𝑔 = 𝜔𝑟 + 𝑎′𝜔𝑟 = (1 + 𝑎′)𝜔𝑟 (2-15) 
 𝑉0 Velocity incoming wind 𝑎 Induction factor axial velocity 
 𝑎′ Induction factor tangential velocity vector 𝜔 Angular velocity blade 
 𝑟 Radius   

When the axial and tangential velocities are computed, the flow angle can be computed with 

equation (2-16) and the relative velocity with equation (2-17). The local angle of attack, angle 

between the rotor plane and the airfoil chord θ, can be computed with equation (2-18). 

tan(𝜙) =
(1 − 𝑎)𝑉0

(1 + 𝑎′)𝜔𝑟
 (2-16) 

𝛼 = 𝜙 − 𝜃 (2-17) 

𝑉𝑟𝑒𝑙
2 = (1 − 𝑎)2𝑉0

2 + (1 + 𝑎′)2(𝜔𝑟)2 (2-18) 
 𝜙 Angle of the relative velocity 𝑉0 Velocity incoming wind 
 𝑎 Induction factor axial velocity 𝑎′ Induction factor tangential velocity vector 
 𝜔 Angular velocity blade 𝑟 Radius 
 𝜃 Airfoil chord 𝛼 Angle of attack 

  
(a) (b) 

Figure 2-13:  (a) Velocities and forces on a blade element on the radial distance r. (b) chord, the twist and pitch angle of the 
blade 

The lift and drag force on a certain location of the blade are computed with equation (2-19) and the 

thrust of the stream tube can be calculated with equation (2-20). Where c is the length of the chord 

and Ne is the number of elements [35]. 

 𝑙 =
1

2
𝜌𝑎𝑖𝑟𝑉𝑟𝑒𝑙

2 𝑐𝐶𝑙(𝛼, 𝑅𝑒) 

𝑑 =
1

2
𝜌𝑎𝑖𝑟𝑉𝑟𝑒𝑙

2 𝑐𝐶𝑑(𝛼, 𝑅𝑒) 
(2-19) 

𝑑𝑇 = 𝑁𝑒𝑝𝑛𝑑𝑟 (2-20) 

 𝑝𝑛 = 𝑙 cos(𝜙) + 𝑑 𝑠𝑖𝑛(𝜙)  
 𝑙 Lift force element 𝑑 Drag force element 
 𝜌𝑎𝑖𝑟 Density air 𝑉𝑟𝑒𝑙  Relative velocity 
 

𝑐 Chord length 𝐶𝑙(𝛼, 𝑅𝑒) 
Coefficient lift as function of angle of attack 
and Reynolds number 

 
𝐶𝑑(𝛼, 𝑅𝑒) 

Coefficient drag as function of angle of 
attack and Reynolds number 

𝑑𝑇 Thrust element  

 𝑁𝑒 Number of elements 𝜙 Angle of the relative velocity 
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By applying the conservation of angular momentum for the control volume of the stream tube, the 

relation between the non-dimensional tangential velocity reduction and the thrust can be found. 

Note that the angular upstream velocity is 0 and the angular velocity is the 2a’ωr in the wake [35].  

𝑑𝑀 = 4𝜋𝑟3𝜌𝑎𝑖𝑟𝑉0𝜔𝑎′(1 − 𝑎)𝑑𝑟   (2-21) 

𝑑𝑀 =
1

2
𝜌𝑁𝑒

𝑉0(1 − 𝑎)𝜔𝑟(1 + 𝑎′)

sin(𝜙) cos (𝜙)
𝑟𝑐𝑐𝑡𝑑𝑟  (2-22) 

 𝑐𝑡 = 𝐶𝑙 sin(𝜙) + 𝐶𝑑 cos(𝜙)  

 𝑝𝑛 = 𝑙 cos(𝜙) + 𝑑 𝑠𝑖𝑛(𝜙)  
 𝑑𝑀 Torque element 𝜌𝑎𝑖𝑟 Density air 
 𝑉0 Incoming wind velocity 𝜔 Angular velocity blade 
 𝑎 Induction factor axial velocity 𝑎′ Induction factor tangential velocity vector 
 𝑑𝑟 Thickness  𝑁𝑒 Number of elements 
 𝜙 Angle of incoming wind velocity 𝑟 Radius 
 𝑐 Chord length 𝐶𝑙 Coefficient lift 
 𝐶𝑑 Coefficient drag   

From equation (2-21) and equation (2-22) equation (2-23) can be derived to calculate a new 

tangential induction factor a’. If the error of a’ is with the limits, the computation is stopped. The 

Prandtl tip loss factor can be applied to take the vortex behind the rotor into account. The iteration 

scheme of BEM is given in Figure 2-14, excluding Prandtl tip loss factor. The Prandtl tip loss factor is a 

correction of the tip-losses to a finite number of blades [32].   

𝑎′ =
1

4 sin(𝜙) cos(𝜙)
𝜎𝑐𝑡

− 1
 

(2-23) 

 
𝜎 =

𝑁𝑒𝑐

2𝜋𝑟
  

 𝑎′ Induction factor tangential velocity vector 𝜙 Angle of incoming wind velocity 
 𝑐𝑡 Coefficient thrust force 𝑁𝑒 Number of elements 
 𝑟 Radius 𝑐 Chord length 
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Figure 2-14: Flowchart of Blade Element Method 
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2.3.3 Conclusions 

The flow field around a blade of a wind turbine is complex due to wind shear, turbulence, gust and 

yaw motion of the nacelle. For a floating offshore wind turbine the flow field is even more complex 

because of the relatively large motions of the platform [36]. For example, the yaw and pitch motions 

of the floating support structure are important to the performance of the wind turbine.  

The global wind turbine loads can be computed by a momentum theory analyses, where the actuator 

disk is a one-dimensional momentum method and BET is a two-dimensional momentum methods. 

Both methods are explained in this paragraph. The actuator disk computes the thrust force and 

torque within an acceptable accuracy, however the method cannot compute the non-axial loads and 

the non-torsional loads. The non-torsional loads have a lower order, than the torque but the non-

axial load Fy can be significant when the wind turbine is not properly aligned with the wind. Table 

2-1, summarize the output of the momentum analysis and can be used as a look-up table to compare 

the momentum analysis methods.  

Table 2-1: Summary momentum theory analysis 

 Actuator disk BET 

Axial loads + + 

Non-axial loads - + 

Torque + + 

Non-torsional loads - + 

Computation time + - 

Closed form + - 

Blade responses - + 

Wind shear - + 

 

The actuator disk method has less computation time than the BET, however it cannot compute the 

non-axial loads and non-torsional moments, but the thrust and torque forces are computed within an 

acceptable accuracy. The developed model should compute the motions relatively fast, therefore the 

actuator disk assumption is used. The influences of the non-axial forces and non-torsional moments 

on the motions on the fatigue assessment should be investigated. However, this is outside the scope 

of the study.    
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2.4 HYDROMECHANICS LOADS 
The hydromechanics loads can be separated into hydrostatic and hydrodynamic loads. The 

hydrostatic loads are the buoyancy forces and moments of the submerged part of the body in the 

fluid. The hydrodynamic loads are one of the most important loads affecting the fatigue lifetime of a 

floating support structure. The hydrodynamic models are investigated and explained. Finalized, with 

a conclusion which model is used in the study.  

Hydrodynamic loads are the dynamic forces and moments due to the dynamic pressures of the fluid. 

These dynamic pressures are obtained by the time derivative of the potential. The potential can be 

split into the three parts (see equation (2-24)), wave potential, radiation potential and the diffracting 

potential [37]:  

Φ = Φ𝑑𝑖𝑓𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛 + Φ𝑤𝑎𝑣𝑒 + Φ𝑟𝑎𝑑𝑖𝑎𝑡𝑖𝑜𝑛 (2-24) 

 Φ Potential    

The wave potential and the diffracting potential are related, namely the wave potential is the 

potential of undisturbed wave and the diffraction potential is the potential of the deflection of the 

incoming wave due to the presence of the body. The potentials are used to compute the pressures 

on the wetted surface, these pressures are the hydrodynamic loads. The hydrodynamic loads are the 

Froude-Krylov forces and the diffraction forces. The Froude-Krylov forces are caused by the pressure 

field of the undisturbed wave [38]. Due to the dynamic forces and moments acting on the body, the 

body will move. This forced motion generates waves in opposite direction of the incoming waves, 

these waves are radiated from the oscillating body. The hydrodynamic loads caused by the radiated 

waves are identified as the added mass of the body, damping and restoring forces and moments [38].  

2.4.1 First order hydrodynamics 

First-order hydrodynamic forces and moments only depend on the geometry of the structure and not 

on the motion responses. The first-order hydrodynamic forces have frequency depending added 

mass, frequency depending damping and frequency and directional depending hydrodynamic wave 

coefficient for diffraction. The radiation and diffraction potentials are solved using the panel method 

or strip method [37]. The radiation and diffraction potentials are solved without solving the equation 

of motion, because the potentials only depend on the geometry. Linear hydrodynamics are 

commonly used to design large floating structures for the oil and gas industry [39].  

2.4.2 Second-order Hydrodynamics 

First-order hydrodynamics superimpose the hydromechanics potentials. The radiation, diffraction 

and wave potential are solved separately. Superposition is only valid if the amplitudes of the motion 

are small with respect to the wave amplitudes and the rotations are small with respect to the wave 

slope. In second order hydrodynamics the wave-structure interaction is included as the quadratic 

terms of the potential flow [40]  

The second-order hydrodynamics loads are superimposed with the first-order hydrodynamic loads. 

The second-order hydrodynamics can be derived with a Taylor expansion of the potential flow. The 

second-order loads are proportional to the square of the wave amplitude with frequencies equal to 

the sum of two frequencies or equal to the difference of two frequencies. The second-order loads 

have a small magnitude but the resonance effects can be high. Second-order loads are the mean-drift 

loads, the difference frequency loads, slow varying drift loads and sum-frequency loads [40].  

Sum-frequencies forces are forces which are the sum of two frequencies, but have a small amplitude. 

The source is the same as for the difference-frequency forces, namely the interaction between waves 

with different frequencies. These forces have frequencies above and below the frequencies of the 
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first-order forces and are important for the TLPWT due to the high natural frequency in pitch, roll 

and heave, because they can excite the bending modes of the wind turbine tower [39]. The sum-

frequency forces have the same magnitude of the first-order forces in heave direction, which are 

typically small. For surge, the difference-frequency forces are important because the natural 

frequency of surge is in the difference-frequency range. Due to the coupling between surge and 

pitch, the same effect is observed. By modelling the tower rigid, an overestimation of the natural 

frequency of pitch and roll are observed. Modelling the tower elastic and the natural frequency of 

the bending tower modes are in the sum-frequency region, which may cause large responses at 

these frequencies [41].  

Drift forces are second-order hydrodynamic forces, calculated by of the square of the velocity term 

of the oscillating wetted part and the time varying potential of the oscillating wetted part. The drift 

forces are separated in mean drift forces and slow varying drift forces. The drift forces are small 

because the amplitudes are small but can cause large displacements of the floating wind turbine, 

resulting in large loads in the mooring lines of the TLP-concept. The drift forces can also excite large 

resonant surge motions. Slow varying drift forces are due to the interaction between waves with two 

different frequencies [39].  

2.4.3 Third-order hydrodynamics 

Third-order hydrodynamic effects are described with a third-order potential. Third-order 

hydrodynamic loads are important for structures where the wave-amplitudes and the cross-sectional 

dimensions have the same order. Ringing loads and responses are related to third or higher order 

wave loads. Ringing responses are observed in experiments and full-scale TLPs used in the oil and gas 

industry. Ringing is a transient structural deflection at the frequencies higher than the frequency of 

the incident wave. The ringing vibrations were first seen at the Heidun TLP and Draugen gravity 

based structure (GBS). Both structures needed to be reinforced to guaranty the safety during its life 

time.  

Ringing occurs due to the impact of a steep wave slamming or resonance build-up. The impact load 
excites a wide-spectrum of structural modes. The study of Grue [42] showed that ringing can also 
occurs with a moderately steep wave. The higher-frequency loads will induce a build-up of resonance 
vibration during a time interval of one wave period. The secondary load cycle is a rapid and high 
frequency increase of the excitation force(Figure 2-15) and is important for the resonance build-up; 
the high load in-phase with the acceleration of the incoming wave. A secondary load cycle appears 
when the wave leaves the slender structure [43]. The rapidly appearance of the secondary cycle 
generates the resonate vibration of the structure. The second load cycle is observed in cases where 
the Keulegan-Carpenter number (KC-number) is in the range of 4-9 [42]. The vibrations have 
frequencies three to five times higher than the wave frequency, which means that ringing is at least a 
third-order effect.  

 
Figure 2-15: Occurrence of second load cycle [43] 
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As that ringing vibrations and responses are caused by third order wave effects, Faltinsen, Newman 

and Vinje [44] used a perturbation method to formulate the third-order wave loads. This 

perturbation method is applied to nonlinear free-surface boundary conditions, assuming a wave 

amplitude of the same order as cross-sectional dimensions. This formulation (equation (2-25)) is 

commonly used to incorporate third-order harmonic wave loads. The FNV-formulation consists of 

two terms, the horizontal force due to the first-order potential and horizontal force component due 

to the nonlinear potential. 

𝐹𝐹𝑁𝑉 = 𝐹(1) + 𝐹(2) (2-25) 

 𝐹(1) = 2𝜋𝜌𝑤𝑔𝑘𝐷2𝜁 cos(2𝜋𝑓𝑤𝑡) 

 𝐹(2) = 𝜋𝜌𝑤𝑔𝑘2𝐷2𝜁3(cos(2𝜋𝑓𝑤𝑡) − cos(6𝜋𝑓𝑤𝑡))  

 𝐹 Force 𝜌𝑤 Density water 
 𝑔 Gravity acceleration 𝑘 Wave-number 
 𝐷 Diameter 𝜁 Wave amplitude 
 𝑓𝑤 Frequency wave   

Ringing for a column single-piercing the water surface occurs when linear diffraction is not significant 

contributing and wave amplitude and the cross-sectional dimensions have the same order. DNV [45] 

requires for the design of BFWT to evaluate ringing loads. The ringing effects should be investigated 

in time domain simulations with higher order wave loads effects. Ringing vibrations and responses 

are also observed in numerical simulations of a TLPWT, which was investigated by Bachynski and 

Moan [16]. The ringing forces influenced the pitch and roll motions primarily, which leads to higher 

tendon loads and increase loads at the base tower. The tendon loads increase between 12-30%, 

compared to the loads without ringing forces. Several negative tendon tensions were observed 

during the simulations. The ringing forces are most important for offshore structures that have a 

natural period between 3 and 4 seconds for pitch and roll motions.  

2.4.4 Morison Equation 

The Morison equation is a semi-empirical equation and takes the inertia and drag into account. It 

superposes a linear inertia force from potential flow and a quadratic drag force. The Morison 

equation is commonly used to model the hydrodynamic loads on offshore structures for the oil gas 

industry and the hydrodynamic loads on a fixed offshore wind turbine.  

𝑓𝑚𝑜𝑟𝑖𝑠𝑜𝑛(𝑡) = 𝜌𝑤𝐴�̇� + 𝜌𝑤𝐶𝑎𝐴(�̇� − 𝑎) +
1

2
𝜌𝑤𝐶𝑑𝐷 (𝑢 − 𝑣)|𝑢 − 𝑣| (2-26) 

 𝜌𝑤 Density water 𝐴 Area 
 𝑢 Orbital velocity �̇� Orbital acceleration 

 𝑎 Acceleration offshore structure 𝑣 Velocity offshore structure 
 𝐷 diameter 𝐶𝑎 Coefficient added mass 
 𝐶𝑑 Coefficient drag   

 

 

Figure 2-16: Definitions of the area and diameter 
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The Morison equation takes the Froude-Krylov force (first term of equation (2-26)), added mass 

(second term of equation (2-26)), and the viscous drag (third term of equation (2-26)) into account. 

The constants Ca and Cm are semi-empirical coefficients. Because diffraction is not taken into account, 

the Morison equation is only valid for slender structures. A slender structure is defined as a structure 

in which the cross-sectional dimensions are much smaller than the wavelength. The wavelength is 

computed by the dispersion relationship, given in equation (2-27).  

𝑓2 =
𝑔𝑘

2𝜋
tanh(𝑘𝑑) → 𝜆 =

𝑔𝑇2

2𝜋
tanh (

2𝜋𝑑

𝜆
) (2-27) 

 𝑔 Gravity acceleration 𝑘 Wave number 
 𝑑 depth 𝜆 Wave length 
 𝑇 Wave period 𝑓 Frequency  

The Morison equation has a few limitations. Firstly, it is not possible to include diffraction forces. 

Secondly, it is unclear how to separate currents and wave velocities. If the Morison equation is used 

in strip theory of floating structures, it assumes that viscous damping dominates the total damping 

and thus wave radiation damping can be neglected [46].  

The study of Keulegan and Carpenter [47] determines for various diameters and flows the inertia and 

drag constants for the Morison equation and derive the period number, which is known as the 

Keulegan-Carpenter (KC) number. The KC-number is a non-dimensional number and gives the 

relation between drag and inertia forces on a slender structure.  

𝐾𝐶 =
𝜋 𝜁𝑎

𝐷
 (2-28) 

 𝜁𝑎 Wave amplitude 𝐷 Diameter 

Keulegan and Carpenter [47] concluded that for small KC-numbers (KC < 3) the inertia is dominant. 

For KC numbers between 3 and 15 a linearized drag term needs to be taken into account. For KC-

numbers between 15 and 45, the full Morison equation should be taken into account. For KC-

numbers higher than 45, only the drag force is sufficient.  

2.4.5 Comparison of hydrodynamic modelling 

The characteristics of the wave-structure interaction are depending on the geometry dimensions of 
the body, which are compared with the wave amplitude. The size of structure can be determined 
with Figure 2-17, with on the x-axis the diffraction parameter and on the y-axis the KC-number is 
displaced.  

 
Figure 2-17: Classification of small versus large structures and their limits [48] 
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If the structure is inertia dominated, the inertia part of Morison equation is sufficient to calculate the 

hydrodynamic loads. The Morison equation is also sufficient in the large inertia and small drag area, 

inertia and drag area and the large drag area, see Figure 2-17. If the diffraction is dominant then a 

diffraction analysis should be performed. For the last area, the viscous drag and diffraction may be 

important. The viscous drag can be modelled using the drag part of the Morison equation [48]. Table 

2-2, summarizes this paragraph and can be used as loop-up-table to compare the hydrodynamic 

models. 

Table 2-2: Consideration included in hydrodynamic models [49] 

 First order 
hydrodynamics 

Second order 
hydrodynamics 

Third order 
hydrodynamics 

Morison  
equation 

Added mass 
Frequency 
dependent 

Frequency 
dependent 

Frequency 
dependent 

Constant 

Radiation damping 
Frequency 
dependent 

Frequency 
dependent 

Frequency 
dependent 

excluded 

Quadratic damping Excluded(1 Excluded(1 Excluded(1 Included 

First order wave 
excitation 

Radiation + 
diffraction 

Radiation + 
diffraction 

Radiation + 
diffraction 

Inertia 

Sum-frequencies excluded Direct method Direct method excluded 

Difference frequencies excluded excluded excluded excluded 

Mean wave drift force 
Newman 

approximation 
Newman 

approximation 
Newman 

approximation 
Viscous 

Third-order wave  excluded excluded included excluded 

1) Can included by the viscous part of the Morison equation  

2.4.6 Conclusions 

Hydrodynamic loads are important for the fatigue lifetime of the TLPWT. Four hydrodynamic models 

are investigated, first order hydrodynamics, second-order hydrodynamics, third-order 

hydrodynamics and the Morison equation. Bachynski and Moan [49] investigated the influence of 

hydrodynamic model on the motions of a TLPWT. They investigate the motion responses in time 

domain with a first-order potential, second-order potential and the Morison Equation. The Morison 

equation gives good agreement with the potential flow in operational conditions, but for TLPWT with 

large diameters the Morison equations led to higher pitch moments than the second-order potential.    

In the study of Bachynski and Moan [49] the third-order wave loads is not included, but third-order 

wave loads may be relevant when the cross-sectional dimensions and the wave-amplitude having the 

same order. This study focus on modelling the TLPWT for fatigue analyses. The wave-amplitudes 

have the same order of the cross-sectional dimensions of the TLPWT only occur in extreme 

environmental conditions (KC-number is in the range of 4-9). The hydrodynamics for this study will 

therefore be modelled with the Morison equation.   
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2.5 ENVIRONMENTAL MODELLING 
The TLPWT will be installed to produce electricity in an environment with wind and waves. The 

environment needs to be modelled to get reliable results. The main source of environmental loads is 

the wind, waves and current. The wind and waves are assumed to stationary stochastic processes, 

which means that the mean and standard deviation are constant over time. Currents are assumed to 

be constant for the time frame.  

 

Figure 2-18: Load on a floating offshore wind turbine [1] 

2.5.1 Wind 

Wind has irregularities in the wind direction, wind speed and the vertical velocity components. This is 

called wind turbulence and can be treated as a time varying stochastic process of the wind speed. 

This assumption is correct if the time frame is less than 10-minutes. The loads of the wind can excite 

a natural frequency of a building or wind turbine. The turbulence of the wind can be described with a 

turbulence spectrum model, for example the model of Von Karman, Kaiman, Davenport and Hino 

[50].  

The design regulations define several turbulence models and the normal turbulence model must be 

used for fatigue analysis of a wind turbine. The normal turbulence model represents the wind 

turbulence in terms of the 90% quantile of the standard deviation of the wind turbulence. For 

ultimate limit state (ULS) other turbulence models are required [45].  

Shinozuka method and the Mann method apply the Taylor frozen turbulence hypothesis. The Taylor 

frozen turbulence hypothesis assumes that the wind eddies are frozen at the moment of passing the 

blades. This means that the wind field remains the same after passing an object. Thus, the local 

change within each eddy is ignored. This assumption is valid in situations where for example the wind 

field past the object once. The Taylor frozen turbulence hypothesis can be used to model the wind 

field passing a wind turbine but this hypothesis cannot be used to model a wind field passing a wind 

farm. Since the wind fields are identical for all wind turbines in line, apart from a delay of the wind 

field moving from a wind turbine to another wind turbine [51]. The Taylor frozen turbulence 

hypothesis relates time to space by assuming that the change in advection velocity of the turbulence 
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is magnitudes higher than the velocity scale of the turbulence himself. Meaning that the time can be 

replaced with a distance scaled by the mean velocity. The Shinozuka method and Mann method are 

generating a wind field in spatial domain moving with the mean wind velocity [52].  

 
Figure 2-19: Wield turbulence in spatial domain [52]  

The wind velocity is a function of time and the spatial coordinates. The wind velocity is separated in a 

static and a dynamic part (equation (2-29)). The wind shear profile defines the static wind velocity 

and the turbulence model defines the dynamic wind velocities:   

𝑢𝑤𝑖𝑛𝑑(𝑥, 𝑦, 𝑧, 𝑡) = 𝑢𝑚(𝑧) + 𝑢𝑡(𝑥, 𝑦, 𝑧, 𝑡) (2-29) 

 𝑢𝑤𝑖𝑛𝑑  Wind velocity 𝑢𝑚 Mean wind velocity 

 𝑢𝑡 Turbulence wind   

The wind profile defines the variation in mean wind speed over the height. When the surface and the 

atmospheric stability are not complex, the wind profile can be represented by an idealized wind 

profile. The most commonly applied wind profiles are the logarithmic profile model (equation (2-30)), 

power law model (equation (2-31)) and the Froya model (equation (2-32)):  

𝑢𝑚(𝑧) =
𝑢∗

𝑘𝑎
ln

𝑧

𝑧0
 (2-30) 

 𝑢∗ = √𝜅𝑈10  

  

𝜅 = (
𝑘𝑎

ln
𝐻
𝑧0

)

2

  

 𝑢𝑚 Mean wind velocity 𝑧 z-coordinate 
 𝑧0 Roughness parameter 𝑈10 Reference velocity at z=10m 

 𝑘𝑎 Von Karman’s constant    

𝑢𝑚(𝑧) = 𝑢(𝐻) (
𝑧

𝐻
)
𝛼

 (2-31) 

 𝑢𝑚 Mean wind velocity 𝑧 z-coordinate 
 𝐻 Reference height  𝛼 Shear exponent  

𝑢𝑚(𝑧) = 𝑢0 (1 + 5.73 ∙ 10−2 ∙ √1 + 0.148 ∙ 𝑢0 ln
𝑧

𝐻
) (2-32) 

 𝑢𝑚 Mean wind velocity 𝑧 z-coordinate 
 𝑢0 Reference wind velocity 𝑈10 Reference velocity at z=10m 
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(a) (b) 

Figure 2-20: (a) wind profile (b) turbulence intensity factor 

The turbulence intensity factor expresses the amount of turbulence in a flow by dividing the standard 

deviation of the wind velocity by the mean wind velocity (equation (2-33)). For stable atmospheric 

layers the turbulence intensity factor can be computed with several expressions. The three most 

commonly used models are the modified Vickery model, the drag coefficient model and the linear 

model. Andersen and Lovseth [53] showed with their study that the linear model is conservative, as 

turbulence intensity factor increases if the height increases.  

𝐼𝑢 =
𝜎𝑢

𝑢0
 (2-33) 

 𝐼𝑢 Turbulence intensity factor 𝜎𝑢 Standard deviation wind 
 𝑢0 Mean wind velocity    

The design regulations and literature provide a large amount of theoretical wind spectra. The wind 

spectra are similar in the high frequency range, but large differences are found in the low frequency 

range (see Figure 2-21). The Davenport, Kaimal, and Von Karman spectra are spectrums for wind over 

land, and the Froya spectrum and Wills spectrum are spectra that are recommended for open-water 

conditions. The Froya spectrum (see equation (2-34)) is developed for neutral conditions over water 

in the Norwegian Sea. In areas where the atmospheric stability effects are more important, the Froya 

model is however not recommended [54]. 

𝑆(𝑓) = 320
(
𝑢0
10)

2
(

𝑧
10)

0.45

(1 + 𝑓𝑛)(
5
3𝑛

)
 (2-34) 

 
𝑓 = 172𝑓 (

𝑧

10
)

2
3
(
𝑢0

10
)
−0.75

  

 𝑆(𝑓) Spectrum 𝑧 Height  
 𝑛 Parameter  𝑓 Frequency  

 𝑢0 Mean wind velocity   
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(a) (b) 

Figure 2-21: (a) Wind Spectrum. (b) Normalized Wind Spectrum 

The Froya spectrum is a generalization of the Kaimal and Von Karman spectrum keeping the high 

frequency asymptote correct. In the low frequency range the Froya spectrum has however more 

energy. The Wills spectrum agrees better in the low frequency range for wind over water, but the 

turbulence intensity is underestimated high above the water [53].    

A wind field cannot be extrapolated over the total area. It is unrealistic to assume constant wind 

velocities over a large area. Therefore a wind field need to be modelled, which means that the wind 

spectrum needs to be computed for many points in the wind field. The relation between two 

arbitrary points is given by the coherence spectrum. The coherence of two arbitrary points (point a 

and point b) is given in equation (2-35). The coherence spectrum for Froya coherence model is given 

in equation (2-36) [54].  

𝑐𝑜ℎ(𝑎, 𝑏) =
(𝑆𝑎(𝑓)2 + 𝑆𝑏(𝑓)2)

𝜎𝑢,𝑎
2 + 𝜎𝑢,𝑏

2  (2-35) 

 𝜎𝑢 Standard deviation wind  𝑓 Frequency  

𝑐𝑜ℎ(𝑓, Δ) = 𝑒
(−

1
𝑢0

√𝐴𝑦
2+𝐴𝑧

2)
 

(2-36) 

 𝐴𝑖 = 𝛼𝑖𝑓
𝑟𝑖Δ𝑖

𝑞𝑖𝑧𝑔
𝑝𝑖

  

 Δi Distance between point a and b in direction i 𝑢0 Reference velocity 

 𝛼 Coefficient  𝑓 Frequency  

 𝑞 Coefficient  𝑝 Coefficient  

 𝑟 Coefficient  𝑎 Point a in the wind field 

 𝑏 Point b in the wind field   
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(a) (b) 

Figure 2-22: (a) Coherence wind with varying dy.  (b) Coherence wind with varying dz.  

The spectrum of two points can be computed by equation (2-37). The spectrum Sab needs to be 

computed for all possible combinations. The weights of the spectrum can be computed using 

Cholesky factorization method [55]. By applying an inverse Fourier transformation on the wind 

spectrum, the wind velocity field can be generated. The unidirectional wind field can be extended 

with the same method to generate a wind field with velocity components in the other two directions. 

The wind velocity is now a function of time and the spatial coordinates. Applying the Taylor frozen 

turbulence hypothesis, the wind velocity can be written as a function of only the spatial coordinates.  

𝑆𝑎,𝑏(𝑓) = 𝑐𝑜ℎ(𝑓, Δ)√𝑆𝑎(𝑓)𝑆𝑏(𝑓)  
(2-37) 

 Sa,b Spectrum point a and b 𝑓 Frequency  

 Δ Distance between point a and b 𝑐𝑜ℎ Coherence between point a and point b 
 𝑆𝑎 Spectrum point a 𝑆𝑏 Spectrum point b 

2.5.2 Waves 

The behavior of surface elevations of the ocean is chaotic, but commonly is assumed that the surface 

elevations are a summation of harmonic wave components. The statistical surface elevation can be 

described by just three parameters, namely the significant wave height, significant wave period and 

the energy spectral density of the harmonic wave components. Where significant wave height is 

defined as the mean wave height of one-third of the highest waves and significant wave period is 

defined as the mean of period of one-third of the highest waves [56]. 

2.5.2.1 Wave spectrum 

The basic model to describe the ocean surface is with the random phase/amplitude model. This 

model uses two assumptions. The first assumption is a random phase between 0 and 2π and the 

second assumption is a constant amplitude for each frequency component. The phase of the wave 

components is uniformly distributed and wave heights are Rayleigh distributed [56]. The wave 

spectrum is defined by the assumption of an ideal situation, including a constant wind speed 

perpendicular to the coast, no impact by the seafloor and the coastline is infinite and straight. The 

parameters that affect the waves are the wind velocity, fetch, duration and the gravity acceleration 

[56].  
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Figure 2-23: Ideal situation of waves [56] 

Close to the shore the fetch is short and the waves are growing fast. The fetch is defined as the 

distance that the wind travels over open water. The growth of the waves slows down until it 

eventually stops, than the wave velocity of the longest wave is equally to the wind speed. Thus, no 

more energy is transferred from the wind to the waves. When no more energy is transferred then 

the waves are fully developed. The wave spectrum for a fully developed seas is described by the 

Pierson-Moskowitz wave spectrum [56].  

𝐸(𝑓) = 𝛼𝑔2(2𝜋)−4𝑓−5𝑒
[−

5
4
(

𝑓
𝑓𝑝𝑒𝑎𝑘

)
−4

]
 

(2-38) 

 𝐸(𝑓) Energy spectrum 𝛼 parameter 

 𝑔 Acceleration frequency  𝑓 Frequency  

 𝑓𝑝𝑒𝑎𝑘  Peak frequency    

The JONSWAP wave spectrum described a sea that is fetch limited, fetch limited seas are young seas. 

Fetch limited means that the wave energy is limited by the size of the wave generation area, the 

wave generation area is called the fetch. The JONSWAP wave spectrum can be applied for areas with 

storms and hurricanes but not for areas with swell, that are waves generated by distant weather 

systems. The steepness of swell waves is low and the quadrupled wave-wave interaction is very low 

or even absent [56]. If a peak enhancement parameter (γ) of 1 is used in the JONSWAP wave 

spectrum equation (2-39)), the JONSWAP spectrum becomes a Pierson-Moskowitz spectrum (fully 

developed sea).  

𝐸(𝑓) = 𝛼𝑔2(2𝜋)−4𝑓−5𝑒
[−

5
4
(

𝑓
𝑓𝑝𝑒𝑎𝑘

)
−4

]
𝛾𝑒[

 
 
 
 

−
1
2

(

 

𝑓
𝑓𝑝𝑒𝑎𝑘
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𝜎
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]
 
 
 
 

  

(2-39) 

 𝐸(𝑓) Energy spectrum 𝛼 parameter 

 𝑔 Acceleration frequency  𝑓 Frequency  

 𝑓𝑝𝑒𝑎𝑘  Peak frequency  𝛾 Peak enhancement parameter 

 𝜎 parameter   

 
Figure 2-24:  JONSWAP, Pierson-Moskowitz spectrum with Hs =2.4[m] and Ts = 6.6[s] 
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2.5.3 Tides and Current 

The velocity vector of the current is the vector sum of the velocity vectors of all currents, which 

varies with the water depth. The current is represented by a current profile. The most common 

current profiles are the uniform current, shear current and the loop current [54].    

𝑢𝑐(𝑧) = 𝑢𝑐,𝑡𝑖𝑑𝑎𝑙(𝑧) + 𝑢𝑐,𝑤𝑖𝑛𝑑(𝑧) (2-40) 

 𝑢𝑐 Velocity current 𝑢𝑐,𝑡𝑖𝑑𝑎𝑙  Velocity tidal 
 𝑢𝑐,𝑤𝑖𝑛𝑑 Velocity wind    

The tidal and wind currents are sufficient to model a representative current. Design regulations 

advice to use a simple power law profile for the tidal current and a linear profile for the wind current. 

The reference depth d0 is typically 50 meters [54]. 

𝑢𝑐,𝑡𝑖𝑑𝑎𝑙(𝑧) = 𝑢𝑐,𝑡𝑖𝑑𝑒(0) (
𝑑 + 𝑧

𝑑
)
𝛼

 (2-41) 

𝑢𝑐,𝑤𝑖𝑛𝑑(𝑧) = 𝑢𝑐,𝑤𝑖𝑛𝑑(0) (
𝑑0 + 𝑧

𝑑0
) (2-42) 

 𝑢𝑐,𝑡𝑖𝑑𝑎𝑙  Velocity tidal 𝑢𝑐,𝑤𝑖𝑛𝑑  Velocity wind  

 𝑑 Depth  𝛼 Parameter  

 𝑑0 Reference depth    

 
Figure 2-25: Current profile 
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2.6 MOORING SYSTEM 
The mooring system consists of the tendons, anchoring and pontoon-tendon connection. The 

mooring system is essential for a TLP. The tendons limit the motions of the TLP and provide the TLP 

stability. The motions of the TLP are limited due to the inclination of the mooring lines. A 

displacement in the horizontal plane will also cause a displacement in the vertical direction. This 

typical nonlinear motion for a TLP is called set-down of centre of gravity (Figure 2-26) [57].  

The TLP tendons are pre-tensioned due to the higher buoyance force than the weight of the TLP. 

During extreme events, with high waves and large tidal variations, the mooring lines may become 

slack. When the tension in the mooring lines is restored, the tendons experience a snap load. This 

high impact load can cause instant failure of the tendon or tendon-connection. If all tendons break in 

one pontoon of the TLPWT, the TLPWT will collapse. Therefore, snap load should in all cases be 

prevented [9].  

 
Figure 2-26: Large displacement causing a set-down 

2.6.1 Modelling techniques 

The tendons of a TLP can be modelled in three different ways, massless springs, elastic springs and 

tendon modelled with beam elements. The first method, massless springs, neglects the time varying 

tension in the tendon and neglects the hydrodynamic loads on the tendon. The second method, 

elastic spring, neglects the hydrodynamic loads. The last method, modelling the tendon with beam 

elements, takes the time varying tension and hydrodynamic loads into account [57]. The traditional 

way of modelling the tendons is with the massless springs or the elastic springs. Thus, the dynamics 

of the tendon and the dynamics of the TLP are uncoupled. Wang and Zou [58] concluded that the 

uncoupled system could produce inaccurate results. The uncoupled model neglects the 

hydrodynamic loads on the tendons and intrinsic dynamic of the system. Therefore, it is 

recommended by Wang and Zou to model the tendons with beam elements taking into account the 

hydrodynamic loads on the tendons and the varying tendon force.  

2.6.2 Conclusion 

The study of Wang and Zou [58] recommends to model the tendons with beam elements taking the 

hydrodynamic loads on the tensions and the varying tendon tension into account. Therefore, the 

model developed in this study models the tendons with beam elements.   
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2.7 NUMERICAL TIME INTEGRATION  
The equation of motion is a differential equation with initial and boundary conditions. In most cases, 
an analytical solution cannot be achieved. Therefore, numerical methods are developed to 
approximate the solution. A numerical method solves the dynamic equilibrium at some discrete time 
points of interest. There are many numerical methods, but most of them are designed for first order 
differential equations. However, a higher order differential equation can be written into a first order 
system of differential equations [59].  
 
There are two types of numerical time integration methods, an explicit method and an implicit 

method. The numerical method is explicit if this requires only information of the previous times steps 

to calculate the next time step, for example forward Euler method (equation (2-43)). The numerical 

method is implicit if it requires information of the next time step, for example backward Euler 

method (equation (2-44)).  In general, explicit method in structural dynamics will be for wave 

propagation and implicit methods for structural response because the stability limit of time step size 

is approximately equal to the time step size needed to describe the wave propagation [60].  

𝑦𝑛+1 = 𝑦𝑛 + ℎ𝑓(𝑡𝑛, 𝑦𝑛) (2-43) 

𝑦𝑛+1 = 𝑦𝑛 + ℎ𝑓(𝑡𝑛+1, 𝑦𝑛+1) (2-44) 

 𝑛 Number of time step ℎ Time step  

The literature does not give a good definition of a stiff system. There are multiple criteria for stiff 

systems; two definitions are most commonly used in the literature. Firstly, stiff systems are systems 

for which explicit methods does not work. Secondly, the smallest eigenvalue of the system is much 

smaller than the largest eigenvalue of the system. In this work the last definition is used. The ratio 

between the largest and the smallest eigenvalue of the system is called the stiffness number [61].  

The ideal numerical method for time integration for finite element methods should ideally follow six 
criteria [62]. 

1. At least second order accuracy 

2. Unconditional stability for applications of linear problems 

3. Controllable algorithmic damping of higher modes 

4. No overshoot 

5. Self-starting algorithm.  

6. No more than one set of implicit equations to be solved each step 

2.7.1 Numerical time methods 

None of the numerical methods that are proposed in the literature meet the six criteria mentioned 

above. Therefore, three numerical methods have been investigated, the Newmark method, Houbolt 

method and Wilson method (see Appendix: Numerical time integration Methods). The Newmark 

method, Houbolt method and Wilson methods are three common implicit time integration methods 

used for finite element analysis. Implicit numerical time integration algorithms can have larger time 

steps in comparison with explicit methods. The use of large time steps, may causes numerical 

damping and the overshooting phenomena can occur. Note that, numerical damping is a nonphysical 

damping due to the algorithm [63].  
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2.7.1.1 Newmark method 

The most used numerical time integration method is the Newmark method. Newmark [64] proposed 

an unconditionally stable method for linear elastic dynamic problems. The Newmark method is 

widely used because of its simplicity, computational cost and accuracy. The Newmark method 

assumes a linear acceleration between t and t+h. The velocity and displacement can be obtained by 

integrating the acceleration over the time step h. The integral is evaluated by a shape function. The 

numerical parameters γ and β can be used to control the stability and the amount of numerical 

damping.  

𝑣𝑡+ℎ = 𝑣𝑡 + 𝑎𝑡ℎ + (𝑎𝑡+ℎ − 𝑎𝑡)𝛾ℎ (2-45) 

𝑥𝑡+ℎ = 𝑥𝑡 + 𝑣𝑡ℎ + [(
1

2
− 𝛽)𝑎𝑡 + 𝛽𝑎𝑡+ℎ] ℎ2 (2-46) 

 𝑣 velocity 𝑎 acceleration 

 𝑥 Displacement 𝑡 Time 

 ℎ Time step 𝛾 Numerical parameter 

 𝛽 Numerical parameter   

 
Figure 2-27: Newmark method 

2.7.1.2 Houbolt method 

John Houbolt [65] developed a systematic procedure in 1950 to calculate the structural response of 

an airplane subjected to dynamic loads. The Houbolt method uses a finite difference expression to 

approximate the velocity and acceleration. In contrast to the Newmark method, the Houbolt method 

is not self-starting. The Houbolt method requires information of the three previous time steps.  

𝑣𝑡+ℎ =
1

6ℎ
[11𝑥𝑡+ℎ − 18𝑥𝑡 + 9𝑥𝑡−ℎ − 2𝑥𝑡−2ℎ] (2-47) 

𝑎𝑡+ℎ =
1

ℎ2
[2𝑥𝑡+ℎ − 5𝑥𝑡 + 4𝑥𝑡−ℎ − 𝑥𝑡−2ℎ] (2-48) 

 𝑣 velocity 𝑎 acceleration 

 𝑥 Displacement 𝑡 Time 

 ℎ Time step   
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Figure 2-28: Houbolt method 

2.7.1.3 Wilson Method 

Wilson [66] proposed a general systematic procedure to compute the static and dynamic response of 

a nonlinear finite element analysis. The Wilson method is an extension of the linear acceleration 

method. The Wilson method assumes a linear acceleration between t and t+θh, where θ is a 

numerical parameter and can be used to control the stability and the amount of numerical damping. 

The numerical parameter θ is always bigger than one (θ ≥ 1.0). When θ =1.0, the Wilson method 

reduces to the linear acceleration method. The acceleration can be computed by the assumption of 

linear acceleration. The velocity and displacement can be obtained by integrating the acceleration 

over time. The numerical parameter θ can be used to control the stability and the amount of 

numerical damping.   

𝑎𝑡+ℎ = (1 −
1

𝜃
)𝑎𝑡 +

1

𝜃
𝑎𝑡+𝜃ℎ (2-49) 

𝑣𝑡+ℎ = 𝑣𝑡 +
ℎ

2
(𝑎𝑡 + 𝑎𝑡+ℎ) (2-50) 

𝑥𝑡+ℎ = 𝑥𝑡 + ℎ𝑣𝑡 +
ℎ2

6
(𝑎𝑡+ℎ + 2𝑎𝑡) (2-51) 

 𝑣 velocity 𝑎 acceleration 

 𝑥 Displacement 𝑡 Time 

 ℎ Time step 𝜃 Numerical parameter, θ>1.0   

 
Figure 2-29: Wilson method 
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2.7.2 Stability  

Stability of the numerical method is one of the most important properties of the numerical method. 

The numerical solution is stable if the error introduced at an arbitrary stage of the calculation is 

decreasing in subsequent steps of the method. In other words, the introduced error should not blow 

up the numerical method [67]. Investigation of the stability of the numerical method for dynamic 

problem is achieved by the amplification matrix A. An integration method is unconditional stable if 

the spectral radius (equation (2-52)) does not exceed the value of 1.0 for all time steps. Otherwise, 

the numerical method is conditionally stable [68].  

𝜌(𝑨) = max|𝜆𝑖| (2-52) 

 𝜆 eigenvalue 𝐴 Amplification matrix 

As it is well known, a numerical multistep method can be written in the form of equation (2-53), 

where L is the equivalent load vector and A the amplifications matrix of the numerical method. The 

amplification matrix A and the load operator vector L are depending on the numerical method and 

can be derived by using a test function. In this case the test function is a linear single degree of 

freedom mass-spring system including damping. The test function of time step t+h is given in 

equation (2-54) [68]. Changing the damping ratio ξ does not have much impact on the stability of the 

numerical method. Therefore, it is assumed that the damping ratio is zero. 

𝑋 𝑛+1 = [𝑨]𝑋 𝑛 + �⃗� 𝑓𝑛 (2-53) 

𝑎𝑡+ℎ + 2𝜉𝜔𝑣𝑡+ℎ + 𝜔2𝑥𝑡+ℎ =
𝑓𝑡+ℎ

𝑚
 (2-54) 

 𝑋  Dynamic state vector  𝑨 Amplification matrix 

 �⃗�  Load operator vector 𝑓𝑛 Load at time step n 

 𝑎 Acceleration 𝜉 Damping ratio 

 𝜔 Natural frequency  𝑣 velocity 

 𝑥 displacement 𝑚 Mass 

The eigenvalues problem of Amplification matrix A leads to a characteristic polynomial of the form 

given in equation (2-55). According the Routh-Hurwitz criteria (given in equation (2-56)), the 

numerical method is stable if it meets all five Routh-Hurwitz criteria. The characteristic polynomial 

meets the Rough-Horwitz criteria if the spectral radius is equal or smaller than 1 [69].  

det|𝑨 − 𝑰𝜆| = 𝜆3 − 2𝐴1𝜆
2 + 𝐴2𝜆

2 − 𝐴3 = 0 (2-55) 

1 − 2𝐴1 + 𝐴2 − 𝐴3 ≥ 0  (2-56) 

3 − 2𝐴1 − 𝐴2 + 3𝐴3 ≥ 0  

3 + 2𝐴1 − 𝐴2 − 3𝐴3 ≥ 0  

1 + 2𝐴1 + 𝐴2 + 𝐴3 ≥ 0  

1 − 𝐴2 + 𝐴32(𝐴1 − 𝐴3) ≥ 0  
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The Houbolt method is always unconditional stable, the Newmark method is unconditional stable if 

2β≥γ≥0.5 and the Wilson method is unconditional stable if θ≥1.37. The spectral radius of the 

Newmark method, Houbolt method and Wilson method are shown in Figure 2-30.  

 
Figure 2-30: Spectral radius of Newmark, Houbolt and Wilson method 

2.7.3 Accuracy  

The accuracy is another important property of the numerical method. The order of accuracy from the 

truncation error is commonly used for first-order numerical time integration method. The order of 

accuracy quantifies the rate of convergences of a numerical time integration method. A numerical 

time integration method for structural dynamics should have at least second order accuracy. The rate 

of convergences is proportional to the step size to the n-th power [70].The local truncation error can 

be computed by the error equation (equation (2-57)). The order of accuracy can be found by a finite 

Taylor expansion of e(t+h) and e(t) around t+α.  

𝜀(𝑡 + ℎ) = 𝑨𝜀(𝑡) − ℎ𝜏(𝑡) (2-57) 

 |𝜏(𝑡)| = 𝑐ℎ𝑘 

 𝜀 Error equation ℎ Time step 

 𝑨 Amplification matrix  𝑘 Order of accuracy 

 𝑐 Constant  𝑡 time 

Hulbert and Hughes [71] proved that the Houbolt method always has second-order accuracy. The 

same study proves that order of accuracy of the Newmark method depends on the numerical 

parameters γ and β. The Newmark method has second-order accuracy for γ=1/2. The order accuracy 

of Wilson method is also depending on the numerical parameter θ.  

It is well known that the order of accuracy for direct integration methods gives a rough estimate. A 

more accurate method for direct integration method is the relative period error and relative 

amplitude error. The relative period error (Figure 2-31 (a)) is defined as the period distortion and is 

the same as numerical dispersion. The relative amplitude error (Figure 2-31 (b)) is related to the 

numerical dissipation, also called algorithmic damping. The available measurement methods are 

determined only from the numerical solution itself [72]. The numerical damping and relative period 

error can be computed by equation (2-58) and equation (2-59).  
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(a) (b) 

Figure 2-31: (a) Amplitude error (b) period error 

𝜉̅ = −
ln(𝜌((𝑨)2) 

2Ω̅
 (2-58) 

 Ω̅ = �̅�ℎ  

  
�̅� = tan−1 (

𝐼𝑚(𝜆)

𝑅𝑒(𝜆)
) 

 

𝑃 =
�̅� − 𝑇

𝑇
=

Ω̅

Ω
− 1 

(2-59) 

 𝜉 Damping ratio numerical  �̅�  Natural frequency numerical 

 𝑨 Amplification matrix ℎ Order of accuracy 

 𝑇 Natural period �̅� Natural period numerical 

 𝜆 Eigenvalue   

The numerical damping and relative period error are given in Figure 2-32 for the Newmark method, 

Houbolt method and Wilson method. This figure shows that, in general, all the numerical methods 

are accurate for very small step sizes, but the characteristics of the numerical methods are quite 

different for large step sizes. For example, Newmark method with numerical parameters β = ¼ and γ 

= ½ does not introduce numerical damping in the time domain simulations.    

  
(a) (b) 

Figure 2-32: (a) Numerical Damping. (b) Relative period error 
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2.7.4 Overshoot 

Goudreau [73] discovered a very specific characteristic of the Wilson method. The Wilson method 

showed in numerical experiments a tendency to overshoot the exact solution significantly in the 

early response. Overshooting can be a property for unconditional stable numerical methods, which 

are applied to systems with large numbers of degrees of freedom. In large system large values of Ω 

(ω · h) are observed, which occur due to the high natural frequencies of the system. In the first few 

steps the overshooting phenomenon should be prevented.  

The overshooting property is an important and independent property of the numerical method and 

should be evaluated. Hilber and Hughes [74] analyzed the overshooting property and concluded that 

the short-term behavior of the numerical method is governed by the norm of amplification matrix A. 

The long-term behavior is governed by the spectral properties of the amplification matrix A. The 

overshooting property is not analyzed for the Houbolt method, as analyzing the overshooting 

property of the multi-step method is depending on the starting procedure.  

The overshooting phenomenon is evaluated at the end of the first time step, assuming a non-zero 

initial condition for the velocity and displacement. The overshooting phenomenon is investigated by 

taking the limit of Ω → ∞ and eliminate the acceleration term [74]. The results for the Wilson 

method (equation (2-60) and equation (2-61)) and the Newmark method (equation (2-62) and 

equation (2-63)) are given.  

lim
Ω→∞

𝑣1 ≈ [(
1

4𝜃
− 1)Ω]𝜔𝑥 + [(1 −

1

2𝜃2
)] 𝑣 (2-60) 

lim
Ω→∞

𝑥1 ≈ [(−
1

2
+

1

2𝜃
)Ω2] 𝑥 + [ℎ (1 −

1

𝜃2
)] 𝑣 

(2-61) 

lim
Ω→∞

𝑣1 ≈ (
𝛾

2𝛽
− 1)Ω𝜔𝑥 − (1 −

𝛾

𝛽
)𝑣 (2-62) 

lim
Ω→∞

𝑥1 ≈ (1 −
1

2𝛽
)𝑥 

(2-63) 

 𝜃 Numerical parameter Wilson method 𝜔 Natural frequency 

 𝑣 Velocity 𝑥 Displacement 

 𝛾 Numerical parameter Newmark 𝛽 Numerical parameter Newmark 

The elimination of the acceleration terms and limiting Ω → ∞ for the displacement and velocity for 

the Wilson and Newmark methods show that in the Wilson method and Newmark method 

overshooting occur. The overshooting for the Wilson methods is in the displacement quadratic and 

for the velocity linear. The overshooting for the Newmark method is linear for the velocity, but no 

overshooting occurs for the displacement, which is illustrated by. Figure 2-33 shows the overshooting 

of the Newmark method and Wilson method for the displacement and velocities [74].  
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(a) (b) 

Figure 2-33: Overshooting (a) Newmark [74] (b) Wilson [74] 

2.7.5 Conclusion 

Numerical time integration method solves the equation of motion for discrete time steps. The ideal 

numerical time integration method should have six properties. The Newmark method, Houbolt 

method and Wilson method are investigated in this study on the six properties. A summary of the 

three numerical methods is given in Table 2-3. The Newmark method and Wilson method are self-

starting integration methods but the Houbolt method is not because it requires knowledges of xt-h 

and xt-2h. The algorithmic damping for the Newmark method and Wilson method is controllable 

because the algorithmic damping depends on the numerical parameters of the numerical method. 

The algorithmic damping is not controllable for the Houbolt method.  

Table 2-3: Summary of numerical time integration method 

 Newmark Houbolt Wilson 

Order of accuracy O(h)   O(h2)   O(h)   

Unconditional stable 2β≥γ≥0.5 always θ≥1.37 

Controllable algorithmic damping + - + 

Overshoot property - n/a - 

Self-starting + - + 

One set of implicit equations + + + 

 

The developed model solves the equation of motion of the TLPWT and the TLPWT is a stiff dynamic 

system due to the large mooring stiffness. Houbolt method computes the displacements and applies 

the finite difference equation to compute the velocities and accelerations. The Houbolt method uses 

less iteration to find dynamic equilibrium, therefore the Houbolt method is used. The step size is 

depending on the physical problem, which is the step size of the wind turbine. The Houbolt method 

has two disadvantages, it is not a self-starting method and has not a controllable algorithmic 

damping.  However, a starting procedure of the wind turbine is required, otherwise nonphysical 

oscillations are introduced in the time simulation. Secondly, the required time step size will be small 

and therefore the algorithmic damping is small.     
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2.8 NATURAL FREQUENCIES AND MODAL SHAPES 
In general, bodies with mass and a finite stiffness are able to vibrate. The vibrations exist due to the 

periodic change of potential and kinetic energy. The acceleration of the mass is related to the kinetic 

energy and the displacement of the stiffness related to the potential energy. The vibrations are 

classified into free vibrations, forced vibrations and self-excited vibrations. Free vibration is the 

vibration after a disturbance of the system equilibrium position, no external forces are acting on the 

system. The corresponding vibration is the free vibration and is calculated by the homogeneous 

solution of the equation of motion. The second class is forced vibration, which is the vibration due to 

an external force, the oscillation that occurs has the same frequency as the force frequency. The 

forced vibration is calculated by the particular solution of the equation of motion. The last class is the 

self-excited vibration, which are vibrations due to an external forces that sustains the motion. Thus, 

the external forces are depending on some parts of the motion itself [75].  

Natural frequencies and mode shapes are an important characteristics of a dynamic system. The 

natural frequency is the frequency of vibration where the dynamic system oscillates without an 

external force after an initial displacement. The first natural frequency is sometimes called the 

fundamental frequency. Rigid body dynamic system with n degrees of freedom has n natural 

frequencies but a flexible body dynamic system always has infinite number of natural frequencies. 

The mode shape describes the pattern of motion in which all bodies in the dynamic system move 

with the same frequency and with the same fixed phase relation. Note, the configuration of a 

dynamical system does not change its shape during the motion [76].  

The natural frequencies and mode shapes of a dynamic system can be found by solving an eigenvalue 

problem. The natural frequencies are the eigenvalues and the modes shapes are the eigenvectors of 

the eigenvalue problem. The eigenvalue problem of the equation of motion can be written as 

equation (2-64), which can be written as standard eigenvalue problem (equation (2-65)). The non-

trivial solutions need to be found. Non-trivial solution in linear algebra has the property that the 

determinant is zero. The standard eigenvalue problem can be written into a characteristic equation 

(solution of equation (2-66)). For large dynamical system it is time consuming to solve the 

characteristic equation standard eigenvalue problem [76]. Several numerical methods have been 

developed to find the eigenvalues and eigenvectors, for example [77] and [78].  

[𝑲 − 𝜔2𝑴]Ψ⃗⃗⃗ = 0⃗  (2-64) 

𝜔2[𝑰]Ψ⃗⃗⃗ = [𝑴−1𝑲]Ψ⃗⃗⃗  (2-65) 

det|𝜔2[𝑰] − [𝑴−1𝑲]| = 0 (2-66) 

 𝑲 Stiffness matrix 𝜔 Natural frequency 

 𝑴 Mass matrix Ψ⃗⃗⃗  eigenvalue 

2.8.1 Nonlinear resonance frequencies 

For linear dynamics the principle of superposition holds. Mathematically, this means that the mass, 

stiffness and damping matrix are symmetrical and the forces are independent of the system’s 

variables. However, the dynamic system of the TLPWT is nonlinear. For nonlinear dynamics the 

principle of superposition does not hold, but the analysis of nonlinear vibrations are wide, complex 

and still an important research field for engineers and researchers [76].  

  



Theoretical review 

44 

November 2018 

There are many sources of nonlinearities in mechanical systems, like geometric nonlinearities, 

material nonlinearities, structural nonlinearities, nonlinearities of constraints and nonlinearities due 

to damping. Nonlinear dynamic systems can be complex and have behaviors which linear dynamic 

systems dynamics have not, for example jumps, bifurcations, saturation, subharmonic, 

superharmonic, internal resonances, resonances captures, limit cycles, modal interactions and chaos 

[79].  

Geometrical nonlinearity arises from the kinematics of the system. The assumption of small 

amplitudes with respect to the dimensional properties of the dynamical system around the 

equilibrium position no longer holds. The second nonlinearity in mechanical system is material 

nonlinearity, which arises from the material properties of the dynamic system. The stress-strain 

relation of the material may become nonlinear for large deformations. Structural nonlinearity is 

related to the stiffness of the mechanical system. The stiffness is not a linear property but the 

stiffness has higher order terms. When the stiffness increases the behavior is called hardening and 

when the stiffness decreases the behavior is called softening (see Figure 2-34). Nonlinearity of 

constraint is an abrupt change in the boundary conditions for example a pendulum moving close to a 

wall. Nonlinearity due to damping is related to the damping term in the equation of motions. 

Damping is a complex phenomenon and is related to the microscopic processes in the material, even 

the simplest damping models are typically highly nonlinear [79].  

The linear and nonlinear responses of a TLP have been investigated many times, for example [80] and 

[81]. The primary nonlinearities in the dynamic system of a TLPWT are the geometric nonlinearities. 

The large displacement of the TLPWT causes a nonlinear restoring force. The restoring forces are part 

of the mooring stiffness and the mooring stiffness plays an important role in the dynamic behavior of 

the TLP. The mooring stiffness is nonlinear, because the tendon tension is not constant over time. A 

linear and a cubic spring often represent the mooring stiffness. Low [80] and Senjanovic [81] looked 

at the nonlinear mooring stiffness of a TLP. Both studies showed that the mooring stiffness is of the 

hardening type. In case of a nonlinear stiffness, the natural frequency is depending on the amplitude.  

   
(a): Linear (b): Nonlinear, hardening (c): Nonlinear, softening  

Figure 2-34: Frequency-amplitude relation for a nonlinear system [79] 

2.8.2 Nonlinear modal analysis 

The concept of linear modal analysis is known. As explained, a mode shape describes the pattern of 

motion with the same frequency and the same displacement ratio with respect to all other 

components. The mode shape has the orthogonally property. Which means that the equation of 

motion can be decoupled. The decoupled equation of motion is invariant. The final property is the 

property of modal superposition. Every motion can be written as a linear combination of the mode 

shapes.  
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The extension of linear modal analysis is nonlinear modal analysis. There are two definitions of 

nonlinear mode shapes, the Rosenberg definition and the Shaw Pierre definition. The Shaw and 

Pierre definition is used in this study, because this definition provides a direct extension to nonlinear 

modal analysis of damped dynamic systems. A Mode shape of a nonlinear system has a motion, 

which takes place on a two-dimensional invariant manifold in the system phase space. This manifold 

has the following properties: it passes through a stable equilibrium point of the system and, at that 

point, it is tangent to a plane which in an eigenspace of the system linearized about that equilibrium 

[82].   

There are fundamental differences between linear mode shapes and nonlinear mode shapes. A 

nonlinear mode shape is not orthogonal to the other modes shapes, they are still mode shapes 

because the mode shapes are orthogonal to the surface of maximum potential energy. The other 

fundamental difference is that the nonlinear mode shapes are frequency-energy dependent and that 

the number of modes shape may be larger than the number of degrees of freedom. The last 

fundamental difference is that energy can be transferred from a mode shape to another mode 

shape. This phenomenon is known as mode interaction [82].  

2.8.3 Sub- and super-harmonic response 

The forced vibration behavior of a nonlinear system differs from a linear system. A nonlinear dynamic 

system that is excited by a force will vibrate in the force frequency but also a second resonance 

frequency will occur. This phenomenon is called sub- and super harmonic response. The sub- and 

super harmonic responses are observed in dynamical systems with small cubic stiffness. For super-

harmonic response the secondary resonance frequency is higher than the force frequency, and for 

sub-harmonic response the secondary resonance frequency is lower than the force frequency [79].   

𝑓𝑠𝑢𝑏 =
𝑛𝑓

𝑚
,    (𝑛,𝑚 = 1,2,3… ) 

(2-67) 

𝑓𝑠𝑢𝑝𝑒𝑟 = 𝑛𝑓,    (𝑛 = 1,2,3… ) (2-68) 

 𝑓 Frequency    

Sub-harmonic and super-harmonic oscillations may not be confused with second-order wave forces. 

Sub-harmonic and super-harmonic oscillations will also occur in waves with a single frequency and 

the resulting first-order hydrodynamic load. The frequency of the sub-harmonic or super-harmonic 

will however always be the exact fraction of the frequency. Second-order wave forces have the 

frequency of the difference or sum of two wave frequencies [83].    

Ahmed [84] investigated the sub-harmonic and super-harmonic resonance of a TLP. Super-harmonic 

resonance and sub-harmonic resonance were visible in the spectrum of heave. Liaw [83] showed that 

sub-harmonic responses may occur but the presence of having subharmonic responses can be 

avoided with a good design. Structures with a large member size and low structural mass are the 

most vulnerable to subharmonic oscillations. Senjanovic [81] mentioned that neglecting the varying 

tendon tension and the coupling of motions may not be neglected. The design regulations 

recommend to consider the subharmonic and superharmonic resonance of the TLP.  
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2.9 CLOSURE 
The focus of this chapter was on the wind turbine dynamics, computation methods the wind turbine 

loads, hydrodynamic models, model techniques of the environment, model techniques of the 

mooring system and the fundamentals of numerical time integration methods. Lastly, the analysis 

techniques of nonlinear and linear dynamics are explained. The following conclusions are made with 

regard to the developed model and the dynamics of a TLPWT: 

• The passing blade frequencies are the main source of non-harmonic periodic processes and 

are caused due to tower shadow effect and wind shear effect, which are important for the 

fatigue lifetime of the wind turbine blades.  

• The wind turbine blades are a rotating structure and this type of structure requires special 

care. For example, when a rotating structure experiences a rotation perpendicular to the 

plan of rotation, then the structure experiences a gyroscopic moment. The gyroscopic 

moments are negligible for BFWT, but can be large for a FWT due to the yaw and pitch 

motions. Therefore, the gyroscopic moments may be relevant.  

• Every wind turbine has a control system. The control system maximizes the power 

production, prevents extreme loads and minimizes the fatigue damage. The control system 

is important for the motion responses of the wind turbine, therefore the control system 

should be implemented in the model.  

• Two computational methods for the wind turbine loads are investigated. The actuator disk 

assumption is used in the model, because the thrust force and the aerodynamic torque 

dominate the motions of the FWT.  

• The hydrodynamic loads are important for the fatigue lifetime of the TLPWT. The 

hydrodynamic loads are modelled with the Morison equation, which is commonly used in 

the offshore industry for slender structures like the TLPWT. The study of Backynski and 

Moan [49] showed that the Morison equation gives good agreement with the potential flow 

in operational conditions of the wind turbine.  

• The mooring system of the TLPWT can be modelled as massless springs, elastic springs and 

with beam elements. The study of Wang and Zou [58] concluded that modelling the mooring 

system as massless springs or elastic springs produces inaccurate results. Therefore, the 

mooring system is modelled with beam elements in the model, taking the time varying 

tendon forces and the hydrodynamic loads on the tendon into account.  

• A numerical time integration method solves the equation of motion of the TLPWT. The 

Houbolt method is implemented in the model, because the computation time is less with 

respect to the Newmark Method and Wilson Method. The Houbolt method is not a self-

starting method and the numerical damping is not controllable, but the wind turbine 

requires a start-procedure and the time step size is small.  

• The dynamic analyses techniques for linear and nonlinear dynamics are not the same. For 

example, the natural frequency of a nonlinear dynamics system depends on the amplitude 

of the motion. Other analyses techniques are needed, to analyse the nonlinear dynamic 

system of the TLPWT.  
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3 DEVELOPMENT OF AERO-HYDRO-ELASTIC-SERVO MODEL 

3.1 INTRODUCTION 
This chapter deals with the development of the aero-hydro-elastic-servo model. The Aero-Hydro-

Elastic-Servo model takes the aerodynamics of the wind turbine, the hydrodynamics, the flexibility of 

the structures and the control system of the wind turbine into account. The conclusions of the 

previous chapter are used to make the model. The final step is the validation of the model, with 

Orcina Orcaflex which is a recognized commercial software packages.  

3.2 MODEL DESCRIPTION 
An adequate model is required to describe the complex dynamic system of the TLPWT. The model 

needs to meet the requirements of modelling the wind turbine dynamics, aerodynamics, 

hydrodynamics, flexibility of the total structure, structural damping and the environment. The TLPWT 

has a strong coupling between the aerodynamics, hydrodynamics, flexibility of the structure and the 

control system of the turbine. This coupling is called the aero-hydro-servo-elastic coupling [85], 

which means that the forces due to the wind have effect on the floater deformations and that the 

accelerations of the floater affect the turbine displacements.  

The model is a finite element model (the fundamentals of a finite element method are explained in 

Appendix: Fundamentals of finite element method). A finite element analyses can be separated into 

three main steps, namely preprocessing, numerical computation and the postprocessing. The 

preprocessing requires the definitions of geometric properties and the material properties. In case of 

Aero-Hydro-Elastic-Servo model, the preprocessing also requires the definitions of environmental 

conditions, properties of the wind turbine, hydrodynamic coefficients and the boundary conditions of 

the model [86].   

The numerical computation is the step where the software generates the matrices (mass matrix and 

stiffness matrix), these matrices describe the dynamic behavior of each element and represent the 

structure [86]. In this step is also the equation of motion solved by a numerical integration method. 

The Houbolt numerical time integration method is used, because the TLPWT is a very stiff system due 

to the mooring stiffness. The stiffness is directly related to the displacement and the Houbolt method 

applies a finite difference equation of the displacements to compute the velocities and accelerations. 

Therefore, the Houbolt method will use less iteration steps than the Newmark and Wilson Method. 

The numerical method computes the displacements, velocities, accelerations and the forces of 

discrete time steps.  

The final step of the finite element analysis is the postprocessing. The postprocessing will plot the 

deformations, velocities and acceleration and forces. A Fast Fourier transformation (FTT) is 

performed to determine the response spectrum of the TLPWT.  
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The model is implemented in Matlab, a schematic overview of the Matlab model is given in Figure 
3-1, with brief explanations on each component below.  

• Preprocessing 
o ‘’Create TLPWT’’ creates a structure array with line objects, with cross-sectional 

properties and material properties.  
o ‘’’Meshing’’ uses the structure array to discretize the TLPWT into elements and 

creates a structure array with elements.    
o ‘’Wave field generator’’ and ‘’Wind field generator’’ are algorithms that generate the 

stochastic wind velocity field and irregular waves, as explained in section 2.5.1 and 0 
section. 

• Numerical computation 
o ‘’Create K and M’’ uses the structure array with elements to create the stiffness and 

mass matrix.  
o ‘’Solve static’’ uses the mass and stiffness matric to solve the TLPWT hydrostatic to 

compute geometric stiffness of the TLPWT and computes the natural frequencies.  
o ‘’Structural damping’’ uses the natural frequencies to compute the structural 

damping matrix and is explained in section 3.3.2.  
o ‘’ODE Solver’’ solves the equation of motions for discrete time steps.  

• Postprocessing 
o ‘’FFT’’ uses the force, displacement, velocity and accelerations to transfer into a 

Fourier series.  
o ‘’Poincare’’ uses the displacement and velocity to make a Poincare plot, which can be 

used to analyse the nonlinear behaviour.  
o ‘’Display output’’ uses the forces, displacement, velocities and accelerations to 

create figures.    

 
Figure 3-1: Arrangement of the model 
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3.3 STRUCTURAL MODEL 
Modelling rigid bodies is fully understood by researches and engineers. Due to the developments of 

new technologies and lightweight materials, modelling flexibility of materials becomes important. 

Therefore, a shift from rigid body dynamics to deformable multi-body system is necessary. The 

TLPWT is a slender structure and the flexibility should be taken into account. The elasticity of the 

tower affects the natural frequency of the pitch motion of the platform; the natural frequency of the 

pitch motion decreases. This decrease can lead to resonance excitations of the wave frequencies or 

second-order sum-frequencies. Consequently, modelling the tower as a rigid body may lead to 

underestimation of the fatigue damage of the structure [87]. The magnitude of the pitch rotations 

and the amount of oscillations increase when taking the flexibility of the tower into account. The 

shift of the pitch natural period is caused by the coupling of the first bending mode of tower and the 

pitch natural frequency of the floater [88].  

The TLPWT is mainly loaded laterally by the aerodynamic and hydrodynamic loading. The TLPWT 

consists of three pontoons, three tendons, a centre column and a tower. All elements are slender 

objects and mainly laterally loaded with respect to its axis. The tendons, pontoons and centre column 

and tower are modelled with the same one-dimensional beam element.   

3.3.1 Beam element 

A one-dimensional beam element is used to model all the objects of the TLPWT. There are two 

elementary beam theories, the Euler-Bernoulli beam theory [89] and the Timoshenko beam theory 

[90]. Timoshenko beam theory takes transverse shear deformation and rotational bending effect into 

account. The main assumption is that the cross section remain plane and the shear strain is constant 

over the length, with a length-height ratio of 10, the Timoshenko beam is an approximation of an 

Euler-Bernoulli beam [86].  

 

Figure 3-2: Cross-section displacement with (a) Euler-Bernoulli beam theory and (b) Timoshenko beam theory [91].  

The one-dimensional beam element is a two node and six degrees of freedom per node beam 

element. There is no coupling between axial deformations, torsion and bending. A linear shape 

function is used for axial deformation and torsion and a cubic shape function is used for bending. The 

pontoons and the tower of the wind turbine have a linear tapering of the cross section over the 

length. The linear tapering is taken into account in the mass and stiffness matrix of the one-

dimensional beam element. The derivation of the mass and stiffness matrix of the beam element are 

given in Appendix: One-dimensional finite element.  
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3.3.2 Structural damping 

The damping matrix cannot be computed with the shape function like the element mass and element 

stiffness matrix. Therefore, the damping is taken into account by introducing an overall energy 

dissipation. Using the assumption that the total damping is the sum of the damping of the each 

individual mode, the damping can been written as equation (3-1). Where Ψ is the mode shape, f the 

natural frequency, ξ the damping ratio and δ the Kronecker delta function [68].  

Ψ𝑖
𝑇𝑪Ψ𝑗 = 2𝜋𝑓𝑖𝜉𝑖𝛿𝑖𝑗  (3-1) 

 
𝛿𝑖𝑗 = {

1, 𝑖 = 𝑗
0, 𝑖 ≠ 𝑗

 
 

 𝑪 Damping matrix Ψ Mode shape 

 𝑓 Frequency  𝜉 Damping ratio 

 𝛿 Kronecker delta function   

Finite element models are large systems of coupled equations. Solving there system by modal 

superposition is not efficient for large systems. Assuming that the damping matrix can been written 

as a Caughey series [92, 93] (see equation (3-2)), the damping matrix becomes a series of the mass, 

stiffness matrix and the coefficients. The coefficients can be computed by solving the system of 

equations (3-3).  

𝑪 = 𝑴 ∑ 𝑎𝑘[𝑴−𝟏𝑲]
𝒌

𝑟

𝑘=0

= 𝑎0𝑴 + 𝑎1𝑲 + 𝑎2𝑴 [𝑴−1𝑲]2 …  (3-2) 

[
 
 
 
1 𝜔1

2 𝜔1
4 ⋯ 𝜔1

2𝑟−2

1 𝜔2
2 𝜔2

4 ⋯ 𝜔2
2𝑟−2

⋮ ⋮ ⋮ ⋮
1 𝜔𝑟

2 𝜔𝑟
4 ⋯ 𝜔𝑟

2𝑟−2]
 
 
 

[

𝑎0

𝑎1

⋮
𝑎𝑟−1 

] = [

2𝜔1𝜉1

2𝜔2𝜉2

⋮
2𝜔𝑟𝜉𝑟

] (3-3) 

 𝑪 Damping matrix 𝑴 Mass matrix 

 𝑲 Stiffness matrix 𝑎 Coefficient 

 𝜔 Natural frequency 𝜉 Damping ratio 

 
Figure 3-3: Damping ratio as function of the frequency 
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In practice a Caughey series of r = 2 is used [68], which means that the damping matrix is a linear 

combination of the mass and stiffness matrix of the structure. This is called proportional damping or 

Rayleigh damping [94]. Proportional damping has the advantaged that the computational cost is less, 

but the disadvantaged is that the damping is frequency dependent. The limit of the damping ratio 

goes to infinite for the lower frequencies and for the higher frequencies. It is important to determine 

the a0 and a1 coefficients well, to not overestimate the damping.  

𝑪 = 𝑎0𝑴 + 𝑎1𝑲 (3-4) 

 𝑪 Damping matrix 𝑴 Mass matrix 

 𝑲 Stiffness matrix 𝑎 Coefficient  

 
Figure 3-4: Damping ratio as function of the frequency 

Proportional damping is used to take structural damping into account. The damping ratio prescribed 

by the design standards is between 1% and 5%, but for a fatigue assessment of wind turbine the 

design standards recommend a value between 1 and 2% [94]. The coefficients of the damping are 

computed with equation (3-5) and equation (3-9) [86]. Two frequencies are needed to compute the 

coefficients, the first frequency is the first natural frequency and the second frequency is the ninth 

natural frequency, because the higher modes are tendon modes or very high bending modes.  

𝑎0 =
2𝜔1𝜔2(𝜉1𝜔2 − 𝜉2𝜔1)

(𝜔2
2 − 𝜔1

2)
 (3-5) 

𝑎1 =
2(𝜉2𝜔2 − 𝜉1𝜔1)

(𝜔2
2 − 𝜔1

2) 
 (3-6) 

 𝜔 Coefficient  𝜉 Damping ratio 
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3.4 AERODYNAMIC MODEL 
The aerodynamic forces are split into aerodynamic loads on the tower and wind turbine loads. The 

aerodynamic loads are depending on the wind conditions. This study makes use of the Froya wind 

model [53]. An unidirectional wind field is used in the model, an example of the turbulence and an 

example of the wind field is given Figure 3-5.  

  
(a)  (b)  

Figure 3-5: (a) Wind field excluding shear profile (b) Wind field including shear profile   

3.4.1 Aerodynamic loads on tower 

The aerodynamic loads on the tower are distributed over the total length of the tower. The load per 

unit length can be computed with the drag part of the Morison equation (equation (3-7)).  

𝑓𝑑𝑤𝑖𝑛𝑑
=

1

2
𝐶𝑑𝜌𝑎𝑖𝑟(𝑢𝑤𝑖𝑛𝑑 − 𝑣)|𝑢𝑤𝑖𝑛𝑑 − 𝑣|𝐷 

(3-7) 

 𝐶𝑑 Drag coefficient 𝜌𝑎𝑖𝑟 Density air 
 𝑢𝑤𝑖𝑛𝑑  Velocity wind 𝑣 Velocity TLPWT 
 𝐷 Diameter   

3.4.2 Wind turbine loads 

The wind turbine loads are split in a thrust force, aerodynamic torque and the gyroscopic moments. 

The wind turbine dynamics are modelled with the Bluewater wind turbine external function [20]. This 

external function models the wind turbine as an actuator disk and computes the thrust force, 

aerodynamic torque and the gyroscopic moments. The non-axial loads and non-torsional loads are 

not computed with the external functions. However, the non-torsional loads have a lower order, and 

the non-axial load Fy can be significant when the wind turbine is not properly aligned with the wind. 

Thus, the model can only been used for properly aligned wind [20].  

3.4.2.1 Thrust force 

The trust force can be computed with equation (3-8). The turbine trust force coefficients are known 

for the wind turbine, the properties of the wind turbine are confidential and are not published in this 

study.  

𝐹𝑡ℎ𝑟𝑢𝑠𝑡 =
1

2
𝜌𝑎𝑖𝑟𝐴𝑑𝑖𝑠𝑘𝐶𝑡(𝜃 , 𝑇𝑆𝑅)(𝑢𝑤𝑖𝑛𝑑 − 𝑣)|𝑢𝑤𝑖𝑛𝑑 − 𝑣| 

(3-8) 

 𝐶𝑡 Thrust coefficient 𝜃 Pitch angle 

 𝑢𝑤𝑖𝑛𝑑  Velocity wind 𝑣 Velocity TLPWT 
 𝐴𝑑𝑖𝑠𝑘 Area actuator disk 𝑇𝑆𝑅 Tip-speed ratio 
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The turbine trust force coefficients are depending on the blade pitch angle, far-field wind velocity 

and the wind turbine rotational speed. The far-field wind velocity and the wind turbine rotational 

speed can be expressed by a dimensionless number tip-speed ratio (TSR). Wind turbines are designed 

to operate at optimal TSR and the turbine controller is designed to keep the turbine running at an 

optimal TSR until full power is reached.   

𝑇𝑆𝑅 =
Ω𝑅

𝑢𝑤𝑖𝑛𝑑
 

(3-9) 

 Ω Angular velocity disk 𝑅 Radius rotor 
 𝑢𝑤𝑖𝑛𝑑  Velocity wind   

3.4.2.2 Passing blade frequencies 

The thrust force variations are due to wind turbulence and non-harmonic periodic processes. These 

periodic processes are due to the tower shadow effect and wind shear effect. The passing blade 

frequencies are important for the blade fatigue, control system and the power output. The external 

function takes the tower shadow effect into account, but wind shear is omitted. Because the external 

function uses the velocity vector of the wind at the location of the RNA and assumes a constant 

velocity over the disk.  

Tower shadow effect is taken into account by the external function. The force in x-direction is written 

as a superposition of the trust force and force due to the tower shadow effect (equation (3-10)). The 

tower shadow force is a non-harmonic periodic load and is written as a truncated Fourier series. A 

comprehensive study by DTU [95] on tower shadow effect is used to estimate the tower shadow 

effect. The Fourier series approximate the load by the third harmonic. Figure 3-6 gives the force 

spectrum of the external function for a constant wind velocity. 

𝐹𝑥 = 𝐹𝑡ℎ𝑟𝑢𝑠𝑡 + 𝐹𝑠ℎ𝑎𝑑𝑜𝑤 (3-10) 

 
𝐹𝑠ℎ𝑎𝑑𝑜𝑤 = 𝐹𝑡ℎ𝑟𝑢𝑠𝑡 (∑𝐶𝑗 sin(𝑗𝜙 + 3𝜙𝑗)

3

𝑗=1

) 

 

 𝐹𝑡ℎ𝑟𝑢𝑠𝑡  Thrust force 𝐶𝑗 Coefficient 

 
Figure 3-6: Thrust force spectrum with constant wind velocity 

The external function takes tower shadow effect into account by means of an empirical formulation 

but excludes the wind shear effect. Meaning, that the tower shadow effect dominates the non-

harmonic periodic thrust force variations. The influences of this limitation on the non-harmonic 

periodic thrust force variations are further investigated in this study in chapter 4 Dynamic analysis.   
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3.4.2.3 Gyroscopic moments 

The gyroscopic moments are computed with the same wind turbine external function. The 

gyroscopic moments for bottom founded wind turbines can be neglected. For floating wind turbines 

the gyroscopic moments may be relevant. The rotations of the support structures are much larger 

with respect to the yaw motions of the nacelle. The gyroscopic moments are therefore included in 

the external functions. The gyroscopic moments are computed with equation (3-11).   

𝑀𝑔𝑦𝑟𝑜 = Ω𝑟 [

0 0 0
0 0 𝐼𝑝
0 −𝐼𝑝 0

] [

�̇�𝑥

�̇�𝑦

�̇�𝑧

] (3-11) 

 Ω𝑟 Angular velocity wind turbine blades 𝐼𝑝 Polar mass of inertia rotor 

 �̇�𝑖  Angular velocity in direction i   
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3.5 HYDROMECHANICS MODEL 
The TLPWT is exposed to hydrostatic and hydrodynamic loads, which are together the 

hydromechanics loads. The hydrostatic load consists of the restoring forces and moments and the 

self-weight of the structure. The hydrodynamic loads are the loads due to the waves and currents.  

3.5.1 Hydrostatic 

The static loads consist the self-weight of the structure and the hydrostatic forces and moments. The 

hydrostatic forces and moments dependent on the shape of the submerged volume and the cross 

section area piercing the water line. The total hydrostatic force is equivalent to the integral of the 

hydrostatic pressure over the wetted surface, equation (3-12).  

𝐹𝑠 = ∬ 𝑝 ∙ �⃗�  𝑑𝑆
𝑆

 
(3-12) 

 𝐹𝑠 Hydrostatic forces 𝑝 pressure 
 �⃗�  Normal vector 𝑆 Wetted surface 

The hydrostatic pressure is assumed to be constant. The diameter of the centre column is small with 

respect to the wave length, therefore the waterline area can be approximated by a constant 

waterline area. The motion of the TLPWT and the nonlinear boundary condition of the waterline, 

cause the submerged area to vary in time. The time varying part of the submerged body is small with 

respect the total submerged body of the TLPWT.  

 
Figure 3-7: Changing water line area 

The hydrostatic moments are described as an integral over the wetted surface of the hydrostatic 

pressures multiplied by the position vector, equation (3-13). In case of a non-zero pitch and roll 

rotation, the structure experience a restoring moment due to the unbalanced buoyancy forces. 

Another explanation is that the motion of the TLPWT and the nonlinear boundary condition, cause 

the underwater shape of the structure to change. The restoring moment is small with respect to the 

moment caused by the tendon tension of the TLPWT, therefore the hydrostatic moment is not 

included. The total static force per unit length can therefore be written as equation (3-14). 
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𝑀𝑠 = ∬ 𝑝 ∙ (𝑟 × 𝑛) 𝑑𝑆
𝑆

 
(3-13) 

𝑓𝑠 = 𝜌𝑤𝑔𝐴 − 𝜌𝑚𝐴𝑐𝑟𝑜𝑠𝑠𝑔 (3-14) 

 𝑀𝑠 Hydrostatic moment 𝑝 pressure 
 �⃗�  Normal vector 𝑆 Wetted surface 
 𝑟 Radius  𝜌𝑤 Density water 
 𝑔 Gravity acceleration 𝜌𝑠 Density material 
 𝐴 Enclosed area 𝐴𝑐𝑟𝑜𝑠𝑠 Cross-sectional area 

3.5.2 Wave theories 

The JONSWAP wave spectrum is used to describe the surface elevations but tells nothing about the 

physics of waves. The choice of wave theory depends on three parameters, namely the wave height, 

wave period and water depth.  

 
Figure 3-8: Range of applicability of wave theories [56] 

In this study, Airy wave theory is used, which is mostly called linear wave theory. This linear wave 

theory assumes an ideal fluid, meaning that the fluid is incompressible, has a constant density, a 

continuous water body and has no viscosity. The first assumption is reasonable because the forces 

are small. If the forces are small, the compression due to the forces are also small. The second 

assumption of this theory is also reasonable because density differences occurs only over a large 

distance, but for this wave theory only a few wavelengths considered. The third assumption of a 

continuous water body is only valid if the wave are not too steep, that the wave breaks. If the wave 

breaks air bubbles come in the water. Therefore this wave theory cannot be used for very steep 

waves, see Figure 3-8. The last assumption is that the viscosity can be neglected, this is valid for the 

amount of wave length considered, because viscosity variations are usually to slow [37].  

The boundary conditions of this theory are distinguished into kinematic boundary conditions and 

dynamic boundary conditions. The kinematic boundary conditions are related to motion of the water 

particles and the dynamic boundary conditions are related are related to the forces acting on the 

water particles. The kinematic boundary conditions are based on the water particles may not leave 

the surface and the water particles may not go into the sea floor. The dynamic boundary condition is 

based on the surface pressure is zero [56].  
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Figure 3-9: Boundary conditions for linear wave theory in terms of velocity potential [56] 

Potential theory is applied and the velocity potential of the water particles can be derived with the 

given dynamic and kinematic boundary conditions. The derivation of the velocity potential of linear 

wave theory is not described in this study, but the derivation can be found in different books for 

example [56] and [37]. By definition of the velocity potential, the particle velocity is the partial 

derivative with respect to the direction of the velocity.   

Φ𝑤𝑎𝑣𝑒 =
2𝜋𝑓𝜁

𝑘
∙
cosh[𝑘(𝑑 + 𝑧)]

sinh(𝑘𝑑 )
cos (2𝜋𝑓𝑡 + 𝑘𝑥)  (3-15) 

 𝑘 =
2𝜋

𝜆
  

 Φ Velocity potential 𝑓 Wave frequency 
 𝜁 Wave amplitude 𝑘 Wave number 

 𝑑 depth 𝑧 z-coordinate 

3.5.3 Particle kinematics 

The ocean surface is irregular and has random wave heights, wave lengths and propagation 

velocities. The ocean can therefore be modelled using a random wave model. The random wave 

model is the sum of small linear wave components with different frequencies, amplitudes and 

phases. The JONSWAP spectrum is used to model the surface elevation. The waves are unidirectional 

and the direction of the waves can be chosen independently of the direction of the wind and current.  

The model uses airy wave theory (linear wave theory). The wave kinematics in linear wave theory are 

derived from a velocity potential. The surface elevation is written in a summation of n-frequency 

components. The orbital velocity can therefore be written as a summation of the velocities. The 

particle velocities are written in equation (3-16) and equation (3-17). The particle accelerations are 

written in equation (3-18) and equation (3-19).  
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𝑢𝑤,𝑥(𝑥, 𝑦, 𝑧, 𝑡) = 2𝜋 ∑𝑓𝑖𝜁𝑖

cosh[𝑘𝑖(𝑑 + 𝑧 )]

sinh(𝑘𝑖𝑑)
cos(2𝜋𝑓𝑖𝑡 − 𝑘𝑖(𝑥𝑐𝑜𝑠(𝜇𝑤𝑎𝑣𝑒) + 𝑦𝑠𝑖𝑛(𝜇𝑤𝑎𝑣𝑒)) + 𝜙𝑖)

𝑛

𝑖=1

 
(3-16) 

𝑢𝑤,𝑧(𝑥, 𝑦, 𝑧, 𝑡) = 2𝜋 ∑𝑓𝑖𝜁𝑖

sinh[𝑘𝑖(𝑑 + 𝑧 )]

sinh(𝑘𝑖𝑑)
sin(2𝜋𝑓𝑖𝑡 − 𝑘𝑖(𝑥𝑐𝑜𝑠(𝜇𝑤𝑎𝑣𝑒) + 𝑦𝑠𝑖𝑛(𝜇𝑤𝑎𝑣𝑒)) + 𝜙𝑖)

𝑛

𝑖=1

 
(3-17) 

�̇�𝑤,𝑥(𝑥, 𝑦, 𝑧, 𝑡) = −4𝜋2 ∑𝑓𝑖
2𝜁𝑖

cosh[𝑘𝑖(𝑑 + 𝑧 )]

sinh(𝑘𝑖𝑑)
sin(2𝜋𝑓𝑖𝑡 − 𝑘𝑖(𝑥𝑐𝑜𝑠(𝜇𝑤𝑎𝑣𝑒) + 𝑦𝑠𝑖𝑛(𝜇𝑤𝑎𝑣𝑒)) + 𝜙𝑖)

𝑛

𝑖=1

 
(3-18) 

�̇�𝑤,𝑧(𝑥, 𝑦, 𝑧, 𝑡) = 4𝜋2 ∑𝑓𝑖
2𝜁𝑖

sinh[𝑘𝑖(𝑑 + 𝑧 )]

sinh(𝑘𝑖𝑑)
cos(2𝜋𝑓𝑖𝑡 − 𝑘𝑖(𝑥𝑐𝑜𝑠(𝜇𝑤𝑎𝑣𝑒) + 𝑦𝑠𝑖𝑛(𝜇𝑤𝑎𝑣𝑒)) + 𝜙𝑖)

𝑛

𝑖=1

 
(3-19) 

 𝑢 Orbital velocity �̇� Orbital acceleration 
 𝑓 Wave frequency 𝑘 Wave number 
 𝜁 Wave amplitude 𝜇𝑤𝑎𝑣𝑒 Wave direction 
 𝑑 depth 𝜙𝑖 phase 
 𝑥 x-coordinate 𝑦 y-coordinate 
 𝑧 z-coordinate 𝑡 Time 

3.5.4 Kinematic stretching 

The wave kinematics described by the airy wave theory satisfies the nonlinear boundary conditions 

only at the mean water level, meaning that the theory is only valid for small wave heights. The 

consequences of this limitation are that the wave kinematics underestimate the wave kinematics at 

the wave through and overestimate the kinematics at the wave crest. To overcome this limitation, 

several methods can be used. The wheeler stretching method [54] is used to estimate the kinematics 

of the nonlinear boundary condition. The basic of this method is that the velocity components and 

acceleration components are stretched in case of a crest and compressed in case of a through.  

𝑧𝑤 = 𝑑 ∙
𝑑 + 𝑧

𝑑 + 𝜂(𝑥, 𝑦, 𝑡)
− 𝑑 

(3-20) 

 𝑑 depth 𝑧 z-coordinate 
 𝜂 Surface elevation   

 

Figure 3-10: Stretching of the velocity profile [54] 
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3.5.5 Hydrodynamic load 

Airy wave theory assumes that no current is present. In the model the current-wave interaction is 

therefore neglected. The velocity vector of fluid particles and current are summed as vectors 

quantity. The hydrodynamic loads are computed by the Morison equation. DNVGL [54] defines that 

the additional hydrodynamic damping should not be included, otherwise the damping is 

overestimated. The fluid particles velocities and accelerations in normal direction of the element are 

therefore neglected.  

𝑓𝑚𝑜𝑟𝑖𝑠𝑜𝑛(𝑡) = 𝜌𝑤𝐴�̇� + 𝜌𝑤𝐶𝑎𝐴 (�̇� − 𝑎) +
1

2
𝜌𝑤𝐶𝑑𝐷 (𝑢 − 𝑣)|𝑢 − 𝑣| (3-21) 

 𝑢𝑖 = 𝑢𝑤,𝑖(𝑥, 𝑦, 𝑧, 𝑡) + 𝑢𝑐,𝑖(𝑥, 𝑦, 𝑡)  

 �̇�𝑖 = �̇�𝑤,𝑖(𝑥, 𝑦, 𝑧, 𝑡)  

 𝐴 Enclosed area �̇� Environmental acceleration 

 𝑢 Environmental velocity 𝑢𝑤,𝑖 Orbital velocity 

 𝑢𝑐,𝑖 Current  �̇�𝑤,𝑖  Orbital acceleration 

 𝜌𝑤  Density water 𝐶𝑎 Coefficient added mass 

 𝑎 Acceleration TLP 𝐶𝑑  Coefficient drag 

 𝑣 Velocity TLPWT 𝐷 Diameter  
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3.6 SERVO MODEL 
National Renewable Energy Laboratory (NREL) developed a 5MW wind turbine for research purpose 

and the control system is public available. The NREL 5MW wind turbine and the wind turbine used at 

Bluewater are comparable, therefore the control system of the NREL 5MW is used in this study. The 

control system of the NREL 5MW wind turbine consists of a blade-pitch controller and a variable-

torque controller. The nacelle-yaw control system is neglected because the response is slow enough 

that it will not contribute to large extreme loads or fatigue damage [96]. The variable-torque 

controller and the blade-pitch controller work independently for each other. Figure 3-11 gives a 

schematic overview of the NREL control system.  

 
Figure 3-11: schematic overview NREL control system 

3.6.1 Variable-speed controller 

The variable-speed controller has the aim to optimize the aerodynamic efficiency, by applying 

quadratic relation between the rotational speed of the wind turbine blades and the generator torque 

[17].  

𝑀𝑔𝑒𝑛 = 𝑘𝑔𝑒𝑛Ω2 (3-22) 

 𝑀𝑔𝑒𝑛 Generator torque  𝑘𝑔𝑒𝑛 Generator torque constant 

 Ω Rotational speed wind turbine   

The control system includes 6 regions region 1, region 1.5, region 2, region 2.5, region 3 and region 4. 

However, region 4(cut-out region) is not implemented in the model, which means that the model 

cannot be used to model a shutdown of the wind turbine. Region 1 till region 3 are implemented in 

the model. Where region 1 is the wind turbine not producing power. Region 1.5 is the startup region. 

Region 2.0 is the control region to optimize the aerodynamic efficiency, the generator torque is than 

equal to equation (3-22). Region 2.5 is a transition region between region 2.0 and 3.0, is needed to 

reduce the noise emission at the rated power.  Region 3 is the region where the power production is 

held constant, see Figure 3-12.  
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Table 3-1: Region wind turbine NREL [96] 

Region [rad/s] 

Region 1.0 ω ≤ 0.7016 

Region 1.5 0.7016 <  ω ≤ 0.9394 

Region 2.0 0.9394 <  ω ≤ 1.2780 

Region 2.5 1.2780 <  ω ≤ 1.3090 

Region 3.0 ω > 1.3090 

3.6.2 Blade-pitch controller 

The blade-pitch controller controls the generator speed and becomes active in region 3.0. The blade 

pitch controller is a proportional-integral (PI) control. A PI control is an algorithm which is widely 

used for controlling all kinds of processes and equipment. The control action is calculated as sum of 

two terms, one proportional to the control error and one proportional to the integral of the control 

error. The integral term ensures that in the steady state the error tends to zero, otherwise the 

control action would increase to infinity [17].  

PI control of the blade-pitch controller is acting on the speed error (equation (3-23)) between the 

generator speed and the rated generator speed. The generator speed error is used to compute the 

pitch-angle demand (equation (3-24)), including the gain schedule, which compensates for the 

variable sensitivity of the blade loads to changes in pitch angle at different wind speeds.  

𝜀𝑔𝑒𝑛 = Ω𝑔𝑒𝑛 − Ω𝑟𝑎𝑡𝑒𝑑 (3-23) 

𝜃𝑑𝑒𝑚𝑎𝑛𝑑 = 𝐺𝑘[𝐾𝑝𝜀𝑔𝑒𝑛 + 𝐾𝐼𝐼𝜀] 
(3-24) 

 𝐼𝜀 = ∫ 𝜀𝑔𝑒𝑛 𝑑𝑡
𝑡

0

 

 𝜀𝑔𝑒𝑛 Generator speed error Ω𝑔𝑒𝑛 Generator speed 

 Ω𝑟𝑎𝑡𝑒𝑑 Rated generator speed 𝜃𝑑𝑒𝑚𝑎𝑛𝑑  Pitch angle demand 
 𝐺𝑘  Gain schedule 𝐾𝑝 Proportional gain 

 𝐾𝐼 Integral gain   

 
Figure 3-12: Operation a variable-speed, variable-pitch wind turbine 
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3.7 VALIDATION 
The ‘’Matlab model’’ is validated. The software Orcaflex [13] is widely used in studies of FWT, for 

example [97], and here Orcaflex is used to validate the Matlab model. Salih [12] used Orcaflex to 

validate FWT model with model test performed by SBM Offshore [98]. He concluded that Orcaflex 

computes the motions and trends of the SBM TLP system well. Therefore, the Matlab model is 

validated by comparing the static responses, natural periods and motion responses. See, E Appendix: 

Validation of Model, a summary is given below.  

3.7.1 Models 

A Matlab model and Orcaflex model are developed to compare the results of both models. The 

models have the same geometric properties and the same constraints. The design of the TLPWT is 

based on a design that has been model tested of at MARIN [99].  

  
(a) (b) 

Figure 3-13: (a) Orcaflex Model; (b) Matlab model  

Orcina ‘’OrcaFlex’’ is a commercial software package for dynamics analysis of marine systems. 

Orcaflex takes the flexibility of the tendons, pontoons and tower into account. Stiff springs are 

therefore used to model connections, like the pontoon-centre column connection and nacelle-tower 

connection. The nacelle and rotor are modelled using a buoy element with the mass and inertia 

properties of the nacelle and rotor.  

3.7.2 Static 

The hydrostatic forces are applied in all both models. Orcaflex is not be able to determine the mass 

of the structure but gives the mass per unit length of each object separately. Therefore, the mass of 

Orcaflex model is determined manually. The static results are given in Table 3-2, but normalized by 

dividing by the static properties of the Orcaflex model because these results are confidential. The 

Orcaflex model and the Matlab model have the same results. The mass of the TLPWT, pretension and 

the displacement at nacelle-tower connection and pontoon-centre column connection (PC) of both 

models are equal. 
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Table 3-2: Static Properties Models 

 Orcaflex Matlab Unit 

Total Mass 1.00 1.00 [-] 

Platform Mass 1.00 1.00 [-] 

Nacelle mass 1.00 1.00 [-] 

Pretension tendon 1.00 1.00 [-] 

Displacement z PC 1.00 1.01 [-] 

Displacement z Nacelle 1.00 1.01 [-] 

3.7.3 Natural period 

The natural periods of the Matlab model and Orcaflex model take the added mass, mass and 

geometric stiffness into account, but the gyroscopic effect is excluded. Table 3-3 gives the natural 

periods of the Orcaflex model and Matlab models. The relative error is computed with equation 

(3-25) and also given in Table 3-3. The differences between the natural periods of the Orcaflex model 

and the Matlab Model are all below 0.01, which is negligible. 

𝜖 =
|𝑇𝑀𝐴𝑇 − 𝑇𝑂𝐹|

𝑇𝑂𝐹
 

(3-25) 

 𝜖 Error  T Period  

Table 3-3: Natural Periods Orcaflex and Matlab 

 Orcaflex 
[s] 

Matlab 
[s] 

Error 
[-] 

Surge 25.04 25.18 0.01 

Sway 25.15 25.25 0.00 

Heave 2.33 2.35 0.00 

Roll 6.30 6.31 0.00 

Pitch 7.23 7.22 0.00 

Yaw 16.70 16.87 0.01 

3.7.4 Response 

The design of the TLPWT looks simple but the dynamics of the TLPWT is complex. The validation of 

the response is therefore separated into two steps. The first step is comparing the response of a 

bottom founded wind turbine (BFWT) with Orcaflex and the Matlab model. The second step is 

comparing the responses of the FWT. A regular wave with a misaligned current is used to compare 

the responses. The wind velocity is assumed to be zero, meaning that the wind turbine is off. Table 

3-4 gives a summary of the environmental conditions.  

Table 3-4: Environmental condition validation analysis 

Parameter Symbol Value Unit 

Wave height Hs 3.5 [m] 

Wave Period Tp 8.0 [s] 

Wave direction μwave 60 [°] 

Current velocity wind uc,wind 0.0 [ms-1] 

Current velocity tide uc,tide 0.0 [ms-1] 

Current direction μcurent 90 [°] 

Wind velocity Uw 0 [ms-1] 
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3.7.4.1 Bottom founded wind turbine 

The dynamic system of a bottom founded wind turbine (BFWT) is simpler than the TLPWT. The 

bottom founded wind turbine (BFWT) is modelled as a cantilever beam and the water depth is 96.5 

meter. The cross-sectional dimensional properties of the BFWT are given in Table 3-5 and the 

definitions in Figure 3-14.    

Table 3-5: Properties BFWT 

Parameter Symbol Value Unit 

Diameter Dt 10 [m] 

Plate thickness tp 0.1 [m] 

depth D 96.5 [m] 

Height  Ht 90.7 [m] 

 

   
(a) (b) (c) 

Figure 3-14: (a) Drawing; (b) Orcaflex model; (c) Matlab model  

The responses of the nacelle of the Orcaflex model and Matlab model are compared. The natural 

period of the fore-aft and side-side for Orcaflex model and Matlab model are given in Table 3-5. The 

root mean square error (RMSE, see equation (3-26)) for the displacements, velocities and 

accelerations in x-direction and y-direction are all below the 0.036%, which is acceptable. Figure 3-15 

gives the displacements, velocities and accelerations in global x-direction and global y-direction. 

From the figure, it can be seen that the Matlab model and the Orcaflex model show largely identical 

responses. Concluded is that the Matlab model can compute the responses of a BFWT satisfactory. 

The response spectrum is given Figure 3-15. The response spectrum show largely identical response. 

The first peak in the spectrum is the wave frequency. The second peak is the first natural frequencies 

of the BFWT.  

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑|𝑥𝑖,𝑂𝐹 − 𝑥𝑖,𝑀𝐴𝑇|

2
𝑛

𝑖=1

 

(3-26) 

 𝑅𝑀𝑆𝐸 Root mean square error 𝑥 Displacement  

 𝑛 Number of points   
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Table 3-6: Summary validation BFWT 

 Natural period RMSE 
Matlab 

[s] 
Orcaflex 

[s] 
Error 

[-] 
x 

[m] 
v 

[ms-1] 
a 

[ms-2] 

Fore-aft 3.60 3.55 0.014 0.012 0.014 0.021 

Side-side 3.25 3.45 0.05 0.021 0.025 0.036 

 

  
(a) (b) 

  
(c) (d) 

Figure 3-15: Responses of the BFWT of the Orcaflex and MATLAB model 

3.7.4.2 Floating wind turbine 

The properties of the TLPWT are given in Appendix: Properties TLPWT. The water depth is 96.5 meter 

and the same environmental conditions are used. A simulation of 100 seconds, excluding the starting 

procedure of the environment, is used to compare the motion responses of the Orcaflex model and 

the Matlab model. Figure 3-16 gives the displacements, velocities and accelerations in global x-

direction and global y-direction at the pontoon-centre column connection. From the figure, it can be 

concluded that the Orcaflex model and Matlab model show comparable motion responses. The 

amplitudes of the motions are for the Orcaflex model and Matlab model approximately identical, 

however a small phase shift is visible in the figure. The RMSE-values of displacement, velocities and 

accelerations are below 0.1. The RMSE is dominated by the mean difference of the two time signals, 

a small phase shift causes a relatively high RMSE. Therefore, it is concluded that the Matlab model 

can compute the motions with an acceptable level of accuracy.   
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Table 3-7: Summary validation FWT 

 RMSE 
x 

[m] 
v 

[ms-1] 
a 

[ms-2] 

x-direction 0.070 0.043 0.037 

y-direction 0.096 0.062 0.056 

 

  
(a) (b) 

  
(c) (d) 

Figure 3-16: Responses of the FWT of the Orcaflex and MATLAB model 
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3.7.5 Conclusions 

The validation of the Aero-Hydro-Elastic-Servo model was performed in multiple steps. Appendix: 

Validation of Model provides all the results. The first step compares the static response between the 

Matlab model and the Orcaflex model. Both model show similar static response. The next step 

compares the natural periods. The Matlab model computes the natural periods within less than 1% 

difference. The motion responses of the Matlab model are compared with the motion responses of 

the Orcaflex model. A BFWT and a FWT are used to compare the motion responses. The RMSE of the 

motions are below than 0.036 and the RMSE of the FWT are below 0.096 but still acceptable. This is 

acceptable because the amplitudes of the Orcaflex model and Matlab model are approximately 

identical, which is dominant by fatigue. Hence, the Matlab model is capable to compute the motion 

satisfactory.  

The external wind turbine function itself should be validated for example with BEM-software. Within 

the time frame of this thesis, the validation of the external functions was limited. The control system 

is important for the dynamical response of the wind turbine. The NREL control system is used in the 

model.   
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4 DYNAMIC ANALYSIS 

4.1 INTRODUCTION 
The Matlab model that have been developed can compute natural frequencies, mode shapes and 

solves the EoM for a FWT correctly, see chapter 3. An advantage of the Matlab model with respect to 

the Orcaflex model is that the Matlab model is transparent. Orcaflex model cannot provide all the 

required output, for example the displacements of the nodes between the ends of an element. The 

Matlab model can provide all the output that the user needs.   

In the second chapter (Theoretical review) of this report, some research questions are unanswered. 
The following research questions are listed below: 

• What is the effect of the rotating rotor on the natural period and motions? 

• What is the effect of the nonlinear mooring stiffness on the natural periods? 

• What is the effect of neglecting the wind shear effect on the passing blade frequencies? 

• What is the effect of the passing blade frequencies on the motions of the floating support 
structure? 

4.2 NATURAL PERIODS 
The natural periods of a dynamical system are important properties. The effects of the rotating rotor 

and the effect of the nonlinearities of the TLPWT on the natural periods are not known, therefore the 

gyroscopic effect and the nonlinear mooring stiffness are investigated.  

4.2.1 Gyroscopic effect  

The wind turbine blades are a rotating structure and this type of structure requires special care. The 

modal analysis performed in the validation of the Matlab model does not include the rotating blade 

impact. The EoM of a rotating system can been written as equation (4-1), where G is the gyroscopic 

matrix and H the circulatory stiffness matrix. The gyroscopic matrix G is transferring energy but not 

dissipating energy. The matrix G is a skew-symmetric matrix. A skew-symmetric matrix is a square 

matrix whose transpose equals its negatives. The circulatory stiffness matrix H couples the viscous 

damping of the rotating element to the displacement of the total system [100].  

𝑴𝑎 (𝑡) + (𝑪 + Ω𝑮)𝑣 (𝑡) + (𝑲 + Ω𝑯)𝑥 (𝑡) = 𝐹 (𝑡) (4-1) 

 𝑴 Mass matrix 𝑎 Accelerations vector 
 𝑪 Damping matrix Ω Rotation velocity disk 

 𝑮 Gyroscopic matrix 𝑣 Velocity vector 

 𝑡 time 𝑲 Stiffness matrix 

 𝑯 circulatory stiffness matrix 𝑥 Displacement 

 𝐹 Force    

 
Figure 4-1: TLPWT including actuator disk 
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The rotor of the wind turbine of the TLPWT is modelled as a rigid actuator disk (see Figure 4-1), with 

the properties of the wind turbine used in this study. The structural damping of the TLPWT is 

neglected. The EoM of the TLPWT can be described by equation (4-2). The natural periods of the 

system now also depend on the rotational speed of the actuator disk. The influence of the rotational 

speed of the actuator disk is plotted in a Ω-T diagram, where Ω is the rotational speed of the wind 

turbine and T the natural period of natural frequency mode of interest. The Ω-T diagram of the 

TLPWT is shown in Figure 4-2. 

[𝑴 + 𝑨]𝑎 (𝑡) + Ω𝑮𝑣 (𝑡) + [𝑲 + 𝑲𝑚]𝑥 (𝑡) = 𝐹 (𝑡) (4-2) 

 

𝑮 =

[
 
 
 
0 ⋯ 0 0
⋮ ⋱ ⋮ ⋮
0 ⋯ 0 𝐼𝑝
0 ⋯ −𝐼𝑝 0 ]

 
 
 
 

 𝑥 = [𝑥𝑛,1 𝑥𝑛,2 ⋯ 𝑥𝑛,𝑖]𝑇 

  𝑥𝑛,𝑖 = [𝑢𝑖,𝑥 𝑢𝑖.𝑦 𝑢𝑖,𝑧 𝜃𝑖,𝑥 𝜃𝑖,𝑦 𝜃𝑖,𝑧] 

 𝑴 Mass matrix 𝑨 Added mass matrix 
 𝑎 Accelerations vector 𝑮 Gyroscopic matrix 

 Ω Rotation velocity disk 𝐼𝑝 Polar moment of inertia 

 𝑣 Velocity vector 𝑡 time 

 𝑲 Stiffness matrix 𝑲𝒎 Mooring stiffness 

 𝑥 Displacement 𝐹 Force  

 𝑥𝑛,1 Displacement vector node 1 𝜃𝑖,𝑥 Rotation node i, around x-axis 

 𝑢𝑖,𝑥  Displacement node i x-direction   

The effect of the rotating rotor on the natural periods of the nine natural frequency modes (Figure 

5-1) is analyzed. The natural periods are made dimensionless by dividing the natural periods with the 

natural frequencies when rotational speed of the rotor is zero. The dimensionless natural periods, 

are presented in Figure 4-2, as function of the rotational speed of the rotor. The dimensionless 

periods are straight lines for all modes, till approximately 3 rad/s. Concluded is that the natural 

period of the first nine modes are unaffected by the gyroscopic effect of the wind turbine.  

 
Figure 4-2: Ω-T diagram TLPWT 
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4.2.2 Nonlinear mooring stiffness 

The TLPWT is a nonlinear system because the mooring stiffness depends on the displacements and 

rotations of the TLPWT. The effect on the nonlinear mooring stiffness on the natural periods is 

investigated. The TLPWT is displaced by a pulling force at the water line, to get more accurate results 

[99].   

The effect of the nonlinear mooring stiffness on the natural periods is analyzed. Figure 4-3 gives the 

dimensionless natural periods as function of the displacement for all the nine natural frequency 

modes. The dimensionless natural period are made dimensionless by dividing the natural periods by 

the natural periods when the TLPWT is not displaced. The yaw mode shows small decrease in natural 

period for large displacement and the sway mode a small increase of natural period for large 

displacement, but not significant. The dimensionless periods of the other modes are straight lines, 

therefore the nonlinear mooring stiffness does not have significant effect on the natural periods of 

the TLPWT.    

 
Figure 4-3: Non-dimensional period as function of the displacement 
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4.3 MOTION RESPONSE 
The motion response of the TLPWT is complex, therefore the motion responses of the validation 

TLPWT (see Appendix: Properties TLPWT) are analyzed. The structural damping is assumed to be 2%, 

which is equal to the structural damping of the NREL 5MW wind turbine [96]. Two load cases are 

defined corresponding with moderate (LC 1 in Table 4-1) and extreme environmental condition (CL 2 

in Table 4-1). The first load case has a significant wave height of 2.5m, wave peak period of 8s and a 

10-minute average wind speed of 8 m/s. The second load case has a significant wave height of 5 

meter, wave peak period of 10s and a 10-minute average wind speed of 12.5m/s. These load cases 

are used to investigate the effect of the gyroscopic moments on the motion and the effect of the 

passing blade frequencies.   

Table 4-1: Environmental condition  

Parameter Symbol LC 1 LC 2 Unit 

Wave height Hs 2.5 5 [m] 

Wave Period Tp 8 10 [s] 

Wave direction μwave 60 60 [°] 

Current velocity wind uc,wind 0.0 0.0 [ms-1] 

Current velocity tide uc,tide 0.0 0.0 [ms-1] 

Current direction μcurent 90 90 [°] 

Wind velocity Uw 6.5 12.5 [ms-1] 

Structural damping ratio ξ 0.02 0.02 [-] 

4.3.1 Passing blade frequencies 

The thrust force variations are caused by the wind turbulence and non-harmonic periodic processes, 

which are caused by tower shadow effect and wind shear effect, resulting in the fatigue loads of the 

wind turbine blades. The effect of the passing blade frequencies on the motion responses are 

investigated. The Bluewater wind turbine external function includes the tower shadow effect but 

does not take the wind shear effect into account, therefore FAST is used to investigate the wind 

shear effect. FAST [14] is an open-source software package for simulating coupled dynamic response 

of wind turbine.   

4.3.1.1 Tower shadow effect 

The thrust force oscillation due to the tower shadow effect for the wind speeds 6, 10, 17 and 24 m/s 

are given in Figure 4-4. The magnitude of the thrust force oscillations are significant. Concluded is 

that the tower shadow effect is important for the thrust force oscillations and should is to be taken 

into account. Figure 4-4 gives the thrust force with an active control system. The wind turbine control 

system controls the generator speed. The blade-pitch controller become active for high wind-speeds 

and will reduce the rotational speed of the blades.  
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(a): 6 m/s  (b): 10 m/s 

  
(c): 17 m/s (d): 24 m/s 

Figure 4-4: Thrust force oscillation due to tower shadow effect for several wind speeds  

4.3.1.2 Wind Shear 

The mean wind speed increases at higher elevations. The rotating blades of the wind turbine 

encounter difference wind speeds, an upwards rotating blade encounter a higher wind velocity than 

a downwards rotating blade. During a complete cycle, the thrust force is therefore oscillating with 

the same number of blades. The wind shear effect may be important for the wind turbine and is 

investigated.  

The Bluewater wind turbine external function is used in the model, which does not take the wind 

shear into account, therefore FAST results from Bluewater are used to investigate the wind shear 

effect. The same wind turbine dimensions are used as the wind turbine of the external function, but 

the wind turbine is bottom fixed and not floating. Another difference is the wind shear model, FAST 

only allows the power law or the logarithmic wind shear model. The power law (equation (4-3)) wind 

shear model is used, which matches to the Froya wind (equation (4-4)) shear model. The wind shear 

effect is investigated for several wind speeds and the results are given in Figure 4-5.   

𝑢𝑚(𝑧) = 𝑢(𝐻) (
𝑧

𝐻
)
𝛼

 (4-3) 

 𝑢𝑚 Mean wind velocity 𝑧 z-coordinate 
 𝐻 Reference height  𝛼 Shear exponent  

𝑢𝑚(𝑧) = 𝑢0 (1 + 5.73 ∙ 10−2 ∙ √1 + 0.148 ∙ 𝑢0 ln
𝑧

𝐻
) (4-4) 

 𝑢𝑚 Mean wind velocity 𝑧 z-coordinate 
 𝑢0 Reference wind velocity 𝑈10 Reference velocity at z=10m 
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(a) 6 m/s  (b) 10 m/s 

  
(c) 17m/s (d) 24 m/s 

Figure 4-5: Thrust force for several wind speeds (a) 6 m/s (b) 10 m/s (c) 17 m/s (d) 24 m/s 

The Froya wind shear model is used in the Matlab model, this model has the property of almost a 

constant mean wind speed over the height. The shear profile is site specific, therefore the wind shear 

effect is also investigated for several shear exponents (α in equation (4-3)) of the power law wind 

profile. A mean wind speed of 10 m/s is used and the results are given Figure 4-6.  

  
(a) α = 0.001 (b) α = 0.05 
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(c) α = 0.1 (d) α = 0.2 

Figure 4-6: Thrust force for several shear exponents 

The thrust force oscillations due to the wind shear effect is negligible. Concluded is that the wind 

shear effect can be neglected for the thrust force. The assumption that wind shear effect is negligible 

is valid, even for wind shear profiles with a higher wind gradient. The wind shear effect on the non-

axial loads is not investigated, but is advised to investigate the shear effect with misalign wind.  

4.3.1.3 Comparison tower shadow and wind shear effect 

The tower shadow effect is dominant for the thrust force oscillations. For example, Figure 4-7 gives 

the thrust force oscillations for a wind speed of 10 m/s. The thrust force oscillations are made 

dimensionless by dividing the thrust force by the thrust force without the tower shadow and wind 

shear effect. From the figure, it can been seen that the thrust force oscillations due to wind shear are 

negligible. However, wind shear effect might be important for the non-axial loads. Concluded is that 

the tower shadow effect is dominant and the wind shear effect can be neglected on the thrust force 

oscillations. Not modelling the wind shear effect does not underestimate the thrust force oscillations. 

 
(a) (b) 

Figure 4-7: Thrust force oscillations 
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4.3.1.4 Motion responses 

The external function is used, which exclude the wind shear effect. However, the wind shear effect 

can be neglected (see 4.3.1.3 Comparison tower shadow and wind shear effect) on the thrust force 

oscillations with unidirectional wind. The effect of passing blade frequencies on the motions are 

investigated with the moderate and extreme environmental conditions. In case of the extreme 

environmental conditions lies the pitch/2nd tower bending mode in the 3P-frequency range.  

 
Figure 4-8: Response and force spectrum LC 1, including and excluding tower shadow effect 

 
Figure 4-9: Response and force spectrum LC 2, including and excluding tower shadow effect 

The motion response spectrum (x-direction) of the Nacelle-tower connection and pontoon-centre-

column-connection and the force spectrum (x-direction) of the TLPWT are given in Figure 4-8 for the 

LC1 and Figure 4-9 for LC2. The figures show the response including and excluding the tower shadow 

effect. The force spectra between including and excluding the tower shadow effect show large 

difference in the colored areas, which is due to the non-harmonic period loading. In the colored area 

(yellow in Figure 4-8 and Figure 4-9) of 3P-frequency is a small difference noticed in the motion 

response spectra of the nacelle, but only if the pitch/2nd tower bending mode lies in the 3P-frequency 

range. The motion response spectra between including and excluding the tower shadow effect are 

identical. Concluded is that the tower shadow effect is important for the blades and RNA, but not for 

the floating support structure, because the large flexible tower works as a large damper. 
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4.3.1.5 Conclusions 

The thrust force variations are due to the wind turbulence and non-harmonic periodic processes due 

to tower shadow effect and wind shear effect. Firstly, the tower shadow effect and the wind effect 

are investigated. The tower shadow effect is the dominant effect and the wind shear effect can be 

neglected on the thrust force oscillations, because the amplitude of these oscillations is small. 

However, the tower shadow effect must be taken into account.    

The effect of the passing blade frequencies on the motions are investigated for two load cases. The 

spectrum of the thrust force and motions responses of the RNA and PC including and excluding the 

tower shadow effect are investigated. The passing blade frequencies are relevant for the wind 

turbine blades and RNA but not for the support structure. But it should be noticed that only the 

passing blade frequencies are important if a tower bending mode lies in the 3P frequency range. It is 

concluded that a tower bending mode should not be excited the tower bending mode, because large 

oscillations of the RNA may occur.  
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4.3.2 Gyroscopic moment 

Figure 4-10 gives the forces and motion responses at the nacelle-tower connection of the moderate 

environmental conditions including the gyroscopic moments and excluding the gyroscopic moments. 

From the figure, it can be seen that the displacements and forces show identical responses. The 

rotations at the RNA show largely identical responses. The gyroscopic moments are small because 

the angular velocity of the rotor and the pitch and roll motions are relatively small. The motion 

responses of the TLP with gyroscopic moments and without gyroscopic moments show 

approximately identical responses. The gyroscopic moment can be neglected, but the gyroscopic 

effect is a self-excited vibration with little damping, which can become critical.  

  
(a) (b) 

  
(c) (d) 

Figure 4-10: (a) Force (b) Moment (c) Displacement (d) Rotation of RNA including and excluding gyroscopic moments 
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4.4 CLOSURE 
In the previous chapter the Matlab model is validated. The advantage of this model can provide all 

the output that the user wants. In the second chapter are some researches questions formulated and 

investigated in this chapter. The answers of the questions are given below.  

• Rotating structures require special care, because this type of structures have properties 
which non-rotating structure have not, for example the gyroscopic effect. The influences of 
the gyroscopic effect on the natural period and motions are investigated. Concluded is that 
the gyroscopic effect can be neglected on the natural periods and the motions. The angular 
velocities of the blades are low and the angular velocities of the TLPWT too.  

• The thrust force variations are due to wind turbulence and non-harmonic periodic processes. 
The main source of the non-harmonic processes are due to tower shadow effect and wind 
shear effect. Tower shadow effect is the dynamic interaction between the blades and the 
tower and wind shear effect is due to the main wind speed increases with the height. The 
thrust force oscillations due to tower shadow effect are compared with thrust force 
oscillations due to wind shear effect. Tower shadow effect is dominant and wind shear effect 
can be neglected. This assumption is made in the aerodynamic model.  

• The passing blade frequencies are important for the fatigue life time of wind turbine blades. 
This effect on the motion responses of the nacelle-tower connection and PC-connection is 
investigated by comparing the response spectrum including and excluding the passing blade 
frequencies. Concluded is that the passing blade frequencies are important for the RNA, but 
only if the tower bending mode lies in this frequency range. The passing blade frequencies 
are not important for the PC-connection, because the large flexible tower works as a 
damper.   
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5 DEVELOPMENT AND APPLICATION OF THE METHOD 

5.1 INTRODUCTION 
The goal of this study is to develop and automate the design process to find a starting point to design 

a TLPWT. In the previous chapter the dynamic system of the TLPWT is investigated, the conclusions 

drawn in the previous chapter are used to find a good starting point.   

5.2 METHOD DESCRIPTION 
The TLPWT is exposed to aerodynamic and hydrodynamic loads, which may cause fatigue failure. 

Fatigue is stress driven and resonance drives stresses, therefore resonance of structural member 

should be avoided. The method finds a design with the natural frequencies outside the frequencies 

where wind and waves have energy and this method consists of two algorithms, mode tracking 

algorithm and selection algorithm. The following assumptions are made, with brief explanations on 

each assumption: 

• Linear dynamic system 

The dynamic system of the TLPWT is a nonlinear dynamic system, due to the mooring 

stiffness and nonlinear setdown motion. However, the mooring stiffness becomes highly 

nonlinear for large amplitude motions, which only occurs during extreme environmental 

conditions. The natural periods of the TLPWT are approximately equal for small surge 

amplitudes, see section 4.2.2. Therefore, the TLPWT is assumed to be linear. 

• Forced vibrations 

The vibrations due to the aerodynamic and hydrodynamic forces are self-excited vibrations, 

which are vibrations that sustains the motion. However, there is assumed that vibrations due 

to the aerodynamic and hydrodynamic forces are forced induced vibrations. This is a 

conservative assumption because the motion amplitudes of forced vibrations are larger in 

comparison of self-excited vibrations. However, there is one exception, which is the 

aerodynamic damping. The aerodynamic damping can become negative, which means that 

the aerodynamic forces increase, but negative aerodynamic damping can be solved with the 

control system of the wind turbine. Therefore, this can be excluded and is outside the scope.  

Fatigue lifetime of the TLPWT is key dependent on the number of oscillations and the stress 

amplitudes. Forced vibrations have the same frequency as the forced frequencies, which are the 

wave, wind and passing blade frequencies. The wave and wind frequencies depend on the offshore 

size. However, the forced vibrations of nonlinear system differs form a linear system. A nonlinear 

dynamic system that is excited by a force will vibrate in the force frequency but also a second 

resonance frequency will occur. This is called sub- and superharmonic frequencies. However, this 

method assumes a linear dynamic system and sub- and superharmonic frequencies do not occur at 

linear dynamic systems.   

This method can assist during the primarily design phase but is not acceptable as a fatigue 

assessment of the TLPWT. Design regulations, for example DNVGL [101], require a detailed fatigue 

analysis, which means time domain simulations to compute the stresses at the points of interest. The 

total required time for a lifetime fatigue assessment ranges from a few weeks to a few months.  
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5.3 MODES OF INTEREST 
Resonance motions of a structure should always be prevented. Therefore, the natural frequencies of 

the TLPWT should be outside the load spectrum of the wind, waves and passing blade frequencies. 

There are many modes which can be excited but the only modes of interest are the rigid and elastic 

modes of the TLPWT. Thus the modes of the mooring system are excluded, because the mooring 

lines are outside the scope of this study. The mode shapes are given in Figure 5-1.  

   
(a): Sway (b): Surge (c): 1st Yaw 

   
(d): Roll/1st tower bending (e): Pitch/1st tower bending (f): 2nd Yaw 

   
(g): Roll/2nd  tower bending (h): Pitch/2nd  tower bending (i): Heave 

Figure 5-1: Reference modes shapes in order of natural frequency 
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5.4 MODE TRACKING ALGORITHM 
The aim of this study is to investigate many design in a short time, therefore the parametric study is 

automated.  When changing the design of the TLPWT, the natural frequencies and mode shapes are 

recalculated automatically. In some cases, the mode shapes may change from order in terms of the 

natural frequency. It is critical to track the rigid and elastic modes of the floating support structure 

accurately to ensure the correct natural frequency is matched to the natural frequency mode. Modal 

assurance criterion [101] (MAC) is used to track the modes. MAC (see equation (5-1)) computes the 

projection of a modes shape to the reference mode shape. MAC is originally used to match the 

experimental mode shape with a numerical mode shape. Nowadays, MAC is also used for model 

updating and parametric estimation consistency diagrams.   

𝑀𝐴𝐶 =
|Ψ𝑅

𝑇Ψ𝐶|
2

(Ψ𝑅
𝑇Ψ𝑅

𝐻)(Ψ𝐶
𝑇Ψ𝐶

𝐻)
 

(5-1) 

 𝑀𝐴𝐶 Modal assurance criterion Ψ𝐶  Computed mode shape 

 Ψ𝑅 Reference mode shape   

The MAC gives a scalar value between 0 and 1. A MAC-value of 0 means that there is no consistent 

correspondence between the mode shape and the reference mode shape. MAC can take a value of 0 

if the mode vectors are linearly unrelated, but also if the dynamic system is nonlinear. This occurs if 

the mode shapes are taken at different excitation levels. A MAC-value of 1 means a consistent 

correspondence between a mode shape and the reference mode shape. A MAC-value of 1 occurs if 

the mode shapes are the same modal vector [101]. The mode shapes are normalized therefore the 

modal vectors can have different scaling vectors.  

5.4.1 Multiple natural frequencies 

It is noticed that when two natural frequencies become close to each other, the eigenvectors 

computed with the Matlab eigensolver no longer matches with the reference modes. When two 

natural frequencies are going towards the same frequency, multiplicity of eigenvalues occur. The 

eigenvectors are linear dependent and the matrix becomes a defective matrix. The eigenvectors form 

a subspace and any combination of the eigenvector shows a solution of the eigenvalue problem. The 

Matlab eigensolver uses the QZ-algorithm. It is well documented that this algorithm is very sensitive 

to multiple and defective eigenvalues. Computing the eigenvalues and eigenvector of defective 

matrix remains a challenge. Optimization problems of natural frequencies or modes shapes the 

problem of multiple eigenvalues are well recognized, for example [102] and [103].   

Figure 5-2 gives an example of multiple natural frequencies. The heave (Figure 5-2 (a)) and pitch/2nd 

tower bending mode (Figure 5-2 (b)) become closer and closer. Finally, both modes will have 

approximately the same natural frequencies and the modes become the same (Figure 5-2 (c)). A 

small change of the design of the TLPWT and the two modes can be tracked again (Figure 5-2 (d and 

e)).  

 



Development and application of the method 

82 

November 2018 

 

 

 
(a) (d) 

  
(b) (c) (e) 

Figure 5-2: Example of multiple natural frequencies, heave and pitch\2nd tower bending mode 

5.4.1.1 Solution 

The presence of multiplicity of eigenvectors is observed in this study. It is not the aim of this study to 

solve this problem. So as long as the correct modes are tracked, the correct natural frequencies are 

found. If two natural frequencies switch the order in which they appear, the mode shapes are 

approximately identical and the QZ-algorithm is still be able to match the mode shapes. If the natural 

frequencies become closer and closer, the QZ-algorithm will not match with any mode shape. To 

overcome this problem of multiple eigenvalues, the design will be altered to allow the algorithm to 

match the correct mode shapes. Thus, the design of the TLPWT will change to avoid multiplicity of 

eigenvalues.  

5.4.2 Algorithm 

The parametric study will compute the natural frequencies and modes shapes for every combination 

of parameters. An algorithm is developed in this study to automate the parametric study and the 

algorithm is given in Figure 5-3. The first step is the initialization step and makes a combination of the 

design parameters. The second step is to create the TLPWT with the parameters. The third step is to 

solve the TLPWT hydrostatic. The tendon tension should be positive, otherwise the TLPWT will sink. If 

the TLPWT floats, a modal analysis is performed and the MAC criteria is used to find the correct 

natural frequencies.  

The algorithm works properly, as long as the eigenvectors will not change significant. A mode is 

matched if the MAC-value is equal or higher than 0.30. This value is selected based on experimenting 

with the algorithm. If not all modes are found, than the pontoon height of the TLPWT will be 

increased by 0.01m and the same procedure is repeated. This step size is also based on 

experimenting with the algorithm. The algorithm will be able to calculate the natural frequencies, 

otherwise an error will be given. The final step is to save the dimensions, weight, tendon tension and 

the natural periods.  
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Figure 5-3: flow-chart algorithm 

5.4.3 Discussions 

The developed algorithm has been tested for the design parameters defined in 5.6.1 Design 

parameters, span a design space of approximately 6000 designs. The algorithm successfully track the 

modes in 99.98% of the cases. A match is considered successful if the algorithm is be able to track the 

mode, otherwise a value of -1 is given. Concluded is that the algorithm can successfully be used to 

track the natural periods in a short period of time for a large number of parameter variations.  
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5.5 SELECTION ALGORITHM 
The developed mode tracking algorithm computes the mass, tendon tension and computes the 

natural periods in a short period of time, but does not identify the best design of the TLPWT. The aim 

of the selection algorithm is to investigate in a short period of time many designs and gives a good 

starting point for further variations.  

5.5.1 Methodology 

This method is based on the assumption that if the motion responses are low, resonance of the 

natural frequency modes of the TLPWT is avoided and the fatigue lifetime is relatively high. This 

method analyses the design space in a short amount of time. Frequency domain modelling is an 

efficient and effective method to analyse design and frequency domain modelling gives better 

understanding of the dynamic system [94]. However, there is no commonly accepted frequency 

domain modelling method for floating wind turbines, but for fixed offshore wind turbine many 

frequency domain methods are developed and proven to be effective and accurate, for example [94] 

and [104]. Frequency domain modelling requires to linearize the nonlinearities in aerodynamics, 

control system, hydrodynamics and the coupling. 

The dynamic system of a TLPWT is nonlinear, for example the interaction between the wind turbine 

and the floating support structure. For a good starting point, there is assumed that the nonlinearities 

can be neglected. A linear system has the property that the output of the system only depends on 

the amplitude of the input and excitation frequency. The function, which relates the input and the 

output, is known as the transfer function and is explained in section 5.5.2.   

The motion response spectrum is computed by equation (5-2). The area of the response spectrum is 

defined as the statistical variance or mean square value of zero mean process. The area can be 

computed with the equation (5-3). The area is multiplied with the probability of occurrence. It is 

known, that narrow banded spectrum are worse than a wide spectrum. Therefore the area is 

squared. 

𝑆𝜁;𝑇𝐿𝑃𝑊𝑇 = |𝐻𝑗(f)|
2
𝑆𝑓𝑜𝑟𝑐𝑒(f)  (5-2) 

 𝑆𝜁;𝑇𝐿𝑃𝑊𝑇 Response spectrum TLPWT 𝐻𝑗 Transfer function of mode j 

 f Frequency  𝑆𝑓𝑜𝑟𝑐𝑒 Spectrum force 

𝜇0 = ∫ (𝑆𝜁;𝑇𝐿𝑃𝑊𝑇(𝑓))
2∞

0

𝑑𝑓 (𝑆𝑤;𝑤) 
(5-3) 

 𝜇0 Total energy 𝑛 Number  

 𝑆𝜁;𝑇𝐿𝑃𝑊𝑇 Response spectrum TLPWT 𝑓 Frequency  

 𝑃 Probability of occurrence    

 
Figure 5-4: flow-chart algorithm 
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5.5.2 Transfer function definition 

The transfer function can be visualized as a black box and gives the relation between the input and 

output as function of the frequency. The transfer function is defined as the ratio of the Laplace 

transform or Fourier transform of the output to that of the input. The concept of the transfer 

function is used in many engineering field, such as control, design, simulation and physical modelling 

[105]. The transfer function is based on the requirement of linearity of the system. 

To calculate a transfer function of a linear system, the impulse response of the system is calculated. 

For a linear system, the response is calculated by the product of the input and the impulse response 

(see equation (5-4)).   

𝑦(𝑡) = 𝑥(𝑡) ∗  ℎ(𝑡)  (5-4) 

 𝑦 Output 𝑥 input 

 ℎ Impulse responses 𝑡 Time 

Let the input be the sum of exponential function with a frequency (equation (5-5)). Since the system 

is linear, the output of the system is also the sum of exponential function with the same frequencies. 

Convolution theorem states that a Fourier transform of two signals is the pointwise product of their 

transforms. Thus, equation (5-4) can written in frequency domain as equation (5-6).  

𝑥(𝑡) = ∑𝑥0𝑒
2𝜋𝑓𝑡

𝑛

𝑖−0

 
(5-5) 

𝑌(𝑓) = 𝐻(𝑓)𝑋(𝑓)  (5-6) 

 𝑌 Fourier transform of the output 𝑋 Fourier transform of the input 

 𝐻 Fourier transform of impulse response 𝑓 Frequency  

By definition, H(f) is the transfer function of the system, it is a characteristic property of the system. 

The transfer function is rational function, which means that the function is defined such that the 

numerator and the denominator are polynomials.    

𝐻(𝑓) =
𝑌(𝑓)

𝑋(𝑓)
 

(5-7) 

 𝐻 Transfer function  𝑌 Fourier transform of the output 

 𝑋 Fourier transform of the input 𝑓 Frequency  

5.5.3 Transfer function modes 

For a linear system, the motion can been written as a linear combination of the modes shapes. For 

each individual mode, the motion can be described by a single-degree-of-freedom damped mass-

spring system. The transfer function of a damped mass-spring system is given in equation (5-8) and 

Figure 5-5 gives the transfer function for different damping ratios. This transfer function gives the 

relation between the force and the displacement.  

𝐻𝑥(Ω) =
𝑥𝑑𝑦𝑛𝑎𝑚𝑖𝑐

𝑥𝑠𝑡𝑎𝑡𝑖𝑐
 =

1

√(1 − Ω2)2 + (2𝜉Ω)2
 

(5-8) 

 
Ω =

𝑓

𝑓𝑛
 

 

 𝐻𝑗 Transfer function of mode j 𝑓 Excitation frequency  

 𝑓𝑛 Natural frequency 𝜉 Damping ratio 
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Figure 5-5: Transfer function mass-spring system for difference damping ratios 

5.5.4 Transfer function waves 

The hydrodynamic loads are modelled with the Morison equation and this equation includes a linear 

inertia and a quadratic drag. Morison equation is a nonlinear equation due to the quadratic drag 

force. However, the requirement of linearity of the transfer function is not fulfilled, therefore the 

quadratic drag force is linearized. The transfer function of the wave loads can therefore been written 

as a superposition of the linear inertia force and a linearized drag force.  

|𝐻𝑓,𝑤𝑎𝑣𝑒(𝑓)|
2

= |𝐻𝑓,𝑖(𝑓)|
2
+ |𝐻𝑓,𝑑(𝑓)|

2
 (5-9) 

 𝐻𝑓,𝑤𝑎𝑣𝑒  Transfer function wave loads 𝐻𝑓,𝑖  Transfer function inertia loads 

 𝐻𝑓,𝑑 Transfer function drag loads 𝑓 Frequency  

With the assumption of deep water, the transfer function of the linear inertia force can be written as 

equation (5-10). The wave lengths are computed with the dispersion relation, which is for deep 

water equal to equation (5-11).   

|𝐻𝑓,𝑖(𝑓)| = 𝜌𝑤𝐴(1 + 𝐶𝑎)|(2𝜋𝑓)2𝑒𝑘𝑧|
2
𝑆𝑤𝑎𝑣𝑒(𝑓) (5-10) 

𝑘 =
(2𝜋𝑓)2

𝑔
 

(5-11) 

 𝐻𝑓,𝑖 Transfer function inertia loads 𝑓 frequency 

 𝜌𝑤 Density water 𝐴 Area 

 𝐶𝑎 Coefficient added mass 𝑘 Wave number 

 𝑧 z-coordinate 𝑆𝑤𝑎𝑣𝑒 Wave spectrum 

The drag term should be linearized. There are multiple methods to linearize the drag force of the 

Morison equation, for example Lorentz linearization, Taylor series linearization and stochastic 

linearization, which is also called equivalent linearization [12]. Up to the present, stochastic 

linearization is the most commonly used method for analysis of offshore structures, for example 

[106] and [107]. Therefore, stochastic linearization is adopted in this study.  

Borgman [108] presents an accurate and simple approximation of the Morison equation and explains 

the proportionality between the spectral density of the Morison equation and the sea surface. He 

used the concept of stochastic linearization, which assumes that the quadratic velocity can be 

approximated as a multiplication of the velocity and a constant that is proportional to the standard 

deviation of the velocity. The constant is proportional to the expected value of the difference 

between the drag and linearized drag term. The transfer function of drag forces is given in equation 

(5-12).   
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2
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8

𝜋
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 𝐻𝑓,𝑑 Transfer function drag loads 𝑓 frequency 

 𝜌𝑤 Density water 𝐷 Diameter 

 𝐶𝑑 Coefficient drag 𝑘 Wave number 

 𝑧 z-coordinate 𝑆𝑤𝑎𝑣𝑒 Wave spectrum 

 𝜎𝑢
2 Variance non-Gaussian process   

The transfer function gives the relation between the wave spectrum and the wave loads per unit 

length. The hydrodynamic loads acting on the centre column are dominant and therefore only the 

hydrodynamic loads on the centre column are taken into account. The transfer function of the 

hydrodynamic loads is given in equation (5-13).  Figure 5-6 gives the hydrodynamic force spectrum by 

the proposed method and the force spectrum of a time simulation of 600 seconds, which shows large 

identical spectra.     

|𝐻𝑓,𝑤𝑎𝑣𝑒(𝑓)|
2

= |𝐻𝑓,𝑖(𝑓)|
2
+ |𝐻𝑓,𝑑(𝑓)|

2
 (5-13) 
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 𝐻𝑓,𝑤𝑎𝑣𝑒  Transfer function wave loads 𝐻𝑓,𝑖  Transfer function inertia loads 

 𝐻𝑓,𝑑 Transfer function drag loads 𝑓 Frequency  

 𝜌𝑤 Density water 𝐴 Area  

 𝐷 Diameter 𝐶𝑎 Added mass coefficient  

 𝐶𝑑 Drag coefficient  𝑔 Gravity acceleration 

 𝑧𝑑  Draught 𝑆𝑤𝑎𝑣𝑒 Wave spectrum 

 
Figure 5-6: load spectra and transfer function of wind load 
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5.5.5 Transfer function wind 
The wind loads on the tower are neglected and only the wind turbines loads are considered, because 

the wind loads acting on the tower are small with respect to the wind turbine loads. The wind 

turbine loads are highly nonlinear due to the tower shadow effect and the control system of the wind 

turbine. The nonlinearities of the wind turbine are hard to linearize. Van der Tempel [94] proposed a 

more pragmatic way to find the transfer function between the wind spectrum and the wind turbine 

loads.  

The method proposed by Van der Tempel uses some form of time domain simulations to find the 

transfer function. The wind turbine loads are uncoupled from the structure, thus the behavior of the 

floating support structure is neglected. In case of the Matlab model, only the Bluewater wind turbine 

external function is used. The wind turbine loads are computed for several wind conditions, including 

tower shadow effect. By definition, the transfer function can be found by dividing the load spectra of 

the wind turbine loads by the wind spectrum (equation (5-14)). Note, aerodynamic damping is not 

included in this calculation. The same study showed that the aerodynamic damping is important for 

wind turbine responses of the bottom founded wind turbine. However, there is no commonly 

accepted method to take the aerodynamic damping into account for a FWT.    

|𝐻𝑓,𝑤(𝑓)|
2

=
𝑆𝐹𝑥(𝑓)

𝑆𝑤𝑖𝑛𝑑(𝑓)
 

(5-14) 

 𝐻𝑓,𝑤  Transfer function wind – turbine loads 𝑆𝐹𝑥 wind turbine load spectrum 

 𝑆𝑤𝑖𝑛𝑑 Wind spectrum 𝑓 Frequency  

Figure 5-7 gives the force spectrum and the transfer function for several wind conditions. From the 

figure can be concluded that the transfer function is depending on the main wind speed. However, in 

the low frequency range the transfer function is approximately the constant. The transfer function is 

approximated by the build-in Matlab ‘’fit’’ function. The Gaussian model is used because this model 

is be able to fit the 3P peak in the transfer function. The approximated transfer function is given in 

Figure 5-8. For the wind speeds below the 15 m/s the transfer function approximation is acceptable, 

but the transfer function overestimate the wind turbine loads for wind speeds above the 15 m/s. 

However, these wind conditions are rare.  

 
Figure 5-7: Force spectrum and transfer function for several wind conditions 
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Figure 5-8: load spectra and transfer function of wind load 

5.5.6 Transfer function waves & wind 

The wave spectra and wind spectra are known from the metocean data. The wind load spectrum and 

wave load spectrum are computed by the transfer functions. However, an environmental load case is 

a combination of waves and wind. The load spectrum is a superposition of the wind load spectrum 

and the waves load spectrum. The DNV relation (equation (5-15)), between the significant wave 

height and the main wind speed, is used to combine the waves and wind.  

 𝑢𝑤𝑖𝑛𝑑 = (25𝐻𝑠)
1

1.64 (5-15) 

 𝑢𝑤𝑖𝑛𝑑  Transfer function wind – turbine loads 𝐻𝑠 wind turbine load spectrum 

 
Figure 5-9: Relation significant wave height vs wind speed 
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5.6 DESIGN CASE 
The mode tracking algorithm and the selection algorithm are be able to find a good starting point 

with the natural frequencies outside the wave and wind spectrums. The TLPWT is designed for 

North-Sea applications, which has a combination of high wind speeds, relatively high waves and 

strong current. The metocean data of the site is used in this study and Figure 5-10 gives the wind 

spectra and wave spectra. 

 
Figure 5-10: Environmental spectra of North-Sea site as functions of probability  

5.6.1 Design parameters 

The design of the TLPWT looks relatively simple but still there are many design parameters of the 

TLPWT. The tower is not part of the scope and therefore the design parameters of the tower are 

excluded. Which means that tower bending modes are approximately constant. The tower bending 

modes lie within the 3P-frequency range, therefore the design of the tower does not meets the 

requirements. The design of the tower should be modified.  

Six design parameters are chosen to investigate the design space of the TLPWT. The design 

parameters are given in Table 5-1 and visualized in Figure 5-11. The parameter c is defined as the 

ratio between the pontoon height at the pontoon-centre column connection and the pontoon height 

at the pontoon-tendon connection (see equation (5-16)). The pontoon width is directly related to the 

pontoon height. The width is 0.65 of the height of the pontoon. The plate thickness of the pontoon 

and centre column are fixed.  

𝑐 =
ℎ𝑝.𝑒

ℎ𝑝,𝑠
 

(5-16) 

 𝑐 Tapering of the pontoon ℎ𝑝.𝑒 
Pontoon height at pontoon-tendon 
connection 

 ℎ𝑝,𝑠 
Pontoon height at pontoon-centre column 
connection 

  

Table 5-1: Design parameters 

Parameter Symbol Unit Reference Range Step size Total 
Pontoon Length Lp [m] 42.5 35 - 50 5 4 

 Height hp [m] 7 4 - 13 3 4 
 Tapering c [-] 0.5 0.4 - 0.6 0.05 5 

Tendon Angle αtendon [degree] 8.5 5 - 15 3 5 
Centre Column Draught d [m] 30 24 - 36 3 5 

 Diameter Dcc [m] 8 6 - 12 3 3 
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Figure 5-11: Location of Design parameter 

5.6.2 Results 

The mode tracking algorithm and selection algorithm are used for the design space defined in 5.6.1 

Design parameters, which span a design space of approximately 6000 designs. Only the load cases 

are taken into account where the main wind speed is below 15 m/s, which means that 95% of the 

metocean data is covered. The damping ratios are determined with a decay test and the results are 

given in Appendix: Decay test and given in Table 5-2. The damping ratio for sway, pitch and roll are 

assumed to be equal to the damping ratio of surge. Table 5-3 gives the results and this design is 

called the improved TLPWT hereafter.  

Table 5-2: Damping ratio 

   
Surge Heave Yaw 

Damping ratio 0.22 0.11 0.22 

Table 5-3: Design parameters of the reference and improved TLPWT 

Parameter Symbol Unit Improved 
Pontoon Length Lp [m] 35 

 Height hp [m] 8 
 Tapering c [-] 0.5 

Tendon Angle αtendon [degree] 12.5 
Centre Column Draught d [m] 27 

 Diameter Dcc [m] 9 
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5.6.2.1 Comparison of reference TLPWT and improved TLPWT 
The reference TLPWT (see Appendix: Properties TLPWT and Figure 5-12 (a)) is designed for the same 

locations, however the reference TLPWT is predominately designed to prevent slack tendons. The 

improved TLPWT (see Appendix: Properties TLPWT and Figure 5-12 (b)) is the design with the natural 

frequencies outside the wind and wave spectra, which is found after the use of mode matching and 

selection algorithm.  

  
(a) (b) 

Figure 5-12: (a) Reference TLPWT (b) Improved TLPWT 

Table 5-4 gives the natural periods of the reference and improved design. The roll/1st tower bending 

mode of the reference TLPWT is close to the wave peak period of the site (see Figure 5-13), which is 

8 seconds. The roll/1st tower bending mode of improved TLPWT has the natural period still in the 

wave spectra, but the amount of energy in these wave frequencies is below the 5% (see Figure 5-14) 

and in sea states where the loads are relatively low. Another large difference is the pitch/1st tower 

bending mode, but both natural periods are in the frequencies where the waves have less energy. 

The other natural periods are approximately the same.  

Table 5-4: Natural periods of reference and improved TLPWT 

Natural period Reference 
[s] 

Improved 
[s] 

Sway mode    20.3    19.55 

Surge mode    20.4    20.51 

Heave mode     2.28     1.73 

Roll/1st tower bending mode     7.97     6.12 

Pitch/1st tower bending mode     6.00     5.27 

1st yaw mode    13.86    13.98 

Roll/2nd tower bending mode     2.35     2.00 

Pitch/2nd tower bending mode     2.12     1.83 

2nd yaw mode     2.64     2.10 
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Figure 5-13: Campbell diagram reference TLP 

 
Figure 5-14: Campbell diagram Improved TLP 

5.6.2.2 Design parameters 

Table 5-5 gives the design parameters of the reference and improved TLPWT. The biggest difference 

between the reference TLPWT and the improved TLPWT is the pontoon length, which is 42.5m and 

35m respectively. Another difference is the tendon angle, the tendon angle is much larger of the 

improved TLPWT than the reference TTLPWT. However, the sensitivity of the tendon angle on the 

natural periods is small, but the tendon angle is an important design parameter to prevent large 

accelerations in the nacelle. The other design parameters are approximately the same.  

Table 5-5: Design parameters of the reference and improved TLPWT 

 Symbol Unit Reference Improved 
Pontoon Length Lp [m] 42.5 35 

 Height hp [m] 7 8 
 Tapering c [-] 0.5 0.5 

Tendon Angle αtendon [degree] 8.5 12.5 
Centre Column Draught d [m] 30 27 

 Diameter Dcc [m] 8 9 
Mass  M [mT] 1.00 1.00 
Tendon tension T [kN] 1.00 1.22 
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6 DISCUSSIONS 

INTRODUCTION 
In this study serval modelling decisions were made based on the trade-off between accuracy and the 

scope of this study. Many aspect were already discussed in the report, but several points that require 

additional discussion are discussed in this section.  

DEVELOPMENT OF AERO-HYDRO-ELASTIC-SERVO MODEL 
The developed aero-hydro-elastic-servo model uses an actuator disk to model the aerodynamics of 

the wind turbine. The actuator disk computes the thrust force and aerodynamic torque but the non-

axial loads and non-torsional moments are not computed. The thrust force and aerodynamic torque 

are dominant, however the non-axial forces Fy can be significant when the wind turbine is not 

properly aligned but the yaw-controller keeps the wind turbine aligned. The non-torsional moments 

are also not computed, but the order of magnitude is lower and are not relevant for the substructure 

design.  

The damping ratio of the structural damping of a wind turbine is between 1% and 5%, but for a 

fatigue assessment of a wind turbine a damping ratio between 1% of 2% is recommended. The 

damping ratio of 2% is used in the time domain simulations, which is the upper bound. However, the 

aerodynamic damping and hydrodynamic damping are dominant.  

The control system is implemented in the Matlab model but the control system of a wind turbine is 

confidential. The wind turbine used at Bluewater and the NREL 5MW wind turbine are comparable, 

therefore the control system of the NREL 5MW wind turbine is used. However, the control system of 

the NREL 5MW may not be suitable for a TLPWT. More research is required to investigate the control 

system but this is outside the scope of this study.  

DYNAMIC ANALYSIS 
The gyroscopic effect is analyzed and can be neglected. The conclusions drawn are based on only one 

simulations with aligned wind and the rotor is assumed to rigid. However, the wind turbine blades 

are very flexible and misaligned wind might causes large rotations. Therefore, it is recommended to 

investigate the gyroscopic effect with flexible blades and misaligned wind.  

The passing blade frequencies are caused by the tower shadow effect and the wind shear effect. The 

actuator disk assumes a constant wind velocity over the total surface, therefore wind shear effect is 

not included. The effect of wind shear on the thrust force is investigated. However, the effect on the 

non-axial forces and aerodynamics moments are not investigated. This should be investigated in 

further studies. The study of Wen [22] shows that aerodynamic torque fluctuation are dominated by 

the wind shear effect. However, FAST results of Bluewater shows that the aerodynamic torque 

fluctuation are negligible.   

The effect of the passing blade frequencies on the motions are investigated and only the thrust force 

oscillations are included. However, the aerodynamic torque oscillations, non-axial load oscillations 

and the non-torsional oscillations are excluded. Therefore, the assumption that the other oscillations 

can be ignored should be validated.  
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DEVELOPMENT AND APPLICATIONS OF METHOD 
Calculations with the Matlab model showed that the roll/1st tower bending mode and the pitch/1st 

tower bending mode of the reference TLPWT lie within the wave spectrum. The dimensional 

properties of the tower have large influence on these natural frequencies. However, the design 

parameters of the tower were not included in this study. Therefore, it is recommended to include the 

design parameters of the wind turbine tower but the aim of the algorithm was to find a design with 

the natural frequencies outside the frequencies where waves and wind have energy and the 

algorithm have shown to be successful.   

A method has been presented which assumes that the TLPWT is a linear dynamic system, but the 

TLPWT is a nonlinear system. Nonlinear dynamic systems have behavior which linear dynamic 

systems have not. However, the linear and nonlinear responses of a TLP have been investigated 

many times. Assuming a linear TLP underestimate the responses of the TLP, but the presented 

method can only assist in the preliminary design phase of the TLPWT.  

The presented method assumes that the number of oscillations are constant and are depending on 

the location. This assumptions is correct for forced vibrations of linear dynamic systems. However, 

not all vibrations are forced vibrations but self-excited vibrations are observed in time simulations. 

Also, the dynamic system of the TLPWT is nonlinear. Nonlinear dynamic system that is excited by a 

force will vibrate in the force frequency but also a second resonance frequency will occur. This 

phenomenon is called sub- and superharmonic response. However, the presence of sub- and 

harmonic responses is not investigated and should be investigated in further research.  

The TLP-type floating wind turbine has the lowest weight of all floating wind turbine concepts and it 

is expected to result in a better cost-effective design but also the tendon tension is an important 

indicator for the total investment. The costs of the anchor system are proportional to the tendon 

tension [109] and the anchor system costs contribute significant to the total investment of the 

TLPWT. The mass of the reference TLPWT and the improved TLPWT are approximately equal. 

However, the tendon tension of the improved design is 22% higher, which means that the anchor 

system costs of the improved TLPWT is higher than the anchor system costs of the reference TLPWT.   

The TLPWT has significant more risks than other support structures, the algorithms only deal with the 
risks of resonance of structural members but not the other risks of this TLP-concept. The following 
risks are not taken into account: 

• Slack tendons 

The high impact loads, caused by large pitch motions, can cause instant failure on the tendon 

connection. If all tendons break in one pontoon, the TLPWT will collapse. Therefore, slack 

tendons should in all conditions be prevented.  

• High acceleration of the nacelle 

Large motions of the nacelle reduce the efficiency of the wind turbine and high accelerations 

of the nacelle cause damage to the equipment in the nacelle, therefore the motions and 

accelerations of the nacelle should be limited.  

Despite, these risks are outside the scope of this study.   
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7 CONCLUSIONS AND RECOMMENDATIONS 

From the analysis of the results of this study, obtained with the developed aero-hydro-elastic-servo-

model, some conclusions can be drawn, which will be presented in this chapter. In addition, some 

limitations of the current study will be mentioned, and will be basis for some recommendations and 

suggestions for further research.  

7.1 CONCLUSIONS 
The primary aim of this study is to improve the fatigue performance of TLPWT, although fatigue is 

not calculated. The fatigue performance is improved by reducing the stress amplitudes from the 

forced vibrations by shifting the natural frequencies of TLPWT. This has been achieved by two 

algorithms, the mode tracking algorithm and the selection algorithm. This approach has shown to be 

successful, although the algorithms can only be used in the preliminary design phase of a TLPWT for 

any given site.  

The result of the algorithms is an improved TLPWT from resonance point of view. This design avoids 

resonance motions, however a design of the TLPWT should comply with many criteria such as 

prevent slack tendons. The reference TLPWT is predominately designed to avoid slack tendons, this 

design has a larger pontoon length with respect to the improved TLPWT (Table 7-1). The pitch/1st 

tower bending mode and roll/1st tower bending mode of the reference TLPWT will resonate because 

these natural periods are close to the wave peak periods. However, the pontoon length is an 

important design parameter to prevent slack tendon but also to avoid resonance, which means that 

there is a potential trade-off to be made between the two. Therefore, it is advised to reconsider the 

design parameters used in this study and include the design parameters of the wind turbine tower.  

Table 7-1: Pontoon length of TLPWTs 

 Unit Reference Improved 
Pontoon Length [m] 42.5 35 

 Height [m] 7 8 
 Tapering [-] 0.5 0.5 

Tendon Angle [degree] 8.5 12.5 
Centre Column Draught [m] 30 27 

 Diameter [m] 8 9 
 

The gyroscopic effect and the non-harmonic periodic thrust force oscillations are typical phenomena 

of the wind turbine. The influences of gyroscopic effect on the natural periods and motion responses 

are negligible. The non-harmonic periodic thrust force oscillations are due to wind shear and tower 

shadow effect. The wind shear effect can be neglected but tower shadow effect is relevant for 

motion responses of the nacelle-tower connection, but only if the tower bending mode is excited by 

the 3P-frequencies. Therefore, the tower bending mode should be outside the 3P-frequencies of the 

wind turbine.   
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7.2 RECOMMENDATIONS 
The conclusions drawn in the previous section are based on the results of this study and made with 

the Matlab model. In this study some aspects are omitted which may be relevant for dynamical 

motion response of the TLPWT. Hence, the recommendations are:   

• The fatigue assessment of the improved TLPWT and the reference TLPWT are outside the 

scope of this study. However, it is advised to analyse the fatigue performance of the 

reference TLPWT and improved TLPWT to validate this method.  

• Ringing vibrations are observed in full scale TLP’s used in the oil and gas industry. The cross-

sectional dimensional are smaller for the TLPWT than for a TLP used in the oil and gas 

industry, increasing the risk of ringing vibrations. Ringing vibrations for TLPWT should be 

further investigated.  

• The wave particle kinematics are described with linear wave theory. Linear wave theory is 

widely used to model the hydrodynamic loads, but this theory is not valid for steeps waves or 

shallow water waves. This assumption may has large influence on the fatigue damage for 

BFWT, the influence of this assumption on the fatigue damage for the TLPWT should be 

investigated. Linear wave theory omits the wave-current interaction. The wave-current 

interaction may be important for the mooring line dynamics and should be investigated.    

• The selection algorithm approximates the motion response spectrum. It is recommended to 

improve the transfer functions and include the transfer functions between motion and 

stresses.  

• The design of the tower has large influence on the natural frequencies of the dynamic 

system. Therefore, design parameters of the tower should be included in further studies.  

The developed aero-hydro-elastic-servo model is implemented in Matlab and computes the natural 

frequencies, modes shapes and motion responses of a bottom founded wind turbine and floating 

wind turbine with an acceptable level of accuracy. Hence, the proposed improvements are:  

• The numerical time integration method of the model uses a fixed time step. It is 

advantageous for the computation time to implement a numerical time integration method 

with a variable step size. 

• The actuator disk computes the thrust force and the aerodynamic torque. The non-axial 

forces and non-torsional moments are relevant in case on misaligned wind. Therefore, it is 

recommend to implement a BEM model.  
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A APPENDIX: PROPERTIES TLPWT 

Three TLPWT designs, Validation TLPWT, Reference TLPWT and Improved TLPWT, are used in this 

study. The first TLPWT design is used for the validation. The second TLPWT is the reference TLPWT 

and the third TLPWT is the result of the mode tracking and selection algorithm. This appendix gives 

the global and cross-dimensional properties of the TLPWT. The properties of the wind turbine are 

confidential, therefore the properties of the wind turbine are not published in this study.  

A.1 VALIDATION TLP 
 

A.1.1 Drawing 

 
(a) 
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(b) (c) 

A.1.2 Material Properties 

Parameter Symbol Unit Value 
Young modulus E [Nm-2] 96.5 
Density ρ [kgm-3] 7785 
Poisson ratio ν [-] 0.3 

A.1.3 Platform specifications 

Parameter Symbol Unit Value 
 General 
Water depth d [m] 96.5 
Mass M [mT] [*] 
 Tower 
Length Ltw [m] 67.2 
Diameter Dtw [m] 5.25 
Plate thickness ttw [m] 0.05 
Added mass coefficient Ca [-] [0.0 1.0 1.0] 
Drag coefficient  Cd [-] [0.0 1.2 1.2] 
 Centre column 
Length Lcc [m] 55.6 
Diameter Dcc [m] 8 
Plate thickness tcc [m] 0.05 
Added mass coefficient Ca [-] [0.0 1.0 1.0] 
Drag coefficient  Cd [-] [0.0 1.2 1.2] 
 Pontoon  
Length Lp [m] 42.5 
Diameter Dp [m] 4.75 
Plate thickness tp [m] 0.025 
Added mass coefficient Ca [-] [0.0 1.0 1.0] 
Drag coefficient  Cd [-] [0.0 1.2 1.2] 
 Tendon 
Length Lt [m] 67.17 
Diameter Dt [m] 0.15 
Pretension  T [kN] [*] 
Added mass coefficient Ca [-] [0.0 1.0 1.0] 
Drag coefficient  Cd [-] [0.0 1.2 1.2] 
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A.2 REFERENCE TLPWT 
 

A.2.1 Drawing 

 
(a) 

 
 

(b) (c) 
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A.2.2 Material Properties 

Parameter Symbol Unit Value 
Young modulus E [Nm-2] 96.5 
Density ρ [kgm-3] 7785 
Poisson ratio ν [-] 0.3 

A.2.3 Platform specifications 

Parameter Symbol Unit Value 
 General 
Water depth d [m] 96.5 
Mass M [mT] [*] 
 Tower 
Length Ltw [m] 67.2 
Diameter at centre column Dtw [m] 6 
Diameter at RNA Dtw [m] 4.7 
Plate thickness ttw [m] 0.032 
Added mass coefficient Ca [-] [*] 
Drag coefficient  Cd [-] [*] 
 Centre column 
Length Lcc [m] 55.6 
Diameter Dcc [m] 8 
Plate thickness tcc [m] 0.05 
Added mass coefficient Ca [-] [*] 
Drag coefficient  Cd [-] [*] 
 Pontoon  
Length Lp [m] 42.5 
Height pontoon centre column connection Hp,s [m] 7 
Width pontoon centre column connection Wp,s [m] 4.5 
Height tendon pontoon connection Hp,e [m] 3.5 
Width tendon pontoon connection Wp,e [m] 2.25 
Flange thickness th [m] 0.05 
Web thickness tw [m] 0.025 
Added mass coefficient Ca [-] [*] 
Drag coefficient  Cd [-] [*] 
 Tendon 
Length Lt [m] 67.17 
Diameter Dt [m] 0.15 
Pretension  T [kN] [*] 
Added mass coefficient Ca [-] [*] 
Drag coefficient  Cd [-] [*] 

* Confidential  
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A.3 IMPROVED DESIGN 

A.3.1 Drawing 

 
(a) 

 
 

(b) (c) 
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A.3.2 Material Properties 

Parameter Symbol Unit Value 
Young modulus E [Nm-2] 96.5 
Density ρ [kgm-3] 7785 
Poisson ratio ν [-] 0.3 

A.3.3 Platform specifications 

Parameter Symbol Unit Value 
 General 
Water depth d [m] 96.5 
Mass M [mT] [*] 
 Tower 
Length Ltw [m] 67.2 
Diameter at centre column Dtw [m] 6 
Diameter at RNA Dtw [m] 4.7 
Plate thickness ttw [m] 0.032 
Added mass coefficient Ca [-] [*] 
Drag coefficient  Cd [-] [*] 
 Centre column 
Length Lcc [m] 52.6 
Diameter Dcc [m] 9 
Plate thickness tcc [m] 0.05 
Added mass coefficient Ca [-] [*] 
Drag coefficient  Cd [-] [*] 
 Pontoon  
Length Lp [m] 35 
Height pontoon centre column connection Hp,s [m] 8 
Width pontoon centre column connection Wp,s [m] 5.2 
Height tendon pontoon connection Hp,e [m] 4.0 
Width tendon pontoon connection Wp,e [m] 2.6 
Flange thickness th [m] 0.05 
Web thickness tw [m] 0.025 
Added mass coefficient Ca [-] [*] 
Drag coefficient  Cd [-] [*] 
 Tendon 
Length Lt [m] 67.17 
Diameter Dt [m] 0.15 
Pretension  T [kN] [*] 
Added mass coefficient Ca [-] [*] 
Drag coefficient  Cd [-] [*] 

* Confidential  
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B APPENDIX: NUMERICAL TIME INTEGRATION METHODS 

Three numerical methods, Newmark method, Houbolt method and Wilson method are investigated. 

This appendix explains the numerical methods and derives the amplification matrix of the numerical 

methods. The spectral radius of the amplification matrix is used to investigate the stability and 

accuracy of the numerical method.  

B.1 NUMERICAL TIME INTEGRATION METHODS 

B.1.1 Newmark method 

The Newmark family is a single step time integration method. Depending on the numerical 

parameters, this method is unconditional stable for linear dynamics. This method is mostly used 

numerical integration method in structural dynamics. The Newmark method computes the 

displacements and velocities by integration. This makes the method self-starting [110].  

𝑣𝑡+ℎ = 𝑓(𝑎𝑡+ℎ , 𝑎𝑡 , 𝑣𝑡 , 𝑥𝑡) (B-1) 

𝑥𝑡+ℎ = 𝑓(𝑎𝑡+ℎ , 𝑎𝑡 , 𝑣𝑡 , 𝑥𝑡) (B-2) 

 𝑣 Velocity  𝑥 Displacement 

 𝑎 acceleration 𝑡 Time 

 ℎ Time step   

  
(a)  (b) 

Figure B-1: (a) Velocity [110].  (b) Displacement [110] 

The velocities, displacements and accelerations of the previous time step are known. The 

accelerations of the time step t+h are computed by an iterative process. The velocity and 

displacement can be obtained by integration of the acceleration. Substituting the expression of the 

velocity in the equation of displacement gives the final integral, where τ is the time and t the time at 

the time step and h the time step size. [110]. 

𝑣𝑡+ℎ = 𝑣𝑡 + ∫ 𝑎(𝜏)𝑑𝜏
𝑡+ℎ

𝑡

 (B-3) 

𝑥𝑡+ℎ = 𝑥𝑡 + ∫ 𝑣(𝜏)𝑑𝜏
𝑡+ℎ

𝑡

 (B-4) 

 
𝑥𝑡+ℎ = 𝑥𝑡 + ∫ [𝑣(𝜏) + ∫ 𝑎(𝜏)𝑑𝜏

𝜏

0

] 𝑑𝜏
𝑡+ℎ

𝑡

= 𝑥𝑡 + 𝑣𝑡ℎ + ∫ [∫ 𝑎(𝜏)𝑑𝜏
𝜏

0

] 𝑑𝜏
𝑡+ℎ 

𝑡
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∫ [∫ 𝑎(𝜏)𝑑𝜏

𝜏

0

] 𝑑𝜏
𝑡+ℎ 

𝑡

= ∫ [(𝑡 + ℎ) − 𝜏] 𝑎(𝜏)𝑑𝜏
𝑡+ℎ

𝑡

  

 
𝑥𝑡+ℎ = 𝑥𝑡 + 𝑣𝑡ℎ + ∫ [(𝑡 + ℎ) − 𝜏] 𝑎(𝜏)𝑑𝜏

𝑡+ℎ

𝑡

  

 𝑣 Velocity  𝑥 Displacement 

 𝑎 acceleration 𝑡 Time 

 ℎ Time step 𝜏 Time      t≤τ ≤t+h 

The two equations can be solved by approximating the solution integrals. In the case of the Newmark 

method, the integrals are evaluated by linear variation of acceleration in time.  Newmark method 

adopts a linear variation of acceleration in time of the following form (equation (B-5)), where f(τ) is 

the shape function [110]. The shape function gives the shape between t and t+h.  

𝑎(𝜏) = 𝑎𝑡 + 𝑓(𝜏)(𝑎𝑡+ℎ − 𝑎𝑡) (B-5) 

 𝑎 acceleration 𝑡 Time 

 ℎ Time step 𝜏 Time      t≤τ ≤t+h 

  

(a)  (b) 

Figure B-2: (a) linear acceleration in time [110].  (b) Shape function [110] 

Both integral can be evaluated. The velocities and displacements can be obtained by equation (B-6) 

and equation (B-7). Figure B-4 shows the step-by-step procedure of the Newmark method [110]. Be 

aware that if the numerical parameters γ and β are equal to zero the implicit Newmark method 

become explicit.  

𝑣𝑡+ℎ = 𝑣𝑡 + 𝑎𝑡ℎ + (𝑎𝑡+ℎ − 𝑎𝑡)𝛾ℎ (B-6) 

 
∫ 𝑓(𝜏)𝑑𝜏

𝑡+ℎ

𝑡

= 𝛾ℎ 

𝑥𝑡+ℎ = 𝑥𝑡 + 𝑣𝑡ℎ + 𝑎𝑡

ℎ2

2
+ (𝑎𝑡+ℎ − 𝑎𝑡)𝛽ℎ2 (B-7) 

 
∫ [∫ 𝑓(𝜏)𝑑𝜏

𝜏

0

] 𝑑𝜏
𝑡+ℎ

𝑡

= 𝛽ℎ2 

 𝑣 Velocity  𝑥 Displacement 

 𝑎 acceleration 𝑡 Time 

 ℎ Time step 𝜏 Time      t≤τ ≤t+h 

 𝛾 Numerical parameter 𝛽 Numerical parameter 
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The numerical parameter γ and β must be interpreted as the area of the of the shape function. Thus 

in case of Figure B-3 the numerical parameter γ is equal to 0.5.  

 

Figure B-3: Area of the shape function of the acceleration 

 

 

Figure B-4: Flowchart for Newmark step-by-step procedure 
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B.1.2 Houbolt method 

The Houbolt method is a numerical time integration method for structural dynamics. The Houbolt 

method is a multistep method and uses four points. Is assumes a cubic polynomial function between 

those points. The general equation of a cubic shown in equation (B-8).  

𝑓(𝑥) = 𝑎𝑥3 + 𝑏𝑥2 + 𝑐𝑥 + 𝑑  (B-8) 

 𝑥 Variable 𝑎 Constant 

 𝑏 constant 𝑐 Constant 

 𝑑 Constant   

 

Figure B-5: Cubic Function 

Every nth polynomic function can be written as difference equation. The general form is given in 

equation (B-9).The cubic function can then be written as equation (B-10). The definitions are given in 

Figure B-5 [65].  

𝑥(𝑥) = 𝑥𝑖 ∏(
𝑡

ℎ
− 1)

𝑛

𝑘=1

  (B-9) 

𝑥(𝑡) = −
𝑥𝑡−2ℎ

6
(
𝑡

ℎ
− 1) (

𝑡

ℎ
− 2) (

𝑡

ℎ
− 3) +

𝑥𝑡−ℎ

2

𝑡

ℎ
(
𝑡

ℎ
− 2) (

𝑡

ℎ
− 3) 

−
𝑥𝑡

2

𝑡

ℎ
(
𝑡

ℎ
− 1) (

𝑡

ℎ
− 3) +

𝑥𝑡+ℎ

6

𝑡

ℎ
(
𝑡

ℎ
− 1) (

𝑡

ℎ
− 2) 

(B-10) 

 𝑥 Displacement 𝑡 Time 

 ℎ Time step   

This method is more accurate than one-step method but requires more memory [110]. The 

accelerations and velocities at t+h can be found by the derivation of equation (B-10) at t+h. The 

velocities and accelerations can be computed by equation (B-11) and equation (B-12) respectively 

[65]. The standard backward difference formulation has an error of (h)2 [60].  
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𝑑𝑥

𝑑𝑡
|
𝑥=𝑡+ℎ

= 𝑣𝑡+ℎ =
1

6ℎ
[11𝑥𝑡+ℎ − 18𝑥𝑡 + 9𝑥𝑡−ℎ − 2𝑥𝑡−2ℎ] (B-11) 

𝑑𝑥2

𝑑𝑡2
|
𝑥=𝑡+ℎ

𝑎𝑡+ℎ =
1

ℎ2
[2𝑥𝑡+ℎ − 5𝑥𝑡 + 4𝑥𝑡−ℎ − 𝑥𝑡−2ℎ] (B-12) 

 𝑣 Velocity  𝑥 Displacement 

 𝑎 acceleration 𝑡 Time 

 ℎ Time step   

The Houbolt method is an implicit method, the solution for t+h require knowledges of xt+h, xt, xt-h and 

xt-2h. Meaning that the Houbolt method is not a self-starting algorithm. The first three steps are 

computed with a starting procedure. It is common to compute the first three time steps with an 

explicit numerical method with a much smaller time step.  

The Houbolt method is for linear dynamics unconditional stable. Meaning that there is no critical 

time step size. A much larger time size can be used than the time step size for an explicit method. 

Figure B-6 shows the step-by-step procedure. It can be seen that this method used the static analysis 

for time-dependent loads [60].  

 
Figure B-6: Flowchart for Houbolt step-by-step procedure 
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B.1.3 Wilson method 

The Wilson [66] method is an extension of the linear acceleration method. It assumes a linear 

acceleration between t and t+θh, where θ≥1.0. The Wilson method becomes unconditional stable for 

θ≥1.37. A value of 1.4 is typically used.  

 
 

(a) (b) 

 
(c) 

Figure B-7: Linear acceleration 

The acceleration is linear between t and t+θh. The acceleration at t+h can be written for t≤τ≤t+θh as 

equation (B-13).  

𝑎𝑡+𝜏 = 𝑎𝑡 +
𝜏

𝜃ℎ
(𝑎𝑡+𝜃ℎ − 𝑎𝑡) (B-13) 

 𝑎 acceleration 𝑡 Time 

 ℎ Time step 𝜏 Time      0≤τ≤θh 

 𝜃 Numerical parameter   
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The velocities can be computed by integrating equation (B-13) once and the displacements by 

integrating equation (B-13) twice. The velocities and displacements of the previous time steps are 

known.  

𝑣𝑡+𝜏 = 𝑣𝑡 + ∫ 𝑎(𝜏)𝑑𝜏
𝑡+𝜏

𝑡

 (B-14) 

 
𝑣𝑡+𝜏 = 𝑣𝑡 + 𝜏𝑎𝑡 +

𝜏2

2𝜃ℎ
(𝑎𝑡+𝜃ℎ − 𝑎𝑡)  

𝑥𝑡+𝜏 = 𝑥𝑡 + ∫ 𝑣(𝜏)𝑑𝜏
𝑡+ℎ

𝑡

 (B-15) 

 
𝑥𝑡+𝜏 = 𝑥𝑡 + ∫ [𝑣(𝜏) + ∫ 𝑎(𝜏)𝑑𝜏

𝜏

0

] 𝑑𝑡
𝑡+𝜏

𝑡

= 𝑥𝑡 + 𝜏𝑣𝑡 + ∫ [∫ 𝑎(𝜏)𝑑𝜏
𝜏

0

] 𝑑𝜏
𝑡+ℎ 

𝑡

  

  
∫ [∫ 𝑎(𝜏)𝑑𝜏

𝜏

0

] 𝑑𝜏
𝑡+ℎ 

𝑡

=
𝜏2

2
𝑎𝑡 +

𝜏3

6𝜃ℎ
(𝑎𝑡+𝜃ℎ − 𝑎𝑡)  

 𝑎 acceleration 𝑡 Time 

 ℎ Time step 𝜏 Time      t≤τ≤t+θh 

 𝜃 Numerical parameter   

The accelerations, velocities and displacements for t+h can be obtained by substituting τ=h in 

equation (B-13), equation (B-14)and equation (B-15).  The accelerations, velocities and displacements 

are given by the equation (B-16), equation (B-17) and equation (B-18) respectively. Figure B-8 gives 

the flowchart of the Wilson method.  

𝑎𝑡+ℎ = (1 −
1

𝜃
)𝑎𝑡 +

1

𝜃
𝑎𝑡+𝜃ℎ (B-16) 

 𝜃 ≥ 1.0 

𝑣𝑡+ℎ = 𝑣𝑡 +
ℎ

2
(𝑎𝑡 + 𝑎𝑡+ℎ) (B-17) 

𝑥𝑡+ℎ = 𝑥𝑡 + ℎ𝑣𝑡 +
ℎ2

6
(𝑎𝑡+ℎ + 2𝑎𝑡) (B-18) 

 𝑎 acceleration 𝑡 Time 

 ℎ Time step 𝜏 Time      t≤τ≤t+θh 

 𝜃 Numerical parameter   
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Figure B-8: Flowchart for Wilson step-by-step procedure 
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B.2 STABILITY 
The stability of the Newmark method, Houbolt method and Wilson method are investigated by 

spectral matrix of the Amplifications matrix A of the numerical method. The numerical time 

integration method is stable if the spectral radius is between 0 and 1.0. The stability is checked with 

the test function of time step t+h, given in equation (B-19).  

𝑎𝑡+ℎ + 2𝜉𝜔𝑣𝑡+ℎ + 𝜔2𝑥𝑡+ℎ =
𝑓𝑡+ℎ

𝑚
 (B-19) 

 𝑎 acceleration 𝜉 Damping ratio 

 𝜔 Natural frequency 𝑣 velocity 

 𝑥 Displacement 𝑡 Time 

 ℎ Time step 𝑓 Force 

 𝑚 Mass   

B.2.1 Newmark method 

The equations of the velocities (equation (B-6)) and displacements (equation (B-7)) of the Newmark 

method are derived in B.1.1 Newmark method. Substituting the equations into the test function 

(equation (B-19)) and assuming a damping ratio ξ=0.0, then equation (B-20) is be obtained.  

𝑎𝑡+ℎ + 𝜔2 (𝑥𝑡 + 𝑣𝑡ℎ +
𝑎𝑡ℎ

2

2
+ (𝑎𝑡+ℎ − 𝑎𝑡)𝛽ℎ2) =

𝑓𝑡+ℎ 

𝑚
 (B-20) 

 
𝑎𝑡+ℎ(1 + 𝛽𝜔2ℎ2) = −(

1

2
− 𝛽)𝑎𝑡 −

𝑣𝑡

ℎ
+

−𝑥𝑡

ℎ2
 

 
𝑣𝑡+ℎ = 𝑣𝑡 + ((1 − 𝛾)𝑎𝑡 + 𝛾 (−(

1

2
− 𝛽)𝑎𝑡 −

𝑣𝑡

ℎ
+

𝑥𝑡

ℎ2
))ℎ 

 
𝑥𝑡+ℎ = 𝑥𝑡 + ℎ𝑣𝑡 + ((

1

2
− 𝛽)𝑥𝑡 + 𝛽 (−(

1

2
− 𝛽)𝑎𝑡 −

𝑣𝑡

ℎ
+

𝑥𝑡

ℎ2
)) ℎ2 

 𝑎 acceleration 𝑣 velocity 

 𝑥 Displacement 𝜔 Natural frequency 

 𝑡 Time ℎ Time step 

 𝑚 Mass 𝑓 Force 

 𝛽 Numerical parameter 𝛾 Numerical parameter 

This equation can be written in the form of equation (2-53), which is given equation (B-21).  

[

𝑎𝑡+ℎ

𝑣𝑡+ℎ

𝑥𝑡+ℎ

] = 𝑨 [

𝑎𝑡

𝑣𝑡

𝑥𝑡

] + 𝐿
𝑓𝑡+ℎ

𝑚
 (B-21) 

 

𝑨 =

[
 
 
 
 
 
 −

1

𝛿
(
1

2
− 𝛽) −

1

𝛿ℎ

−1

𝛿ℎ2

ℎ ((1 − 𝛾) −
𝛾

𝛿
(
1

2
− 𝛽)) 1 −

𝛾

𝛿

−𝛾

𝛿ℎ

ℎ2 ((
1

2
− 𝛽) −

𝛽

𝛿
(
1

2
− 𝛽)) ℎ −

𝛽ℎ

𝛿
1 −

𝛽

𝛿]
 
 
 
 
 
 

 𝐿 =

[
 
 
 
 
 

1

Ω2𝛿
𝛾ℎ

Ω2𝛿
𝛽ℎ2

Ω2𝛿]
 
 
 
 
 

 

 
 𝛿 = (

1

Ω2
+ 𝛽) 

   Ω = 𝜔 ∙ ℎ 
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The spectral radius can be found by the eigenvalues of A as function of the highest natural frequency.  

det|𝑨 − 𝑰𝜆| = 0 (B-22) 

 
𝜌(𝐴) =

−2𝛿𝜆3 + 4𝜆2𝛿 − 2𝛾𝜆2 − 2𝛿𝜆 − 𝜆2 + 𝜆

2𝛿
 

 

 

Figure B-9: Spectral plot Newmark 

B.2.2 Houbolt method  

The equation of the velocities (equation (B-11)) and accelerations (equation (B-12)) of the Houbolt 

method are derived in B.1.2 Houbolt method. Substituting the equations into the test function 

(equation (B-19)) and assuming a damping ratio ξ of 0.0, then equation has been obtained (B-23).  

1

ℎ2
(2𝑥𝑡+ℎ − 5𝑥𝑡 + 4𝑥𝑡−ℎ − 𝑥𝑡−2ℎ) + 𝜔2𝑥𝑡+ℎ =

𝑓𝑡+ℎ 

𝑚
 (B-23) 

 
𝑥𝑡+ℎ (

2

ℎ2
+ 𝜔2) = 𝑥𝑡 (

5

ℎ2
) + 𝑥𝑡−ℎ (−

4

ℎ2
) + 𝑥𝑡−2ℎ (

1

ℎ2
) +

𝑓𝑡+ℎ

𝑚
 

 𝑥 Displacement 𝜔 Natural frequency 

 𝑡 Time ℎ Time step 

 𝑚 Mass 𝑓 Force 

This equation can be written into the form of equation (2-53), which is given equation (B-24).  

[

𝑥𝑡+ℎ

𝑥𝑡

𝑥𝑡−ℎ

] = 𝑨 [

𝑥𝑡

𝑥𝑡−ℎ

𝑥𝑡−2ℎ

] +
𝐿𝑡+ℎ𝑓𝑡+ℎ

𝑚
 (B-24) 

 

𝐴 = [

5

Ω2𝛽
−

4

Ω2𝛽

1

Ω2𝛽
1 0 0
0 1 0

] 𝐿 = [

1

𝜔2𝛽
0
0

] 
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 𝛽 =

2

Ω2
+ 1  

   Ω = 𝜔ℎ 

The spectral radius can be found by the eigenvalues of A as function of the highest natural frequency.  

det|𝑨 − 𝑰𝜆| = 0 (B-25) 

 
𝜌(𝐴) = (

5

Ω2𝛽
− 𝜆) [𝜆2 − 0] − (−

4

Ω2𝛽
) [−𝜆 − 0] + (

1

Ω2𝛽
) [1 − 0] 

 
𝜌(𝜆) =

𝜆3Ω2𝛽2 + 5𝜆2 − 4𝜆2 + 1

Ω2𝛽2
 

 

Figure B-10: Spectral plot Houbolt 

B.2.3 Wilson method 

The equation of the accelerations (equation (B-16)) velocities (equation (B-17)) and displacements 

(equation (B-18)) of the Wilson method derived in B.1.3 Wilson method. Substituting the equations 

into the test function (equation (B-19)) and assuming no damping (ξ=0), then equation (B-26) is 

derived.  

((1 −
1

𝜃
)𝑎𝑡 +

1

𝜃
𝑎𝑡+𝜃ℎ) + 𝜔2 (𝑥𝑡 + ℎ𝑣𝑡 +

ℎ2

6
(𝑎𝑡+ℎ + 2𝑎𝑡)) =

𝑓𝑡+ℎ

𝑚
 (B-26) 

 
𝑎𝑡+ℎ = (1 −

𝜃

3𝛽
− 𝜃)𝑎𝑡 −

1

ℎ
(
𝜃

𝛽
)𝑣𝑡 − (

1

ℎ2𝛽
)𝑥𝑡 

  
𝛽 =

𝜃

Ω
+

𝜃3

6
 

 
𝑣𝑡+ℎ = 𝑣𝑡 +

ℎ

2
𝑎𝑡 +

ℎ

2
((1 −

𝜃

2𝛽
− 𝜃)𝑎𝑡 −

1

ℎ
(
𝜃

𝛽
)𝑣𝑡 − (

1

ℎ2𝛽
)𝑥𝑡) 
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𝑥𝑡+ℎ = 𝑥𝑡 + ℎ𝑣𝑡 +

ℎ2

6
((1 −

𝜃

6𝛽
−

1

𝜃
)𝑎𝑡 −

1

ℎ
(
𝜃

𝛽
)𝑣𝑡 − (

1

ℎ2𝛽
)𝑥𝑡) 

 𝑎 acceleration 𝑣 velocity 

 𝑥 Displacement 𝜔 Natural frequency 

 𝑡 Time ℎ Time step 

 𝑚 Mass 𝑓 Force 

 𝜃 Numerical parameter   

This equation can be written into the form of equation (2-53), which is given equation (B-27).  

[

𝑎𝑡+ℎ

𝑣𝑡+ℎ

𝑥𝑡+ℎ

] = 𝑨 [

𝑎𝑡

𝑣𝑡

𝑥𝑡

] + 𝐿
𝑓𝑡+ℎ

𝑚
 (B-27) 

 

𝑨 =

[
 
 
 
 
 
 (1 −

𝜃2

3𝛽
−

1

𝜃
)

−𝜃

ℎ𝛽

−1

ℎ2𝛽

ℎ (1 −
1

2𝜃
−

𝜃2

6𝛽
) 1 −

𝜃

2𝛽

−1

ℎ2𝛽

ℎ2 (
1

2
−

1

6𝜃
−

𝜃2

18𝛽
) ℎ (1 −

𝜃

6𝛽
) 1 −

1

𝛽6]
 
 
 
 
 
 

 𝐿 =

[
 
 
 
 
 
 

1

𝛽Ω2

1

2𝜔Ωβ
1

6𝜔2𝛽]
 
 
 
 
 
 

 

 
 𝛽 = (

𝜃

Ω2
+

𝜃3

6
) 

The spectral radius can be found by the eigenvalues of A as function of the highest natural frequency.  

det|𝑨 − 𝑰𝜆| = 0 (B-28) 

 𝜌(𝜆) =
−18ℎ(1 + (𝜆 − 1)𝜃)(𝜆 − 1)2𝛽2 + ((−6(𝜆 − 1)2𝜃3  + (−9𝜆2 + 9)𝜃2 + (−3𝜆2 − 3𝜆 − 12)𝜃 − 3𝜆 + 3)ℎ + (−9𝜆 + 9)𝜃 + 3𝜆 − 3)𝛽 − 𝜃3(𝜆 − 1)(ℎ − 1)

(18ℎ𝛽2𝜃)
 

 

Figure B-11: Spectral plot Wilson 
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B.3 ACCURACY 
The relative period error and the relative amplitude error are an accurate method to compare the 

accuracy of a numerical methods. The numerical damping is related to the relative amplitude error. 

The relative period error and the numerical damping for the Newmark method, Houbolt method and 

Wilson method are shown in the next figure.  

Newmark method 

  
(a) (b) 

Houbolt method 

  
(c) (d) 
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Wilson method 

  
(e) (f) 

Figure B-12: Accuracy numerical methods 
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C APPENDIX: FUNDAMENTALS OF FINITE ELEMENT METHOD 

Finite element method (FEM) is a numerical method for field problems. A field problem requires that 

the spatial distribution of one or more variables need to be computed. Mathematically, the field 

problem is described by a differential equation. The spatial domain is discretized into a set of small 

elements. In the numerical solution, an element is a small piece of the structure. In each element, 

the pattern of the displacement is defined. Mathematically, the partial differential equation can after 

the spatial discretization written into a set ordinary differential equation for each element 

individually. The derivation of the element equations can be done on multiple ways, for dynamical 

problems the energy principle is mostly used [111]. 

Hamilton’s principle can be used to derive discretized dynamic equations. The Hamilton’s principle 

says that the displacement should be admissible. Meaning that the displacement is continuous in the 

problem domain, satisfies the boundary conditions and that it requires displacement history to 

satisfy the initial conditions [111].  Mathematically can this written as equation (C-1), where L is the 

Lagrangian functional. The Lagrangian function is given in equation (C-2).  

𝛿 ∫ 𝐿 𝑑𝑡 = 0
𝑡2

𝑡1

 (C-1) 

𝐿 = Π − 𝑇 − 𝑊𝑓 (C-2) 

 𝛿 Delta function 𝐿 Lagrangian  

 𝑡 Time Π Potential energy 

 𝑇 Kinetic energy 𝑊𝑓  Work by external function 

The domain is divided into elements with a set of nodes, which is called meshing. All the elements 

together are the total domain of the problem. It is possible to use more than one type of elements, 

as long it satisfy the first condition of the Hamilton’s principle. The domain should be continuous. 

The size of mesh is depending on the accuracy of the problem and the computational resources 

available.   

C.1 SHAPE FUNCTION 
The displacement variations with respect to the coordinates are pre-defined by the shape functions 

of the element. Vector N are the shape functions of the element and has the form of equation (C-3). 

This approach is the displacement method [111].  

𝑁(𝑥, 𝑦, 𝑧) = [𝑁1(𝑥, 𝑦, 𝑧), 𝑁2(𝑥, 𝑦, 𝑧), …𝑁𝑛(𝑥, 𝑦, 𝑧)] (C-3) 

A standard procedure is developed to construct the shape functions for an elements. Considering an 

element with nd nodes. The node has a one dimensional, two dimensional or three dimensional 

problem. The displacement is approximated in the form of linear combination of independent basis 

functions p.  

𝑢ℎ(𝑥) = 𝑝𝑇(𝑥)𝛼 (C-4) 

 𝛼𝑇 = [𝛼1 𝛼2 ⋯ 𝛼𝑛𝑑]  

The form of the basis function depends on the dimensional domain and the order. A general rule of 

formulating the basis function is with the Pascal triangle. If higher order terms are needed, it is 

possible to allow higher order terms in the basis function.  
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𝑝𝑇(𝑥) = {1 𝑥 𝑥2 ⋯ 𝑥𝑝} (C-5) 

𝑝𝑇(𝑥) = {(𝑥 + 𝑦)0 (𝑥 + 𝑦)1 (𝑥 + 𝑦)2 ⋯ (𝑥 + 𝑦)𝑝} (C-6) 

𝑝𝑇(𝑥) = {(𝑥 + 𝑦 + 𝑧)0 (𝑥 + 𝑦 + 𝑧)1 (𝑥 + 𝑦 + 𝑧)2 ⋯ (𝑥 + 𝑦 + 𝑧)𝑝} (C-7) 

The displacement in a node can be calculated by equation (C-8). An element has at least two nodes. 

The element displacement can therefore be written as (C-9). Where P is the moment matrix.  

𝑑𝑖 = 𝑝𝑇(𝑥𝑖)𝛼 (C-8) 

𝑑𝑒 = 𝑷𝛼 (C-9) 

 

𝑷 =

[
 
 
 
 
𝑝1(𝑥1) 𝑝2(𝑥1) … 𝑝𝑛𝑑

(𝑥1)

𝑝1(𝑥2) 𝑝2(𝑥2) … 𝑝𝑛𝑑
(𝑥2)

⋮ ⋮ ⋱ ⋮
𝑝1(𝑥𝑛𝑑

) 𝑝2(𝑥𝑛𝑑
) … 𝑝𝑛𝑑

(𝑥𝑛𝑑
)]
 
 
 
 

 

 

Assuming that the moment matrix P is nonsingular, the vector α can be determined. A nonsingular 

matrix is an invertible matrix. Meaning that the determinant of the matrix is nonzero. Using equation 

(C-4) and equation (C-8) the approximated displacement can be written as equation (C-10). The 

vector N is the shape function matrix.  

𝑑𝑒 = 𝑝𝑇𝑷−1𝛼 = 𝑁(𝑥)𝛼 (C-10) 

 𝑁(𝑥) = 𝑝𝑇𝑷−1 = [𝑃𝑇(𝑥)𝑃1
−1 𝑃𝑇(𝑥)𝑃2

−1 ⋯ 𝑃𝑇(𝑥)𝑃𝑛𝑑
−1]  

The shape functions should meet the five properties. The shape functions should have the 

reproduction property and the consistency property. The shape functions should be linear 

independent and have the delta function property. Also the shape function should have the 

partitions of unity property and should reproduce the linear field reproduction [111].  

The first property of the shape function is reproduction and consistency property. The reproduction 

and consistency property say the displacement can be reproduced a long as the given field function 

includes the basis function to constructed the displacement. Thus, the displacement of the element 

is a function of the shape function.  

𝑢ℎ(𝑥) = 𝑃𝑇(𝑥)𝑃−1𝑥𝑒 = 𝑃𝑇(𝑥)𝑃−1𝛼 = 𝑃𝑇(𝑥)𝛼 = 𝑓(𝑥) (C-11) 

The second property is the linear independency property shape functions. To ensure that the 

displacement of an element has one unique solution, the matrix P should be invertible. An invertible 

matrix has the property that the determinant of that matrix is nonzero. It can be proved that the 

determinant of the matrix A is zero if the matrix A is linear dependent.  

The delta function property of the shape function implies that the shape function is defined for a 

specific node. Meaning that the shape function is everywhere zero, except at the specific node. This 

can be written as a delta function (equation (C-12)).  

𝑁𝑖(𝑥𝑗) = 𝛿𝑖𝑗 = {
1, 𝑖 = 𝑗
0, 𝑖 ≠ 𝑗

 
(C-12) 

The fourth property of the shape function is the partitions of unity property. Meaning that the sum 

of all the shape function should be equation to 1.  The theory of partitions of unity is used to 

transform from the local coordinate system to the global coordinate system.  
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∑𝑁𝑖(𝑥) = 1

𝑛𝑑

𝑖=1

 
(C-13) 

The last property of the shape function is the linear field reproduction property. This property is 

required to past the patch test. Passing the patch test means that the element is stable. Hence, that 

the FEM solution converge to a smooth displacement solution. Meaning that the displacements have 

a derivatives of all order everywhere in the domain.  

C.2 ELEMENT 
The mass matrix of the element can be derived from the kinetic energy term in the Langrangian 

function. The element stiffness matrix can be derived from the potential energy term in the 

Lagrangian function, assuming that the shape functions are known. The matrix c is the material 

matrix. For isotropic material this matrix is constant and not completely filled. For anisotropic 

materials, this is not constant and completely filled. The matrix L is the partial differential operator 

[111].  

𝑇 =
1

2
∫  𝜌 𝒗𝑻𝒗 𝑑𝑉
𝑉

=
1

2
∫ 𝜌𝒗𝒆

𝑻𝑵𝑻𝑵𝒗𝒆𝑑𝑉
𝑉𝑒

=
1

2
𝒗𝒆

𝑻 (∫ 𝜌𝑵𝑻𝑵𝑑𝑉
𝑉𝑒

)𝒗𝒆 

=
1

2
𝑣𝑒

𝑇𝑴𝒆𝑣𝑒 

(C-14) 

Π =
1

2
∫ 𝝐𝑻𝒄𝝐𝑑𝑉
𝑉

=
1

2
∫ 𝒙𝒆

𝑻[𝑳𝑵]𝑻𝒄[𝑳𝑵]𝒙𝒆
𝑉𝑒

𝑑𝑉 =
1

2
𝒙𝒆

𝑻 (∫ [𝑩]𝑻𝒄 [𝑩]
𝑉𝑒

 𝑑𝑉)𝒙𝒆 

=
1

2
𝑥𝑒

𝑇𝑲𝒆𝑥𝑒 

(C-15) 

 𝝐 = 𝑳𝑵  

C.3 NODAL LOADS 
The forces working on the elements need to be transferred to the nodal loads. The nodal load vector 

can be derived by finding the work equivalent loads. This means that the nodal force vector gives the 

same resulting force and moment around an arbitrary point as the applied load.  

𝑊𝑓 = 𝒖𝑻𝒓𝒆 = ∫ 𝒖𝑻𝑭 𝑑𝑉
𝑉

= ∫  𝑵𝑻 𝑓𝑏
𝑉

+ ∫ 𝑵𝑻

𝑆𝑓

𝑓𝑠 𝑑𝑆𝑓 
(C-16) 

The two methods of nodal forces are the consistent and reduced loads. The consistent nodal loads 

include nodal moments but the reduced nodal loads consist only nodal forces. The accuracy of the 

method is depending on the field problem. The consistent nodal load leads to accurate displacement 

but approximate the bending moment at the nodes. The reduced nodal load leads to accurate 

bending moment but approximate the displacements. Both methods converge to the correct solution 

when the mesh is refined [86].  
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C.4 LOCAL COORDINATES TO GLOBAL COORDINATES 
The element displacements and rotations are determine in the local coordinate system of the 

element. The orientation of the element in the global coordinate system is arbitrary. The element 

displacements and rotations need to be written into the global coordinate system. The 

transformation matrix gives the projection of the local coordinate system on the global coordinate 

system. The undamped equation of motion in global coordinate system can therefore written as 

equation (C-17). 

𝐊𝐞𝑻𝑥 𝑔 + 𝑴𝒆𝑻𝑎𝑔 = 𝑻𝐹 𝒆 (C-17) 

 𝐓−𝟏𝐊𝐞𝑻𝑥 𝑔 + 𝑻−𝟏𝑴𝒆𝑻𝑎 𝑔 = 𝐹 𝑒  

The transformation matrix has three important properties. The determinant of the transformation 

matrix is equal to 1.The transpose of matrix T is equal to the inverse of the matrix T. Meaning that 

matrix multiplication of matrix T and the transpose of matrix T is equal to the identity matrix. This 

proves that the transpose matrix is orthogonal which is off course true for an axis system.  

det[𝑇] = 1 (C-18) 

𝑻𝑻 = 𝑻−𝟏 (C-19) 

𝑻𝑻𝑻 = 𝑰 (C-20) 

A one-dimensional beam element with two nodes has six rotations and six displacements. The 

displacements and rotations of the element need to be transformed. It is therefore obvious that the 

transformation matrix has the same size as the element matrix. The transformation matrix is given 

into equation (C-21).  

𝑻 = [

𝑹 𝟎 𝟎 𝟎
𝟎 𝑹 𝟎 𝟎
𝟎 𝟎 𝑹 𝟎
𝟎 𝟎 𝟎 𝑹

] 

(C-21) 

Two methods are generally used to form the transformation matrix, using the rotation matrix and 

the direction cosines method. The transformations matrix in a space around the origin can be written 

as a matrix multiplication of the rotations matrix around the x-axis, y-axis and z-axis. The rotations 

are the Euler rotations angles.  

𝑹 = 𝑹𝒙𝑹𝒚𝑹𝒛 (C-22) 

 
𝑹𝒙 = [

1 0 0
0 cos (𝛼) −sin (𝛼)

0 sin(α) cos (𝛼)
] 𝑹𝒚 = [

cos(𝛽) 0 −sin (𝛽)
0 1 0

sin(β) 0 cos (𝛽)
] 𝑹𝒛 = [

cos(𝛾) −sin(𝛾) 0

sin(𝛾) cos(γ) 0
0 0 1

] 

𝑹 = [

cos(𝛽) cos (𝛾) cos(𝛽) sin (𝛾) sin (𝛽)

− sin(𝛼) sin(𝛽) cos(𝛾) − cos(𝛼) sin(𝛾) − sin(𝛼) sin(𝛽) sin(𝛾) + cos(𝛼) cos(𝛾) sin(𝛼) sin(𝛽)

− cos(𝛼) sin(𝛽) cos(𝛾) + sin(𝛼) sin (𝛾) − cos(𝛼) sin(𝛽) sin(𝛾) − sin(𝛼) cos(𝛾) cos(𝛼) cos(𝛽)
] 
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(a) (b) (c) 

Figure C-1: (a) rotation x-axis [112] (b) rotation y-axis [112] (c) rotation z-axis [112] 

The direction cosines method uses the unit vector of the projection of the local axis system on the 

global axis system. The unit vector of the projection of a vector local axis on the vector u can be 

determine with equation (C-23). The vector of the global axis are unit vector meaning that the norm 

of the vector is 1. Rewriting the equation gives the familiar form of the direction cosines method.  

𝑝 = |𝒗|𝑐𝑜𝑠(𝑢, 𝑣)�̂��̂� = |𝒗| (
𝒖 ∙ 𝒗

|𝒖||𝒗|
) (

1

|𝒖|
) 𝒖 (

1

|𝒗|
) 𝒗 

(C-23) 

 𝑝 =
𝒖 ∙ 𝒗 

|𝒗|
= cos (𝒖, 𝒗)  

𝑹 = [

cos(𝑥, 𝑋) cos(𝑥, 𝑌) cos(𝑥, 𝑍)

cos (𝑦, 𝑋) cos(𝑦, 𝑌) cos(𝑦, 𝑍)

cos (𝑧, 𝑍) cos(𝑧, 𝑌) cos(𝑧, 𝑍)
] 

(C-24) 

 

Figure C-2: Projection of v onto u 
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D APPENDIX: ONE-DIMENSIONAL FINITE ELEMENT 

The geometry of the TLPWT can be descripted three object types, tendon, pontoons and tower. The 

basics of the elements are basically the same. A beam element has two node element with at least 

two degree of freedom at each node and a maximum of 6 degrees of freedom per node. There are 

two elementary beam theories, the Euler-Bernoulli beam theory and the Timoshenko beam theory. 

The Timoshenko beam theory takes into account the transverse shear deformation and the 

rotational bending effect.   

A Timoshenko beam assumes that the cross section remain straight. This element can be used for 

beams with higher length cross-sectional dimension ratio, therefore Timoshenko beam theory is used 

for a general 1D element. The element has nodal displacement in three directions and nodal 

rotations in three directions. The general beam element assumes no coupling between bending, 

torsional rotation and axial displacement. The matrix of the element can be obtain by superposition 

of the basic principles. A mass and stiffness matrix with the size of 12 by 12 is obtained.    

 

Figure D-1: Beam Element  

[
 
 
 
 
 
 
 
 
 
 
 
 
 
𝑁𝑖,𝑧

𝑄𝑖,𝑧

𝑀𝑖,𝑦

𝑄𝑖,𝑦

𝑀𝑖,𝑧

𝑀𝑖,𝑥

𝑁𝑗,𝑥

𝑄𝑗,𝑧

𝑀𝑗,𝑦

𝑄𝑗,𝑦

𝑀𝑗,𝑧

𝑀𝑗,𝑥]
 
 
 
 
 
 
 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 
 
 
 
 
𝑋 0 0 0 0 0 𝑋 0 0 0 0 0
0 𝑌 0 0 0 𝑌 0 𝑌 0 0 0 𝑌
0 0 𝑍 0 𝑍 0 0 0 𝑍 0 𝑍 0
0 0 0 𝑇 0 0 0 0 0 𝑇 0 0
0 0 𝑍 0 𝑍 0 0 0 𝑍 0 𝑍 0
0 𝑌 0 0 0 𝑌 0 𝑌 0 0 0 𝑌
𝑋 0 0 0 0 0 𝑋 0 0 0 0 0
0 𝑌 0 0 0 𝑌 0 𝑌 0 0 0 𝑌
0 0 𝑍 0 𝑍 0 0 0 𝑍 0 𝑍 0
0 0 0 𝑇 0 0 0 0 0 𝑇 0 0
0 0 𝑍 0 𝑍 0 0 0 𝑍 0 𝑍 0
0 𝑌 0 0 0 𝑌 0 𝑌 0 0 0 𝑌]

 
 
 
 
 
 
 
 
 
 
 

[
 
 
 
 
 
 
 
 
 
 
 
 
𝑢𝑖,𝑥

𝑢𝑖.𝑦

𝑢𝑖,𝑧

𝜃𝑖,𝑥

𝜃𝑖,𝑦

𝜃𝑖,𝑧

𝑢𝑗,𝑥

𝑢𝑗,𝑦

𝑢𝑗,𝑧

𝜃𝑗,𝑥

𝜃𝑗,𝑦

𝜃𝑗,𝑧 ]
 
 
 
 
 
 
 
 
 
 
 
 

 (D-1) 
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D.1 SHAPE FUNCTIONS 
Shape function estimates the displacement in a single node. The shape function is therefore also 

called approximation function. The general method to obtain a shape function is explained in 

Appendix: Fundamentals of finite element method. The shape function for axial displacement, 

torsion and bending are derived separately, because there is assumed that there is no coupling. The 

shape functions have the form of equation (D-2) where the basis function p is in one-dimensional 

domain.  

𝑁(𝑥) = 𝑝𝑇𝑃−1 (D-2) 

 𝑝𝑇 = [1 𝜉 𝜉2 ⋯ 𝜉𝑛𝑑]  

𝑃 =

[
 
 
 
 
𝑝1(𝑥1)

𝑝1(𝑥2)
⋮

𝑝1(𝑥𝑛𝑑
)

   

𝑝2(𝑥1)

𝑝2(𝑥2)
⋮

𝑝2(𝑥𝑛𝑑
)

   

⋯
⋯
⋱
⋯

   

𝑝𝑛𝑑
(𝑥1)

𝑝𝑛𝑑
(𝑥2)

⋮
𝑝𝑛𝑑

(𝑥𝑛𝑑
)]
 
 
 
 

  

Axial displacement  

One of the size degrees of freedom in a node of a beam element is the axial displacement. One shape 

function per node is required to describe the displacement field of the axial direction. The shape 

function for axial displacement in a node has a linear displacement.  

  

(a)  (b) 

Figure D-2: Displacement in x-direction for node 1(a) and node 2(b)  

The displacement in axial motion of node 1 and node 2 are shown in Figure D-2.  There are two nodal 

displacement meaning that a linear basis function p is required (equation (D-3)). The basis function 

can be written as non-dimensional function with a domain from 0 to 1.   

𝑝𝑇(𝑥) = [1 𝑥] [
𝛼1

𝛼2
] (D-3) 

𝑝𝑇(𝜉) = [1 𝜉] [
𝛼1

𝛼2
] (D-4) 

 𝜉 =
𝑥

𝐿𝑒
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The boundary conditions are known at the nodes. The displacement of node in x-direction is equal to 

x1 and the displacement of node 2 in x-direction is equal to x2.  

𝑝(0) = 𝑥1 (D-5) 

𝑝(1) = 𝑥2 (D-6) 

The shape function can be determine by (D-2). The shape function are shown in Figure D-3. The 

shape functions meet the properties a shape function.  

𝑁(𝜉) = [𝑁1(𝜉) 𝑁2(𝜉)] = 𝑝𝑇𝑃−1 = [1 𝜉] [
1 0

−1 1
] = [1 − 𝜉 𝜉] (D-7) 

 𝑃 = [
1 0
1 1

]  

 

Figure D-3: Shape of axial displacement  

D.1.1 Torsion 

Rotation around the x-axis is one of the six degrees of freedom of a node. This phenomena is called 

torsion. The rotation is a two nodal rotation meaning that the basis function p is linear. The shape 

functions are equal to the shape functions of the axial displacement. The derivation can be found in 

the previous paragraph.   

  

(a)  (b) 

Figure D-4: Rotation around the x-axis for node 1(a) and node 2(b)  
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D.1.2 Bending 

The displacement in Z direction is coupled with the rotation around the y direction. Meaning that the 

basis function p is a cubic function. The displacement and rotation of node 1 and node 2 are shown in 

Figure D-5.  

  

(a) (b) 

  

(c) (d) 

Figure D-5: (a) displacement in z-direction of node 1. (b) Displacement in z-direction of node 2. (c) Rotation of node 1. (d) 
Rotation of node 2  

A Timoshenko beam is used because this theory includes shear deformation and rotational bending 

effect. Therefore, it is not necessary that the cross-sections are normal to the transverse axis. Which 

is assumed for the Euler-Bernoulli beam theory. The relation of the total slope consists two parts, 

due to the bending and due to the transverse shear. The relations are given in equation (D-8) and 

equation (D-9). Be aware that the axial displacement due to warping is ignored.  

𝜕𝑣

𝜕𝑥
=

𝜕𝑣𝑏

𝜕𝑥
+

𝜕𝑣𝑠

𝜕𝑥
= 𝜃𝑧 + 𝛾𝑥𝑦 

(D-8) 

𝜕𝑣

𝜕𝑥
=

𝜕𝑣𝑏

𝜕𝑥
+

𝜕𝑣𝑠

𝜕𝑥
= −𝜃𝑦 + 𝛾𝑥𝑧 

(D-9) 

The shear strain in the element is assumed to be constant. The relation between the moment and 

shear force is given in (D-10). The equation of the shear strain can be derived, where κ is the shear 

correction factor. The shear correction factor takes for the non-uniform distribution of the shear 

stress over the cross-section.  

𝜕𝑀𝑧

𝜕𝑥
− 𝑄𝑦 = 0 

(D-10) 

 
𝑀𝑧 = −𝐸𝐼𝑧𝑧

𝜕𝜃𝑧

𝜕𝑥
 

 

 𝑄𝑦 = 𝜅𝑦𝐺𝐴𝛾𝑥𝑦  
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The basis function p for bending is a Hermitian polynomial of the third order and the shear 

deformation parameter, which takes into account the shear effect. The basis function p is given in 

equation (D-11).  The spatial derivative of the basis function p can be computed with the chain rule, 

the derivative is given in equation (D-11).  

𝑝𝑇(𝜉) = [ 1 𝑥 𝑥2 𝑥3][𝛼1 𝛼2 𝛼3 𝛼4]𝑇 (D-11) 

θ =
𝜕𝑣𝑏

𝜕𝑥
 +

𝜕𝑣𝑠

𝜕𝑥
 = (

𝜕𝑝

𝜕𝑥
− 𝛾0) = 0𝛼1 + 1𝛼2 + 2𝜉𝛼3 + 3𝜉2𝛼4 − 𝛾0 

(D-12) 

The shear strain can be computed with the relation of the moment-curvature (equation (D-13)) and 

the bending shear force relation (equation (D-14)).  

𝜕

𝜕𝑥
(−𝐸𝐼

𝜕

𝜕𝑥
(0𝛼1 + 1𝛼2 + 2𝜉𝛼3 + 3𝜉2𝛼4 − 𝛾0)) − 𝜅𝐺𝐴𝛾0 = 0 

(D-13) 

 −6𝐸𝐼𝛼4 − 𝜅𝐺𝐴𝛾0 = 0  

𝛾0 = −
6𝐸𝐸𝐼𝛼4

𝜅𝐺𝐴
 

(D-14) 

The four unknown can be determine by the boundary conditions. The boundary conditions at the 
nodes are known.  
𝑝𝑇(0) = 𝑧1 (D-15) 

𝜕𝑝

𝜕𝑥
|
𝑥=0

= 𝜃1 
 

𝑝𝑇(1) = 𝑧2  

𝜕𝑝

𝜕𝑥
|
𝐿𝑒=1

= 𝜃2 
 

Substitute the boundary conditions into the equations, than the matrix P can than formulated.  

𝑃 = [

1
0
1
0

   

0
1
𝐿𝑒

1

   

0
0
𝐿𝑒
2

2𝐿𝑒

   

0
6Φ
𝐿𝑒
3

3𝐿𝑒
2 + 6Φ

] (D-16) 

 
Φ =

12𝐸𝐼

𝜅𝐴𝐺𝐿𝑒
  

The shape function can be determine by equation (D-2). The shape function is made dimensionless 
by dividing the matrix P by element length.  
𝑁(𝜉) = 𝑝𝑇𝑃−1 = [1 𝜉 𝜉2 𝜉3] 𝑃−1 = [𝑁1 𝑁2 𝑁3 𝑁4] (D-17) 

 

𝑃−1 =
1

1 + Φ

[
 
 
 
 
 
1 + Φ 0 0 0

−Φ 1 +
Φ

2
Φ −

Φ

2
𝐿𝑒 

−3 −(2𝐿𝑒 +
Φ

2
) −2 𝐿𝑒 (1 +

Φ

2
)

2 𝐿𝑒 3 𝐿𝑒 ]
 
 
 
 
 

 

 

  𝜉 =
𝑥

𝐿𝑒
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Φ =

12𝐸𝐼

𝜅𝐺𝐴𝐿𝑒
2  

 

 
𝑁1 =

1

1 + Φ
(1 − 3𝜉2 + 2𝜉3 + Φ(1 − 𝜉)) 

 

 
𝑁2 =

𝐿𝑒

1 + Φ
(𝜉 − 2𝜉2 + 𝜉3 +

Φ

2
(𝜉 − 𝜉2)) 

 

 
𝑁3 =

1

1 + Φ
(3𝜉2 − 2𝜉3 + Φ𝜉) 

 

 
𝑁4 =

𝐿𝑒

1 + Φ
(−𝜉2 + 𝜉3 +

Φ

2
(−𝜉 + 𝜉2) ) 

 

 

  

(a) (b) 

Figure D-6: Shape function (a) shear deformation parameter Φ=1.0, (b) shear deformation parameter Φ=0.0 

D.2 CROSS SECTION PROPERTY FUNCTION 
The cross-section properties are not required to be constant. For a non-uniform cross-sections, the 

cross-sectional dimensions are a function of x. For thin-walled linear tapered structures, the area, 

second moment of area and torsion constant can be approximated by equation (D-18), equation 

(D-19) and equation (D-20) respectively.  

𝐴(𝑥) = 𝐴0 (1 + 𝑐 (
𝑥

𝐿
))

1

 
(D-18) 

𝐼(𝑥) = 𝐼0 (1 + 𝑐 (
𝑥

𝐿
))

3

 
(D-19) 

𝐽(𝑥) = 𝐽0 (1 + 𝑐 (
𝑥

𝐿
))

3

 
(D-20) 

 
𝑐 ≜

𝑑𝑗

𝑑𝑖
− 1 
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D.3 MASS MATRIX 
The mass matrix can be derived by the equation (D-21). The mass matrix is computed for axial 

deformation, torsion and bending separately. The shape function matrix N is known.  Assuming that 

the density of the element is uniform, the mass matrix can be computed.  

𝑀𝑒 = ∫ 𝜌𝑵𝑻𝑵𝑑𝑉
𝑉𝑒

 
(D-21) 

D.3.1 Axial deformation 

The mass matrix displacement in x-direction is computed by equation (D-22).  

𝑀𝑒 = ∫ 𝜌𝑵𝑻𝑵𝑑𝑉
𝑉𝑒

= 𝜌𝐿𝑒 ∫ 𝐴(𝜉) 𝑁𝑇𝑁 𝑑𝜉
1

0

=
𝜌𝐴0𝐿𝑒

12
[
(𝑐 + 4) (𝑐 + 2)
(𝑐 + 2) (3𝑐 + 4)

] 
(D-22) 

 

∫ 𝐴(𝜉) 𝑁𝑇𝑁 𝑑𝜉
1

0

= ∫ 𝐴(𝜉) [
𝜉2 − 2𝜉 + 1 𝜉 − 𝜉2

𝜉 − 𝜉2 𝜉2 ]
1

0

 𝑑𝜉 = [

𝐴𝑠(𝑐 + 4)

12

𝐴𝑠(𝑐 + 2)

12
𝐴𝑠(𝑐 + 2)

12

𝐴𝑠(3𝑐 + 4)

12

] 

D.3.2 Axial rotation 

The mass matrix of rotation around the x-axis is computed by (D-23). 

𝑀𝑒 = ∫ 𝜌𝑵𝑻𝑵𝑑𝑉
𝑉𝑒

= 𝜌 ∬ 𝑟
𝐴

 𝑑𝐴 ∙  𝐿𝑒 ∫ 𝑁𝑇𝑁 𝑑𝜉
1

0

 
(D-23) 

 
∬ 𝑟

𝐴

𝑑𝐴 = 𝐼𝑝 = 𝐼𝑥 + 𝐼𝑦   
 

 
∫ (𝐼𝑦(𝑥) + 𝐼𝑧(𝑥)) ∙ 𝑁𝑇𝑁 𝑑𝜉

1

0

= ∫ (𝐼𝑦(𝑥) + 𝐼𝑧(𝑥)) [
𝜉2 − 2𝜉 + 1 𝜉 − 𝜉2

𝜉 − 𝜉2 𝜉2 ]
1

0

 𝑑𝜉 

 (𝐼𝑦𝑠 + 𝐼𝑧𝑠)

60
[ 𝑐3 + 6𝑐2 + 15𝑐 + 20 2𝑐3 + 9𝑐2 + 15𝑐 + 10
2𝑐3 + 9𝑐2 + 15𝑐 + 10 10𝑐3 + 36𝑐2 + 45𝑐 + 20

] 

𝑀𝑒 = 𝜌𝐿𝑒

(𝐼𝑦𝑠 + 𝐼𝑧𝑠)

60
[ 𝑐3 + 6𝑐2 + 15𝑐 + 20 2𝑐3 + 9𝑐2 + 15𝑐 + 10
2𝑐3 + 9𝑐2 + 15𝑐 + 10 10𝑐3 + 36𝑐2 + 45𝑐 + 20

] 
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D.3.3 Bending 

The mass matrix of rotation around the x-axis is computed by (D-24).  

𝑀𝑒 = ∫ 𝜌𝑵𝑻𝑵𝑑𝑉
𝑉𝑒

= ∬ 𝜌 𝑑𝐴 
𝐴

∙ 𝐿𝑒 ∫ 𝑁𝑇𝑁
1

0

 𝑑𝜉 
(D-24) 

 

∫ 𝐴(𝜉) ∙ 𝑁𝑇𝑁 𝑑𝜉
1

0

= ∫ [

𝑁1𝑁1 𝑁1𝑁2 𝑁1𝑁3 𝑁1𝑁4

𝑁2𝑁1 𝑁2𝑁2 𝑁2𝑁3 𝑁2𝑁2

𝑁3𝑁1

𝑁4𝑁1

𝑁3𝑁2

𝑁4𝑁2

𝑁3𝑁3 𝑁3𝑁3

𝑁4𝑁3 𝑁4𝑁4

]
1

0

 𝑑𝜉 

 
𝜌𝐴0

1680 ∙ (1 + Φ)2
[

𝑀𝑏11 𝑀𝑏12 𝑀𝑏13 𝑀𝑏14

𝑀𝑏22 𝑀𝑏22 𝑀𝑏23 𝑀𝑏24

𝑀𝑏31 𝑀𝑏32 𝑀𝑏33 𝑀𝑏34

𝑀𝑏41 𝑀𝑏42 𝑀𝑏43 𝑀𝑏44

] 

  𝑀𝑏11 = (140𝑐 + 560)Φ2 + (280𝑐 + 1176)Φ + 144𝑐 + 624 

  𝑀𝑏12 = 2𝐿𝑒((14𝑐 + 35)Φ2 + (27𝑐 + 77)Φ + 14𝑐 + 44) 

  𝑀𝑏13 = 4(𝑐 + 2)(35Φ2 + 63 + 27) 

  𝑀𝑏14 = −2𝐿𝑒((14𝑐 + 35)Φ2 + (27𝑐 + 63)Φ + 12𝑐 + 26) 

  𝑀𝑏21 = 2𝐿𝑒((14𝑐 + 35)Φ2 + (27𝑐 + 77)Φ + 14𝑐 + 44) 

  𝑀𝑏22 = 2𝐿𝑒
2((7𝑐 + 14)Φ2 + (12𝑐 + 28)Φ + 6𝑐 + 16) 

  𝑀𝑏23 = 2𝐿𝑒((21𝑐 + 35)Φ2 + (36 + 63)Φ + 14c + 26) 

  
𝑀𝑏24 = −7𝑒𝐿𝑒

2 ((𝑐 + 2) (Φ2 + 2Φ +
6

7
 )) 

  𝑀𝑏31 = 4(𝑐 + 2)(35Φ2 + 63Φ + 27) 

  𝑀𝑏32 = 2𝐿𝑒((21𝑐 + 35)Φ2 + (36 + 63)Φ + 14c + 26) 

  𝑀𝑏33 = (420𝑐 + 560)Φ2 + (896𝑐 + 1176)Φ + 480𝑐 + 624 

  𝑀𝑏34 = −2𝐿𝑒((21𝑐 + 35)Φ2 + (50𝑐 + 77)Φ + 30𝑐 + 44) 

  𝑀𝑏41 = −2𝐿𝑒((14𝑐 + 35)Φ2 + (27𝑐 + 63)Φ + 12𝑐 + 26) 

  
𝑀𝑏42 = −7𝑒𝐿𝑒

2 ((𝑐 + 2) (Φ2 + 2Φ +
6

7
 )) 

  𝑀𝑏43 = −2𝐿𝑒((21𝑐 + 35)Φ2 + (50𝑐 + 77)Φ + 30𝑐 + 44) 

  𝑀𝑏44 = 𝐿𝑒((7𝑐 + 14)Φ2 + (16𝑐 + 28)Φ + 10𝑐 + 16) 
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D.3.4 Mass matrix of 1D general beam element 

The general mass matrix of the beam element is given below.  

𝑀𝑒 =

[
 
 
 
 
 
 
 
 
 
 
 
 
𝑋11 0 0 0 0 0 𝑋12 0 0 0 0 0
0 𝑌11 0 0 0 𝑌12 0 𝑌13 0 0 0 −𝑌14

0 0 𝑍11 0 −𝑍12 0 0 0 𝑍13 0 𝑍14 0
0 0 0 𝑇11 0 0 0 0 0 𝑇12 0 0
0 0 −𝑍12 0 𝑍22 0 0 0 −𝑍23 0 −𝑍24 0
0 𝑌12 0 0 0 𝑌22 0 𝑌23 0 0 0 −𝑌24

𝑋21 0 0 0 0 0 𝑋22 0 0 0 0 0
0 𝑌13 0 0 0 𝑌23 0 𝑌33 0 0 0 −𝑌34

0 0 𝑍13 0 −𝑍23 0 0 0 𝑍33 0 𝑍34 0
0 0 0 𝑇21 0 0 0 0 0 𝑇22 0 0
0 0 𝑍14 0 −𝑍24 0 0 0 𝑍34 0 𝑍44 0
0 −𝑌14 0 0 0 −𝑌24 0 −𝑌34 0 0 0 𝑌44 ]

 
 
 
 
 
 
 
 
 
 
 
 

 (D-25) 

 
𝑋11 =

𝜌𝐴𝑖𝐿𝑒

12
(𝑐 + 4) 

 
𝑋12 =

𝜌𝐴𝑖𝐿𝑒

12
(𝑐 + 2) 

 
𝑋21 =

𝜌𝐴𝑖𝐿𝑒

12
(𝑐 + 2) 

 
𝑋22 =

𝜌𝐴𝑖𝐿𝑒

12
(𝑐 + 4) 

    

 
𝑇11 = 𝜌𝐿𝑒

𝐼𝑖𝑧 + 𝐼𝑖𝑦

60
(𝑐3 + 6𝑐2 + 15𝑐 + 20) 

 
𝑇12 = 𝜌𝐿𝑒

𝐼𝑖𝑥 + 𝐼𝑖𝑦

60
(2𝑐3 + 9𝑐2 + 15𝑐 + 10) 

 
𝑇21 = 𝜌𝐿𝑒

𝐼𝑖𝑥 + 𝐼𝑖𝑦

60
(2𝑐3 + 9𝑐2 + 15𝑐 + 10) 

 
𝑇22 = 𝜌𝐿𝑒

𝐼𝑖𝑥 + 𝐼𝑖𝑦

60
(10𝑐3 + 36𝑐2 + 145𝑐 + 20) 

    

 

{𝑌, 𝑍}11 =
ρAi𝐿𝑒

1680(1 + Φz)
2 ((140𝑐 + 560)Φ2 + (280𝑐 + 1176)Φ + 144𝑐 + 624) 

 

{𝑌, 𝑍}12 =
ρAi𝐿𝑒

1680(1 + Φz)
2
(2𝐿𝑒((14𝑐 + 35)Φ2 + (27𝑐 + 77)Φ + 14𝑐 + 44)) 

 

{𝑌, 𝑍}13 =
ρAi𝐿𝑒

1680(1 + Φz)
2 (4(𝑐 + 2)(35Φ2 + 63 + 27)) 

 

{𝑌, 𝑍}14 =
ρAi𝐿𝑒

1680(1 + Φz)
2
(2𝐿𝑒((14𝑐 + 35)Φ2 + (27𝑐 + 63)Φ + 12𝑐 + 26)) 

 

{𝑌, 𝑍}22 =
ρAi𝐿𝑒

1680(1 + Φz)
2
(2𝐿𝑒

2((7𝑐 + 14)Φ2 + (12𝑐 + 28)Φ + 6𝑐 + 16)) 

 

{𝑌, 𝑍}23 =
ρAi𝐿𝑒

1680(1 + Φz)
2
(2𝐿𝑒((21𝑐 + 35)Φ2 + (36 + 63)Φ + 14c + 26)) 

 

{𝑌, 𝑍}24 =
ρAi𝐿𝑒

1680(1 + Φz)
2
(7𝑒𝐿𝑒

2 ((𝑐 + 2) (Φ2 + 2Φ +
6

7
 ))) 

 

{𝑌, 𝑍}33 =
ρAi𝐿𝑒

1680(1 + Φz)
2 ((420𝑐 + 560)Φ2 + (896𝑐 + 1176)Φ + 480𝑐 + 624) 

 

{𝑌, 𝑍}34 =
ρAi𝐿𝑒

1680(1 + Φ)2
(2𝐿𝑒((21𝑐 + 35)Φ2 + (50𝑐 + 77)Φ + 30𝑐 + 44)) 

 

{𝑌, 𝑍}44 =
ρAi𝐿𝑒

1680(1 + Φ)2
(𝐿𝑒((7𝑐 + 14)Φ2 + (16𝑐 + 28)Φ + 10𝑐 + 16)) 
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D.4 STIFFNESS MATRIX 
The stiffness matrix is derived by the equation (D-26). The stiffness matrix will be compute for axial 

deformation, torsion and bending separately. The shape function matrix N is known. The derivatives 

of the shape function need to be determine and the material matrix c.  

𝒌𝒆 = ∫ [𝑩]𝑻𝒄 [𝑩]
𝑉𝑒

 𝑑𝑉 = ∫ [𝑩]𝑻𝒄 [𝑩]
𝑉𝑒

 𝑑𝑉 
(D-26) 

 
𝑩 = [

𝜕𝑢

𝜕𝑥

𝜕𝜑

𝜕𝑥

𝜕𝑣

𝜕𝑦
(
𝜕𝑣

𝜕𝑦
+

𝜕𝑢

𝜕𝑥
)

𝜕𝑤

𝜕𝑧
(
𝜕𝑤

𝜕𝑧
+

𝜕𝑢

𝜕𝑥
)]

𝑇

𝑵 
 

D.4.1 Axial displacement 

The strain and displacement relation of tension in a beam can be written as equation (D-27).  

𝜖 =
𝜕𝑢

𝜕𝑥
 

(D-27) 

For one-dimensional problems the constitutive equation can be written as the Hook’s Law. The 

young modules (E) of the material is known.  

𝜎 = 𝐸𝜖 = 𝑐𝑳𝑵 (D-28) 

The mass matrix displacement in x-direction is computed by equation (D-22).  

𝐾𝑒 = ∫ [𝑩]𝑻𝒄 [𝑩]
𝑉𝑒

 𝑑𝑉 = ∫ 𝑵′𝑻𝑬 𝑵′

𝑉𝑒

 𝑑𝑉 = ∫  𝑑𝐴 
𝐴

𝐸

𝐿𝑒
 ∫ 𝑵′𝑇𝑵′ 𝑑𝜉

1

0

 
(D-29) 

 

∫ 𝐴(𝜉) 𝑵′𝑇𝑵′𝑑𝜉
1

0

= ∫ 𝐴(𝜉) [
1 −1

−1 1
]

1

0

 𝑑𝜉 = 𝐴𝑠 [

𝑐

2
𝑐 + 1 −

𝑐

2
− 1

−
𝑐

2
− 1

𝑐

2
+ 1

] 

 

  
𝑵′ =

𝑑𝑵

𝑑𝜉

𝑑𝜉

𝑑𝑥
=

1

𝐿𝑒

𝑑𝑵

𝑑𝜉
 

 

𝐾𝑒 =
𝐸𝐴𝑠

𝐿𝑒
[

𝑐

2
𝑐 + 1 −

𝑐

2
− 1

−
𝑐

2
− 1

𝑐

2
+ 1

] 
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D.4.2 Axial rotation 

The strain and displacement relation of tension in a beam can be written as equation (D-30).   

𝜖 =
𝜕𝜑

𝜕𝑥
 

(D-30) 

For torsion the material matrix is equal to the shear modulus of the material.  

𝜎 = 𝐺𝜖 = 𝑐𝑳𝑵 (D-31) 

The mass matrix displacement in x-direction is computed by equation (D-32).  

𝐾𝑒 = ∫ [𝑩]𝑻𝒄 [𝑩]
𝑉𝑒

 𝑑𝑉 = ∫ 𝑵′𝑻𝑬 𝑵′

𝑉𝑒

 𝑑𝑉 = ∫ 𝑟2 𝑑𝐴 
𝐴

𝐺

𝐿𝑒
 ∫ 𝑵′𝑇𝑵′ 𝑑𝜉

1

0

 
(D-32) 

 
∫ 𝑵′𝑇𝑁′𝑑𝜉

1

0

= ∫ [
1 −1

−1 1
]

1

0

 𝑑𝜉 
 

  
𝑵′ =

𝑑𝑵

𝑑𝜉

𝑑𝜉

𝑑𝑥
=

1

𝐿𝑒

𝑑𝑵

𝑑𝜉
 

 

𝐾𝑒 =
𝐺𝐽𝑠
4𝐿𝑒

[
(𝑐 + 2)(𝑐2 + 2𝑐 + 2) −(𝑐 + 2)(𝑐2 + 2𝑐 + 2)

−(𝑐 + 2)(𝑐2 + 2𝑐 + 2) (𝑐 + 2)(𝑐2 + 2𝑐 + 2)
] 

 

D.4.3 Bending 

The relation between strain and deflection can be written as equation (D-33), where the first term is 

the strain due to the bending and the second term is the strain due to the axial forces, which allow 

the beam to buckle.  

𝜖 =
𝜕𝑣

𝜕𝑦
(
𝜕𝑣

𝜕𝑦
+

𝜕𝑢

𝜕𝑥
) =

𝜕2𝑣

𝜕𝑦2
+

𝜕𝑢

𝜕𝑥

𝜕𝑣

𝜕𝑦
 

(D-33) 

For one-dimensional problems the constitutive equation can be written as the Hook’s Law. The 

young modules E of the material is known.  

𝜎 = 𝐸𝜖 = 𝑐𝑳𝑵 (D-34) 

The stiffness matrix displacement in x-direction is computed by equation (D-22).  

𝐾 = ∫ [𝑩]𝑻𝒄 [𝑩]
𝑉𝑒

 𝑑𝑉 = ∫ [𝑳𝑵]𝑻𝐸 [𝑳𝑵]
𝑉𝑒

 𝑑𝑉 = 
(D-35) 

 
𝑲𝒆 = 𝐸 ∫ ∫  

𝑦(𝑥)2

𝐴

𝑵′′𝑻𝑵′′ 𝑑𝐴 𝑑𝑥
𝐿𝑒

0

= 𝐸 ∫ 𝐼(𝜉)𝑵′′𝑻𝑵′′ 𝑑𝑥
𝐿𝑒

0

 
 

 
𝑲𝒈 = 𝐸

𝑑𝑢

𝑑𝑥
 ∫ ∫  

𝑦(𝑥)2

𝐴

𝑵′𝑻𝑵′ 𝑑𝐴 𝑑𝑥
𝐿𝑒

0

= 𝐸
𝑑𝑢

𝑑𝑥
∫ 𝐴(𝜉) 𝑵′𝑻𝑵′ 𝑑𝑥

𝐿𝑒

0
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The element stiffness of the beam can be compute with (D-36).  

𝑲𝒆 = 𝐸 ∫ 𝐼(𝑥)𝑵′′𝑻𝑵′′ 𝑑𝑥
𝐿𝑒

0

 
(D-36) 

 

∫ 𝐼(𝑥)𝑁′′𝑇𝑁′′𝑑𝑥
𝐿𝑒

0

=
𝐿𝑒

𝐿𝑒
4 ∫ 𝐼(𝜉)

[
 
 
 
𝑁′′1𝑁′′1 𝑁′′1𝑁′′2 𝑁′′1𝑁′′3 𝑁′′1𝑁′′1
𝑁′′2𝑁′′1 𝑁′′2𝑁′′2 𝑁′′2𝑁′′3 𝑁′′2𝑁′′2
𝑁′′3𝑁′′1
𝑁′′4𝑁′′1

𝑁′′3𝑁′′2
𝑁′′4𝑁′′2

𝑁′′3𝑁′′3 𝑁′′3𝑁′′3
𝑁′′4𝑁′′3 𝑁′′4𝑁′′4]

 
 
 1

0

𝑑𝜉  

 

  
𝑁′′ =

𝑑2𝑁

𝑑𝜉2
(
𝑑𝜉

𝑑𝑥
)
2

+
𝑑𝑁

𝑑𝜉

 𝑑2𝜉

𝑑𝑥2
  =

1

𝐿𝑒
2 (

𝑑2𝑁

𝑑𝜉2 ) 
 

  𝑑𝑥 = 𝐿𝑒𝑑𝜉  

 

=
𝐼𝑦𝑠

20 ∙ (1 + Φ)2 [

𝐾𝑏11 𝐾𝑏12 𝐾𝑏13 𝐾𝑏14

𝐾𝑏22 𝐾𝑏22 𝐾𝑏23 𝐾𝑏24

𝐾𝑏31 𝐾𝑏32 𝐾𝑏33 𝐾𝑏34

𝐾𝑏41 𝐾𝑏42 𝐾𝑏43 𝐾𝑏44

] 

  𝐾𝑏11 = 84𝑐3 + 288𝑐2 + 360𝑐 + 240 

  𝐾𝑏12 = 6𝐿𝑒(20 − 20𝑐 − 14𝑐2 − 4𝑐3 − Φ(3𝑐3 + 10𝑐2 + 10𝑐)) 

  𝐾𝑏13 = −(84𝑐3 + 288𝑐2 + 360𝑐 + 240) 

  𝐾𝑏14 = 6𝐿𝑒(20 + 40𝑐 + 34𝑐2 + 10𝑐3 + Φ(3𝑐3 + 10𝑐2 + 10𝑐)) 

  𝐾𝑏21 = 6𝐿𝑒(20 − 20𝑐 − 14𝑐2 − 4𝑐3 − Φ(3𝑐3 + 10𝑐2 + 10𝑐)) 

  
𝐾𝑏22 = 5𝐿𝑒

2 ((Φ2 −
8

5
Φ +

8

5
) 𝑐3 + (4Φ2 − 4Φ +

32

5
) 𝑐2 + (6Φ2 + 12)𝑐 + 4Φ2 + 8Φ + 16) 

  𝐾𝑏23 = 6𝐿𝑒(−20 − 20𝑐 − 14𝑐2 − 4𝑐3 + Φ(3𝑐3 + 10𝑐2 + 10𝑐)) 

  
𝐾𝑏24 = −5𝐿𝑒

2 ((Φ2 + 2Φ −
16

5
) 𝑐2 + (2Φ2 + 4Φ − 4)𝑐 + 2Φ2 + 4Φ − 4) (𝑐 + 2) 

  𝐾𝑏31 = −(84𝑐3 + 288𝑐2 − 360𝑐 − 240) 

  𝐾𝑏32 = 6𝐿𝑒(−20 − 20𝑐 − 14𝑐2 − 4𝑐3 + Φ(3𝑐3 + 10𝑐2 + 10𝑐)) 

  𝐾𝑏33 = 84𝑐3 + 288𝑐2 + 360𝑐 + 240  

  𝐾𝑏34 = −6𝐿𝑒(20 + 40𝑐 + 34𝑐2 + 10𝑐3 + Φ(3𝑐3 + 10𝑐2 + 10𝑐)) 

  𝐾𝑏41 = 6𝐿𝑒(20 + 40𝑐 + 34𝑐2 + 10𝑐3 + Φ(3𝑐3 + 10𝑐2 + 10𝑐)) 

  
𝐾𝑏42 = −5𝐿𝑒 ((Φ2 + 2Φ −

16

5
) 𝑐2 + (2Φ2 + 4Φ − 4)𝑐 + 2Φ2 + 4Φ − 4) (𝑐 + 2) 

  𝐾𝑏43 = −6𝐿𝑒(20 + 40𝑐 + 34𝑐2 + 10𝑐3 + Φ(3𝑐3 + 10𝑐2 + 10𝑐)) 

  
𝐾𝑏44 = 5𝐿𝑒

2 ((Φ2 −
28

5
Φ +

44

5
) 𝑐3 + (4Φ2 + 20Φ +

152

5
) 𝑐2 + (6Φ2 + 24Φ + 36)𝑐 + 4Φ2 + 8Φ + 16) 
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𝐾𝑒 =
𝐸𝐼𝑠

20𝐿𝑒
3(1 + Φ)2

[

𝐾𝑏11 𝐾𝑏12 𝐾𝑏13 𝐾𝑏14

𝐾𝑏22 𝐾𝑏22 𝐾𝑏23 𝐾𝑏24

𝐾𝑏31 𝐾𝑏32 𝐾𝑏33 𝐾𝑏34

𝐾𝑏41 𝐾𝑏42 𝐾𝑏43 𝐾𝑏44

] 

 

The geometric stiffness of the beam can be compute with equation (D-37).  

𝑲𝒈 = 𝐸
𝑑𝑢

𝑑𝑥
∫ 𝐴(𝜉)𝑵′𝑻𝑵′ 𝑑𝑥

𝐿𝑒

0

 
(D-37) 

 

∫ 𝐴(𝜉)𝑵′′𝑇𝑵′′𝑑𝑥
𝐿𝑒

0

=
𝐿𝑒

𝐿𝑒
2 ∫

[
 
 
 
𝑁′1𝑁′1 𝑁′1𝑁′2 𝑁′1𝑁′3 𝑁′1𝑁′1
𝑁′2𝑁′1 𝑁′2𝑁′2 𝑁′2𝑁′3 𝑁′2𝑁′2
𝑁′3𝑁′1
𝑁′4𝑁′1

𝑁′3𝑁′2
𝑁′4𝑁′2

𝑁′3𝑁′3 𝑁′3𝑁′3
𝑁′4𝑁′3 𝑁′4𝑁′4]

 
 
 1

0

𝑑𝜉  

 

  
𝑵′ =

𝑑𝑵

𝑑𝜉

𝑑𝜉

𝑑𝑥
  =

1

𝐿𝑒
 

 

  𝑑𝑥 = 𝐿𝑒𝑑𝜉  

 

=
𝐴𝑠

120(1 + Φ)2

[
 
 
 
 
𝐾𝑔11 𝐾𝑔12 𝐾𝑔13 𝐾𝑔14

𝐾𝑔22 𝐾𝑔22 𝐾𝑔23 𝐾𝑔24

𝐾𝑔31 𝐾𝑔32 𝐾𝑔33 𝐾𝑔34

𝐾𝑔41 𝐾𝑔42 𝐾𝑔43 𝐾𝑔44]
 
 
 
 

 

  𝐾𝑔11 = 12(𝑐 + 2)(5Φ2 + 10Φ + 6)  

  𝐾𝑔12 = 2𝐿𝑒(5Φ2𝑐 + 8Φ𝑐 + 6𝑐 + 6) 

  
𝐾𝑔13 = −60(𝑐 + 2) (Φ2 + 2Φ +

6

5
) 

  𝐾𝑔14 = −2𝐿𝑒(5Φ2𝑐 + 8Φ𝑐 − 6) 

  𝐾𝑔21 = 2𝐿𝑒(5Φ2𝑐 + 8Φ𝑐 + 6𝑐 + 6) 

  𝐾𝑔22 = 𝐿𝑒
2(5Φ2𝑐 + 10Φ2 + 6Φ𝑐 + 20Φ + 4𝑐 + 16) 

  𝐾𝑔23 = −2𝐿𝑒(5Φ2𝑐 + 8Φ𝑐 + 6𝑐 + 6) 

  
𝐾𝑔24 = −5𝐿𝑒

2 (Φ2 + 2Φ +
2

5
) (𝑐 + 2) 

  
𝐾𝑔31 = −60(𝑐 + 2) (Φ2 + 2Φ +

6

5
) 

  𝐾𝑔32 = −2𝐿2(5Φ2𝑐 + 8Φ𝑧 + 6𝑐 + 6) 

  𝐾𝑔33 = 12(𝑐 + 2)(5Φ2 + 10Φ + 6) 

  𝐾𝑔34 = 2𝐿𝑒(5Φ𝑐 + 8Φ𝑐 − 6) 

  𝐾𝑔41 = −2𝐿𝑒(5Φ2𝑐 + 8Φ𝑐 − 6) 

  
𝐾𝑔42 = −5𝐿𝑒 (Φ2 + 2Φ +

2

5
) (𝑐 + 2) 

  𝐾𝑔43 = 2𝐿𝑒(5Φ2𝑐 + 8Φ𝑐 − 6) 
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  𝐾𝑔44 = 𝐿𝑒
2
(5Φ2𝑐 + 10Φ2 + 14Φ𝑐 + 20Φ + 4𝑐 + 16) 

𝐾𝑒 =
𝑇𝑠

120 ∙ 𝐿𝑒(1 + Φ)2

[
 
 
 
 
𝐾𝑔11 𝐾𝑔12 𝐾𝑔13 𝐾𝑔14

𝐾𝑔22 𝐾𝑔22 𝐾𝑔23 𝐾𝑔24

𝐾𝑔31 𝐾𝑔32 𝐾𝑔33 𝐾𝑔34

𝐾𝑔41 𝐾𝑔42 𝐾𝑔43 𝐾𝑔44]
 
 
 
 

 

D.4.4 Stiffness matrix of 1D general beam element 

The general stiffness matrix of the beam element is given below.  

𝐾𝑒 =

[
 
 
 
 
 
 
 
 
 
 
 
 
𝑋 0 0 0 0 0 X 0 0 0 0 0
0 𝑌11 0 0 0 𝑌12 0 −𝑌13 0 0 0 𝑌14

0 0 𝑍11 0 −𝑍12 0 0 0 −𝑍13 0 −𝑍14 0
0 0 0 𝑇 0 0 0 0 0 −𝑇 0 0
0 0 −𝑍21 0 𝑍22 0 0 0 𝑍23 0 𝑍24 0
0 𝑌12 0 0 0 𝑌22 0 −𝑌23 0 0 0 𝑌24

X 0 0 0 0 0 𝑋 0 0 0 0 0
0 −𝑌13 0 0 0 −𝑌23 0 𝑌33 0 0 0 −𝑌34

0 0 𝑍13 0 𝑍23 0 0 0 𝑍33 0 𝑍34 0
0 0 0 −𝑇 0 0 0 0 0 𝑇 0 0
0 0 −𝑍14 0 𝑍24 0 0 0 𝑍34 0 𝑍44 0
0 𝑌14 0 0 0 𝑌24 0 −𝑌34 0 0 0 𝑌44 ]

 
 
 
 
 
 
 
 
 
 
 
 

 (D-38) 

 
𝑋 =

𝐸𝐴𝑖

2𝐿𝑒

(𝑐 + 2) 
 

𝑇 =
𝐺𝐽𝑖
4𝐿𝑒

(𝑐 + 2)(𝑐2 + 2𝑐 + 2) 

    
 

{𝑌, 𝑍}11 =
𝐸𝐼𝑖

20𝐿𝑒
3(1 + Φ)2

(84𝑐2 + 288𝑐2 + 360𝑐 + 240) 

 

{𝑌, 𝑍}12 =
𝐸𝐼𝑖

20𝐿𝑒
3(1 + Φ)2

(6𝐿𝑒(20 − 20𝑐 − 14𝑐2 − 4𝑐3 − Φ(3𝑐3 + 10𝑐2 + 10𝑐))) 

 

{𝑌, 𝑍}13 =
𝐸𝐼𝑖

20𝐿𝑒
3(1 + Φ)2

(−(84𝑐2 + 288𝑐2 + 360𝑐 + 240)) 

 

{𝑌, 𝑍}14 =
𝐸𝐼𝑖

20𝐿𝑒
3(1 + Φ)2

(6𝐿𝑒(20 + 40𝑐 + 34𝑐2 + 10𝑐3 + Φ(3𝑐3 + 10𝑐2 + 10𝑐))) 

 

{𝑌, 𝑍}22 =
𝐸𝐼𝑖

20𝐿𝑒
3(1 + Φ)2

(5𝐿𝑒
2 ((Φ2 −

8

5
Φ +

8

5
) 𝑐3 + (4Φ2 − 4Φ +

32

5
) 𝑐2 + (6Φ2 + 12)𝑐 + 4Φ2 + 8Φ + 16)) 

 

{𝑌, 𝑍}23 =
𝐸𝐼𝑖

20𝐿𝑒
3(1 + Φ)2

(6𝐿𝑒(−20 − 20𝑐 − 14𝑐2 − 4𝑐3 + Φ(3𝑐3 + 10𝑐2 + 10𝑐))) 

 

{𝑌, 𝑍}24 =
𝐸𝐼𝑖

20𝐿𝑒
3(1 + Φ)2

(−5𝐿𝑒
2 ((Φ2 + 2Φ −

16

5
) 𝑐2 + (2Φ2 + 4Φ − 4)𝑐 + 2Φ2 + 4Φ − 4) (𝑐 + 2)) 

 

{𝑌, 𝑍}33 =
𝐸𝐼𝑖

20𝐿𝑒
3(1 + Φ)2

(84𝑐3 + 288𝑐2 + 360𝑐 + 240 ) 

 

{𝑌, 𝑍}34 =
𝐸𝐼𝑖

20𝐿𝑒
3(1 + Φ)2

(−6𝐿𝑒(20 + 40𝑐 + 34𝑐2 + 10𝑐3 + Φ(3𝑐3 + 10𝑐2 + 10𝑐))) 

 

{𝑌, 𝑍}44 =
𝐸𝐼𝑖

20𝐿𝑒
3(1 + Φ)2

(5𝐿𝑒
2 ((Φ2 −

28

5
Φ +

44

5
) 𝑐3 + (4Φ2 + 20Φ +

152

5
) 𝑐2 + (6Φ2 + 24Φ + 36)𝑐 + 4Φ2 + 8Φ + 16)) 
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𝐾𝑔 =

[
 
 
 
 
 
 
 
 
 
 
 
 
0 0 0 0 0 0 0 0 0 0 0 0
0 𝑌11 0 0 0 𝑌12 0 −𝑌13 0 0 0 𝑌14

0 0 𝑍11 0 −𝑍12 0 0 0 −𝑍13 0 −𝑍14 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 −𝑍21 0 𝑍22 0 0 0 𝑍23 0 𝑍24 0
0 𝑌12 0 0 0 −𝑌22 0 −𝑌23 0 0 0 𝑌24

0 0 0 0 0 0 0 0 0 0 0 0
0 −𝑌13 0 0 0 −𝑌23 0 𝑌33 0 0 0 −𝑌34

0 0 𝑍13 0 𝑍23 0 0 0 𝑍33 0 𝑍34 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 −𝑍14 0 𝑍24 0 0 0 𝑍34 0 𝑍44 0
0 𝑌14 0 0 0 𝑌24 0 −𝑌34 0 0 0 𝑌44 ]

 
 
 
 
 
 
 
 
 
 
 
 

 (D-39) 

 

{𝑌, 𝑍}11 =
𝑇𝑠

120 ∙ 𝐿𝑒(1 + Φ)2
(12(𝑐 + 2)(5Φ2 + 10Φ + 6)) 

 

{𝑌, 𝑍}12 =
𝑇𝑠

120 ∙ 𝐿𝑒(1 + Φ)2
(2𝐿𝑒(5Φ2𝑐 + 8Φ𝑐 + 6𝑐 + 6)) 

 

{𝑌, 𝑍}13 =
𝑇𝑠

120 ∙ 𝐿𝑒(1 + Φ)2
(−60(𝑐 + 2) (Φ2 + 2Φ +

6

5
)) 

 

{𝑌, 𝑍}14 =
𝑇𝑠

120 ∙ 𝐿𝑒(1 + Φ)2
(2𝐿𝑒(5Φ2𝑐 + 8Φ𝑐 − 6)) 

 
{𝑌, 𝑍}22 =

𝑇𝑠

120 ∙ 𝐿𝑒(1 + Φ)2
(𝐿𝑒

2
(5Φ2𝑐 + 10Φ2 + 6Φ𝑐 + 20Φ + 4𝑐 + 16)) 

 

{𝑌, 𝑍}23 =
𝑇𝑠

120 ∙ 𝐿𝑒(1 + Φ)2
(−2𝐿𝑒(5Φ2𝑐 + 8Φ𝑐 + 6𝑐 + 6)) 

 

{𝑌, 𝑍}24 =
𝑇𝑠

120 ∙ 𝐿𝑒(1 + Φ)2
(−5𝐿𝑒

2 (Φ2 + 2Φ +
2

5
) (𝑐 + 2)) 

 

{𝑌, 𝑍}33 =
𝑇𝑠

120 ∙ 𝐿𝑒(1 + Φ)2
(12(𝑐 + 2)(5Φ2 + 10Φ + 6)) 

 

{𝑌, 𝑍}34 =
𝑇𝑠

120 ∙ 𝐿𝑒(1 + Φ)2
(2𝐿𝑒(5Φ𝑐 + 8Φ𝑐 − 6)) 

 

{𝑌, 𝑍}44 =
𝑇𝑠

120 ∙ 𝐿𝑒(1 + Φ)2
(𝐿𝑒

2(5Φ2𝑐 + 10Φ2 + 14Φ𝑐 + 20Φ + 4𝑐 + 16)) 

D.5 SHEAR CORRECTION FACTOR 
The shear correction factor is introduced to take the shear rotation into account. Timoshenko beam 

theory defines the shear correction factor as the ratio of the average strain of a section to the shear 

strain at the centroid. The shear correction factor is depending on the shape of the cross section and 

can be determine with a free-vibration test or balance of energy. The shear coefficient κ for a circular 

cross-section can be determine with equation (D-40) [113]. The shear coefficient κ for a thin walled 

structure is given in equation (D-40).  

𝜅 =
6(𝑟𝑖

2 + 𝑟𝑜
2)

2
(1 + 𝜈)20

7𝑟𝑖
4 + 34𝑟𝑖

2𝑟𝑜
2 + 7𝑟𝑜

4 + 𝜈(12𝑟𝑖
4 + 48𝑟𝑖

2𝑟𝑜
2 + 12𝑟𝑜

4) + 𝜈2(4𝑟𝑖
4 + 16𝑟𝑖

2𝑟𝑜
2 + 4𝑟𝑜

4)
 

(D-40) 

𝜅 =
10(1 + 𝜈)(1 + 3𝑚)2

(12 + 72𝑚 + 150𝑚2 + 90𝑚3) + 𝜈(11 + 66𝑚 + 135𝑚2 + 90𝑚3) + 10𝑛2((3 + 𝜈)𝑚 + 3𝑚2)
 (D-41) 

 
𝑚 =

𝑏𝑡1
ℎ𝑡

 
 

 
𝑛 =

𝑏

ℎ
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D.6 TRANSFORMATION MATRIX 
The orientation of an element is arbitrary. The stiffness and mass matrix are derived with respect to a 

local coordinate system that is arbitrary oriented with respect to the global coordinate system. The 

stiffness and mass matrix should be transformed. The transformation matrix transform the local 

coordinates of the element into global coordinate system. The transform matrix has the form of 

equation (D-42). Matrix R is a three-dimensional rotation matrix. The direction cosines method is 

used. The local coordinate system need first be determined.  

𝑻 = [

𝑹 𝟎 𝟎 𝟎
𝟎 𝑹 𝟎 𝟎
𝟎 𝟎 𝑹 𝟎
𝟎 𝟎 𝟎 𝑹

] (D-42) 

 

𝑹 = [

cos(𝑥, 𝑋) cos(𝑥, 𝑌) cos(𝑥, 𝑍)

cos (𝑦, 𝑋) cos(𝑦, 𝑌) cos(𝑦, 𝑍)

cos (𝑧, 𝑍) cos(𝑧, 𝑌) cos(𝑧, 𝑍)
] 

 

For the beam element two coordinates are known, meaning that only the x-axis is defined by the 

vector between those coordinates. The y-axis and z-axis are orthogonal to the x-axis and there are 

infinite vectors orthogonal to x-axis. The elements have a right-handed coordinate system. The local 

coordinate system can be found by finding the rotation angles.  

𝑳 = [𝒙 𝒚 𝒛] (D-43) 

 𝑳 = 𝑟𝑧(𝛾)𝑟𝑦(𝛽)𝑟𝑥(𝛼)  

  
𝒓𝒙 = [

1 0 0
0 cos (𝛼) −sin (𝛼)

0 sin(α) cos (𝛼)
] 

  
𝒓𝒚 = [

cos(𝛽) 0 sin (𝛽)
0 1 0

−sin(β) 0 cos (𝛽)
] 

  
𝒓𝒛 = [

cos(𝛾) −sin(𝛾) 0

sin(𝛾) cos(γ) 0
0 0 1

] 

The rotation γ and β can be found by the (D-44) equation and (D-45). There is assumed that the 

rotation around the x-axis is zero and the rotations are independent.  

𝛾 = cos−1(
𝒖 ∙ 𝒗 

|𝒖||𝒗|
) (D-44) 

 𝒖 = [
𝑥1

𝑥2
] 𝒗 = [

1
0
]  

𝛽 = cos−1 (
𝒖 ∙ 𝒗 

|𝒖||𝒗|
) (D-45) 

 𝒖 = [
𝑥1

𝑥3
] 𝒗 = [

1
0
]  
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D.7 NODAL FORCES 
The acting on the elements need to be written into nodal forces. The loads working on a one-

dimensional beam element are forces, moments and distributed loads. The nodal forces vector for a 

beam element can be computed by equation (D-46). Be aware the fs is a surface load and fb is a body 

load. The surface loads can directly applied on the nodes. The body loads need to be transferred to 

nodal loads. 

𝑓𝑒 = ∫  𝑵𝑻 𝑓𝑏
𝑉

𝑑𝑉 + ∫ 𝑵𝑻

𝑆𝑓

𝑓𝑠 𝑑𝑆𝑓 (D-46) 

There is assumed that there is no coupling between deformations in a particular direction. The load 

need to be transfer to nodal loads. There is assumed that the load between two nodes are linear. The 

linear distributed load can be divided into a uniform distributed load and distributed load with a 

linear decay.  

 

Axial 

𝑓𝑒 = ∫  𝑵𝑻 𝑓𝑏
𝑉

= ∫  𝑵𝑻 𝑓𝑢
𝑉

+ ∫  𝑵𝑻 𝑓𝑡
𝑉

 (D-47) 

 

∫  𝑵𝑻 𝑓2
𝑉

= 𝐴𝑓𝑢 ∫  [
𝝃

𝟏 − 𝝃
]

1

0

= [

1

2
𝑓𝑥,𝑢

1

2
𝑓𝑥,𝑢

]  

 

∫  𝑵𝑻 𝑓2
𝑉

= 𝐴𝑓𝑡 ∫  [
𝝃

𝟏 − 𝝃
]

1

0

= [

2

3
𝑓𝑥,𝑡

1

3
𝑓𝑥,𝑡
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Bending 

𝑓𝑒 = ∫  𝑵𝑻 𝑓𝑏
𝑉

= ∫  𝑵𝑻 𝑓𝑢
𝑉

+ ∫  𝑵𝑻 𝑓𝑡
𝑉

 (D-48) 
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The reduced nodal force method is used. The nodal moments are omitted. The nodal moments are of 

the same approximate same order. For nodes connected to two elements, the nodal forces converge 

to zero. The nodal forces can therefore disregarded.  

𝑓𝑒 = ∫  𝑵𝑻 𝑓𝑏
𝑉

= ∫  𝑵𝑻 𝑓𝑢
𝑉

+ ∫  𝑵𝑻 𝑓𝑡
𝑉

 (D-49) 
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E APPENDIX: VALIDATION OF MODEL 

The Aero-Hydro-Elastic-Servo model (Matlab model) must be validated. This appendix provides all 

the results of the validation. The model is validated in multiple steps, the first step is the validation of 

the Beam element. The final step is validation of the natural period and the response motions of a 

bottom founded wind turbine and the floating wind turbine.   

E.1 ELEMENT 
The element derived in Appendix: One-dimensional finite element must be validated. The validation 

of the element is split in three parts. Firstly, the cantilever without a tension force is validated. The 

natural frequencies of the element are compared with a cantilever beam in Ansys and analytical 

equation of the cantilever beam. Secondly, the natural frequencies of a tensioned cantilever beam 

are compared. The final step is comparing the natural frequencies of a tensioned cantilever beam 

with a linear tapering. The cross-dimensional properties of the cantilever beam are given Table E-6, 

which are the dimensional properties of a pontoon. The relative error is determine with equation 

(E-1).   

The natural periods are depending on the mass and stiffness matrix. The natural periods of the one-

dimensional element is compared with the ANSYS BEAM188 element. This element is suitable for 

slender to moderately thick beamed structures. The element is based on the Timoshenko beam 

theory and is well-suited for linear and nonlinear applications. The one-dimensional beam element 

derived in Appendix: One-dimensional finite element is also a Timoshenko beam element including a 

linear tapering.  

𝜖 =
|𝑇𝑀𝐴𝑇𝐿𝐴𝐵 − 𝑇𝐴𝑁𝑆𝑌𝑆|

𝑇𝐴𝑁𝑆𝑌𝑆
 

(E-1) 

𝜖 =
|𝑇𝑎𝑛𝑎𝑙𝑦𝑡𝑖𝑐𝑎𝑙 − 𝑇𝐴𝑁𝑆𝑌𝑆|

𝑇𝑎𝑛𝑎𝑙𝑦𝑡𝑖𝑐𝑎𝑙
 

(E-2) 

Table E-1: Validation element 

Parameter Symbol Value Unit 

Length L 42.5 m m 

Diameter D 4.7 m m 

Plate thickness Tp 0.025 m m 

Tapering factor c 0.5 [-] 

Tension force Ft 500.000 kN 

E.1.1 Cantilever beam 

The analytical equation of the natural frequencies (see equation (E-3)) of a cantilever beam are 

multiple times derived and not presented in this appendix. The analytical natural frequencies of the 

cantilever beam are compared with the natural frequencies of the beam element. Table E-2 gives the 

analytical natural frequencies, the Matlab natural frequencies and the relative error. The relative 

errors are approximately 0.002, which are still within the acceptable limits.  

𝑓𝑛 = (
𝛽

𝐿
)
2

√
𝐸𝐼

𝜌𝐴
 (E-3) 
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 𝛽 = 1.875, 4.694, 7.854, 10.996, 14.137, 17.279…   

Table E-2: Natural frequencies analytical, ANSYS and MATLAB 

 Analytical 
[Hz] 

Ansys 
[Hz] 

Matlab 
[Hz] 

Error  

Analytical - Matlab 
Error 

Ansys - Matlab 

First bending mode 2.672 2.614 2.642 0.01 0.02 

Second bending 
mode 

16.75 14.67 16.55 0.01 0.05 

First axial mode  30.70 30.69 30.70 0.00 0.00 

First torsion mode 19.09 19.04 19.10 0.00 0.00 

E.1.2 Tensioned cantilever beam 

A stiffness of a beam increases when the tension in the beam increased. The cantilever beam is 

loaded at the top with a force of 500.000kN. The geometric stiffness of the element is than 

dominant. The natural frequencies of the tensioned cantilever beam are given in Table E-3, only the 

bending modes are given because the stiffness of the bending changed. The natural frequency of the 

second bending mode has the largest relative error. The natural frequency of second bending mode 

of Ansys compared with the analytical natural frequency showed also large difference. Concluded is 

that the geometric stiffness is correct.   

Table E-3: Natural frequencies ANSYS and MATLAB 

 ANSYS 
[Hz] 

MATLAB 
[Hz] 

Error 

First bending mode 4.14 4.09 0.012 

Second bending mode 16.86 18.74 0.100 

 

E.1.3 Tapered cantilever beam 

The one-dimensional beam element has a linear tapering. The final step is comparing the natural 

frequencies of a tapered beam. Table E-4 gives the natural frequencies of the tapered cantilever 

beam of the Ansys and the Matlab model. The maximum relative error is 0.059, but the natural 

frequency of second bending mode of Ansys compared with the analytical natural frequency showed 

also large difference. Concluded is that the tapered cantilever beam model is correct.  

Table E-4: Natural frequencies ANSYS and MATLAB 

 ANSYS 
[Hz] 

MATLAB 
[Hz] 

Error 

First bending mode 2.874 2.873 0.000 

Second bending mode 12.99 13.70 0.059 

First axial mode  27.77 27.78 0.000 

First torsion mode 35.72 34.48 0.035 

 

  



Modelling and dynamic analyses of TLP-type floating wind turbine 

151 

T.P. van Ommen 

E.1.4 Discussions 

The element is validated with Ansys. Ansys is a commercial finite element analysis software package 

to simulate engineering problems. The software has the property to model a one-dimensional beam 

element including a linear tapering. A cantilever beam with the dimensions of the pontoon is used to 

validate the element. The dimensional properties and the forces are shown in Table E-1. The 

validation is performed in three steps, a cantilever beam, tensioned cantilever beam and a tapered 

cantilever beam. The second-bending mode of the Matlab model compared with the Ansys model 

show a large difference, but the natural frequency of the second bending mode of the Ansys model 

compared with the analytical model showed also a large difference. Concluded is that the tapered 

cantilever beam model is correct. 

E.2 BOTTOM FOUNDED WIND TURBINE 
The dynamic system of the bottom founded wind turbine is simpler than the TLPWT. The bottom 

founded wind turbine is modelled in the aero-hydro-elastic-servo model implemented in Matlab and 

in Orcina Orcaflex. Orcaflex is a commercial software package for dynamic analysis of marine systems 

[13]. The wind turbine is modelled as a cantilever beam. The RNA is modelled with a mass element in 

Matlab and a buoy element in Orcaflex. Figure E-1 shows the models and a drawing of the wind 

turbine. The cross-dimensional properties are given in Table E-5.  

   
(a) (b) (c) 

Figure E-1: (a) Drawing; (b) Orcaflex model; (c) Matlab model  

Table E-5: Dimensional properties BFWT 

Parameter Symbol Value Unit 

Diameter D 10 [m] 

Plate thickness tp 0.1 [m] 

depth d 96.5 [m] 

height H 90.7 [m] 
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E.2.1 Natural period 

The natural periods in static position of the BFWT for all both models are given in Table E-6. The 

added mass is taken into account. The relative error of the natural period is computed using equation 

(E-4). The largest relative error is 0.081 which is still within an acceptable limit.  

𝜖 =
|𝑇𝑀𝐴𝑇𝐿𝐴𝐵 − 𝑇𝑂𝑟𝑐𝑎𝑓𝑙𝑒𝑥|

𝑇𝑜𝑟𝑐𝑎𝑓𝑙𝑒𝑥
 

(E-4) 

Table E-6: Natural Periods BFWT 

 Orcaflex 
[s] 

MATLAB 
[s] 

Error 
[-] 

Fore-aft 1st  4.47 4.55 0.015 

Side-side 1st   4.63 4.72 0.019 

Fore-aft 2nd  1.22 1.12 0.081 

Side-side 2nd  1.44 1.34 0.069 

Torsion 1.65 1.63 0.012 

E.2.2 Hydrodynamic response 

The hydrodynamic motion responses of the BTWT of the Orcaflex model and the Matlab model are 

compared. A regular wave with a wave height of 3.5m and a wave peak period of 8 seconds is used. 

The wind velocity is assumed to be zero, meaning that the wind turbine is off. A summary of the 

environmental conditions are given Table E-7.  

Table E-7: one year extreme wave  

Parameter Symbol Value Unit 

Wave height Hs 3.5 [m] 

Wave Period Tp 8.0 [s] 

Wave direction μwave 60 [°] 

Current velocity wind uc,wind 0.0 [ms-1] 

Current velocity tide uc,tide 0.0 [ms-1] 

Current direction μcurent 90 [°] 

Wind velocity Uw 0 [ms-1] 

  
(a) (b) 
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(c) (d) 

Figure E-2: Responses of the BFWT of the Orcaflex and MATLAB model 

E.3 FLOATING TLP-TYPE WIND TURBINE 
A Matlab model, Orcaflex model and Ansys model are made to compare the static and dynamic 

results. The models have the same geometric properties and the same constraints. The design of the 

TLPWT is based on the design used to perform the model test of the TLPWT at MARIN. In the design 

of the TLPWT, the pontoon has rectangular shaped pontoons. The TLPWT used for the model test has 

circular shaped pontoons. 

   
(a) (b) (c) 

Figure E-3: (a) Orcaflex Model; (b) ANSYS model; (c) MATLAB model  

Orcina Orcaflex is a commercial software package for dynamics analysis of marine systems. The FAST-

Orcaflex coupling is many times used in studies of FWT. Orcaflex takes the flexibility of the tendons, 

pontoons and tower into account. Orcaflex software uses the lumped mass approximation. It is not 

possible to model the nacelle fixed to the end of the tower. Stiff springs are therefore used to model 

the tower-nacelle connection. The nacelle is modelled using a buoy element with the mass and 

inertia properties of the nacelle and rotor blades. Ansys is a commercial finite element analysis 

software package to simulate engineering problems. The tendons, pontoons and tower are modelled 

using the BEAM188 element. The Nacelle is modelled using a MASS21 element with the mass and 

inertia properties of the nacelle and rotor blades. The Matlab model is explained in chapter 3 

Development of aero-hydro-elastic-servo model. The tendon, pontoon and tower are modelled with 

the same element. The nacelle is modelled with a mass element. The mass element has the mass and 

inertia properties of the nacelle and rotor.  
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E.3.1 Static 

The hydrostatic forces and weights are applied in all three models. Orcaflex is not be able to 

determine the mass of the structure. Orcaflex gives the mass per unit length of each element 

separately. The mass of Orcaflex model is determine manually. Ansys model and Matlab model are 

be able to compute the mass of the TLP. The static results are given in Table E-8.  The Orcaflex model 

and the Matlab model have approximate the same results. The Ansys model has slightly higher 

pretension, but difference is negligible 

Table E-8: Static Properties Models 

 Orcaflex ANSYS MATLAB Unit 

Total Mass 1.00 1.00 1.00 mT 

Platform Mass 1.00 1.00 1.00 mT 

Nacelle mass [*] [*] [*] mT 

Pretension tendon 1.00 1.03 1.00 kN 

Displacement z TP 0.503 0.515 0.497 m 

Displacement z Nacelle 0.499 0.512 0.494 m 

  * Confidential 

E.3.2 Natural period 

The natural periods in static position of the TLPWT for all three models are given in equation (E-5). 

The added mass is not taken into account, because the Ansys model does not include the added 

mass. The relative error of the natural periods are computed using equation (E-5). The natural 

periods between Orcaflex and the Matlab modal are approximately the same. The surge and sway 

natural periods between Ansys and the Matlab are different but the tendon tension is higher which 

affect the surge and sway natural periods.  

𝜖 =
|𝑇𝑀𝐴𝑇𝐿𝐴𝐵 − 𝑇𝑂𝑟𝑐𝑎𝑓𝑙𝑒𝑥|

𝑇𝑜𝑟𝑐𝑎𝑓𝑙𝑒𝑥
 

(E-5) 

Table E-9: Natural Periods excluding added mass 

 Orcaflex 
[s] 

ANSYS 
[s] 

MATLAB 
[s] 

Error 
[-] 

Surge 15.80 13.38 15.47 0.02 

Sway 15.46 13.36 15.30 0.01 

Heave 1.82 1.85 1.83 0.00 

Roll 5.74 5.56 5.68 0.01 

Pitch 6.90 6.73 6.70 0.03 

Yaw 13.55 13.35 13.56 0.00 

The Ansys model is the added mass is not taken into account. The Matlab model and the Orcaflex 

model take the added mass into account. The added mass should cannot be neglected by a 

computing the natural periods. Table E-10 gives the natural frequencies of the Orcaflex and Matlab 

model. The relative error is computed with equation (E-6) and also given in Table E-10. The 

difference between the natural frequencies of the Orcaflex model and the Matlab model are 

negligible. Concluded is that the Matlab model is capable to determine the natural period of the 

TLPWT correctly. 
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𝜖 =
|𝑇𝑀𝐴𝑇𝐿𝐴𝐵 − 𝑇𝑂𝑅𝐶𝐴𝐹𝐿𝐸𝑋|

𝑇𝑂𝑅𝐶𝐴𝐹𝐿𝐸𝑋
 

(E-6) 

Table E-10: Natural Periods including added mass 

 Orcaflex 
[s] 

MATLAB 
[s] 

Error 
[-] 

Surge 25.04 25.18 0.01 

Sway 25.15 25.25 0.00 

Heave 2.33 2.35 0.00 

Roll 6.30 6.31 0.00 

Pitch 7.23 7.22 0.00 

Yaw 16.70 16.87 0.01 

E.3.3 Hydrodynamic response 

The motion responses of the Orcaflex and the Matlab model are compared for two environmental 

conditions. The one year extreme wave conditions and the 10 year extreme wave condition.   

E.3.3.1 1 year extreme wave condition 

A regular wave with no current and no wind velocity is used to compare the responses. Table E-11 

gives a summary of the environmental conditions. Figure E-4 gives the displacements, velocities and 

accelerations of the TLPWT. A simulation 100 second is used, excluding the starting procedure, and 

the root mean square error is used to compare the motion responses (RMSE). The RMSE are within 

the below the 0.1. Expected is that the RMSE converges to approximate zero if the length of the 

simulation increase.   

Table E-11: Environmental condition validation analysis 

Parameter Symbol Value Unit 

Wave height Hs 3.5 [m] 

Wave Period Tp 8.0 [s] 

Wave direction μwave 60 [°] 

Current velocity wind uc,wind 0.0 [ms-1] 

Current velocity tide uc,tide 0.0 [ms-1] 

Current direction μcurent 90 [°] 

Wind velocity Uw 0 [ms-1] 

Static thrust force Ft 0 [kN] 
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(a) (b) 

  
(c) (d) 

Figure E-4: Responses of the TLPWT of the Orcaflex and MATLAB model 

E.3.3.2 10 year extreme wave condition 

The motion responses of the 1 year extreme wave condition are small. To validate the model for an 

extreme environmental condition is the 10 year extreme wave condition used. The 10 year extreme 

wave condition is a regular wave without current, wind and static thrust force.  

Table E-12: Environmental condition validation analysis 

Parameter Symbol Value Unit 

Wave height Hs 10 [m] 

Wave Period Tp 15.8 [s] 

Wave direction μwave 60 [°] 

Current velocity wind uc,wind 0.0 [ms-1] 

Current velocity tide uc,tide 0.0 [ms-1] 

Current direction μcurent 90 [°] 

Wind velocity Uw 0 [ms-1] 

Static thrust force Ft 0 [kN] 
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(a) (b) 

  
(c) (d) 

Figure E-5: Responses of the TLPWT of the Orcaflex and MATLAB model 

E.4 CONCLUSION 
The validation of the Aero-Hydro-Elastic-Servo model was performed in multiple steps. The first step 

compares the static response between the Matlab model, Ansys model and the Orcaflex model. All 

models show similar static response. The next step compares the natural periods and the Matlab 

model computes the natural periods within less than 1% difference compared with the Orcaflex 

model. The motion responses of the Matlab model are compared with the motion responses of the 

Orcaflex model. A BFWT and a FWT are used to compare the motion responses. The BFWT has 

simpler dynamical system with respect to the FWT.  The BFWT is modelled as a cantilever beam. The 

RMSE of the motions are below than 0.036 and the RMSE of the FWT are below 0.096 but still 

acceptable. This is acceptable because the amplitudes of the Orcaflex model and Matlab model are 

approximately identical, which is dominant by fatigue. Hence, the Matlab model is capable to 

compute the motion correctly.  

The Orcaflex model and the Matlab model use the same wind turbine external function. This function 

itself should be validated with a BEM-software. Within the time frame of this thesis, it is not possible 

to validate the external function. The external wind function is therefore not validated. The control 

system is important for the dynamical response of the wind turbine. The NREL control system is used 

in the model.  
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F APPENDIX: DECAY TEST 

The natural frequency is the frequency of vibration without an external force after an initial 

displacement. Due to the damping of the system, the TLPWT stops to oscillate. The damping of the 

system and the fundamental frequencies can been investigated with a free vibration test. The free 

vibration test of surge, heave and yaw are shown in Figure F-1 and Figure F-2. The damping ratios are 

determine with equation (F-1) and are shown Table F-1.     

𝑥(𝑡) = 𝑥0𝑒
−𝜉2𝜋𝑓𝑛𝑡 (F-1) 

Table F-1: Damping ratio 

   
Surge Heave Yaw 

Damping ratio 0.22 0.11 0.22 

 

Surge 

 
 

(a) (b) 

Figure F-1: Free vibration test surge 

heave 

 

 
(a) (b) 

Figure F-2: Free vibration test heave 
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yaw 

 

 
(a) (b) 

Figure F-3: Free vibration test yaw 

 


