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ABSTRACT
In heterogeneous catalysis, reactivity and selectivity are not only influenced by chemical processes occurring on catalytic surfaces but also
by physical transport phenomena in the bulk fluid and fluid near the reactive surfaces. Because these processes take place at a large range
of time and length scales, it is a challenge to model catalytic reactors, especially when dealing with complex surface reactions that cannot be
reduced to simple mean-field boundary conditions. As a particle-based mesoscale method, Stochastic Rotation Dynamics (SRD) is well suited
for studying problems that include both microscale effects on surfaces and transport phenomena in fluids. In this work, we demonstrate
how to simulate heterogeneous catalytic reactors by coupling an SRD fluid with a catalytic surface on which complex surface reactions are
explicitly modeled. We provide a theoretical background for modeling different stages of heterogeneous surface reactions. After validating
the simulation method for surface reactions with mean-field assumptions, we apply the method to non-mean-field reactions in which surface
species interact with each other through a Monte Carlo scheme, leading to island formation on the catalytic surface. We show the potential of
the method by simulating a more complex three-step reaction mechanism with reactant dissociation.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0081829

I. INTRODUCTION

Heterogeneous catalysis has played an important role in indus-
trial production of chemicals and fuels for over a 100 years.1 In
most industrial applications, heterogeneous catalysts are solids or a
mixture of solids, such as metals, transition metal oxides, zeolites,
alumina, higher-order oxides, and graphitic carbon. Reactions occur
on the active sites on the catalyst surface, which can bind with the
reactant molecules. The dispersed catalysts are usually supported by
porous materials. The porous support does not only provide a large
surface area but can also influence the reaction rates, the conver-
sion, the diffusivities of components, and the lifetime of catalyst.2–4

Moreover, defects on the surface of the catalyst material have impor-
tant influence on catalytic activities. This attracts frequent attention
from researchers. Defects are caused by various factors in the pro-
cess of catalyst preparation and can be randomly distributed on the
catalyst surface. Due to these features of heterogeneous catalysts, the

chemical industry often has to face uncontrolled local catalytic reac-
tions. This results in a series of problems, for example, the formation
of hotspots, undesired products, and deactivation of catalysts.

To understand these effects, there is a great need to model
the interplay between mass transport rates of reactants and prod-
ucts, adsorption rates of reactants to catalytic surfaces, the rates of
different surface reactions, which are possibly influenced by the dis-
tribution of reaction intermediates and defects, and desorption rates
of the products. This interplay determines the overall reaction rate
and selectivity toward a desired product. It also makes the modeling
of heterogeneous catalysts a challenging multiscale and multiphysics
problem.

A number of computational methods have been used to pre-
dict mass transport of reactants and products in heterogeneous
catalysis. At the macroscale, direct numerical simulations (DNSs),
which model interactions between moving catalyst pellet particles
and resolve the fluid flow around them, have many applications for
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fluidized bed and packed bed reactors.5–7 Similarly, discrete element
methods (DEMs) can be used if correlations are known for the effec-
tive mass transfer rates between the unresolved fluid and catalyst
pellet particles.8–11 Both DNS and DEM methods usually treat the
transport of reactants and products inside the pellets through con-
tinuum (partial differential) equations for effective pore diffusion. In
some cases, partial differential equations are also used on the level
of pore networks.12,13 A disadvantage of such continuum methods
is that, although they may describe the macroscale mass transport
well, coupling between the continuous concentration fields and cat-
alytic surfaces is typically achieved through source and sink terms
(if pores are unresolved) or at best through simplified boundary
conditions (if pore surfaces are resolved), for instance, based on
Langmuir adsorption kinetics and first-order reactions. With such
a continuum approach, it is difficult to properly include microscale
finite size (Knudsen and thermal fluctuation) effects.14 Moreover,
it is practically impossible to include changes in reaction rates due
to microscale interactions between the different adsorbed species on
the catalytic surface.

Particle-based methods are better suited to include such
microscale effects. In previous studies, reactive systems have
been modeled using direct simulation Monte Carlo (DSMC),15,16

the Lattice-Boltzmann (LB) method,17–20 and dissipative particle
dynamics (DPD).21,22 Many applications with chemical reactions
are simulated with the LB method. However, LB is a pre-averaged
method, which does not exhibit the thermal fluctuations without
modifications. In this work, we will focus on stochastic rotation
dynamics (SRD),23 a widely used version of multi-particle colli-
sion dynamics (MPCD or MPC) methods. SRD provides particular
convenience for studying chemical kinetics on reactive surfaces in
contact with a thermal bulk fluid through which reactants and
products are transported. In SRD, the transport properties are well-
defined for arbitrary values of the simulation parameters. Most
transport properties are derived analytically. This sets it apart from
other particle-based methods such as molecular dynamics and DPD.

Most implementations of chemical reactions in SRD are homo-
geneous reactions24,25 or surface reactions with neglect of some pro-
cesses such as adsorption, surface diffusion, or desorption through
the use of mean-field rate expressions.26,27 Models of colloidal par-
ticles propelled by chemical reactions with adsorption–desorption
kinetics such as diffusiophoretic Janus colloids and bi-particle cat-
alytic reactions have been described before.28–33 However, these
works do not describe the detailed kinetics of changing catalyst sites.
Sengar et al. were the first to incorporate a Langmuir–Hinshelwood
reaction kinetics by introducing individual steps such as adsorption,
desorption, and surface reactions for a pseudo-reaction A → B.34,35

It has been shown that SRD can simulate heterogeneously catalyzed
systems and interlink surface and bulk phenomena, which can occur
at different time scales. In addition, the influence of the porous cata-
lyst structure has also been investigated through this method.36 For
realistic catalytic reactions, more complex mechanisms exist, such
as multiple elementary reaction steps or “island formation” caused
by interactions of surface particles, which lead to deviations from
mean-field predictions.37,38

In this work, we show for the first time how to model more
complex heterogeneous catalytic reactions by coupling an SRD fluid
to a catalytic surface on which surface reactions are explicitly mod-
eled. This paper is arranged as follows: In Sec. II, we provide a

theoretical background of SRD for modeling hydrodynamics and
heterogeneous surface reactions with different mechanisms, includ-
ing adsorption, particle interaction, and desorption. In Sec. III, we
validate the simulation method for different cases of surface reac-
tions with mean-field assumptions and for the surface interactions
of species when the mean-field assumptions break. Then, a three-
step reaction mechanism with reactant dissociation after adsorption
is investigated to demonstrate the capability of the method when
simulating more complex reaction mechanisms where mean-field
assumptions fail. Finally, in Sec. IV, we give our conclusions and
outlook.

II. METHOD
A. Fluid model and simulation setup

In MPC, coarse-grained particles are used to represent the
fluid, which evolve in discrete time steps, alternating between par-
ticle position updates and momentum exchange. The collisions
between multiple particles are accounted for simultaneously rather
than treating individual binary collisions of pairs of particles. This
makes it computationally more efficient than DSMC when applied
to dense fluids. Stochastic rotation dynamics is a widely used ver-
sion of MPC in which the momentum exchanges via a rotation of
the particle relative velocities around a randomly oriented axis.39

The hydrodynamics resulting from the SRD method shows
Navier–Stokes behavior on large length scales while also auto-
matically accounting for thermal fluctuations and (coarse-grained)
molecular diffusion.40,41 In this technique, the positions and veloc-
ities of ideal particles obeying Newton’s laws of motion are tracked
through time. There are two essential steps. In the streaming step,
the position of every particle is advanced in time using its respec-
tive velocities by an Euler scheme. Then, in the collision step, a
grid divides the volume into cubic cells. The grid is shifted ran-
domly before every collision step to ensure Galilean invariance,42

and “ghost particles” are added in cells overlapping with walls to
correct the fluid viscosity and velocity there. Afterward, the parti-
cle velocities relative to the center of mass velocity in each cell are
instantaneously rotated by a given angle around a randomly cho-
sen axis to mimic the exchange of fluid momentum. To increase the
accuracy of handling wall collisions, multiple streaming steps per
collision step can be taken, i.e., the collision time interval can be an
integer multiple of the streaming integration time step.

Figure 1 shows the simulation setup. In this geometry, the top
and bottom surfaces are solid and the sides of the domain are peri-
odic. The bottom wall is reactive (the boundary condition depends
on the reaction that is simulated), while the top wall has a no-flux
boundary with respect to concentration (inert wall). An adjusted
stochastic boundary condition43,44 is applied on the reactive surface
in order to account for particle adsorption/desorption. In this work,
these events happen during the streaming step. Particles colliding
with the wall have a probability of adsorbing. Once adsorbed, the
particle remains adsorbed, reacts, or desorbs based on a probability.
The reactive wall is divided into lattice grids. Each grid represents a
catalyst site, which is occupied when a particle is absorbed.

The choice of basic units is shown in Table I. The choice of sim-
ulation parameters in this work is streaming time interval (Δts) as
0.1, collision time interval (Δtc) as 1, collision angle (α) as π/2, and
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FIG. 1. Schematic of the simulation setup. Periodic boundary conditions are
employed for the sides while the top (inert) and bottom (reactive) surfaces are
solid walls.

TABLE I. Simulation parameters of SRD and derived units. In our simulations, the
collision cell size, majority species mass, and thermal energy at the reference
temperature are the units of length, mass, and energy, respectively.

SRD fluid simulation parameters

a0 ≡ 1 Collision cell size
m0 ≡ 1 Solvent (majority species) mass
kBT0 ≡ 1 Thermal energy (at reference temperature)
γ Average number of particles per collision cell
Δts Streaming integration time step
Δtc Collision time interval
α SRD rotation angle

Derived units

Density m0/a3
0

Time t0 = a0
√

m0
kbT0

Diffusion coefficient D0 = a2
0

t0
= a0

√
kbT0
m0

average particle density per cell (γ) as 25. This high particle den-
sity is chosen in consideration of obtaining smooth concentration
profiles.

The transport properties of the SRD fluid can be analytically
expressed in terms of simulation parameters such as the collision
time step (Δtc), the number density of particles (γ), the thermal
energy kbT, the cell size (a0), and the mass of the particle (mi).
The fact that these analytical expressions, shown in Table II, exist
simplifies the use of SRD and reduces the need for trial and error
simulations. The analytical expression for the (kinematic) shear vis-
cosity ν has been derived and validated by Ihle and Tüzel.45–47 Unlike
the shear viscosity, no analytical expression for the collisional con-
tribution to the self-diffusion coefficient has been derived due to the
difficulty of theoretically including effects of hydrodynamic corre-
lations on the self-diffusivity.39,48 The expression for the collisional
contribution is derived from the assumption of molecular chaos.
Therefore, the expression for the self-diffusion coefficient is most

TABLE II. Kinetic (streaming) and collisional contributions to SRD transport coeffi-
cients for a three-dimensional single-component SRD fluid, valid up to the order 1/γ2.
Note that the shear viscosity is expressed as a kinematic viscosity, i.e., with the same
units as self-diffusivity.

Kinetic contribution ×kBTΔtc/(2m)

Shear viscosity ν = 5γ
(γ−1+e−γ)[2−cos α−cos(2α)] − 1

Self-diffusivity Ds = 3γ
(γ−1+e−γ)(1−cos α) − 1

Collisional contribution × a2
0/Δtc

Shear viscosity ν = 1
18γ(γ − 1 + e−γ)[1 − cos α]

accurate when the dimensionless mean free path (λ = Δtc/t0) is
larger than 0.6.49

In SRD, the temperature is not set as a direct parameter but
is inherent in the particles’ velocity fluctuations. The temperature
can be controlled by modulating the velocity fluctuations, which can
be done through various thermostatting schemes. For example, the
Andersen thermostat reassigns the fluctuating velocities in each time
step stochastically based on the Maxwell–Boltzmann distribution,23

and the Nosé–Hoover thermostat couples the system with an exter-
nal reservoir in a way that allows for fluctuations in temperature.50,51

In this work, a direct temperature scaling is used to maintain a
strictly isothermal system: in the collision step, we add for each
cell c containing nc ≥ 2 SRD particles the kinetic energy associated
with velocity fluctuations, K = ∑cell c∑nc

i
1
2 miδv2

i , and the number of
degrees of freedom, n free = ∑cellc 3(nc − 1). This allows us to calcu-
late an instantaneous global temperature kBTcurrent = 2K/n free based
on the velocity fluctuations in the entire system, independent of
any convective flow velocities. Subsequently, the relative velocities
in each cell are scaled by a factor

√
Ttarget/Tcurrent , where Ttarget is

the target temperature. This “strong coupling” scheme is simple to
apply and, however, does not allow for fluctuations in the instan-
taneous global temperature. Such a simplification is only justified if
one is dealing with a very large number of particles for which statis-
tical mechanics predicts that the relative fluctuations in total energy
(δK/K ∝ 1/√n free) are very small.

When dealing with multi-component mixtures, frictional
forces between different components may lead to some unex-
pected behavior that cannot be explained by Fickian diffusion. A
Maxwell–Stefan diffusion model is employed instead. In this frame-
work, the driving force of transport, which is linked to the spatial
derivative of the chemical potential, can be balanced with the fric-
tional forces. In SRD, multi-component diffusion is imposed due to
the collision step that treats molecules based on their particle mass.
The particle velocities are adjusted based on the center of the mass
velocity (mass weighted average velocity). For this reason, molecules
with a large mass undergo smaller changes in velocity in the collision
step than a particle with a smaller mass.39 The Maxwell–Stefan dif-
fusion coefficients −Dij cannot be calculated a priori, but they can
be estimated. In binary dilute mixtures, the Darken equation can be
used,

-D12 = x1D2s + (1 − x1)D1s, (1)
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where D1s and x1 represent the self-diffusivity and mole fraction of
species 1, respectively. This relation is used later when dealing with
mixtures containing particles with varying masses.

B. Reaction scheme
A typical heterogeneous reaction involves the adsorption of the

reactant on the catalyst surface, breaking of one or more chemical
bonds, formation of new bonds, and finally the desorption of the
product. Owing to the coarse-grained nature of mesoscopic simu-
lations, heterogeneous chemical reactions can be simplified using
random adsorption and desorption events and reactions in steps, as
explained in the following.

1. Adsorption, reaction, and desorption
In this hybrid model, adsorption, reaction, and desorption are

taken into account explicitly and updated every streaming time
step (Δts). The implementation of the adsorption and desorption
method is discussed in detail in our previous work.44 When a parti-
cle collides with the wall, the adsorption site closest to the collision
point is checked; if this site is vacant, the particle may adsorb with
probability Pads. Every Δts, the adsorbed particles are also updated
for the reaction. For a simple A→ B reaction, a probability test
(with a reaction probability Pre) is carried out. If the probability
test is successful, A will convert to B. For simple first-order reac-
tions, the reaction rate does not depend on the surrounding of the
particle. However, bi-particle elementary particles are treated differ-
ently for mean-field and non-mean-field reactions. For a mean-field
A + B→ C reaction, for every adsorbed particle A, a random cat-
alyst site is picked on the wall; if the random site is of type B, a
reaction may occur with a probability Pre. If the reaction occurs,
one of the reactants turns to a type C, while the other reactant
site becomes vacant. Note that for reactions involving two different
species, only one of the adsorbed species is checked for the reac-
tion. In the case of non-mean-field reactions, a particle can only
react with its (first and second closest) neighboring particles, and
surface diffusion (including possible surface interactions) is mod-
eled explicitly. The details for non-mean-field implementation can
be found in Subsection II B 2. For the desorption of the species
from the wall, a test with desorption probability Pdes is carried out.
If the probability test is successful, the particle is given a velocity
based on a Maxwell–Boltzmann distribution and reintroduced into
the bulk. For cases in which there is a bulk flow, the velocity distri-
bution would need to be adjusted to obtain correct flow profiles. The
choice for the distributions and their validation is described in detail
in our previous work.44

To validate the simulation results obtained from SRD, it is nec-
essary to be able to convert probabilities for adsorption, reaction,
and desorption into rate constants that can be used in continuum
numerical models. To relate the adsorption rate constant to simu-
lation parameters, first, a relation needs to be found for the particle
collision frequency (Z) with the adsorbing wall,

Z = 1
2

N
V
⟨∣vy∣⟩. (2)

As shown in Eq. (2), the collision frequency can be expressed in
terms of the particle concentration (Cs = N/V) and the average

velocity in the y-direction, which is perpendicular to the wall,
⟨∣vy∣⟩ =

√
2kbT/(πm).34

Not every collision leads to adsorption, and in order to calcu-
late the rate of particle adsorption Rads, the adsorption probability
Pads and the fraction of unoccupied catalyst sites θv need to be con-
sidered. Therefore, based on SRD parameters, the rate of adsorption
can be expressed as

Rads = PadsZθv = CsPadsθv

√
kbT
2πm

. (3)

The rate of adsorption can also be calculated using a mean-field
expression involving the adsorption rate constant (kads),

Rads = kadsCsθv
Ncat

Acat
, (4)

where Acat represents the catalytic surface area and Ncat is the num-
ber of catalyst sites. An expression for kads can be obtained by
combining Eqs. (3) and (4),

kads =
√

kbT
2πm

PadsAcat

Ncat
. (5)

A similar approach can be used to relate the desorption and
first-order reaction rate constants to simulation parameters. Given
an example of a first-order reaction A→ B, the rate constant is given
by

kre =
ln(1 − Pre)

Δts
(6)

in which Pre represents the probability for the reaction. Analogously,
the desorption rate constant of product particle B can be expressed
as

kdes =
ln(1 − Pdes)

Δts
, (7)

where Pdes is the probability for the desorption of a B particle in a
time interval Δts.

2. Surface interactions
The reaction expression with mean-field assumption has been

derived in Sec. II B 1. Here, we discuss the case in which the mean-
field assumption breaks down.

The mean-field approximation is a commonly made assump-
tion to turn a many-body problem into a single-body problem51 and
to reduce the complexity and computational cost of solving a sys-
tem. However, the mean-field assumption is not always reasonable,
for it is limited to cases in which no inter-species interactions exist
and where the rate of surface diffusion is large such that all species
instantaneously adopt an even distribution over the surface. To sim-
ulate surface interactions of particles and their possible separation
into “islands” of different species, we use mesoscopic Monte Carlo
simulation. Interactions between neighboring adsorbed particles are
accounted for in an explicit manner by changes in the potential
energy of the adsorbed particles.52 To fit the Monte Carlo step in
SRD time steps, surface mobilities are assumed to be large enough to
maintain a local equilibrium on the surface.
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The catalytic surface is divided into a surface lattice grid. The
size, shape, and orientation of this surface lattice grid can be cho-
sen depending on the specific problem at hand, independently of
the size and orientation of the cubic SRD grid. For convenience,
in the simulations presented here, the catalytic surface is divided
into a square lattice aligned with the SRD grid in which each par-
ticle can interact with its first and second nearest neighbors. The
division of the surface into a square grid leads to fixed catalyst
sites. Although this simplified setting does not allow for the occur-
rence of complex kinetics such as surface reconstruction, it can be
extended to study a variety of reactions in which surface interactions
are prevalent. An example includes the adsorption and dissociation
of oxygen in Pt(111), which is influenced by nearby chemisorbed
species.53–56 The main focus of this work is to give an example
of coupling the fluid phase to the surface reaction phenomena by
implementation of non-mean-field effects in SRD, something which
is not available with most kinetic Monte Carlo simulations. The dis-
tance between two neighboring surface sites is set to b0 = a0/4 with
a0 corresponding to one SRD cell such that there are 16 catalyst
sites per a2

0. In this mesoscopic Monte Carlo simulation, a similar
procedure as the metropolis algorithm is used. The Monte Carlo
steps occur five times per each adsorbed particle every streaming
time step (Δts). In each Monte Carlo step, a random particle may
move to one of its four closest neighboring lattice cells, provided
that it meets certain requirements. A move is directly accepted if
the particle in the new position leads to a lower potential energy.
Otherwise, the move may still be accepted with a probability of Pacc
= exp(−(Eafter − Ebefore)/(kBT)). To implement this, a uniform ran-
dom number between 0 and 1 is picked and the move is accepted if
this number is lower than Pacc. If only repulsive interactions between
different species are considered, then, the following expression can
be used to calculate the total energy:

E = E0

2

Nads

∑
i=1
∑

j∈Zi,1

(1 − δ(si − sj))

+ E1

2

Nads

∑
i=1
∑

j∈Zi,2

(1 − δ(si − sj)). (8)

In this expression, E0 and E1 are the first and second nearest neigh-
bor repulsive pair interactions between two adsorbed particles of
different species. Nads is the total number of particles adsorbed on
the wall while Zi,1 and Zi,2 refer to the first and second neighbor list
for particle i. δ(si − sj) is the Dirac delta function, which is equal to
1 when the types of the species on the wall (denoted with si and sj)
are equal to each other and 0 otherwise. Another condition that is
placed on the particle movement is that it can only enter a new site if
that site is unoccupied. This mimics the fact that particle movement
becomes limited when the catalyst sites are nearly all occupied.

The choice of which neighbor interactions to account for when
calculating the potential energy can be important in determining
the shape of the boundaries formed between two different species
on the surface. Square lattices, taking into account only the four
nearest neighbors, lead to the formation of square boundaries,
which do not adequately represent the shape of most real phase-
separated domains. As shown in Fig. 2, if inter-species interactions
are assumed to be unfavorable (positive energetic contribution),
then, by only counting the nearest neighbor interactions, the energy

FIG. 2. Straight (a) and slanted (b) boundaries that can form between two different
species. “b0” refers to the unit square lattice size and LI is the boundary length
(between the red and white species) of configuration I and is equal to the side
length of the square lattice. LII is equal to the boundary length of configuration II.

(EI) of a straight line boundary (configuration I) per boundary
length (LI) is equal to EI

LI
= E0

b0
. In this expression, E0 refers to the

nearest neighbor inter-species interaction and b0 is the square lat-
tice unit size. Meanwhile, the energy for configuration 2/unit length
of the boundary is given by EII

LII
= 2E0√

2b0
=
√

2E0
b0

. To enable more
isotropic growth of the boundaries, both configuration I and II need
to become equally favorable. This can be achieved by also taking into
account the second nearest neighbor interactions (denoted by E1).52

In that case, the energy of configuration I and II per unit length of
the boundaries can be expressed by

EI

LI
= E0 + 2E1

b0
, (9)

EII

LII
= 2E0 + E1√

2b0
. (10)

The two expressions (energy per unit length) are equal if the
following ratio is chosen between E1 and E0:

E1

E0
=
√

2 − 1
2 −
√

2
= 1√

2
. (11)

III. VALIDATION AND RESULTS
In our previous work,44 we validated the adjusted stochastic

boundary condition leading to thermostatting walls with a very small
slip velocity in the case of convective flow. Since the present work
focuses on simulating surface reactions with SRD, here, we vali-
date the method for Langmuir kinetic reactions and more complex
reactions in a reactor without flow.

A. First-order surface reaction
In this section, a simple Langmuir kinetic model will be inves-

tigated. In the simulation, a particle of type A can adsorb on the wall
with a probability Pads = 0.20 (corresponding to kads = 0.08a3

0t−1
0 )

and can also react to become type B (Pre = 0.01, leading to kre
= 0.1t−1

0 ) and desorb (Pdes = 0.01, leading to kdes = 0.1t−1
0 ). Species B
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can also adsorb and desorb from the wall with the same probabilities
as species A. The reaction kinetics is expressed by

A + ∗ÐÐ⇀↽ÐÐ A ∗ Ð→ B∗ÐÐ⇀↽ÐÐ B + ∗, (12)

where ∗ refers to a vacant site on the surface and A∗ refers to a sur-
face site on the wall occupied by species A (the same nomenclature
applies to species B and B∗). This simulation allows for the valida-
tion of the adsorption–reaction–desorption implementation in the
SRD code. In terms of mean-field equations, the rate of change in
surface coverage of A and B can be expressed as

dθA

dt
= kads,AθV γ(t)xA(y = 0, t) − kreθA − kdes,AθA, (13)

dθB

dt
= kads,BθV γ(t)xB(y = 0, t) + kreθA − kdes,BθB, (14)

where xA(y = 0, t) is the local mole fraction of species A in the fluid
near the catalytic surface located at y = 0 and γ(t) is the number den-
sity of particles in the fluid. θA, θB, and θV are the surface coverage
of particle A, B, and vacant sites, respectively. The adsorption rate
depends on the collision frequency of particle A, which is influenced
by the mole fraction of A [xA(y = 0, t)] in the fluid and the num-
ber density γ(t) of particles in the fluid. When the simulation starts
(t = 0), at the surface, the initial condition of the fraction of particle
A, B, and vacant site is θA = 0, θB = 0, θV = 1. A continuum numeri-
cal model is used to validate the simulation by solving the unsteady
diffusion equation for each species i in the fluid,

dCi

dt
= Di

d2Ci

dy2 (15)

with boundary conditions taking into account the rates of adsorp-
tion and desorption as shown in Eq. (A3) in Appendix A. Here, Ci
represents the concentration of species i in the fluid, which can be
obtained by multiplying the particle number density γ(t) by the local
mole fraction xi, and Di represents the diffusion coefficient of species
i. In the numerical code, γ(t) is assumed to be independent of local
variations and the number of particles that adsorb to or desorb from
the surface (or are reduced/added due to the reaction) and are spread
homogeneously over the SRD cell. This assumption is justified by
the low adsorption probabilities that are used (all below 0.20) cou-
pled with the large number of particles (100 000 particles in total)
with respect to the number of catalyst sites (3200). For large adsorp-
tion/desorption probabilities and low particle number densities, the
local variations of local particle number densities may lead to advec-
tion effects. SRD may be capable of including these effects; however,
the study of these systems is beyond the scope of this work and is
encouraged for further research. In the numerical model, the gov-
erning equation Eq. (15) is discretized using a finite volume scheme.
The details of the numerical model are given in Appendix A.

The numerical and simulation results for the concentration
profile after 10t0 are depicted in Fig. 3(a) along with the vacancy
fraction as a function of time in Fig. 3(b). An excellent agreement is
observed between the SRD simulation results for both the concentra-
tion profile in the bulk and for the vacancy fraction at the wall. Only
small reaction rates are considered in this section to ensure that the

FIG. 3. First-order mean-field surface reaction. (a) Concentration profile at a cross
section of an infinite channel. (b) Vacancy fraction on the reactive wall shown as a
function of time.

concentration gradients near the reactive wall are small. Large con-
centration gradients will require a more elaborate expression for the
mean-field adsorption rate constant, which is beyond the scope of
this work (see Appendix A for more explanation on the numerical
scheme for validation).

B. Bi-particle reactions
Before simulating complex reaction mechanisms, it is necessary

to be able to simulate bi-particle elementary reaction steps on the
catalytic surface. In this section, bi-particle reactions A + B→ C and
A+∗↔ 2B are simulated under the mean-field assumption and vali-
dated using numerical models. In order to use numerical validations,
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the rate constant of bi-particle reactions needs to be expressed in
terms of simulation parameters (such as the probability of the reac-
tion). This calculation is done for a A + B→ C reaction as a test case,
but the results can be generalized for other bi-particle reactions.

Assuming that at a given time step there is no adsorp-
tion/desorption occurring concurrently, the rate of change in the
number of catalyst sites occupied by species A and B over time can
be described by Eqs. (16) and (17) using the mean-field assumption,

dρS,Ai

dt
= −kr,ABρS,Ai ρS,Bi , (16)

dρS,Bi

dt
= −kr,ABρS,Ai ρS,Bi . (17)

In these expressions, ρS,Ai , ρS,Bi , and kr,AB refer to the total number
of sites occupied per area of the catalyst by species A and B and
the reaction rate constant in the mean-field model, respectively. A
Taylor series expansion can be made to find an approximate expres-
sion for ρS,Ai and ρS,Bi , calculated with their number density in the
previous time step (ρS,Ai−1 , ρS,Bi−1 ),

ρS,Ai ≈ ρS,Ai−1 +
dρS,Ai

dt
Δts, (18)

ρS,Ai

ρS,Ai−1

≈ 1 − kr,ABρS,Bi−1 Δts. (19)

In terms of simulation parameters and given the implementa-
tion of the bi-molecular surface reactions, the fraction ρS,A

ρS,Ai−1
can be

expressed as

NA

NAi−1

= ρS,Ai

ρS,Ai−1

= 1 − Pre,ABθBi−1 , (20)

where Pre,AB refers to the probability of the reaction and θB is the
fraction of sites occupied by particle B (θB = AcatρS,B/Ncat). The
reaction rate constant of A + B→ C can be inferred by combining
Eqs. (19) and (20) as follows:

kr,AB =
AcatPre,AB

NcatΔts
. (21)

The expression of maximum error (Er) associated with Eq. (19)
can be calculated from the second derivative of ρA with respect to
time (see Appendix B). Using this reaction rate constant, the mean-
field expressions for the change in the fraction occupied by A, B, and
C can be calculated,

dθA

dt
= kads,AθV γ(t)xA(y = 0, t) − kdes,AθA −

kr,ABNcat

Acat
θAθB, (22)

dθB

dt
= kads,BθV γ(t)xA(y = 0, t) − kdes,BθB −

kr,ABNcat

Acat
θAθB, (23)

dθC

dt
= kads,CθV γ(t)xA(y = 0, t) − kdes,CθC +

kr,ABNcat

Acat
θAθB, (24)

where γ and xA represent the number density of the fluid and the
mole fraction of species A in the fluid. At time t = 0, the reaction is
catalyzed on the wall at y = 0. The initial mixture consists of reac-
tants A and B in equal amounts. The masses of A and B particles are
set to 1 m0, and the mass of C is set to 2 m0. Considering that the
mass of the product is different, it implies that it has a different self-
diffusion coefficient than the reactants (see Table II). To simplify
the validation test case, it is ensured that the production rate is low
(Pads,A = 0.05 corresponding to kads,A = 0.001 25 and Pdes,A = 0.0001
corresponding to kdes,A = 0.001). This implies that the influence of
the C species on the diffusivities in the bulk can be ignored for the
time scales considered in this simulation. In this validation case,
the same probability of desorption and adsorption is used for every
species involved. Therefore, in this case, kdes,A = kdesandB = kdes,C. As
the mass of species C is set as twice that of the reactants, kads,A

= kads,B =
√

2kads,C. Equations (22)–(24) are coupled to the numer-
ical equations shown in Appendix A to find the evolution of mole
fractions xA(y, t), xB(y, t), and xC(y, t) and the number density γ(t).
kr,AB is calculated with Eq. (21) derived previously.

The very good agreement between the numerical and simula-
tion results in Fig. 4 confirms the validity of the expression found
for kr,AB. Consistent with the error expression in Appendix B, the
best agreement is found for the lowest reaction probabilities, 0.1 and
0.2. The error for the kr,AB expression is shown in Appendix B to
scale with the square of the reaction probability (Pre,AB). In order to
simulate reactions with higher reaction rate constants, it is therefore
advised to lower the time step Δts. This means that the catalyst sites
on the wall are updated more frequently, and thereby, lower reaction
probabilities can be used to obtain the same reaction rates.

Another validation test is done with a reversible reaction:
A + ∗↔ 2B. At the start of the reaction, the solution only contains
particles of type A (xA = 1). To conserve mass, the mass of A is set
to 2 (mA = 2) and the mass of B is set to 1 (mB = 1). Three different

FIG. 4. Simulation results (symbols) and continuum numerical results (lines) for a
mean-field bi-particle reaction A + B→ C for different reaction probabilities (0.1,
0.2, and 0.5).
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reaction probabilities of 0.1, 0.2, and 0.5 are used. The same prob-
ability of reaction is used for the forward and backward reaction.
This would correspond to a kr,A↔2B of 0.0625, 0.125, and 0.3125,
respectively. The same probability of adsorption (Pads = 0.05) and
desorption (Pdes = 0.0001) was used as in Subsection III A for both
species A and B. This corresponds to kdes,A = 0.001 and

√
2kads,A

= kads,B = 0.001 25. The rate of change in the catalyst occupation of
A and B (denoted by θA and θA) is given by

dθA

dt
= kads,AθV γ(t)xA(y = 0, t) − kdes,AθA

− kr,A↔BNcat

Acat
θAθV +

kr,A↔BNcat

Acat
θ2

B, (25)

dθB

dt
= kads,BθV γ(t)xB(y = 0, t) − kdes,BθB

+ kr,A↔BNcat

Acat
θAθV −

kr,A↔BNcat

Acat
θ2

B. (26)

The numerical and simulation results are shown in Fig. 5. The
reaction shows an initial non-linearity, which ceases at t > 7. The
onset of this quasi-steady state originates from the reversibility of
the reaction. As it proceeds, the production and consumption terms
of A and B equilibrate, and mainly, the linear growth due to adsorp-
tion is observed. This equilibration of the non-linear reactive terms
happens more rapidly when kr,A↔B becomes large compared to the
other process rates (desorption and adsorption). At later stages, it is
expected that the fraction of A at the wall will equilibrate. This will
occur when the vacant surface sites become more occupied, thereby
making the adsorption and desorption process reach the same rate.
However, this is still not observed at the time scales considered
(0 < t < 10). Based on Fig. 5, the simulation seems capable in rep-
resenting both the non-linear change in the initial stage (t < 5) and
the increase in the latter stage.

FIG. 5. Simulation results (symbols) and numerical results (lines) for a mean-
field reversible reaction A + ∗ → 2B for different reaction probabilities (0.1, 0.2,
and 0.5).

C. Surface interaction
After having validated the bi-particle mean-field reactions, it

is now possible to simulate more complex surface reactions in
which the mean-field assumptions are no longer valid. This applies
to reactions in which the unfavorable interactions between differ-
ent adsorbed species lead to species separation and formation of

FIG. 6. Island formation between two species A and B with different energetic inter-
action (E0) between two adjacent inter-species and taking into account different
neighbors. The yellow, green, and blue color represent A, B, and vacant sites,
respectively.
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“islands.” Examples of such reactions include heterogeneously cat-
alyzed nitrogen oxide reduction by ammonia57 or hydrogen58 and
the CO oxidation reaction.59 In this section, the influence of island
formation on the reaction rate of a A + B→ C reaction is evaluated
by drawing comparisons with mean-field reactions that were dis-
cussed previously. The method of simulating the surface interactions
of particles and the consequent separation of particles into islands is
described in Sec. II.

Figure 6 shows that boundaries are less isotropic when only
nearest neighboring interactions are considered than when second
neighboring interactions are also included. This finding indicates
that the second neighboring interactions should be considered at
the very least for a realistic accounting of the surface interactions.
Taking additional neighboring interactions into account can lead to
more isotropic boundaries but will increase the computational cost.

To demonstrate island formation, only repulsive forces
between two separate species are considered in this study. However,
separation between the particles can also occur if the interactions of
the species with themselves are more favorable than the inter-species
interactions. The magnitude and sign of interactions will depend
on the species that are simulated. The influence of having differ-
ent magnitudes of interactions is considered here to demonstrate its
consequence for the coupling between the SRD simulation and the
mesoscopic Monte Carlo method.

To study the influence of island formation on bi-particle reac-
tion rates, a A + B→ C reaction is considered. This reaction was
also studied in Sec. III B under mean-field conditions at different
reaction rates. A probability of the reaction of 0.1 (correspond-
ing to a mean-field rate constant of 1 a2

0/t0) is studied. An E0 of
2.00kBT is considered (second neighboring interactions are included
as described in Sec. II) with five Monte Carlo steps per adsorbed par-
ticle at each Δts. This corresponds to islands formed on the scale of
around 5 a0 [similar to the islands in Fig. 6(b)].

FIG. 7. Influence of island formation on bi-molecular reactions. The same proba-
bility of reaction (Pre = 0.1) is used for both the mean-field and non-mean-field,
island forming model. The initial mixture consists of 50% (molar) of species A and
50% of species B.

Figure 7 shows that surface interactions (i.e., the case of island
formation) can have a considerable influence on the reaction rate.
As species A and B have unfavorable interactions, the probability
that they come into contact is lowered with respect to the mean-field
assumption. This lowers the reaction rate. This effect is prominent
especially in the initial stages when the reactants A and B can avoid
being in contact (as most of the catalyst sites are vacant). From
Fig. 7, adsorption is the dominating mechanism up until the time
of t = 30 after which depletion of A occurs as the reaction rate
becomes prominent. The same transition between dominant mecha-
nisms occurs already at t = 10 for the mean-field case. Consequently,
the maximum fraction of A on the surface is approximately twice as
high when island formation is considered. This notable change sig-
nifies the importance that surface interactions can have in reaction
mechanisms.

D. Elementary reaction
The methods developed so far are applied to simulate a gas-

phase reaction involving three different elementary steps to show the
potential usage of SRD in the heterogeneously catalyzed reaction. An
example of a typical industrially relevant reaction explained in terms
of this mechanism is CO oxidation. Since this reaction involves
a mixture of components, a multi-component diffusion model is
needed to accurately predict the concentration profiles that form in
the catalytic channel. For such surface reactions, catalysts are inher-
ently dynamic in nature. Dynamic surface behavior such as surface
reconstruction has been investigated in various experimental works
and molecular simulations.60–64 The objective of the current work is
to mimic the mechanism, not to incorporate full atomistic details of
the surface kinetics for a certain reaction. Effects of surface recon-
struction and specific crystal structures are not considered in this
work. There is a clear distinction between our test case and a real
CO oxidation reaction in the sense that the surface ordering of the
species and locations of O(ads) and CO(ads) on the surface would
need a more thorough consideration [e.g., to consider short length
O(ads)–O(ads) repulsion and surface restructuring that can occur at
higher O(ads) fractions].

The simulation considered in this section involves 3 species in
the SRD domain, namely, species A, B2 (the notation B2 is picked
because this species will dissociate into 2Bads on the surface), and
the product C. Species A has a unit mass m0, species B2 is given a
mass of 1.17 m0, and species C is given a mass of 1.57 m0 to mimic
the mass ratio of CO, O2, and CO2, respectively. Due to the dif-
ferences in mass, it can be seen that the species considered have
different self-diffusion coefficients (see Table II). Specifically, the
self-diffusion coefficient of species A is around 15% higher than that
of B2 and around 36% higher than that of species C. This difference
warrants the need for a multi-component diffusion model. Based on
the mechanism of CO oxidation, the change in these three species
through the surface catalyzed reaction is shown in the following:

A + ∗↔ Aads, (27)

B2 + 2∗→ 2Bads, (28)

Aads + Bads → C + 2∗. (29)
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In this reaction mechanism, species A and B2 adsorb on the cata-
lyst surface with an adsorption probability of 0.05, while C does not
undergo adsorption. To simulate catalyst poisoning, species Aads is
given a low desorption probability of 0.0001, while Bads does not
undergo desorption. Aads and Bads have unfavorable repulsive inter-
actions (E0 = 2kbT) and can react together with a probability of
0.1 to form the product C. Upon formation, C desorbs off the wall
instantaneously. To test the mechanism and probe the influence of
the initial composition on the reaction rate and the fraction induced
on the wall, three different compositions are tested. These compo-
sitions consist initially only of reactants at A to B2 molar ratios of

FIG. 8. Non-mean-field elementary reaction mechanism involving a three-step
reaction mechanism with reactant dissociation [Eqs. (27)–(29)]. (a) Evolution of
the Aads and Bads fraction at the wall for an initial 1:1 A to B2 molar ratio. (b) Prod-
uct concentration profile at time t = 100t0 for initial A to B2 molar ratios of 1:1, 2:1,
and 1:2 with no product initially.

1:1, 2:1, and 1:2. In Fig. 8(a), the fraction of Aads and Bads on the
wall is shown over time for an equimolar initial mixture of A and
B2. This composition is more optimal compared to the other two
compositions as none of the species is fully poisoning the catalyst by
excessively occupying the catalytic sites. Furthermore, as the frac-
tions of Aads and Bads are both high (at least until time t = 100t0), the
largest production rate is expected. The large fractions of Aads and
Bads are especially important in this reaction mechanism as island
formation of A and B is considered (as the species will tend to avoid
each other when the occupied fractions are smaller).

The product concentration profile at time t = 100t0 for differ-
ent initial compositions is compared in Fig. 8(b). This figure shows
that at time t = 100t0, there are significant spatial variations in the
bulk fluid (especially in the equimolar reactant mixture test case).
The total production of C is obtained from the area under these
curves. Comparing these areas shows that a 1:1 initial ratio of A to
B2 is preferred as it yields ∼25% more production of C than the least
optimal composition, being the 2:1 ratio.

Notably, the profiles obtained in Fig. 8(b) are not easily obtain-
able numerically without making simplifications since the multi-
component diffusion models would need to be applied with com-
position dependent Maxwell–Stefan diffusion coefficients. These
then need to be further coupled to the non-linear surface reaction
kinetics. This simulation therefore demonstrates the convenience
and capability of SRD simulations when having multi-component
reactive mixtures with complex reactive boundary conditions.

IV. CONCLUSION
We developed a mesoscopic framework to study heteroge-

neously catalyzed multi-particle reactions both in the mean-field and
non-mean-field regime, connecting mass transport in the fluid to
elementary reaction steps on the catalytic surface. Multiple test cases
were carried out to demonstrate that the developed method pro-
duces the correct reaction behavior. Mean-field elemental reactions
can be simulated by neglecting particle–particle interactions on the
surface, ensuring that the adsorbed particles can react at any loca-
tion on the surface. Non-mean-field reactions can be simulated by
applying a mesoscopic Monte Carlo simulation on the surface with
the bulk fluid simulated by SRD.

Comparing an A + B→ C reaction in the mean-field and non-
mean-field regime demonstrated that the formation of islands for
different species can lead to significant coverage differences due
to inhibition of reaction rates. These differences demonstrate the
importance that surface interactions may have on the total reactiv-
ity of a system. Surface mechanisms, such as island formation, are
intricately linked to spatial variations in composition, which are in
turn related to imposed external forces and flow profiles. Although
convective effects were not studied in this work, they can easily be
considered.

The method was applied to a heterogeneously catalyzed reac-
tion mechanism in a multi-component gas-phase system with a
three-step mechanism involving the initial adsorption of a reactant,
its dissociation on the catalyst surface, and a surface reaction. A cat-
alyst poisoning process was simulated by imposing a low desorption
rate. This simulation allowed for coupling between detailed surface
information (such as surface interaction and coverage results) and
spatial concentration variations in the bulk of a multi-component
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gas mixture. Allowing for such intricate combinations illustrates the
strength of the method developed.

In our future work, we will study how heterogeneous catalytic
reaction processes are affected by complex catalyst geometries and
geometrical changes caused by chemical reactions such as physical
catalyst poisoning. The method can be expanded to non-isothermal
systems, providing a new tool to study elementary reactions, which
are sensitive to temperature and energy change. After verification
with experimental results, the method can serve as a promising can-
didate for simulating complex reactive processes in heterogeneous
catalytic reactors.
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APPENDIX A: NUMERICAL SOLUTION
FOR FIRST-ORDER REACTION A→ B

In this work, when validating the simulation with contin-
uum numerical models, the unsteady diffusion partial differential
equation (15) valid inside the fluid is discretized along the y axis
using a finite difference scheme,

Cl+1
A,i = Cl

A,i +
DAΔt
Δy2 (C

l
A,i+1 − 2Cl

A,i + Cl
A,i−1). (A1)

In this expression, Cl
A,i represents the particle concentration of

species A on an interior cell i at time step l. A similar scheme can
be built for the cells at the edge of the nonreactive wall at which a
zero flux boundary condition is imposed. If n denotes the cell at this
nonreactive boundary, the cell at n + 1 is fictitious and only used to
satisfy the no-flux boundary condition,

dCA

dy
∣
y=Ly

= 0 ≈ Cl
A,n+1 − Cl

A,n−1

2Δy
,

Cl
A,n+1 = Cl

A,n−1.

(A2)

On the reactive wall, the boundary condition takes the form of

−DA
dCA

dy
∣
y=0
= −kads

Ncat

Acat
θvCA + kdes

Ncat

Acat
θA. (A3)

In the expression mentioned above, Ncat is the total number of cat-
alytic sites while Acat is the total area of the reactive catalyst. The
total number of catalyst sites remains constant throughout the sim-
ulation. CA refers to the A concentration at y = 0. The boundary cell

at the reactive wall can be updated using FA to represent the flux at
the right-hand side of Eq. (A3),

−DA
Cl

A,1 − Cl
A,−1

2Δy
= FA (A4)

leading to

Cl
A,−1 =

2ΔyFA

DA
+ Cl

A,1, (A5)

Cl+1
A,0 = Cl

A,0 +
DAΔt
Δy2 (2Cl

A,1 − 2Cl
A,0 +

2ΔyFA

D
). (A6)

Note that for the derivation of the expression for kads in
Sec. II B, a constant concentration profile was assumed in the bulk. If
the difference of concentration between the surface and bulk is small,
the SRD and numerical model match very well. Large concentration
gradients will require a more elaborate expression for the mean-field
adsorption rate constant, which is beyond the scope of this work.

APPENDIX B: ERROR ESTIMATION

Using the Taylor series expansion, the maximum error (Er)
associated with Eq. (19) can be calculated as

Er = 1
ρS,A

max(Δt2
s

2
d2ρA

dt2 ). (B1)

Using Eqs. (16) and (17), the second derivative of ρS,A is calculated
as

d2ρA

dt2 = −kr,ABρAi−1

dρB

dt
− kr,AB

dρA

dt
ρBi−1

= k2
r,ABρ2

Ai−1 ρBi−1 + k2
r,ABρAi−1 ρ2

Bi−1 . (B2)

Therefore,

Er = Δt2
s

2
(k2

r,ABρ2
Bi−1 + k2

r,ABρAi−1 ρBi−1). (B3)

To keep the accuracy of Eq. (21) as high as possible, we aim
to keep the relative error of ρS,A

ρS,Ai−1
to stay below 1%. The maximum

numerical relative error can be guaranteed to be lower than the
following expression:

MaxErr < 1
2
(P2

re,ABθ2
B0 + P2

re,ABθA0θB0). (B4)

The surface coverages θB0 and θA0 are bounded between 0 and 1.
When the desired maximum relative error is 1%, the condition
Pre,AB < 0.14 is deemed sufficient.

REFERENCES
1I. Fechete, Y. Wang, and J. C. Védrine, Catal. Today 189, 2 (2012).
2G. F. Froment, K. B. Bischoff, and J. De Wilde, Chemical Reactor Analysis and
Design (Wiley, New York, 1990), Vol. 2.
3C.-K. Lee and S.-L. Lee, Surf. Sci. 339, 171 (1995).

J. Chem. Phys. 156, 084105 (2022); doi: 10.1063/5.0081829 156, 084105-11

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/jcp
https://doi.org/10.1016/j.cattod.2012.04.003
https://doi.org/10.1016/0039-6028(95)00604-4


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

4K. Malek and M.-O. Coppens, J. Chem. Phys. 119, 2801 (2003).
5N. G. Deen, E. A. J. F. Peters, J. T. Padding, and J. A. M. Kuipers, Chem. Eng. Sci.
116, 710 (2014).
6S. Das, N. G. Deen, and J. A. M. Kuipers, Chem. Eng. Sci. 160, 1 (2017).
7A. Singhal, S. Cloete, S. Radl, R. Quinta-Ferreira, and S. Amini, Chem. Eng. Sci.
172, 1 (2017).
8S. Zhang, X. Zhao, and Z. Yang, Nucl. Sci. Eng. 189, 135 (2018).
9J. Hartig, H. C. Howard, T. J. Stelmach, and A. W. Weimer, Powder Technol.
386, 209 (2021).
10K. Tong, L. Yang, and X. Du, Chem. Eng. J. 400, 125988 (2020).
11X. Ku, T. Li, and T. Løvås, Chem. Eng. Sci. 122, 270 (2015).
12L. Zhang and N. A. Seaton, Chem. Eng. Sci. 49, 41 (1994).
13P. J. Donaubauer, L. Schmalhorst, and O. Hinrichsen, Chem. Eng. Sci. 208,
115137 (2019).
14P. Levitz, J. Phys. Chem. 97, 3813 (1993).
15S. Gimelshein and I. Wysong, Phys. Fluids 29, 067106 (2017).
16S. Swapnasrita, G. R. Pesch, J. A. H. Dreyer, N. Riefler, T. Wriedt, and L. Mädler,
Comput.Fluids 187, 1 (2019).
17R. S. Voronov, S. B. VanGordon, V. I. Sikavitsas, and D. V. Papavassiliou, Int. J.
Numer. Methods Fluids 67, 501 (2011).
18M. Wang and W. Zhu, Int. J. Heat Mass Transfer 126, 1222 (2018).
19X. Meng and Z. Guo, Phys. Rev. E 94, 053307 (2016).
20C. S. Bresolin and A. A. M. Oliveira, Comput. Phys. Commun. 183, 2542 (2012).
21N. Filipovic, M. Kojic, and A. Tsuda, Philos. Trans. R. Soc., A 366, 3265 (2008).
22Q. Zhu, T. R. Scott, and D. R. Tree, Soft Matter 17, 24 (2021).
23G. Gompper, T. Ihle, D. Kroll, and R. Winkler, Advanced Computer Simulation
Approaches for Soft Matter Sciences III (Springer, 2009), p. 1.
24K. Tucci and R. Kapral, J. Phys. Chem. B 109, 21300 (2005).
25K. Rohlf, S. Fraser, and R. Kapral, Comput. Phys. Commun. 179, 132 (2008).
26A. Sayyidmousavi and K. Rohlf, Phys. Biol. 15, 046007 (2018).
27J.-X. Chen, Y.-G. Chen, and R. Kapral, Adv. Sci. 5, 1800028 (2018).
28P. de Buyl and R. Kapral, Nanoscale 5, 1337 (2013).
29J.-X. Chen and R. Kapral, J. Chem. Phys. 134, 044503 (2011).
30G. Rückner and R. Kapral, Phys. Rev. Lett. 98, 150603 (2007).
31P. de Buyl, Phys. Rev. E 100, 022603 (2019).
32S. Y. Reigh, M.-J. Huang, H. Löwen, E. Lauga, and R. Kapral, Soft Matter 16,
1236 (2020).
33A. Zöttl, Chin. Phys. B 29, 074701 (2020).
34A. Sengar, J. Kuipers, R. A. Van Santen, and J. Padding, Phys. Rev. E 96, 022115
(2017).

35A. Sengar, J. A. M. Kuipers, R. A. van Santen, and J. T. Padding, Chem. Eng. Sci.
198, 184 (2019).
36S. Muehlbauer, S. Strobl, M. Coleman, and T. Poeschel, arXiv:2010.03904
(2020).
37W. L. Huang and J. Li, Chem. Eng. Sci. 147, 83 (2016).
38J. Cortés, H. Puschmann, and E. Valencia, J. Chem. Phys. 109, 6086 (1998).
39A. Malevanets and R. Kapral, J. Chem. Phys. 110, 8605 (1999).
40C.-C. Huang, G. Gompper, and R. G. Winkler, Phys. Rev. E 86, 056711 (2012).
41A. Varghese, C.-C. Huang, R. G. Winkler, and G. Gompper, Phys. Rev. E 92,
053002 (2015).
42T. Ihle and D. Kroll, Phys. Rev. E 63, 020201 (2001).
43D. S. Bolintineanu, J. B. Lechman, S. J. Plimpton, and G. S. Grest, Phys. Rev. E
86, 066703 (2012).
44R. Fan, G. T. Zachariah, J. T. Padding, and R. Hartkamp, Phys. Rev. E 104,
034124 (2021).
45T. Ihle, E. Tüzel, and D. M. Kroll, Phys. Rev. E 72, 046707 (2005).
46E. Tüzel, M. Strauss, T. Ihle, and D. M. Kroll, Phys. Rev. E 68, 036701 (2003).
47E. Tüzel, T. Ihle, and D. M. Kroll, Phys. Rev. E 74, 056702 (2006).
48A. Malevanets and R. Kapral, J. Chem. Phys. 112, 7260 (2000).
49M. Ripoll, K. Mussawisade, R. Winkler, and G. Gompper, Phys. Rev. E 72,
016701 (2005).
50W. G. Hoover, Phys. Rev. A 31, 1695 (1985).
51M. Andersen, C. Panosetti, and K. Reuter, Front. Chem. 7, 202 (2019).
52R. LeSar, Introduction to Computational Materials Science: Fundamentals to
Applications (Cambridge University Press, 2013).
53H. Steininger, S. Lehwald, and H. Ibach, Surf. Sci. 123, 1 (1982).
54T. Zambelli, J. V. Barth, J. Wintterlin, and G. Ertl, Nature 390, 495 (1997).
55B. K. Min, A. R. Alemozafar, M. M. Biener, J. Biener, and C. M. Friend, Top.
Catal. 36, 77 (2005).
56X. Deng, B. K. Min, A. Guloy, and C. M. Friend, J. Am. Chem. Soc. 127, 9267
(2005).
57G. Veser, F. Esch, and R. Imbihl, Catal. Lett. 13, 371 (1992).
58V. P. Zhdanov and B. Kasemo, Appl. Catal., A 187, 61 (1999).
59P. T. Fanson, W. N. Delgass, and J. Lauterbach, J. Catal. 204, 35 (2001).
60R. Imbihl and G. Ertl, Chem. Rev. 95, 697 (1995).
61A. L. Vishnevskii and V. I. Savchenko, React. Kinet. Catal. Lett. 38, 167 (1989).
62V. I. Elokhin, A. V. Matveev, E. V. Kovalyov, and V. V. Gorodetskii, Chem. Eng.
J. 154, 94 (2009).
63N. V. Petrova and I. N. Yakovkin, Surf. Sci. 578, 162 (2005).
64D.-J. Liu and J. W. Evans, Surf. Sci. 603, 1706 (2009).

J. Chem. Phys. 156, 084105 (2022); doi: 10.1063/5.0081829 156, 084105-12

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/jcp
https://doi.org/10.1063/1.1584652
https://doi.org/10.1016/j.ces.2014.05.039
https://doi.org/10.1016/j.ces.2016.11.008
https://doi.org/10.1016/j.ces.2017.06.003
https://doi.org/10.1080/00295639.2017.1388090
https://doi.org/10.1016/j.powtec.2021.03.038
https://doi.org/10.1016/j.cej.2020.125988
https://doi.org/10.1016/j.ces.2014.08.045
https://doi.org/10.1016/0009-2509(94)85032-1
https://doi.org/10.1016/j.ces.2019.07.055
https://doi.org/10.1021/j100117a030
https://doi.org/10.1063/1.4986529
https://doi.org/10.1016/j.compfluid.2019.04.015
https://doi.org/10.1002/fld.2369
https://doi.org/10.1002/fld.2369
https://doi.org/10.1016/j.ijheatmasstransfer.2018.05.133
https://doi.org/10.1103/physreve.94.053307
https://doi.org/10.1016/j.cpc.2012.07.003
https://doi.org/10.1098/rsta.2008.0097
https://doi.org/10.1039/d0sm01654c
https://doi.org/10.1021/jp052701u
https://doi.org/10.1016/j.cpc.2008.01.027
https://doi.org/10.1088/1478-3975/aabc35
https://doi.org/10.1002/advs.201800028
https://doi.org/10.1039/c2nr33711h
https://doi.org/10.1063/1.3528004
https://doi.org/10.1103/physrevlett.98.150603
https://doi.org/10.1103/physreve.100.022603
https://doi.org/10.1039/c9sm01977d
https://doi.org/10.1088/1674-1056/ab943f
https://doi.org/10.1103/physreve.96.022115
https://doi.org/10.1016/j.ces.2018.10.038
http://arxiv.org/abs/2010.03904
https://doi.org/10.1016/j.ces.2016.03.019
https://doi.org/10.1063/1.477235
https://doi.org/10.1063/1.478857
https://doi.org/10.1103/physreve.86.056711
https://doi.org/10.1103/physreve.92.053002
https://doi.org/10.1103/physreve.63.020201
https://doi.org/10.1103/physreve.86.066703
https://doi.org/10.1103/physreve.104.034124
https://doi.org/10.1103/physreve.72.046707
https://doi.org/10.1103/physreve.68.036701
https://doi.org/10.1103/physreve.74.056702
https://doi.org/10.1063/1.481289
https://doi.org/10.1103/physreve.72.016701
https://doi.org/10.1103/physreva.31.1695
https://doi.org/10.3389/fchem.2019.00202
https://doi.org/10.1016/0039-6028(82)90124-8
https://doi.org/10.1038/37329
https://doi.org/10.1007/s11244-005-7864-4
https://doi.org/10.1007/s11244-005-7864-4
https://doi.org/10.1021/ja050144j
https://doi.org/10.1007/bf00765040
https://doi.org/10.1016/s0926-860x(99)00183-0
https://doi.org/10.1006/jcat.2001.3369
https://doi.org/10.1021/cr00035a012
https://doi.org/10.1007/bf02126270
https://doi.org/10.1016/j.cej.2009.04.046
https://doi.org/10.1016/j.cej.2009.04.046
https://doi.org/10.1016/j.susc.2005.01.031
https://doi.org/10.1016/j.susc.2008.10.058

