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Executive Summary

The impact of disasters on the affected population are catastrophic and disruptive.

Proper disaster management practices are therefore needed to reduce the societal damage

they induce. This report therefore aims at reviewing the literature in the field of disaster

response. A focus is set on Search and Rescue (SaR) missions, which are a part of the

emergency response and include measures to find victims. These activities are undertaken

mostly by first responders and rescue workers. The environment in which rescue workers

need to operate is highly complex, dynamic and hostile. In an indoor evacuation scenario,

these rescue workers risk their own lives in order to find trapped victims. Their task

can be alleviated by the support of a fleet of robots. This fleet is deployed to locate

trapped victims and to report back their position to the emergency responders and if

necessary to follow them in order to keep track of their potential movements. Locating

trapped victims is challenging as the number of these people as well as their initial position

and potential displacements may be unknown. A behavioural model of the victims is

needed to give insight how they take decisions and accordingly act during an evacuation

situation. For this, several techniques have been reviewed, including agent based modelling,

the belief-desire-intention framework, and game theory. Agent based modelling proves

itself well for capturing the microscopic interactions between victims that give rise to

a global pattern. The belief-desire-intention framework is able to add emotional and

cognitive elements within the behaviour of the victims. Game theory can be used to

provide additional insight into individual and collective decision making processes. This

study then evaluates the construction of a model that incorporates these elements. A use

case is presented, constituting of an indoor evacuation setting, with which the model is

validated against a benchmark from the available literature. In this model, evacuation

robots are added and their influence on human behavior analysed. Thus, this research

contributes to the state-of-the-art of SaR operations with a validated model of human

decision making during indoor evacuation settings, with and without the presence of

evacuation robots, by combining two exiting methods in a novel way. With this model, a

more effective planning of SaR operations can be achieved, and an understanding gained

into how the presence of rescue robot might affect human decision making.
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1 INTRODUCTION

1 Introduction

The word ‘Disaster’ is derived from the ancient greek words of ‘dus’ and ‘aster’, meaning bad star and

connoting to an unfortunate fate. This implicates already one of the most tragic characteristics of

disasters, namely that they cannot be prevented (Khorram-Manesh et al., 2021). Fires and earthquakes

have plagued ancient and modern populations alike and disasters, natural or human-instigated, more

often than not have devastating consequences. Recent examples of disasters include the collapse of

buildings in Florida in 2021 and Changsha in 2022, each having caused dozens of casualties (Dalvin

Brown Washinton Post, 2021; Reuters, 2022).

The United Nations Office for the Coordination of Humanitarian Affairs (UNOCHA) estimates

that due to disasters and emergencies around 275 million people will need humanitarian assistance

which corresponds to 1 person in 29 worldwide (UNDRR, 2022b). Hence it is imperative to be timely

to respond to the disasters in order to mitigate detrimental consequences. When a disaster occurs,

very early in the disaster response, search and rescue (SaR) missions are performed, during which

rescue workers and first responders need to be quick to secure the site of the disaster, locate victims

and rescue them from the potential risks. The decisive factor for the success of SaR missions is often

the speed with which rescue workers are at place and can conduct SaR missions (Murphy, 2004). With

technological advancements in various fields such as in robotics, sensoric, and autonomy, the field of SaR

robotics has emerged. SaR robots can alleviate the task of rescue workers and support them in both

finding and potentially saving the located victims from the disaster scene. Robots prove themselves

helpful to assist in these tasks for various reasons. To name only a few, robots are expendable, they

can participate in tasks that are hazardous for human rescue workers and finally, depending on the

extent of their autonomy, can take decisions at a much higher speed (Murphy, 2004).

Disaster scenarios are highly complex. The environment is dynamic and people interact with each

other in order to get themselves to safety. The behaviour of trapped victims can further increase

the tragedy of disasters. A recent example is a soccer game in Indonesia, where around 125 people

died due to stampedes, which resulted from people trying to evacuate from the soccer stadium (NY

Times, 2022). Understanding how humans interact in a multi-actor setting can be a decisive factor for

efficiently planning a SaR mission (Robin and Lacroix, 2016). Different people have different intentions

during a disaster, based on individual goals. Some people might be willing to cooperate with others,

while others will focus only on getting themselves out of an emergency setting (Van der Wal et al.,

2017). Modelling and simulating human decision making is therefore a first step in order to be able to

ultimately predict or at least estimate how people could behave during an evacuation. As such, these

predictions have the potential to further increase the speed of SaR mission.

The report is structured as follows. To begin with section 2 provides the motivation for this project

and presents the research question that this study aims at answering. Then, Part I represents the

literature survey that was conducted. The reviewed literature, starting with section 3, will be used to

identify a knowledge gap and to propose a model structure to model multi-actor interactions for indoor

evacuation scenarios together with a benchmark in section 5 which will be implemented in a use case

in Part II. Finally, in part III section 7, conclusions are provided as well as some recommendations for

further research that were identified during this project.
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2 THESIS PROJECT

2 Thesis Project

In this section, the motivation for the research in this project is outlined. Then, the research objective

and main research question are given. The main research question is further broken down into several

sub research question that help addressing the main research question and are answered in the remainder

of this report.

2.1 Research Motivation

Disasters cannot be prevented and therefore it is imperative to have emergency response procedures in

place. To alleviate the task for first responders of SaR missions, these have been using SaR robots

during operations in the past. While a lot of research is being conducted in how to improve the

technological aspects of these robots, the human aspect and more specifically, how the presence of

these robots might affect the behavior of the victims, is overlooked.

A behavioural model of the trapped victims can be helpful for mission planning of SaR operations.

From reviewing literature about available tools to do so, it can be concluded that many different

tools are available to model human decision making. However, all of these tools have their drawbacks

and further research is needed for incorporating as many elements of human decision making as

possible for a simulation model to be realistic. Thus, implementing a combination of tools such as

Agent-Based-Modelling, the Belief-Desire-Intention (BDI) and concepts of game theory promises to

reflect human decision making in indoor evacuation scenarios: reflecting the cognitive and emotional

reasoning processes of humans but also explain individual and collective rationality when making joint

decisions.

Furthermore, no existing evacuation model is implementing SaR robots. Thus, no model is capable

of simulating the affect of their presence on human behavior during evacuations. Such a model would

allow to examine how SaR robots can be best employed to assist in rescuing victims from an emergency

setting.

2.2 Research Questions

Resulting from this, the research objective of this thesis is to create a simulation model of an indoor

evacuation scenario that captures human behavior in the presence of SaR robots. For this, different

existing modelling tools will be combined to capture human decision making as realistically as possible.

Evacuation robots will be implemented in the model that will assist the humans to evacuate from the

emergency setting. It is be assumed, that humans behave differently in the presence of evacuation

robots and that the trust they have in these robots further influences their behavior around the robots.

Thus, the main research question of this thesis is: How can human behavior during an indoor

evacuation scenario be modelled in a simulation model in order to understand the dynamics of human

decision making, with and without the presence of SaR robots potentially influencing human behavior?

In order to answer this question, several sub research questions are needed that are answered in

the different chapters of this report.

1. What are the elements of SaR missions and what is the role of SaR robots?

2



2.2 Research Questions 2 THESIS PROJECT

(a) What are the objectives of search and rescue missions, and what are the challenges associated

with these missions?

(b) How can robots be effectively employed in SaR missions to enhance operational efficiency

and increase the likelihood of successful outcomes?

(c) In the context of indoor evacuation scenarios, how do evacuation robots interact with

humans during the evacuation process?

2. How can human decision making during indoor evacuation scenarios be modelled and the resulting

human behavior be simulated?

(a) What tools are available to do so and what are their drawbacks and advantages for modelling

and predicting human behavior?

(b) What are the fundamental principles and components of the BDI framework and game

theory concepts?

(c) What are the key factors that influence human behavior during an indoor evacuation, and

how can these factors be incorporated into the combined BDI-game theory model?

(d) How can the BDI framework be adapted and integrated with game theory concepts to

effectively capture the dynamics of human decision making during an indoor evacuation

scenario?

(e) How can the combined BDI-game theory model be validated and evaluated to assess its

effectiveness in accurately simulating and predicting human behavior during an indoor

evacuation scenario?

3. What is the effect of the presence of evacuation robots on human behavior in indoor evacuation

scenarios?

(a) What are the factors that influence human interaction with SaR robots during an emergency

evacuation?

(b) How does the presence of SaR robots influence human decision making and behavior during

an indoor evacuation scenario?

(c) How does the introduction of SaR robots affect the overall evacuation time and evacuation

success rate in indoor scenarios?

These sub research questions help answering the main question and research objective and are

answered subsequently in this report. The first and the second question are mainly addressed in the

literature survey in Part I section 3, section 4, section 5 and section 6. The answers to these research

questions are then used to build the combined BDI-game theory model and to validated it in the thesis

paper in Part II. The third research question is also addressed in Part II. The discussion in Part III

section 7 recapitulates these research questions and provides conclusions and recommendations for

further research. Part IV Appendix A provides provides some further insights into model results that

are not further discussed in this paper.
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3 SEARCH AND RESCUE

3 Search and Rescue

This section introduces the field of Search and Rescue. First, the notions of disaster and disaster

management are explained. Then, some examples of applications of robots for SaR are given. After

this, a closer look is taken on SaR missions and their environment in which robots need to operate.

3.1 Disasters

Disasters have plagued humankind since ancient history. Disasters are defined as disruption to the

functioning of society with losses and damages in every aspect of life from human, material, economic

and environmental losses and impacts. The cause of disasters are hazardous event that are either

natural or human made. Natural disasters could be volcanic disruptions or flooding, while human-made

disasters include conflicts or traffic accidents (Khorram-Manesh et al., 2021).

The consequences of disasters and the resulting disaster damage depend greatly on the affected

society’s resilience, vulnerability and exposure to the hazards that the disaster has caused. The

consequences of a disaster can be local and immediate or can be wide spread and last for longer periods

of time. Often, assistance from outside of the immediately affected community is needed. Before an

incident can be classified as a disaster, some criteria need to be met such as the death of at least 10

people, at least 100 people affected or the government declaring a state of emergency, amongst others.

For making this distinction clearer, the difference can be made between the following types of disasters

(Khorram-Manesh et al., 2021; UNDRR, 2022a):

• Small scale disasters, where a community is affected, which as a result needs assistance from

external to the community.

• Large scale disasters affect a society as a whole, which consequently needs national or even global

assistance.

• Slow-onset disasters develop gradually while the impacts and damages also develop over time

and are not immediately visible.

• Sudden-onset disasters are triggered by one hazardous event.

The different phases of a disaster can be described as a cycle with a pre-disaster phase, the

disaster phase and the post-disaster phase. In each other these phases, different measures are taken

(Khorram-Manesh et al., 2021).

3.1.1 Disaster Risk Management

Since disasters cannot be prevented, there will always be a risk of a disaster taking place. Risk can

be measured in various ways while the quantification of risk has its own limitations. Ultimately, a

certain risk will have to be accepted. Figure 1 shows the acceptable risk region for civil engineering

infrastructure projects in the Netherlands. The risk becomes unacceptable as soon as the number of

fatalities is greater than 1000 and the frequency of these events exceeds 0.001 times per year (Faber

and Stewart, 2003).

5



3.1 Disasters 3 SEARCH AND RESCUE

Figure 1: Target for societal risk in The Netherlands from (Faber and Stewart, 2003) for civil
engineering applications

In order to reduce the risk of a disaster taking place, risk reduction measures need to be undertaken.

These activities are be taken in order to keep the residual risk ”As Low As Reasonably Possible”

(ALARP), see Figure 2 (Faber and Stewart, 2003). When speaking about disasters, these activities are

termed disaster risk management (UNDRR, 2022a) before the actual occurrence of the disaster.

These aim at reducing the risk which a community or a society is exposed to a disaster. This

includes the pre-disaster phases of prevention, damage mitigation and preparedness. However, as

already pointed out, this risk cannot be fully prevented and there is a residual risk of a disaster

happening (see Figure 2). To illustrate, after building a dam in the village to prevent the river from

flooding houses and roads, there will still be the risk that the dam is not high enough and will still

flood the village. This residual risk can be deemed acceptable or tolerable: Those people that still

continue living in the village accept that this risk is tolerable (Khorram-Manesh et al., 2021).

Due to the residual risk which cannot be prevented using disaster risk reduction measures of the

prevention phase, there needs to be contingency planning in order to ensure that emergency response

capacities are available. This translates to the preparedness phase during which before the actual

disaster measures are taken to arrange evacuation procedures Khorram-Manesh et al. (2021) while the

aim of an evacuation is to protect people from hazards by temporarily moving them to safer places

(UNDRR, 2022a).

6



3.1 Disasters 3 SEARCH AND RESCUE

Figure 2: Levels of Risk from (Faber and Stewart, 2003)

3.1.2 Disaster Response

In the case where a disaster does happen, an emergency response or disaster relief is needed. These

actions aim at ensuring public safety and protecting people from the impacts of the disaster. This is

the phase where SaR actions are needed to look for survivors and meet the basic needs of the victims.

Time is also crucial here as with an increased response time the survival rate of victims drops drastically

during the first two days after a disaster (Barbera and Cadoux, 1991).

Finally, during the post-disaster phase, recovery actions are taken to ”build back better”. Here,

infrastructure that has been destroyed needs to be build back. The aim of this stage is to avoid a new

disaster from taking place by taking account of lessons learnt, hence to build what has been lost back

in a better way, such that it is more resilient to potential future disasters (UNDRR, 2022a; Murphy

et al., 2016).

On some occasions, robots have been deployed during or after disasters in the past (Murphy et al.,

2016). In general, there remains an ethical question whether it is right or wrong to use a not yet fully

mature technology during disasters. The next section gives a brief overview of what these applications

look like and about the lessons learnt.

3.1.3 Use Cases of Robots for SaR

The terrorist attacks on the World Trade Center in 2001 are an early application of robots to a disaster

scene for SaR missions. During this first deployment of robots, little ”PackBots” as they were called

were deployed to dig through the rubble of collapsed buildings. More specifically, they were entering

7



3.2 Search and Rescue Missions 3 SEARCH AND RESCUE

into voids were neither humans nor dogs could enter due to their size and the lack of oxygen (Murphy

et al., 2016).

In 2011, after the Fukushima nuclear disaster, airborne robots were deployed to check the nuclear

plant for overheating. This was a task which humans could not because of the nuclear radiation (Vince

Beiser Wired, 2018).

These early applications all included a human controller that was communicating with the robots

over radio frequency using a joy stick. With greater advancements and more research programs into

autonomy, human control can become less important. A couple of EU funded projects are ICARUS

and DARIUS, both with a focus on autonomy to enhance the situational awareness for first responders

and rescue workers (Govindaraj et al., 2013; Chrobocinski et al., 2012).

A more recent example of using robots in SaR missions includes the collapse of a building in Florida,

USA a year ago in 2021. Here, robots were deployed to aid the SaR efforts to get through narrow

passages and voids. Here, the employed robots were designed to be operating semi-autonomously, such

that they could complete some tasks autonomously while others needed teleoperation (Dalvin Brown

Washinton Post, 2021).

These real life applications of SaR robots show that, while they have in the past successfully located

victims of disaster scenes, the environments in which they need to operate are very challenging. Thus,

more research can greatly enhance the effectiveness of deployment of robots for SaR (Murphy et al.,

2016).

3.2 Search and Rescue Missions

This section starts with the different types of environments robots encounter on their SaR missions.

Then different types of SaR robots are introduced and their application in the disaster response

explained.

3.2.1 Environments

The environments in which SaR missions are conducted depend on the circumstances of the disaster

that has occurred. Generally, the distinction can be made between indoor and outdoor SaR missions.

Indoor environments are usually highly cluttered, especially in contrast to outdoor environments.

To illustrate, in the case of a collapsed building, there is a lot of rubble and debris which impedes the

visual sensory capabilities as well as object avoidance capabilities of robots. Dust and smoke from fire

will further impede the robots from orienting themselves in the building. Moreover, global navigation

satellite system (GNSS) might not be available for navigation inside of the building (Murphy et al.,

2016). In addition, the environment is highly dynamic as new debris can fall from the destroyed

building. As a result, trajectories that a robot had planned to employ might change due to debris being

in the way. Moreover robots must be small enough in size to manoeuvre through the environment.

This limits the computational capabilities of the deployed robots. Furthermore, an unknown number

of victims is trapped in the building. While the victims are mostly considered to be stationary, they

might still be locally moving while trying to get out of the disaster scene. This further complicated

the mission planning for the robots. The danger to rescue workers are also the greatest in indoor

8



3.2 Search and Rescue Missions 3 SEARCH AND RESCUE

environments, as there is a risk of fire spreading or more infrastructure collapsing (Murphy et al., 2016;

Grogan et al., 2018; Khorram-Manesh et al., 2021).

Outdoor SaR environments can further be categorised into wilderness, urban and marine environ-

ments. The conditions in these vary to great extents. In general, outdoor environments are wider

and less cluttered than indoor environments. Furthermore, they usually deal with a known number

of victims that are mobile. In wilderness and marine SaR, there is mostly a given number of victims

of which at least some initial position is often given. Navigation can also be easier as landmarks can

help with orientation and the environment is not as cluttered. In addition, GNSS is mostly available

and sensory capabilities are less impeded. However, meteorological uncertainties such as sudden heavy

rainfalls or fog can affect the deployments of robots for SaR in outdoors settings (Murphy et al., 2016;

Grogan et al., 2018).

3.2.2 Robots for SaR

Different types of robots can be deployed for indoor SaR missions. In general, unmanned ground

vehicles (UGV) and unmanned aerial vehicles (UAV) can be deployed for indoor SaR missions. Two

examples of such robots can be seen in Figure 3. Other robots that can be used for outdoor settings

could be unmanned water surface vehicles and unmanned underwater vehicles, while their application

for indoor settings are limited. In terms of size, these robots can be either man-packable if they fit into

one or more backpacks, man-portable when they can still be carried short distances by one or more

persons and maxi robots that have to be transported by vehicles (Murphy et al., 2016).

Land based UGV can be used to crawl over rubble. They have been used to enter and manoeuver

into debris voids of less than 1 cm into which human rescue workers or dogs cannot enter, since the

holes are too small and there is no oxygen available. (Murphy et al., 2016)

UAVs are exclusively airborne and have a high degree of freedom. They are generally classified

into fixed wing and rotary UAV. Fixed wing UAVs lend themselves for covering wide areas and their

application for indoors is limited as well due to the necessity of wind to create a lift force. Still, they

can be deployed to gather information and greater situational awareness (Murphy et al., 2016).

(a) Rotary UAV can explore
indoor environments (TU Delft,

2022)

(b) UGV are able to crawl over
rubble (NIST, 2022)

Figure 3: Examples of different SaR robots

There are many ways in which a fleet of robots may be organised. A fleet can be composed of
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robots of the same type which then be a homogeneous fleet. A fleet can also be composed of robots

with different capabilities, such as UAVs and UGVs.

The advantage of a homogeneous fleet is their scalability, flexibility and robustness. To illustrate,

when having a fleet of the same UAV, there could always be more robots added to increase the size of

the fleet, hence making it scalable. At the same time, it is flexible, since the loss of one or another

UAV does not necessarily impact the performance of the fleet. On the other hand, a non-homogeneous

fleet comprises robots of different types. The main advantage is that the (sensory) capabilities can be

distributed over all robots of the fleet and not every robot needs to be equipped with the same sensory

suite (Brambilla et al., 2013; de Koning and Jamshidnejad, 2022).

A fleet of robots, whether homogeneous or non-homogeneous, is referred to as a multirobot system.

Different control schemes can be exploited for controlling it. Often used are modelled based control

schemes that comprise a set of methods that need a model of the system to find the next control

action. The next control action is determined using the prediction of future control actions based on

the current state of the system. These methods can be distinguished into cooperative, distributed and

decentralised methods (Rawlings et al., 2017).

3.2.3 Target Management

The SaR mission on which a fleet of robots is deployed pose many challenges due to the highly complex

and dynamic environment in which they need to manoeuvre through. Another challenge is posed by

actually defining the SaR mission. The goal of such a mission is to search and rescue for trapped

victims in an indoor disaster scene. Hence, it can be described as a target management problem, where

a target refers to a trapped victim (Robin and Lacroix, 2016).

Initially the focus is on actually finding victims within the disaster scene: Since the number of

victims is usually not known and neither is their position, at the start, a SaR mission can further

be classified as a target detection problem (left branch of Figure 4). As the mission involves moving

robots rather than static sensors, it can be described as a mobile search, or path planning problem.

As can be seen in Figure 4, this leaves four choices for search strategies: capture, hunting, patrolling

and probabilistic search. These methods all have advantages and drawbacks. In the capture problem

is to detect a target that is in a certain determined area. In the hunting problem, the detection and

the capturing cannot be guaranteed, due to the lack of resources such as time or robots. Probabilistic

search is different to the capture problem in so far that probabilities of detection of a target are being

assessed. Patrolling can then be understood as a cyclic version of probabilistic search where the same

location can be visited more than once. Considering the targets’ behaviour can greatly enhance the

effectiveness of the search strategy (Robin and Lacroix, 2016). For the particular search strategy of

patrolling, the mathematical concept of game theory have been used in Amigoni et al. (2009) to model

the target’s decision making.

After a target has been detected, it needs to be tracked in the second phase of the mission (right

branch of Figure 4). Trapped victims in a collapsed building might try to find their way out of the

debris and in order to evacuate them and get them out of the danger zone, it is imperative not to lose

the victims once they have been detected. Since there are multiple robots available in the fleet, these

can engage in target localisation. At the same time, each robot can have one or more targets assigned,
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Figure 4: Levels of Risk from (Robin and Lacroix, 2016)

thus including observation and following tasks as can be seen in Figure 4 (Robin and Lacroix, 2016).

In this case, an additional challenge arises for determining the most efficient target allocation for each

robot. For the planning of following tasks, a behavioural model of the targets to be tracked has been

used in Bandyopadhyay et al. (2009). Doing so can give an idea on how victims might take decisions

and where they might move towards in order to get out of the disaster setting.

3.3 Key Take Aways

Indoor SaR environments are highly complex. The number of victims is unknown as well as their initial

locations, which complicates the target management task riof a fleet of robots. The fleet must, after

determining destinations to go to, assign these amongst each other in the optimal way and determine

the most efficient trajectories to get to their targets. During all this, the environment is highly dynamic

and therefore constantly changing.

In order to alleviate these tasks of SaR missions, an understanding of how the targets that are to

be found and rescued is needed. Therefore, the next section focuses on how to model the behaviour of

victims that attempt to escape from the disaster site.

11
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4 Modelling Evacuation Scenarios

For an effective mission planning in the context of SaR missions, an understanding of the behaviour of

trapped victims is imperative. This section first introduces the characteristics of multi-actor systems

and suited modelling techniques. A focus is then set on the background of agent based modelling and

of game theory for modelling decision taking in a multi-actor setting. In each section, a review is given

about existing evacuation models while an overview of the reviewed models can be found in Table 3.

4.1 Multi-Actor Systems

An evacuation situation can be described as a multi-actor system. In a multi-actor system, there are

multiple actors where an actor refers to a person or rather a trapped victim in the disaster scene. Each

actor has certain capabilities to act and to influence the decisions taken by the other actors in the

system. It is assumed that in general, no single actor is able to impose its preferred solution upon all

other actors. They are all interdependent and there is some form of interaction needed between the

actors (Hermans and Cunningham, 2018).

To illustrate using a hypothetical example, after being trapped together in a collapsed building,

several actors will want to use the one single exit that is left in the room to get out of the building.

Since only one actor at a time fits through this door and there is a fire expanding on the other side of

the room, every actor will want to get through this door as fast as possible. The actors will therefore

need to reach a decision together about the order of actors that through this door.

Multi-actor systems can be described on multiple levels. On more abstract, macro levels actors are

considered to be embedded in a network that dictates the social relations between the actors. Here,

institutional rules restrict the possible range of actions of the actors. This is a common view on actors

for policy analysis but cannot explain how the system adapts to changes and disruptions, which is

needed for understanding evacuation behaviour (Hermans and Cunningham, 2018) .

A lower level, micro perspective on agents is thus needed. A common way to explain actor behaviour

is to use the conceptual dimensions of perceptions, values and resources. Perceptions relate to the way

of how the actors think the world is operating. It can also be translated to ’neutral’ beliefs, as opposed

to ’normative’ beliefs about what is right or wrong. Those ’normative’ beliefs can be regarded as values

about which states of the world are desirable. Thus, they reflect the internal motivation of the actors

and are closely linked to an actor’s perceptions. Finally, each actor has resources or means to realise

their objective which again is based on their values and perceptions. (Hermans and Cunningham, 2018)

In a system where multiple actor are involved with different characteristic and preference, the

overall behaviour of the system emerges from the interactions between these individual actors. Since

these are too complex to understand using a mental model, a computational model is needed to

understand what exactly happens during an evacuation scenario.

There are many different techniques for modelling evacuation situations. These can be divided

into microscopic and macroscopic models, depending on the aim of the analysis (Bakar et al., 2017).

Microscopic modelling techniques include social force models, lattice gas approaches and belief-desire-

intention models using cellular automata or agent based models (ABM). Macroscopic models are for

instance fluid dynamics models (Henderson, 1971). Other approaches are animal experiments or game
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theory. All of these have their drawbacks and advantages and for best results, Zheng et al. (2009)

suggest further research into combining these techniques.

Macroscopic models have the major limitation that they cannot take into account the interactions

amongst the actors, as they model the entire crowd as a whole (Bakar et al., 2017). During an

emergency however, it cannot be assumed that a crowd of people will act as one group. Drury et al.

(2009) for instance show that in evacuation situations, people form groups, such as with friends or

colleagues with which they are trapped in the building, and are more likely to help members of their

in-group than out-group members.

How these groups emerge depends on the individual characteristics of the actors and how they

interact Braun et al. (2003). In order to understand these phenomena and how actors take these

decisions, it is therefore imperative to model this process explicitly. Microscopic models are able to

capture this as they model the interactions between actors and the overall pattern of the crowd emerges

from these microscopic interactions.

4.2 Agent-Based Modelling

A common tool to implement microscopic models is Agent Based Modelling (Adam et al., 2017; Adam

and Gaudou, 2016). An ABM is a computational tool for simulating geo-spatial systems, namely

systems that are continuously changing in time and space. This dynamics is due to the microscopic

interactions between individuals as well as between an individual and the environment. Thus, a global

pattern emerges and the behaviour of the system can be analysed using computational experiments. In

contrast to for instance cellular automata, more complex rules can be defined for the agents to interact

with each other (Crooks and Heppenstall, 2012).

4.2.1 Background

In an ABM, the actors that are included in a simulation model are called agents. These agents are

active which leads to them having the following features (Crooks and Heppenstall, 2012):

• Proactive and goal directed: The agents of a model have a goal that they need to achieve. This

could be the maximising of a utility function and depends on their characteristics.

• Reactive and perceptive: The agents have knowledge about their environment based to which

they can react.

• Bounded Rationality: The agents can make inductive decisions to achieve their goals.

• Interactive and communicative: The agents exchange information with other agents in the

environment and interact with each other and the environment.

• Mobile: The agents can move through the environment during the simulation. They can also be

fixed, depending on the aim of the simulation.

• Adaptive: The agents can learn based on their previous states.
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• Autonomous: The agents are free to interact with other agents and the environment to process

information and exchange it with other agents and to make independent decisions.

• Heterogeneous: The agents have individual characteristics, such as age or jobs. Grouping of

similar agents can arise, which is then due to the interactions on a microscopic level.

The agents interact with the environment and with each other based on a set of pre-defined

rules. These rules as well as the characteristics of the agents are derived from the modellers induced

observations of the real world (Crooks and Heppenstall, 2012). The simulation environment in which

agents are located is described as a neighbourhood through which they can move throughout the

simulation. This neighbourhood can be a simple grid with cells that the agents can occupy or they can

have specific geographical features. An agent can interact with other agents in the neighbourhood. In

a Moore neighbourhood, an agent is allowed to interact with agents on all 8 surrounding cells, while

in a Von Neumann neighbourhood, only the down, up, left and right cells can be reached (MESA

Documentation, 2022).

ABMs can be constructed using general purpose programming languages (e.g. Python) with existing

open sources modules (e.g. MESA (MESA Documentation, 2022)) or using specific programming

languages and programming environments such as NetLogo (Tisue and Wilensky, 2004) or GAMA

(GAMA, 2022).

Applications for ABMs include all sorts of complex systems, ranging from modelling and simulating

the spread of diseases, market models to traffic jam formation. ABMs have also been used for modelling

evacuation scenarios, such as in Hashimoto et al. (2022) and in Templeton et al. (2015).

Hashimoto et al. (2022) have used an ABM to model lost person behaviour in an outdoors, wilderness

SaR mission, where a lost person is one that is disoriented and that is unable to identify its current

situation. Six lost person behaviours are defined for the agents that are random walking (RW), route

traveling (RT), direction traveling (DT), staying put (SP), view enhancing (VE) and backtracking

(BT). The environment of the model is a 2 dimensional grid where each cell of the grid having specific

geophysical and terrain characteristics. The lost person types are defined by a probability of the agent

using a specific behaviour at each time step [RW, RT, DT, SP, VE, BT] where the sum add up to 1.

At each time step, the agent’s position is updated by a randomly selected strategy.

Trivedi and Rao (2018) have used an ABM to implement a social force model for modelling panic

behaviour in an indoor evacuation scenario. The agents move based on three simple flocking rules,

as initially proposed by Reynolds (1987). The first rule is cohesion referring to an agents trying to

move towards the center or the crowd. The second rule is alignment where each agent seeks to align

itself with the direction in which the crowd moves. The last rule is separation, where an agents moves

away from another agent as soon as they get too close to each other. Panic is calculated based on four

factors; the distance to the door, the velocity of neighbours moving towards the door, the number

of neighbours that have a high degree of physical discomfort and the lag in velocity. Based on the

flocking rule and the calculated panic, the positions of each agent are updated at each time step. An

overview of their model is given in Figure 5.

While these applications of ABMs aim at implementing the emergence of a global behaviour based

on the microscopic interactions between the actors, incorporating psychological and emotional factors
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Figure 5: Agent based evacuationBM model from (Trivedi and Rao, 2018)

remains a challenge (Templeton et al., 2015). To illustrate, in Hashimoto et al. (2022), the agents

choose their strategies randomly at each time step while in Templeton et al. (2015), the agents move

based on flocking behaviour. According to Axelrod (1997), it is desirable to keep a model as simple as

possible in order to be able to keep track of what parts of a model might be responsible for a particular

result. In order to recreate human decision making more realistically, however cognitive and emotional

characteristics of the actors should be included in a model (Adam and Gaudou, 2016).

4.2.2 Belief-Desire-Intention Framework for ABMs

The Belief-Desire-Intentio (BDI) framework reflects the research of Bratman (1987) into human practical

reasoning and the planning theory of intentions.

Agents in the BDI framework reflect similar notions as actors in the multi-actor framework and

are well suited for modelling multi-actor systems, in contrast of social force models or lattice gas

approaches. BDI agents have the following features (Rao et al., 1995; Balke and Gilbert, 2014):

• They have beliefs about the state of the world, similarly to the notion of perceptions in multi-actor

systems. These beliefs can change and new beliefs can be added to the belief set as the system

changes. To give an example from a disaster scene, a belief could be about the speed of fire

spreading.

• Desires can be compared to values and reflect the motivation of an actor, hence situations that

the agent would like to happen. In an evacuation setting, this could be the desire to get to safety.
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An ’activated’ desire can be seen as a goal, namely a desire the agent is currently committed to.

To illustrate, it might be desirable for an agent to get out of the disaster setting herself and at

the same time be desirable that the neighbour gets out safe as well. Since there is only one exit,

this cannot happen at the same time and only one of these desires can be ’activated’ into a goal.

• Finally, intentions reflect what an agent has chosen to do. In order to achieve an intention,

several plans are needed. To illustrate, when the actor has chosen to get out of the collapsed

building, this intention is fulfilled by first getting ways from the fire, then getting to the exit and

then to the other side of the street.

By using the BDI framework to model the ABM’s agents, the process of making a plan and

executing the latter can be considered specifically. This way, an ABM that models the interactions

between the different agents does not only capture the emerging pattern from these intentions, but

with the BDI framework also captures how these interactions come about. Hence, when using the BDI

framework for ABMs, the inductive modelling process and the modeller’s assumptions can be backed

by a theory to describe how humans reason and plan.

The BDI framework has been used to model cooperation between agents in various contexts. Not

an evacuation scenario but a useful example to illustrate the workings of a BDI model is the model of

an artificial soccer game (Burkhard et al., 1997). Each agent, having a fixed role in the team, has a

world module, a planning module, a sense, an act and skills module in Figure 6. By acting, the agent

changes the world and hence its beliefs about the situation. The planning and skills module can be

used by the agents to simulate consequences of their actions, for instance estimate the velocity and

future position of the ball after kicking it or estimating own and teammates’ positions around the ball.

Positions are sensed using visual information. After new sensor information is available, the planning

process is started and a goal (being a desire), such as passing the ball to a teammate, is selected by

classifying the situation using a decision tree (Burkhard et al., 1997).

There have also been evacuation models constructed using the BDI framework. The BEN model

(behaviour with emotions and norms) from (Bourgais et al., 2020) is a BDI model that includes

emotions (personality, social relationships, emotional contagion) and norms (laws, obligations) to an

agent’s behaviour. The overall functioning of the BEN architecture can be seen in Figure 7. The

model is implemented in the GAMA platform (GAMA, 2022) and is validated on a real-life evacuation

scenario, called the Kiss Nightclub (BBC, 2013; Atiyeh, 2013).

The first submodule serves the agent to perceive the environment (‘perceptionActivated’ in Figure 7).

Information is transformed into cognitive mental states and emotions. Perceptions are formed into

beliefs and the belief set is updated. If an agent for instance perceives fire, its beliefs about there

being fire are updated. If an agent observes another agent, social relations are created and emotional

contagion about the fear of fire are executed.

Moreover, the model has a knowledge updating submodule (‘managingKnowledgeActivated’ in

Figure 7). This updates the emotions as well as the knowledge bases based on the latest perceptions.

To do so, new emotions, desires, obligations and social relations are added.

Additionally, there is the decision making module (‘makeDecision’ in Figure 7). The cognitive and

normative engine determine whether a current intention and/or plan/norm is to be kept. Potentially
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Figure 6: Architecture of a soccer agent from (Burkhard et al., 1997)

a new plan/norm is chosen based on a (new) selected intention (desire or obligation) (see Figure 8),

based on a decision tree.

Finally, there is temporal dynamics component that degrades emotions and updates norms over

time (‘knowledgeDynamicsActivated’ in Figure 7)

Another evacuation model using BDI is the IMPACT model from (Van der Wal et al., 2017),

implemented in NetLogo. The model aims to extend previous evacuation models with socio-cultural,

cognitive and emotional factors. Group decision making is also taken into account via emotional

contagion. Each agent has 4 modules: Based on ‘Input’ form the environment, the modules ‘Individual

Characteristics’ (in orange in Figure 9), ‘People-People Interactions’ (blue), ‘People Environment

Interactions’ (green), all interact and lead to ‘Decision-Making’ (yellow). This results in ‘Actions’ that

change the environment.

These 4 modules have different concepts (features, beliefs, desires and intentions) that dynamically

interact as shown in Figure 9. To illustrate, the action move to exit’ (which is a ‘People Environment

Interaction’) is influenced by the familiarity of the environment and speed (both ‘Individual Char-

acteristics’) and the intention and desire to evacuate (both ‘Decision-Making’). Another example is

the ’action help other’ (which is a ‘People-People Interaction’) depends on ‘fall’ (‘People Environment

Interactions’) and ‘group membership’ (‘Decision-Making’), amongst other factors.

These are modelled using differential equations, where for each agent also the state of others are

taken into account. To given an example, Equation 1 computes the desire to evacuate. The desire to

evacuate ranges from maximum desire being 1, to minimum desire, being 0. In this equation, de(t)

denotes the desire to evacuate, c the compliance, a the amplifying evacuation factor. bd the belief

dangerous. os(t) the observation staff instructions, and oa(t) the observation public announcements.

de(t)(t+ δt) = de(t)(t)+ η ∗ ((c ∗ (max(ωa ∗ bd(t), ωa ∗ fear(t), ωa ∗ os(t), ωa ∗ oac(t))))− de(t)) ∗ δt (1)
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Figure 7: Architecture of the BEN model from (Bourgais et al., 2020)

While in general, the BDI framework extends an ABM by incorporating the reasoning process for

making individual plans, the decisions the agents take when interacting with other agents also need to

be modelled in more detail. In Burkhard et al. (1997) and Bourgais et al. (2020), the final decision is

taken based on a decision tree and it is not clear how the decisions are taken on a collective level. In

Van der Wal et al. (2017), group decision making is included but is solely based on social contagion.

It can be assumed that actors during an evacuation scenario also engage in some rational strategic

reasoning processes to collectively make decisions.
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Figure 8: The decision making process of the BEN model from (Bourgais et al., 2020)

4.3 Game Theory

Game theory can be explained as a set of mathematical tools to explain the interactions between

decision-makers (Osborne and Rubinstein, 1994). A game refers to the representation of different

strategies to achieve different outcomes based on a given situation and the values that the actors

included in the game, called players in the notation of game theory, associate to the game. Players

include all those actors that are engaged in the decision making process. Each player is assumed to be

of bounded rationality, namely they want to maximise a certain utility for which they have limited

information to base their decisions on (Osborne and Rubinstein, 1994; Hermans and Cunningham,

2018).

Each player also has a set of moves or actions. The sequence of these actions refers to their

strategies and can be based on the anticipation of the decisions of other players. The outcome of the

game is the result of the combination of the strategies of all players. Each player prefers different

outcomes and the value a player assigns to a particular outcome is called the payoff. The game is

subject to rules which limits the set of possible moves and actions a player can make. In an evacuation

scenario, the utility could be to get out of the emergency setting as fast as possible. To achieve this,

they have several moves, such as cooperating with the other people at the nearest exit or forcing the

way through. Each of these actions have different payoffs, depending on what they mean to the player

19



4.3 Game Theory 4 MODELLING EVACUATION SCENARIOS

Figure 9: Relationship between modules of IMPACT model from (Van der Wal et al., 2017)

(Osborne and Rubinstein, 1994; Hermans and Cunningham, 2018).

A plethora of different types of games can be distinguished with different solution concepts. Which

concept to use for the mathematical formulation of the problem depends on the use case (Osborne

and Rubinstein, 1994). Most notably, there are cooperative and non cooperative games which will be

explained more in detail in the following section. An overview of concepts can be found in Table 1 and

solutions.

4.3.1 Cooperative Game Theory

Cooperative game theory analyses the creation of alliances, coalitions and groups that bring additional

value for the individual players in these groups. In general, actors are assumed to be rational and take

rational decisions, thus maximising the utility they expected to be resulting from the game. When

considering cooperation, collective action is considered as well and hypothetical values resulting from

creating coalitions is needed (Hermans et al., 2014; Wang et al., 2003).

The goal of cooperative theory is to determine which players should cooperate with which, which

actions they jointly take and how much each actor should be willing to sacrifice for the the common

interest of the coalition. In general, cooperative games can also be analysed using non cooperative

game theory that could theoretically include all available strategies for strategic bargaining to enforce

a cooperation (Osborne and Rubinstein, 1994).

A cooperative game is represented in characteristic function form, such as in Figure 10 from
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(Hermans et al., 2014). Here, assumptions must be made about the value of the coalition for the players

for instance when faced with a hostile reaction from the remaining players. The point is not to choose

the most realistic value for each coalition but to have a relative quantification of the coalitions. To

illustrate, in Figure 10, there are 4 players, namely players R, W, M and N. The grand coalition given

by v(RWMN) includes all players and has a payoff of 81 units. The zero coalition v(∅) is per definition
equal to 0 units. A coalition between R and N solely has a payoff of 69 units while cooperating together

with W would result in a higher payoff of 100 units. This is can be argued that, depending on how

these units are distributed amongst the members of the coalition, player R will prefer cooperating with

W over the grand coalition, which it still prefers over cooperating with N.

Figure 10: Characteristic function form of a 4 player game from (Hermans et al., 2014) where
v(.) refers to the value of the indicated coalition to the members of the coalition indicated by a
letter.

The values that each coalition constitutes for their members needs to be determined. For this,

there are different solution concepts, there being the Core, the Shapley value and the Nucleolus.

Mathematically, a coalitional game as described above is given by a set N with n players and the

characteristic function v that attributes a subset of players to a real number. Hence, given a coalition

S of players, then the total expected payoff that all the members of S can expect is given by v(S). The

outcome of a game can be understood as the payoff vector x = (x1, x2, ..., xn). The core is then given

by three conditions. First, individual rationality must be met: xi ≥ v(i), which means that the payoff

xi player i gets from a coalition S should be at least what player i gets when not being a member

of the coalition. Second, group rationality must be met:
∑N

i=1 xi ≥ v(S), meaning that the sum of

the payoffs xi must at least meet value v(S) of the coalition S. Finally, the coalition must be jointly

efficient with
∑N

i=1 xi = v(N). where v(N) denotes the grand coalition of which all players are member

of Hence, the sum of all the payoffs that the players receive needs to add up to the value of the grand

coalition.

The Core value aims at meeting the needs of the individual as well as of the group. It refers to the

‘Best Alternative to a Negotiated Agreement’, meaning that a player cannot be assigned less utility

than they would have gotten in a different, smaller coalition. The Core can thus be understood as the

intersection of the three linear inequalities above and hence it is not always assured that a game has

indeed a core (Shubik, 1981; Wang et al., 2003).

The second solution concept is the Nucleolus value. The Nucleolus aims at minimizing the maximal

excess. In other words it aims at minimizing dissatisfaction and thus making the most unhappy player

as little unhappy as possible (Wang et al., 2003; Shubik, 1981).
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When defining x(S) =
∑

xi, the excess e can be given by e(S, x) = v(S) − x(S). Then, the

nucleolus is found by Equation 2.

min e(S, x) s.t. x(S) + e(S, x) ≥ v(S) (2)

The third solution concept is the Shapley Value which can be described as the ‘fair reward’ to the

players, based on what they bring to the negotiation table. Each player gets a weighted average of

what the player contributes to the coalition (Wang et al., 2003; Shubik, 1981).

The Shapley value is computed according to Equation 3, where N is the set of players in the game.

xi =
∑

S⊆N\{i}

(S − 1)!(n− S)!

n!
[v(S)− v(S ∪ {i})] (3)

Figure 11 shows the solution of a three player cooperative game from (Wang et al., 2003), where all

players need to share a water resource. Each edge of the triangle represents the single player coalition

of each player (City 1, City 2 and a player called IWA). From the values in brackets it can be seen

that the payoff for the players that are not in the coalition is zero. When moving along the edges of

the ternary plot, the value for the 2 player coalitions can be estimated, while the value for the player

opposite to the edge is still zero. Inside of the triangle are the possible values for the grand coalition

which includes all players. The green area shows the core were all the conditions for coalition efficiency,

individual rationality and group rationality are met. The Shapley value and the Nucleolus value are

usually located within this region (Hermans et al., 2014).

While game theory in general has been used for evacuation models, cooperative game theory has not

been as widely used. One application has been of Collins and Frydenlund (2016) who use cooperative

game theory to study the strategic formation of groups in migration flows of refugees. For this, the

authors use the concept of the Core as solution concept to incorporate into an ABM of an evacuation

scenario. Each agent’s utility function has two parts that are given different importance, the first

representing speed of reaching the desired destination and the second the protection stemming from

belonging to a group in Equation 4. s(a) denotes the maximum speed of agent a and G(a) refers to

the group to which agent a currently belongs to. The total number of agents is given by N and λ is

a weighting factor (Collins and Frydenlund, 2016). the chosen group of agent a is calculated as the

following where |.| denotes cardinality.

V (a) = λ min
x∈G(a)

s(a) + (1− λ)(|G(a)| − 0.5)/N (4)

This results in the three strategies of (1) kicking members out that are too slow, (2) of leaving a

group and switch to a faster group and (3) of supergroup formation, where people end up clustering

into one or two huge groups. At each time steps, all agents check if they can employ a strategy to

achieve a higher payoff. The authors run their simulations with NetLogo but do not find the Core of

the game (i.e. a distribution in subgroups, where each agent gets the highest possible payoff compared

to all other sub-group formations), since this would be too computationally intensive with the 153

agents they consider, as each subgroup would need to be evaluated for each time step. The authors

instead only consider, at each time step, one stochastically generated subgroup for each agent based on
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Figure 11: Ternary plot of a three player cooperative game for water allocation according to
Wang et al. (2003)

the agents in its neibhourhood(Collins and Frydenlund, 2016).

4.3.2 Non-cooperative Game Theory

In contrast to cooperative game theory, non cooperative game theory only considers one player’s

individual actions and its individual utility. Different strategic interactions amongst the players can be

analysed using non cooperative game theory, these being the Nash equilibrium, the Pareto optimum

and the Hick’s optimum.

Simultaneous games are usually given in normal form, such as in Figure 12 from (Gibbons, 1997)

and are designed for competitive games with no cooperation. It is based on the assumption of complete

information, namely both players know their respective payoffs. However, both players have no

knowledge about the strategy chosen by the other player. The payoffs for each move can be seen in

each matrix cell. In the game in Figure 12 a rational player 1, knowing that player 2 is rational as well,

will assume that player 2 will never choose strategy ‘Right’, since ‘Right’ is dominated by ‘Middle’.

Whether player 1 opts for ‘Down’ or not, player 2 is always better off choosing ‘Middle’ rather than

‘Right’. Hence, as player 2 will choose either ‘Left’ or ‘Middle’, player 1 will always be better off going

for ‘Up’ as here its payoff is always greater than when going ‘Down’. Since player 2 is rational as well

as can do the same reasoning, it knows that player 2 goes ‘Up’ and therefore chooses ‘Middle’. Hence,
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the solution for this game is (Up, Middle) for players 1 and 2 respectively Gibbons (1997).

Figure 12: Non cooperative simultaneous game between two players in normal form from
(Gibbons, 1997)

This reasoning process can be formally given using the solution concept of the Nash equilibrium.

The payoff function of a player i is given by Pi(sti, ..., stn). Then, the equilibrium is the set of strategies

given by (st∗i , ..., st
∗
n), for which Equation 5 is satisfied for all i = 1, 2, ...n. Thus, Shubik (1981) gives:

Pi(st
∗
i , ..., st

∗
n) = max

sti∈Si

Pi(sti, ..., stn) (5)

The Nash equilibrium is the most commonly used solution concept in non cooperative game theory.

It assumes no trust and no cooperation between the players and it can result in social dilemmas and

the so called ‘Tragedy of the Commons’, where due to the focus on individual payoffs, the collective

use of a resources is not efficient. An example of this is the so-called Prisoner’s dilemma shown in

Figure 13. The upper left cell shows the prison sentence for both players if they both cooperate. The

lower left and upper right show the payoff they get if one of them cooperates and the other defects

(betrays). The lower right shows the payoffs they receive when both defecting. Thus, it can be seen

that both players will always get a higher payoff if they defect, no matter what the other player does.

If player 1 cooperate, player 2 should defect. If player 2 defects, player 2 should do so as well. Mutual

cooperation would have resulted in an overall better payoff but would have been irrational from an

individual perspective. This is thus a game, where the Nash equilibrium is not Pareto efficient: Pareto

efficiency, a second solution concept for non cooperative game theory, is achieved when no player can

further improve its pay-off without reducing the pay-off of another player. For this it is assumed that

all players want to avoid a lose-lose situation and that it is not possible to take from one player to give

to another (Osborne and Rubinstein, 1994; Shubik, 1981; Hermans and Cunningham, 2018).

Next to the Pareto Optimum and the Nash Equilibrium, the Hicks Optimum is a third solution

concept for non cooperative game theory. It refers to the maximum combined payoff, where the players

need to be willing to redistribute and the payoff is transferable. It is assumed that the payoff that

players attribute to their desired outcome during evacuation scenarios is not transferable. Therefore,

this solution concept will not be considered (Hermans and Cunningham, 2018).

Games with complete information as the two games above can be distinguished from those with

incomplete information. While so far both players were assumed to be aware of the other’s payoff, now
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Figure 13: Prisoner’s Dilemma from (Gibbons, 1997)

there will be probabilities introduced and the games treated as a Bayesian game. An example is given

in Figure 14, where two players are on a date and need to make a choice regarding what they will

order. Chris has the choice between either Steak or Chicken, based on Pat’s choice of either red or

White wine. In this game, they do not know the utility of the other player and hence do not know

which strategy they will choose. Therefore Chris will choose Steak if tc exceeds a critical value c, while

Pat chooses white wine if tp exceeds a critical value p. Hence, the probability with which Chris chooses

Steak is x−c
x and for Pat to choose white wine is x−p

x . with x denoting their expected payoff. Based

on these probabilities, a Bayesian Nash equilibrium can then be determined. However, equilibria can

potentially arise that include non credible beliefs and result in strategies that rational players would

not carry out since it would be in their best interest (Gibbons, 1997).

Figure 14: Bayesian game from (Gibbons, 1997)

Finally, there are evolutionary games which are often explained with the example of the two player

game of the ‘Hawk & Dove’ competition. They need to share a resource and based on whether a hawk

meets another hawk or a dove and a dove meets another dove or a hawk, receive a different payoff.

This payoff depends on the probability of meeting a dove and a hawk. This probability again depends

on the amount of doves and hawks in the population of birds which is based on the previous outcomes

of the game (Osborne and Rubinstein, 1994).

For evacuation scenarios, there are several models using non cooperative game theory. Wang

et al. (2014) and Bouzat and Kuperman (2014) both consider an indoor evacuation scenario in which
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Table 1: Different concepts in game theory

Table 2: Different methods to games

a two player game determines who can use the exit. They do so based on the rules similar to the

Prisoner’s Dilemma and consider the behaviours of ‘Cooperator’ and ‘Defector’. Ibrahim et al. (2019)

take this a step further and use a social force model for simulating the evacuation process of a crowd.

The interaction of the actors in the crowd is modelled with game theory, where agents play against

conflicting neighbours with the objective to reduce evacuation time and thereby increasing their payoff.
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The estimated evacuation time of an agent’s neighbour is given by Ti(ic) =
Ti+

∑Nic
ic=1 Tic

1+Nic
with Nic

denoting the number of neighbors ic of agent i. The change in utility that a winner in the conflict gets

and the losers loose is then define as δu(Ti(ic)). The authors define four different strategies (cooperator,

defector, evaluator and retaliate) that each receive a different payoff and introduce a conflict cost td

that applies to actors that do not cooperate. It represents the lost time due to for instance pushing

each other. The different strategies of the agents are updated simultaneously at each time step, based

on the agents behaviour. There are 4 fixed types of behaviours, risk-averse (maximising the minimum

available payoff), risk-seeking (maximax, i.e. maximising the maximum possible result), risk-neutral

(minimax, i.e. earning regret when failing to choose best strategy) and best-response under certainty.

The latter represents the behaviour to adapt under conditions, where agents are able to observe other

agents’ strategies in previous time steps (choosing the strategy that is at least as good as in previous

time step). Figure 15 shows how the winners of each conflict in the crowd is computed. At each time

step, the winners then get to move to their desired position at their preferred speed which is based on

the total egress time and the safe egress time (Ibrahim et al., 2019).

Lo et al. (2006) use non cooperative game theory to explain how agents choose one out of multiple

possible exits to leave a building. A two player game is first considered between the crowd and a

’virtual entity’ representing the congestion of the exists. The crowd entity chooses an exit with the

objective to minimise the exit time and the virtual entity represents congestion of the exists and tries

to guess which exist the crowd will choose and blocks it. The result of this step is a Nash equilibrium

of exit choices with probabilities.

The total evacuation time and hence the payoff is equal to aij under scenario (αi, βj), where βj

means that a capacity restriction is imposed on exit j and αi mean that all players choose exit i. The

value of aij then depends on the width of exit i as well as on the crowd density at exit i and the

strategy βj (Lo et al., 2006).

In the second step, each individual evacuee’s decision needs to be determined, where each agent’s

distance to an exit i is used to adjust the probability of choosing it. This results then in the final

probability exit choice matrix, based on congestion of the exit as well as on the distance of the agent

to the exit. The model of Lo et al. (2006) thus does not use game theory to model the interactions

between the individuals of a crowd, compared to Ibrahim et al. (2019) or Collins and Frydenlund

(2016).

In (Wang et al., 2014), (Bouzat and Kuperman, 2014), (Ibrahim et al., 2019) and (Lo et al., 2006),

the used utility functions are mostly based on reducing evacuation time to achieve maximum payoff.

However, agents might also take other aspects into account, depending on their emotional state, their

beliefs and desires. Hence game theory on its own is limited to realistically model the behaviour and

the decision making of trapped victims in an indoor evacuation scenario.
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Figure 15: Algorithm of Ibrahim et al. (2019) to decide on winner of conflict
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Table 3: Reviewed models that use the concepts of ABMs, BDI, and game theory
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5 INDOOR EVACUATION MODEL: GAME THEORY AND BDI

5 Indoor Evacuation Model: Game Theory and BDI

The utilization of search and rescue (SaR) robots in emergency response operations has proven to be

instrumental in alleviating the burden on first responders. However, while significant research has

focused on enhancing the technological aspects of these robots, the human element and the potential

impact of their presence on victims’ behavior have been largely overlooked.

The development of a behavioral model for trapped victims can assist in the mission planning of SaR

operations. The review of existing literature shows that various tools are available for modeling human

decision making. However, it is evident that these tools have limitations, such that further research

is needed to incorporate more elements that accurately reflect human decision-making processes in a

simulation model.

Moreover, it is crucial to note that no existing evacuation model currently incorporates SaR robots.

As a result, none of the existing models can simulate the impact of these robots on human behavior

during evacuations. The development of such a model would enable a comprehensive examination of

how SaR robots can be effectively employed to assist in rescuing victims from emergency settings.

To address this research gap, a combination of tools such as Agent-Based Modeling, the Belief-

Desire-Intention (BDI) framework, and game theory concepts emerges as a promising approach. By

integrating these methodologies, it becomes possible to capture the cognitive and emotional reasoning

processes of individuals, as well as to explain both individual and collective rationality in joint decision

making during indoor evacuation scenarios.

Thus, in the remainder of this report, a combined model is built, the GT-BDI (game theory - BDI)

model. This model is implemented in NetLogo and based and validated on prior research of Van der

Wal et al. (2017) and Ibrahim et al. (2019). The specific use case of the model will be an indoor

evacuation scenario. Furthermore, more research is done into human robot interaction and how trust

affects this relation. These aspects are then implemented in the GT-BDI model and used to estimate

the affect of the presence of SaR robots on human behavior.
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6 Preliminary Conclusion

This report reviews the literature on SaR missions for fleets of robots that need to search for victims.

In section 1, the societal relevance for this endeavour is stated. Disasters represent disruptions to

the population to which they occur and they infer huge costs for the victims. Due to their very

nature, disasters cannot be prevented and therefore, measures must be taken to reduce their disruptive

character. In section 3, disaster management is introduced and the challenges that go alongside with

the related activities are explained. Of these activities to respond to disasters are SaR missions. These

need to be conducted in hostile environments that pose a life threatening risk to the first responders

and rescue workers. Hence, the deployment of a fleet of robots is a promising solution to decrease

risks where possible. Robots face their very own challenges when conducting a SaR mission. Their

sensory capabilities can be impeded by the environment and the task of locating an tracking trapped

victims is challenging. A model of how the victims behave can give insight into the location of the

latter and alleviate the SaR mission. Thus, section 4 gives an overview of possible methods to create

such a model. These range from ABM on its own, over the BDI framework to augment ABM models

with cognitive and emotional features to game theory for individual and collective decision making.

Game theory includes cooperative and non cooperative game theory, where cooperative game theory

focuses on explaining how groups form in a crowd while non cooperative game theory focuses on how

individuals maximise their own benefit. Finally, section 5 concludes that several of these tools lend

themselves well to be combined into one model aiming at recreating human decision making as realistic

as possible. Consequently, a model is proposed, based on non cooperative game theory integrated

with a BDI model. This model is to be compared to an existing benchmark that is identified in the

literature review of this report. To put it in a nutshell, the proposed model aims to give insight into

how a crowd of agents in an indoor evacuation scenario takes decisions to provide a basis for efficient

SaR mission planning and disaster management.
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Abstract—The impact of disasters on the affected pop-
ulation is catastrophic. Proper disaster management prac-
tices are needed to reduce their societal damage. This
includes Search and Rescue (SaR) missions, which pertain
measures to find potentially trapped victims. This task
can be alleviated by the support of a fleet of SaR robots.
This fleet is deployed to locate trapped victims and to
report back their position to the emergency responders
and potentially to follow them to track of their potential
movements. Locating trapped victims is challenging, as
the number of these people, their initial position and
potential displacements may be unknown. A behavioral
model of the victims can give insight on how they take
decisions and act during an evacuation situation. Several
techniques are used in the state of the art. This study
proposes an evacuation model that integrates game theory
into the belief-desire-intention framework. The model is
validated with a benchmark from the state of the art.
It is found that the model is able to produce realistic
evacuation times. This depends on the distribution of the
game theoretic strategies in the population. SaR robots are
then added to the validated model. It is found that their
presence reduces the evacuation time, depending on several
parameters influencing trust of the victims in the robots.
Thus, this research contributes to the field of research SaR
operations by providing insight into the behaviour of the
trapped victims in the presence of rescue robot.

Index Terms—Evacuation, human behaviour, search and
rescue robots, human-robot-interaction, game theory, BDI
framework

I. INTRODUCTION

Search and rescue (SaR) missions are performed

very early as part of disaster response measures:

Rescue workers need to secure the site of the

disaster, locate victims, and rescue them from the

potential risks. The decisive factor for the success of

SaR missions is often the speed with which rescue

workers are at place and can conduct SaR missions

[1]. With technological advancements in various

fields such as in robotics, sensorics, and autonomy,

the field of SaR robotics has emerged. SaR robots

can alleviate the task of rescue workers and support

them in both finding and potentially saving the lo-

cated victims from the disaster scene. Robots prove

themselves helpful to assist in these tasks for various

reasons. To name only a few, robots are expendable,

they can participate in tasks that are hazardous for

human rescue workers, and finally, depending on

the extent of their autonomy, can take decisions

at a much higher speed [1]. Disaster scenarios are

highly complex. The environment is dynamic and

people interact with each other in order to get

themselves to safe areas. The behaviour of trapped

victims can further increase the tragedy of disasters.

A recent example is a soccer game in Indonesia,

where around 125 people died due to stampedes,

which resulted from people trying to evacuate from

the soccer stadium [2]. Understanding how humans

interact in a multi-actor setting can be a decisive

factor for efficiently planning a SaR mission [3],

with regard to the effective deployment of a fleet of
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robots. To illustrate, an event organizer could use

the model to evaluate how people would move in

their venue and how or where the deployment of

SaR robots could benefit a speedy evacuation.

Different people have different intentions during

a disaster, based on their individual goals. Some

people might be willing to cooperate with others,

while others will focus only on getting themselves

out of an emergency setting [4]. Modelling and

simulating human decision making is therefore a

first step in order to be able to ultimately predict

or at least estimate how people behave during an

evacuation. As such, these predictions have the

potential to further increase the speed and success

of SaR mission.

This paper is structured as follows. First, the

research questions to be answered and the contri-

bution of this study are mentioned in Section II.

Then, some background about modelling evacuation

behaviour and about SaR robots is given in Section

III. Section IV explains the methods that are used to

answer the research questions. The case study that

has been performed in this research, along with the

constructed model and its results, and a discussion

of these results and the limitations of the model are

given in Section V. Finally, Section VI recapitulates

the findings of the previous sections and proposes

topics for future research

II. CONTRIBUTIONS

This study aims at combining game theory (GT)

with the Belief-Desire-Intention (BDI) framework

to construct a validated evacuation model. Further,

evacuation robots are added to the model in order

to evaluate how their presence can influence the

evacuation process. Thus, the research questions to

be answered are the following:

RQ1: How can the BDI framework be adapted and

integrated with game theory concepts to effec-

tively capture the dynamics of human decision

making during an indoor evacuation scenario?

RQ2: How can the combined BDI-game theory

model be validated and evaluated to assess

its effectiveness in accurately simulating and

predicting human behavior during an indoor

evacuation scenario?

RQ3: What are the factors that influence human in-

teraction with SaR robots during an emergency

evacuation?

RQ4: How does the introduction of SaR robots af-

fect the overall evacuation time and evacuation

success rate in indoor scenarios?

Thus, this study contributes to the state of the

art by addressing the above four research questions,

which have been formulated such that their answers

fill in some of the knowledge gaps in modelling

human behaviour during indoors evacuation set-

tings, in the presence of evacuation robots. The

main contributions of this paper are in particular

the following:

• While there are existing, validated, and verified

models of indoor evacuation scenarios, these

only use separate frameworks for modelling

human decision making in multi-actor settings.

Integrating game theoretic concepts with the

BDI framework for modelling an indoor evac-

uation, allows to combine the best of these two

worlds. BDI models, on the one hand, are able

to capture the cognitive processes of human

decision making but do not necessarily cap-

ture the strategic decisions humans might take

when confronted with having to make trade-

offs regarding their own safety. GT, on the

other hand, does capture these strategic consid-
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erations, but describes all interactions between

humans as making trade-offs and maximising

one’s own payoff. This lacks all other dimen-

sions of human interaction, which BDI does

capture. Combining both approaches into one

model enables a more realistic representation

of human strategic decision making and and

is a novel way of modelling human behavior

during indoor evacuations.

• With including evacuation robots in the model,

the effect of the presence of rescue robots onto

the behaviour of the trapped victims can be

analysed. So far, no indoor evacuation model

includes a model of robots and of human robot

interaction. In addition, while a lot of research

is being conducted into trust of humans in

automation and in robots, no implementation

of a model of trust in an evacuation model was

found when reviewing the state of the art. This

implementation allows to evaluate how trust of

the evacuees in the robots influences the result-

ing evacuation time. Simulating the influence

of robots on decision-making of humans during

indoor evacuations can help to efficiently plan

and schedule the deployment of a fleet of SaR

robots before the actual mission.

III. BACKGROUND

In order to set the context of this research, this

section covers the background of the most important

elements of this study. As the aim of this research

is to construct a validated evacuation model that

captures reality as close as possible, this section first

provides a glance about the state of the art of evac-

uation modelling and concludes that there are still

some knowledge gaps in the state of the art. This is

what answering the first research question aims to

address, namely how to improve modelling human

decision making in evacuation settings. Then, as

this research also aims at introducing robots in the

model, that assist the evacuating humans in escaping

from the disaster scene, this section gives a brief

overview of different evacuation robotics. Finally,

as trust is an important concept in human robot

interaction, this section introduces some important

notions that describe the dynamics of trust in robots

over time, that allow for answering the third re-

search question about modelling evacuation robots

and evaluating the influence of their presence.

A. Evacuation Modelling

In multi-actor systems, where there are multiple

actor involved with different characteristics, the

overall behaviour of the system emerges from the

interactions of these individual actors. An evacu-

ation scenario can be described as a multi-actor

systems. The trapped victims all behave differently

and from their interactions, a global behaviour can

be derived. This emerging pattern is too complex

to be understood with a mental model. Therefore,

computational simulation models are often needed

to grasp what is happening during an evacuation

scenario.

There are many different techniques for mod-

elling multi-actor systems, such as evacuation sit-

uations. These can be divided into microscopic

and macroscopic models, depending on the aim of

the analysis [5]. Microscopic modelling techniques

include social force models, lattice gas approaches,

and belief-desire-intention models using cellular au-

tomata or agent based models (ABM). Macroscopic

models are for instance fluid dynamics models [6].

Another mathematical approach is GT. All of these

have their drawbacks and advantages and for best

3



results, [7] suggest further research into combining

these techniques.

B. Evacuation Robots

The environments, in which SaR missions are

conducted are often very complex. Indoors disaster

scenes are often very cluttered. In the case of a col-

lapsing building, there is a lot of rubble and debris.

Therefore, SaR robots can assist rescue workers in

the task of SaR missions. While there are many

ways, in which robots can be used for SaR, in this

study, they figures as evacuation robots. This means,

that they assist the victims trapped in a disaster

setting to evacuate from this building and guide the

evacuees out of the danger zone. However, there are

many difficulties in this task: To name a few, there

is often an unknown number of victims is trapped in

the building that need to be evacuated. Thus, the first

step for the robots is often, to locate victims to be

evacuated. While the victims are mostly considered

to be stationary, they might still be locally moving

when trying to get out of the disaster scene and

to find their way out of the debris. This further

complicates the mission planning for the robots [8]–

[10].

Once having located the victims to be evacuated,

it is thus imperative not to lose the victims once they

have been detected [3]. In this study, the victims

do not need to be detected. It is assumed that

the evacuation robots have successfully performed

the localisation task. At the same time, each robot

can have one or more targets assigned for the

observation and following tasks [3]. In this case,

an additional challenge arises for determining the

most efficient target allocation for each robot. For

the planning of following tasks, a behavioural model

of the targets to be tracked has been used in [11].

Doing so can give an idea on how victims might

take decisions and where they might move towards

in order to get out of the disaster setting. In this

study, to each evacuation robot, victims are allocated

to the particular robot that is in their field of view.

C. Trust in Robots

To determine to what extent these robots are

helpful to speed up the evacuation process, the

interaction of the evacuees with the evacuation

robots needs to be evaluated. On the one hand,

humans have a tendency to trust robots and systems

less, when they do not understand them [12]. The

more autonomous the robots appear to behave, the

less humans might trust them, as they lack the

transparency and explainability of the robots. On the

other hand, however, research shows that especially

in emergency situations, people tend to overtrust

robots, even if they do not function correctly. In an

evacuation situation, an example of a faulty robots

could be one, that does take the lengthier path to

the next exit. This overtrust can thus have severe

consequences as the robots might potentially guide

the evacuees to greater danger [12], [13].

[12] define trust as a “multidimensional psycho-

logical attitude”. This attitude of humans (trustors)

is based on their beliefs and expectations of a

trustee’s (robot) trustworthiness. This, in turn, de-

pends on the humans’ experience with this trustee

in uncertain and risky situations. Thus, trust is

dynamic over time with the phases of trust for-

mation (trustor’s decision to trust, depending on

the predictability of the behaviour of the system,

trust then potentially increasing over time when

automation is reliable), trust dissolution (trustor’s

decision to lower trust after trust violation), and trust

restoration (trust stops decreasing and is restoring).
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With continued systems faults, trust decreases fast

but then at some point begins recovering even if

continuing faults. [14] make the distinction between

acute failures (transient; e.g., repairable mainte-

nance related failure), which make trust decline and

recover, and chronic failures (e.g., software bug),

which make trust decline until the humans have

understood the faults and learnt how to handle them.

First-order differential equations seem to capture the

change of trust over time. The largest effect will be

right away, while residual effects remain over time.

Also, there seem to be differential effects, where

small faults have a small effect on trust and large

faults large ones and thus slower recovery of faults.

Plus, varying magnitudes of faults diminish trust

more than large constant ones. When people have

prior knowledge about faults, these do not lead to

diminish of trust. This relates to the notion of system

predictability, where an understanding of the system

leads to higher trust. At the same time, automation

successes will increase the trust in automation and

automation failures decreases trust, while trust de-

creases faster than it increases. While trust decrease

due to an automation failure is faster if the final

outcome of a task is undesirable, the opposite it

not true. Trust will also increase if the human fails

without the automation, while the opposite is only

slightly true [15].

Regarding properties of the trustor, there is some

empirical work about the propensity to trust [12].

People trust automation less, if doing so increases

the probability of negative consequences. After

trust dissolution, trust recovery also takes longer in

riskier situations than in less risky situations. Trust

is more resilient when the reliability of the automa-

tion is high at the beginning and then decreases

when compared to when it is low at the beginning

and then increases.

[12] distinguish two types of human robot inter-

actions: performance-based interactions (e.g., UAV

performing surveillance and recognition of victims

in a SaR mission), while here trustors are considered

as operators (humans controlling the robot) and

social-based interactions (how a robot can influence

a human to e.g., take medicine or do useful exer-

cises), where trustors are considered to be humans

whose beliefs and behaviours are influenced by the

robots. In performance-based interactions, opposite

of the experimenters’ hypothesis, people seem to

overtrust robots in a fire emergency situation, even

though the robots showed several faults (e.g., run-

ning in circles) (trust rating and trust behaviour not

consistent). In social-based interactions, the decision

of the human to comply or not comply is depending

on whether this request is revocable or irrevocable.

In addition, the appearance of the robots also play a

role in trust: People place more qualities into robots

that look more anthropomorphic, as well as animacy

and intent. Moreover, people are less inclined to

anthropomorphise when robots make mistakes [12].

[14] define trust as “the attitude that an agent

will help achieve an individual’s goals in a sit-

uation characterized by uncertainty and vulnera-

bility”. While human-automation interactions can

be described with trust, there are some differences

between interpersonal trust and trust in automation.

Between humans, trust emerges after recurrent in-

teractions. At the same time, how one is perceived

by the other influences one’s behaviour (trust as

self-fulfilling prophecy). As for decision-making in

general, self-confidence is important and influences

trust and reliance on automation.
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IV. METHODOLOGIES

In this research, an indoors emergency evacuation

model is constructed that simulates the process

of people evacuating from a disaster scene. This

evacuation model is an ABM: The agents in an

ABM interact with the environment and with each

other based on a set of pre-defined rules. These

rules as well as the characteristics of the agents are

derived from the modellers induced observations of

the real world [16].

In this research, these rules are implemented by

integrating the BDI framework with GT. Combining

these two concepts allows to model the process of

human decision making in more detail. This section

thus motivates the choice for these two modelling

techniques and first introduces the applied BDI

framework. Some background is given on the rules

that are implemented in an ABM to model the

behaviour of the evacuating humans. Second, GT

is explained.

Its integration with the BDI framework, as well as

some of the used formulas are given. This allows to

answer the first RQ about how to integrate GT into

BDI. In the model, there are (1) the humans trapped

in the disaster setting and aiming at evacuating the

building as fast as possible and, (2) the evacuation

robots that assist these humans in evacuating from

the disaster scene.

Depending on the success of the previous interac-

tions with a robot, a human will adjust the level of

trust it has in this particular and also all other robots.

Thus, this section ends with explaining the concept

of trust in human-robot interaction, as well as the

dynamics of trust over time. This way, the third RQ

can be addressed, about modelling the interaction

between evacuees and SaR robots.

A. BDI Model

Microscopic models aim at representing the in-

teractions between humans. As opposed to macro-

scopic models, they enable to analyze how, in a

multi-actor system, a overall behaviour emerges

from these individual interactions. This makes it

also possible to explain how a system of humans

adapts and changes over time and how disruptions

and external factors can affect this system. This is

not possible with macroscopic models, in which in-

stitutional rules restrict the possible range of actions

of the actors [17] . Hence, as an evacuation scene

can be described as individual interactions giving

rise to a global pattern, a microscopic model is

needed.
Microscopic models are often implemented as

ABMs [18], [19]. An ABM is a computational tool

for modelling geo-spatial systems, that is systems,

that are changing in time and space. An evacuation

setting can be described as such a system and thus,

an ABM is a natural choice. An ABM relies on

pre-defined rules that the modeller infers from the

real world to represent how the agents in the model

behave in the environment. There are several ways

of how these rules are inferred, while in many

frameworks to build ABMs, incorporating psycho-

logical and emotional factors remains a challenge

[20].
One of these, the BDI framework, reflects the

research in [21] into human practical reasoning and

the planning theory of intentions, which is able to

address this challenge. The BEN model (behaviour

with emotions and norms) from [22] is a BDI

model that includes emotions (personality, social re-

lationships, emotional contagion) and norms (laws,

obligations) to an agent’s evacuation behaviour. The

IMPACT model from [4] uses the BDI framework
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to model socio-cultural, cognitive and emotional

factors of evacuation behaviour.
Thus, this study also uses the BDI framework

to model human evacuation behaviour, as it has

been used in the past to model human behaviour

in evacuation settings, taking into account a larger

degree of the complexity of human decision making,

than other techniques.
Humans in the BDI framework are referred to as

agents and have the following features [23], [24]:

• They have beliefs about the state of the world.

These beliefs can change and new beliefs

can be added to the belief set as the system

changes.

• Desires can be compared to values, and reflect

the motivation of an agent, hence situations that

the agent would like to happen. An ‘activated’

desire can be seen as a goal, namely a desire

the agent is currently committed to.

• Finally, intentions reflect what an agent has

chosen to do and thus represent desires to

which agents have committed to. In order to

achieve an intention, several plans are needed,

representing sequences of actions that an agent

takes.

By using the BDI framework to model the ABM’s

agents, the process of making a plan and executing

this plan can be considered specifically. This way,

an ABM that models the interactions between the

different agents does not only capture the emerging

actions from these intentions, but with the BDI

framework also captures how these interactions

come about. Hence, when using the BDI framework

for ABMs, the inductive modelling process and the

modeller’s assumptions can be backed by a theory

to describe how humans reason and plan. In this

research, the implementation of BDI rules into the

ABM is based on [4].

In the ABM, there is a given percentage of chil-

dren, adults, and elderly people (male and female)

with different speeds, compliance, and familiarity

with the environment [4]. They have one of the

following four different characters, ranging from

very selfless to very selfish (the altruists, the selfless,

the egoists, and the selfish) [25], which determine

what game theory strategy they will take. At the be-

ginning of the simulation, agents are randomly dis-

tributed in the environment and randomly assigned

to groups of 1, 2, 3 or 4 people. Group members

are linked, meaning that they have a relationship

with each other. This means that those agents are

for instance families, relatives, or friends, while no

distinction is made between these. It is assumed that

agents in a group will assist each other during the

evacuation process.

The simulation environment, in which agents are

located is described as a neighbourhood, through

which they can move throughout the simulation.

An agent can interact with other agents in the

neighbourhood.

1) Belief: Based on their perception of all other

agents’ fear and their own fear, agents will believe

whether or not there is danger. This represents the

concept of social contagion [4] According to this

concept, perceiving other agents that believe that the

situation is dangerous will thus increase the belief

about danger, which an agent attributes to a specific

situation.

2) Desire: An agent’s desire is either to continue

walking around randomly or to start to evacuate,

depending on how strong their belief of danger is

and depending on their character. The altruists and

the selfless agents will continue to walk around

randomly for longer, in search of other agents to
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help. The selfish and the egoist agents will desire

to evacuate as soon as possible to safe themselves.

3) Intention: When the desire of agents is to

evacuate, an agent’s intention is to get to the nearest

exist as soon as possible. Whether or not an agents

finds this nearest exit depends on the agent’s fa-

miliarity with the environment. This binary variable

describes whether or not an agent is familiar with

its surroundings. An agent is either familiar with the

environment, or not. If the agent is familiar with

the environment, it is aware of where the nearest

exit it to be found (e.g., an emergency exit). If the

agent is not familiar with its surroundings, it is only

aware of the main entrance, through which the agent

has entered the environment. An agent’s familiarity

with the environment can change, when there is an

evacuation robot present in the agent’s field of view,

of course only if the agent trusts the robot. If the

agent does not trust the robot, it will not accept what

the robot suggests and thus not become familiar with

the environment. Every agent will always be aware

of the main entrance, as this is the entrance, through

which they are assumed to have entered the room.

B. Non-Cooperative Game Theory

GT can be described as a set of mathematical

tools that explain the interactions between various

decision-makers [26]. As this is what this study aims

at analysing the choice for GT is natural: It enabled

to model and mathematically compute the values of

the interactions and the decision-making of humans

during evacuation settings.

A game refers to the representation of different

strategies to achieve different outcomes based on

a given situation and the values that the players

in the game associate to the it. Players include all

those agents that are engaged in the decision making

process. Each player is assumed to be of bounded

rationality, namely they want to maximise a certain

utility, for which they have limited information to

base their decisions on [17], [26]. Each player also

has a set of moves or actions. The sequence of

these actions in an iterative game (i.e., with multiple

rounds) refers to their strategies and can be selected

by the agent on the anticipation of the decisions of

other players. The outcome of the game is the result

of the combination of the strategies of all players.

Each player prefers different outcomes and the value

a player assigns to a particular outcome is called the

payoff for that agent. The game is subject to rules,

which limit the set of possible moves and actions a

player can make.

A distinction can be made between cooperative

GT and non-cooperative GT. Cooperative GT aims

at analyzing the creation of coalitions that bring

additional value for the individual players in these

coalitions. In cooperative GT, collective action is

considered and hypothetical values resulting from

creating coalitions need to be derived and quantified

[27], [28]. With this cooperative GT aims at calcu-

lating which player should cooperate with whom

and how much each player should sacrifice for the

the common interest of this coalition. Cooperative

games can also be analysed using non-cooperative

GT [26]. Here, only one player’s individual actions

and its individual utility are considered. This enables

to analyse different strategic interactions amongst

the players. As this study aims at modelling the

emerging evacuation behaviour of humans in a

disaster setting, the choice for non-cooperative GT

is made. It allows to take into account actions of

individual agents and how these lead to interactions

with other agents.

For evacuation scenarios, non-cooperative GT has
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been used before. [29] and [30] model an indoor

evacuation scenario in which a two player game

determines who of the two can use the exit, while

[31] use non-cooperative GT to explain how agents

choose one out of multiple possible exits to leave

a building. [32] model the interactions of agents

with non-cooperative GT, where agents play against

conflicting neighbours to reduce their evacuation

time.

In this study, in an evacuation scenario, the utility

is defined as getting out of the emergency setting as

fast as possible and thus depends the distance to the

nearest exit. Other aspects are also included in the

utility, that depend on the GT character of an agent,

such that the utility of selfless and selfish people

will vary. A game is launched as a conflict that

arises between two agents during the evacuation:

If two agents with the intentions to evacuate get

into each other’s way, they need to decide who

can take the next step first. To achieve this, the

players have two options; cooperating with the other

agent or fighting (which is called defecting in game

theoretic speech). Each of these actions have differ-

ent payoffs, depending on what they mean to the

player and thus their character [17], [26]. These are

the four different characters, corresponding to the

classic Prisoner’s dilemma. These are the altruists

(cooperators), the selfless (tit-for-tat), the egoists

(unforgiving), and selfish people (defectors) [25].

Whenever an agent gets into a conflict with another

agent, all those agents that are in the same group as

the agent in conflict move towards the scene of the

conflict in assistance, as it is assumed that people

that the agent in conflict has a relationship with

always want to help the agent.

An agent with the intention to evacuate, moves

into the direction of the exit. At each time step,

this agent thus gets closer to the exit. The distance

at time step k of an agent i to the jth exit with

position rexit
j , that the agent i is headed to, is given

by:

dij(k) = ||rexit
j � ri(k)|| (1)

where ri(k) is the position of agent i at time step

k. An evacuating agent i gets into conflict with an

evacuating neighbor l that is close to it. Then, the

difference in the estimated evacuation time of these

two conflicting agents for each time step is defined

with the cost function taken from [32]. vi(k) denotes

the speed agent i is moving with at time k.

�uil(k) =
dij(k)

|vi(k)| (2)

This equation represents the utility that is at play

in the evacuation game between conflicting neigh-

bours that depends on the character of the agents

(cooperator versus defector). The losing agent is

hindered in its intention to move towards the nearest

exit, as it first has to recover from the conflict. While

not modelled explicitly, a conflict in reality will

involve agents pushing each other and potentially

falling, such that the loosing agent will need a cou-

ple of seconds to get up again and sort themselves.

Thus, it loses precious time in the evacuation. It is

also this time lost that represents the conflict cost td,

by which the utility in Equation 2 is reduced in the

case, where two defectors are in conflict with each

other [32]. If two cooperators get into conflict, they

share the utility in Equation 2. If a cooperator gets

into conflict with a defecting agent, its payoff will

be the negative of the utility in Equation 2 while

the defecting agent will get the full utility.
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C. Robots and Trust

The evacuation robots are placed randomly into

the environment. It is their task to guide the agents

out of the disaster scene. For this, they follow

the 5 principles, as proposed by [33]. First, the

robots should do no harm to humans, meaning that

they should not hinder the evacuation and (acciden-

tally) direct the evacuees to greater danger. Second,

the robots need to communicate in a way that is

understood by a wide range of different people.

This includes the use of gestures, lights, and signs.

They also should attract attention while keeping

interaction with evacuees minimal in order not to

make the evacuees precious lose time during these

interactions with the robots. Finally, they should

help as many people as fast as possible to evacuate

the disaster scene. The model of the robots is

fairly simple. It is assumed that when an agent

with the intention to evacuate perceives a robot

within its field of view, this robot will show this

agent the nearest exit, towards which the agent will

then move. Thus, they will influence the familiarity

variable of the agents.
The level of trust of an agent into a robot can

change during the evacuation [12], [15]. Initially,

the trust is equal to an agent’s propensity to trust

[12], which is a fixed character trait of each agent.

Every agent has a different propensity to trust [12],

[13]. The maximum initial trust of an agent in a

robot cannot exceed its propensity to trust a robot.

In order to evaluate trust of the evacuees into robots,

three levels of robot failure are introduced. To what

extent the interactions between agents and robots

are successful determines whether the trust of an

agent in robots decreases or increases, with different

rates. These rates are fixed character traits of the

agents, but depend on the quality of human-robot

interaction [14], [15].

V. CASE STUDY

The goal of this research is to build a simulation

model of an indoors evacuation setting with the as-

sistance of evacuation robots. This simulation model

aims at extending a pure BDI model with GT to

better capture the nature of human decision making.

With the built model as described in Section IV,

this section starts with giving an overview of the

experiment set up of the case study. Then, the results

of implementing GT within the BDI framework

are introduced. These results need to be validated

because it needs to be established to what extent

this case study captures reality. For this, the model

is compared to an existing benchmark, this being the

Impact model from [4]. These steps aim at proving

an answer to the second research question, namely

how to integrate GT into BDI and to evaluate the

added value of doing so.

The Impact model is a BDI model that has been

validated against data stemming from an evacuation

drill with the EXODUS model [34], [35]. The EXO-

DUS model is described in literature as extensively

qualitatively and quantitatively validated [36]. The

Impact model is an ABM using the BDI framework

to model the evacuation behaviour of a crowd of

people from a transport hub. The model includes

different factors that aim at fully capturing human

decision-making, such as cognitive, emotional and

socio-cultural factors. Validation is done by compar-

ing the resulting evacuation time that the GT-BDI

model produces to the evacuation time as calculated

by the Impact model in similar settings.

In the next step, with a validated model, it can

be analysed how the deployment of evacuation

robots makes a difference in the evacuation process.
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For this, a varying number of robots in varying

failure states are introduced in the disaster setting.

Evacuation times as well as trust over time of the

victims in the robots are measured to estimate to

what extent these robots affect the success of an

emergency evacuation. These steps allow to answer

the fourth research question, about how to model

evacuation robots and to evaluate the influence of

their presence on the evacuation process. The code

needed for these analyses can be found in the

following Repository.

A. Set Up GT-BDI

The model was built using NetLogo 6.3.0. Data

analysis is conducted with Python. The computer

used to run the simulations is a MacBook Pro from

2014 with a 2.2 GHz Quad-Core Intel Core i7

Processor and memory of 16 GB and 1600 MHz

DDR3.

The evacuation environment consists in a square

room with four doors in each wall as can be seen

in Figure 1. This represents a room of 20x20m. At

the beginning of the simulation time, 600 agents

are placed randomly in the room. The size of the

agents equals a quarter of a patch in the NetL-

ogo environment which corresponds to a square of

about 0.27x0.27m. The agents have an observation

distance of 5m. The main entrance, through which

the agents had accessed the room is the lower one.

The remaining three doors are emergency exists,

of which the agents might or might not be aware,

depending on their familiarity with the environment.

The doors are 4m wide [4].

At the outset of the simulation time, a fire breaks

out. The location of the outbreak of the fire is

random. The fire has a radius of 3m. The fire does

not propagate during the simulation time and is

TABLE I
PARAMETER SETTINGS FOR VALIDATION OF THE MODEL

Setting 1 Setting 2
Familiarity 0% 50%
Duration of conflict td 30s see Table II
Percentage children 15% 15%
Percentage elderly 15% 15%
Percentage females 50% 50%
Fire location Random Random
Initial victim location Random Random
Group 1 person 100% 50%
Group 2 people 0% 25%
Group 3 people 0% 15%
Group 4 people 0% 10%

TABLE II
GAME THEORY PARAMETER SETTINGS

Min Max Increment
Defectors 10% 20% 5%
Unforgiving 35% 45% 5%
Tit-for-Tat 25% 45% 5%
Cooperators 10% 20% 5%
Duration of conflict td 5s 30 s 10s/15s

static. When agents get stuck in the fire, they die.

After the fire has erupted, the evacuation time starts

with the first agent noticing the danger and starting

to evacuate. The evacuation ends, as soon as all

living agents have either left the room through one

of the four doors.
All parameters characterising the agents are kept

constant during the simulation time. To make com-

parison to the benchmark possible, Setting 1 of the

model is inspired in [4] and given in Table I. In

Setting 2, other aspects are taken into account that

enable to analyze the added value of integrating GT

and BDI.
For validating the model, in Section V-C1, simu-

lation runs are conducted without evacuation robots.

Only parameters relevant for the implementation

of GT are changed, these being the distribution
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of character traits in the agent population and the

duration of a conflict between agents (see Table II.

The distribution of character traits will affect the

choice for GT strategies of an agent and thus its

resulting evacuation time. The duration of a conflict

will also affect the agents’ evacuation times. It is

assumed that the longer the conflict, the longer

the resulting evacuation time. The conflict duration

is seen as the entire duration from engaging in

a conflict, until an agent has recovered from the

conflict (e.g. getting up after being pushed and

having fallen down). Therefore, the conflict duration

is set to a random duration of a maximum of 30

seconds, which corresponds to the maximum falling

time of [4]. Agents get info conflict with other

agents that are within a distance of 40cm from it.

This set up thus relies on the following set of

assumptions:

A1: The fire that breaks out in the beginning of

the simulation time is static. Neither does it

propagate, nor does the smoke resulting from

the fire influence agents’ health.

A2: Agents are either familiar with the environment

or not. In case they are not, they are still

assumed to be aware of the main entrance

through which they accessed the room.

A3: Agents that get caught in the fire die.

A4: Agents’ characteristics (i.e., game theory pro-

file) are assumed to be constant during the

simulation time.

A5: Conflict time is randomly assigned to a partic-

ular conflict, unrelated to the agents associated

with it.

B. Set Up Robots

For modelling evacuation robots in Section V-C2,

the GT parameters from the validation process are

TABLE III
ROBOTS AND TRUST PARAMETER SETTINGS

Minimum Maximum Increment
Robots 10 100 45
Trustiness 0.75 1.5 -
Trust
recovery

0.1 0.2 -

Trust
decrease

0.15 0.3 -

Failing
robots

0 70% 0.35%

chosen as these are established to be the closest to

reality. The parameter specifications can be seen

in Setting 2 of Table I. The model environment

remains unchanged and simulations are run on the

same computer.

Different simulations are conducted to account

for uncertainty in the trust dynamics of agents into

robots. It is assumed that if trust increases and

recovers faster after successful interactions than it

decreases after unsuccessful interactions, the total

evacuation time will be shorter. Every agent has a

trustiness, a propensity to trust the robots. If this is

greater than 1, agents are assumed to be overtrust-

ing. If it is smaller than 1, agents are sceptical. At

the outset of the simulation, the agents’ the level

trust is equal to their trustiness (see Table III).

During the evacuation, agents will interact with

robots in their field of view. The robots are assisting

the agents in finding the entrance that is closest

to them. Thus, the level of trust changes; it either

increases (with a rate equal to the trust recovery) or

decreases (with a rate equal to the trust decrease),

depending on the failure of the interactions this

agent has with robots. [12], [13].

There are different levels of failure, which affect

trust differently. A level 1 failure represents the
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lowest level of failure of interaction with the robots.

This can be understood as a flickering light or an

audio that is off. When an agent meets a robot with

a level 1 failure, the agent’s trust is reduced by the

trust decrease. A level 2 failure represents failures,

that are slightly more severe. This could be a robot

that is not working at all anymore and is of no use

to the agent. When an agent meets such a robot, the

agent’s trust is reduced by twice the trust decrease.

Finally, a level 3 failure represents the most severe

and dangerous level of failure. This is a robot that is

giving wrong indications to the agents, which will

mislead the agents. When an agent meets such a

robot, the agent’s trust is reduced by three times

the trust decrease. Depending on the severeness

of the failure an agent encounters, trust in robots

also recovers again. When an agent encounters a

fully functioning robot, its trust in evacuation robots

increases by the trust recovery. While the number

of failing robots is varied per experiment according

to Table III, the state of failure (i.e., 1 to 3) is

determined randomly.

A successful interaction with a robot is thus

one with a robot that is intact and the interaction

between the robot and the agent has not failed in any

way. As a result of this interaction, the agent will

be evacuating faster and gain a couple of seconds

of evacuation time. After a successful interaction,

the trust of an agent in a robot is increased again

(trust recovery). An unsuccessful interaction is one,

where an agents encounters in its field of view a

robot that has failed in one of the three different

failure stages, as outlined in Section IV. The rates

for increase and decrease of an agent’s trust in a

robot are uncertainties in the model and are varied

according to the variable “trust recovery” and “trust

decrease” in Table III [14], [15].

This set up relies on the following list of assump-

tions:

A1: Agents are aware of the fact whether or not a

robot is faulty.

A2: Faulty robots can still move across the room.

A3: If an agent has an unsuccessful interaction with

a robot, this agent’s trust in all robots in the

environment decreases and not only its trust

in this particular robot with which it had an

unsuccessful interaction.

A4: The success of a human-robot interaction

solely depends on the robot and not on the

human.

C. Results

In order to answer the research question of

whether extending a BDI model with GT leads to

a more accurate evacuation modelling, this section

first presents the results of combining BDI and

GT into one model. For this, simulations were

conducted with varying parameter combinations, to

account for randomness and uncertain parameter

values. These are, to name a few, the exact location

of the fire and the initial location of the agents,

as well as the distribution of GT character traits

amongst the distribution of agents that are present

on the disaster setting. These simulation runs allow

for the validation of said model. Validation is con-

ducted by comparing the different model runs with

the benchmark. Then, evacuation robots are added

to the disaster setting. Different simulation runs are

again conducted to account for uncertain parameter

values. These concern mostly the level of trust

and the dynamics of the agent’s trust into robots.

These results give an indication about whether the

presence of these robots can improve the evacuation

time.
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1) Combination GT and BDI: To see the ef-

fect of using game theory to capture how humans

take decisions during an evacuation as explained

in Section IV, experiments in this section are first

conducted without evacuation robots. The character

traits (selfless to selfish) are distributed as indicated

in Table II. It is assumed that there are less people

that have extreme character traits and therefore,

there are less defectors (totally selfish) and less

cooperators (totally selfless) than the more balanced

characters. In Figure 1, the game theory character

traits are represented by the colour of each agent.

A blue agent is a cooperator, a red agent is a

defector, an orange one is an unforgiving agent

and a tit-for-tat agent is represented by turquoise.

The duration of a conflict is also an uncertainty in

the model. For this, the model is ran with three

different maxima of conflict durations, from short

conflicts of a maximum of 3 seconds, to conflicts

of a maximum of half a minute to long conflicts

of a maximum of 30 seconds. As not all conflict

has an equal duration, each agent is then assigned a

random conflict duration with as upper bound one

of these maxima.

Each experiment setting (i.e. each model run with

a different distribution of game theory parameters)

is repeated for 60 times to allow for some variation

in the results due to random parameters, such as the

location of the fire and the initial random locations

of the victims. This leads to a total of 3240 runs.

Running the experiments in the settings from

Table II, it can be seen that implementing game

theory into the BDI model has an impact on the

evacuation time. The boxplot plot in figure 3 rep-

resents the distribution of the different evacuation

times that result from the model runs in the different

configurations.

Fig. 1. Initial placement of 20 agents before a fire breaks out. The
blue squares along the walls represent the exits. The lower exit is the
main entrance through which the agents are assumed to have entered
the room. The colors of the agents indicated their GT character. Forms
are added for additional distinction, but are not included in the model.
The cooperators are in blue dashed circles, the defectors are in red
circles, the unforgiving are orange triangles and the tit-for-tat’ers are
turquoise squares.

The average evacuation time of the GT-BDI

model in Setting 1 from Table I is 466.92 seconds,

which is very close to the results of the Impact

model, but slightly worse in performance when

compared to the EXODUS model (see Table IV).

The minimum is given by 423.18 seconds, the

maximum with 504.31 seconds and the lower and

upper quartiles with 449.36 seconds and 490.18

seconds respectively.

When running the GT-BDI model in Setting 2

from Table I, the average evacuation time is of

499.17 seconds and from the boxplot plot can be

seen, that the minimum is given by 455.25 seconds

and the maximum is an outlier of 560.57 seconds.

The lower an upper quartile are given by 486.18

seconds and 512.67 seconds respectively.
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Fig. 2. Distribution of evacuation times when running the GT-BDI
model in Setting 1

Fig. 3. Distribution of evacuation times when running the model in
Setting 2

Depending on the parameter settings and on the

distribution of characters of the GT-BDI model, the

latter is able to result in evacuation times that are

more realistic (see Table II). When running the GT-

BDI model in Setting 2, there are thus some specific

combinations of the 26 possible combinations of

character traits that do lead to evacuation times

closer to the EXODUS model, which is of 585

seconds than a purely BDI-based model (being the

TABLE IV
COMPARISON TO BENCHMARK WITH NO ROBOTS. BOTH THE

AVERAGE OVER ALL SCENARIO AS WELL ARE THE AVERAGE OF
THE SCENARIOS THAT PERFORM BETTER THAN THE PURE BDI

MODEL ARE GIVEN

EXODUS Impact GT-BDI
Setting 2

GT-BDI
Setting 1

Total 585s 516.6s 499.17s 466.9s
Relative
Diff

– 11.69% 14.67% 20.19%

Impact model on its own, without any game theory,

which reaches 516.6 seconds). Those scenarios rep-

resent 19.75% in total. Here, adding GT can bring

the resulting evacuation time closer to the EXODUS

model. The scenarios, in which the evacuation times

come closest to reality are given on average in Table

VI. Here, the resulting simulation time results on

average in 533.12 seconds.

It can be seen that the number of victims that

are not successfully evacuating varies per character

trait. The average success per game theory character

when running the GT-BDI model in setting 2 is

summarized in Table V. In Figure 4, a boxplot of

the distribution can be found. The average success

per character from Table V is represented in the

box plots as the bar in the box. This allows to

estimate the range of the results. For the cooperator

profiles, the success of an evacuation is bounded by

the lower quartile in the boxplot of 96.47%. The

upper quartile is given by 96.89%. The minimum

is 95.81% and the maximum is 97.58%, which

are both outliers. When looking at the success of

evacuating agents with a tit-for-tat profile, it can

be seen that the lower quartile of the distribution

is also bounded by 95.83%. The upper quartile is

96.17%. The maximum is an outlier of 96.90% and

the minimum 95.44&. The unforgiving agents have

a minimum of 95.45% and the maximum is 96.70%,
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TABLE V
SUCCESS OF EVACUATION PER CHARACTER TYPE WITH NO

ROBOTS PRESENT

Successfully
evacuated

Defectors 96.61%
Unforgiving 95.91%
Tit-for-Tat 96.01%
Cooperators 96.69%
Average 96.32%

which both are outliers. The lower and upper quar-

tile are of 95.83% and 96.06%. Defectors reach

a lower and upper quartile 96.44% and 96.06%.

Here, the minimum is 95.88% and the maximum

is an outlier of 96.94%. It can be seen that the

cooperators have the greatest interquartile range and

the unforgiving the smallest range.

Fig. 4. Percentage of successfully evacuated agents depending on
their game theory character traits

The different conflict durations also seem to have

impact on the average evacuation times when run-

ning the GT-BDI model in setting 2, as can be seen

in Figure 5. Interestingly, the average evacuation

time is shortest, when the conflicts are allowed to

last up to half a minute, the average evacuation

time is given by 492.12 seconds. In the scenarios,

where conflicts take up to 5 seconds, the average

evacuation time is 503.05 seconds. Evacuations,

where conflicts last for maximum 15 seconds take

for 507.25 seconds on average. However, it is in-

teresting to note that in those scenarios, where the

GT-BDI model performs closest to the EXODUS

model, the average conflict duration is actually

15.63 seconds. In fact, in 31.25%, the conflict time

was of only 5 seconds, in 43.75% it was 15 seconds

and in 25% it was 30 seconds.

At the same time, the number of conflict also

varies for different conflict durations. For long

conflicts, there are 6781.76 conflicts. The average

evacuation time for long conflicts is 492.12 seconds.

For conflicts of a duration of 15 seconds, there are

6862.37 conflicts and an average evacuation time of

507.25 seconds. The short conflicts lead to 6807.49

conflicts and with an average evacuation time of

503.05 seconds. This translates to one conflict ev-

ery 50 seconds per agent, such that each agent is

roughly engaged in 10 conflicts during the entire

evacuation process.

Fig. 5. Distribution of evacuation time for the three different
maximum conflict durations

2) Evacuation Robots: To evaluate to what ex-

tent the deployment of robots influences the evacua-

tion, experiments are conducted with a varying size
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TABLE VI
AVERAGE GT PARAMETERS OF THE SCENARIOS THAT LEAD TO

THE MOST REALISTIC EVACUATION TIMES

Best scenario
Defectors 16.56%
Unforgiving 34.06%
Tit-for-Tat 35.31&
Cooperators 14.06%
Duration of
conflict

15.63s

of robot fleet with evacuation robots with varying

degrees of failures. In Figure 6, the initial placement

of agents and robots can be seen. Before the fire

breaks out, all robots are green in colour, which

means that they are all fully functioning. After the

fire breaks out and during the evacuation, a given

number of robots will break and fail randomly in

three different stages, which will impact the trust

of the agents in the robots, as outlined in Section

IV. In the first set of experiments, the robots will

be stationary. This means, that they will stay on

their initial position and will not move during the

evacuation. In the second set of experiments, the

evacuation robots will move. From their initial po-

sition, they will have a random heading and moving

randomly through the disaster setting, avoiding the

fire. By moving through the room, it is assumed that

they will encounter more victims and thus be able

to assist more people to evacuate from the fire.

For these experiments, the character distribution

as in Table VI is taken since this corresponds to

the validated model and led to the evacuation time

that come closest to reality as established by the

EXODUS model. Then, the number of robots is

varied with a minimum number of 10, a medium

number of 55 robots, and a maximum of 100 robots

per experiment. With 10 evacuation robots, each

Fig. 6. Initial placement of 20 agents and 5 robots before a fire breaks
out. The evacuation robots are represented by the green pentagons.

robot is supporting about 60 of the total 600 agents

present. With 100 evacuation robots, each robot

takes care of 6 agents in the evacuation setting. This,

together with varying the trust parameters, leads to

a total of 4320 experiments, as each experiment is

repeated 60 times to account for the randomness

introduced in the model as described in Table I.

These 4320 experiments are first conducted with

stationary robots.

Different levels of trust can be found, depending

on the number of present robots and the trustiness

of the agents. The measured levels of trust represent

the average values of trust of all agents, averaged

over the simulation time. In Figure 7, it can be seen

that more robots lead to a higher level of trust in the

latter. When having 100 robots, the average level of

trust amounts to 0.41, as opposed to 0.32 with 55

robots and 0.20 with 10 robots.

Different amount of failed interaction surprisingly
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Fig. 7. Distribution of level of trust when varying the amount of
stationary evacuation robots

only have a small affect on the level of trust (see

Figures 8). Still, when having only successful in-

teractions, the average level of trust equals to 0.37,

35% unsuccessful interaction leads to an average

level of trust of 0.29 and 70% unsuccessful inter-

actions to 0.27. It can be seen that the difference

between only successful and a small number of

unsuccessful interactions is larger than between a

small number and a large number of unsuccessful

interactions.

Fig. 8. Distribution of level of trust when varying the amount of
failed stationary evacuation robots

TABLE VII
LEVELS OF TRUST DEPENDING ON DIFFERENT VALUES OF
TRUSTING PARAMETERS OF THE AGENTS IN STATIONARY

EVACUATION ROBOTS

Trust for
Low Value

Trust for
High Value

Trustiness 0.21 0.41
Trust decrease 0.32 0.30
Trust recovery 0.30 0.31

A larger effect can be found when relating the

trustiness of the agents to the resulting average level

of trust (see Figure 9). It can be concluded, that a

high trustiness, which relates to a high propensity

to trust and thus a high initial level of trust of the

agents in robots, also leads to high overall levels of

trust. A trustiness of 1.5 leads to average levels of

trust of 0.41 and a trustiness of 0.75 to 0.21.

Fig. 9. Distribution of level of trust when varying the trustiness of
the agents in stationary evacuation robots

Trust decrease and trust recovery do not have

a large effect on the resulting levels of trust (see

Table VII). The values for low and high trust

parameters are for the trustiness 0.75 and 1.5, for the

trust decrease 0.15 and 0.3 and for the trust recovery

0.1 and 0.2.

The evacuation time is significantly reduced com-
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pared to the average evacuation time when there

are no robots present, which was 499.17 seconds or

533.12 seconds with the same average GT character

trait distribution. The distribution of evacuation time

in function of the number of present robots can be

seen in Figure 10.

Fig. 10. Distribution of evacuation time when varying the amount
of stationary evacuation robots

The figure shows, that having a large number of

robots (e.g., 100 robots) leads to an average evacua-

tion time of 143.37 seconds, which is less than half

of the evacuation time without robots. A medium

number of robots, this being 55 robots, still results

in an evacuation time of 193.92 seconds. When

having a small number of robots present, namely

10 robots, the evacuation time is 353.43 seconds. It

can be seen that the difference in evacuation time

in having 10 as opposed to 55 robots is greater than

the difference between 55 and 100 robots.

When comparing the different evacuation times

with varying the amount of failed interactions be-

tween agents and robots, one gets the distribution in

Figure 11. Here, it can be seen that the difference

in evacuation times is small. When having only

successful interaction, the average evacuation time

is 369.82 seconds. With at most 35% of the inter-

actions failing, the mean evacuation time is 370.27

seconds and with at most 70% of the interaction

failing, it is 401.57 seconds.

Fig. 11. Distribution of evacuation time when varying the amount
of failing stationary evacuation robots

However, when relating the resulting evacuation

times to the level of trust of the agents in the robots,

one can see in Figure 12 that there is a relation. For

this, the resulting levels of trust have been grouped

into bins. This results in low, medium and high

levels of trust with an average of 0.1842, 0.3507

and 0.5918 of trust of the agents in the robots. The

figure shows, that a low level of trust leads to a

higher average evacuation time of 260.76 seconds,

a medium level of trust to 220.42 seconds and a

high level of trust to 156.31 seconds.

With stationary robots, on average, 95.54% of the

victims are evacuated successfully. The lower an

upper quartile are given by 95.47% and by 95.61%

respectively. The minimum and the maximum val-

ues are given by 95.32% and 95.71% respectively.

It can be determined that these values are not spread

a lot. In Figure 13, a boxplot shows this distribution

in function of increasing the number of present
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Fig. 12. Distribution of evacuation time with different levels of trust
in stationary evacuation robots

evacuation robots. As can be seen in figure, there

is not really a relation to be observed between a

high or a low success and a high or a low number

of robots. Also the failure of interactions does not

have an affect. Neither the parameters trust recovery,

trust decrease or trustiness seem to have an impact

on the success of the evacuations when the robots

are stationary (see Table VIII).

Fig. 13. Evolution of evacuation times when increasing the number
of stationary evacuation robots

The same experimental set up is now used to

conduct 4320 simulations, but now with moving

TABLE VIII
SUCCESS DEPENDING ON DIFFERENT VALUES OF TRUSTING
PARAMETERS OF THE AGENTS IN STATIONARY EVACUATION

ROBOTS

Success for
Low Value

Success for
High Value

Trustiness 95.54% 95.54%
Trust decrease 95.56% 95.52%
Trust recovery 95.53% 95.54%

robots. The number of robots is again varied with

a minimum number of 10, a medium number of

55 robots, and a maximum of 100 robots per ex-

periment. The robots are now randomly moving

around in the room during the evacuation. Their

initial placement is random and their heading as

well. They move, avoiding the position of the fire,

until all victims have successfully evacuated. While

moving, a given number of the robots will break and

lead to failed interactions with agents as explained

in Section IV.

With moving robots, there are also different levels

of trust in relation to the number of robots present,

as can be seen in Figure 14. Again, the more robots,

the higher the trust When having 100 robots, the

average level of trust amounts to 0.47, as opposed

to 0.43 with 55 robots and 0.27 with 10 robots. All

these trust values with moving robots are slightly

higher than their equivalent values with stationary

robots. When comparing Figures 14 and 7, it can

be seen that when having moving robots, the levels

of trust that are attained are overall higher.

Again, different numbers of failing interactions

have little effect on the level of trust (see Figure 15).

When having only successful interactions, this leads

to an average level of trust 0.50, having 35% un-

successful interaction to 0.36 and 70% unsuccessful

interactions to 0.29. Here as well as with stationary
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Fig. 14. Distribution of level of trust when varying the amount of
moving evacuation robots

robots, the maximum levels of trust are achieved

when having only successful interactions.

Fig. 15. Distribution of level of trust when varying the amount of
failed moving evacuation robots

The trustiness of the agents has again a large

effect on the resulting average level of trust (see

Figure 16). A trustiness of 1.5 leads to average

levels of trust of 0.51 and a trustiness of 0.75 to

0.25. The other two trust parameters (trust decrease

and trust recovery) again do not have a large effect

(see Table IX).
When looking at the resulting evacuation time,

Fig. 16. Distribution of level of trust when varying the trustiness of
the agents in moving evacuation robots

TABLE IX
LEVELS OF TRUST DEPENDING ON DIFFERENT VALUES OF

TRUSTING PARAMETERS OF AGENTS IN MOVING EVACUATION
ROBOTS

Trust for Low
Value

Trust for High
Value

Trustiness 0.26 0.52
Trust decrease 0.40 0.38
Trust recovery 0.38 0.39

not only do they again decrease with an increas-

ing number of robots. Also compared to station-

ary robots, moving robots lead to an additional

decrease of the evacuation times. The distribution

of evacuation time in function of the number of

present robots can be seen in Figure 17. It can

be seen that having 10 moving robots leads to an

average evacuation time of 206.15 seconds, which is

another gain of several seconds compared to having

stationary robots (see Table X). 55 robots result in

an average evacuation time of 91.39 seconds and

100 robots lead to 74.28 seconds.

When having moving robots, failing interactions

seem to have less an effect as with moving robots.

As can be seen in Table XII, the differences in

evacuation times between having no failures and

21



Fig. 17. Distribution of evacuation time when varying the amount
of moving evacuation robots

TABLE X
EVACUATION TIMES DEPENDING ON NUMBER OF ROBOTS WHEN

HAVING STATIONARY VERSUS MOVING ROBOTS

Evac
time with
Stationary

Evac time
with Moving

10 robots 353.43s 206.15s
55 robots 193.92s 91.39s
100 robots 143.37s 74.28s

25% is in both cases only a fraction of a second.

Between 25% and 75%, the difference for stationary

robots is larger, however, when compared to moving

robots.

The level of trust of the agents in the robots,

again, has an impact on the resulting evacuation

times (see Figure 18). The levels of trust have been

TABLE XI
EVACUATION TIMES DEPENDING ON FAILURE OF INTERACTIONS

WHEN HAVING STATIONARY VERSUS MOVING EVACUATION
ROBOTS

Evac time with
Stationary

Evac time with
Moving

0% failures 369.82s 122.61s
25% failures 370.27s 123.56s
75% failures 401.57s 125.64s

TABLE XII
EVACUATION TIMES DEPENDING ON LEVELS OF TRUST WHEN

HAVING STATIONARY VERSUS MOVING ROBOTS

Evac
time with
Stationary

Evac time
with Moving

Low trust 260.76s 156.12s
Medium trust 220.42s 124.35s
High trust 156.31s 84.98s

grouped into the bins, leading to low, medium and

high levels of trust with an average of 0.1919,

0.3651 and 0.5830 of trust of the agents in the

robots. For a low level of trust, the resulting evacu-

ation time averages 156.12 seconds. Medium levels

of trust leads to average evacuation times of 124.35

seconds while high levels of trust to 84.98 seconds.

Fig. 18. Distribution of evacuation time with different levels of trust
in moving evacuation robots

With moving robots, on average, 96.30% of the

victims are evacuated successfully. This is slightly

more than with stationary robots. The lower an

upper quartile are given by 95.95% and by 96.53%

respectively. The minimum and the maximum val-

ues are 95.53% and 97.28% respectively. These

values are also a bit greater than with stationary

robots.
In Figure 19, a boxplot shows this distribution
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TABLE XIII
SUCCESS DEPENDING ON DIFFERENT VALUES OF TRUSTING

PARAMETERS WITH MOVING ROBOTS

Success for
Low Value

Success for
High Value

Trustiness 96.31% 96.30%
Trust
decrease

96.31% 96.30%

Trust recov-
ery

96.30% 96.30%

in function of increasing the number of present

evacuation robots. As opposed to Figure 13 of

stationary evacuation robots, there is a relation to

be observed between a high or a low success and a

high or a low number of robots. Having 10 robots

leads to an average success of 95.69%, 55 robots

to 96.33% and 100 robots to 96.33%. However,

as with stationary robots also for moving robots,

the other trust parameters, as well as the failure of

interactions does not have an effect on the success

of the evacuations (see Table XIII).

Fig. 19. Evolution of evacuation times when increasing the number
of stationary evacuation robots

D. Discussion

After presenting the result of the constructed

model and of the simulation runs in Section V-C,

this section discusses the implications of these

results. To begin with, the BDI model extended

with GT was validated. The validation process will

thus first be discussed as well as the added value

of implementing and combining the BDI approach

with GT. After validating this model, evacuation

robots were added and it was analysed to what

extent these affect the evacuation time of the agents

from the fire. To evaluate the advantage of evac-

uation robots, the notion of trust was introduced

in the model. Trust is a dynamic concept, which

increases, decreases and recovers, depending on the

success of an human robot interaction. Therefore,

different modes of robot failures were introduced

in the model and simulated. Hence, this section

presents a discussion on modelling robots for emer-

gency evacuation. Finally, this section finishes with

a discussion on the limitations of the model and

what further research these imply.

1) Validation of GT-BDI model: In order to

validate the combined GT-BDI model, simulations

are conducted with varying different parameters to

determine which variable have an impact on the

resulting evacuation times. The evacuation times the

model produces are compared to the benchmark to

determine the validity of these results (see Section

V-C1). Parameters that are analysed are the conflict

duration in the GT interaction between agents and

the GT character distribution in the population.

Then, the success and duration of the resulting

evacuation was analysed.

Regarding the conflict duration, is is found that,

contrarily to what could be expected, those scenar-

ios, in which the evacuation time is most realistic (as

established by comparing to the EXODUS model),

shorter conflict duration actually can lead to longer

overall evacuation times. In fact, one could assume,
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that if each conflict only lasts for a short amount

of time (i.e., 15 seconds), the sum of all conflict

durations is smaller and hence leads to a shorter

evacuation. This, however, is not always the case.

Indeed, the shortest conflict duration of 15 seconds

can lead to longer evacuations and the longest

conflict duration can lead to shorter evacuations.

This leads to the conclusion that in those scenarios,

the sum of all conflicts with the shorter conflict

duration must be larger than if adding all the longer

conflicts up. The only possible explanation for this

is that there must be more conflicts arising when

the duration of these are shorter. At the same time,

there must be less conflicts arising, when they last

for longer. This is confirmed when evaluating the

number of conflicts that arise for each different

conflict duration, where the same distribution can be

seen. This makes sense, since if an agent is engaged

in a conflict that takes longer, the same agent cannot

be engaged in another conflict. Therefore, in the

same amount of total time, there will be more

conflicts if they are shorter and less conflicts if they

last longer. Hence, when a conflict is over very fast,

the two conflicting agents continue their evacuation

and the chance of meeting another agent soon again

with which to engage in a conflict is bigger. At

the same time, if a conflict takes longer, the two

conflicting agents only continue their evacuation

later. During the time they had their conflict, the

agents around them may have move further already.

Therefore, their chances of meeting another agent

soon to engage in a new conflict are lower. Thus,

there will be less conflicts and the overall evacuation

duration will be lower. However, this also depends

on the initial locations of the agents in the room

and on the distribution of character traits in the

population of agents.

Then, character distribution is varied. Here, an

impact on the success of the evacuations as well as

on the resulting evacuation times is found. The suc-

cess of an evacuation decreases when the number of

victims dying in the fire increases. Fire victims are

agents that get stuck in the position of the fire in the

room. While the differences in successful evacua-

tions were very small, the cooperators and defectors

are slightly more successful in being evacuated than

the tit-for-tat’ers and the unforgiving. The defectors

are those agents that immediately start evacuating

as soon as they perceive a fire and then only act

in their advantage to leave the disaster setting. On

average, the cooperators are the most successful in

evacuating. It is interesting to note that they are

slightly better than the defectors. The cooperators,

as the altruistic agents do not immediately evacuate

but first continue to walk randomly across the room

in search for people that they can help. Hence, as

they do not rush to the exit right away, they might

be spread more across the room and therefore meet

less potentially opponents with which they engage

in a conflict and by this lose time. The defectors are

thus more likely to end up clustered at the exists and

to get into more conflicts as there are more other

agents. That way, their chances of getting caught

in the fire might therefore be slightly increased as

compared to the cooperators.

The tit-for-tat’ers are slightly less successful in

evacuating, followed by the unforgiving. The unfor-

giving agents, initially cooperators but once having

met a defecting agents, will defect until the end

of the evacuation. In a new conflict, the tit-for-

tat’ers copy the strategy of the agent they were in

the previous conflict with. Taking into account the

earlier observation that the cooperators are slightly

better than the defectors, it makes sense that the
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tit-for-tat’ers are also slightly more successful than

the unforgiving. The unforgiving agents are more

likely to defect more often than tit-for-tat’ers, as

they might meet a defecting agent very early in the

simulation time. In general, there are more tit-for-

tat’ers and more unforgiving agents in the model

than cooperators and defectors. Therefore it is also

more likely that some of them end up caught by the

fire than the cooperators and defectors.

In about 19.75% of the scenarios, the GT-BDI

model performs better than the pure BDI model.

In these scenarios, the GT character distribution is

given with 16.56% defectors, 14.06% cooperators,

34.06% unforgiving and 35.31% tit-for-tat’ers. It

is interesting to note that this distribution is very

balanced. The minimum and maximum value for

the unforgiving and the tit-for-tat’ers was 10% and

20% respectively and for the cooperators and the

defectors 30% and 40%. There are thus slightly

more defecting agents. Due to their more selfish

nature, their desire to walk around randomly turn

into the desire to evacuate earlier than the more

selfless nature. Thus, they start evacuating and mov-

ing towards the entrances earlier than the more

selfless agents. Consequently, they are a bit faster

at evacuating. However, as already noted earlier, at

the same time they are more likely to end up in

conflicts with other agents that also rush towards

the entrances. The more selfless on the contrary,

do not evacuate immediately but continue walking

around the room to look for people that might need

assistance. By this, they end up being more spread

out in the room and therefore are less likely to

encounter agents to get into conflict with and by

this to lose time.

2) Implementation of Robots and Trust: To anal-

yse the impact of having evacuation robots in the

combined GT-BDI model, different sets of simula-

tions were conducted in the parameter settings that

validate the GT-BDI model. First, simulations were

conducted with only stationary evacuation robots

and second with robots moving around randomly.

The resulting evacuation times, the success of the

evacuations as well as the evolution of trust in

the robots was analysed. The size of the robot

fleet as well as parameters characterising the trust

of humans into robots were varied to study their

implication for the model results outlined in Section

V-C2.

The success of evacuations depends on how many

victims die in the fire that breaks out somewhere in

the room. Thus, in order to successfully evacuate

from the room, the victims need to avoid the fire

while they rush towards the entrance they intent

to exit the room from. When looking at the suc-

cess of the evacuations, it is interesting to note

that the difference between having no robots and

having stationary robots is only marginal. However,

comparing the success of evacuations with station-

ary robots with moving robots shows, that moving

robots can lead to a slight increase in the success. At

the same time, the results suggest that an increasing

size of robot fleet is able to increase the success

of the evacuations, but again only if the robots are

moving. The moving robots are avoiding the fire and

if risking to get stuck in the position of the fire, the

robots move back. In the scenarios with no robots or

stationary robots, this backing away from the fire is

not happening. Thus, it is assumed that in the critical

situations, where an agent might otherwise get stuck

in the position in the fire, the evacuee perceives

a robot that is moving back just in time to adjust

its heading towards the nearest entrance. That way,

the evacuee avoids the fire and the success of the
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evacuation increases. More robots thus increase the

chance of having robots nearly getting stuck in the

fire and thus moving back and informing evacuees

that otherwise would die. Stationary robots do not

having this effect as they do not move away from

the fire.

Evacuation times on average are shorter with

robots than without robots and benefit from high

levels of trust of the agents in the robots. This is

true for both stationary and moving robots: moving

robots as opposed to stationary robots further de-

crease evacuation time. Evacuation time is measured

from the moment on when the fire in the room

breaks out until the last living agents has evacuated.

The robots are not evacuated. When an evacuating

agent sees a robot, this robot will point it towards

the nearest exit. Agents that are unfamiliar with

the room in which the fire breaks out will intend

to evacuate through the main entrance, through

which they are assumed to have entered the room.

They are thus unaware of their being emergency

exits that might be closer. Thus, by encountering

a robot, they become aware of a closer exit and

leave the room via this exit. This speeds up the

individual evacuations of all agents and thus also

the overall evacuation time. It is interesting to

note, that moving robots speed up the evacuation

more than stationary robots. In fact, as the moving

robots are not strategically moving through the room

(e.g., moving towards positions where there are

many people clustered together) it is surprising that

there is that much of a difference, with evacuation

times that are halved. The stationary robots are

positioned randomly across the room. At the outset

of the simulation time, the agents are also randomly

positioned and are walking around randomly. The

chance of encountering a robot are thus everywhere

equally high at the beginning of the simulation time.

After the fire breaks out and the first agents start

evacuating, they are moving closer towards the exits.

With stationary robots, the chance of meeting a

robot are still everywhere the same. With moving

robots however, the chances of meeting a robot

when moving towards the exits increase because

the robots get stuck at the walls. When random

movement of the robots makes them face a wall,

it takes a couple of time steps before they adapt

their heading and move away from the wall again.

As a result, at given time steps, the distribution of

robots in the room favors the walls and the chances

of meeting a robot here are higher as well.

Trust of the agents in the robots is lower when

the robots are stationary as compared to when they

are moving. In both cases, the initial trustiness

determines the levels of trust that are reached during

the evacuation. If the trustiness is high, higher levels

of trust can be reached during the simulation. In

general, the values are more or less halved, which

is to be expected as the low trustiness value is also

the half of the high trustiness value. Lower values

of trust are found when there is a small number

of robots, whether they are stationary or moving.

Higher levels of trust are found with more robots.

This is interesting, as one could have expected the

opposite: with more robots, the chances of having

an unsuccessful interaction with a robot are higher

and therefore, the resulting levels of trust are lower.

This, as well as the difference between stationary

and moving robots suggest, that encountering more

robots and interacting with more robots leads to an

increase in trust more often than a decrease.

3) Limitations: In the prior sections, the model

results have been analysed and discussed and the

model has been concluded to be valid. The model
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is constructed on a number of several assumptions

that limit the overall validity of the model. These

arise from choices that had to be made during the

process of modelling as well as during assumptions

made while evaluating the results.

To begin with, the fire in the model is static. It

is not moving and there is no smoke propagating.

This does not capture the complexity of disaster

settings, where there might be smoke, fire, and

debris. In the context of answering the research

question that is at the heart of this study, namely to

build and validate a GT-BDI model, this represents

an acceptable choice. In addition, the benchmark to

which it was compared does not take into account

any smoke or movement of the fire neither. Hence,

this limitation does not restrict the validation of the

model.

Then, the character profiles of the agents range

from selfless to selfish people. The selfless people

are assumed to continue walking around the room

randomly after the fire has started, with the aim

of finding people to help. They never actually help

people however. The explicit interaction between a

person that needs help and a selfless person does

is not modelled. However, this way of modelling

the behaviour of selfless people does impact the

time they need to successfully evacuate from the

room. As this is what the model intents to capture,

this represents a valid choice. Falling, for instance

as a consequence from a conflict with an agent,

is not modelled explicitly. However, in the model,

a conflict has a certain duration, which can cover

the time of falling and of getting up again. The

conflict duration is the same for all agents, while

agents with different characters might engage for

shorter or longer times in conflicts. At the same

time, if an agent is in a conflict, all other agent

that have a relation to this agent rush towards it

with the aim of helping it. This results from the

assumption that people close to each other will give

each other support when being impeded to evacuate

as a result from a conflict with an opposing agent.

There no difference in this behaviour between the

selfish and the selfless, while it could be assumed

that agents that are more selfish might not rush to

help, even their friends or family. There is also no

distinction of different types of relationships, for

instance whether a group of people are friends or

family. In general, it can be assumed that people

might treat they family differently in an emergency

situation than their friends.

Regarding trust in robots, agents are assumed to

be able to tell whether or not robots are indeed

faulty. This assumption is crucial to model the

dynamics of trust over time. If an agent would

not perceive that a robot is faulty, the affect of

this unsuccessful interaction on the level of trust

of this agent in robots could not be measured.

At the same time, in the scenarios with moving

robots, faulty robots are also able to move around

the room. Here, one could assume that those that

have the most sever failures might not be able to

move anymore. Those could then end up being

stationary robots. In addition, different agents might

have different propensities to trust. In the model, all

agents, no matter their background and demography,

have the same trust dynamics, while these might not

be independent. Also, a failed interaction with one

robot affects an agent’s trust in all other robots as

well.

VI. CONCLUSION

During SaR missions, time is a crucial factor for

success. In order to improve disaster response mea-
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sures during indoor evacuations, a good understand-

ing of human decision making during emergency

situations in needed. As the overall behaviour of

the interactions between individual evacuees is com-

plex, computational simulation models are needed

to understand how evacuation times can be reduced

and success of evacuations can be improved. Exist-

ing models to simulate evacuations are not able to

capture all aspects of the nature of human decision

making. BDI models do not capture the strategic

considerations people make and GT models do

not capture the cognitive process of taking deci-

sions. This study thus aimed at combining these

two approaches to paint a fuller picture of human

decision making during indoors evacuations. It was

found, that indeed, adding GT to a BDI model can

improve the performance of the resulting model

and makes it more realistic. This depends on the

exact distribution of GT character profiles in the

population and the duration of GT conflicts, which

remain uncertainties in the model.

Further improvements of disaster response mea-

sures are expected with ongoing breakthroughs in

disaster robotics. SaR robots can considerably al-

leviate the task of rescue workers. Having SaR

robots assist people during indoors evacuations is

one of the tasks of these robots. For the presence

of SaR robots to benefit the evacuation process,

humans need to trust these robots. Hence, this study

also aimed at modelling the presence of evacuation

robots and to evaluate whether these can improve

evacuation times as well as the success of the

evacuations. The results suggest that SaR robots are

able to reduce evacuation times. Interestingly, with

an increased number of robots, the evacuation times

can be reduced significantly. At the same time, an

increase number of robots also leads to a significant

increase of the level of trust that evacuees have in

the robots. Thus, it can be concluded that if the level

of trust of humans into robots could be improved,

a further improvement of the evacuation times is

expected.

Also, the difference in evacuation time when

having stationary as opposed to moving robots is

interesting to note. Moving robots were significantly

improving the evacuation times, even when they

were moving around the room only randomly. It is

hence expected that robots that move strategically,

for instance to clusters of people, can further benefit

the evacuation process.

Recommendations for further research include

taking a closer look at trust: [37] find, that in

interactions between humans, trust is a self-fulfilling

prophecy. When delegating a task to another human,

the trustor shows that she trusts the trustee. This,

as a result, influences the behaviour of the trustee.

As the later knows and is aware of the fact that

she is trusted, she will commit more to the task

that she is being delegated. So far, the robots as

conceptualized for the evacuation model are very

simple and will not be aware of being trusted. To

take account of this, a behavioural model will need

to be included in the model of the robots to account

for this. In addition, the appearance of the robots

also play a role in trust: People place more qualities

into robots that look more anthropomorphic. They

are less inclined to anthropomorphise when robots

make mistakes [12]. For now, the exact appearance

and how this impacts the trust of the agents into

the robots it not taken into account and can be

included by modelling robots of different shapes

and attributing a different trust dynamics to each.

Also, the relation between people’s demographic

and their trust dynamics in robots could be further
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analysed and implemented in the model. Potentially,

people with different background have different

propensities to trust robots and different rates of

decreasing and recovering trust in robots after failed

interactions. At the same time, a solid model of

the trust dynamics is needed. The levels of trust

resulting from running the simulations do not re-

ally depend on the trust parameters that model the

trust dynamics. This observation suggests, that some

more work is needed in this regard, in order to make

an abstract concept such as trust quantifiable and be

able to accurately model it.

Regarding the modelling of human behavior, fur-

ther aspects can be added to the GT-BDI model.

In terms of the implementation of GT, in their

model, [32] vary the conflict cost in function of

an opponent’s size. Thus, when in a conflict with

an opponent that is considerably larger, the agent

is more likely to lose and the conflict cost will

be greater than in a conflict with a smaller agent.

This has not been implemented in this model, as

agent size has not been modelled. In the BDI model

of [4], other elements of evacuations were also

implemented, namely falling and helping behaviour

of agents. These have not been implemented in this

model as the conflicts and the conflict durations

of the GT conflicts are seen as overlapping. To

implement helping behaviour in the GT-BDI model

of this study, additional GT rules could be derived

and would need to be distinguished from the imple-

mented GT rules.

Finally, the model of the implemented robots is

simplistic: These are either stationary or move ran-

domly through the evacuation setting. Here, a more

sophisticated model of the robots could have them

anticipate how the victims will move and then adapt

to where clusters of evacuees might end up. That

way, the evacuation robots could better assist the

victims and potentially decrease evacuation time.
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7 Conclusion & Recommendations

The goal of this research is to address the research objective formulated in section 2. This section

recapitulates the major findings of the previous sections and proposes some conclusions as well as some

recommendations for future research.

7.1 Conclusion

The research objective of this thesis was to create a simulation model of an indoor evacuation scenario

that captures human behavior in the presence of SaR robots. The main research question of this thesis

is: How can human behavior during an indoor evacuation scenario be modelled in a simulation model

in order to understand the dynamics of human decision making, with and without the presence of SaR

robots potentially influencing human behavior?

To put it in a nutshell, this study found that integrating GT into a BDI model indeed can enhance

the model’s performance and realism when comparing it to existing benchmarks. However, uncertainties

regarding the distribution of GT character profiles in the population and the duration of GT conflicts

remain in the model and affect its performance. Moreover, the presence of SaR does influence human

behavior in that they are able to accelerate the evacuation process. A difference in these results was

found between stationary and moving robots, where the latter can speed up the evacuation process

even more. The gains in evacuation time depend on the number of present robots and the level of

trust of the agents in the robots.

Several sub research questions were formulated to help answering the main research question. In

the following, the answers to these are summarised separately.

7.1.1 The Role of Robots in SaR Missions

One of the major challenges in disaster management is a disaster response. SaR missions are a crucial

component of these, and are carried out in hazardous environments that endanger the lives of first

responders and rescue workers. To mitigate risks, the deployment of a fleet of robots is considered

a promising solution. However, robots themselves encounter difficulties, including limited sensory

capabilities and the challenging task of locating and tracking trapped victims. Developing a model that

captures victim behavior can provide valuable insights into their whereabouts and assist in improving

SaR missions. In the context of indoor evacuations, a model of human decision making, that is able to

estimate human behavior in the presence of evacuation robots can lead to an efficient mission planning

of SaR operations.

7.1.2 Modelling Human Decision Making in Evacuation Scenarios

Computational simulation models are necessary to evaluate how evacuation times can be minimized

and the success of evacuations can be improved. However, existing models fail to capture all aspects of

human decision making. BDI models do not account for strategic considerations, while game theory

models overlook the cognitive processes involved in decision-making. The GT-BDI model combines

these two approaches to provide a more comprehensive understanding of human decision making during
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indoor evacuations. The study found that integrating GT into a BDI model indeed enhances the

model’s performance and realism when comparing it to the chosen benchmarks, depending on the

distribution of GT character profiles in the population of agents and the duration of GT conflicts.

7.1.3 Human Evacuation Behavior in the Presence of SaR Robots

Before implementing SaR robots in the model, those factors influencing human robot interaction were

discovered. It was found that, to optimize the effectiveness of SaR robots, it is essential for humans to

trust them. Trust is a dynamic concept that depends not only on a personal propensity to trust of a

human, but also on the perceived success of interaction with a robot. Thus, trust can decrease and

recover with differing rates. The results of adding robots to the indoor evacuation scenario indicate,

that evacuation robots can indeed reduce evacuation times, with a significant decrease observed as

the number of robots increases. The reduction in evacuation time depends not only on the number of

robots but also on the level of trust of the agents in the robots. This suggests, that improving the level

of trust in robots could further enhance evacuation times. Additionally, the study shows a difference in

evacuation times between stationary and moving robots. Even randomly moving robots show improved

evacuation times, suggesting that strategically moving robots, such as those approaching clusters of

people, can provide further benefits to the evacuation process.

7.2 Recommendations for further Research

While attempting to answer the research question that is at heart of this study, some other questions

were raised. Some of these arise from limitations and assumptions of the used methodology and others

are recommendations for the future.

There are several potential improvements that can be made to the GT-BDI model when it comes

to modeling human behavior. One aspect that could be incorporated is the variation of conflict cost

based on the size of an opponent, as demonstrated in the model by Ibrahim et al. (2019). When

facing a considerably larger opponent, an agent is more likely to lose, resulting in a higher conflict cost

compared to a conflict with a smaller agent. The current GT-BDI model does not account for agent

size. In addition, the BDI model developed by Van der Wal et al. (2017) includes elements such as

falling and helping behavior during evacuations. These elements, however, have not been integrated

into the GT-BDI model, as the conflicts in the GT model are perceived as overlapping. To introduce

helping behavior in the GT-BDI model, additional GT rules would need to be derived and clearly

distinguished from the existing GT rules.

Furthermore, research is needed into modelling the concept of trust. Amigoni et al. (2009) discovered

that trust in human interactions is a self-fulfilling prophecy. When one person delegates a task to

another, the trustor’s display of trust influences the behavior of the trustee. The trustee, aware of

being trusted, becomes more committed to the delegated task. However, the current conceptualization

of the evacuation model’s robots lacks the awareness of trust. To address this, a behavioral model

must be incorporated into the robot model to account for trust dynamics. Furthermore, the current

model of the implemented robots in the evacuation scenario is relatively simplistic. These robots either

remain stationary or move randomly throughout the evacuation area. A more advanced robot model
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could anticipate the movements of victims and adapt accordingly, specifically identifying clusters of

evacuees to provide better assistance and by this, increasing trust and reducing evacuation times.

Additionally, the appearance of the robots plays a significant role in trust. Research by ? indicates

that people attribute more qualities to robots that have a more anthropomorphic appearance. Moreover,

people are less likely to anthropomorphize robots when they make mistakes. Presently, the evacuation

model does not consider the specific appearance of robots or its impact on trust dynamics. By modeling

robots with diverse shapes and assigning different trust dynamics to each, this aspect can be integrated.

Furthermore, exploring the relationship between people’s demographics and their trust dynamics in

robots would be valuable. Different backgrounds may influence individuals’ propensities to trust robots

and their rates of decreasing and recovering trust after failed interactions. A more robust model of

trust dynamics is necessary. Currently, the results for the levels of trust do not depend significantly on

the trust parameters that model trust dynamics. This highlights the need for further research into

quantifying trust in order to enable its accurate modeling.
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A Testing Trust

The implementation of the interaction between agents and robots in the model depends on the level

of trust of the agents in the robots. It was found in literature, that trust is a dynamic concept that

decreases after perceived unsuccessful interactions and recovers after some time. This trust dynamics

is implemented in the model. The model results show, that the evacuation times can be decreased by

the presence of a given number of robots. They also suggest, that the higher the level of trust of agents

in robots, the faster the evacuation process. The level of trust in turn mostly depends on the initial

trustiness of agents in evacuation robots. According to the trust dynamics, the level of trust should also

depend on success of interactions between agents and robots. However, no relationship can be observed

between the parameters of trust decrease and trust recovery on the resulting level of trust, neither

with stationary nor with moving robots, as can be seen in Figure 16, Figure 19, Figure 18 and Figure 19.

Figure 16: Levels of trust depending on trust decrease with stationary robots

Figure 17: Levels of trust depending on trust decrease with moving robots

Therefore, the trusting parameters have been tuned to higher, extreme values to see if an effect on

the level of trust can be seen in these cases. As can be seen in Figure 20 and Figure 21, the influence

is still very small. However, it can be seen that an extremely low trust decrease of 0.1 leads to an

average level of trust of 0.37 and an extremely high trust decrease of 1 to 0.31. An extremely low trust

recovery of 0.1 leads to an average level of trust of 0.32 and an extremely high trust recovery of 1 to
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Figure 18: Levels of trust depending on trust recovery with stationary robots

Figure 19: Levels of trust depending on trust recovery with moving robots

0.36 (see Table 4. Thus, there are marginal differences that can be seen. Those extreme values seem

very unrealistic, however, and therefore have not been implemented in the analysis of the mode. Still,

these observations reinforce the suggestion to further look into modelling the trust dynamics.

Figure 20: Levels of trust depending on extreme trust decrease values with stationary robots
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Figure 21: Levels of trust depending on extreme trust recovery values with stationary robots

Table 4: Extreme trust values and level of trust

Level of Trust
Low Trust Decrease 0.37
Low Trust Recovery 0.32
High Trust Decrease 0.31
High Trust Recovery 0.36
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