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Abstract

This paper tackles automatically discovering phone-like acous-

tic units (AUD) from unlabeled speech data. Past studies

usually proposed single-step approaches. We propose a two-

stage approach: the first stage learns a subword-discriminative

feature representation, and the second stage applies cluster-

ing to the learned representation and obtains phone-like clus-

ters as the discovered acoustic units. In the first stage, a

recently proposed method in the task of unsupervised sub-

word modeling is improved by replacing a monolingual out-

of-domain (OOD) ASR system with a multilingual one to

create a subword-discriminative representation that is more

language-independent. In the second stage, segment-level k-

means is adopted, and two methods to represent the variable-

length speech segments as fixed-dimension feature vectors are

compared. Experiments on a very low-resource Mboshi lan-

guage corpus show that our approach outperforms state-of-the-

art AUD in both normalized mutual information (NMI) and

F-score. The multilingual ASR improved upon the monolin-

gual ASR in providing OOD phone labels and in estimating the

phone boundaries. A comparison of our systems with and with-

out knowing the ground-truth phone boundaries showed a 16%

NMI performance gap, suggesting that the current approach can

significantly benefit from improved phone boundary estimation.

Index Terms: Acoustic unit discovery, unsupervised subword

modeling, zero-resource

1. Introduction

There are around 7, 000 spoken languages in the world [1], most

of which lack transcribed speech data [2]. Conventional super-

vised acoustic modeling strategies [3,4] therefore cannot be ap-

plied directly to build ASR systems for such low-resource lan-

guages. As a result, current high-performance ASR schemes

are available only for a very small number of languages [5]. To

facilitate ASR for low-resource languages, unsupervised acous-

tic modeling has been gaining research interest recently [6–8].

Unsupervised acoustic modeling aims to discover basic speech

units that represent all the sounds in a target language by mak-

ing a zero-resource assumption [9], i.e., for a target language,

only speech recordings are available while transcriptions and

phoneme inventory (or its size) information are unknown.

There are two mainstream research strands in unsupervised

acoustic modeling. The first strand, acoustic unit discovery

(AUD) [6,10], formulates the problem as discovering a finite set

of phone-like acoustic units [6, 7, 11]. The second strand, unsu-

pervised subword modeling (USM) [9,12], formulates the prob-

lem as learning a frame-level feature representation that can

Code: https://github.com/syfengcuhk/mboshi.

distinguish subword units (phonemes) and is robust to speaker

variation [8, 13, 14]. Studies on the USM task were mostly

driven by the ZeroSpeech Challenges [9, 12, 15]. In essence,

the USM task can be considered as learning an intermediate

representation towards achieving the goal of AUD [16].

This study addresses the AUD task. Two main types of

approaches to the AUD task were investigated in the past.

The first type adopts self-supervised learning algorithms and

uses a quantization layer to obtain a finite set of discovered

acoustic units [13, 17, 18]. The second type adopts Bayesian

non-parametric versions of the hidden Markov model (HMM)

[6, 11, 19]. The combination of self-supervised learning and

Bayesian approaches was also studied [20, 21]. All the studies

mentioned above proposed single-step approaches. In contrast,

the present study proposes a two-stage learning framework:

the first stage learns a frame-level subword-discriminative fea-

ture representation (i.e., the USM task); the second stage ap-

plies clustering techniques to the learned frame representation

to obtain a set of clusters as the discovered acoustic units.

Subword-discriminative feature representations can provide a

better separation between sounds than spectral features: In

a subword-discriminative representation, two examples of the

same phoneme are closer while those of different phonemes

are further apart than in an MFCC representation. This is a

highly desired property in clustering-based acoustic unit discov-

ery [7, 22], which motivates us to propose a two-stage learning

framework.

Specifically, in the first stage of the framework proposed

in this study, we leveraged and improved a USM approach

from a previous study [23]. This approach trains an autore-

gressive predictive coding (APC) model [24] followed by a

cross-lingual DNN model to extract bottleneck features (BNFs)

as the subword-discriminative representation. Previous results

[23, 25] employing a single out-of-domain (OOD) language’s

resources to generate OOD phone labels for cross-lingual DNN

training, provided state-of-the-art performance in USM tasks.

Here, we aim to improve this approach further and, for the first

time, use it for a different task: AUD. To leverage an OOD

ASR system to generate OOD phone labels, We propose to use

multiple OOD languages’ resources to build a more language-

independent OOD ASR system than in our previous work [23].

Because different languages have different phoneme invento-

ries, we hypothesize that OOD phone labels that capture a more

extensive set of sounds will be more useful for acoustic mod-

eling of a target language. We will compare the use of multi-

ple versus a single OOD language resources in this paper. In

the second stage of our framework, the k-means algorithm is

adopted for speech segment clustering. To that end, first, phone

segment boundaries are estimated using an OOD ASR via de-
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Figure 1: The first stage in the proposed approach. “OOD”

denotes out-of-domain, i.e. non-target language(s). The input

to the DNN AM is either APC features or MFCCs but not both.

coding [26]. The resulting variable-length segments need to be

represented as fixed-dimension vectors, for which we compare

two often adopted approaches [22, 26, 27]: an average-based

method [7] and a downsampling method [28]. We measure the

sensitivity of our AUD approach’s performance to the number

of discovered acoustic units, because the phone inventory size

of a target language is usually unknown. The experiments are

carried out on a very low-resource language, Mboshi [29] (4.5

hours of unlabeled speech).

2. Proposed two-stage approach

2.1. Stage 1: subword-discriminative feature learning

The goal of this stage is to learn a frame-level subword-

discriminative feature representation. The general framework

of the first stage of our proposed approach, based on [23], con-

sists of an 1) APC model, which creates the APC features that

are used as input to a 2) DNN acoustic model (AM) together

with the frame-level phone labels obtained from 3) an OOD

(non-target language) ASR system (see Figure 1). After training

the DNN AM, BNFs are extracted from the bottleneck layer of

the DNN as the desired subword-discriminative representation.

APC is a self-supervised learning model without the need

of transcriptions for training. It is trained to predict a future

speech frame n steps ahead (named prediction step) based on

the current and past frames of an utterance [24]. APC is in-

corporated in [23] to extract APC features as input to the DNN

AM (see Figure 1), owing to its ability to make phonetic and

speaker information in speech more separable than MFCC. In

this study we tackle an extremely low-resource scenario (4.5

h), however our previous work [23] suggests that a larger train-

ing dataset (more than 50 h) is needed to obtain effective APC

features, thus we opt for using an APC model trained with a

well-resourced OOD language. Note that a recent study [30]

found that self-supervised models trained on one language can

be used to represent another language with certain success. In

our experiments we compare (1) APC features extracted by an

APC model which is trained with an OOD language; and (2)

MFCC features (hence bypassing the APC model); as the input

to the DNN AM (see Figure 1).

The DNN AM in Figure 1 is trained with target language

acoustic data. Frame-level phone labels required for training

the DNN AM are obtained using an OOD (non-target) ASR sys-

tem [23]: a target speech utterance is decoded by the OOD ASR

system so that every frame is assigned a phone label generated

by the OOD ASR. By this means, an OOD language’s phonetic

knowledge is exploited for the target language acoustic model-

ing. BNFs are then extracted from the bottleneck layer of the

trained DNN as the desired subword-discriminative representa-

tion.

The language-independent OOD ASR system leverages

multiple phonetically diverse languages’ resources. We use

International Phone Alphabet (IPA) symbols [31] to represent

the phonemes of the different OOD languages, thus creating a

phoneme inventory of the multilingual ASR system that is more

language-independent [32] than that of a monolingual OOD.

This also enables acoustic information sharing of the same or

similar sounds from multiple languages during ASR training.

A multilingual ASR system captures a wider phonetic space

and has more different phone labels than a monolingual ASR

system, thus is expected to provide more refined OOD phone

labels for the target speech than a monolingual ASR system.

Another modification to the approach in [23] is adding a

post-processing step to the OOD ASR based phone labels (see

Figure 1). Essentially, the post-processing aims to refine the

phone labels from an OOD ASR via re-aligning: First, we train

an HMM with the OOD phone labels and Mboshi acoustic data;

second, we generate the HMM phone alignments as the de-

sired frame-level label supervision (rather than the output of an

OOD ASR) to train the DNN AM. We experimentally found

that the post-processing step consistently improves the AUD

performance. Presumably, it refines the OOD phone labels by

leveraging contextual information in the Mboshi acoustic data.

2.2. Stage 2: speech segment representation and clustering

This stage applies k-means clustering to the subword-

discriminative feature representation learned by the first stage to

obtain a finite set of clusters, each of which resembles a phone-

like acoustic unit. The discovered units are the outcome of the

proposed two-stage approach.

Speech clustering can be realized at the segment level [33]

or at the frame level [8]. For segment-level clustering, we need

the phone segment boundaries, and the segments need to be rep-

resented as fixed-dimension vectors. In order to obtain the seg-

ment boundaries, we rely on the OOD ASR system (see Sec-

tion 2.1): after decoding the target speech data, phone bound-

ary information is obtained by finding discontinuities of the

frame-level OOD phone labels. This phone boundary estima-

tion method is similar to [26], except that here we are using a

multilingual and IPA symbol-based OOD ASR system.

This study compares two methods to obtain the fixed-

dimensional segment representation. The first is a downsam-

pling method [28] as suggested by [22, 27]: a variable-length

speech segment is cut into a fixed number (s) of consecutive

sub-segments, and the averages over d-dimensional frame-level

feature vectors within each sub-segment are concatenated to

form a feature vector of dimension s×d for each segment. Note

that when s = 1, the method is equivalent to an average-based

method [7] which takes the average of the frame-level features

over all the frames in a segment. The downsampling method

with a large s captures abundant temporal information which

is not captured by the average method, however a large s leads

to a high dimension of the segment-level feature vector which

might adversely affect k-means.

Segment-level clustering with the two methods mentioned

above are compared with a frame-level clustering system as a

baseline, which applies k-means (same as in the proposed sys-

tems) to a frame-level feature representation. While circum-

venting the need for segment boundaries and the need for fixed-

length segment representations, frame-level clustering tends to

produce over-fragmented discovered units [34, 35]. Finally, we

report an “upperbound” segment-level system by assuming the

availability of golden phone boundary information while keep-
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ing the other settings unchanged. This allows us to quantify the

performance degradation attributed to imperfect phone bound-

ary estimation.

3. Experimental setup

3.1. Evaluation metrics

We use two common metrics in the AUD task [10, 19, 20]

to compare with past studies: normalized mutual information

(NMI) and F-score. NMI measures the statistical dependency

between discovered units (DUs) and ground-truth phone units

(GUs), which is computed based on a frame-level confusion

matrix of DU and GU (see [19] for details). An NMI value

ranges between 0 and 100%, with a higher value indicating a

higher consistency between DUs and GUs, hence is preferred.

F-score is the harmonic mean of recall (R) and precision (P).

It is used to measure the accuracy of the phone segmentation.

A tolerance of ±20 ms is set when computing F-score values.

Higher F-score, R and P are preferred.

3.2. Databases

The AUD performance is evaluated on a corpus containing

5, 130 sentences spoken by three speakers of the Mboshi lan-

guage [29], for a total amount of 4.5 hours. Automatically

generated Mboshi phone alignments are available, but are not

used during system development. The DNN AM in our system

is trained and evaluated on the entire Mboshi dataset without

training-test partition, as we are tackling an unsupervised learn-

ing problem. This is also consistent with the studies [11, 19].

Speech from 13 phonetically diverse languages [32] is used

to train the OOD multi-/monolingual ASR systems. 5 languages

are from GlobalPhone [36]: Czech (24 h), French (23 h), Span-

ish (12 h), Mandarin (15 h) and Thai (23 h). The other 8 lan-

guages are from IARPA Babel: Cantonese (127 h), Bengali (55

h), Vietnamese (78 h), Lao (59 h), Zulu (54 h), Amharic (39 h),

Javanese (41 h) and Georgian (45 h).

3.3. Implementation of stage 1

The APC model included in the first stage of the proposed

model is taken from our previous study [23]: it has 5 LSTM

layers of dimension 100 with residual connections. The pre-

diction step is 5. The model was trained with the Libri-light

(English) unlab-600 (hour) set [37]. APC features are extracted

from the top layer of the APC model.

We developed 2 multilingual systems and 5 monolingual

systems, differing only in the training languages: Multi-5 de-

notes the multilingual system trained with the 5 GlobalPhone

languages; Multi-13 denotes the multilingual system trained

with all 13 GlobalPhone+Babel languages; Mono-CZ, Mono-

FR, Mono-SP, Mono-MA, Mono-TH are five monolingual

systems, each trained with one GlobalPhone language, i.e.,

Czech, French, Spanish, Mandarin, and Thai, respectively. We

do not report any monolingual system trained on each of the Ba-

bel languages because of its inferior AUD performance – pos-

sibly explained by the large recording condition mismatch be-

tween the Babel languages and Mboshi. IPA symbols are used

to represent the basic acoustic units, and the mapping from or-

thographic transcriptions to IPA symbol sequences is obtained

by LanguageNet G2P models [38].

The multilingual and monolingual OOD ASR systems are

trained using Kaldi [39], adopting a hybrid architecture [3], fol-

lowing implementation in [5]. The AM adopts a factorized

time-delay neural network (TDNNF) consisting of 12 layers

with a hidden dimension of 1024 and Resnet-style skip con-

nections, trained with the LF-MMI criterion [40] for 4 epochs,

with a starting learning rate (LR) of 10−3. The input features

consist of 43-dimension high-resolution MFCC+pitch features

and 100-dimension i-vectors. The language model (LM) is a

uni-gram phonotactic LM instead of an RNNLM, as we intend

the OOD ASR phone labeling process to be minimally affected

by the OOD language phonotactics. The LM is trained with the

training data transcripts using SRILM [41].

The DNN AM for Mboshi is trained using either APC fea-

tures or MFCC features of the Mboshi data. For each of the 7

multi/monolingual OOD ASR systems, the generated and post-

processed (see Section 2.1) OOD phone labels are used to train

one DNN AM with MFCC as input features, resulting in 7 DNN

AMs. For the sake of simplicity, to test the effectiveness of

the APC features, only for the system employing Multi-13 (the

best-performing OOD ASR), an additional DNN AM is trained

with APC features instead of MFCCs. The Mboshi DNN AM

adopts a TDNNF structure similar to that of the OOD ASR AM,

except: a 40-dimension bottleneck layer is placed below the

top TDNNF layer; i-vector input is not included as we found

it deteriorated the performance in our preliminary results (not

included in this paper); the model is trained for 20 epochs with

a smaller LR of 2.5 · 10−4 to stabilize the training procedure

due to only 4.5 hours of training material. After training the

DNN AM, the BNF for the Mboshi representations are extracted

from the bottleneck layer as the learned frame-level subword-

discriminative representation, and are used as input to the sec-

ond stage of the proposed system.

3.4. Implementation of stage 2

The k-means algorithm is implemented using [42]. Unless

specified differently, the number of clusters is empirically set

to 50. Segment-level clustering is done on all the learned

subword-discriminative representations of the different DNN

AMs (i.e., 1 for each OOD system). For segment-level clus-

tering, the speech segment boundaries are estimated using the

OOD ASR system in the first stage. The downsampling method

with s in {2, 3, 4, 5} and the average based method are com-

pared for obtaining the fixed-dimension segment representa-

tion. The frame-level clustering baseline and the upperbound

segment-level system are based on the feature representation

learned using Multi-13. Since the optimal setting of the num-

ber of clusters is unknown, we tested a range between 30− 70.

4. Results and discussion

For each experiment, we repeat k-means clustering 5 times with

different random initialization and report NMI and F-score in

means ± standard deviation.

4.1. Evaluation of stage 1: Effect of frame-level subword-

discriminative feature representations

We first evaluate the effect of using a multilingual vs. a mono-

lingual OOD ASR system on the effectiveness of stage 1. Next,

we investigate the effect of using APC features as input features

to the DNN AM. A fixed setting of stage 2 is used in all these

experiments, i.e., the segment-level k-means with the average-

based method to obtain the segment-level feature representa-

tion. The performances of our systems and two state-of-the-art

(SotA) systems from the literature [11,19] are listed in Table 1.

Several observations can be made from this table:
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Table 1: Comparison of adopting a multi-/monolingual OOD

ASR system in stage 1 of our approach and SotA [11, 19].

Input system NMI (%) F-score (%)

MFCC

Mono-CZ 40.87± 0.14 63.01± 0.06
Mono-FR 38.32± 0.17 64.14± 0.10
Mono-SP 37.57± 0.51 58.87± 0.08
Mono-MA 38.85± 0.24 61.45± 0.12
Mono-TH 37.61± 0.08 61.79± 0.05
Multi-5 41.93± 0.28 62.84± 0.03
Multi-13 43.00± 0.12 62.89± 0.07

APC Multi-13 42.15± 0.28 62.90± 0.15

N/A
Yusuf et al. [19] 41.07± 1.09 59.15± 1.51
Ondel et al. [11] 38.38± 0.97 59.50± 0.78

Table 2: Speech clustering strategies in stage 2 of the proposed

approach. “Seg./Fra.” denotes segment- and frame-level clus-

tering. “AVG‡” indicates the upperbound system.

Type System NMI (%) F-score (%) Recall (%) Precision (%)

Seg.

AVG 43.00± 0.12 62.89± 0.07 73.47 54.97
DS-2 43.00± 0.12 62.87± 0.07 74.22 54.54
DS-3 42.73± 0.28 62.70± 0.15 74.12 54.32
DS-4 42.49± 0.27 62.47± 0.10 73.74 54.19
DS-5 42.44± 0.16 62.60± 0.07 74.07 54.20

AVG‡
59.29± 1.17 97.73± 0.06 100.00 100.00

Fra. Baseline 41.82± 0.20 43.59± 0.35 90.38 28.72

Table 3: NMI (row 2) and F-score (row 3) performances w.r.t

different numbers of clusters (row 1).

30 40 50 60 70

41.35± 0.21 42.50± 0.34 43.00± 0.12 43.22± 0.52 43.20± 0.53

62.81± 0.05 62.89± 0.04 62.89± 0.07 62.77± 0.14 62.76± 0.10

(1) The multilingual OOD ASR systems (Multi-13/Multi-5)

outperform the monolingual systems on the NMI measure. Ap-

parently, using a language-independent OOD ASR system to

provide the OOD phone labels is better than using a language-

dependent system for target language DNN AM training, to

learn a better frame-level subword-discriminative feature rep-

resentation. Looking at the F-score, the Multi-5 and Multi-

13 systems perform better than the average over the 5 mono-

lingual systems (61.85%), nevertheless Mono-FR achieves the

best performance, followed by Mono-CZ. The results indicate

that using a multilingual OOD ASR is more beneficial for im-

proving the phonetic relevance of the discovered acoustic units

(NMI) than for improving phone boundary estimation (F-score).

(2) Our best system (Multi-13 with MFCC input) outper-

forms state-of-the-art [11,19] on both NMI and F-score. Similar

to our approach, [11, 19] also relied on OOD languages’ tran-

scribed data for model training. However, they used around 35

hours (from 7 languages), while our two best systems (in NMI)

used more OOD speech data - Multi-13: 595 hours; Multi-5:

97 hours. Nevertheless, our Mono-CZ system performs on par

with or better than [11, 19] in NMI and F-score respectively,

while using only 24 hours of Czech data.

(3) Comparison of the two Multi-13 systems shows that

APC features as input to the DNN AM in stage 1 does not affect

the F-score and deteriorates the NMI performance compared to

MFCCs. This result, seemingly in contrast to [23], can be ex-

plained by the following: in [23], the APC model was trained on

the target language English, while here the English-trained APC

model was used to capture the target language (Mboshi). More-

over, [23] showed the success of APC features for the USM

task, here we used a different, AUD task.

4.2. Evaluation of stage 2: Clustering strategies

We investigated the effect of the two segment representation

strategies in stage 2, i.e., the downsampling method with differ-

ent s and the average-based method, and compared these to the

frame-level baseline and the system with access to golden phone

boundary information (upperbound: “AVG‡”). The Multi-13

OOD ASR system is used to generate the OOD phone labels in

all experiments; APC is not adopted. Table 2 shows the results.

“AVG” denotes the average-based method, “DS-2∼5” denotes

the downsampling method with s = 2 ∼ 5. In addition to NMI

and F-score, Table 2 reports the average recall and precision

values for each system, in order to gain deeper insights into the

differences between segment- and frame-level k-means.

It can be clearly seen that the systems adopting segment-

level k-means outperform the frame-level baseline on NMI and

F-score. The superiority of the segment-level systems is more

prominent on the F-score (absolute 19.0%) than on NMI (ab-

solute 1.2%). Particularly, the baseline model has a very low

precision, indicating a large proportion of false boundaries that

are hypothesized. This implies a frame-level system tends to

over-segment target speech, which is in line with [34, 35].

Table 2 shows that the downsampling method does not have

an advantage over a simpler, average based method, and a larger

s leads to a slight NMI degradation. While other studies showed

a good performance for the downsampling method [22, 27], we

show that in this low-resource Mboshi database, using the k-

means algorithm, the average based method is comparable, if

not better than the downsampling method.

Finally, Table 2 shows that the upperbound system (AVG‡)

outperformed our best system (AVG) by 16.3% absolute NMI.

The NMI gap is attributed exclusively to the imperfect phone

boundary estimation by the OOD ASR system. It is expected

that by improving the phone boundary estimation, or by adopt-

ing an interactive approach to refining segmentation and tar-

get language acoustic modeling [27], the frame-level subword-

discriminative representation learned in the first stage could be

based on to achieve an NMI that approaches the upperbound.

The effect of the number of clusters on the AUD task was

investigated using the average based method. Table 3 summa-

rizes the results: the best NMI is obtained with a number of

clusters between 60 and 70. The F-score performance is less

sensitive to the number of clusters than NMI. Overall, a number

of clusters between 50 and 70 shows the best performance.

5. Conclusions and future work

This paper proposes a two-stage approach for the unsupervised

AUD task. Our best model, which employs 13 OOD language

resources in stage 1 to provide phone labels for target language

AM training and uses an average-based method segment clus-

tering in stage 2, outperforms state-of-the-art performance on a

very low-resource Mboshi database. The results showed that the

multilingual OOD ASR systems outperformed a monolingual

one in providing the frame labels for target language acous-

tic modeling and in phone boundary estimation, with the for-

mer being more prominent. Comparison with a golden stan-

dard showed that a 16.0% NMI performance gap could be at-

tributed to imperfect phone boundary information. Further-

more, in stage 1, APC features were compared to MFCCs as

input to the DNN AM training module and were less effective

in the AUD task. In stage 2, the best performance was achieved

using a number of clusters between 50 and 70.
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