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Magnetic resonance imaging (MRI) experiments have been performed in conjunction
with direct numerical simulations (DNS) to study neutrally buoyant particle-laden pipe
flows. The flows are characterized by the suspension liquid Reynolds number (Res), based
on the bulk liquid velocity and suspension viscosity obtained from Eilers’ correlation, the
bulk solid volume fraction (φb), and the particle-to-pipe diameter ratio (d/D). Six different
cases have been studied, each with a unique combination of Res and φ, while d/D is
kept constant at 0.058. The selected cases ensure that the comparison is performed across
different flow regimes, each exhibiting characteristic behavior. In general, an excellent
agreement is found between experiment and simulation for the average liquid velocity and
solid volume fraction profiles. Root-mean-square errors as low as 1.7% and 5.3% are found
for the velocity and volume fraction profiles, respectively. This study presents accurate and
quantitative velocity and volume fraction profiles of semidilute up to dense suspension
flows using both experimental and numerical methods. Three different flow regimes are
identified, based on the experimental and numerical solid volume fraction profiles. These
profiles explain observations in the drag change. For low bulk solid volume fractions a drag
increase (with respect to an equal Res single-phase case) is observed. For moderate volume
fraction distributions the drag is found to decrease, due to particle accumulation at the pipe
center. For high volume fractions the drag is found to decrease further. For solid volume
fractions of 0.4 a drag reduction higher than 25% is found. This drag reduction is linked to
the strong viscosity gradient in the radial direction, where the relatively low viscosity near
the pipe wall acts as a lubrication layer between the pipe wall and the dense core.

DOI: 10.1103/PhysRevFluids.8.124302

I. INTRODUCTION

Over the last decades there has been a continuously growing interest in flows of solid particles
dispersed in a liquid phase [1,2]. This interest is motivated by the fact that these suspension flows are
present in a broad spectrum of processes, including food processing, manufacturing of health care
products, and sediment transport. Understanding and modeling of suspension flow behavior in the
moderate and concentrated regimes is considered to be a challenge, in particular when inertial effects
can no longer be ignored. Despite significant theoretical, experimental, and numerical progress,
open questions remain. The major aim of this study is twofold: first, to provide a comprehensive
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comparison between experimental results obtained using magnetic resonance imaging (MRI) and
particle-resolved direct numerical simulations (DNS) in different suspension flow regimes and,
second, to further study the physics underlying these various flow regimes using the established
data set.

A phenomenon that complicates the flow of suspensions is shear-induced migration: in the
presence of inhomogeneous shear, such as in pressure-driven pipe flow, an initially homogeneous
suspension may rearrange into a nonhomogeneous mixture. Suspended particles migrate towards
the low-shear regions in the flow and form particle clusters, resulting in wall-normal concentration
gradients. In turn, these concentration gradients are responsible for strong gradients in the suspen-
sion viscosity, and thus in turn influence the shear profiles. This behavior is observed in various
experimental facilities, including (wide-gap) annular Couette systems [3–8], rectangular channel
flows [9–11], and pipe flow [12–16]. A connection between shear-induced migration and radial
migration of particles as initially observed by Segré et al. [17] was suggested by Han et al. [18].
Nott and Brady [19] distinguish between both phenomena as the radial migration effect is inertia
driven, in contrast to shear-induced migration, which is observed already in the Stokes regime.

One of the pioneering experiments reporting shear-induced migration in pipe flow with dense
suspensions was performed by Karnis et al. [20] in the 1960s. The authors used a refractive
index matched suspension to ascertain optical access. Their measurement system was a camera in
combination with a microscope. Velocity and concentration profiles were obtained after processing
the camera images. For increasing bulk solid volume fraction (φb > 0.14), the velocity profile was
found to transition from a parabola to a blunted profile due to the presence of a “partial plug
flow” (i.e., particles are found to accumulate at the pipe center). Furthermore, the particle-to-pipe
diameter ratio (d/D) was found to affect the migration behavior: larger particles resulted in a more
pronounced velocity blunting for the same volume fraction.

This shear-induced particle migration was also observed in an experimental study in an annular
Couette system by Gadala-Maria and Acrivos [21]. A consistent viscosity decrease for higher
volume fractions (φb > 0.3) was found, suggesting a nonhomogeneous particle distribution. The
authors concluded that a concentrated suspension should be modeled using a local effective viscos-
ity rather than a constant effective viscosity.

Similar behavior was observed in a rectangular channel by Hookham [9]. Average velocity and
concentration profiles were obtained using an adapted laser Doppler technique in combination with
fluorescent particles. Based on the data obtained, a particle accumulation at the channel center was
observed. In addition, the velocity profile appeared to be blunted, where the degree of blunting was
found to increase with increasing volume fraction.

The behavior observed by Hookham [9] was later confirmed in the experiments by Koh et al.
[22]. The authors performed laser Doppler anemometry experiments in a refractive indexed matched
dense suspension in a rectangular channel. A comparison was made with theoretical models based
on shear-induced particle migration (SIM) introduced by Leighton and Acrivos [23] and Phillips
et al. [24].

In the meantime, the first MRI measurements were introduced to study rheology. Pioneering MRI
measurements in particle-laden pipe flow were performed by Majors et al. [25]. They studied a sus-
pension with volume fractions ranging from 0.016–0.10. The focus of their study was to introduce
and illustrate MRI as a quantitative and noninvasive measurement technique for suspension flows,
rather than a detailed rheological study. Therefore, the authors refrained from a discussion about
shear-induced particle migration.

Sinton and Chow [13] also performed MRI measurements in both Newtonian and non-Newtonian
pipe flow. They studied neutrally buoyant suspensions with volume fractions ranging from φb =
0.21 to 0.52 in Stokes flow. They found that the degree of blunting of the velocity profile does not
depend only on the solid volume fraction, but also on the particle-to-pipe diameter ratio and the pipe
length-to-diameter ratio (L/D), presumably related to either wall effects or an “induction length”
for particle migration to reach an equilibrium particle distribution across the pipe.
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In addition to these experimental studies, progress was made using theoretical modeling. For
instance, a suspension balance model (SBM) was introduced by Nott and Brady [19]. This model
was later revisited by Nott et al. [26] by adding a well-defined particle phase stress, solving the
issue that the particle phase stress was identified with the particle contribution to the suspension
stress. By taking this particle stress contribution explicitly into account, this model is distinct
from other models, which take into account only a force acting on the particle phase. The SBM
suggested that previous experimental studies used insufficient development lengths: some of the
listed studies use only a few diameters of development length before characterizing the flow. The
exact amount of length needed for full development of velocity and concentration profiles was
not well established for dense suspensions. Therefore, further MRI measurements of neutrally
buoyant suspensions at different streamwise pipe locations were performed by Hampton et al.
[27]. Two different d/D values were studied with volume fractions ranging between φb = 0.10 and
0.50. The main focus of the experiments was to investigate the required development or entrance
length associated with different volume fractions. Hence, concentration (and velocity) profiles at
different pipe locations were taken. Based on the experimental data a model was proposed to
capture the streamwise concentration profile development. Another interesting observation is that
for average volume fractions of 0.20–0.40 and d/D = 0.0625, ordered particle layers were observed
in the vicinity of the pipe wall. The authors point out that the constraining pipe wall is likely
responsible for this particle ordering. A comparison with the SIM and SBM models was made to
explain the observed flow behavior. However, neither model provided a good quantitative prediction
for the obtained results.

These experiments were followed by measurements by Han et al. [18]. They showed that for
low volume fractions (i.e., about 6%) inertia and particle-particle interactions should be taken
into account for the modeling of the (radial) concentration profile. They suggest that for particle
Reynolds numbers (Rep = aub/ν, with ub the bulk mixture velocity, a = d/2 the particle radius,
and ν the liquid phase viscosity) exceeding 0.1, inertial effects cannot be neglected for any volume
fraction.

After the pioneering work in the 1990s, very few other studies investigating suspension flow
dynamics in pipe flow were reported. More recent studies focused mainly on the effect of particles
in channel or duct flow, in particular in the turbulent regime (see, e.g., the numerical studies by
Sharma and Phares [28], Fornari et al. [29], Costa et al. [30,31]). Also a combined experimental
and numerical study on the effect of buoyant particles in turbulent duct flow was reported by
Zade et al. [32]. A refractive index matched experiment of particles in a turbulent duct flow was
performed by Zade et al. [10]. Further experiments in various experimental facilities were reported,
including MRI measurements in an annular Couette setup containing a dense granular suspension
[33], rheometer experiments of a colloidal suspension [34], refractive index matched experiments of
a dense emulsion in pipe flow [35], and MRI measurements in a particle-laden pipe flow [36]. For
the last study a flattening of the velocity profile was reported in case of a bulk solid volume fraction
of 0.2 and suspension Reynolds number (Res = ubD/νs with ub the mixture bulk velocity and νs the
suspension viscosity) of 700.

Recently, shear-induced migration in pipe flow has been reported by Ardekani et al. [37], who
performed a numerical study of heat transfer in suspensions. In this study, the Reynolds numbers
(Re = ubD/ν) were defined using the (uncorrected) continuous phase viscosity. For the laminar
case (Re = 370) the velocity profiles are found to flatten for increasing volume fraction. Moreover,
in the turbulent region (Re = 5300) a solid particle core is observed for higher volume fractions.
This is reported to be consistent with the findings of the study by Lashgari et al. [38], who reported
an inertial shear-thickening regime for higher volume fractions. This regime is dominated by the
particle induced stresses. Similar behavior as reported by Ardekani et al. [37] is also observed in a
numerical study of a particle-laden channel flow by Yousefi et al. [39].

For higher Reynolds numbers, the addition of particles to a flow affects the laminar-turbulent
transition threshold. This is experimentally shown in a seminal study by Matas et al. [40]. They
studied the effect of particle size and solid volume fraction on the transition Reynolds number in
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(a) (b)

FIG. 1. Schematic overview of the experimental setup (a) and a photograph of the MRI system and part of
the experimental facility (b). The Cartesian coordinate system used for data sampling is superimposed in the
top left corner of the photograph, with the x component in the streamwise direction.

a pipe flow configuration. A dependency of the critical Reynolds number on the particle size and
solid volume fraction was found. Subsequently, numerical studies on the effect of particles for pipe
and channel flow were performed by Yu et al. [41] and Loisel et al. [42], respectively. Hogendoorn
and Poelma [43] and Agrawal et al. [44] found a distinctly different transition scenario for higher
volume fractions, without intermittent behavior which is characteristic for single-phase transitional
pipe flow. This transition scenario is further refined in follow-up studies [45,46]. In the latter study a
scaling law is introduced, which predicts the onset of turbulence in pipe flow for a given suspension.

Experimental studies of suspension behavior in pipe flow have so far predominantly been
performed in the Stokes regime in order to avoid inertial effects, because these experiments are
often devised in conjunction with theoretical analysis. Inertial effects significantly complicate this
theoretical analysis. However, in many natural and industrial processes inertial effects cannot be
neglected. From the review above it is evident that the focus of the vast majority of studies was on
the noninertial regime. Open questions remain for higher Reynolds numbers, for instance, the spatial
distribution of particles and the effect thereof on the total pressure drop. Reliable experimental
data is of key importance for validation and development of theoretical models and numerical
methods, in order to provide insight in the exact suspension dynamics and corresponding regimes.
Therefore, the main focus is on establishing a systematic, reliable data set. This is achieved here
by a combination of experiments and numerical simulations. A comparison is made using six cases,
where each case has a unique combination of Reynolds number and bulk solid volume fraction. This
allows us to validate the experimental and numerical methods across different flow regimes, each
exhibiting characteristic flow behavior. In contrast to the majority of previous studies, experiments
are performed for higher Reynolds numbers.

II. EXPERIMENTAL DETAILS

A. Experimental facility

A schematic of the experimental setup, including a photograph of the MRI system and part
of the experimental setup, is shown in Fig. 1. Experiments are performed in a 30.35 ± 0.12 mm
inner diameter pipe. The suspension is transported using a progressive cavity pump (AxFlow B.V.,
Lelystad, the Netherlands). Using a settling chamber in combination with a smooth contraction,
a laminar flow is maintained for Re up to at least 3500. A concentric trip ring (inner diameter,
di = 25 mm), comparable with Wygnanski and Champagne [47], is used to ensure a fixed transition
for single-phase flows at Re ≈ 2000. MRI measurements are obtained at a distance of 132D
downstream of the orifice. A square box (inner dimensions: 0.1 × 0.1 × 0.4 m3) containing a
water-glycerol mixture is placed around the pipe at the isocentre of the scanner. The MRI signal
of the fluid inside this box is used to account for the signal shift during experiments; this will be
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further discussed in Sec. II B. An inline Coriolis mass flow meter (KROHNE OPTIMASS 7050c)
is used in the return loop to monitor the flow rate. For average volume fractions exceeding 40%,
the flowmeter caused jamming due to its narrower inner diameter. Therefore, the bulk flow rate for
all experiments is derived from the liquid velocity profile obtained using the MRI scanner, which
proved to be in good agreement with the mass flow meter (average error less than 2% for the single-
phase and φb = 0.1 measurements; for the turbulent cases an error less than 1%). A temperature
measurement is obtained in the reservoir using a PT100 temperature probe. Furthermore, a cooling
system (JULABO FT402) is used to minimize the temperature increase due to the heat addition
from the pump. The return loop is connected to a reservoir, closing the loop as the pump is fed
from this reservoir. In order to achieve low flow rates, a bypass is installed from the pump exit
to the reservoir. In combination with a valve, located in the main circuit (i.e., after the bypass),
single-phase Reynolds numbers as low as 500 could be achieved. For the particle-laden experiments,
a mechanical stirrer is placed in the reservoir to keep the particles suspended. Small temperature
variations lead to small rising or settling velocities of the particles, as the density of the fluid and
particles are both sensitive to even the smallest temperature fluctuations [48]. A small residence
time effect is observed on the solid volume fraction distribution. However, for the measurements
presented in this study this effect was negligible [see also the axisymmetry for all cases in Fig. 4(a)].

Unexpanded polystyrene particles (Synthos EPS; d = 1.75 ± 0.12 mm; skewness S = 0.698;
ρ = 1.032 ± 0.1% kg/L) are used as the dispersed phase. Note that there is approximately ± 7%
variation in the particle size, which has an important effect on the packing of particles in dense
regions. A glycerol-water mixture (mass ratio 13.6/86.4%) is used to obtain a density matched
system. The viscosity of the suspension, μs, is determined a posteriori, based on the temperature
of the suspension [49]. Furthermore, Eilers’ viscosity correction [50] is applied to correct for the
increased viscosity due to the suspended particles. For the maximum packing fraction, φm = 0.64 is
selected. Based on previous experimental findings this is found to be an appropriate choice for the
used suspension [43,45]. This is in agreement with the maximum flowable packing fraction provided
by the model of Desmond and Weeks [51] for our particle distribution (φb ≈ 0.64). Preparation of
the suspension is based on the mass ratio of the particles and the glycerol-water mixture. Starting
with a single-phase system, particles are added in steps of 10% up to a volume fraction of 50%.
In addition, experiments are performed for a volume fraction of 45%. Moreover, copper sulfate
(CuSO4; 1 g/L) is added to increase the T1 decay, resulting in an enhanced signal-to-noise ratio of
the MRI measurements. Note that the effect on density or viscosity of the original mixture will be
negligibly small.

Practical limitations prevented the acquisition of pressure drops, �p, simultaneous with the MRI
measurements. Therefore, average pressure drop measurements were obtained in a separate series
of experiments in the exact same flow loop for a range of Res and φb, using smaller increments
spanning all cases. Subsequently, the pressure drops corresponding to each of the six studied MRI
cases are determined using bilinear interpolation in Res and φb.

B. MRI system and settings

The MRI system used is a MAGNETOM Trio 3T Whole-Body scanner (Siemens, Erlangen,
Germany). This scanner is located in the MRI laboratory at the Institute of Fluid Mechanics at
the University of Rostock. This laboratory is dedicated to studying fluid mechanics applications,
in contrast with the majority of other MRI facilities. The measurement parameters used for the
experiments are shown in Table I. The MRI system has a maximum gradient amplitude of 40 mT/m
and a maximum gradient slew rate of 200 T/m/s. Two standard receive-only body coils were used
to receive the signal.

For the MRI measurements a nonisotropic spatial resolution is used: 50 × 0.3 × 0.3 mm3 in the
x, y, and z directions, respectively. This nonisotropic resolution behaves similarly to a spatial average
along the x or streamwise direction. The y-z plane is perpendicular to this streamwise direction, with
y the vertical and z the horizontal component [see also the coordinate system in Fig. 1(b)].
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TABLE I. MRI parameters used.

Parameter Value

Matrix size 1 × 640 × 640
Nonisotropic resolution 50 × 0.3 × 0.3 mm3

28.6 d × 0.17d × 0.17d
Repetition time (TR) 22 ms
Echo time (TE) 9 ms
RF flip angle 5◦

Receiver bandwidth 280 Hz/pixel
Velocity encoding 0.1–1.7 m/s
Number of samples 32
Total acquisition time 30 min for each combination of Res and φb

In the current suspension consisting of glycerol-water mixture and polystyrene particles, only the
liquid phase creates a signal. The presence of particles reduces the amount of liquid within a voxel,
resulting in a lower MRI signal magnitude M(y, z). This magnitude can therefore be used to quantify
the local volume fraction. The time-averaged particle volume fraction φ(y, z) is reconstructed from
the signal magnitude of a particle-laden flow measurement and a reference measurement, Mref (y, z),
without particles in the flow:

φ(y, z) = 1 − M(y, z)/Mbox

Mref (y, z)/Mbox,ref
, (1)

where Mbox is the average signal magnitude in the glycerine-filled box around the pipe (see Fig. 1).
This correction improves the measurement accuracy since the two measurements can be taken hours
apart and the signal level may have changed slightly during that time. This magnetic drift (or B0

fluctuation) is a common, mostly unavoidable issue in MRI recordings.
Note that the actual and reference measurements are performed with identical settings to avoid

other effects that may influence the signal magnitude. Except for the particle volume fraction, the
flow conditions are the same for the two cases, i.e., the same experimental setup with the same
total volumetric flow rate. For particle concentration and velocity measurements, two different
MRI protocols are used: the particle concentration measurements are performed with a velocity-
compensated MRI acquisition sequence to decrease the sensitivity of the signal magnitude to
changes in the velocities between the particle-laden case and the reference case. Velocity mea-
surements are conducted using one-directional phase-contrast MRI [52]. Except for the encoding
technique, all measurement parameters are identical for the two MRI protocols. Note that the
velocities shown in this study are the intrinsic fluid velocities, as only the fluid phase provides a
measurable signal.

The velocity and solid volume fraction results obtained on the Cartesian grid are interpolated on a
nonequidistant cylindrical grid using bilinear interpolation in (y, z) for (r, θ ). A nonequidistant grid
is used, as the grid density increases for increasing r in order to correct for the higher information
density in the direction of the wall. Subsequently, the data are averaged over the azimuthal direction,
θ , in which the flow is statistically homogeneous, to obtain the mean solid fraction as function of
the radial coordinate, r. Comparison of these integrated radial velocity profiles with the original
Cartesian data results in an error less than 1% for the bulk velocity (across all cases). This value
comprises all errors of this interpolation, including the accuracy of the determination of the pipe
center. In order to keep the results consistent, the bulk solid volume fraction was also obtained in
the cylindrical coordinate system using

φb = 2

R2

∫ r=R

r=0
φ(r)r dr. (2)
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FIG. 2. Single-phase velocity profiles (markers) compared to reference data (solid lines) for Re ≈ 900,
5300, 10 000, and 24 600. For clarity, the cases corresponding to Re = 10 000 and 24 600 are shown with a
vertical offset of 0.25 and 0.5, respectively.

First, the MRI results for single-phase flow at Re = 900, 5300, 10 000, and 24 600 are validated
with reference data from literature [53,54]. The results of this single-phase validation are shown
in Fig. 2; note that an offset is used for the two highest Re. The comparison is restricted to the
mean streamwise velocity profile as function of radius, as this is the only quantity obtained from
our MRI measurements. For all cases an average error between the profiles of less than 1% of the
bulk velocity is found. This confirms that the current MRI protocol can measure both laminar and
turbulent profiles accurately.

Also, the error in the concentration measurement is determined using error propagation [55].
This error decreases for increasing number of repetitions; 32 repetitions per measurement are found
to result in a maximum error (STD/mean) of 2.3% across all measurements.

For the highest volume fraction experiment (Res = 1732, φb = 0.466) the absolute discrepancy
between the target volume fraction, φ = 0.45, and measured volume fraction, φb = 0.466, by the
MRI scanner is found to be 0.016. Note that this value comprises all kinds of errors. These errors
can occur due to dead spots in the experimental facility, reconstruction errors, slight difference
in magnetic susceptibility of particles and fluid, higher orders of motion (see, e.g., Schmidt et al.
[56]), etc. Moreover, due to particle aggregation in the pipe center, the effective volume fraction
in the pipe deviates from the solid volume fraction in the feeding reservoir. As the velocity in the
center is highest, the particles are convected faster than the bulk flow. This is similar to the Fåhræus
effect, where red blood cells aggregate in the vessel center in the microcirculation [57]. Therefore,
the analysis in this study is based on the bulk solid volume fraction resulting from circumferential
integration of the measured particle volume fraction profile [Eq. (2)]. This will result in a better
estimate of the actual average solid volume fraction in the measurement section, and thereby also in
a more accurate determination of the suspension Reynolds number.

C. Selected cases to compare to DNS

Six cases are selected from the experiments, which are compared with direct numerical simu-
lations. These cases are selected for various combinations of Res and φb, in order to shed light on
suspension flow dynamics under different conditions. Simultaneously, this allows us to validate the
obtained experimental and numerical data set for a range of flow conditions. The six cases with
the corresponding experimental conditions are listed in Table II. The variation in fluid viscosity, ν,
is due to temperature variations of the suspension. In particular for the higher velocities and solid
volume fractions, more heat from the pump is added to the suspension.

From the experiments the time-averaged intrinsic liquid velocity, ul (r), and particle volume
fraction profiles (or void fraction profiles, defined as one minus the bulk solid volume fraction) are
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TABLE II. Selected cases and corresponding flow conditions and parameters for the experiments. See the
text for explanation of the different columns.

Case Rel φb ν [m2/s] ul,b[m/s] νs/ν ub/ul,b Res f

1 2339 0.252 1.440 × 10−6 0.111 2.31 1.070 1083 6.50 × 10−2

2 6012 0.272 1.443 × 10−6 0.286 2.53 1.067 2532 4.40 × 10−2

3 7253 0.089 1.436 × 10−6 0.343 1.28 1.010 5740 3.99 × 10−2

4 9977 0.195 1.436 × 10−6 0.472 1.82 1.025 5613 3.59 × 10−2

5 15 270 0.315 1.420 × 10−6 0.715 3.15 1.050 5096 3.05 × 10−2

6 16 126 0.466 1.287 × 10−6 0.684 9.89 1.062 1732 4.32 × 10−2

available. From this information, the intrinsic liquid bulk velocity, ul,b is determined, being defined
as

ul,b =
∫ r=R

r=0 ul (r) [1 − φ(r)] 2πr dr∫ r=R
r=0 [1 − φ(r)] 2πr dr

. (3)

This represents a weighted average using the local void fraction. The corresponding liquid bulk
Reynolds number is defined as Rel = ul,bD/ν. We also determined the ratio ub/ul,b with ub the
bulk mixture velocity. The latter has not been measured directly, but was estimated from Eq. (3)
with 1 − φ put equal to 1. This is a valid approach provided that the macroscopic slip velocity
between the liquid and the solid phase is zero or φ(r) us(r) + [1 − φ(r)] ul (r) ≈ ul (r); a small bias
may be expected from wall slip of the solid phase at the pipe wall. This is also confirmed by a
detailed analysis of the DNS data. The bulk mixture/liquid velocity ratio can be used as a metric
which reveals information about the solid volume fraction distribution and the corresponding flow
regime. See, for instance, case 3, where an almost uniform volume fraction distribution is observed
[Fig. 6(c)] for ub/ul,b = 1.01 and thus close to unity. In Table II the suspension Reynolds number
is based on the bulk mixture velocity and the suspension viscosity, thus Res = Rel (ub/ul,b)/(νs/ν).
Finally, f represents the Darcy-Weisbach friction factor defined by f ≡ �p/(ρu2

b) 2D/L.

III. SIMULATION DETAILS

A. Governing equations

In the particle-resolved direct numerical simulations the full Navier-Stokes equations are solved
for the incompressible carrier flow and the Newton-Euler equations for the motion of the particles.
Using the particle diameter (d) and intrinsic liquid bulk velocity (ul,b) as characteristic scales for
the normalization, the nondimensional Navier-Stokes equations read

∇ · u = 0, (4a)

∂u
∂t

+ ∇ · uu = −∇pe − ∇p + D

d

1

Rel
∇2u, (4b)

where d pe/dx is the externally imposed pressure gradient by which the flow is driven, and p = pt −
pe(x) + y/Fr2 is a modified pressure with pt the total pressure and Fr = ul,b/

√‖g‖d the Froude
number with g the gravitational acceleration. The nondimensional Newton-Euler equations for the
particle linear (uc) and angular (ωc) velocity are given by

π

6

duc

dt
=

∮
Ap

(τ · n) dA − π

6
∇pe + Fc, (5a)

π

60

dωc

dt
=

∮
Ap

r × (τ · n) dA + Tc, (5b)

124302-8



FROM NEARLY HOMOGENEOUS TO CORE-PEAKING …

where it is used that the particles are neutrally buoyant and spherical, Ap denotes the particle surface,
τ = −pI + D

d
1

Rel
(∇u + ∇uT ) is the fluid stress tensor with I the unit tensor, n is the outward unit

normal on the particle surface pointing into the fluid phase, and Fc and Tc are the collision force
and torque, respectively. The Navier-Stokes and Newton-Euler equations are coupled with each
other through the no-slip/no-penetration condition at the surface of the particles:

u = Up at Ap, (6)

where Up = uc + ωc × r is the local particle velocity on the particle surface.

B. Numerical approach

The present DNS makes use of the computationally efficient Immersed Boundary Method (IBM)
of Breugem [58] for the particle-fluid coupling, which is a modified version of the original IBM
proposed by Uhlmann [59]. In this approach, a Eulerian (fixed) and uniform 3D grid is used in which
the particles are “immersed.” The interface condition [Eq. (6)] is enforced by good approximation
by means of locally adding forces, fIB, to the right-hand side of Eq. (4b) in a spherical shell around
the particle-fluid interface. The computation of the IBM force is embedded as an additional step in
the fractional step (predictor-corrector) scheme used to integrate the Navier-Stokes equations. To
this purpose, on every particle a uniform Lagrangian grid on the particle surface is employed that
moves along with the particle. Using a regularized delta function [60], the provisional fluid velocity
obtained from solving Eq. (4b) is interpolated from the Eulerian to the Lagrangian grid (u∗ → U∗),
then the IBM force on the Lagrangian grid is computed from the apparent particle-fluid slip velocity
[FIB = (Up − U∗)/�t , with �t the computational time step], following which the computed force
is interpolated back to the Eulerian grid (FIB → fIB). Finally, the provisional velocity is corrected
for the presence of the particles (u∗ → u∗ + �t fIB). To overcome the problem of overlapping
interpolation kernels of neighboring Lagrangian grid points, a multidirect forcing scheme [61] is
implemented in which the computation of the IBM force is improved by a few iterations (six in
the present DNS). The accuracy of the IBM is further enhanced by slight inward retraction of the
Lagrangian surface grid by 0.3�x. Main advantages of the IBM are that no regridding is required
when particles move in space and that the uniform grid allows for the use of fast solvers for, e.g.,
the Poisson equation for the correction pressure.

In the DNS a rectangular computational domain and a Cartesian fluid grid are used, which do
not conform to the cylindrical flow geometry. Hence, another efficient IBM is used to enforce the
no-slip/no-penetration condition on the pipe wall. This IBM is similar to the volume-penalization
method described in Breugem et al. [62] and is incorporated as an additional step in the fractional
step scheme. Directly after the first provisional velocity is obtained from Eq. (4b), the provisional
velocity is multiplied with the cell pipe volume fraction, u∗ → βP u∗ for r � R + 2�x. The pipe
volume fraction within a grid cell, βP, is computed once at the start of a simulation from a level-set
approach based on the signed distance of the eight cell corners to the pipe wall [58,63]. Note that the
volume penalization method results in a smooth pipe boundary with a radial thickness of O(�x),
but as long as �x/R 
 1 the effect on the overall flow behavior can be kept sufficiently small.

In the fractional step scheme, first, a provisional velocity is computed from Eq. (4b), which is
then corrected for the presence of the pipe wall, subsequently corrected for the presence of the
particles, and finally followed by a pressure-correction step to enforce Eq. (4a). An efficient direct
(FFT-based) solver is used for solving the Poisson equation for the correction pressure. The coupling
of the Navier-Stokes with the Newton-Euler equations is explicit or weak: given the positions
and velocities of the particles from the previous time step, first, the Navier-Stokes equations are
integrated in time and then the Newton-Euler equations from the computed IBM force distribution
on the Lagrangian particle grid.

The Navier-Stokes and Newton-Euler equations are both integrated in time with a three-step
Runge-Kutta (RK) method. The Navier-Stokes equations are discretized in space on a staggered
uniform Cartesian grid with the finite-volume method. Spatial derivates are computed from the
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central-differencing scheme. The computational domain is a rectangular box with walls at the
bottom and top. Periodic boundary conditions are imposed in the horizontal (streamwise and
spanwise) directions, while a no-slip/no-penetration condition is imposed at the walls in the vertical
direction. The dimensions of the box are chosen such that the pipe fits within the box with a distance
of at least two grid cells between the pipe wall and the outer domain boundaries as required by the
volume penalization IBM. The flow is forced by adjusting the streamwise pressure gradient, d pe/dx,
such that the intrinsic liquid bulk velocity (ul,b) is maintained at a constant value. The pressure
gradient is iteratively adjusted in the first RK step in the multidirect forcing scheme mentioned
before, and the total pressure gradient is subsequently fixed in the second and the third RK step.
The computational time step, �t , is chosen sufficiently small to ensure numerical stability [64]:

�t ul,b

d
< min

(
1.65

12

(�x/d )2Rel

(D/d )
,

√
3 (�x/d )∑
i |ui/ul,b|

)
. (7)

Upon starting a simulation, the time step is dynamically adjusted every few time steps according to
the above criterion but multiplied with a safety factor of 0.5. Once the time step starts fluctuating
around a constant value, typically after a few thousand time steps, it is fixed at this value for the
remainder of the simulation to optimally exploit the temporal accuracy of the RK method.

Test simulations of single-phase pipe flow for Re = 1000 and 5300 using �x/R = 7.25 × 10−3

and a streamwise periodic pipe with a length of L/D = 5.05 showed excellent agreement of the
obtained Darcy-Weisbach friction factor with 64/Re for laminar flow and the Blasius’ correlation
for turbulent flow in a hydraulically smooth pipe, respectively. For both Reynolds numbers, the error
amounts to less than 0.4%.

C. Collision model

Particle collisions are modeled with the frictional soft-sphere collision model described in Costa
et al. [65]. This is a linear spring-dashpot model in which the rigid particles are allowed numerically
to slightly overlap each other. The normal force acting on particle i from a collision with particle j
is computed from the normal overlap along the line of centers (δi j,n) and the relative normal particle
velocity (ui j,n) as

Fc
i j,n = −knδi j,n − ηnui j,n, (8a)

where kn and ηn are the normal spring and dashpot coefficients, respectively.
The tangential component of the collision force is modeled in a similar way, but undergoes a

stick-slip transition when the tangential force exceeds a threshold value dependent on the normal
force component:

Fc
i j,t = min

(‖ − ktδi j,t − ηt ui j,t‖,
∥∥ − μcFc

i j,n

∥∥)
ti j, (8b)

where kt and ηt are the tangential spring and dashpot coefficients, respectively, μc is the Coulomb
coefficient of sliding friction, and ti j is a unit vector pointing in the direction of the test force for the
stick regime:

ti j = −ktδi j,t − ηt ui j,t

‖ − ktδi j,t − ηt ui j,t‖ . (8c)

The collision torque is computed from the collision force as

Tc
i j = a ni j × Fc

i j,t , (8d)

where ni j is the unit vector along the line of centers pointing from particle i to particle j.
The normal and tangential spring and dashpot coefficients can be expressed in terms of the “dry”

normal (en) and tangential (et ) coefficients of restitution and the collision time duration [65]. The
latter is typically set equal to a few computational time steps (Nc�t) as to sufficiently resolve the
collisions in time (Nc = 8 in the present DNS).
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TABLE III. Flow conditions and parameters in DNS for all six cases investigated. Input parameters for
cases with an asterisk (*) are the same as for cases without an asterisk except for a different value of the
Coulomb friction coefficient: μc = 0 for cases with an asterisk, whereas μc = 0.39 for cases without it. See
the text for explanation of the different columns.

Case Rel φb ub/ul,b us,b/ul,b νs/ν Res f �x+ �t+ �x+
s �t+

s Ns Ts ul,b/R

1 2346.3 0.2520 1.069 1.277 2.31 1086.6 7.74 × 10−2 0.40 0.011 0.17 0.47 × 10−2 367 76.6
1∗ 2346.3 0.2520 1.070 1.278 2.31 1086.9 7.20 × 10−2 0.38 0.010 0.17 0.44 × 10−2 241 50.3
2 6038.2 0.2721 1.066 1.243 2.53 2539.7 5.72 × 10−2 0.88 0.021 0.35 0.84 × 10−2 325 70.5
2∗ 6038.2 0.2721 1.065 1.240 2.53 2537.8 5.30 × 10−2 0.84 0.020 0.33 0.78 × 10−2 243 52.6
3 7323.6 0.0900 1.009 1.104 1.28 5779.5 4.04 × 10−2 0.85 0.022 0.66 1.71 × 10−2 656 190.0
3∗ 7323.6 0.0900 1.009 1.101 1.28 5778.0 4.08 × 10−2 0.85 0.022 0.67 1.73 × 10−2 359 103.8
4 10 045.6 0.1948 1.030 1.155 1.82 5676.7 4.15 × 10−2 1.20 0.026 0.66 1.41 × 10−2 387 89.6
4∗ 10 045.6 0.1948 1.026 1.135 1.82 5655.1 4.12 × 10−2 1.19 0.025 0.65 1.39 × 10−2 267 61.7
5 14 778.6 0.3100 1.060 1.195 3.07 5107.8 5.26 × 10−2 2.05 0.041 0.67 1.34 × 10−2 295 55.4
5∗ 14 778.6 0.3100 1.056 1.181 3.07 5087.0 4.43 × 10−2 1.87 0.034 0.61 1.12 × 10−2 269 50.5
6 16 269.8 0.4661 1.052 1.114 9.88 1732.05 14.30 × 10−2 3.69 0.112 0.37 1.13 × 10−2 300 52.0
6∗ 16 269.8 0.4661 1.046 1.100 9.88 1721.6 8.77 × 10−2 2.87 0.068 0.29 0.69 × 10−2 300 52.0

Particle-wall collisions are modeled by treating the pipe wall as a spherical particle with infinite
radius. The total collision force and collision torque acting on a particle are computed from the
sum over all contributions from the particles or wall with which it is in contact. Numerically, the
collision force and torque are integrated in time with the Crank-Nicolson scheme, and two iterations
are used to determine the force and the torque at the next time level n + 1 as a function of the new
particle velocities and positions at n + 1. In addition, to further improving the temporal accuracy,
subintegrations are performed for the collisions with the number of substeps equal to 40 in the
present DNS and equidistantly divided over the total time step comprising three RK steps.

Finally, the model also includes corrections on the lubrication force that a particle experiences
when it is in close proximity with another particle at a distance less than a grid cell between their
interfaces. Because a fixed Cartesian grid is used, the DNS then lacks sufficient grid resolution in the
intervening gap to resolve the local flow between the nearby particles. The corrections are applied
only for the normal lubrication force between nearby particles and for particles close to the pipe
wall. They are based on asymptotic expansions of exact analytical solutions [66]. The diverging
behavior of the expansions is capped when the gap width drops below a threshold value associated
with particle or wall roughness [65]. The threshold distance is set equal to 2 × 10−3 d in the present
simulations. In the DNS code, the lubrication force corrections are added to the collision force and
are hence integrated in the same manner.

D. Flow parameters and computational settings

The DNS code is written in modern FORTRAN with the MPI extension for parallel computing
on multicore systems with distributed memory. The parallelization consists of a 2D pencil decom-
position of the computational domain and a controller-worker technique for handling the particles.
The present DNS study was conducted on the Dutch National Supercomputer Snellius on 432 CPU
cores for about four weeks on average per case.

The main input parameters for the DNS are the bulk liquid Reynolds number (Rel ), the bulk solid
volume concentration (φb), and the particle-to-pipe diameter ratio (d/D). Their values were chosen
based on the experiments. Table III contains the values of Rel and φb for all six cases investigated,
and d/D is fixed at 0.058. For each experimental case, we performed two simulations: one for μc =
0.39 (frictional particles) and one for μc = 0 (frictionless particles, cases marked with an asterisk
*) in order to investigate the effect of interparticle friction on the flow dynamics. Note that slight
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differences are present between the experiments (Table II) and the DNS (Table III); the input for the
DNS was based on a preliminary analysis of the experimental data, which in some cases differed
a bit from the final analysis of the data. Perhaps most notable is the difference in concentration
in case 5: φb = 0.315 in the experiments versus 0.310 in the DNS. Overall, the differences are
minor and, also considering the experimental uncertainty, deemed negligible. The parameters of
the collision model are fixed at en = 0.97, et = 0.1, and μc = 0 or 0.39. We remark that these
collision parameters have not been explicitly measured for the presently used particles. The value of
en depends on the relative particle impact velocity and particle hardness. For sufficiently low impact
velocity, the solid deformation is in the elastic regime and the value of en is close to 1 [67]. Joseph
and Hunt [68] reported a value of 0.97 ± 0.02 for the impact of steel and glass spheres in air on a
thick Zerodur (glass-ceramic) wall, and we took this value for our present simulations. The value of
et influences the transition from stick to slip behavior of particle collisions. For the oblique impact
of a particle onto a plane wall, the critical incidence angle with respect to the vertical, above which
the collision will be in the slip regime, scales with ∼μc(1 + en)/(1 + et ) [65]. Joseph and Hunt
[68] reported values of et ≈ 0.34 and 0.39 for the oblique impact of, respectively, a steel and a glass
sphere in air on a Zerodur wall. Our value of 0.1 is an educated guess and effectively somewhat
delays the stick-slip transition to larger incidence angles as compared to the experimental values of
Joseph and Hunt. For cases 4 and 6 we performed additional simulations with et = 0.4 to test the
sensitivity of the DNS results for the value of et , but we observed no significant changes. Finally,
the value of μc = 0.39 was taken from recent tilted-flume experiments on immersed polystyrene
beads with a similar diameter but from a different supplier [69].

The computational domain has dimensions Lx × Ly × Lz of 87 d × 18 d × 18 d in the stream-
wise, spanwise, and vertical direction, respectively. A uniform Cartesian grid is used of 3132 ×
648 × 648 grid cells in all cases. The flow in the immediate vicinity of the particles is thus resolved
at a resolution of d/�x = 36. This corresponds to 3938 Lagrangian grid cells uniformly distributed
over the surface of the spheres. Furthermore, �x/R = 3.22 × 10−3 and we have 620.7 grid cells
over the pipe diameter. The grid resolution is a factor 2.25 higher than in the single-phase turbulent
pipe flow simulation at Re = 5300 mentioned at the end of Sec. III B. Initial simulations with
d/�x = 16, the single-phase resolution, showed that the grid resolution was insufficient to reach
grid convergence; this holds in particular for the Darcy-Weisbach friction factor, while the radial
profiles of the mean velocity and concentration appear to be less sensitive to the grid resolution. The
pipe length corresponds to L/D = 5.05. This is the same as used in the aforementioned simulation of
single-phase turbulent pipe flow and slightly larger than L/D = 5 used in the single-phase turbulent
pipe flow simulations of Eggels et al. [53]. For cases 4 and 6 we performed additional simulations
with L/D = 10.1 to check the sensitivity of the DNS results for the domain length, but no significant
changes were observed.

The flow in the DNS was initialized by imposing a laminar Poiseuille velocity profile in the
pipe for both fluid and particles. The angular velocity of the particles was set to half the local
vorticity in order to start from a smooth initial condition. Except for case 6, the particles were
initially randomly placed inside the pipe with the requirement of no overlap between the particles
or with the pipe wall. This turned out not to be possible for case 6: because the particles are injected
one after the other and cannot move anymore once they have been injected, the average spacing
between the injected particles is too high to reach concentrations well beyond 30%. Hence for this
case, first, a separate simulation was run in which the particles were forced to settle under gravity
in a sufficiently long, closed, vertical pipe, and where only the Newton-Euler equations were solved
with a simple model for the hydrodynamic drag. The packed bed thus obtained was then placed in
the actual streamwise-periodic pipe, and the axial location of the particles multiplied with a constant
factor such that the stretched packing filled the entire pipe at the desired bulk concentration. The
cases with zero Coulomb friction coefficient were initiated by continuing the corresponding cases
with friction but with μc set to zero. The simulations were run for sufficiently long time in order
to obtain a statistically fully developed flow (no trends in the streamwise pressure gradient, average
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streamwise particle velocity, etc.). It was then further run for a time Ts to sample the flow for the
statistical analysis detailed in Sec. III E.

Table III contains various output parameters obtained from the DNS. The number of statistical
samples used, Ns, and the nondimensional time interval, Tsul,b/R, over which the samples were taken
are listed in the last two table columns. The velocity ratio ub/ul,b is generally in good agreement with
the estimates obtained from the MRI measurements, in particular for cases 1–4. us,b/ul,b is the solid-
liquid bulk velocity ratio and a measure for the degree of core peaking of the solid volume fraction
profile; it is highest for cases 1 and 2. The viscosity ratio νs/ν was obtained from Eilers’ correlation
with the same φm = 0.64 as used for the analysis of the experiments. Note that the suspension
viscosity depends on the local concentration and thus actually varies across the pipe. Furthermore,
it is well known that at high concentration the suspension viscosity is sensitive to the degree of
interparticle friction, being higher for higher values of μc [1]. However, a detailed assessment of
the suspension rheology is out of scope of the present study and left for future research; to estimate
Res, we simply assume here that νs is independent of μc.

The Darcy-Weisbach friction factor, f , in Table III was computed from the mean streamwise
pressure gradient according to f = −d pe/dx 2D/(ρu2

b). Except for cases 3 and 4 with the lowest
bulk concentration, all other cases show a significant effect of interparticle friction on the friction
factor. When the Coulomb friction coefficient is set to zero, the magnitude of the particle stress
drops, as does the friction factor. This underlines the important role of the particle stress on radial
transfer of momentum in these cases. This effect is most pronounced for case 6, where the friction
factor drops by 39% when μc is set to zero. The friction factor f obtained from the DNS is in
all cases larger than the corresponding experimental value. While for cases 1–4 the difference is
relatively small (varying from +1.4% and +2.4% for cases 3 and 3* till +29.9% and +20.5% for
cases 2 and 2*, respectively), for the densest cases it is large (+72.6% and +45.2% for cases 5 and
5* and +231.1% and +102.9% for cases 6 and 6*, respectively). We will discuss this discrepancy
in more detail in Sec. IV D.

In Table III values of the grid spacing and computational time step are included, which are
normalized by using the wall friction velocity, uτ = ub

√
f /8, and either the kinematic fluid

viscosity, ν, or the bulk suspension viscosity, νs, according to �x+ = �x uτ /ν, �t+ = �t u2
τ /ν,

�x+
s = �x uτ /νs and �t+

s = �t u2
τ /νs. For single-phase turbulent pipe flow, the viscous wall unit,

ν/uτ , and the viscous time unit, ν/u2
τ , are the relevant length and time scale of turbulence near

the pipe wall. For the particle-laden pipe flows considered in the present study, it is a priori not
fully clear what the relevant length and time scales of the flow are that ought to be resolved in the
simulations. Of all the studied cases, case 3 and case 4 most closely resemble the cases D10 and
D20 in Costa et al. [30,31], who present results from turbulent flow of moderately dense suspensions
(φb = 0.2) through a plane channel. Similar to what we observe in case 3, as we will discuss later,
they also report the presence of a homogeneous core region with a uniform particle concentration
and a heterogeneous particle wall layer adjacent to the channel walls. Of particular interest is their
finding that the suspension viscous wall unit, νs/uτ , based on the suspension viscosity rather than
the kinematic fluid viscosity is the relevant length scale for the mean velocity in the inner layer of
the homogeneous core region. Therefore we included the values of �x+

s and �t+
s in Table III. While

�x+ � 1.2 for cases 1(*)–4(*) only, �x+
s < 1 for all cases. Finally, the nondimensional time step

is much smaller than one in all cases too, irrespective whether the fluid kinematic or the suspension
viscosity is used to normalise �t . The above considerations suggest that the flow is sufficiently
resolved in both space and time in all studied cases.

E. Postprocessing of DNS data

The average intrinsic velocity profile of the liquid was obtained as follows. First, the superficial
instantaneous volume average was computed from

〈ul〉(y, z, t ) = 1

Lx

∫ Lx

0
γl (x, y, z, t ) ul (x, y, z, t ) dx, (9a)
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where the brackets 〈·〉 denote the volume average and γl = 1 − γs with γs the local solid volume
fraction in a computational grid cell. The latter was computed from the positions of the particles
in the same manner as the local pipe volume fraction was computed in the simulations. The
instantaneous solid volume concentration was obtained from

φ(y, z, t ) = 1

Lx

∫ Lx

0
γs(x, y, z, t ) dx. (9b)

The volume-averaged velocity and concentration distributions were then averaged over the number
of samples taken:

〈ul〉(y, z) = 1

Ns

∑
q

〈ul〉(y, z, tq ) and φ(y, z) = 1

Ns

∑
q

φ(y, z, tq ). (9c)

The averages are now still defined on the Cartesian grid (y, z). Similar to the processing of the MRI
data, bilinear interpolation was used to interpolate them to a cylindrical grid (r, θ ). The resolution
of this grid was chosen such that �r = �x and R �θ = �x. Next, the distributions were averaged
over the θ direction:

〈ul〉(r) = 1

2π/�θ

∑
q

〈ul〉(r, θq) and φ(r) = 1

2π/�θ

∑
q

φ(r, θq). (9d)

Finally, the intrinsic (phase-averaged) time and volume-averaged liquid velocity was obtained from

〈ul〉l = 〈ul〉
1 − φ

. (9e)

To simplify the notation in the discussion of the results below, we will represent 〈ul〉l and φ by
ul and φ, respectively.

IV. RESULTS AND DISCUSSION

A. Instantaneous 3D flow fields

Figure 3 shows instantaneous snapshots of the flow for cases 1–6 (μc = 0.39) and 6* (μc = 0)
as obtained from initial DNS at a lower grid resolution of d/�x = 16. We remark that the results
are qualitatively similar to the results from the final DNS at a higher grid resolution of d/�x =
36; all other DNS results shown in the remainder of this paper are for this higher resolution. The
color denotes the local streamwise velocity normalized with the intrinsic liquid bulk velocity (u/ul,b

with u the local fluid or solid phase velocity). The spheres and black contours indicate the particle
positions. Cases 1, 2, and 5 appear very similar to each other, all displaying strong aggregation of the
particles in the pipe core. This is also reflected in the similar high values for us,b/ul,b in these cases;
see Table III. Cases 3, 4, and 5 show a change from a homogeneous to a core-peaking distribution of
the solid volume fraction for increasing φb at approximately constant Res. In case 3, with the lowest
bulk solid volume fraction of 0.09, the particles are homogeneously distributed across the pipe as
a result of turbulent mixing. In case 4, with a bulk solid volume fraction of 0.195, the particles are
aggregating in the pipe center with a local volume fraction nearly twice as high as the bulk volume
fraction. For case 5 the aggregation is even more pronounced. The velocity fluctuations in the core
are strongly damped (as observed from the uniform color in the core), indicating that the core is not
turbulent anymore. Cases 6 and 6* are the cases with the highest bulk solid volume fraction. As in
the other cases, particles have migrated to the core and seem to have formed a solid plug flowing at
a nearly uniform velocity. Interestingly, for case 6* with frictionless particles, the pipe wall is lined
with patches of ordered particle structures. These ordered patches are not observed for case 6 with
frictional particles. In case 6* also more particles are observed in the vicinity of the pipe wall.
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FIG. 3. Instantaneous flow snapshots for cases 1–6 (μc = 0.39) and 6* (μc = 0) as obtained from initial
DNS at a grid resolution corresponding to d/�x = 16; Res values indicated in the snapshots therefore deviate
slightly from the Res values in Table III for d/�x = 36. The color denotes the local streamwise velocity in the
fluid and solid phase, normalized with the intrinsic liquid bulk velocity. Contours indicate the particle positions.

B. Time-averaged velocity and solid volume fraction maps

The normalized time-averaged intrinsic liquid velocity distributions (ul/ul,b) for cases 1–6
obtained from the experiments and the DNS with μc = 0.39 are shown in Figs. 4(a) and 4(b),
respectively. These figures clearly show the axisymmetry of the flow. As visual guide, black rings are
superimposed at three radial locations (r/R = 0.25, 0.5, and 0.75). These results show that there are
no systematic structures or consistent deviations present in the measurements; these could have been
caused by measurement artifacts or by a density mismatch. From the color, the degree of blunting
of the velocity profiles can be seen. In particular, case 6 (Res = 1732, φb = 0.466) exhibits a nearly
uniform velocity distribution for r/R < 0.75. From these visualisations it is evident that there is a
good agreement between experiments and simulations, which will be quantified in Sec. IV D.

Figure 5 presents the time-averaged solid volume fraction distributions for cases 1–6 obtained
from the MRI experiments and DNS with μc = 0.39. Again, it can be seen that there is a good agree-
ment between the experimental and numerical results. Note that cases 1, 2, and 5 (φb = 0.25–0.31)
are qualitatively similar, all exhibiting a core-peaking particle distribution despite different Res. The
relatively uniform volume fraction distribution for case 3 can be explained by the relatively low bulk
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FIG. 4. Time-averaged intrinsic liquid velocity distributions for cases 1–6 obtained from (a) the MRI
experiments and (b) the numerical simulations with μc = 0.39. The solid rings are added to identify different
radial locations, r/R = 0.25, 0.5, and 0.75, to assess the axisymmetry of the different cases.

solid volume fraction (φb = 0.089) in combination with a higher Reynolds number. The particles
are homogeneously distributed due to turbulent mixing. Also, the effect of an increase in φb for
approximately constant Res in cases 3–5 is clearly visible. This shows the change from a uniform
to a core-peaking distribution for increasing φb. Case 6 differs from the other cases, as ringlike
structures are prominently visible here (even more pronounced in the DNS).

C. Time-averaged velocity and solid volume profiles

A quantitative representation of the time-averaged velocity (Fig. 4) and solid volume fraction
(Fig. 5) distributions is presented in Fig. 6, where these distributions are azimuthally averaged. The
experimental results are compared with the DNS results for both frictional and frictionless particles
(cases 1–6 and 1*–6*, respectively). The normalized velocity and solid volume fraction profiles
for case 1 (Res = 1083) and case 2 (Res = 2532) are shown in Fig. 6(a) and 6(b), respectively.
The experimental results are represented by the markers, and the frictional and frictionless DNS
results are shown by the dashed and solid curves, respectively. The velocity profiles correspond
to the left ordinate axis, whereas the right ordinate axis corresponds to the solid volume fraction
profile. Note that the velocity and solid volume fraction profiles of both cases are very similar,
despite the difference in Reynolds number. The flow behavior is apparently governed by the particle
volume fraction, rather than Res (this will later be confirmed by case 5). The DNS results for
frictional and frictionless particles are similar with only minor differences seen for the velocity in the
core (slightly lower for frictional particles) and the concentration near the wall (smaller wall peak
in case 2 versus case 2*). There is a very good agreement between the experimental and numerical
velocity profiles. Also, the trends in the solid volume fraction distribution are in good quantitative
agreement. In the near-wall region and the pipe center there are slight deviations. This will be further
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FIG. 5. Time-averaged volume fraction distributions for cases 1–6 obtained from (a) the MRI experiments
and (b) the numerical simulations with μc = 0.39.

elaborated upon later (in Sec. IV D) as several reasons might be responsible for this deviation. For
both cases a strong concentration gradient can be observed. The solid volume fraction at the pipe
center is more than twice the bulk volume fraction, resulting from shear-induced and inertia-driven
migration. Furthermore, the “wiggle” in the near-wall region can be associated with the presence
of a particle wall layer. Note that the minimum in φb occurs at r/D ≈ 0.44, which corresponds
to one particle diameter from the wall: r/D = R/D − d/D = 0.5 − 0.058 = 0.442. This location
is indicated with a vertical dashed line in Fig. 6(e). Also, in this figure a particle is added in the
top right corner. The wall constrains the particles, causing them to order in a ringlike structure (as
was also pointed out before by Hampton et al. [27]). Indirectly, the results also confirm that the
flows are fully developed. This can be inferred from the agreement between the experimental and
numerical results and the fact that the numerical results are fully converged. This confirms that in
the experiments a pipe length of 132D was sufficient for the suspension to reach an equilibrium.
Furthermore, it can be seen that the high volume fraction at the pipe center is responsible for the
blunting of the velocity profile due to the locally high solid stress. The particle stacking in the pipe
center is close to the random close packing fraction (φm ≈ 0.64), and thereby highly limiting shear
due to the very high local suspension viscosity. As a visual guide this maximum packing fraction
is indicated with a horizontal dashed line in Fig. 6(b). To illustrate this, for φb > 0.4, the average
nearest-neighbor distance between uniformly distributed finite particles is less than one-tenth the
particle diameter [70]. This highly limits the possibility for the particles to get advected with respect
to each other due to a velocity gradient. The velocity gradient rapidly increases for decreasing local
volume fraction, as can be observed for the lower local volume fractions for higher r/D.

The comparison for the following three cases (cases 3–5) are presented in Figs. 6(c)–6(e). For
these cases the bulk solid volume fraction is increasing for nearly constant Res. For increasing φb,
the volume fraction distribution gradually changes from a homogeneous distribution (case 3) via a
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FIG. 6. Normalized intrinsic liquid velocity and solid volume fraction profiles for (a) case 1, (b) case 2,
(c) case 3, (d) case 4, (e) case 5, and (f) case 6. The experimental velocity (square markers) and solid volume
fraction (round markers) results are corresponding to the left and right y axis, respectively. The frictional and
frictionless DNS results are represented by the dashed and solid curves, respectively. The flow conditions for
the experiments are listed in the figures. Note that the DNS settings may slightly deviate from this (cf. Tables II
and III).

mild gradient in the solid volume fraction distribution (case 4) to a distinct core-peaking distribution
(case 5). In general, the experimentally and numerically obtained results are in good quantitative
agreement, especially for the frictionless particles, as the trends are well captured. Interestingly,
for case 4 the DNS result for frictional particles significantly overestimates the concentration in
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the core, while for frictionless particles the agreement with the experiment is very good. This
underscores the important role of the particle stress (higher for frictional particles) in the transition
from case 3 (with a nearly homogeneous particle distribution from turbulent mixing) to case 5
(with a core-peaking distribution originating from shear-induced particle migration) with increasing
bulk concentration. For case 5 we again observe that the agreement between the concentration
profile from the experiment and the DNS is best for frictionless particles, a clear indication that
in the experiments the particles behave close to frictionless. Note furthermore that the radial volume
fraction distribution of case 5 is very similar to the distributions seen before in cases 1 and 2. This
suggests that beyond a certain bulk volume fraction the solid volume fraction distribution and the
velocity distribution are mainly governed by φb rather than Res.

The comparison for the final case, also being the most extreme case studied, is shown in Fig. 6(f).
This case can be considered to be on the edge of the parameter space, as for the high solid
volume fraction, φb = 0.466, the experimental setup—specifically the inlet chamber—was close
to jamming. Also for this case, the trends in the velocity and solid volume fraction distributions for
the experiments and simulations are in fairly good agreement, in particular for μc = 0. Interparticle
friction is clearly very important for this specific case, given the differences between the DNS results
for μc = 0 and μc = 0.39. The velocity profile from the DNS with frictionless particles is in good
quantitative agreement with the experiment except for the “bump” in the profile around r/D = 0.45
where the velocity is underestimated. Larger deviations are seen for the concentration profile with
more pronounced “wiggles” than in the experiment. These “wiggles” indicate that the effect of
particle layering is not only felt at the wall but even in the core. The wall peak in the experiment is
closest to the DNS profile for frictionless particles, while the peak in the DNS profile for frictional
particles is too high. In the core the DNS results for the particle concentration show little effect of
μc. For both frictionless and frictional particles, the DNS underestimates the particle concentration
in the core, and the distribution is flatter than in the experiment. This suggests that the maximum
flowable packing fraction is somewhat lower in the DNS than in the experiments.

D. Comparison between MRI and DNS

In general, there is a good agreement between the experimental and numerical results. The
deviation between the experimental and numerical results are quantified using the RMS value of
the difference between both results. The difference between the experimental and numerical results
for the velocity and solid volume fraction profiles are shown in Figs. 7(a) and 7(b), respectively. The
corresponding RMS values are listed in Table IV. The maximum normalized RMS error between
the velocity profiles is found to be 5.7% for case 6. For the other cases the error is less than or equal
to 3.5%, with an error of only 1.2% for case 3. The maximum normalized RMS error between the
solid volume fraction profiles is larger than for the velocity profiles, varying from 5.3% for case 4*
to 13.0% for case 5. Note the significantly smaller maximum errors for the frictionless cases 4* and
5* as compared to their frictional counterparts. Considering the maximum RMS errors in both the
velocity and solid volume fraction profiles, the best agreement is found for the frictionless case 4*,
while the errors are largest for the frictional cases 5 and 6.

The discrepancies between the experimental and numerical results might be explained by various
reasons. In short we have identified four different causes which possibly have contributed to
the differences observed. In the first place, there is a dissimilarity in particle size distribution
between the experimental and numerical approach, which are polydisperse and monodisperse
systems, respectively. More specifically, this difference will have two effects: (1) it will affect
the spatiotemporal solid volume fraction distribution and (2) it changes the maximum random
close packing fraction, as this is a function of the particle size distribution (more in particular the
polydispersity and skewness) [51]. The result of (1) is in particular visible in dense systems and
in the near-wall region (see, e.g., case 6). For monodisperse suspensions radial variations of the
average volume fraction are expected to be more pronounced than for polydisperse suspensions
because of the more random ordering of particles with various sizes. For (2), the maximum random
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FIG. 7. Normalized deviation between the experimental and numerical results for (a) the velocity and
(b) the solid volume fraction for the frictional cases 1–6. The deviation for the velocity and the solid volume
fraction for the frictionless cases 1*–6* is shown in (c) and (d), respectively. For each case every second marker
is shown to improve readability.

TABLE IV. Normalized root mean square error of the difference between experimental and numerical
results for the liquid velocity and solid volume fraction.

Case
√

�u(r)2/ul,b [%]
√

�φ(r)2/φb [%]

1 1.4 6.2
1∗ 1.8 6.3
2 2.3 6.0
2∗ 1.3 6.1
3 1.2 10.0
3∗ 1.3 11.1
4 2.4 9.7
4∗ 1.7 5.3
5 3.5 13.0
5∗ 1.8 8.5
6 5.7 10.0
6∗ 3.0 10.4
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close packing fraction of the polydisperse system is determined to increase by 0.63% with respect
to the monodisperse system [51]. Note, however, that the correlation from that study is based on
“dry” particles being packed in the absence of driving forces. This is in contrast to the current
study, where “wetted” particles are packed under the influence of a driving force (shear-induced
migration). Additionally, the suspension is also flowing (dynamic vs static), which might affect the
particle packing, in particular when transient effects are concerned. However, these differences are
expected to be of minor influence on the maximum random close packing fraction, also in view
of experimentally determined maximum solid volume fractions [see, e.g., Fig. 6(b)]. The change
of the maximum random close packing will start to play a role for cases where the local volume
fraction is approaching this maximum random packing fraction (e.g., cases 1, 2, 5, and 6). This
seems to explain the bit higher solid volume fraction at the pipe center in case 6 for the experiment.
In turn, this higher volume fraction at the pipe center needs to be compensated for at a different
radial location, because the experimental and numerical cases are compared for the same bulk solid
volume fraction. Second, particle roughness effects on particle lubrication and interparticle and
particle-wall frictional collisions in stick and slip regimes are potential causes for differences. The
DNS results show a clear effect of the Coulomb friction coefficient on the flow dynamics in the dense
regime. Best agreement with the experiment is found when particles are modeled as frictionless
(μc = 0). In the third place, the uncertainty in the experimental bulk flow parameters (e.g., φb, ul,b,
etc.) can be identified as a source of error. As the DNS is based on these experimental parameters,
this might result in a mismatch between experimental and numerical results. This mismatch is on
the order of the experimental uncertainty as described in the experimental setup section. A final
explanation might be the numerical resolution used in the DNS. As mentioned before, preliminary
simulations for d/�x = 16 indicated that a higher resolution was needed to obtain grid convergence.
The final simulations presented in this study were performed at a considerably higher resolution
of d/�x = 36. Further increasing the grid resolution is not deemed feasible at present given the
required computing time and our current access to computational resources. Our analysis of the
grid spacing in terms of the suspension viscous wall unit (see Sec. III D) suggests that the flow is
sufficiently resolved in all cases.

While the MRI and DNS results for the radial concentration and liquid velocity profile are in
good agreement with each other, it remains puzzling why the DNS consistently overpredicts the
Darcy-Weisbach friction factor. While the difference is very small for case 3 with the lowest bulk
concentration, for the dense cases 5 and 6 it is considerable. This suggests that the overprediction
of the friction factor in the DNS originates from a much stronger solid stress and hence higher
suspension viscosity as currently predicted from Eilers’ correlation with φm = 0.64. Indeed, the
solid volume fraction profile in Fig. 6(f) suggests that the maximum flowable packing fraction is
a bit smaller in the DNS than in the experiments, which is consistent with a significantly higher
suspension viscosity in the DNS for the densest cases. Furthermore, the difference in friction
factor between cases 5 and 5* and cases 6 and 6* indicates a significant influence of the Coulomb
coefficient of sliding friction, μc, on the solid stress, while this has not been explicitly measured
for the presently used particles. Finally, as mentioned in Sec. III D, a sensitivity study revealed no
significant influence of the tangential coefficient of restitution (et ) for the stick regime on the flow
dynamics.

E. Characteristic cases and parameter space

The six cases compared above are selected from a larger experimental data set. Based on this data
set and additional numerical data from the literature [37], we can distinguish between three different
characteristic cases. The solid volume fraction profiles of these cases, indicated with I, II, and III, are
visualized in Fig. 8(a). The dashed lines are the corresponding bulk solid volume fractions, added
for reference. For relatively low solid volume fractions and higher Res a nearly uniform particle
distribution is observed (case 3). Here turbulence is dominant and causing a relatively homogeneous
particle distribution (case I). For moderate φb the particles are found to aggregate to the pipe center,
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FIG. 8. Solid volume fraction distributions for three characteristic cases (a). The horizontal dashed lines
represent the corresponding average solid volume fraction. The regime map corresponding to these cases is
shown in the top panel in (b). The triangular markers are the six cases studied above. The round markers in
the regime map are additional experimental results (exact conditions are listed in the Appendix). The square
markers, connected with a dashed line, are numerical results for a similar pipe flow study (d/D = 1/15) from
Ardekani et al. [37]. The regimes are indicated with roman numerals, corresponding to the profiles in (a).
Dashed dotted lines are added which serve as a visual indication of the different regimes. The bottom panel of
(b) shows the drag change with respect to the single phase drag for increasing φb.

forming a solid particle core. This behavior is observed for the cases 1, 2, and 5 (case II). Eventually,
for high φb, the particle core is expanding in the direction of the wall, as the maximum packing
fraction at the pipe center is reached (see, e.g., cases 6 and 6*); this will be referred to as case III.

These characteristic cases are summarized in a φb vs Res parameter space, shown in the top panel
of Fig. 8(b). The triangular markers correspond to the conditions of the six cases studied above. The
round markers are additional experimental results; the exact flow conditions of these experiments
are listed in Appendix. Note that in total 14 multiphase cases are studied experimentally, from which
six cases are compared to DNS. Also, results from a similar numerical study (slightly different d/D
of 1/15) by Ardekani et al. [37] are added in the regime map, shown as square markers connected
by a dashed line. Note that these simulations are all performed at constant Re = 5300. For the
comparison in Fig. 8(b) a viscosity correction is applied using Eilers’ model [50]. For the maximum
packing fraction, φm = 0.64 is used, as this is the maximum packing fraction at the pipe center in
their study. This explains their decreasing Res for increasing φb. The marker color represents the
ratio between the solid volume fraction at the pipe center, φc, and the bulk solid volume fraction,
φb. For uniformly distributed systems this ratio approximates 1, while for core-peaking systems
this value will exceed 2 [see, e.g., case II in Fig. 8(a)]. For higher φb, the amplitude of this ratio
decreases again, as the maximum packing fraction at the core is reached and the core is expanding
in the direction of the pipe wall. This can indeed be observed for increasing φb (see, e.g., Fig. 6).
Note the consistency between the marker colors of the present study and the marker colors of the
study by Ardekani et al. [37]. This parameter allows for a general classification of the different
regimes. These regimes, indicated with the Roman numerals I, II, and III, are corresponding to the
characteristic cases in Fig. 8(a). Based on the analysis of Fig. 6, the flow is Res dominated for low
φb, while for high φb the flow is dominated by φb itself. See, e.g., the comparison between cases
1, 2, and 5. Similar observations are presented in the regime map for channel flow in a study by
Lashgari et al. [38].

The bottom panel in Fig. 8(b) presents the drag change, �D, for increasing φb for various Res.
�D is defined as the drag change with respect to the drag for the same Res single-phase flow,
obtained using Blasius’ correlation. Note that these results are obtained from a separate series of
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pressure drop experiments, which explains the additional data points. The trend in the drag change
confirms earlier observations by Hogendoorn and Poelma [43] and Agrawal et al. [44]. Interestingly,
the drag change can be related to the characteristic solid volume fraction distributions from Fig. 8(a).
For nearly uniform systems (region I), a drag increase is observed. Note that this drag increase is
not simply due to the enhanced effective suspension viscosity, which is taken into account. For the
most extreme case this drag increase is 15% with respect to single-phase flow. For φb � 0.12 (region
II) the drag change is found to decrease again. For higher φb (region III), the drag decreases further,
even significantly below the single-phase case (i.e., up to 25%).

We speculate that the increasing and decreasing drag curves can be explained by a balance
between two competing mechanisms: for low φb, additional friction is introduced by the particle
layer lining the pipe wall that acts as a rough and porous wall layer [30,71], while for higher φb

solid volume fraction gradients are formed, which cause a strong nonuniform effective viscosity
in the radial direction for high φb. The relatively low φb in the near-wall region compared to the
core acts as a lubrication layer between the pipe wall and the dense particle core. This is similar to
core-annular flow, where drag reduction is accomplished by a low viscosity lubrication layer [72].
Note that particle fluctuations, inherently present in these flows [46], cause mixing and thus may
affect the particle distribution. This needs to be accounted for in a successful theoretical model.

Interestingly, when for higher φb the effective viscosity of the near-wall particle layer (i.e., 0.44
< r/D < 0.5) is used to determine a new Re′

s, this Re′
s is higher and the corresponding friction factor

(determined using Blasius’ correlation) agrees well with the measured friction factor. To illustrate,
see case 5 (Res = 5096, φb = 0.315) with an average particle solid volume fraction at the wall
of φw = 0.196, Re′

s = 8340. This results in a drag difference on the order of 1% with respect to
Blasius’ correlation, instead of the original 14% shown in Fig. 8(b). Note, however, that this is valid
only in the region where φb is dominant. This shows that direct insight in the velocity and solid
volume fraction profiles is required in order to understand the change in drag.

The data presented in this study provide a framework for a general regime classification. As
a visual indication of the different regimes, dashed-dotted lines are added. Note that these lines
should not be considered as precise transition lines, as currently too limited data are available to
quantitatively distinguishes between the different regimes. Various metrics can serve as an input for
these boundaries. The change from region I to region II can be set at the location of the maximum
drag change, where the two competing mechanisms are balanced. The location where the maximum
drag change occurs is Res dependent as can be seen from the bottom panel of Fig. 8(b). For the
boundary between regions II and III, another metric can be used, for instance, when the ratio φc/φb

drops below a certain threshold. This is an indication that the maximum packing fraction at the pipe
center is reached, and the particle core is expanding in the direction of the pipe wall.

Before concluding it is worth summarizing the strengths and weaknesses of the MRI and DNS
methods that follow from this comparison study. From the highly resolved DNS data, detailed
information can be retrieved on the structure and dynamics of the three-dimensional instantaneous
flow of both the liquid and particle phase. However, as the smallest flow structures need to be
resolved, the DNS is limited in terms of Reynolds number, system size, and number of particles.
The last sets a limit on the application of DNS for systems with small d/D. In contrast with this,
MRI is less limited by system size (though measurements can be performed only over the field of
view of the scanner), Reynolds number (although MRI resolution may become too low to resolve
steep gradients), and number of particles in the system. MRI data provide detailed access to the
mean liquid velocity and mean local voxel voidage. Additional statistical quantities such as the fluid
Reynolds stress and particle stress are not trivial to acquire at present.

V. CONCLUSION

Time-averaged intrinsic liquid velocity and solid volume fraction distributions of various sus-
pension flows are experimentally and numerically studied. In total six cases are compared, where
each case is characterized by a unique combination of Res and φb for a fixed d/D. This allows us to
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TABLE V. Experimental conditions corresponding to the round markers in Fig. 9.

Case Rel φb ν (m2/s) ul,b(m/s) νs/ν Res ul,b/ub f

1 2895 0.085 1.43 × 10−6 0.1348 1.26 2299 0.987 5.02 × 10−2

2 1566 0.174 1.43 × 10−6 0.0707 1.69 928 0.960 7.92 × 10−2

3 4049 0.174 1.43 × 10−6 0.1844 1.69 2402 0.966 5.05 × 10−2

4 4777 0.394 1.34 × 10−6 0.1938 5.19 921 0.918 6.52 × 10−2

5 11694 0.404 1.42 × 10−6 0.5080 5.63 2076 0.931 4.19 × 10−2

6 18692 0.439 1.38 × 10−6 0.8012 7.56 2473 0.943 3.66 × 10−2

7 6574 0.446 1.29 × 10−6 0.2574 8.07 814 0.923 6.55 × 10−2

8 9129 0.473 1.29 × 10−6 0.3601 10.7 852 0.930 6.07 × 10−2

study the effect of increasing Res for approximately constant φb, or increasing φb for approximately
constant Res. Generally, a good agreement between the MRI and DNS results is found, which pro-
vides a solid basis for a further in-depth analysis. In particular, the results confirm earlier qualitative
experimental, numerical, and theoretical observations in the literature, e.g., [24,27,37,73].

Overall good quantitative agreement between the MRI and DNS results is found, with RMS
errors as low as 1.7% and 5.3% for the velocity and solid volume fraction profiles, respectively.
The DNS results show a clear effect of the Coulomb friction coefficient on the flow dynamics in
the dense regime. Best agreement with experiments is found when the particles are modeled as
frictionless (μc = 0). The discrepancies between the experimental and numerical results might be
attributed to various reasons, including the difference in particle size distribution and the related
maximum random packing fraction, uncertainty in particle roughness and related effects on particle
lubrication, uncertainty in the Coulomb friction coefficient, uncertainty in experimental bulk flow
parameters used as input for the DNS, and the numerical resolution. The contribution of each factor
might be present to a greater or lesser extent in the flow results obtained, also depending on the flow
regime.

Based on the compared cases and additional experimental results, a φb vs. Res regime map
is introduced. Three different regimes are identified. For low bulk solid volume fractions nearly
uniformly distributed systems are observed. Here turbulence is responsible for the mixing of the
suspension. For moderate volume fractions shear-induced migration is observed, and the particles
accumulate at the pipe center. For high volume fractions the maximum packing fraction at the pipe
center is reached, and the core is expanding in the direction of the pipe wall. These time-averaged
solid volume fraction profiles explain the change in drag for increasing φb. Initially a drag increase
with respect to single-phase flows is observed, which is found to decrease for higher φb. For
φb = 0.4 a drag decrease of 25% is found. This drag increase and decrease is likely explained
by a balance between two competing mechanisms. We speculate that for low φb, additional friction
is introduced by the particle layer lining the pipe wall, which acts as a rough and porous wall layer,
while for higher φb solid volume fraction gradients are formed, which cause a strong nonuniform
effective viscosity in the radial direction for high φb. The near-wall region with relatively low φb

acts as a lubrication layer between the pipe wall and the dense particle core, resulting in a more
efficient transportation of the suspension.

For future work, various research directions were formulated in this study. One open question
is how particle-laden flows transitions from a uniformly distributed system to a core-peaking
distribution, and the exact role of the diameter ratio, d/D. MRI-based experiments will shed light on
the exact nature of this change in flow regime. Additionally, higher-order statistics will shed further
light on the dynamics underlying the different suspension flow regimes. Therefore, in conjunction
with DNS, MRI-based Reynolds-stress measurements in particle-laden flows are currently pursued.

Underlying data are deposited in 4TU.ResearchData [74].
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corresponding flow conditions are listed in Table V.
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APPENDIX: FLOW CONDITIONS OF ADDITIONAL MRI EXPERIMENTS

This Appendix lists the flow conditions of the additional MRI experiments [see Fig. 8(a)]. The
same MRI setup and protocols are used as described in Sec. II. The cases are listed for increasing
φb, as indicated in Fig. 9. Here a number is added above the corresponding marker.
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