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In fast growing cities, tunnels are increasingly adopted solutions to meet the demand for more 
effective transportation. As settlements caused by tunnel excavations can damage buildings along the 
tunnel alignment, a large portion of investments in underground construction projects is typically 
devoted to the assessment of settlement-induced damage to buildings. To contain the project costs, 
only a limited number of buildings is usually included in the monitoring scheme, and therefore damage 
assessment procedures are traditionally based on highly conservative assumptions.  

Modern space-borne Synthetic Aperture Radar (SAR) missions can provide monitoring data over large 
areas, guaranteeing high spatial resolutions and short revisit times. Persistent Scatterer 
Interferometry (PSI) [1,2] can be used to extract building deformations over time from long temporal 
series of InSAR images, providing measurements with an accuracy comparable to traditional in-situ 
monitoring, i.e. of the order of millimetre, and at a much lower cost. However, without an integration 
with structural models, PS-InSAR data cannot provide meaningful information on the building 
conditions. This integration is particularly demanding for large excavation projects, where hundreds 
of buildings need to be assessed.  

In this research, we present a new methodology for the integration of PS-InSAR-based 
building deformations within damage assessment procedures to estimate the level of vulnerability of 
buildings adjacent to tunnel excavations. The methodology combines in an automated workflow PS-
InSAR data, GIS (Geographical Information System)-building databases and semi-empirical models of 
the building response to tunnelling, to provide a more accurate estimate of each structure damage 
level.  

We tested the proposed methodology on the Crossrail tunnel alignment in London, UK. Crossrail 
tunnelling activities started in May 2012, and resulted in the excavation of 21 km twin tunnels below 
central London. We used as an input historical PS-InSAR data obtained by processing 72 COSMO-
SkyMed descending images from 2011 to 2015 [3]. The processing led to the identification of 228,000 
PSs over the monitored area, which correspond to an average density of about 9000 PS/km2. The map 
in Figure 1 shows the distribution of cumulative displacements along the Crossrail tunnel alignment, 
revealing the settlement caused by the excavation. In the region above the tunnels, line of sight (LOS) 
displacements between -2 cm and -3.5 cm were observed.  

PS points were automatically associated to the buildings along the tunnel route, and for each building, 
the corresponding PS-InSAR-based displacements were used to estimate the actual building 
settlement profile, using the fitting model described in Giardina et al., 2019 [4]. Figure 2 shows an 
example of a specific building, for which the PS-InSAR measurements were used to reconstruct the 
settlement below the structure. Then, the actual building settlement curves were analysed through a 
semi-empirical model of the building response to tunnelling [5] to estimate the maximum building 
strains. On the basis of its maximum strain, a level of damage was assigned to each building, and 
damage maps showing the distribution of building damage levels were the output of the proposed 
methodology (Figure 3).  



The developed algorithm enabled the identification of the structural damage of 858 buildings, 
highlighting its capability as a city-scale assessment tool. Additionally, the application of the proposed 
algorithm made available for the first time a large dataset of field observations of the building 
response to tunnelling. This allowed the identification of relationships between building construction 
materials, foundation typologies and global building behaviour. The findings can help improving 
current damage assessment procedures and advance the understanding of building response to 
tunnelling, with an impact on future excavation projects all over the world. 
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Figure 1: Map of PS-InSAR cumulative displacements over central London. The PS-InSAR data were 
obtained by processing 72 COSMO-SkyMed descending images between 2011 and 2015. 
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Figure 2: Example of building section along the direction perpendicular to the tunnel axis. The building 
PSs were interpolated by using a modified gaussian curve to estimate the actual building settlement 
profile.  

 

Figure 3: Map showing the actual level of damage for the buildings along the excavation. The 
categories A, B and C are defined on the basis of the building deformation (quantified in terms of 
maximum strain e) and indicate increasing level of damage.  
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