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Abstract

Neuromorphic computing can be used to efficiently implement spiking neural networks. Such spik-
ing neural networks can be used in edge AI applications, where low power consumption is para-
mount. The use of analog components allows for extremely low power implementations. This
thesis contributes the designs of an analog spike generator, synaptic elements and an accumulat-
ing neuron in 28 nm CMOS technology. The elements are assembled in a neural network and laid
out in an SoC. Energy consumption numbers of less than 1 pJ/synaptic operation are achieved in the
analog neuromorphic components.
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Introduction 1
Neuromorphic computing systems aim to mimic the biological behaviour of neuron cells. Early
work on this was conducted in the late 1980s by Mead [1]. Since then, the work on neuromorphic
systems has specialised from the general imitation of the nerve system to implementations of neural
networks for learning capabilities [2]. Among applications of these networks are general pattern
recognition, image classification and sensor data processing, such as radar data. A network of spik-
ing neurons is able to react very fast to changing input data and from the beginning has shown the
potential for large power savings [1]. This makes the technology well-suited for time-series data
processing.

A neuromorphic network is a spiking neural network (SNN). This means that input data is encoded
as pulse trains. These pulses are propagated through the neural network, the network is an event-
based system.

1.1 Problem statement

In previous work by Stienstra [3] and You [4], circuits for spiking neurons and synapses in have
been developed in 65 nm CMOS technology. These circuits can be made smaller and more power
efficient by implementing them in the 28 nm technology node. A challenge in this project is the
porting of designs that are designed for 65 nm CMOS to the 28 nm technology node. Such scaling
can make the circuit more power efficient, but can also make it more susceptible for variability in
the manufacturing process. The behavioural dependence on temperature changes with this scaling
as well. The circuit can be optimised for power, area, stability and speed.

Another challenge is the large amount of input and output connections in the network. The com-
ponents must be made such that they connect together easily and uniformly in an array. These
connections include not only the data inputs to the network and outputs from the neurons, but also
the connections that are necessary to control and read the biasing andweight voltages of the network
elements.

1.2 Approach

The first step is to investigate the existing work. It is investigated which behavioural properties of
neurons and synapses are implemented in models and circuits. The average power consumption and
energy per spike of the current designs are key parameters to review, as well as the spike frequency
range that the designs handle.

Next the neuromorphic circuits are implemented in 28 nm CMOS technology. Starting from min-
imum sized transistors, the dimensions and biases are optimised for the desired sub-threshold tran-
sistor behaviour. Furthermore, once the schematic design is completed in 28 nm technology, a com-
plete hardware layout of the network will be made.
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1.3 Goals

The goal of this thesis project is to build a test chip of a neuromorphic network by combining and
improving the neuron and synapse designs of Stienstra [3] and You [4] and porting them to a more
efficient technology, comparing them the state of the art and previous implementations. Since it is a
prototype chip, as many parameters, weights and biasing voltages of the network as possible will be
externally settable and readable. The design will be laid out in the TSMC 28 nm CMOS technology.
The effect of manufacturing mismatch and process variability for the implemented neuromorphic
circuits are characterised.

1.4 Contributions

The main contributions presented in this thesis are:

• Designs of a synapse and a neuron in 28 nm CMOS technology.
• A neuromorphic network architecture using a distributed synapse structure.
• An implementation of this network as a self-contained system on chip (SoC) in silicon.
• Simulated and measured results of the neuromorphic components,.

1.5 Thesis outline

Chapter 2 provides a background on neurons and synapses and models of their spiking behaviour.
Prior work on neuron circuits is reviewed and different neuron implementations are compared. In
Chapter 3 the design, implementation and optimisation of the synapse and neuron circuits is dis-
cussed, as well as the integration of the components in a network on an SOC. Chapter 4 shows
the simulation and characterisation of the neuromorphic components. The taped-out chip has been
used to verify the spiking functionality and to measure the power consumption of the neuromorphic
components. These measurements are presented in Chapter 5. Finally, the results of this project are
discussed and the conclusions drawn. Proposals for future work are presented.

2



Background 2
2.1 Neuromorphic computing

Electronic circuits can mimic the behaviour of biological nervous systems. Such electronic systems
are called neuromorphic systems or networks. What is remarkable about the way the biological
nervous system processes data, is the incredible energy efficiency with which it does so. The most
efficient supercomputer at the moment of writing is the Henri at the Lenovo Flatiron Institute, USA,
capable of performing 65,4 milliard operations per Watt [5], or 15 pW/operation. For normal CPUs,
this efficiency lowers to about 10 milliard operations per Watt [6], about 100 pW/operation. In con-
trast, our brain uses on the order of 10⁻¹⁶W/operation [1], about a hundred thousand to a million
times less.

The main mechanism that enables the use of electronic components to construct nervous systems, is
the behaviour of CMOS transistors operating in their sub-threshold region, described in Section 2.5.1.
In this region, the current through the transistor is exponentially dependant on its input voltage.
This is analogous to the exponential dependence of active ionic channels to the membrane voltage
of a neuron cell [1], [7]. Section 2.2.3 expands further on a biological model of the neuron cell, its
membrane, and its interfaces.

The nervous system consists of a network of nerve cells, referred to as neurons. Figure 2.1 shows an
illustration of neurons. A neuron consists of the cell body, dendrites and axons—each indicated in
the illustration. The dendrites reach out around the neuron in a tree and receive signals from their
surroundings. Axons, on the other hand send signals to other neurons. The interface between an
axon and the receiving neuron is called the synapse. In the synapse, neurotransmitter molecules go
from the axon to receptors on the receiving neuron.

Figure 2.1: Neuron and synapse
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A neuromorphic system implements two mechanisms of this nerve system. The neuron cell is im-
plemented as a whole, without regard for the individual parts that make up the cell, since in neur-
omorphic systems we only aim to mimic the behaviour of the cell, not its physical layout. Addition-
ally, the synapses are implemented as separate circuits. The synapses not only connect the neurons
together, but also implement memory storage and enable learning behaviour [8]. The circuits are
divided in this way because multiple synapses are connected to a single neuron.

2.1.1 Spiking neural networks

Similarly to the biological nervous system, neuromorphic systems are event-based. These events are
encoded as pulse trains, or spikes in time, leading to the term spiking neural network (SNN). Input
spikes are propagated through the network, amplified or diminished by synapses and converted to
different spike shapes and firing frequencies at neurons. The usage of spikes, as opposed to more
continous signals, means that the system elements are only active for short periods, when they are
receiving, processing and outputting spikes. This enables the system to use little power.

One distinguishing feature of neuromorphic networks is that they, in contrast to classical Von Neu-
mann architectures, mix computation and memory storage [8]. The same is true for biological net-
works. In biological systems memory is in place as the long- and short-term plasticity mady by the
synapse connections. In mixed-signal CMOS implementations the memory is often implemented
as multiple local digital storage bits connected to a local DAC, which can control an analog syn-
apse.

2.1.1.1 Weights

Neural networks performs inference by summing input signals on a node with a different weight
assigned to each input. This is done by multiplying weights on signals in the synapses, which are
connecting an input neuron and output neuron. In an analog network, a spike generates a current
in a synapse, with an ouput amplitude corresponding to the weight of that synapse. These currents
can be added by connecting the outputs of synapses together in a single node.

In its simplest form, in a network of 𝑁 input neurons and 𝑀 output neurons, the current 𝐼𝑗 into the
output neuron 𝑁𝑜𝑗—with 0 < 𝑗 ≤ 𝑀—can be summarised as

𝐼𝑗 =
𝑁
∑
𝑖=1

𝐴𝑖(𝑡) ⋅ 𝑤𝑖𝑗 (2.1)

where𝐴𝑖 is the input spike into the synapses 𝑆𝑖1…𝑆𝑖𝑀 and 𝑤𝑖𝑗 is the weight of synapse 𝑆𝑖𝑗 , connecting
input neuron 𝑁 𝑖𝑖 and output neuron 𝑁𝑜𝑗 .

2.1.1.2 Encoding

In an SNN simulations, these values represent frequencies. For an individual output:

𝑓out,𝑗(𝑡) = 𝑓 (
𝑁
∑
𝑖=1

(𝑤𝑖𝑗 ⋅ 𝑓in,𝑖(𝑡)) + 𝑓bias,𝑗) (2.2)

where 𝑓in,𝑖(𝑡) is the input frequency into the synapses 𝑆𝑖1…𝑆𝑖𝑀 over time, 𝑤𝑖𝑗 is the weight of synapse
𝑆𝑖𝑗 , connecting input neuron 𝑁 𝑖𝑖 and output neuron 𝑁𝑜𝑗 , 𝑓bias,𝑗 is the constant bias input into output
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neuron 𝑁𝑜𝑗 , 𝑓 (𝑓 ) is the activation function and 𝑓out,𝑗(𝑡) is the output frequency of output neuron
𝑁𝑜𝑗 over time.

2.2 Models

There are multiple models that describe the behaviour of the neuron cell and the shape of the AP.
These models work mostly by evaluating the voltage over the cell membrane as a function of the in-
jected current. First the biological mechanism of neural spikes is explained. Then four different mod-
els will be discussed, ranging from very biologically realistic to abstract but less complicated.

2.2.1 Action potential

The spikes or impulses that are sent between neurons in the nerve system are called action potentials
(APs). Figure 2.2 shows a schematic of an action potential. The cell membrane of a nerve cell contains
ion channels, which allow specific kinds of ions to cross the membrane. The conductance of these
channels can vary, influencing the effect of incoming current on the membrane potential. If a large
enough current is injected into the neuron and the membrane voltage crosses a certain threshold,
the membrane voltage will spike, producing an AP.

Four stages can be distinguished during this process. The AP begins with a stimulus, in Figure 2.2
slightly after 1ms. The depolarisation stage is entered if the stimulus is large enough to make the
membrane voltage exceed the threshold. The rapid rise at the beginning of this stage opens the
sodium channels in the membrane, allowing sodium ions (Na⁺) to flow in, resulting in a spike. The
third stage is the repolarisation phase. During this phase, the sodium channels are closed, while
potassium channels are opened, resulting in an efflux of potassium ions (K⁺), lowering the voltage.
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Figure 2.2: Schematic of an action potential, showing the stimulus, the depolarisation and polarisa-
tion phases and the refractory period.
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Figure from [10, Fig. 3.2]

Figure 2.3: Post-synaptic current dynamics of receptor types

Figure from [10, Fig. 3.1]

Figure 2.4: Schema of synaptic tranmission (left) and postsynaptic AMPA receptor (right)

This efflux of K⁺ ions causes an undershoot in the voltage, the refractory period or hyperpolarisation
phase. During this time, the potassium channels close and the voltage returns to its resting state. In
the refractory period, no new impulses can be generated. The strength of the hyperpolarisation
largely determines the maximum frequency at which the spikes can fire [9, Ch. 1].

2.2.2 Synapse dynamics

As shown in Section 2.2.3, current can be passed through ion-activated channels. A similar process
can be observed in the synapse, the interface between two neurons (see Figure 2.1). These channels
are present at the receptors of the receiving—or post-synaptic—neuron. When a spike arrives at the
pre-synaptic neuron, neurotransmitter molecules are activated. These activated neurotransmitters
cross the synaptic cleft and are received by a receptor. Specific transmitters fit specific receptors.
Once a receptor has received a fitting transmitter, the ion channel can be opened and ions can carry
a current into or out of the receiving neuron [10, Ch. 3.1].

The current through the multiple channels of the synapse can be modelled as

𝐼syn(𝑡) = 𝑔syn(𝑡)(𝑉post(𝑡) − 𝐸syn) (2.3)
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with a decaying conductance

𝑔syn(𝑡) = ∑
𝑓

̄𝑔syn exp(
−(𝑡 − 𝑡pre)

𝜏 )Θ(𝑡 − 𝑡pre) (2.4)

where 𝑉post is the postsynaptic voltage, 𝐸syn is the synapse’s reverse potential, 𝑔syn is the conduct-
ance of the synapse, ̄𝑔syn is the maximum conductance, 𝑡t is the arrival time of the presynaptic spike
and Θ is the Heaviside step function. 𝐸syn is often set to 0 V in excitatory synapses and −75mV in
inhibitory synapses [10, Eq. 3.1–3.2], [11].

There are multiple types of receptors. The most important receptor types for neuromorphic com-
puting are α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA), N -methyl-D-aspartate
(NMDA) and γ-aminobutyric acid (GABA). The AMPA and NMDA receptors are so-called excitatory
receptors. When they are active, the current into the neuron increases. Contrarily, the GABA recept-
ors are inhibitory, when they are activated, the current decreases or can go negative. A summary of
the properties of the three receptor types is presented in Table 2.1.

Table 2.1: Properties of receptor types

Receptor Polarity Rise time [ms] Fall time [ms] Conductance dependency

AMPA + 0,4 to 0,8 5 Neurotransmitters
NMDA + 20 100 Neurotransmitters, postsynaptic voltage
GABAa - 3,9 20 Neurotransmitters

2.2.2.1 AMPA receptor

The AMPA receptor is one of the most common receptors. When neurotransmitters bind to AMPA
receptors, NA⁺ ion channels open. The resulting influx of current polarises the cell and can result in
the firing of an AP. This means that the AMPA conductance is directly dependant on the amount of
neurotransmitters received.

AMPA are the fastest receptors. The rise time of the synaptic currents due to AMPA receptors is
0,4ms to 0,8ms, their fall time is 5ms. These short rise and fall times can be attributed to the rapid
clearing of neurotransmitters and closure of the channels [11]. The different temporal dynamics of
current due to the receptor types is shown in Figure 2.3 and summarised in Table 2.1.

2.2.2.2 GABA receptor

The GABA receptor is much the same as the AMPA receptor, but with a reverse effect. However,
instead of the positively charged Na⁺ ions, the channel of a GABA receptor lets negatively charged
Cl⁻ ions through. This results in a decreasing or even negative current to the neuron, preventing or
slowing the firing of an AP.

There are two types of GABA receptors, GABAa and GABAb. GABAb receptors, compared to
GABAa, NMDA and AMPA receptors, need a much higher presynaptic signal in order to activate.
It is hard to achieve such high stimulation, and for this reason only GABAa receptors will be taken
into account. GABAb receptors also have different temporal dynamics thanGABAa receptors. While
GABAa has a typical rise time of 3,9ms and a fall time of 20ms, GABAb is about 20 times slower
[11].
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Figure 2.5: Hodgkin & Huxley model equivalent circuit

2.2.2.3 NMDA receptor

Like the AMPA receptor, the NMDA receptor is an excitatory receptor. However, NMDA receptors
have a different activation mechanism. NMDA receptors can be blocked by a concentration of Mg²⁺.
This blockage is removed when a postsynaptic current is applied. This means that NMDA receptors
can only conduct if both a presynaptic voltage (to release neurotransmitters) and a postsynaptic
voltage (to remove the Mg²⁺ blockage) are present. This double effect also means that the synapse
model as presented in Equation (2.3) is too simple for NMDA receptors. To account for the Mg²⁺
block, an extra term 𝐵(𝑉 ) is introduced:

𝐼syn(𝑡) = 𝑔syn(𝑡)𝐵(𝑉post(𝑡))(𝑉post(𝑡) − 𝐸syn) (2.5)

and
𝐵(𝑉 ) = 1

1 + exp(−0,062𝑉 ) [Mg2+]0
3,57

(2.6)

where [Mg2+]0 is the external Mg²⁺ concentration [11].

NMDA receptors are also the slowest of the three receptor types, with a typical rise time of 20ms
and a fall time of 100ms [12].

2.2.3 Hodgkin & Huxley model

For modelling, the most important characteristics of a neuron is the current through the cell mem-
brane and the way that this excites an AP. The AP can be seen as a changing voltage over the cell
membrane. An extensive model of the membrane behaviour has been developed by Hodgkin and
Huxley [13]. The fundamentals of this model will be explained. An equivalent circuit of this model
can be found in Figure 2.5. The top of the circuit is outside of the cell, while the bottom is inside
the cell. The circuit thus represents the cell membrane between. The membrane is normally at a
constant resting potential. A current 𝐼 enters the cell, and causes the voltage difference 𝑉M over the
membrane.

The current density through the membrane and the change of voltage over the membrane is de-
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scribed in [13] as:

𝐼 = 𝐶M d𝑉
d𝑡 + 𝐼Na + 𝐼K + 𝐼l (2.7)

where

𝐼Na = 𝑔Na (𝑉 − 𝑉Na) is the current density carried by sodium ions, (2.8a)

𝐼K = 𝑔K (𝑉 − 𝑉K) is the current density carried by potassium ions, and (2.8b)

𝐼l = ̄𝑔l (𝑉 − 𝑉l) is a leakage current density due to chloride and other ions (2.8c)

where 𝑉 is in mV, 𝐼 in µA/cm², 𝐶M in µF/cm² and the conductances 𝑔 in mS/cm².

𝑉 is the membrane voltage 𝑉M minus its resting potential. 𝑉Na, 𝑉K and 𝑉l are constant and represent
the saturation points of the ion channels. [9, Ch. 2]

The potassium and sodium conductances are dynamic, and are described by:

𝑔K = ̄𝑔K𝑛4 (2.9a)

𝑔Na = ̄𝑔Na𝑚3ℎ (2.9b)

𝑛, 𝑚 and ℎ are dimensionless and are defined by the differential equations

d𝑥
d𝑡 = 𝛼𝑥 (1 − 𝑥) − 𝛽𝑥𝑥 (2.10)

for 𝑥 = 𝑛, 𝑚, ℎ; where 𝛼𝑥 and 𝛽𝑥 parameters are in ms⁻¹. They are fitted values depending on the
value of 𝑉 , but do not change over time.

𝛼 and 𝛽 are different for different types of neurons. In [13] Hodgkin and Huxley fit 𝛼 and 𝛽 for their
experiments to be

𝛼𝑛 = 0,01 𝑉 + 10
exp (𝑉+1010 − 1)

, 𝛽𝑛 = 0,125 exp ( 𝑉80) (2.11a)

𝛼𝑚 = 0,1 𝑉 + 25
exp (𝑉+2510 − 1)

, 𝛽𝑚 = 4 exp ( 𝑉18) (2.11b)

𝛼ℎ = 0,07 exp ( 𝑉20) , 𝛽ℎ = 1
exp (𝑉+3010 + 1)

(2.11c)

The Hodgkin & Huxley model describes the behaviour of a neuron as changing conductances. The
equations above show the model with three conductance types, as defined in the original model.
However, themodel is not inherently limited to these three. Additional conductances are often added,
for example to model potassium ion channels with different time constants. These conductances can
be added by fitting additional functions for 𝛼 and 𝛽 . Detailed conductance-based models exist with
tens of ion channels. The addition of more ion channels in the adds more parameters, studies with
up to a hundred parameters exist [14].

The model as described in Equations (2.7) to (2.11) has a total of 13 parameters that can be tuned to
describe a neuron:
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• 𝐶M: membrane capacitance
• 𝑉Na, 𝑉K, 𝑉l: saturation points
• ̄𝑔K, ̄𝑔Na, ̄𝑔l: ion channel conductances
• 𝛼𝑛, 𝛼𝑚, 𝛼ℎ, 𝛽𝑛, 𝛽𝑚, 𝛽ℎ: function parameters

Computing d𝑉
d𝑡 requires 20 additions and subtractions, 32 multiplications and divisions and 6 expo-

nentiations.

The Hodgkin & Huxley model is most useful when we look at the behaviour of a neuron as changing
conductances. This changing conductance can be well modelled in electrical circuits. Some neuron
implementations using conductance-based models will be discussed in Section 2.3. The modelling of
sodium and potassium ions and leakage can be seen in the presence of the Na⁺, K⁺ and Leak blocks
in the neuron circuit in Figure 3.5.

2.2.4 Izhikevich model

The Hodgkin & Huxley model describes the neuron in much detail. However, this comes with the
price of a large computational complexity.

An alternative model that greatly reduces computational complexity has been introduced by
Izhikevich [15]. This model is able to produce twenty different spiking patterns [16], using only
four main tuning parameters. In contrast to the Hodgkin & Huxley model, Izhikevich does not
model the system in a biologically meaningful way. Still, the model attempts to imitate the biolo-
gical behaviour. Some details, such as the ability to change the spike’s precise shape, are lost though
[17].

This model uses the membrane potential of the neuron 𝑉 , a membrane recovery variable 𝑢 and
the current input to the cell 𝐼—together with the four parameters 𝑎, 𝑏, 𝑐 and 𝑑—to construct a two-
dimensional system of differential equations:

d𝑉
d𝑡 = 0,04𝑉 2 + 5𝑉 + 140 − 𝑢 + 𝐼 (2.12)

d𝑢
d𝑡 = 𝑎(𝑏𝑉 − 𝑢) (2.13)

with the additional condition:

if 𝑉 ≥ 30mV, then {𝑉 ← 𝑐
𝑢 ← 𝑢 + 𝑑 (2.14)

where 𝑉 and the potential reset value 𝑐 are inmV, 𝑡 inms, 𝐼 and the parameter 𝑑 in pA, the parameter 𝑏
describes the relation between 𝑢 and 𝑣 and is in nS and the recovery times constant 𝑎 is in ms⁻¹.

Typical values are 𝑎 = 0,02, 𝑏 = 0,2, 𝑐 = −65mV, 𝑑 = 2. The expression 0,04𝑣2 + 5𝑣 + 140 and
the reset condition of 𝑣 are fitted for a neuron with resting potential between −70 and −60mV,
threshold between −55 and −40mV and a spike peak value of 30mV. Other values are possible for
other neurons [15]. This model uses 4 parameters (𝑎, 𝑏, 𝑐, 𝑑) to model the neuron behaviour and
one parameter (spike peak value) and a fitted expression to describe the voltage levels, such as the
resting potential and threshold range. 13 operations are needed to compute d𝑉

d𝑡 .
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2.2.5 Integrate and fire model

A simpler model than the Izhikevich model is the integrate-and-fire (IF) model. In this model, the
current input to the neuron cell is integrated onto the cell membrane. Once a certain treshold voltage
is reached, the neuron fires a spike. This model can be extended using a leaky integrator. This
causes the membrane potential to decay over time to a resting potential. The basic IF model can
be very simple to implement as a circuit [2]. This has the disadvantage, however, that although
the behaviour can be made suitable for a spiking neural network, it does not realistically model the
biological system. The IF model can be made more realistic by adding non-linear or quadratic terms.
Of course, this increases the complexity as well. The most complex implementation of the I&Fmodel
is the adaptive exponential I&F model, which is comparable to the Izhikevich model in complexity
and is able to model many of the same spiking patterns [17].

In general, IF models consist of a differential equation describing the integration of input current 𝐼
on a membrane capacitance and the resulting change in membrane voltage 𝑢 during the integration
phase, and a reset condition which resets the neuron when a spike has occurred. The base form of
the IF is then:

𝐶 d𝑉
d𝑡 = 𝐼 (2.15)

if 𝑉 ≥ 𝑉T, then 𝑉 ← 𝑉reset (2.16)

This base model requires 3 parameters: the capacitance 𝐶 , the threshold voltage for a spike 𝑉T and
the potential to which the membrane voltage is reset after a spike, 𝑉reset.

2.2.5.1 Leaky integrate and fire

Leaky integrate and fire (LIF) is the simplest model that is in use. The model can be represented as
a circuit consisting of a capacitor with capacitance 𝐶 in parallel with a leakage resistor connected
to a resting potential 𝑢rest, with leak conductivity 𝑔l . This makes it so that when there is no input
current, the membrane voltage will go to 𝑉rest [18]:

𝐶 d𝑉
d𝑡 = −𝑔l (𝑉 − 𝑉rest) + 𝐼 (2.17)

if 𝑉 ≥ 𝑉T, then 𝑉 ← 𝑉reset (2.18)

The rate at which this occurs is expressed with the timeconstant 𝜏 = 𝑅𝐶 .
The LIF model adds two parameters to the base model, 𝑔l and 𝑉rest, totalling 5. 6 operations are
needed to compute a timestep. [16] reports 5 operations, but does not use 𝐶 as a parameter in the
model, therefore needing one less multiplication or division.

2.2.5.2 Adaptive exponential integrate and fire

Exponential In the LIF model, an output spike is generated when the integrator voltage reaches a
specific threshold voltage. This spike has no defined amplitude and has no width, it is reset immedi-
ately. This does not accurately model some neuron behaviours. A distinction can be made between
a threshold voltage, and the peak voltage of the spike. If the external input is stopped while 𝑉 is
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below the threshold voltage 𝑉T, it will decay to the resting potential. However, if 𝑉 is above 𝑉T, 𝑉
will increase up to the spike peak voltage 𝑉peak before it is reset [18].

This behaviour can be implemented by adding an exponential term depending on the difference
between 𝑉 and 𝑉T:

𝐶 d𝑉
d𝑡 = −𝑔l(𝑉 − 𝑉rest) + 𝑔l𝛥T exp (𝑉 − 𝑉T

𝛥T
) + 𝐼 (2.19)

if 𝑉 ≥ 𝑉peak, then 𝑉 ← 𝑉reset (2.20)

This will cause 𝑉 to increase exponentially towards 𝑉peak when larger than 𝑉T. The rate at which
it increases is controlled by the new parameter 𝛥T, the slope factor. The lower 𝛥T is, the closer the
exponential model resemples the standard LIFmodel [14]. When 𝑉 is slightly below 𝑉T therewill be a
balance between the linear leakage and the exponential term. This replaces the strict thresholdwith a
more realistic threshold zone, in which spikes can be initiated but are not certain to do so. This allows
themodel to describe additional spike patterns like subthreshold oscillations. When 𝑉 is significantly
lower than 𝑉T the exponential term is negligible and the model is a linear integrator.

Frequency adaptation Neuron behaviour can be affected by the spike history of the neuron. A
period of high activity can raise the effective threshold, reducing spike frequency, and can change
subthreshold behaviour. Adding adaptation to the model allows the model to describe frequency
relaxation and bursting behaviour. An adaptation current 𝑤 is added to the model:

𝐶 d𝑉
d𝑡 = −𝑔l(𝑉 − 𝑉rest) + 𝑔l𝛥T exp (𝑉 − 𝑉T

𝛥T
) − 𝑤 + 𝐼 (2.21)

𝜏𝑤 d𝑤
d𝑡 = 𝑎(𝑉 − 𝑉rest) − 𝑤 (2.22)

if 𝑉 ≥ 𝑉peak, then {𝑉 ← 𝑉reset
𝑤 ← 𝑤 + 𝑏 (2.23)

The parameters 𝜏𝑤 , 𝑎 and 𝑏 are added. 𝜏𝑤 is the adaptation time constant. 𝑎 is the factor for sub-
threshold adaptation. This increases the adaptation current when 𝑉 is high but not spiking, causing
subthreshold oscillation. 𝑤 is increased by 𝑏 whenever a spike occurs, the spike-triggered frequency
adaptation.

Compared to an accurate reference neuron, the adaptive exponential integrate and fire (AdExp
IF) model correctly described 96 % of spikes. Removing the exponential current term for a sharp
threshold reduces this to 88 %. Disabling the subthreshold adaptation reduces the spike accuracy by
2%, while setting 𝑏 to 0, removing the spike-triggered adaptation, has a larger effect, reducing the
accuracy to 67 %. The combination of the adaptation current and the exponential spike mechanism
significantly improves on the standard LIF model, or an IF model with just one of the two [14].

The combined AdExp IF model needs 7 additions and subtractions, 7 multiplications and divisions
and 1 exponentiation to compute d𝑉

d𝑡 .

2.2.6 Model comparison

The models are compared on the amount of parameters that can be adjusted to change the neuron
behaviour. More parameters allows for more adjustability of the spike shape and pattern, but also
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make it more difficult to fit the model and find the desired behaviour. An increase in parameters will
also generally be more complicated to implement in a neuron circuit design. However, having fewer
parameters can mean that not all neuron behaviours can be modelled.

The amount of operations to compute one timestep is determined in the expression 𝑉 (𝑡 + 1) =
𝑉 (𝑡) + d𝑉

d𝑡 . Each addition, subtraction, multiplication, division, exponentiation and comparison is

counted as one operation. The total amount of operations is then the operations to calculate d𝑉
d𝑡 plus

1 addition to add it to the previous value plus 1 comparison. In [16] exponentiation is approximated
as 10 operations in order to compare the compute complexity on a digital system, the amount of
operations using this approximation is reported in parentheses for the models that compute expo-
nentiations. The amount of operations for the Hodgkin & Huxley model is an approximation, since
it depends on which fitted functions are chosen for the 𝛼 and 𝛽 parameters. The number of para-
meters and operations will increase if additional conductance functions are added to the model to
describe more ion channels.

Table 2.2: Comparison of neuron models

H&H Izhikevich Leaky IF AdExp IF

Parameters 13¹ 5 5 9
Operations 60 (112)¹ 13 6 17 (26)
Spike shape dynamic quadratic none exponential
Spike patterns all most some most
Non-linear near-threshold yes yes no yes
Frequency adaptation yes yes no yes
Conductance-based yes no yes yes

¹ Minimum for the model described here, more if additional ion channels are described

2.3 Implementations

2.3.1 Leaky integrate-and-fire implementations

An ultra-low energy analog leaky integrate-and-fire (LIF) neuron is implemented in [19]. This circuit
is based around a hysteresis comparator. The comparator consists of a non-linear transconductance
amplifier with a feedback connection from its output to the positive input, and a resistor connected
to a bias to set the output DC level.

The neuron uses a reverse polarity architecture, meaning that integration of excitatory current de-
creases the membrane voltage instead of increasing it. This is done because an inverting comparator
was more efficient to implement. The membrane voltage decreases until the lower threshold voltage
of the hysteresis comparator is reached. The output then switches high and the output spike begins.
This switches on a current source that increases the membrane voltage until the higher threshold
voltage of the hysteresis is reached, this is the reset phase. The output then switches low again and
the spike has ended. The width of the output spike can therefore be controlled by the hysteresis
range in the comparator design and the amount of feedback current during the reset phase.

The very low power consumption is achieved by running the entire neuron circuit in weak inver-
sion. A supply voltage of 0,6 V is used with super high VT transistors with a threshold voltage of
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0,66 V. This neuron design implements leaky behaviour in its corresponding synapse instead of in
the neuron itself. However, leakyness could also be added to the neuron with an additional resistor
or current source between the membrane node and the supply voltage.

A more complex LIF neuron is presented in [20]. This design adds a synaptic integrator between
the neuron core and the synaptic current input. The synaptic integrator functions as a first-order
low-pass filter core and results in a synaptic voltage 𝑉syn, which will be increased or decreased by
excitatory and inhibitory input currents.

The combination of the synaptic voltage and the membrane voltage of the soma is

𝐶mem
d
d𝑡 𝑉mem = 𝐼p − 𝐼shift (2.24)

𝐶syn d
d𝑡 𝑉syn = 𝐼in − 𝐼n + 𝐼shift (2.25)

where 𝐼p depends on the membrane potential 𝑉mem and control voltage 𝑉p and 𝐼n depends on the syn-
apse voltage 𝑉syn and control voltage 𝑉n. 𝐼in is the difference between the excitatory and inhibitory
input current to the synapse.

A diode-connected NMOS transistor connects 𝑉mem and 𝑉syn and functions as a level shifter. The
current through this transistor, connecting the soma and synapse parts of the circuit, is 𝐼shift.
Multiple sources of post-synaptic potentials can be connected to the single synaptic integrator. The
amplitude of incoming spike current can be regulated by adjusting two control voltages. A transistor
to ground next to the synapse capacitor implements leakage and is controlled by 𝑉n.
In steady state the leak current 𝐼n, charge current 𝐼p and connecting current 𝐼shift are all equal. When
𝑉syn charges and the difference between 𝑉syn and 𝑉mem decreases, the level shifter will turn off and
𝐼shift = 0. 𝐼p then charges 𝐶mem and 𝑉mem increases until the level shifter turns on again. Conversely,
when 𝑉syn decreases and the difference to 𝑉mem increases, 𝐼shift will increase as well andwill be larger
than 𝐼p, discharging 𝐶mem and bringing 𝑉mem down.

IF based neurons have also been used for digital implementations of a neuromorphic network. Digital
neuromorphic networks are often simpler to implement, but have a higher area and power usage.
Joubert, Belhadj, Temam et al. [21] show that an analog implementation of a leaky I&F neuron uses
20 times less energy and 5 times less area than a comparable digital implementation.

2.3.2 Adaptive exponential I&F implementations

The Institute of Neuroinformatics in Zurich has developed a series of implementations of the ad-
aptive exponential I&F model. Characteristics of these circuits is the presence of a differential pair
integrator (DPI) at the neuron input and in an afterhyperpolarisation circuit. The first version is
presented in [22]. In [23] the same circuit is shown with an AER interface added to the neuron
output.

The neuron behaviour of this circuit is described by a subthreshold current 𝐼mem controlled by the
membrane potential and an adaptation current 𝐼ahp [24]:

(1 + 𝐼th
𝐼mem

) 𝜏 d
d𝑡 𝐼mem + 𝐼mem (1 +

𝐼ahp
𝐼𝜏

) = 𝐼mem∞ + 𝑓 (𝐼mem) (2.26)

𝜏ahp d
d𝑡 𝐼ahp + 𝐼ahp = 𝐼ahp∞ (2.27)
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Ignoring the adaptation current, [24] shows that this simplifies to

𝜏 d
d𝑡 𝐼mem = −𝐼mem + 𝑓 (𝐼mem) +

𝐼th
𝐼𝜏
𝐼in (2.28)

A derivative of this I&F circuit is used in [25], where it is integrated in the ROLLS neuromorphic
processor chip. This is an implementation in 180 nm.

[26] and [27] are a further development of this neuron. These implementations strive to minimise
leakage currents and firing rate variability. Lower leakage currents allow for longer time constants
without increasing capacitor sizes and therefore area, or increasing bias currents and therefore power
usage. These longer time constant allow the neuron to have a sub-kHz firing rate, whichmore closely
resembles the biological neuron behaviour the processor aims tomimic. This low leakage is achieved
in [27] by using an FD-SOI process and by improving the spike generation circuit of the neuron. The
neuron in [26] has an active area of 20 µm². Approximately 0,9 pF of capacitance is needed in addition.
[27] uses the same active area but requires a higher capacitance of approximately 1,5 pF.

An alternative is implemented in [28]. This implementation uses the circuit of [27] as its base, but
then focuses on the minimisation of the energy per spike. An energy per spike of 990 fJ is achieved.
This implementation requires a large capacitor area than other implementations and uses alternate
polarity MOM capacitors in contrast to the MIM capacitors used previously. There is a larger firing
rate variability reported than in [26]. The cause of this is that the output frequency distribution is
bimodal, with the first mode around the expected frequency and a second mode around three times
the expected value. A sensitivity analysis shows that the bias current mirrors used to set the leakage,
threshold and refractory period are sensitive to mismatch, as well as the DPI input. It is proposed
that additional series and parallel transistors must be added to these sensitive parts.

2.3.3 Prior work in group

Previous work done in the Circuits and Systems group [3] has implemented existing neuron circuits
in UMC 65 nm. Implementing the different neuron circuits in the same CMOS technology allows
for a more direct comparison. The energy per spike, area and necessary capacitance of these imple-
mentation were determined.

Among the neurons that were implemented were a LIF neuron based on [20] and an adaptive expo-
nential IF neuron based on the neuron found in [25].

It was found that the LIF neuronwas able to be implemented using the least amount of area. However,
this design uses more energy per spike event than other neurons. The LIF neuron is not capable of
producing biologically realistic spikes.

The adaptive exponential based neuron offered the most realistic spike shape and sits between the
other solutions with regards to energy usage. A downside is the large area that is needed for its
capacitors. The large advantage of the adaptive exponential based neuron is that both its timing
characteristics, such as the spike rate and refractory period, and characteristics of its spike shape,
such as the with and reset potential can be controlled.

2.3.4 Implementation comparison

Table 2.3 shows a comparison of the neuron implementations that have discussed.

15



Key parameters to compare are the energy per spike and the area that is used by the neuron. Energy
per spike is used instead of average power because the neuromorphic cores asynchronous and the
amount of spikes that is processed varies through time. When no spikes are processed the neurons
only consume a small amount of static power.

Since the neurons are often arranged in arrays of hundreds to thousands of neurons, it is desirable to
minimise their area in order to maximise the amount of neurons that can be fitted in a neuromorphic
core. All neuron implementations that are compared use capacitors in their circuits. The area used
by the capacitors is a significant part of the total area, often even the majority.

Capacitance density varies greatly with process technology and implementation choice. The imple-
mentations differ in using MIM, MOM or MOS capacitors. For example, the total capacitance of [28]
is 4,8 times as large as that of [26] but the capacitor area is 36 times larger. MIM capacitors are used
in the latter while alternate polarity MOM capacitors are used in the former. For this reason the
implementations are compared on their total capacitance and the capacitor area used in the imple-
mentation is reported separately from the active transistor area. Where no separate capacitor area
is specified, the active area is the total area including capacitors.

Frequency variability is defined as the standard deviation over the mean of the output frequency of
the neuron in a statistical analysis. This shows the effect of process variation and mismatch on the
neuron firing rate. When implementing the neuron circuits in smaller CMOS technologies it is more
difficult to have only a small amount of variability.

Table 2.3: Comparison of neuron circuit implementations

[19] [20] [26] [28] [3] [3]

Model LIF LIF AdExp IF AdExp IF LIF AdExp IF
Technology 90 nm 130 nm 28 nm FD-SOI 22 nm FD-SOI 65 nm 65 nm
Supply voltage 0,6 V 1,2 V 1,0 V 0,8 V 1,0 V 1,0 V
Energy per spike 0,4 pJ 50 pJ 990 fJ 260 pJ 730 fJ
Active area 442 µm² 22,80 µm² 20 µm² 0,65 µm² 0,18 µm²
Capacitance 40 fF 900 fF 4,3 pF 106 fF 345 fF
Capacitor area 3,696 µm² 50 µm² 1799 µm² 2,6 µm² 25,8 µm²
Typical spike frequency 100Hz 1 kHz 100Hz 100Hz 2 kHz 1 kHz
Frequency variability 5,86 % 56,55 %
Control signals 3 8 8 10 12 15

2.4 Synapse

Additionally, in the Circuits and Systems group the work a combination of synapse circuits has been
developed for a multi-compartment receptor [29]. The three receptor types discussed in Section 2.2.2
are implemented [4]. These circuits are based on the log-domain integrator and differential-pair
integrator synapses of [30] and [23] and are shown in Figure 2.6.

The linear charge-and-discharge synapse[30] forms the base of these implementations. An analog
voltage 𝑉w represents the weight of the synapse. A current, controlled by 𝑉w, is integrated on the
synapse capacitor 𝐶syn during the time that an input pulse is active. The voltage over 𝐶syn control
the synaptic output current through 𝑀syn. 𝑀syn operates in weak inversion. Therefore a linear
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decrease in voltage over 𝐶syn results in an exponential decay of the output current. This decrease
is implemented with a constant leak current that adjusted with the bias signal 𝑉tau, controlling the
synaptic decay time constant 𝜏 .
The AMPA andNMDA receptor circuits use this structure in such a polarity that it results in a current
sourcing output, while the GABA receptor circuit uses a complementary structure to have a sinking
output current.

All three receptor types can use this same structure as their base. Different input filters are used in
the receptors to control how the weight-controlled current charges the synapse capacitor.

The AMPA receptor uses a differential-pair integrator to implement an exponential filter. An ad-
justable threshold voltage 𝑉thr is used to control to which voltage 𝐶syn can be charged. This affects
the limit to which 𝐶syn is charged when multiple input spikes arrive after each other during the
decay time of a single output spike, summing them up to 𝑉thr.
The NMDA receptor is dependant on the post-synaptic membrane voltage. This implementation
adds a filter that uses the membrane voltage as a threshold voltage, conducting when it rises above
an adjustable reference voltage. A secondary capacitor is added to the input stage, implementing an
integrating low-pass filter representing themuch slower time scales of the NMDA receptor compared
to the other receptors (see Table 2.1).

2.5 Implementation techniques

2.5.1 Sub-threshold operation

Low-power deep sub-micron CMOS processes target relatively high threshold voltages with re-
spect to the nominal supply voltage. This is done to minimise leakage in the low-power processes.
Threshold voltages of about half the supply voltage are typical [31, Ch. 3]. Additionally, circuits can
be operated below the nominal supply voltage to further decrease power, for example in [19]. This
means that in low-power neuron implementations in deep sub-micron processes many, or even all,
of the transistors operate in or near the sub-threshold region, in moderate to weak inversion.

The threshold voltage 𝑉T changes when the drain-source voltage 𝑉DS creates an electric field, this is
drain-induced barrier lowering (DIBL). 𝑉T decreases by 𝑉DS times the DIBL coefficient 𝜂. 𝜂 is device
dependant and is typically between 0,01 and 0,1. This effect results in a higher sub-threshold drain
current when 𝑉DS is high, also increasing unwanted leakage, and it is stronger in short-channel
devices [32, Ch. 2].

In weak inversion the drain current through a MOSFET is described by

𝐼D = 𝐼0 exp(
𝑉GS − 𝑉T + 𝜂𝑉DS

𝑛𝑉th
)(1 − exp(−𝑉DS𝑉th

)) for 𝑉GS − 𝑉T < 0 (2.29)

with

𝐼0 = 𝜇0𝐶ox𝑊𝐿 (𝑛 − 1)𝑉 2th (2.30a)

𝑉th = k𝑇
q ≈ 26mV at 𝑇 = 300K (2.30b)

𝐼0 is the device-specific current at threshold, 𝑉T is the MOSFET threshold voltage, 𝑛 is the process-
dependant sub-threshold slope factor and 𝑉th is the thermal voltage.
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When 𝑉DS is more then approximately four times 𝑉th the last term of Equation (2.29) becomes nearly
1 and the transistor is operating in saturation.

In saturation 𝐼D can be approximated to

𝐼D ≃ 𝐼0 exp(
𝑉GS − 𝑉T
𝑛𝑉th

) (2.31)

The transconductance calculated as d𝐼D
d𝑉GS is then

𝑔m = 𝐼D
𝑛𝑉th

(2.32)

It is notable that the 𝑔m
𝐼D ratio is therefore approximately constant in weak inversion.

In strong inversion there is a linear to quadratic relation between the gate-source voltage and the
drain current, depending on the saturation operating region. In weak inversion this relation is ex-
ponential however. This makes sub-threshold operation well-suited for low-power neuron imple-
mentations. The exponential relation between voltage and current fits the exponential decay seen
in synapse dynamics and conductance based neuron models, as well as the exponential current term
based on the membrane voltage in exponential LIF models. Sub-threshold operation allows a lower
supply voltage, enabling lower power and static leakage in neuron implementations.

2.5.2 Sizing & leakage

One of the design objectives is to minimise the used area. Ideally minimum-sized transistors would
be used. In advanced processes these will have significantly larger leakage currents though. This
is detrimental for two reasons. Firstly, higher leakage will increase the static power consumption.
Secondly, higher parasitic leakage requires larger signal currents to achieve the same time constants,
especially in LIF neuron implementations, since some of the unwanted leakage will add to the inten-
ded leakage current. This leads to a higher dynamic power consumption and a larger current also
requires a larger membrane capacitor value for the same integration time. This increases the area
needed.

Neuron implementations use low currents, ranging from a few pA to to nA, to operate at time con-
stants that are compatible with natural signals [26]. The drain-source leakage of minimum-sized
transistors can be well within that range, [26] showing 𝐼D is approximately 100 and 10 pA for NMOS
and PMOS transistors respectively with a width of 200 nm and length of 30 nm at 𝑉GS = 0 and
𝑉DS = 0,5V. The leakage can be decreased significantly by increasing the transistor length. Trip-
ling the length for these examples reduces the drain leakage by approximately 2 orders of mag-
nitude.

2.6 Conclusions

The behaviour of a neuron cell can be described as the voltage over a capacitive membrane. This
voltage changes as the result of current that is flows into or out of the neuron through ion channels
of different types. The Hodgkin & Huxley(HH) model describes the current through ion channels
as current through changing conductances. Different functions to model the change in conductance
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over time are used for each ion channel type. Membrane voltage-dependant parameters can be fitted
for the functions. Additional conductance functions can be added to model additional ion channel
with different behaviour. The model is closely based on the observed biological mechanisms of a
neuron cell. It is possible to describe neuron behaviour accurately, and the model can be made more
detailed by fitting additional conductance functions. However, this results in the highest amount of
operations to compute one timestep of the reviewed models. The parameter functions of the model
are more difficult to implement as a circuit than in the other models, since they consist of more
operations.

The Izhikevich model aims to be much more computationally efficient. The model can describe the
spike patterns observed in biological neurons, but is not directly based on biological mechanisms
like the HH model is. Although the model can describe spike patterns, it is not accurate for the
shape of individual spikes, approximating them with a quadratic function.

The leaky integrate-and-fire (LIF) model is the simplest model that is in use. Like the HH model
it is a conductance-based model that uses a membrane capacitor and the current through a leakage
resistor, but there is only one conductance and it has a static value. Spikes are modelled as ideal delta
spike that are generated when the membrane reaches a fixed threshold. It uses the least amount of
operations to compute a timestep and has few parameters. It is easy to translate to an electronic
circuit. However, the model does not describe the shape of spikes and can only model a few spike
patterns.

The LIF model can be made more realistic by adding an exponential function that describes the
shape of the spike, by modelling the change in the membrane voltage when it is around and above
the threshold voltage. An exponential function is a good fit for the spike shape observed in biological
neurons. The addition of this term replaces the strict voltage threshold with a wider zone in which
spikes can be initiated, enabling the modelling of more spike patterns.

The effective threshold of can change due to a period with high or low spike activity. Adding a
function that models the neuron adaptation due to frequency significantly increases the amount of
different spike patterns that are modelled. This adaptive exponential (AdExp) IF model can then
describe most observed neuron behaviour, using only a few more operations than the Izhikevich
model. Because the model is conductance-based its elements can be compared to the original biolo-
gical mechanisms when implemented as electronic circuits.

Neuron implementations of the LIF and AdExp IF models have been compared. A simple LIF im-
plementation [19] consumes the lowest amount of energy per spike of all implementations that are
reviewed. It only needs three control signals, making it easy to bias. However, it uses a larger area
than other neuron implementations.

A more complicated LIF implementation [20] adds filtering to the synapse input, making it more
accurate. This circuit uses less area. An implementation of the same circuit in 65 nm [3] shows that,
although very low area can be achieved, the energy per spike is higher than in other implementa-
tions.

Multiple circuits based on the AdExp IF model [26], [28] use a differential pair integrator to imple-
ment the exponential term of the model. An additional transistors and a capacitor compared to a
simple LIF circuit are added to implement the frequency adaptation. This increases the total area
of some implementations, most of the area is used by the capacitors. However, this enables these
circuits to implement most spike patterns. These implementations are able to achieve a low energy
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consumption. The implementation of an AdExp-based neuron in the same 65 nm process as above
[3] shows that it can achieve a good balance between energy consumption and area.

MOSFETs operating in weak inversion have an exponential relation between the gate voltage and
drain-source current. This can be used to implement the exponential terms of an AdExp IF model.
Operating the neuron circuit in weak inversion allows for a lower supply voltage to be used, reducing
energy consumption. However, care must be taken to reduce sub-threshold leakage, and the circuit
can be more sensitive to mismatch and temperature effects.
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Implementation 3
In this chapter the implementation of the analog computational elements is explained. The main ele-
ments are the presynapse, synapse and neuron. First the general network structure is discussed, then
the circuit level description of the individual elements, and finally the integration of the components
in an SOC.

3.1 Structure

Figure 3.1 shows the structure of the analog network [33]. The network receives input spikes in the
form of digital pulses. These are converted into analog exponentially decaying spikes, in order to
take have a spike that is closer to the biologically inspired models. This is done in the presynapses.
The output of a presynapse is a current. This current is replicated at the input of every synapse
in the same row as the presynapse. The synapse contains a current-steering DAC and the storage
of a weight to set the DAC. The current is put into the DAC, and based on the weight the DAC
outputs between 0 and 100 % of the input current. The output currents of all the synapses in a row
are summed and sent to the input of a neuron. Based on this input current the neuron fires a spike
when a threshold has been reached. This neuron output spike is buffered so it becomes a clean digital
pulse, and can again be used as an input to the network.
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Figure 3.1: Network

3.2 Presynapse

3.2.1 Possible improvements to state-of-the-art

The synapses as described in Section 2.4 use an analog voltage to set the weight that is applied.
The integration current is set directly controlled by the weight. This structure has a disadvantage.
Because the weight is applied on the input side of the synapse circuit, the complete synapse needs
to be replicated for each crossbar connection.

Within the synapse circuit, most of the area is used by the integration capacitor. Putting this capa-
citor at each crossbar connection uses a large amount of area.
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Figure 3.2: Circuit of simple AMPA presynapse

Additionally, these capacitors needs to be charged and discharged for each spike that goes through
that synapse. The charge current of the capacitor is a large part of the power consumption of the
component.

These problems can be solved by applying the weight to the output of the synapse, instead of to
its charge current. The synapse is split into a presynapse and a synapse. The presynapse converts
a short binary input pulse from an input neuron or digital spike generator into an exponentially
decaying analog spike. It uses the structure from Figure 2.6a as its base for this, this operation
corresponds to the behaviour of an AMPA receptor in biological neural systems.

The synapse stores a weight and applies this to the analog spike coming from the presynapse. This
allows to use a single presynapse for an entire row of synapses, instead of replicating the spike
generation circuit in each synapse.

3.2.2 AMPA-based

Two variations of the presynapse have been designed and taped out. The first is a linear-charge-
discharge based synapse, shown in Figure 3.2. This synapse implements the spike conductance
as seen through a simple AMPA receptor model, with an slowed-down, exponential output cur-
rent

A charge current, controlled by 𝑉charge, is integrated on the capacitor 𝐶syn while the input pulse
in active. Due to the constant leakage current controlled by 𝑉leak, 𝐶syn discharges linearly. 𝑀syn
always operates in sub-threshold. Therefore, the linear decrease in the voltage over 𝐶syn will result
in an exponential decrease in the output current. This produces the exponentially decaying analog
current spike.

In contrast to the synapses in Section 2.4, no additional input filter is implemented before the active-
pulse input integration. The adaptive-exponential neuron circuit includes this mechanism already in
the form of the DPI input leakage. Secondary low-pass filtering in the synapse is useful for synapses
that include long-term plasticity and STDP circuits for self-learning behaviour. However, these cir-
cuits are not included in the scope of this implementation.
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Figure 3.3: Circuit of improved presynapse

This circuit is very sensitive to variation. Due to the exponential nature of the sub-threshold opera-
tion of 𝑀syn, a small variation in the voltage over 𝐶syn, due to variations in its capacitance value or
mismatch in the charge current mirror, will produce a much larger variation in the output current.
Additionally, variation in the capacitance and charge current can cause the voltage over 𝐶syn to get
too large, which causes 𝑀syn to operate out of sub-threshold.

3.2.3 Improvements

The second version is a more sophisticated iteration, shown in Figure 3.3. The charge current is still
controlled by 𝑉charge. 𝑀mirror and 𝑀syn form a current mirror together. When the input pulse at 𝑉in
is active, the transmission gate formed by 𝑀gate,N and 𝑀gate,P is switched on and the voltage across
𝐶syn will stabilise to the current mirror voltage. Due to 𝑀en, the output of the presynapse is not yet
enabled at this moment. When 𝑉in goes low, the output of the presynapse is enabled. The initial
output of the presynapse will be equal to the current set by the current mirror. As 𝑀leak discharges
𝐶syn over time, the output current will decrease accordingly.

3.3 Synapse

The synapse consists of four parts: input current generation, weight storage, the DAC and sink-
source selection. The input current for the DAC is generated by𝑀in. This transistor is sized identic-
ally to𝑀out of the presynapse, forming the other half of the current mirror. This current is sent into
a current steering DAC consisting of current splitters[34], and based on [35].
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Figure 3.4: Circuit of the input current generation and the DAC

The DAC is an R-2R style DAC. The circuit is shown in Figure 3.4. The current-steering DAC applies
a factor ranging from 0 to 1 on its input current, attenuating it and sending the selected portion
of the input current to its output. Because this is a current-steering DAC, the outputs of multiple
synapse can easily be summed.

The advantage of this topology is that its area scales linearly with the number of bits in the DAC.
This in contrast to other DAC topologies, where the area often scales exponentially with the number
of bits. The resolution of the DAC is dependant on the leakage and mismatch in the least significant
bit. An additional current splitter can be added for an additional bit, however it might be necessary
to increase the area of all bits to improve leakage and mismatch performance. It was determined
that for this neuromorphic network implementation a 6-bit DAC provides enough resolution, with
additional bits not significant increasing the recognition rate.

For constant biasing of the resistive transistors 𝑀R1, 𝑀R2 and 𝑀R3 across all the current splitters it
is important that 𝑉b is significantly above the source voltage of each 𝑀R2 and 𝑀R3. This is achieved
by copying the input current through a diode-connected transistor. This ensures that the biasing
voltage 𝑉b scales with the voltage drop across the current splitters.

3.4 Neuron

The neuron circuit is shown in Figure 3.5. There are five main parts to the neuron, each of which
corresponds to a biological function in the conductance model. These are the central membrane
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Figure 3.5: Circuit of conductance based neuron

capacitance, leakage, afterhyperpolarisation (AHP), sodium activation and potassium reset.

3.4.1 Membrane capacitance

This capacitor is the heart of the neuron circuit. Spikes from the neuron input are integrated on the
capacitor. Because the spikes are current-controlled, this results in a changing voltage across the
capacitor. This voltage corresponds to the membrane voltage of the neuron model.

The size of the membrane capacitor has a large impact on the rest of the design, since it influences
both the integration rate and the leakage time constant. A size of 100 fF was chosen. This makes
currents in the nanoampere-range possible with spike frequencies in the tens to hundreds of kilo-
hertz.

In principle a capacitance that is as low as possible is desired. As the capacitance becomes lower, the
current that needs to be integrated on it in order to achieve the same effect also becomes lower. If
the currents become too low, they will become too susceptible to noise and interference. Leakage in
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the transistors will also start to become a significant part of the signal currents. These leakages can
vary with multiple orders of magnitude across process corners and temperature. In leaky corners,
the leakage of a 120n/1u transistor can be around 100 pA. To limit the influence of transistor leakage
on the normal circuit operation the signals are kept at least an order of magnitude larger than this,
putting a lower limit on how small themembrane capacitor can be. Another factor is that in a smaller
capacitor, manufacturing variance can have a larger effect on the capacitance value. Variation in the
capacitance value would directly influence the frequency variability of the output spikes.

3.4.2 Activation

The activation corresponds to the changing conductance due to sodium ions in the conductance
model. This section is responsible for the spike generation. It consists of an inverting amplifier and
a positive feedback element.

𝑀N2−5 are operating as a low-leakage inverter. Once the voltage on the membrane node reaches the
threshold voltage of this inverter, its output voltage will go down, but due to the long length of the
inverter this does not happen instantaneously. However, once inverter output voltage is going down,
feedback transistor 𝑀N1 becomes active. This results in a positive feedback loop, where the current
through 𝑀N1 cause 𝑉mem to go up, which results in the output of the inverter going down further,
which increases the amount of current going through the feedback transistor even more. This leads
to a sharp spike at not only the output of the inverter, but also at 𝑉mem itself. Without this feedback
mechanism, 𝑉mem would not change while the output of the circuit spikes.

3.4.3 Reset

Once the output signal is pulled high, the circuit needs to reset to form this into a spike, instead of
just a step function. This is the function of the reset section of the circuit, which implements the
function that corresponds to the changing conductance due to potassium ions in the conductance
model.

The reset mechanism consists of a capacitor, current sources to charge and discharge this capacitor,
a switch to enable the charging of it, and a pull-down transistor connected to 𝑉mem. The main
function of the reset is to pull 𝑉mem down to ground after a spike event has happened. This is done
by increasing the voltage across 𝐶R above the threshold of 𝑀R4.

When a spike occurs and 𝑉mem is set high, 𝑀R1 is switched on. This allows the current source 𝑀R2
to charge 𝐶R with a constant current. Once the voltage over 𝐶R reaches the threshold of 𝑀R4, 𝑉mem
is pulled low and the spike is ended. The amount of charge current thus determines the length of
the spike.

Once the spike has ended in this way 𝑀R1 is switched off. Since 𝐶R is no longer being charged, it is
discharged with a constant current by𝑀R3. This discharge current is always on, but is much smaller
than the charge current. When the voltage over 𝐶R goes below the threshold of 𝑀R4 𝑉mem is no
longer pulled to ground. It can then start integrating spikes again. The period that 𝑉mem is pulled
down is the refractory period. During this period no spikes can be generated. The length of the
refractory period is controlled by the amount of discharge current.
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3.4.4 Leakage

(Intentional) leakage is implemented in two places. First there is a differential-pair integrator (DPI)
filter on the input. This differential pair implements an exponential filter based on the difference
between the external parameter 𝑉thr and 𝑉mem. The smaller the difference, the more input current
is filtered out. This implements an exponential behaviour where a large spike is needed to put the
membrane over its threshold. This dynamic behaviour is observed from biological synapse connec-
tions.

Secondly, a leakage current is directly subtracted from themembrane node. This is a constant current
that can be set as one of the parameters to control the neuron behaviour.

3.4.5 Afterhyperpolarisation

Afterhyperpolarisation (AHP) is a phase after the spike has occurred. In the context of this work
AHP refers to the slow afterhyperpolarisation. This is a mechanism that changes the input conduct-
ance based on previous spike activity. If a period of high spike activity has occurred, the AHP will
make it more difficult for a new spike to be generated. It does this by filtering out part of the input
current.

The AHP works in a similar fashion to the reset circuit. When an output spike is generated, 𝑀A1
is switched on and capacitor 𝐶AHP is charged a bit by a constant current from 𝑀A2. If no further
activity occurs 𝐶R is discharged through its leakage current from 𝑀A6.

The DPI filter in the charge current implements a logarithmic dynamic in the activation of the
AHP, making it so that exponentially more spike activity is needed to increase input current fil-
tering.

This mechanism is important for the self-synchronisation of multiple neurons in a network.

3.5 Biasing

The presynapse and neuron use analog control currents to adjust their circuit parameters. These
are supplied by current sources operated as a distributed simple current mirror. A reference control
current is supplied through a diode-connected mosfet, shown in Figure 3.6. The resulting gate/drain
voltage is distributed as a biasing voltage to identically sized mosfets in the local circuits. This is
implemented for both sourcing and sinking control currents.

Faculty of Electrical Engineering, Mathematics and Computer Science

𝐼bias

𝑉bias

(a) NMOS

Faculty of Electrical Engineering, Mathematics and Computer Science

𝑉bias

𝐼bias
(b) PMOS

Figure 3.6: Biasing circuits
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The biasing diodes and corresponding connected current sources are sized to have a long channel
but to have minimum widths. A gate that is as large as possible is desirable to negate the effects of
manufacturing variability. However, a wide gate would result in a very low overdrive voltage. This
due to the low currents used for most control currents, in the range of 0,5 nA to 50 nA.

The biasing could be improved by using current-distribution with a many-branched mirror instead
of distributing the diode voltage. This was not done due to routing constraints. Designing an archi-
tecture for biasing generation and distribution is outside the core scope of this work.

3.6 Layout

3.6.1 Floorplan

The presynapse, synapse and neuron are designed to all exactly abut. The synapses are placed in
a rectangular grid. A presynapse is placed adjacent to each row and a neuron at the end of each
column. Half of the rows, in an alternating pattern, is mirrored in the vertical dimension. This
allows the NMOS and PMOS sections of the presynapses and synapses to abut cleanly. This layout
is shown in Figure 3.7.

Figure 3.7: Layout of a presynapse, synapse and neuron in an array
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Figure 3.8: SOC layout

Each core element is surrounded by a guardring. The layout of the elements is such that the PMOS
area of one abuts with the PMOS area of the next. This results in a continuous NWell between them,
which removes the need for additional space in between elements. The PMOS and NMOS areas are
separated by empty space to avoid parasitic effects due to the edge of the NWell.

Spikes are injected in the network at the left side from a digital buffer into the presynapse. The
spike from the presynapse output is distributed along the entire row of synapses next to it. The
spike is distributed on the M6 layer, which is horizontal and above the routing layers of the synapse.
The output spikes from all synapses in a column are connected to a vertical M5 trace running the
entire height of the array. It connects to the neuron on the bottom of the array, where the spikes are
integrated. Output spikes from the neuron are routed from the bottom of the neuron to the digital
domain where they are captured.

3.6.2 SOC integration

The neuromorphic circuits are assembled in four test arrays on a chip, see Figure 3.8. In the center
of the chip is a digital controller. A central bias block distributes bias currents to the neuromorphic
blocks. Each block has its own power domain.

Array 1 is an isolated block which consists of 4 presynapses, 4 synapses and 1 neuron. The input
and output signals are directly connected to the chip’s pads, isolated from the rest of the chip. This
allows for analog characterisation of the components without going through the digital controller.
The power consumption and timing of the spiking output can be measured.

The input and output signals of the other arrays are controlled through the digital controller. This
controller block generates spikes signals for the circuits from an external spike interface and cap-
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tures the output spikes that are generated by the neurons. The controller also sets the weights of
the synapses in the arrays through a serial interface. It functions as an interface to an external
microcontroller or FPGA.

Array 3 has the same structure as array 1, but is not isolated and interfaces with the digital controller
instead. This array can be used to verify the basic spike generation, spike capture and weight set-
ting functionality of the controller, as well as other interactions between the analog neuromorphic
circuits and the digital circuits.

Arrays 2 and 4 are larger neuromorphic arrays. Array 2 consists of a neural network matrix with 26
presynapses, 26 neurons and 676 synapses. This array can be used to characterise the variability of
synapses and neurons in an array. It can also be used to test small-scale, single-layer inference.

The last array consists of two networks with 8 presynapses, 8 neurons and 64 synapses connected
after each other. This can be used to test a two-layer network. If both blocks are biased identically,
a feedback network into the original layer can be simulated. Otherwise, the effects of a hidden
layer can be observed in this network, an essential element in improving the accuracy of neural
networks.
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Simulation & characterisation 4
The neuron, presynapse and synapse are simulated in an analog simulator. Their functionality is
verified in different process corners. Key parameters are characterised with Mont-Carlo simula-
tions.

4.1 Presynapse

4.1.1 Functionality

4.1.1.1 Basic presynapse

This section shows the simulated results of the implementation of the circuit of Figure 3.2. Figure 4.1
shows the input voltage pulse signal and output current of the presynapse. The voltage at 𝑉syn is
shown in Figure 4.2.

𝑉GS,syn of the output transistor𝑀syn is the voltage over the capacitor 𝐶syn and is 0,8V−𝑉syn. 𝑉syn is
kept above 0,4 V, ensuring that 𝑉GS,syn is below the (PMOS) threshold voltage of (also) 0,4 V. There-
fore 𝑀syns is always in weak inversion and the exponential relation between 𝑉syn and the output
current holds. It can be seen that the discharge of 𝑉syn is linear until when 𝑉GS,syn becomes less
than approximately 70mV. This is because the discharge transistor 𝑀leak is no longer in saturation

at that point and the ‘(1 − exp (−𝑉DS𝑉th ))’ portion of Equation (2.29), in which 𝑉GS,syn is 𝑉DS, then
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Figure 4.1: Output current spike and input pulse signal of the basic presynapse
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Figure 4.2: Gate voltage of the output of the basic presynapse
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Figure 4.3: Closeup of input pulse signal and charging of output gate voltage of the basic presynapse

significantly lessens the expected current. However, because the output current is already so low at
this point due to the exponential relationship this soft bend of 𝑉syn is not noticeable in practice in
the output current.

Figure 4.3 shows a closeup of Figure 4.2 during an input pulse. The voltage over 𝐶syn increases while
the input pulse is high. The amount of change in 𝑉syn is dependent on the pulse width of the input
pulse.

The average power consumption was determined while the presynapse has no input activity (static
power) and for a spike rate of 100 kHz. The difference between the active and static power is used

36



Table 4.1: Basic presynape power specifications

corner average power [nW] static power [nW] energy/spike [fJ] charge/spike [fC]

nom 6,6948 4,2423 24,53 45,38
ss 1,6687 0,9169 7,518 2,841
ff 58,4520 21,6621 367,90 895,65
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Figure 4.4: Output current spike and input pulse signal of the improved presynapse

to compute the energy per spike. These are reported in Table 4.1 for the typical process corner as
well as the extreme fast and slow corners.

The other important metric for the presynapse is the charge per spike that is received by the synapse.
The amount of charge represents the weight of a spike. It is influenced by the peak amplitude of
the spike, the decay time, and the exact shape of the exponential decay. There is a large amount of
variation in the charge per spike for different process corners. The main objective of the improved
presynapse design is to reduce this variation in the amount of charge per spike.

4.1.1.2 Improved presynapse

Figures 4.4 and 4.5 show the same signals as in Figures 4.1 and 4.2 for the improved presynapse. The
discharge starts when the input pulse is zero and happens in the same way as in the basic presynapse
described before.

In contrast to the basic presynapse, the output current is not active during the charging phase, when
the input pulse is high. Instead, the output spike starts on the falling edge of the input pulse. This
makes the amount of charge independant of the input pulse width.

Figure 4.6 shows a closeup of the input pulse signal and the start of the output current spike. Similarly
to the presynapse charging in Figure 4.3, 𝑉syn starts by decreasing linearly due to charging of 𝐶syn
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Figure 4.5: Gate voltage of the output of the improved presynapse
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Figure 4.6: Closeup of input pulse signal and start of output current spike of the improved presynapse

with the charge current 𝐼charge. Due to the decrease of the gate voltage, 𝑀mir starts to conducting
and equilibrium is reached at the diode voltage of 𝑀mir corresponding to the charge current.

This can be seen in Figure 4.6, where 𝑉syn stabilises after about 80 ns. The voltage to which 𝐶syn is
charged, determining the peak amplitude of the output spike, is therefore no longer dependant on
the duration of the input pulse, as long as it is longer than a minimum required duration.

Table 4.2 lists the power consumption for a spike rate of 100 kHz. Both the static and average power
are higher than those of the basic presynapse. The energy consumed per spike is higher as well,
except for the fast process corner. However, the amount of charge in each output spike is much
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Table 4.2: Improved presynape power specifications

corner average power [nW] static power [nW] energy/spike [fJ] charge/spike [fC]

nom 10,7336 6,3692 43,64 136,25
ss 5,7534 1,2430 45,10 164,94
ff 42,2512 38,1833 40,68 108,17
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Figure 4.7: Basic presynapse output current

more consistent.

4.1.2 Process variation

The output current for the typical, slow-slow and fast-fast corners of the basic presynapse is shown
in Figure 4.7. Both the amplitude and the time constant of the exponential decay vary with corner.
There is a very large difference in spike amplitude visible between the process corners. This results in
the wide variation in charge per spike in Table 4.1. The output spike is so small in slow corner that it
is barely visible in Figure 4.7a. Figure 4.7b shows the spike current in logarithmic scale instead.

The same is shown in Figure 4.8 for the improved presynapse. It is visually obvious that the variab-
ility in output current is much smaller than in Figure 4.7. There is some variation in peak current,
but the total amount of charge per spike—the area under the curve—is largely the same.

A Monte-Carlo simulation was run to analyse process variation using a 500 point Low-Discrepancy
Sequence. The statistics are in Table 4.3. The exponential variability in the basic presynapse circuit
results in a high variability. The improvements in the circuit bring the process variability to less than
5%. Only the relative difference in mean value between the two circuits is important. The absolute
amount of current can be scaled by adjusting the 𝐼charge parameter or by changing the mirror ratio
between the presynapse output and synapse input.
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Figure 4.8: Improved presynapse output current

Table 4.3: Presynape spike charge

Presynapse mean [fC] min [fC] max [fC] std. dev. [fC] variability [%]

Basic 60,64 8,75 590,28 53,54 88,29
Improved 136,24 114,53 157,37 6,433 4,72

4.1.3 Parameters

The presynapse is controlled by two bias currents. These are 𝐼charge, the amount of current with
which the presynapse is charged, determining the amplitude of the output spike, and 𝐼leak, the leak-
age current at the output gate, determining the decay time of the output spike.

Increasing 𝐼leak shortens the duration of the current spike. The effect of increasing 𝐼charge, increasing
the current spike amplitude, is shown at the neuron in Figure 4.13.

4.2 Synapse

4.2.1 Linearity

The linearity of the synapse DAC is characterised by sinking a constant current of 160 nA in its input
and measuring the output current of the synapse for each DAC code. See Figure 4.9.

INL and DNL are shown in Figures 4.10 and 4.11. DNL is plotted as steps away from code 0 in both
directions. INL is with reference to a line that goes through 0 and is fitted to the values at weights
-31 and 31. For the nominal corner this comes to a step size of 1,82 nA/bit.
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Figure 4.9: Synapse output current for an input current of 80 nA
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Figure 4.10: Synapse INL

4.2.2 Process variation

In the nominal and slow corners the INL and DNL are within 1 LSB. However, the fast corner
shows a larger deviation at lower weights. This is due to the increased leakage in the PMOS R-2R
branches. When only the branches corresponding to lower weights are connected to the output, the
(increased) leakage current of those branches becomes significant compared to the intended output
current.

Table 4.4 shows a statistical analysis of the process variation for various weights. 1 LSB corresponds
to a mean current of 1,82 nA. The standard deviation of the expected output current of almost all
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Figure 4.11: Synapse DNL

Table 4.4: Synapse output current

weight mean [nA] min [nA] max [nA] std. dev. [nA] variability [%]

3 6,535 5,165 8,647 0,594 9,09
15 27,51 24,35 30,73 1,077 3,91
31 58,28 50,56 61,56 1,847 3,17

weights in Table 4.4 is below 1 LSB, only at the highest weight of 31 it is slightly above it.

4.3 Neuron

4.3.1 Functionality

Figure 4.12 shows the accumulation of spike charge on the neuron’s membrane capacitor. When
the threshold at 0,4 V is reached a spike is generated, causing the membrane potential to go to the
supply voltage and then reset to 0. After a refractory period during which the voltage is kept at or
near 0, the accumulation of incoming spikes starts again.

It can be seen that a spike causes a larger increase in membrane voltage when it is closer to 0, and
a smaller increase when it is close to the threshold. This is the effect of the exponential filter of the
input DPI circuit.

The output frequency is characterised for multiple synapse input spike rates in Table 4.5. Four syn-
apses are connected to the neuron. A periodic input spike current is sent to the synapses. The
weights are set such that the nominal output rate of the neuron is approximately equal to the input
rate of the individual synapses, so four input spikes result in one output spike. A Monte Carlo simu-
lation shows the effect of process variation on the output frequency. An average variability of 19,5 %
is achieved. This falls in between the variability that was achieved by comparable implementations
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Figure 4.12: Accumulating spike charge on the neuron membrane node

Table 4.5: Neuron output frequency

input freq. [kHz] mean [kHz] std. dev. [kHz] variability [%]

20 19,18 2,53 13,2
50 47,01 6,72 14,3

100 83,59 21,03 25,2
150 132,00 27,61 20,9
200 162,30 39,12 24,1

as discussed in Table 2.3.

4.3.2 Parameters

The amount of accumulation depends on the amount of charge in a spike, representing it’s weight.
Figure 4.13 shows the integration of spikes with increasing amplitudes on the neuron membrane.
A higher amount of charge results in a smaller increase and a longer integration period in the
neuron.

The pulse width of the output spike of the neuron can be increased by decreasing the biasing current
𝐼pulsew. The effect of changing 𝐼pulsew is graphed in Figure 4.14. This inverse relations limits the
useful range of the pulse width adjustment: when 𝐼pulsew is too small the sensitivity of the pulse
width becomes too high, making it difficult to adjust it accurately. If a very small 𝐼pulsew is desired,
the large 𝐼pulsew that necessary increases the amount of power that is consumed.

The refractory period inhibits the rise of the membrane voltage. Figure 4.15 shows the effect of 𝐼rfr
on the spike integration. Pike integration is stopped for multiple microseconds before the membrane
voltage is able to rise again. A higher 𝐼rfr decreases the refractory period.

Increasing 𝐼ahp makes the effect of an output spike on the afterhyperpolarisation current larger,
shown in Figure 4.16. When 𝐼ahp is small, a period of activity does not result in an inhibition of activ-
ity. Increasing 𝐼ahp reduces the time until the inhibition due to the AHP current happens.
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Figure 4.13: Effect of 𝐼syn_charge on accumulation period

Figure 4.14: Effect of 𝐼pulsew on output pulse width
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Figure 4.15: Effect of 𝐼rfr on refraction period

Figure 4.16: Effect of 𝐼ahp on afterhyperpolarisation period

4.3.3 Power

The power usage of the neurons has a static component, due to biasing and leakage currents, and
a dynamic component, dependent on the spike rate. The dynamic power usage is characterised as
the amount of energy per input spike for the synapses, and energy per output spike for the neurons.
The energy per spike can be calculated as

𝐸spike =
∫𝑡1𝑡0 𝑉DD ⋅ 𝐼 (𝑡) − 𝑃static d𝑡

𝑓spike ⋅ (𝑡1 − 𝑡0)
(4.1)

where 𝑉DD is the supply voltage and 𝐼 (𝑡) is the current through the supply voltage source.

The energy per spike was determined at different spike rates, shown in Table 4.6. The setup for
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Table 4.6: Energy per output spike

input freq. [kHz] mean [fJ] std. dev. [fJ] variability [%]

20 82,39 49,03 59,5
50 266,7 61,50 23,1

100 354,1 95,27 26,9
150 341,8 70,80 20,7
200 344,2 45,87 13,3

this measurement is equal to that as described in Section 4.3.1. The average energy per spike is
nearly constant at higher input spike rates. At lower input rates, the energy per spike is lower and
variability is higher.

4.4 Discussion

The presynapse is able to produce an exponentially decaying current spike from an input pulse. The
basic presynapse design is not accurate across process variation.

The improved presynapse design shows that it performs the same function, while greatly reducing
the variability due to process variation. This is at the expense of some increase in energy consump-
tion though.

The synapse scales its input current from the presynapse proportional to the set weight. The linearity
of the DAC in the synapse is within 1 LSB for the typical and slow process corners. For the fast corner
the linearity is worse due to increased leakage, which becomes significant compared to the current
corresponding to 1 LSB. This could be improved by increasing the transistor lengths in the R-2R
DAC structure.

The neuron achieves an energy per spike consumption of less than 0,4 pJ. This is better than the
comparable implementations in Table 2.3.

Bias currents are able to adjust the time constants and the amount of frequency adaptation of the
neuron. The refractory period and the output spike width are inversely proportional to their control
currents. This limits the usable range of these parameters since relatively high currents are needed
to obtain short times, and and precision is lost at long time settings due to the very small control
currents and the large sensitivity to small changes in the current. A possible improvement to the
neuron would be to extend the usable adjustable range of these parameters or to make them linearly
proportional to the control currents.
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Measurements 5
The taped-out SoC as described in Section 3.6.2 wasmeasured in a lab setting. The spiking functional-
ity was verified and the power consumption of the neuromorphic components was measured.

5.1 Setup & equipment

The measurement setup consists of an FPGA board and a custommeasurement board, see the schem-
atic block diagram in Figure 5.1. The FPGA board is a Zybo Zynq-7010. This FPGA is used to inter-
face with the digital signals from the neuromorphic SoC, such as serial communication and spike
generation.

The measurement board is connected to the Pmod connectors of the Zybo board for the digital
communication. The measurement board contains level shifters for the digital signals to the FPGA,
voltage regulators for the supply power of the SoC and current sources to generate the control cur-
rents of the analog circuits in the SoC. The measurement board contains the device under test (DUT)
in a central test socket.

A photo of the boards of the measurement setup is shown in Figure 5.2.

Themeasurement board is powered by a Tektronix PS503A power supply. Measurements were taken
with Agilent 34410A and Keysight 34461A 6,5 digit multimeters and an Agilent DSO6104A oscillo-
scope. External input spikes are generated using a Tektronix PG502 pulse generator. A Stanford
Research Systems CG635 clock generator is used to generate a system clock signal for the digital
controller.

PC Zybo DUT Analog
controls

Oscillo-
scope

Power
supply

Clock
generator

measurement board

Figure 5.1: Schematic of measurement setup
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Figure 5.2: Test setup with measurement board (right), FPGA board (left) and DUT IC in socket

5.2 Functional verification

The generated output spikes from the neuron are observed in the SOC. Figure 5.3 shows the output
spikes (channel 1, yellow) of a neuron in reaction to a periodic pulse input (channel 2, green) of
100 kHz. The weights in the network are configured in such a way that output spikes are generated
at that same rate.

The integrating behaviour of the neuron is shown in Figure 5.4. A 100 khz periodic input results in
an output spike signal of approximately 15 kHz during this test. When there is no input activity no
output spikes are produced.

Figure 5.3: Periodic spike signals of 100 kHz
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Figure 5.4: Output spikes resulting from the integration of a 100 kHz input spike train

5.3 Power

The power consumption of the neuromorphic network is measured. Power measurements of dif-
ferent network configurations can then used to calculate the energy consumption of the individual
elements of the network.

The power measurements are performed on a network of 26 input presynapses, 676 synapses and 26
output neurons. The measurements are taken with a periodic input of 80 kHz to all 26 inputs. The
dynamic power is measured, which is the average additional power that is consumed during spike
activity minus the static power of the network at rest.

Table 5.1: Power measurements

Active elements Weight setting Leakage setting Supply current [uA] Dynamic power [uW]

Presynapses 0 N/A 40,97 32,78
Presynapses, synapses, neurons on low 49,66 39,73
Presynapses, synapses on high 47,42 37,94

Three different measurements are necessary, shown in Table 5.1. For the first measurement all
weights are set to 0. The spike generation in the presynapses is active, but the synapses produce no
output spikes and there is no activity in the output neurons. The power that is measured in this con-
figuration includes the distribution of the spikes to the synapses and the supply current consumed
to generate a spike at the synapse input. Therefore the power and energy per element are reported
per synapse.

For the second measurement the weights of the synapses are turned on. In this configuration the
power consumption of all elements in the network is measured.

To determine the power consumption of the neurons a measurement is taken in which the neurons
are disabled, which can then be subtracted from the previousmeasurement. The neurons are disabled
by setting the leakage current of the neuron to a current that is higher than the (average) input
current to the neuron, such that no integration and resulting spike generation occurs.

From these power measurements the power consumption of the presynapses, synapses and neurons
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is calculated, see Table 5.2. For the power consumption of the presynapses the power measured in
the first configuration is taken. The power consumption of the synapses is calculated by subtracting
the first power measurement from the third. By subtracting the third power measurement from the
second the power consumption of the neurons is obtained.

Table 5.2: Calculated energy consumption

Element Dynamic power [uW] Power per element [nW] Energy per spike [pJ]

Presynapses¹ 32,78 48,49 0,61
Synapses 5,16 7,63 0,10
Neurons 1,79 68,81 0,86

¹ Includes spike current distribution at synapse inputs. Presynapse energy is reported per connected synapse

The energy consumption per synapse is the sum of the energy required to generate an analog spike
at the synapse input and the energy consumption of the synapse itself. This comes to 0,70 pJ per
synaptic event.

5.4 Conclusion

The network is able to apply weights to incoming spikes, sum them to a neuron input and integrate
the spikes in order to generate output spikes in the neuron.

The measured energy consumption of the presynapse and synapses is higher than is reported in
Table 4.1, but this is due to the inclusion of the spike distribution to the synapse inputs in the meas-
urement. The energy consumption of the spike generation at a synapse can be approximated as the
charge per spike times the supply voltage. The energy per spike for the nominal process corner in
Table 4.1 that can be directly compared to the measured value is then:

𝐸spike =
𝐸presynapse

26 + 𝑄spike𝑉DD (5.1)

For the nominal process corner in Table 4.1 this comes to 𝐸spike = 24,53 fJ
26 + 45,38 fC ⋅ 0,8V = 37,3 fJ

per spike per synapse, for the fast process corner 𝐸spike = 367,90 fJ
26 + 895,65 fC ⋅ 0,8V = 0,73 pJ. The

measured energy per synaptic event (0,61 pJ) falls within these simulated corners.

The energy consumed to generate an output spike in the neuron is 2,5 times larger than predicted
in simulation (Table 4.6). This might be due to unmodelled parasitics in the simulation, especially
parasitic leakage and capacitive loading of critical nodes. Based on the power consumption of the
synapses it is possible that the measured die is produced at a faster than nominal process corner.
This would also increase the power consumption in the neuron and would increase parasitic leak-
age.
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Conclusion 6
6.1 Conclusion

In this thesis neuron and synapse circuits have been implemented in 28 nm CMOS technology.
A novel distributed synapse structure was developed. The components were integrated in neur-
omorphic arrays in an SOC, which was successfully taped out.

Different neuron models in literature were compared. The adaptive exponential integrate-and-fire
model is a good compromise between modelling accuracy, biological plausibility and ease of circuit
implementation. The exponential terms of the model map well to the exponential relation of sub-
threshold MOSFET transistors.

Table 6.1 shows a comparison of a selection of the implementations in Table 2.3 to this work. The
neuron that was developed shows a lower energy consumption per spike than previous work. Accel-
erating the spike frequency, although at the cost of direct compatibility to biological systems, enables
this implementation to have much smaller capacitance and area than [28], an implementation that
has a comparable supply voltage and an energy consumption on the same order of magnitude.

Table 6.1: Comparison of adaptive exponential integrate-and-fire neuron circuit implementations

[26] [28] [3] This work

Technology 28 nm FD-SOI 22 nm FD-SOI 65 nm 28 nm
Supply voltage 1,0 V 0,8 V 1,0 V 0,8 V
Energy per spike 50 pJ 990 fJ 730 fJ 354 fJ
Active area 20 µm² 0,18 µm² 26,6 µm²
Capacitance 900 fF 4,3 pF 345 fF 200 fF
Capacitor area 50 µm² 1799 µm² 25,8 µm² 43,4 µm²
Typical spike frequency 100Hz 100Hz 1 kHz 100 kHz
Frequency variability 5,86 % 56,55 % 25,2 %

A synapse design was developed that splits a previous synapse circuit into a distributed presynapse-
synapse structure. Improvements were made to the presynapse circuit to significantly decrease
process variability. The distributed synaptic structure and the design of the presynapse have
been used in the patent application ‘Distributed multi-component synaptic computational structure’
[33].

6.2 Future work

The neuron design presented in this thesis can be further improved. Although it is competitive in
terms of area and energy usage per spike, other state of the art has less spike frequency variab-
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ility [26]. It might possible to improve performance in this regard by increasing the size of tran-
sistors in the input filter and feedback circuits, as well as those controlling the leakage and AHP
currents.

The DAC used in the synapse has demonstrated a high non-linearity at low weights in process
corners with high leakage. Increasing the transistor length of critical components in the R-2R struc-
ture would likely improve linearity, but will impact the area that is used for the synapse.

The presynapse–synapse structure distributes the output spike from the presynapse to the synapses
using a voltage signal. This method leads to differences between synapses, depending on their dis-
tance to the presynapse, because the capacitive load on the distribution track increases along the
row. The voltage-based distribution is also sensitive to crosstalk from neighbouring signals. The
structure could be improved to use current-mode distribution. A challenge in this approach is that
an individual routing track is needed for every synapse in a row, instead of the shared track in the
current design of the neuromorphic network. This limits the amount of synapses in a row to the
usable routing area in a row.
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