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Online Policy Iterations for Optimal Control of Input-Saturated Systems

Simone Baldi1, Giorgio Valmorbida2, Antonis Papachristodoulou2 and Elias B. Kosmatopoulos3

Abstract— This work proposes an online policy iteration
procedure for the synthesis of sub-optimal control laws for
uncertain Linear Time Invariant (LTI) Asymptotically Null-
Controllable with Bounded Inputs (ANCBI) systems. The pro-
posed policy iteration method relies on: a policy evaluation
step with a piecewise quadratic Lyapunov function in both
the state and the deadzone functions of the input signals; a
policy improvement step which guarantees at the same time
close to optimality (exploitation) and persistence of excitation
(exploration). The proposed approach guarantees convergence
of the trajectory to a neighborhood around the origin. Besides,
the trajectories can be made arbitrarily close to the optimal
one provided that the rate at which the the value function and
the control policy are updated is fast enough. The solution to
the inequalities required to hold at each policy evaluation step
can be efficiently implemented with semidefinite programming
(SDP) solvers. A numerical example illustrates the results.

I. I NTRODUCTION

This work proposes an online policy iteration procedure
for the synthesis of sub-optimal and practically stabilizing
control policies for uncertain Linear Time Invariant (LTI)
Asymptotically Null-Controllable with Bounded Inputs (AN-
CBI) systems. This class includes systems with eigenvalues
on the imaginary axis (possibly repeated) but no pole with
positive real part. The proposed policy iteration is appropri-
ately modified so as to take into account the input saturation
function: in particular, the policy evaluation step exploits a
class of piecewise quadratic Lyapunov functions which is
non-differentiable, but continuous, and depending both on
the state and the deadzone function. The policy improvement
step is based on a piecewise control policy: the solution of
the policy improvement step requires the evaluation of the
estimate of the derivative of the Lyapunov function under
different candidate control laws, and the resulting mechanism
guarantees at the same time close to optimality (exploitation)
and persistence of excitation (exploration). The proposed
approach guarantees convergence of the trajectory to a neigh-
borhood of the origin. The solution to the inequalities which
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are required to hold at each step of the policy evaluation
is obtained with the solution to semidefinite programmes
(SDP).

Synthesis of globally stabilizing control laws for linear
saturating systems is a nontrivial problem: even for Linear
Time Invariant (LTI) Asymptotically Null-controllable with
Bounded Inputs (ANCBI) systems it has been demonstrated
with simple examples, that such a class can not, in general, be
stabilized by static linear feedback [1]. Different methods to
compute globally asymptotically stabilizing nonlinear control
laws for ANCBI systems have been proposed [2], [3]. While
global stability may not be achieved with linear control
laws, strategies for semi-global (exponential) stabilization
were presented in [4] (see also the semi-global results for
exponentially unstable plants in [5]). However, semi-global
results rely on low-gain strategies that may lead to poor
performance (in terms of closed-loop convergence rate). In
order to obtain faster transients, scheduled [6] and nonlinear
control laws [7] have also been proposed in the context of
semi-global stabilization. However optimality with respect
to criteria other than the convergence rate, has not been
explored. In the aforementioned approaches the plant is
assumed to be known and the control synthesis is performed
offline. An online extension via predictive techniques is
considered in [8].

Online techniques for adaptive control of uncertain input-
saturated systems have mainly focused on the problem of
guaranteeing global stability [9], [10] without optimality
considerations: these schemes guarantee global stability via
a continuous-time direct adaptive controller. More recently,
approaches to optimal control of input-saturated systems
have been developed, with the aim of approximating the
optimal solution to the Hamilton-Jacobi-Bellman equation.
Since some knowledge of the dynamics is required to imple-
ment these techniques, online estimation must be employed.
Interesting approaches, which do not take input-saturation
into account, are [11], [12], where actor-critic structures
are combined with a third network meant to approximate
the unknown system dynamics. Actor-critic structures are
updated in such a way to approximate the optimal control
solution and the optimal value function respectively. For
constrained-input systems some offline [13] and online [14],
[15], [16] actor-critic methods based on neural networks
have been proposed, where however, the input saturation
is assumed to be a sigmoidal continuous and differentiable
function.

The paper is organized as follows: Section II presents the
problem formulation; Section III recalls an offline policy
iteration approach for input saturated systems; Section IV
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presents the estimation scheme for the uncertain system
dynamics; Section V contains the online policy iteration
approach for input-saturated systems, and Section VI the
numerical implementation of the policy evaluation step.
The numerical example in Section VII demonstrates the
effectiveness of the proposed approach.

II. PROBLEM FORMULATION

We study the class of uncertain LTI Asymptotically Null-
Controllable with Bounded Inputs (ANCBI) systems in the
presence of input saturation, which consists of the set of dy-
namic linear systems without exponentially unstable modes.
Consider the input-saturated system

ẋ= A(Θ∗)x+B(Θ∗)sat(u(x)) , x(0) = x0, (1)

with x ∈ R
n, u ∈ R

m, A(Θ∗) ∈ R
n×n and B(Θ∗) ∈ R

n×m,
max(ℜ(λ (A)))≤ 0. BothA andB are assumed to be matrices
with unknown entries represented byΘ∗. The functionsat :
R

m→U ⊂ R
m is a vector saturation function, with entries

satisfying

(sat(u(x))) j =







u j , if u j > u j

u j , if u j ≤ u j ≤ u j

u j , if u j > u j

with u j andu j the upper and lower bound of thej-th input,
respectively. The set of admissible inputs is defined as

U :=
{

u∈ R
m|u j ≤ u j ≤ u j , j = 1, . . . ,m

}

.

In the following, for convenience of notation, we introduce
the dead-zone functiondz(u(x)) := u(x)− sat(u(x)), and
rewrite (1) as

ẋ=A(Θ∗)x+B(Θ∗)u(x)−B(Θ∗)dz(u(x)) , x(0) = x0. (2)

We also introduce a cost function for the system (2) in the
form

J =
∫ ∞

0
L(x,u)dt =

∫ ∞

0

[

x′Qx+(sat(u))′Rsat(u)
]

dt, (3)

where the prime denotes transpose. To address the parametric
uncertainty in the system, we will develop an adaptive control
policy, combined with a parametric adaptation law taking the
following form

˙̂Θ(t) = p(Θ̂(t),Ξ(t)), Θ̂(0) = Θ0 (4a)

Ξ̇(t) = g(Ξ(t),x(t),u(t)), ξ (0) = ξ0 (4b)

V(t) = s(Θ̂(t),u(t)), (4c)

u+(t) = h(Θ̂(t),V(t)), (4d)

where Θ̂ are the estimates ofΘ∗, Ξ are auxiliary variables
used for estimation,V indicates the value function, and
u+(t) indicates the feedback law to be used in the time
interval [t+kδ t, t+(k+1)δ t], whereδ t is the sampling time.
The mappings,p, g, s, h will be designed to guarantee the
convergence of the state in a neighborhood of the origin and
to optimize the cost (3).

Let us introduce the definitions below:

Definition 1: [Practical stability [17]] Given a nonlinear
system ˙x= f (x), with f (0) = 0, the origin of the system is
practically stableif, for given (c, c̄) with 0 < c < c̄, every
solutionx(t,x0) of the system satisfies

‖x0‖< c⇒‖x(t,x0)‖< c̄, t ≥ t0

for somet0 ∈ R+.
Definition 2: [Asymptotic minimization] Given a function

J(ϑ) and
ϑ ∗ = argmin

ϑ
J(ϑ)

the sequence {ϑk} asymptotically minimizes J if
limk→∞ ϑk = ϑ ∗.

The objective of the control problem can be stated as:
Problem 1: Design the functionsp(·, ·), g(·, ·, ·), s(·, ·) and

h(·, ·) so that the closed-loop (2)-(4) guarantees the practical
stability of the origin of (2) and the asymptotic minimization
of the cost (3).

In the following, multidimensional vectors are intended as
column vectors, while the gradient of a scalar quantity with
respect to a vector is intended as a row vector. We introduce
the sector condition pertaining to the deadzone presented in
[18]. The deadzone functiondz(u(x)) satisfies the following
sector inequality

dz′(u(x))Π1 (u(x)−dz(u(x)))≥ 0, ∀ x∈ R
n. (5)

implying that the deadzone function is contained in the sector
[0, I ]. Furthermore, defineφ(x) := d dz(u(x))

dt satisfying

φ(x) =
{

0 if dz(u(x)) = 0
u̇(x) if dz(u(x)) 6= 0,

(6)

which can be expressed by the two equalities

φ ′(x)Π2 (u̇(x)−φ(x)) = 0 (7)

dz′ (u(x))Π3 (u̇(x)−φ(x)) = 0, (8)

whereΠ1,Π2,Π3 ∈ R
m×m
diag are diagonal matrices, andΠ1 is

positive definite. Due to the monotonicity of the saturation
and the deadzone functions, we also have that the following
inequality holds for two arbitrary control policiesu(x) and
v(x)

(dz(u(x))−dz(v(x)))′ (sat(u(x))−sat(v(x)))> 0. (9)

We adopt the well-known result from optimal control theory
[19, Chap.3], that states that the optimal control policyuo(x)
that minimizes (3) satisfies

uo = arg min
u(·)∈U

{

d Vo

dx
(Ax+Bu)+L(x,u)

}

, (10)

whereVo(x) is the value function (or cost-to-go function)
that solves the Hamilton-Jacobi-Bellman (HJB) equation

min
u(·)∈U

{

d Vo

dx
(Ax+Bu)+L(x,u)

}

= 0. (11)

In order to have a well-posed problem we make the
following assumption

Assumption 1:There exists a globally stabilizing control
policy ū for system (1).



According to standard converse-Lyapunov results [20], As-
sumption 1 implies the existence of a continuous, posi-
tive definite, radially unbounded control Lyapunov function
(CLF) V̄ : Rn→ R+ which satisfies

min
u(·)∈U

{

d V̄
dx

(Ax+Bu)

}

< 0, ∀x 6= 0.

The following lemma relates the CLF to the uncontrollable
region of system (1):

Lemma 1: Assumption 1 implies that there exist positive
constantsεi , i = 1,2,3 such that the following condition
holds, for all x∈ R

n,
∣

∣

∣

∣

d V̄
dx

(x)B

∣

∣

∣

∣

< ε1 and |x|> ε3⇒
d V̄
dx

(x)Ax<−ε2. (12)

Let us define theuncontrollable regionof (1) to be the
subsetR defined according to

R =

{

x∈ R
n : |x|> ε3 and

∣

∣

∣

∣

∂V̄
∂x

(x)B

∣

∣

∣

∣

< ε1

}

.

Note that condition (12) implies that forx∈R, the choice
u= 0 guarantees that̄̇V < 0.

III. O FFLINE POLICY ITERATIONS UNDER SATURATION

CONSTRAINTS

The iterative strategy in Algorithm 1 was presented in [21]
and provides an offline solution to Problem 1.

Algorithm 1 Modified policy iteration

1: Initialize:
2: c← 0.
3: uc

pw← u0.
4: uc

pw← u0.
5: Policy evaluation:
6: Given uc

pw, solve for Vc(x) =Wc(x,dz(uc(x)))
7:

d Vc(x)
dx

(

Ax+Bsat
(

uc
pw

))

+L(x,uc
pw) = 0 (13)

8: Feasibility:
9: With Wc(x,dz(uc(x))) of Policy evaluation, check

10:
d Vc(x)

dx
(Ax+Bsat(uc))+L(x,uc

pw)< 0 (14)

11: if (13) is feasible, uc(x)← uc(x)
12: elseuc(x)← u(c−1)(x)
13: Policy improvement:
14: Update the piecewise control policy
15:

uc+1
pw =

{

−1
2R−1B′ ∂Wc

∂x

′
∣

∣

∣

qc=0
in Ξc

1∪Ξc
2∪Ξc

3

uc in Ξc
4

(15)

16:

17: if ∆Wc(x(0)) :=Wc(x(0))−W(c−1)(x(0))< δ , STOP
18: elsec← c+1, goto Policy improvement.

In the algorithm, the policy evaluation and the policy
iteration steps are performed based on the piecewise value

function and piecewise control policy defined as follows.
Given the value functionVc(x) = Wc(x,dz(uc)) that solves
(13), define the followingapproximatedpolicy improvement

uc+1
ap (x) = −

1
2

R−1B′
∂Wc

∂x

′∣
∣

∣

∣

dz(uc)=0
, (16)

In order to discuss the properties of the policy (16) let us
define the following state-space partition arising from

Ωc(x) = {x : dz(uc(x)) = 0} (17)

Ωc+1(x) =
{

x : dz(uc+1
ap (x)) = 0

}

, (18)

Ξc
1 := Ωc∩Ωc+1 (Region 1)

Ξc
2 := Ωc\Ωc+1 (Region 2)

Ξc
3 := Ωc+1\Ωc (Region 3)

Ξc
4 := R

n\(Ωc∪Ωc+1) (Region 4)

and satisfying∪iΞc
i = R

n andΞc
i ∩Ξc

j = /0, i 6= j.
To study the stability properties of the policyuc+1

ap , given
a globally stabilizing policyuc and a value functionWc that
certify global stability, we define the piecewise policy

sat
(

uc+1
pw

)

=

{

sat
(

uc+1
ap

)

in Ξc
1∪Ξc

2∪Ξc
3

sat(uc) in Ξc
4

(19)

with the value function

Wc
pw :=

{

Wc
un in Ξc

1∪Ξc
2∪Ξc

3
Wc in Ξc

4
(20)

whereWc
un∈ C 1 is the unsaturated value function defined as

Wc
un(x) :=Wc(x,0). (21)

We obtain the following result
Proposition 1: The piecewise value function (20) certifies

the global stability of the piecewise control policy (19).
Proof: See [21].

IV. ESTIMATION OF THE SYSTEM DYNAMICS

The results of Section III require the knowledge of matri-
cesA andB. Its extension to the uncertain system (1) requires
an online parameter estimator. This task will be performed
with standard techniques for parameter estimation. To this
purpose we write (1) as

ẋ= Amx+(A−Am)x+Bsat(u), (22)

with Am a Hurwitz matrix. We use the series-parallel para-
metric model [22] to obtain

˙̂x= Amx̂+(Â−Am)x+ B̂sat(u), (23)

where x̂ is the state of the parametric model andÂ, B̂ are
the matrices to be estimated. In order to develop a linear-in-
the-parameters model for (22) we filter every component of
ẋ, x andsat(u) with a stable filterλ/(s+λ ), λ > 0

zf =
sλ

s+λ
x, (24a)

xf =
λ

s+λ
x, (24b)



ν f =
λ

s+λ
sat(u). (24c)

We thus obtain

zf = Amxf +(A−Am)xf +Bν f , (25)

and similarly for (23)

ẑf = Amx̂f +(Â−Am)xf + B̂ν f , (26)

wherezf , xf , andν f are all measurable signals to be used for
the estimator. After collecting all the entries ofA and B in
Θ∗ = [A B]′ and definingΘ̂ =

[

Â B̂
]′1, we adopt a parameter

estimator based on integral cost and gradient update [22], so
as to obtain

˙̂Θ = P
(

−γR̄Θ̂− γQ̄
)

, Θ̂(0) = Θ0 (27a)

˙̄R=−β R̄+
[

x′f ν ′f
]′ [

x′f ν ′f
]

, R̄(0) = 0 (27b)

˙̄Q=−β Q̄−
[

x′f ν ′f
]′

z′f , Q̄(0) = 0 (27c)

where β and γ are positive constants andP denotes a
projection operator which has to be designed to keep the
estimates inside a convex set.

The estimation law (27) satisfies the following properties:
Theorem 1:[22]

i) ε := zf − ẑf ∈L2∩L∞

ii) limt→∞

∣

∣

∣

˙̂Θ
∣

∣

∣
= 0

iii) if
[

x′f ν ′f
]′

is persistently exciting, then̂Θ→ Θ∗ ex-
ponentially and the rate of convergence increases with
γ.

V. ONLINE POLICY ITERATIONS UNDER SATURATION

CONSTRAINTS

Algorithm 1 is now revised for online implementation.
Differently from Section IV, the iterations are not imple-
mented offline at each stepc, c∈Z+, but online at each time
instanttk, tk = 0,∆t,2∆t, . . ., where∆t is the update sample
time. The proposed algorithm is shown in Algorithm 2.

In Algorithm 2, t+k indicates the instant of time at which

the previous policy is updated,
{

±uk
( j), j = 1, . . . ,n

}

indi-

cates a set of candidate policies,ˆ̇Vk
(± j)(tk) in (34) indicates

the estimates of the derivative of the value function calculated
at timetk with the corresponding policy±uk

( j). Furthermore,

the candidate control policies±u( j)
k are calculated as follows

hk(ζ ,x) = −
1
2

R−1B̂′
∂ Vk

∂x

′
∣

∣

∣

∣

∣

dz(u(k−1))=0

(36)

±uk
( j) = hk(ζ ±∆ζ( j),x), (37)

1A parameter estimator can be developed also in the case where only
a subset of entries ofA and B needs to be estimated, by bringing to the
left-hand side of (25) and (26) all the quantities that are known and do not
need to be estimated.

Algorithm 2 Online policy iteration

1: Initialize:
2: k← 0.
3: uk

pw← u0.
4: uk

pw← u0.
5: Policy evaluation:
6: Given uk

pw, Â(k−1) = Â(tk−1), B̂(k−1) = B̂(tk−1),
7: solve for Vk(x) =Wk(x,dz

(

uk(x)
)

)
8:

d Vk(x)
dx

(

Â(k−1)x+ B̂(k−1)sat
(

u(k−1)
pw

))

+L(x,u(k−1)
pw )= 0

(28)
9:

d Vk(x)
dx

(

Āx+ B̄sat
(

u(k−1)
pw

))

+L(x,u(k−1)
pw )< 0 (29)

10:

Ā= Â(k−1)+∆A, B̄= B̂(k−1)+∆B with ∆A,∆B∈N
k

(30)
11:

N
k =

{

∆A,∆B | ∆A′∆A≺ ηk
1I , ∆B′∆B≺ ηk

2I
}

, (31)

12: Feasibility:
13: With Wk(x,dz

(

uk(x)
)

) of Policy evaluation, check
14:

d Vk(x)
dx

(

Â(k−1)x+ B̂(k−1)sat
(

uk
))

+L(x,uk
pw)< 0

(32)
15: if (13) is feasible, uk(x)← uk(x)
16: elseuk(x)← u(k−1)(x)
17: Estimation:
18: Update the estimateŝA(tk), B̂(tk) according to (27),

with P = Pk the projection operator that keeps the
estimate inside the setN k.

19: Policy improvement:
20: Update the piecewise control policy
21:

u(t+k ) = arg min
±uk

( j), j=1,...,n

ˆ̇Vk
(± j)(tk), (33)

22:

ˆ̇Vk
(± j)(tk) =

∂Vk

∂x

[

Â(tk)x(tk)+ B̂(tk)(±uk
( j))

]

+Q(x(tk))+uk
( j)Ruk

( j), (34)

23:

uk+1
pw =

{

u(t+k ) in Ξk
1∪Ξk

2∪Ξk
3

uk in Ξk
4

(35)

24:

25: if ∆Wk(x(0)) := Wk(x(0))−W(k−1)(x(0)) < δ , STOP
updatingW andu

26: else gotoPolicy evaluation.
27: k← k+1



where ζ are the coefficients of the expression in (36),
and ∆ζ ( j) are zero-mean random vectors in[−2αk,−αk]

n∪
[αk,2αk]

n satisfying
∣

∣

∣

[

∆ζ (1), . . . ,∆ζ (n)
]∣

∣

∣

−1
<

Ξ
αk

, (38)

where αk is a positive sequence andΞ is a finite positive
number independent ofαk. The following result is given.

Theorem 2:Let ∆t be sufficiently small. Then, for arbi-
trary small ᾱ > 0, there exist finite positive constantsβ1,
β2, γl and a finite positive integer̄h= O

(

1
γ

)

such that the
following condition holds: ifαk satisfies

{

0< αk ≤ β2 if
∣

∣

∣

d Vk

dx B̂
∣

∣

∣
< ε̂1 or k≤ h̄

αk ≥ β1 otherwise

where ε̂1 is a positive design constant satisfying

1
4

ε1 < ε̂1≤
1
2

ε1

and the adaptive gainγ of the estimator satisfies

γ ≥ γl

then, the proposed adaptive control scheme guarantees that
the closed-loop solutions are bounded and, moreover,

limsup
t→∞

|x(t)| ≤ ε3, w.p.1

and

−ᾱ < L̇ (t+k )< 0, if xk 6∈R or (xk, θ̂k) 6∈Sk, w.p.1

where

L̇ (t+k ) = min
u(·)∈U

{

d Vo

dx
(Ax+Bu)+L(x,u)

}

and Sk is a subset ofRn×R
n×(n+m) that satisfiesSk =

/0,∀k> h̄.
Proof: Following similar lines as in [23] (not shown

for lack of space).
Remark 1: Each policy evaluation step (28)-(29) returns a

set of plants that are stabilized by the control law uk
pw. Such a

set is given byN k in (31). This set is used in the estimation
law (27) to project the estimate. This approach resembles
the so-called ‘certainty equivalence principle’ of adaptive
control [22], where the control policy is stabilizing for the
estimated plant and it is updated by solving the underlying
control problem for the estimated plant.

Remark 2: The rationale behind(33) is that among a set
of possible candidate control laws, the one that minimizes
(34), i.e. that more closely satisfies the HJB equation is
chosen. This choice guarantees the so-called ‘exploitation
task’ of the control policy. Furthermore, the candidate
control policies are generated randomly so as to satisfy
condition (38): this guarantees the so-called ‘exploration
task’ of the control policy, i.e. persistence of excitationand
convergence of the estimates to their real value. It can be
shown that the Bernoulli distribution satisfies condition(38)
[23]: other distributions (segmented uniform, U-shaped) are
also possible [24, Sect. 7.3].

VI. N UMERICAL EXAMPLE

In the following, we present a numerical example to illus-
trate the results obtained via the proposed policy iterations.
The procedure has been implemented in SOSTOOLS [25]
and the formulated SDPs were solved with SeDuMi [26]. The
dimension of the example helps to illustrate the results by
plotting the computed value functions and the time-evolution
of the control policies. It is also worth mentioning that as
the number of variables and the degrees of the involved
polynomials increase, the dimensions of the related SDPs
can be large.

Consider the following 1-input 1-state system

ẋ(t) =−ax+bsat(u(t)), x(0) =−1 (39)

with a and b two positive and unknown constants. The
saturation bounds are−0.5≤ u≤ 0.5 and the initial globally
stabilizing (but not optimal) state-feedbacku(x)=−0.3x. For
this system we consider the cost as in (3) withQ = 1 and
R= 1. Fora= 1, b= 1, â(0) = 2, b̂(0) = 1.5, β = 3, λ = 3,
Γ = 10, αk = 0.025,∆t = 0.01 we apply the proposed online
policy iterations.

The simulation is run for 5 seconds. Fig. 1 shows the
online evolution of the state and input with the proposed
adaptive law. Finally Fig. 2 shows the offline evolution
of the cost using the controllers synthesized at every time
step: it can be observed that the cost is monotonically
decreasing. The online evolution of the Hamilton-Jacobi-
Bellman equation is also shown: it can be observed that for
the presented example the controller synthesized at every
time step are stabilizing not only the estimated plant, but
also the actual plant.
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Fig. 1: Online state (upper) and input (lower) evolution.

VII. C ONCLUSIONS

This work proposed an online policy iteration procedure
for the synthesis of approximately optimal control laws
for uncertain Linear Time Invariant (LTI) Asymptotically
Null-Controllable with Bounded Inputs (ANCBI) systems.
The proposed policy iteration method relies on: a policy
evaluation step with a piecewise quadratic Lyapunov function
which is non-differentiable, but continuous, and polynomial
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Fig. 2: Offline evolution of the cost using the controllers synthesized at
every time step (upper) and online evolution of the Hamilton-Jacobi-Bellman
equation (lower). With a solid line is the HJB for the estimated plant, and
with a dashed line is the HJB for the actual plant.

in both the state and the deadzone functions of the input
signals; a policy improvement step which guarantees at the
same time close to optimality (exploitation) and persistence
of excitation (exploration). The proposed approach guaran-
tees convergence of the trajectory to a neighborhood around
the origin. Besides, the trajectories can be made arbitrarily
close to the optimal one provided that the rate at which the
the value function and the control policy are updated is fast
enough.

Future work includes the extension of the proposed
methodology to linear systems with exponentially unstable
modes for which only local stability is achievable. Such an
extension is under study and will account for generalized
sector condition which is instrumental to compute region
of attraction estimates. We will also generalize the obtained
conditions to systems defined by polynomial vector fields
and polynomial input matrices.
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