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Abstract: Effective timetable scheduling strategies are essential for passenger satisfaction in
urban rail transit networks. Most existing passenger-centric timetable scheduling approaches
generate a timetable according to deterministic passenger origin-destination (OD) demands.
As passenger OD demands in urban rail transit networks generally show a high level of
uncertainty, an effective timetable scheduling approach should take the uncertain passenger flows
into account to generate a reliable timetable. In this paper, a scenario-based model predictive
control (SMPC) approach is presented to handle uncertain passenger flows based on a passenger
absorption model, where uncertainties are captured by several representative scenarios according
to historical data. In each SMPC step, the optimization problem for generating the timetable
can be reformulated as a mixed-integer linear programming (MILP) problem, which can be
efficiently solved using current MILP solvers. A probabilistic performance level can be then
determined based on the performance of SMPC under the representative scenarios. Numerical
experiments based on the Beijing subway network are conducted to evaluate the efficacy of the
proposed approach.

Keywords: Urban rail transit network, Passenger-centric timetable scheduling, Uncertain
passenger flows, Model predictive control, Scenario approach

1. INTRODUCTION

Urban rail transit has experienced significant development
in many cities owing to its safety, high transport capac-
ity, and eco-friendly characteristics. A reliable urban rail
transit system is important for the competitiveness of
the regional economy. In recent years, passenger demands
for urban rail transit systems in many cities have been
growing rapidly. Passenger-centric timetable scheduling
explicitly includes passenger satisfaction in the timetable
scheduling problem, and therefore it aims at providing
high-quality service for passengers. Passenger demands are
typically time-varying, and different passengers may have
different origins and destinations in an urban rail tran-
sit network, which significantly increases the complexity
of including passenger demands in timetable scheduling.
Moreover, passenger demands generally show a high level
of uncertainty, and a reliable timetable should be able
to incorporate the demand uncertainty into the design.
Real-time timetable scheduling has become increasingly
challenging in recent years due to the rapidly growing
passenger demands, expanding network scale, and the re-
quirement for real-time application.

Real-time timetable scheduling with passenger origin-
destination (OD) demands is regarded as an effective
approach of enhancing passenger satisfaction. Cordone
and Redaelli (2011) considered the interaction between
the timetable and passenger demands through an event-
activity network, and a heuristic algorithm and a branch-

and-bound algorithm were applied to solve the result-
ing timetable scheduling problem. Based on time-varying
passenger OD demands, Wang et al. (2015) presented
an event-driven model for an urban rail transit network
with the objective of minimizing the total train energy
consumption and the total passenger travel time. Robenek
et al. (2018) applied a logit model to reflect elastic pas-
senger demands, and the ticket pricing problem was in-
tegrated into the passenger-centric timetable scheduling
problem. Yin et al. (2021) described feasible travel paths
of passengers in a metro network through a graph; then, a
decomposition-based adaptive large-neighborhood search
method was presented to minimize the crowdedness at the
busiest station. The above studies imply that there is a
trend to include more detailed passenger demands and to
develop more efficient approaches for real-time passenger-
centric timetable scheduling.

The timetable scheduling problem can be formulated as
a constrained control problem. Model predictive control
(MPC) is a widely acknowledged methodology for address-
ing multi-variable constrained control problems (Mayne
et al., 2000). MPC has also been implemented in railway
traffic management problems. Li et al. (2017) integrated
the departure time and the occupancy of trains in a state-
space model, and proposed an MPC approach to decrease
the timetable deviation and the headway of a metro line.
Liu et al. (2023a) proposed a simplified model to describe
time-varying passenger OD demands in urban rail transit
networks and developed an MILP-based MPC approach
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to optimize the timetable in real time. Cavone et al.
(2022) formulated the MPC optimization problem as an
MILP problem under a bi-level structure for timetable
(re)scheduling in case of disruptions and disturbances. Liu
et al. (2022) developed a passenger absorption model for
real-time timetable scheduling with time-varying passen-
ger OD demands, where the train departure frequency can
be determined in real time under an MPC framework.
However, the above studies investigate passenger demands
under deterministic cases, which ignores uncertainties in
the network, e.g., uncertain passenger demands and un-
certain disturbances, leaving an open gap for improving
the performance of timetable scheduling approaches.

Timetable scheduling under uncertainties has received
much attention in recent years. The scenario approach
(Calafiore and Campi, 2006; Campi et al., 2018) is a
general data-driven decision-making methodology that ex-
plicitly takes uncertainties into account. The scenario ap-
proach generally describes uncertainties by a set of rep-
resentative scenarios, and the solution is thus obtained
by considering these representative scenarios. By using
different scenarios to capture the uncertain train oper-
ation time in a metro network, Yang et al. (2016) pro-
posed a two-stage stochastic integer programming model
to reduce transfer activities and the expected travel time
of passengers. Gong et al. (2021) formulated a mixed-
integer nonlinear optimization problem to minimize the
operational costs of a metro line where passenger distribu-
tion is represented through several scenarios. However, the
above studies only consider the application of the scenario
approach in timetable scheduling problems, and the theo-
retical performance analysis of the developed approach is
still required to provide a performance indication for the
scenario-based timetable scheduling approach.

In this paper, we investigate the real-time timetable
scheduling problem considering uncertain time-varying
passenger demands. A scenario-based MPC approach is
adapted to the passenger-centric timetable scheduling
problem, where uncertainties are represented by several
representative scenarios based on historical data. The re-
sulting MPC optimization problem can be transformed
into an MILP problem, which can be efficiently solved
using current MILP solvers. Moreover, probabilistic per-
formance guarantees of the scenario-based MPC approach
are derived based on the performance of the controller
under the representative scenarios.

The remainder of the paper is organized as follows. In Sec-
tion 2, the passenger absorption model used in this paper is
introduced. In Section 3, a scenario-based MPC approach
is developed, and the probabilistic performance guarantee
of the scenario-based MPC approach is provided. Section 4
presents a case study. Section 5 summarized the paper and
provides suggestions for future research.

2. MATHEMATICAL MODEL

The passenger absorption model is a macroscopic timetable
scheduling model that can explicitly include time-varying
passenger OD demands in urban rail transit networks (Liu
et al., 2022). In the passenger absorption model, absorp-
tion refers to passengers boarding trains in each period,
and a period is a certain time window where the passenger

demands are constant. The model is summarized in this
section, and interested readers are referred to Liu et al.
(2022, 2023c) for a detailed description of the model.

The number of passengers np,d (k) at platform p with
destination d at the beginning of each period is:

np,d (k + 1) = np,d (k) + ρp,d (k)T

+ narr,tran
p,d (k)− nabsorb

p,d (k) ,
(1)

where ρp,d (k) refers to the passenger flow rate at platform
p with destination d during period k, T is the length of a
period, narr,tran

p,d (k) denotes the number of transfer passen-
gers reaching platform p with destination d during period
k, and nabsorb

p,d (k) represents the number of passengers
at platform p with destination d boarding trains during
period k.

Then, ρp,d(k), n
arr,tran
p,d (k), and nabsorb

p,d (k) are computed by

ρp,d (k) = λo,p,d (k) ρ
station
o,d (k) , ∀p ∈ Po, (2)

narr,tran
p,d (k)=

∑
p′∈cnp(p)

(T − θtransfp′,p

T
ntransf
p′,p,d (k)

+
θtransfp′,p

T
ntransf
p′,p,d (k − 1)

)
,

(3)

nabsorb
p,d (k) = αp,d(k)n

absorb
p (k) , (4)

where ρstationo,d (k) represents the arrival rate for passengers
at period k with o and d as origin and destination,
respectively; λo,p,d (k) denotes the fraction of passengers
at station o that choose platform p to reach destination
d; Po is the set of platforms at station o; cnp(p) denotes
the set of platforms at the same station as platform p, and
θtransfq,p represents the mean transfer time from platform q
to platform p; αp,d(k) denotes the fraction of passengers
absorbed by trains at platform p with destination d during
period k, and αp,d(k) can be estimated by using the
historical data.

In (4), the total number of passengers nabsorb
p (k) absorbed

by trains at platform p during period k is computed by

nabsorb
p (k) = min

(
Cp (k) , nwant

p (k)
)
, (5)

Cp(k)=fp(k) · Cmax−
∑
d∈D

(
nboard
p,d (k)−nalight

p,d (k)
)
, (6)

nwant
p (k) = np (k) + ρp (k)T + gp (k) , (7)

with

np(k) =
∑
d∈D

np,d(k), ρp(k) =
∑
d∈D

ρp,d(k),

gp (k) =
∑
d∈D

narr,tran
p,d (k),

(8)

where Cp(k) denotes the total remaining capacity of trains
that visit platform p during period k; nwant

p (k) represents
the total number of passengers that want to depart from
platform p during period k; fp(k) is the number of trains
that visit platform p during period k, which is the decision
variable of the absorption model; Cmax is the maximum
capacity of a train; D denotes the set of stations in

the network; nboard
p,d (k) and nalight

p,d (k) correspond to the
number of passengers on board of trains and the number
of passengers alighting from trains at platform p with
destination d during period k, respectively.
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We use γp to represent the mean time spent for a train
from the first platform of a line to the platform p, and we
define

βp = floor
γp
T


, ϕp = rem {γp, T} , (9)

with floor
γp

T


being the greatest integer less than or

equal to
γp

T and rem {γp, T} the remainder obtained from
dividing γp by T . Then, γp can be represented by

γp = βpT + ϕp, 0 ≤ ϕp < T. (10)

Then, the variable fp(k) in (6) is calculated by

fp (k) =
T − ϕp

T
ffir(p)(k − βp) +

ϕp

T
ffir(p)(k − βp − 1) ,

(11)
where fir (p) denotes the first platform of the line associ-
ated with platform p.

To ensure the safe operation of the trains in the urban rail
transit network, fp (k) should be constrained by

fp(k)
�
τmin
p + hmin

p


≤ T, (12)

where τmin
p and hmin

p respectively denote the minimum
dwell time and the minimum headway of platform p.

The number of passengers ndepart
p,d (k) departing from plat-

form p with destination d is computed by

ndepart
p,d (k) = nboard

p,d (k)− nalight
p,d (k) + nabsorb

p,d (k) , (13)

Here, we have

nboard
p,d (k)=

T−rppla(p)

T
ndepart
ppla(p),d

(k)+
rppla(p)

T
ndepart
ppla(p),d

(k−1) ,

(14)

nalight
p,d (k)=





p′∈cnp(p)

ntransf
p,p′,d (k) , if d ∈ D/{sta(p)},

nboard
p,d (k) , if d = sta(p),

(15)

ntransf
p,p′,d (k) = χp,p′,d nboard

p,d (k), ∀p′ ∈ cnp(p), (16)

where rppla(p) denotes the average time of trains from

the preceding platform ppla(p) to platform p; ntransf
p,p′,d (k) is

the number of passengers transferring from platform p to
platform p′ with destination d during period k, and sta(p)
denotes the station corresponding to platform p; χp,p′,d

represents the transfer rate for passengers from platform
p to p′ ∈ cnp(p) with destination d.

3. SCENARIO-BASED MPC FOR REAL-TIME
TIMETABLE SCHEDULING

We first introduce the basic MPC approach for real-
time timetable scheduling. Then, a scenario-based MPC
approach is introduced to deal with uncertain passenger
flows. Finally, the performance analysis of the developed
scenario-based MPC approach is given.

3.1 Problem Formulation in an MPC Set-Up

Based on the model introduced in Section 2, the total
number of passengers dp(k) departing from platform p
during period k is

dp(k) =

d∈D

ndepart
p,d (k). (17)

We consider two terms in the objective function repre-
senting the passengers’ satisfaction and trains’ energy con-
sumption. The total travel time of passengers is used as the
passenger-centric objective, as it significantly influences
passenger satisfaction. The total travel time of passengers
is estimated by

J time(k) =

p∈P

�
np(k)T + dp(k)rp + gp(k)θ

transf
p


, (18)

where np(k)T represents the total waiting time of pas-
sengers who cannot depart from platform p during period
k, dp(k)rp denotes the total running time for passengers
departing from platform p during period k to arrive at the
next platform, and gp(k)θ

transf
p denotes the total transfer

time for passengers at platform p during period k.

The energy consumption for trains departing from the
platform during period k can be represented by

Jcost(k) =

p∈P

fp(k)Ep, (19)

where Ep represents the average energy consumption for a
train running from platform p to its succeeding platform.

Thus, for real-time timetable scheduling at control time
step k0, we have the MPC optimization problem PMPC

k0
:

min
v(k0)

J(k0) =

k0+N−1
k=k0

�
J time(k) + µJcost(k)


+ LN (k0),

subject to (1)− (8), (11)− (17),
(20)

where N represents the prediction horizon, v(k0) is a
vector collecting all variables of the time window from time
step k0, µ is a weight balancing the objectives, and LN (k0)
is a penalty term for the passengers that can not board
trains at the end of the prediction window. In this paper
we set LN (k0) =


p∈P

np(k0+N)T , and for more details of

designing LN (k0), we refer to Liu et al. (2023b).

The MPC formulation PMPC
k0

is a nonlinear nonconvex
optimization problem, and the transformation methods
of Williams (2013) can be applied to generate a fully
equivalent mixed-integer linear programming problem:

min
v(k0)

J(k0)=

k0+N−1
k=k0

�
J time(k)+µJcost(k)


+ LN (k0) (21)

subject to

x(k+1) = Akx(k)+B1,kf(k)+B2,kδ(k)+B3,kz(k), (22)

E2,kδ(k) + E3,kz(k) ≤ E1,kf(k) + E4,kx(k) + E5,k,
(23)

k = k0, · · · , k0 +N − 1,

where x(k) denotes the state variables, i.e., the variables
associated with the number of passengers in period k;
δ(k) and z(k) respectively denote the vector of auxiliary
binary variables and auxiliary continuous variables in
period k; Eq. (22) describes the linear and mixed-integer
linear formulations of the model explained in Section 2.
Constraint (23) concatenates all the model constraints and
operational constraints in a matrix form.

to optimize the timetable in real time. Cavone et al.
(2022) formulated the MPC optimization problem as an
MILP problem under a bi-level structure for timetable
(re)scheduling in case of disruptions and disturbances. Liu
et al. (2022) developed a passenger absorption model for
real-time timetable scheduling with time-varying passen-
ger OD demands, where the train departure frequency can
be determined in real time under an MPC framework.
However, the above studies investigate passenger demands
under deterministic cases, which ignores uncertainties in
the network, e.g., uncertain passenger demands and un-
certain disturbances, leaving an open gap for improving
the performance of timetable scheduling approaches.

Timetable scheduling under uncertainties has received
much attention in recent years. The scenario approach
(Calafiore and Campi, 2006; Campi et al., 2018) is a
general data-driven decision-making methodology that ex-
plicitly takes uncertainties into account. The scenario ap-
proach generally describes uncertainties by a set of rep-
resentative scenarios, and the solution is thus obtained
by considering these representative scenarios. By using
different scenarios to capture the uncertain train oper-
ation time in a metro network, Yang et al. (2016) pro-
posed a two-stage stochastic integer programming model
to reduce transfer activities and the expected travel time
of passengers. Gong et al. (2021) formulated a mixed-
integer nonlinear optimization problem to minimize the
operational costs of a metro line where passenger distribu-
tion is represented through several scenarios. However, the
above studies only consider the application of the scenario
approach in timetable scheduling problems, and the theo-
retical performance analysis of the developed approach is
still required to provide a performance indication for the
scenario-based timetable scheduling approach.

In this paper, we investigate the real-time timetable
scheduling problem considering uncertain time-varying
passenger demands. A scenario-based MPC approach is
adapted to the passenger-centric timetable scheduling
problem, where uncertainties are represented by several
representative scenarios based on historical data. The re-
sulting MPC optimization problem can be transformed
into an MILP problem, which can be efficiently solved
using current MILP solvers. Moreover, probabilistic per-
formance guarantees of the scenario-based MPC approach
are derived based on the performance of the controller
under the representative scenarios.

The remainder of the paper is organized as follows. In Sec-
tion 2, the passenger absorption model used in this paper is
introduced. In Section 3, a scenario-based MPC approach
is developed, and the probabilistic performance guarantee
of the scenario-based MPC approach is provided. Section 4
presents a case study. Section 5 summarized the paper and
provides suggestions for future research.

2. MATHEMATICAL MODEL

The passenger absorption model is a macroscopic timetable
scheduling model that can explicitly include time-varying
passenger OD demands in urban rail transit networks (Liu
et al., 2022). In the passenger absorption model, absorp-
tion refers to passengers boarding trains in each period,
and a period is a certain time window where the passenger

demands are constant. The model is summarized in this
section, and interested readers are referred to Liu et al.
(2022, 2023c) for a detailed description of the model.

The number of passengers np,d (k) at platform p with
destination d at the beginning of each period is:

np,d (k + 1) = np,d (k) + ρp,d (k)T

+ narr,tran
p,d (k)− nabsorb

p,d (k) ,
(1)

where ρp,d (k) refers to the passenger flow rate at platform
p with destination d during period k, T is the length of a
period, narr,tran

p,d (k) denotes the number of transfer passen-
gers reaching platform p with destination d during period
k, and nabsorb

p,d (k) represents the number of passengers
at platform p with destination d boarding trains during
period k.

Then, ρp,d(k), n
arr,tran
p,d (k), and nabsorb

p,d (k) are computed by

ρp,d (k) = λo,p,d (k) ρ
station
o,d (k) , ∀p ∈ Po, (2)

narr,tran
p,d (k)=

∑
p′∈cnp(p)

(T − θtransfp′,p

T
ntransf
p′,p,d (k)

+
θtransfp′,p

T
ntransf
p′,p,d (k − 1)

)
,

(3)

nabsorb
p,d (k) = αp,d(k)n

absorb
p (k) , (4)

where ρstationo,d (k) represents the arrival rate for passengers
at period k with o and d as origin and destination,
respectively; λo,p,d (k) denotes the fraction of passengers
at station o that choose platform p to reach destination
d; Po is the set of platforms at station o; cnp(p) denotes
the set of platforms at the same station as platform p, and
θtransfq,p represents the mean transfer time from platform q
to platform p; αp,d(k) denotes the fraction of passengers
absorbed by trains at platform p with destination d during
period k, and αp,d(k) can be estimated by using the
historical data.

In (4), the total number of passengers nabsorb
p (k) absorbed

by trains at platform p during period k is computed by

nabsorb
p (k) = min

(
Cp (k) , nwant

p (k)
)
, (5)

Cp(k)=fp(k) · Cmax−
∑
d∈D

(
nboard
p,d (k)−nalight

p,d (k)
)
, (6)

nwant
p (k) = np (k) + ρp (k)T + gp (k) , (7)

with

np(k) =
∑
d∈D

np,d(k), ρp(k) =
∑
d∈D

ρp,d(k),

gp (k) =
∑
d∈D

narr,tran
p,d (k),

(8)

where Cp(k) denotes the total remaining capacity of trains
that visit platform p during period k; nwant

p (k) represents
the total number of passengers that want to depart from
platform p during period k; fp(k) is the number of trains
that visit platform p during period k, which is the decision
variable of the absorption model; Cmax is the maximum
capacity of a train; D denotes the set of stations in

the network; nboard
p,d (k) and nalight

p,d (k) correspond to the
number of passengers on board of trains and the number
of passengers alighting from trains at platform p with
destination d during period k, respectively.
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3.2 Scenario-Based Model Predictive Control

In practice, passenger demands typically exhibit highly un-
certain characteristics. We, therefore, adopted a scenario-
based approach (Karg et al., 2021) to handle uncertain
passenger demands and to provide reliable service for pas-
sengers. To handle computational issues arising from the
large number of scenarios, uncertainties are normally cap-
tured by several representative scenarios in the scenario-
based approach:

{s1, s2, . . . , sNtotal
} , (24)

where Ntotal denotes the total number of representative
scenarios.

The scenario-based model predictive control (SMPC)
approach develops the following optimization problem
PSMPC

k0
at each step:

min
v(k0)

Ntotal∑
i=1

P {si}
(k0+N−1∑

k=k0

(
J time
i (k) + µJcost

i (k)
)
+ LN,i(k0)

)

(25)

subject to

xi(k + 1) = Ai,kxi(k) +B1,i,kf(k)

+B2,i,kδi(k) +B3,i,kzi(k), (26)

E2,i,kδi(k) + E3,i,kzi(k) ≤
E1,i,kf(k) + E4,i,kxi(k) + E5,i,k, (27)

k = k0, · · · , k0 +N − 1,

i = 1, · · · , Ntotal,

where P {si} represents the probability of scenario si;
J time
i (k), Jcost

i (k), LN,i(k0), xi(k), δi(k), and zi(k) de-
note the value of variables J time(k), Jcost(k), LN (k0),
x(k), δ(k), and z(k) under scenario si, respectively; Ai,k,
B1,i,k, B2,i,k, B3,i,k, E1,i,k, E2,i,k, E3,i,k, E4,i,k, and E5,i,k

represent the corresponding matrices under scenario si,
respectively.

Eq. (26) represents the linear and mixed-integer linear for-
mulations of the model provided in (1)-(8), (11), (13)-(17)
for the urban rail transit network under scenario si; (27)
represents the corresponding constraints in the absorption
model under scenario si, e.g., the safety constraint (12) for
train operation. By solving problem PSMPC

k0
, we minimize

the expected value of the objective function (25) while
including the corresponding constraint satisfaction in (27).
Problem PSMPC

k0
is also an MILP problem and can be

efficiently solved with current MILP solvers.

Solving problem PSMPC
k0

yields a control sequence for pe-
riod k0 to k0 + N − 1. In the MPC framework, only the
control actions at period k0 are applied to the practical
urban rail transit network. In the next step, the optimiza-
tion is done again by including the newly collected state
information while the prediction time interval is shifted by
one step.

3.3 Performance of the Developed Approach

Performance of the scenario-based approach depends to a
large extent on the total number of representative scenar-
ios used in the approach. Thanks to the theoretical results
in Tempo et al. (1997); Karg et al. (2021), a probabilistic

performance guarantee for the SMPC approach can be de-
rived based on the ordered performances for the scenarios
used in the SMPC approach.

Let’s denote the performance of the resulting scenario-
based model predictive control approach under scenario si
by JSMPC

i . Then, the performances under all the selected
scenarios can be reordered as

JSMPC(1) ≤ JSMPC(2) ≤ · · · ≤ JSMPC(Ntotal), (28)

where JSMPC(o) represents the o-th smallest performance
value among JSMPC

i , i ∈ {1, . . . Ntotal}; so o is the order
index.

For the SMPC approach, we define L(v) as the probability
of the objective function value smaller than v, v ∈ R, that
is

L(v) := P {J < v} . (29)

Theorem 1. If the representative scenarios we use in
the SMPC approach are independent and identically dis-
tributed (i.i.d.), we have

P
{
L
(
JSMPC(o)

)
≤ ε

}
≥ 1− ρ, (30)

for o = 1, 2, . . . , Ntotal, provided that
o−1∑
ζ=0

(
Ntotal

ζ

)
εζ(1− ε)

Ntotal−ζ ≤ ρ. (31)

In addition, (31) is satisfied (Karg et al., 2021) if

Ntotal ≥
1

ε

(
o− 1 + ln

1

ρ
+

√
2 (o− 1) ln

1

ρ

)
. (32)

For the proof of Theorem 1, we refer to Property 3 of
Alamo et al. (2018).

The computational burden of problem PSMPC
k0

increases
rapidly as the number of scenarios grows, while less sce-
narios may negatively influence the performance of the
scenario-based approach. The performance level of SMPC
with different numbers of scenarios can be derived accord-
ing to Theorem 1, which provides an indication for the
performance of the developed SMPC approach.

4. CASE STUDY

Simulations are conducted in this section to demonstrate
the efficacy of the scenario-based MPC approach for the
timetable scheduling problem on two lines of the Beijing
subway network.

The network we use is shown in Fig. 1, and it includes two
bidirectional lines. The network consists of 19 stations with
40 platforms. The simulations are based on the passenger
OD demands of the Beijing subway network, which can
be generated according to the entering and existing flow
data. We use the data related to Line 9 and Line 14 from
7:00AM for the simulation. The passenger flow data are
recorded every half hour; thus, we set T = 1800 s. Table 1
presents the primary parameters for the simulation. In the
simulation, the MILP problems are solved by the gurobi
solver with MATLAB (R2019b).

The uncertain passenger demands are generated by Pois-
son distribution, where the passenger demands in the real-
life passenger OD data are used as the expected value.
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Fig. 1. Real-life network for simulation.

Table 1. Parameters for the simulation

Parameters Line 9 Line 14

Minimum dwell time 30 s 30 s
Regular dwell time 60 s 60 s
Minimum headway 120 s 120 s
Regular headway 180 s 270 s
Mean transfer time 60 s 60 s
Train capacity 2400 persons 2400 persons
Period time 1800 s 1800 s

In this paper, we generate 5 scenarios with Poisson dis-
tribution as the representative scenarios for the SMPC.
After getting the number of trains departing from each
platform during a period by using the method in Section 3,
we use the approach of Liu et al. (2023c) to calculate
the specific departure and arrival times of each train,
where a lower-level controller is applied for detailed train
schedules considering departure/arrival constraints, run-
ning time constraints, and headway constraints. We use
the passenger absorption model as the prediction model,
while a more accurate timetable developed by Wang et al.
(2015) is employed as the simulation model.

We first perform simulations under one uncertain scenario,
and the performance of the basic timetable is also calcu-
lated for comparison, where the basic timetable is obtained
with the regular headway and dwell time mentioned in
Table 1. The MPC approach under the deterministic case
uses the expected value of passenger demands to calculate
the timetable, which is called nominal model predictive
control (NMPC) in this paper. The prediction horizon for
both NMPC and SMPC is set to N = 3.

Table 2. Comparison of different approaches
under uncertain passenger demands

Objective function value CPU time (s)

Basic timetable 2.3220 · 104 -
NMPC 2.0891 · 104 9.5
SMPC 2.0545 · 104 81.9

Table 2 and Fig. 2 display the simulation results. The
results demonstrate that the performance of both NMPC

and SMPC is improved compared with that of the basic
timetable, with enhancements of 10.03% and 11.53%,
respectively. Both NMPC and SMPC satisfy the real-time
application requirement for the given case study. SMPC
has a larger computational burden than NMPC, and the
required CPU time increases from 9.5 s for NMPC to
89.1 s for SMPC. A suitable choice is required in real-
life applications, i.e., when the CPU power is sufficient,
SMPC is a better choice to get a higher quality solution;
otherwise, NMPC can be used to calculate a timetable in
a shorter time with acceptable performance.

1 2 3 4 5 6 7 8 9 10

Time step

500

1000

1500

2000

2500

3000

3500

4000

4500

T
h
e
 v

a
lu

e
 o

f 
o
b
je

c
ti
v
e
 f
u
n
c
ti
o
n

Basic Timetable

NMPC

SMPC

Fig. 2. Objective function value at each step.

The basic timetable and the timetable generated by SMPC
for Line 9 (up direction) from 7:30AM and 8:00AM are
given in Fig. 3 and Fig. 4, respectively. As the selected time
window corresponds to the morning peak hour, compared
with the basic timetable, SMPC schedules more trains to
address the large passenger demands, which indicates that
SMPC can optimize train schedules according to real-time
passenger flow data.
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Fig. 3. Basic timetable of Line 9 (up direction).

Table 3. Comparison of the objective function
values for different approaches

Average Standard deviation

Basic timetable 2.3155 · 104 59.4700
NMPC 2.1028 · 104 229.1080
SMPC 2.0705 · 104 286.8022

3.2 Scenario-Based Model Predictive Control

In practice, passenger demands typically exhibit highly un-
certain characteristics. We, therefore, adopted a scenario-
based approach (Karg et al., 2021) to handle uncertain
passenger demands and to provide reliable service for pas-
sengers. To handle computational issues arising from the
large number of scenarios, uncertainties are normally cap-
tured by several representative scenarios in the scenario-
based approach:

{s1, s2, . . . , sNtotal
} , (24)

where Ntotal denotes the total number of representative
scenarios.

The scenario-based model predictive control (SMPC)
approach develops the following optimization problem
PSMPC

k0
at each step:

min
v(k0)

Ntotal∑
i=1

P {si}
(k0+N−1∑

k=k0

(
J time
i (k) + µJcost

i (k)
)
+ LN,i(k0)

)

(25)

subject to

xi(k + 1) = Ai,kxi(k) +B1,i,kf(k)

+B2,i,kδi(k) +B3,i,kzi(k), (26)

E2,i,kδi(k) + E3,i,kzi(k) ≤
E1,i,kf(k) + E4,i,kxi(k) + E5,i,k, (27)

k = k0, · · · , k0 +N − 1,

i = 1, · · · , Ntotal,

where P {si} represents the probability of scenario si;
J time
i (k), Jcost

i (k), LN,i(k0), xi(k), δi(k), and zi(k) de-
note the value of variables J time(k), Jcost(k), LN (k0),
x(k), δ(k), and z(k) under scenario si, respectively; Ai,k,
B1,i,k, B2,i,k, B3,i,k, E1,i,k, E2,i,k, E3,i,k, E4,i,k, and E5,i,k

represent the corresponding matrices under scenario si,
respectively.

Eq. (26) represents the linear and mixed-integer linear for-
mulations of the model provided in (1)-(8), (11), (13)-(17)
for the urban rail transit network under scenario si; (27)
represents the corresponding constraints in the absorption
model under scenario si, e.g., the safety constraint (12) for
train operation. By solving problem PSMPC

k0
, we minimize

the expected value of the objective function (25) while
including the corresponding constraint satisfaction in (27).
Problem PSMPC

k0
is also an MILP problem and can be

efficiently solved with current MILP solvers.

Solving problem PSMPC
k0

yields a control sequence for pe-
riod k0 to k0 + N − 1. In the MPC framework, only the
control actions at period k0 are applied to the practical
urban rail transit network. In the next step, the optimiza-
tion is done again by including the newly collected state
information while the prediction time interval is shifted by
one step.

3.3 Performance of the Developed Approach

Performance of the scenario-based approach depends to a
large extent on the total number of representative scenar-
ios used in the approach. Thanks to the theoretical results
in Tempo et al. (1997); Karg et al. (2021), a probabilistic

performance guarantee for the SMPC approach can be de-
rived based on the ordered performances for the scenarios
used in the SMPC approach.

Let’s denote the performance of the resulting scenario-
based model predictive control approach under scenario si
by JSMPC

i . Then, the performances under all the selected
scenarios can be reordered as

JSMPC(1) ≤ JSMPC(2) ≤ · · · ≤ JSMPC(Ntotal), (28)

where JSMPC(o) represents the o-th smallest performance
value among JSMPC

i , i ∈ {1, . . . Ntotal}; so o is the order
index.

For the SMPC approach, we define L(v) as the probability
of the objective function value smaller than v, v ∈ R, that
is

L(v) := P {J < v} . (29)

Theorem 1. If the representative scenarios we use in
the SMPC approach are independent and identically dis-
tributed (i.i.d.), we have

P
{
L
(
JSMPC(o)

)
≤ ε

}
≥ 1− ρ, (30)

for o = 1, 2, . . . , Ntotal, provided that
o−1∑
ζ=0

(
Ntotal

ζ

)
εζ(1− ε)

Ntotal−ζ ≤ ρ. (31)

In addition, (31) is satisfied (Karg et al., 2021) if

Ntotal ≥
1

ε

(
o− 1 + ln

1

ρ
+

√
2 (o− 1) ln

1

ρ

)
. (32)

For the proof of Theorem 1, we refer to Property 3 of
Alamo et al. (2018).

The computational burden of problem PSMPC
k0

increases
rapidly as the number of scenarios grows, while less sce-
narios may negatively influence the performance of the
scenario-based approach. The performance level of SMPC
with different numbers of scenarios can be derived accord-
ing to Theorem 1, which provides an indication for the
performance of the developed SMPC approach.

4. CASE STUDY

Simulations are conducted in this section to demonstrate
the efficacy of the scenario-based MPC approach for the
timetable scheduling problem on two lines of the Beijing
subway network.

The network we use is shown in Fig. 1, and it includes two
bidirectional lines. The network consists of 19 stations with
40 platforms. The simulations are based on the passenger
OD demands of the Beijing subway network, which can
be generated according to the entering and existing flow
data. We use the data related to Line 9 and Line 14 from
7:00AM for the simulation. The passenger flow data are
recorded every half hour; thus, we set T = 1800 s. Table 1
presents the primary parameters for the simulation. In the
simulation, the MILP problems are solved by the gurobi
solver with MATLAB (R2019b).

The uncertain passenger demands are generated by Pois-
son distribution, where the passenger demands in the real-
life passenger OD data are used as the expected value.
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Fig. 4. Timetable of Line 9 (up direction) from SMPC.

To further illustrate the effectiveness of SMPC, simula-
tions are carried out under 10 different scenarios, and the
average value and the standard deviation for the basic
timetable, the timetable obtained by NMPC, and the
timetable obtained by SMPC are calculated, respectively.
Table 3 shows that SMPC has the lowest average objective
function values, while the standard deviation of SMPC is a
bit larger than that of NMPC. Compared with the average
objective function value of the basic timetable, NMPC
and SMPC have the improvement of 9.19% and 10.58%,
respectively. The simulation results imply that SMPC can
be a suitable choice to handle uncertain passenger flows
with an acceptable increase of the computational burden.

5. CONCLUSIONS

In this paper, we have investigated the real-time timetable
scheduling problem of urban rail transit networks consid-
ering uncertain passenger flows. A scenario-based MPC
approach has been adopted to handle uncertain passenger
origin-destination demands for the timetable scheduling
problem based on a passenger absorption model. For the
scenario-based MPC approach, the uncertainties are cap-
tured by several scenarios based on historical data, and the
probabilistic performance level can be derived based on
the performance of the controller under the representative
scenarios, which provides an indication for the perfor-
mance of the scenario-based MPC approach. Simulation
results indicate that, compared with the nominal MPC,
the scenario-based MPC yields a better performance with
an acceptable increase in computation time.

For future work, we will investigate how to further reduce
the solution time of the scenario-based MPC approach by
adopting a distributed control framework. The trade-off
between reducing the prediction horizon and improving
the solution quality will also be one future research topic.
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