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Abstract
Water distribution network (WDN) models are a common decision support tool for under-
standing the behavior and performance of WDNs, aiding in the planning and management
of WDN systems. The increasing availability of real-time data has recently promoted the
exploration of Data Assimilation (DA) techniques to improve these models. However, flow,
pressure and demand data are uncertain, particularly due to sensor characteristics such as pre-
cision and noise. An open question is to what extent DA can still improve hydraulic models
when the data used to this end is uncertain. This paper proposes a three-stepEnsembleKalman
Filter based DA approach for WDNs (3-EnKF-WDN), building on previous approaches, and
advancing in two main fronts: the use of extended period simulation, and the use of pressure-
dependent demand (PDD) analysis. Different scenarios considering uncertain sensor data,
with varied precision and noise, are applied to two networks of different sizes, representa-
tive of real-world WDNs. The computational demand of the 3-EnKF-WDN method is also
assessed. Results show that increasing sensor’s precision and decreasing the noise in state
measurements reduce model error, as expected. However, we also found that model errors:
1) are reduced more effectively by using 3-EnKF-WDN than by increasing sensors’ preci-
sion; 2) are not reduced if certain noise thresholds are surpassed; 3) can be reduced without
assimilating demand data if the WDNs are fully monitored with head sensors in all the nodes
and flow sensors in all the links.

Keywords Water distribution networks · Data assimilation · 3-EnKF-WDN · Ensemble
kalman filter · Measurement uncertainty · Computational demand

1 Introduction

WDNs are critical infrastructures that deliver potable water to consumers. Proper design
and operation of these networks is essential to guarantee a reliable and safe water supply,
guaranteeing public health and economic growth Adedeji et al. (2018). Hydraulic models are
used to simulate and analyzeWDNs, and are important tools to assist decisions.Model results
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can be used to design and operate WDNs, ensuring reliability and efficiency. Traditionally,
these models have been built and operated using historical data from sensors. However, the
digital transformation of the water sector is promoting Advanced Metering Infrastructure
(AMI), such as smart water meters and Supervisory Control and Data Acquisition (SCADA)
systems that open the door to real-time modelling of WDNs, which is becoming increasingly
important (Grievson et al. 2022). The use of real-time sensor data inmodels can help capturing
the complexity andvariability of real-world systems, leading to improved and timely decision-
making (Rossman 1993; Antonowicz et al. 2018). Although there are different ways to
use real-time data in modelling, the integration of technology and digitalization has given
rise to new approaches to updating model states. One of them is Data Assimilation (DA),
which has the potential of improving model accuracy in real-time by utilizing long-term
measurement data (Hill et al. 2014). DA synthesizes prior knowledge of model states with
available measurements to provide an optimized estimate of current model states and reduce
uncertainties. However, these measurements can be unstable and contain larger errors. The
ability to address measurement errors using calibration methods and efficiently utilizing a
large amount of data is challenging Zhou et al. (2018).

The use of Kalman Filters (KF) for WDNs was first introduced by Todini (1999) for
calibrating pipe roughness coefficients in WDNs with a simple linear structure. As KF can
only be used for linear systems, the ExtendedKalman Filter (EKF)was applied by Shang et al.
(2006, 2008) to estimate nodal demands in a small hypothetical network by approximating
nonlinear systems with tangent linear operators. These studies showed good results with KF
and EKF in cases of limited nonlinearity and uncertainty, but their efficacy may be limited
in highly looped networks (Van Den Bossche 2013) or the presence of large measurement
errors Shang et al. (2006, 2008).

The effectiveness of the EnKF was proven in updating water demands and water demand
model parameters for a Water Demand Forecasting Model under the assumption of known
pipe roughness values and no leakage in the system (Okeya et al. 2014). They explored the
possibility of burst detection using Kalman filtering of flow observations and forecasts from
the hydraulic model, and an extension of this study by Okeya et al. (2014) showed that the
applied methodology was effective in detecting bursts in real-time and estimating the leak
flow. Ruzza (2017) carried out a similar leak detection study in WDNs using KF, EnKF,
Ensemble Smoothing, and Normal-Score EnKF to identify nodal leakages. Ensemble-based
methods are also effective in providing stable calibration results to ensure the long-term
accuracy of models as demonstrated by Zhou et al. (2018, 2022).

EnKF avoids model linearization by simulating model states using an ensemble of param-
eters derived from Monte Carlo perturbations. Particle Filter (PF), which extends the use of
the ensemble to non-Gaussianmodels and increases the ensemble size, was successfully used
by Do et al. (2017a, b) to estimate nodal demand patterns in WDN models using measure-
ments with specific errors. A recent study by Bragalli et al. (2016) tested the use of EnKF in
WDNs using an innovative 3-step EnKF for a small WDN which showed promising results
for the capabilities of a multi-step DA in WDNs.

EnKF is an ideal and optimal method for applying DA for WDN as EnKF is stable
with large nonlinear systems and a low probability of divergence from the true value. The
computational demand of EnKF is also lower than PF (Simon 2006; Gillijns et al. 2006; Van
Den Bossche 2013).

Despite the previous research efforts, the application of DA techniques in WDNs is still
limited. In particular, the extent to which model errors can be reduced under measurement
uncertainty is still unknown. Additionally, extended-period simulations have not been carried
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out for a multi-step DA algorithm. In previous studies, performed by Bragalli et al. (2016)
and Okeya et al. (2014), Demand Driven Analysis (DDA) was used.

In this paper, a three-step Ensemble Kalman Filter-based DA for WDNs (3-EnKF-WDN)
approach is presented. The approach is innovative as the hydraulic modelling involves
extended period simulation and Pressure-Dependant Demand (PDD). The objective is to
understand to which extent model errors can be reduced under measurement uncertainty,
in particular due to sensor precision and noise, when incrementally assimilating the system
states of pressure (step 1), flow (step 2) and demand (step 3). We also propose a new evalua-
tion metric, Combined Total Variance Ratio, to quantify the overall effectiveness of this DA
process. Additional analyses include the effect of the number of ensembles in the EnKFs,
and the computational demand of 3-EnKF-WDN.

The remainder of the paper presents the methodology section, outlining the approach used
in this study. Two case studies are used to demonstrate the application of the proposed DA
method. Afterwards, the results are presented and discussed. Conclusions and findings are
drawn in the last section.

2 Methodology

The methodology consists of three parts. The first part details the implementation of the
improved DA algorithm, which starts with an initialization, and moves incrementally by
assimilating pressure, flow and demand data. The second part presents the new evalua-
tion metric, Combined Total Variance Ratio, to quantify the overall effectiveness of the
DA process. Finally, the third part includes an experimental setup to evaluate the effect of
the measurement uncertainties on the effectiveness of the DA process, the effect of different
numbers of ensembles in the EnKF and the computational demand of the DA.

2.1 Three-step Ensemble Kalman Filter-based DA forWDNs (3-EnKF-WDN)

The structure of the 3-EnKF-WDN algorithm is shown in Fig. 1, and further detailed in the
sections below.

The multi-step EnKF for WDNs involves initializing the ensemble of state estimates and
updating the ensembles with measurements of head, flow, and demands. This process is
repeated at each time step of the simulation to estimate the hydraulic state of the network
over time. The q j after the state symbol refers to the “known” demand which is used to
initialize the 3-step DA.

2.1.1 Initialization

Before proceeding with the 3-steps, it is necessary to generate the initial ensemble of states
describing our prior knowledge, using the following procedure:

1.(a) Generate an ensemble of demands (q) with a mean μq j (base demand of each node)
and variance σ 2

q j
(b) Using EPANET 2.2 modelling system and the WNTR Python library (Klise et al.

2017b, a) we compute matrices of pressure (Hqj ) and flowrate (Qqj ) initialized in the
network with the ensembles of demands (qmeas) and their averages H|q j , Q|q j , with |,
denoting the average of the respective state being calculated
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Fig. 1 Step-by-step implementation of the 3-Step DA Algorithm

(c) The number of ensembles “m” must be large enough for the estimated co-variance
matrices to be inverted

Once initialised, data assimilation is carried out for up to 3-steps depending on the available
type of measurements, as follows.

2.1.2 Step One - Assimilation of Pressure Head

Update the ensemble of state estimates with head measurements by calculating the Kalman
gain, assimilating these measurements and estimating the flow and demand, as follows:

1.(a) Calculate the ensemble mean μH and ensemble prior variance of Head PH , using Eqs.
1 and 2.

PH = 1

m − 1

m∑

j=1

[(
H|q j − μH

) (
H|q j − μH

)T ]
(1)
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μH = 1

m

m∑

j=1

H|q j (2)

(b) Calculate the Kalman Gain KH for the head using the error in the estimate and the
errors in the measurement of the head (Eq. 3)

KH = PHMT
H (MH PHMT

H + RZH )
−1

(3)

where RzH is the precision of head sensors and vzH is the noise in head sensors.
(c) Assimilate the measurements of Head (ZH ) and update the Head values (Hqj zH ), using

Eq. 4:

H|q j zH = H|q j + KH (zH − MHH|q j − vzH ) (4)

(d) Estimate Flow (Qqj zH ) using hydraulic head losses
(e) Estimate Demand (qq j zH ) using the Pipe-Node Incidence Matrix (A21) as defined by

Todini and Pilati (1988), Eq. 5.

q|q j zH = A21Q|q j zH (5)

2.1.3 Step Two - Assimilation of Flow

Update the ensemble of state estimates with measurements of flow by assimilating the mea-
surements, estimating the head and demand, and calculating the Kalman gain.

1.(a) Calculate the ensemble meanμQ and ensemble prior variance of the Flow PQ . Where;

PQ = 1

m − 1

m∑

j=1

[(
Q|q j zH − μQ

) (
Q|q j zH − μQ

)T ]
(6)

μQ = 1

m

m∑

j=1

Q|q j zH (7)

(b) Calculating the Kalman Gain KF for flow using the error in the estimate and the errors
in the measurement of flow (Precision of flow sensors; RzQ , noise in flow sensors; vzQ)

KQ = PQM
T
Q(MQPQM

T
Q + RZQ )

−1
(8)

(c) Assimilate the measurements of Flow (ZQ) and update the Flow values (Qqj zH zQ )

Q|q j zH zQ = Q|q j zH + KQ(zQ − MQQ|q j zH − vzQ) (9)

(d) Estimation of Demand (qq j zH zQ ) using Pipe-Node Incidence Matrix(A21 )

q|q j zH zQ = A21Q|q j zH zQ (10)

(e) Estimation of Head (Hqj zH zQ ) using hydraulic head losses and Pipe-Node Incidence
Matrices (A11, A12 and A21) as detailed in Bragalli et al. (2016)
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2.1.4 Step Three - Assimilation of Demand

Update the ensemble of state estimates with measurements of demands by assimilating the
measurements, estimating the flow and head, and calculating the Kalman gain.

1.(a) Calculate the ensemble mean μ′
Q and ensemble prior variance of the Qqj zH zQ

P ′
Q = 1

m − 1

m∑

j=1

[(
Q|q j zH zQ − μ′Q

) (
Q|q j zH zQ − μ′Q

)T ]
(11)

μQ = 1

m

m∑

j=1

Q|q j zH zQ (12)

(b) Calculate the Kalman Gain K ′
Q for flow prime using the error in the estimate and the

errors in the measurement of demands (Precision of demand sensors; Rzq , noise in
demand sensors; vzq ).

K ′Q = P ′Q A21M
T
q (Mq A21P ′QMT

q + RZq )
−1

(13)

(c) Assimilate the measurements of demands(zq ) and update flow values (Qqj zH zQzq )

Q|q j zH zQzq = Q|q j zH zQ + K ′Q(zq − Mq A21Q|q j zH zQ − vzq) (14)

(d) Estimate Demand (qq j zH zQzq ) using Pipe-Node Incidence Matrix(A21)

q|q j zH zQzq = A21Q|q j zH zQzq (15)

(e) Estimate Head (Hqj zH zQzq ) using hydraulic head losses and Pipe-Node Incidence
Matrices (A11, A12 and A21) as detailed in Bragalli et al. (2016)

2.2 EvaluationMetric

The effectiveness of the DA can be estimated using the Total Variance (TV), Eq. 16, as
suggested by Bragalli et al. (2016).

T V {⊗} = 1

S

S∑

i=1

⎛

⎝(⊗i − ⊗true
i )2 + 1

S

m∑

i=1

⎡

⎣ 1

m(m − 1)

m∑

j=1

(
⊗ j

i − ⊗i

)2
⎤

⎦

⎞

⎠ (16)

where T V is the Total Variance, ⊗ is the state variable (either H , Q or q), ⊗ is the
ensemble mean, S is the number of state variables (i.e., number of nodes or pipes), m is
the number of ensembles, i is the iterator for the state variable and j is the iterator for the
ensembles.

However, for extended period simulation, we use the daily average T V value, obtained
by dividing T V by the number of time steps used for the DA.

T V R
{⊗} = T V

{⊗}

T V⊗ (17)

where T V R
{⊗}

is the Total Variance Ratio of the system state, T V
{⊗}

is the posterior
system state assimilation (either 1 step, 2 steps assimilated), and T V⊗ is the prior system
state ⊗ without the assimilation of measurements from the current step.

123

3202 I.M. Fayaz et al.



To quantify the overall effectiveness of the implemented DA method, the T V values for
each system state are normalized to obtain a Total Variance Ratio (T V R), which are averaged
to obtain aCombinedTotalVarianceRatio (CTV R), which indicates the overall effectiveness
of all system states (head, demand and flow) of all assimilation steps.

CTV R = 1

N

[
1

t

N∑

i=1

T V R⊗H + T V R⊗Q + T V R⊗q

]
(18)

where CTV R is the Combined Total Variance Ratio, N is the number of system states
assimilated and being combined, T V R⊗k is the Total Variance Ratio for System State, and
k is either head (H ), flow(Q) or demand (q).

2.3 Evaluating the effect of measurement uncertainty

Measurements are always affected by a degree of uncertainty. In the case of WDNs, mea-
surement uncertainty depends on the sensors used for measuring the system’s states. The
precision and noise of these sensors are important in determining how well the sensors can
capture the true states of the system.

Therefore, it is important to identify the limit of applicability of the proposed 3-step DA
algorithm under uncertain observations To this end, we propose a number of experiments
to test the effect of uncertainty due to sensor precision and uncertainty due to sensor noise,
applied to the measurements of head, flow and demand. On the one hand, to investigate the
effect of the uncertainty due to noise, six different levels of noise were applied to each state
measurement. The selected noise values were varied using a normal distribution with a 5%
standard deviation. In total 600 simulations were carried out for each sensor type. On the
other hand, the effect of the uncertainty due to sensor precision was investigated applying
six different precision values for each state of sensor, and for all the possible combinations
of sensor precision values.

3 Case Studies

Two networks of different sizes which are representative of real-world WDNs are taken for
this study.

The first case study is the Modena network which is the sameWDN used by Bragalli et al.
(2016); Han et al. (2020); Bhave and Gupta (2006) and in many other similar studies. The
network consists of 317 pipes, 268 nodes and 4 reservoirs with a fixed head between 72.0 m
and 74.5 m. The network has a total length of 71. 8 km of pipes with diameters between 100
mm and 400 mm. Although the network of Modena is small, the topology and distribution
of the network make it suitable for the proposed research as the network is comparable to
real world small WDNs as seen in Fig. 2.

The second case study is the Five Reservoir network (FiveRes), which is much larger
than Modena. The network consists of 1278 pipes, 935 nodes and 5 reservoirs Zheng and
Zecchin (2014). The layout of the network is given in Fig. 3. The network has a total length
of 253.7 km of pipes with a diameter of 600 mm. The FiveRes network provides a suitable
comparison of how the DA algorithm can handle larger and more complex WDN models.

Themonitoring network inModena ismore distributed compared to the FiveResNetwork
as seen in Fig. 4. The number of sensors is also much less in FiveRes compared to the size
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Fig. 2 Layout of the Modena network

of the network as seen in Table 1. Hence, it may not provide a good representation of the
hydraulic states within the WDN for FiveRes. As such the experiments for measurement
uncertainty were repeated for the FiveRes network with sensors located at all the nodes and
links.

4 Results and Discussion

The methodology in Fig. 1 was applied to the networks of Modena and FiveRes, modifying
precision and noise of the measurements and evaluating their effect on the models’ error.

4.1 Uncertainty Due to Noise

In the case of Modena, as seen in Fig. 5 the DA method is most sensitive to noise in the
flow measurements, and any noise beyond one litre per second results in the DA algorithm
being ineffective, as CTV R exceeds one. The threshold of noise for the head is between 0.1
and 0.2 meters of noise. Noise in the measurement of demand, on the other hand, is resilient
to an increase in noise up to 0.5 litres per second. Therefore, in the case of Modena, both
flow and head sensors must be calibrated regularly to ensure that their accuracy remains
within the effective threshold for DA. However, demand sensors require less maintenance
and calibration as they can be effective to a higher threshold of noise compared to the other
state measurement sensors.

The results for the FiveRes network show that increasing noise in the measurement
of the systems states results in an increase in CTVR. However, analyzing the results for
FiveRes in Fig. 6, we observed both head and demand exhibit significant variation in results
when a suboptimal monitoring network in the FiveRes WDN is used compared to the fully
monitored network as shown in Table 1.
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Fig. 3 Layout of the FiveRes network

1. Head Sensors:

(a) The DA remains effective for the entire range of heads tested based on the minimum
CTVR

(b) CTVR exceeds one even at the lowest noise levels, as indicated by the maximum
CTVR

(c) When the network is fully monitored, noise is not acceptable in head sensors for
successful DA.

2. Demand Sensors:

(a) Demand sensors become completely ineffective beyond a noise level of 0.8 litres per
second.

(b) Demand sensors show the maximum CTVR exceeding the threshold of one even at
very low noise levels.
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Fig. 4 Monitoring Networks for Head, Demand and Flow Sensors in Modena (Left) and FiveRes WDN
(Right)

(c) When the network is fully monitored, the DA becomes less dependent on demand
sensors and the noise in demand sensors does not have a significant impact on the
effectiveness of the DA
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Table 1 Configuration of sensors in the tested case studies

WDN Head Sensors (sH)) Demand Sensors (sq) Flow Sensors (sQ)

Modena 12 11 4

FiveRes 6 25 5

FiveRes (Fully monitored) 935 935 1278

3. Flow Sensors:

(a) The DA remains effective until approximately 2 lps based on the minimum CTVR.
(b) The maximum CTVR shows that the DA is not effective at all ranges similar to head

and demand.
(c) When the network is fully monitored, noise is not acceptable in flow sensors for

successful DA. The results consistently exceed the CTVR threshold of one for all
noise levels beyond zero.

In general, it is observed that an increase in the noise in state measurements results in
reduced effectiveness of the 3-EnKF-WDN, as the CTV R increases when noise increases.
Recall that CTV R > 1 indicates that the prior state yields less error compared to the
assimilated states, and therefore 3-EnKF-WDN is ineffective.

4.2 Uncertainty Due to Sensor Precision

Figure 7 shows how the average T V of flow varies with varying precision of sensors for
Modena. It can be seen from the sub-plots that, in general, an increase in the precision value
of flow sensors results in an increase in the average T V of flow. Figure 8 shows a close-up
of one of the sub-plots from Fig. 7, when the precision of demand sensors (Rzq ) is fixed at
0.1 litres/second and the precision of head sensors (RzH ) is fixed at 0.1 meters. It shows that
the average total variance of flow states increases with the increased precision value of flow
sensors.

These findings suggest that an additional step of DA has a greater impact on decreasing
the average T V of flow (i.e., on reducing the model error), than increasing the precision of
flow sensors. In practical cases, this implies that operators may opt for less precise sensors,
but a variety of sensors, to perform a multi-step DA and achieve better results. As seen in
Fig. 8, carrying out a multi-step DA seems to be much more effective in reducing model error
than assimilating just one system state. Also, the precision of the sensor does not improve the

Fig. 5 CTVR against Noise in statemeasurements. Head (Left), Demand (Middle), Flow (Right), - forModena
Network
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Fig. 6 CTVR against Noise in state measurements. Head (Top), Demand (Middle), Flow (Bottom), - for
FiveRes (left) and Fully Monitored FiveRes (Right)
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Fig. 7 Average Total Variance of Flow against precision of Sensors for Modena Network

results more considerably than the improvement obtained by an additional DA step. Similar
results were obtained for both FiveRes and Modena WDNs with slight variations which
may be due to factors such as the network topology, and hydraulic state of the WDN, among
others.

Fig. 8 Average TV of Flow when Rzq: 0.1, RzH: 0.1 against precision of Flow Sensors for Modena WDN
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Fig. 9 Average TV for different numbers of ensembles for Modena WDN

4.3 Discussion on Number of Ensembles and Computational Demand

As eachmember of the ensembles in the EnKF is an independent realization of the model, we
discuss how the number of ensembles affect the performance of the proposed 3-step EnKF.
Generally, the higher the number of ensembles, the better the estimation of uncertainty, and
computational demand is greater (Mulder 2014). Hence the implemented 3-step EnKF was
simulated with ensembles between 5 members up to 100 members.

Figure 9 show that the increase in the number of ensembles improves the results of the DA
as the average T V decreases in all cases with the increase in the number of ensembles used by
the EnKF. It can also be seen that the consecutive steps of assimilation result in a reduction

Fig. 10 Simulation time against the number of ensembles for Modena and FiveRes Network
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Table 2 Computer systems used for testing the proposed DA algorithm

Computer System System 1 (Laptop) System 2 (Desktop) System 3 (HPC - Snellius)

Processor Intel i5-8250 Ryzen 9-5900 AMD EPYC 7H12 (2x)

(Clock Speed) - 4 Cores - 12 Cores - 128 Cores

(1.60 - 3.40 GHz) (3.0 - 4.7 GHz) (2.6 - 3.3 GHz)

Memory (RAM) 1 x 8GB (2400 MHz) 2 x 32GB (3466 MHz) 16 x 16GB (3200 MHz)

Storage Type SSD - NVMe SSD - NVMe SSD - NVMe

Operating System Windows Windows Linux

in the model error as well. The asymptotic behaviour also indicates that few ensembles
yield high average T V , but that it reduced rapidly as more ensembles are added. However,
the rate of reduction of T V starts to be marginal after 30 to 50 ensembles, indicating that
more ensembles are not necessary. This behaviour was seen for both Modena and FiveRes
networks.

The simulation time was compared for the different number of ensembles using various
configurations of computer systems. It is observed that an increase in the number of ensembles
from 5 to 100 results in an increase in simulation time from 37 seconds to 593 seconds for
Modena and 269 seconds to 4464 seconds for FiveRes. With the increase in the size of
the network from Modena (268 nodes, 317 links) to FiveRes (935 Nodes, 1278 Links) the
increase in simulation time is exponential. This can be seen by the increase in the gradient
of the graph in Fig. 10. Although the increase in the size of the network is ≈ 3.5 times, the
increase in simulation time is by ≈ 7.5 times.

In addition, 3-EnKF-WDN was tested on three different computer systems with different
computational resources. The specifications of these systems are given in Table 2.

From the three different computer systems tested, the processors and their respective clock
speeds show the most significant effect on the computational time. The current implementa-
tion of the algorithm runs serially without any parallel components, as such the computation
time depends on the single-core clock speeds of the processors. Hence the results seen from
Fig. 11 are representative of the base and boosted clock speeds of the processors used in the
systems in Table 2 If the ensembles are generated in parallel, it will bring about a significant

Fig. 11 Simulation time against the number of ensembles for Modena and FiveRes WDNs using different
computer systems
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improvement in the computation time of the 3-EnKF-WDN. This will allow for the use of
the 3-EnKF-WDN for larger WDNs, for running it for more time-steps without a significant
computational burden.

5 Conclusions and Recommendations

In this paper, 3-EnKF-WDN, a 3-step DAmethod that assimilates pressure, flow and demand
data, running a hydraulicmodel in extended-period simulation and under PDAwas presented,
along with a new evaluation metric called Combined Total Variance Ratio. The method was
applied to two networks to evaluate its effectiveness in reducing the error in the hydraulic
model under uncertain measurements.

The study demonstrated the importance of considering the effect of measurement uncer-
tainty when using the 3-step DA algorithm. Two sources of uncertainty in the measurements
were explored, namely precision and noise. It was found that the precision of sensors and the
noise in measurements affect the efficacy of the 3-step DA.

When noise is added to the measurements, 3-EnKF-WDN becomes generally ineffective,
within a small range of variation. The effect of the noise is significant in extensivelymonitored
WDN. The findings also confirm the importance of maintaining the sensors with noise as
small as possible. This could be achieved by carrying out regular maintenance and calibration
of sensors. In practical applications, it is recommended to carry out simulations like the
experiments with noise-in-state measurements used in this study to determine the respective
thresholds of noise up to which the 3-step DA is still effective for the respective WDN.

It was also found that having high-precision sensors measuring one variable brings less
reduction in model error than having less precise sensors measuring more variables.

The study also demonstrated that 30 to 50 ensembles are enough for the 3-EnKF-WDN
to perform well, on the two studied networks, and that increasing ensembles beyond this
number only introduces unnecessary computational burden.

It was also found that sensor data of demand do not improve themodel errorwhen applying
3-EnKF-WDNwhen theWDN is fully monitored (i.e., with head sensors in all the nodes and
flow sensors in all the links). This is similar to the results obtained by Bragalli et al. (2016)
where the T V R(q) of demand was found to be the least sensitive to reduction in the T V Rs
for the multi-objective optimization carried out in their study.

The proposed method has the potential to be applied to diverse WDN problems such as
leak detection, anomaly detection, demand estimation, and water quality evaluation. This can
be achieved by adapting the multi-step DA algorithm for the required purpose.

Some limitations of the study include the heavy computational time required. Paralleliza-
tion of the algorithm using amethod that can run hydraulic simulations in parallel is a solution
to be explored in future research. In addition, the effect of the order and synchronicity of the
assimilated data needs to be established. Other explorations to be made include the effect of
the standard deviation or variation of the ensembles of demands and the effect ofmeasurement
uncertainty on the Kalman Gain.
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