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S҂ѺѺѮѿ҆

Automatically optimizing robotic behavior to solve complex tasks has been one of
the main, long-standing goals of Evolutionary Robotics (ER). When successful, this
approach will likely fundamentally change the rate of development and deployment
of robots in everyday life. Performing this optimization on real robots can be risky
and time consuming. As a result, much of the work in ER is done using simulations
which can operate many times faster than realtime. The only downside of this, is
that, due to the limited fidelity of the simulated environment, the optimized robotic
behavior is typically different when transferred to a robot in the real world. This
difference is referred to as the reality gap.

Of the several methods developed to find a bridge to the reality gap, one of the
most effective is the envelope of noise by Jakobi. This work showed that if you
apply appropriate levels of noise in simulation to the environment and robot, the
optimized behavior is more robust to the differences between simulation and the real
world. Adding noise in this way is a form of abstraction, separating the vehicle from
reality. This work showed that abstracting away from the real world can increase
the reliability of the optimized behavior. Despite the fact that this added noise limits
the ability of the optimization to find the truly optimum behavior, the trade-off in favor
of robustness is arguably worth it.

Abstraction is a tool often used in several fields to improve robustness of controlled
systems. A good example of this is in control theory, where cascaded or nested con-
trol systems have several properties that help to improve robustness. The closed-
loop control scheme helps to actively reduce errors caused by small differences
in the vehicle manufacturing and assembly or environmental disturbances. This
thesis investigates how abstraction can be used to improve the robustness of the
robotic behavior to the reality gap, driven by the following problem statement:

How can abstraction be used to bridge the reality gap in evolutionary robotics?

In this thesis, we investigate three properties of closed-loop control systems that
can help bridge the reality gap.

First, the cascaded or nested structure of the control system helps to segment the
larger control problem into a set of smaller, simpler and more tractable problems.
This improves the ability of the control designer to identify and target shortcomings
in the control scheme. This is in stark contrast to typical ER approaches which use
neural networks to control the robotic platform. These black-box controllers try to
optimize a complex, global solution to the task at hand. Although powerful, this

xi



xii SҁѹѹѭѾ҅

approach often results in fragile behavior which quickly breaks down when mov-
ing to the real world. Abstracting away from these global controllers may improve
robustness. This concept leads to the first research question:

RQ1: How can abstraction in the behavioral representation help in crossing the
reality gap?

To answer this question, we investigated the use of a more intelligible behavioral
representation for the robotic behavior. This was tested by optimizing behavior for
the 20 g DelFly Explorer flapping-wing Micro Air Vehicle (MAV) using a Behavior
Tree representational structure. The DelFly was tasked to fly around a small room,
avoiding the walls while searching for, and eventually flying through, an open win-
dow.

After being trained in simulation with success rates above 85%, there was a clear
reality gap when testing on the real vehicle which initially showed a 0% success rate.
The intelligible nature of the Behavior Tree allowed the human operator to quickly
understand the desired robotic behavior and identify the source of the reality gap,
in this case due to biases in the sensing and actuation of the real world vehicle.
The structure of the Behavior Tree also easily lends itself to simple modification.
This allowed the user to update the behavior, actively reducing the reality gap and
improving performance to 54%. Although lower than observed in simulation, this
result was higher than the baseline user-designed behavior at 46%. The remaining
difference in performance between the simulated and real flights is likely due to the
unmodeled flight dynamics of the DelFly and the presence of unmodeled external
disturbances such as gusts.

The Behavior Tree achieves this increased intelligibility at the cost of representa-
tional power as compared to the neural network. With its subsumption-like architec-
ture, the behavior abstracts away from a global input-output mapping, segmenting
the actions to a finite set of options. For the behavior to remain intelligible, the trees
must remain small, somewhat limiting the ability of the evolutionary optimization
to find the ideal solution to the problem. That said, without the intelligibility of this
representational structure the optimized behavior would have been useless once
transferred. This trade-off therefore seems worthwhile. Abstracting the behavioral
representation can help to speed-up the re-optimization process by segmenting the
behavior into simpler sub-behaviors.

Second, closed-loop control systems use feedback to continuously reduce any er-
ror between a desired state and the actual vehicle state. Most implementations of
ER tend to use the simplest control method, directly driving the actuators of the
robot with open loop control and directly feeding raw sensor information to the con-
trol system, with little to no preprocessing. This leads to an inherent sensitivity of
the behavior to the performance of the sensors and actuators, leading to fragile
behavior. The use of closed-loop control may be a powerful tool in rejecting en-
vironmental changes and disturbances, as well as biases in the vehicle control,
facilitating to robust operations. This leads to the second research question:
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RQ2 - How can abstraction in the control output be used to improve the robustness
of a robot to differences between simulation and reality?

For this, we optimized two different neurocontrollers tasked to control a homoge-
neous swarm of three quadcopters, to form a predetermined pattern from a random
initial distribution. The first neurocontroller’s output directly set the rotor speeds of
the quadcopter, as would typically be done in ER. Alternatively, the second neu-
rocontroller’s output was used to set the desired vehicle velocity to the onboard
closed-loop controller, representing a significant abstraction in control. Although
both controllers were able to robustly achieve the desired swarming formation in
simulation, only the abstracted controller worked when transferred to the real world.
The observed behavior was near identical to that seen in simulation.

The use of closed-loop controllers helps to increase the robustness of the opti-
mized behavior, actively rejecting environmental disturbances and adjusting for any
unique vehicle bias due to manufacturing and operational differences. Additionally,
the abstraction allowed the simulation to be significantly sped-up. The abstracted
neurocontroller only required a simple velocity model representing the response
of the closed-loop controller, whilst the non-abstracted neurocontroller required a
significantly higher fidelity aerodynamic model.

Lastly, unlike the tightly coupled sensory-motor coordinated systems typically opti-
mized, closed-loop systems are generally sensor agnostic. These systems simply
must generate an appropriate signal to identify and reduce the error of the con-
trolled system. This increases robustness by ensuring that the controlled system is
no longer tightly coupled to the sensory input. This is contrary to the typical ER ap-
proach where often basic sensors such as a set of infrared or light sensitive sensors
are employed. This approach is not only difficult to scale to more complex sensors
such as optical cameras, it also makes the optimized robotic behavior sensitive to
any variation in the inputs. This leads us to the third and final research question:

RQ3 - How can abstraction on the sensory input be used to reduce the sensitivity
of the robotic behavior to the reality gap?

This was investigated by optimizing high speed landing behavior for a quadcopter
MAV using the divergence of the optical flow field from a visual camera, and its
derivative, as the only input to the control system. Unlike typical applications of
automated behavioral development, this abstracted input gives the user the free-
dom to use any sensor that can generate this signal, reducing the dependence
of the robotic behavior to the input used. A reality gap was artificially induced by
performing real world experiments using both a conventional CMOS camera and
the novel event-based Dynamic Vision Sensor to generate the divergence input
signal. These two systems not only produce different input signal responses than
each other, but also significantly different than those used to optimize the robotic
behavior in simulation.

Despite these clear differences in the input data, the resultant landing behavior of
the real world vehicle was very similar to that seen in simulation. This demonstrates
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how abstraction provides the system developer with tools to scale the robotic appli-
cation to various vehicles with different sensor solutions. Additionally, it improves
the robustness of the optimized behavior to environmental uncertainties.

In conclusion to the problem statement, abstraction can indeed be used as a tool
to balance the implicit trade-off of optimization power and robust transfer from sim-
ulation to the real world. With this tool, the user is empowered to effectively control
the reality gap. With limited reduction in the optimization power, robotic behavior
can be developed in simulation and more effectively transferred to the real world.

Generally, the focus in the literature has been to either improve the individual simu-
lator elements of the environment, robotic sensors or actuator systems to enhance
simulation fidelity. Alternatively, some work has focused on some form of online
re-optimization to find a new behavior in reality which achieves better performance.
In this thesis we focus on ensuring that the robotic behavior can be robustly trans-
ferred from simulation to reality by tackling the behavioral reality gap. We show that
if the simulation sufficiently represents the real world, the behavior in simulation will
result in similar performance in reality. The problem of crossing the reality gap
therefore changes from directly optimizing performance to increasing the similarity
of the behavior in reality to that observed in simulation. In combination with differ-
ing forms of abstraction, the required simulation fidelity is often much lower than
conventional approaches allowing for a notable reduction in optimization time. This
simple change in perspective radically changes the goal of the transfer problem,
with significant results.

This thesis is just the first step in fully understanding the impact of abstraction on
the optimization of the robotic behavior. A significant area for future work is in bet-
ter understanding the factors that affect the trade-off between optimization power
and robustness to differences in the simulation and reality. How much abstraction
is sufficient or excessive? Here, evaluation methods similar to controlability and
observability analysis in control theory, would help making decisions on the level of
abstraction appropriate for a given task.

This thesis was mainly concerned with the reality gap, but abstraction may be used
as a tool to improve robustness for the wider transfer problem. Additional research
is required to determine how this can be effectively used.

Aside from the reality gap, this thesis also showed that abstraction can help to
segment the optimization task, reducing the time required to achieve reliable per-
formance. This technique may be used to speed-up the online development of
behavior in embodied evolutionary optimization, another promising area for future
research.



SѮѺѲѻ҃ѮҁҁѶѻѴ

Het automatisch optimaliseren van robotgedrag om complexe taken op te lossen
is één van de belangrijkste, al lang bestaande doelen van Evolutionary Robotics
(ER). Wanneer deze aanpak succesvol is, zal dit waarschijnlijk de snelheid van
ontwikkeling en inzet van robots in het dagelijks leven fundamenteel veranderen.
Het uitvoeren van deze optimalisatie op echte robots kan riskant en tijdrovend zijn.
Als gevolg hiervan wordt veel van het werk in ER gedaan met behulp van simulaties
die vele malen sneller functioneren dan in het echt. Het enige nadeel hiervan is
dat, vanwege de beperkte betrouwbaarheid van de gesimuleerde omgeving, het
geoptimaliseerde robotgedrag vaak anders is wanneer het wordt overgebracht naar
een echte robot. Dit verschil wordt de reality gap genoemd.

Van de verschillende methoden die zijn ontwikkeld om een brug te slaan naar de
reality gap, is één van de meest effectieve de omhullende ruis van Jakobi. Dit werk
toonde aan dat als je geschikte niveaus van ruis toepast in simulatie op de omgeving
en robot, het geoptimaliseerde gedragminder gevoelig is voor de verschillen tussen
simulatie en de echte wereld. Ruis op deze manier toevoegen is een vorm van
abstractie, die het voertuig van de werkelijkheid scheidt. Dit werk toonde aan dat
abstraheren van de echte wereld de betrouwbaarheid van het geoptimaliseerde
gedrag kan vergroten. Ondanks het feit dat deze toegevoegde ruis het vermogen
van de optimalisatie beperkt om het werkelijk optimale gedrag te vinden, is de afruil
ten gunste van de robuustheid aantoonbaar de moeite waard.

In verschillende vakgebieden is abstractie een tool die vaak gebruikt wordt om de
robuustheid van gecontroleerde systemen te verbeteren. Een goed voorbeeld hier-
van is de besturingstheorie, waar trapsgewijze- of geneste besturingssystemen ver-
schillende eigenschappen hebben die bijdragen aan het verbeteren van de robuust-
heid. Het gesloten-lusbesturingsschema helpt om fouten die worden veroorzaakt
door kleine verschillen in de voertuigfabricage en -assemblage of omgevingsstorin-
gen actief te verminderen. Dit proefschrift onderzoekt hoe abstractie kan worden
gebruikt om de robuustheid van het robotgedrag in de werkelijkheid te verbeteren,
aangedreven door de volgende probleemstelling:

Hoe kan abstractie worden gebruikt om de reality gap in evolutionaire robotica te
overbruggen?

In dit proefschrift onderzoeken we drie eigenschappen van gesloten-lusbesturings-
systemen die kunnen helpen de reality gap te overbruggen.

Ten eerste helpt de trapsgewijze- of geneste structuur van het besturingssysteem
het grotere besturingsprobleem te segmenteren in een reeks kleinere, eenvoudi-
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gere en meer handelbare problemen. Dit verbetert het vermogen van de ontwerper
van de besturing om tekortkomingen in het besturingsschema te identificeren en
hierop te richten. Dit staat sterk in contrast met gebruikelijke ER-benaderingen die
neurale netwerken gebruiken om het robotplatform te besturen. Deze black-box-
controllers proberen een complexe, algemene oplossing voor de betreffende taak
te optimaliseren. Hoewel dit succesvol is, resulteert deze aanpak vaak in fragiel
gedrag dat geen standhoudt als het in de echte wereld wordt toegepast. Het ab-
straheren van deze globale controllers kan de robuustheid verbeteren. Dit concept
leidt tot de eerste onderzoeksvraag:

RQ1: Hoe kan abstractie in de gedragsrepresentatie helpen om de reality gap te
overbruggen?

Om deze vraag te beantwoorden, onderzochten we het gebruik van een meer be-
grijpelijke gedragsrepresentatie voor het robotgedrag. Dit werd getest door het ge-
drag te optimaliseren voor de 20 g DelFly Explorer flapping-wing Micro Air Vehicle
(MAV) met behulp van een representatieve structuur van de behaviour tree. De
DelFly kreeg de opdracht om door een kleine kamer te vliegen en de muren te ont-
wijken, terwijl ze op zoek waren naar een open raam, om hier uiteindelijk doorheen
te kunnen vliegen.

Nadat in simulatie getraind was met succespercentages boven 85%, was er een
duidelijke reality gap bij het testen op het echte voertuig, dat in eerste instantie een
succespercentage van 0% liet zien. De begrijpelijke aard van de Behavior Tree liet
de menselijke bestuurder toe om snel het gewenste robotgedrag te begrijpen en de
bron van de reality gap te identificeren, in dit geval als gevolg van vooroordelen in
de waarneming en activering van het echte voertuig. De structuur van de behavior
tree leent zich ook gemakkelijk voor eenvoudige aanpassingen. Hierdoor kon de
gebruiker het gedrag bijwerken, de reality gap actief verkleinen en de prestaties
verbeteren tot 54%. Hoewel lager dan waargenomen in simulatie, was dit resul-
taat hoger dan het door de gebruiker ontworpen gedrag van 46%. Het resterende
verschil in prestaties tussen de gesimuleerde en echte vluchten is waarschijnlijk te
wijten aan de ongemodelleerde vluchtdynamiek van de DelFly en de aanwezigheid
van ongemodelleerde externe verstoringen zoals windvlagen.

De behavior tree bereikt deze toegenomen begrijpelijkheid ten koste van het re-
presentatievermogen in vergelijking met het neurale netwerk. Met zijn subsumptie-
achtige architectuur, abstraheert hij het gedrag van een globale input-output map-
ping, waarbij de acties uiteindelijk worden gesegmenteerd tot een reeks aan op-
ties. Om het gedrag begrijpelijk te houden, moeten de trees klein blijven, wat het
vermogen van de evolutionaire optimalisatie om de ideale oplossing voor het pro-
bleem te vinden enigszins beperkt. Dat gezegd hebbende, zonder de begrijpelijk-
heid van deze representatiestructuur zou het geoptimaliseerde gedrag nutteloos
zijn geweest na overdracht. Deze afweging lijkt daarom de moeite waard. Het sa-
menvatten van de gedragsrepresentatie kan helpen het heroptimalisatieproces te
versnellen door het gedrag te segmenteren in eenvoudigere subgedragingen.
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Ten tweede gebruiken gesloten-lusbesturingssystemen terugkoppeling om continu
een fout tussen de gewenste toestand en de actuele voertuigstatus te verminde-
ren. De meeste implementaties van ER hebben de neiging om de eenvoudigste
besturingsmethode te gebruiken. Hierbij worden de actuatoren van de robot direct
bestuurd met open-lusbesturing en onbewerkte sensorinformatie direct aan het be-
sturingssysteem toegevoerd, met weinig of geen voorverwerking. Dit leidt tot een
inherente gevoeligheid van het gedrag voor de prestaties van de sensoren en actua-
toren, wat leidt tot fragiel gedrag. Het gebruik van gesloten-lusbesturingssystemen
kan een sterk hulpmiddel zijn bij het afwijzen van veranderingen in de omgeving
en verstoringen, evenals vooroordelen in de voertuigbesturing, hetgeen robuuste
operaties mogelijk maakt. Dit leidt tot de tweede onderzoeksvraag:

RQ2 - Hoe kan abstractie in de besturingsoutput worden gebruikt om de robuustheid
van een robot te verbeteren voor verschillen tussen simulatie en realiteit?

Hiervoor hebben we twee verschillende neurocontrollers geoptimaliseerd om een
homogene zwerm van drie quadcopters te besturen, en hiermee een vooraf bepaald
patroon te vormen uit een willekeurige initiële verdeling. De output van de eerste
neurocontroller stelde de rotorsnelheden van de quadcopter rechtstreeks in, zoals
normaal in ER wordt gedaan. Als alternatief werd de uitvoer van de tweede neuro-
controller gebruikt om de gewenste voertuigsnelheid in te stellen op de ingebouwde
gesloten-lusbesturingssysteem, die een significante abstractie bij de besturing ver-
tegenwoordigt. Hoewel beide besturingssystemen de gewenste zwermvorming in
de simulatie robuust konden realiseren, werkte alleen de geabstraheerde bestu-
ringssysteem bij overdracht naar de echte wereld. Het waargenomen gedrag was
vrijwel identiek aan dat wat werd gezien in de simulatie.

Het gebruik van gesloten-lusbesturingssystemen helpt om de robuustheid van het
geoptimaliseerde gedrag te vergroten, actief omgevingsverstoringen af te wijzen
en aan te passen voor elke unieke vooroordeel van het voertuig als gevolg van
fabricage- en operationele verschillen. Bovendien maakte de abstractie het moge-
lijk dat de simulatie aanzienlijk versneld werd. De geabstraheerde neurocontroller
vereiste slechts een eenvoudig snelheidsmodel dat de respons van de gesloten-
lusbesturingssystem weergeeft, terwijl de niet-geabstraheerde neurocontroller een
aërodynamisch model met aanzienlijk hogere betrouwbaarheid nodig had.

Ten slotte zijn, in tegenstelling tot de nauw gekoppelde sensor-motor gecoördi-
neerde systemen, doorgaans geoptimaliseerde gesloten-lusbesturingssystem zijn
in het algemeen sensor agnostisch. Deze systemen moeten eenvoudig een ge-
schikt signaal genereren om de fout van het gecontroleerde systeem te identifice-
ren en te verminderen. Dit verhoogt de robuustheid door ervoor te zorgen dat het
gecontroleerde systeem niet langer strak is gekoppeld aan de sensorische input.
Dit is in strijd met de typische ER-benadering waarbij vaak basissensoren zoals
een reeks infrarood- of lichtgevoelige sensoren worden gebruikt. Deze benade-
ring is niet alleen moeilijk te schalen naar meer complexe sensoren zoals optische
camera’s, maar maakt ook het geoptimaliseerde robotgedrag gevoelig voor elke
variatie in de ingangen. Dit leidt ons naar de derde en laatste onderzoeksvraag:
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RQ3 - Hoe kan abstractie van de sensorische input worden gebruikt om de gevoe-
ligheid van het robotgedrag voor de werkelijkheid te verkleinen?

Dit werd onderzocht door het landingsgedrag bij hoge snelheden van een quadcop-
ter MAV te optimaliserenmet behulp van de divergentie van het optische stroomveld
van een visuele camera en de afgeleide daarvan als de enige input voor het be-
sturingssystem. In tegenstelling tot typische toepassingen van geautomatiseerde
gedragsontwikkeling geeft deze geabstraheerde input de gebruiker de vrijheid om
elke sensor te gebruiken die dit signaal kan genereren, waardoor de afhankelijk-
heid van het robotgedrag ten opzichte van de gebruikte input wordt verminderd.
Een reality gap werd kunstmatig veroorzaakt door het uitvoeren van experimenten
uit de echte wereld met behulp van zowel een conventionele CMOS-camera als de
nieuwe op gebeurtenissen gebaseerde Dynamic Vision Sensor om het divergentie-
inputsignaal te genereren. Deze twee systemen produceren niet alleen verschil-
lende reacties van het inputsignaal ten opzichte van elkaar, maar ook significant
verschillend van die worden gebruikt om het robotgedrag in de simulatie te optima-
liseren.

Ondanks deze duidelijke verschillen in de inputgegevens, was het resulterende lan-
dingsgedrag van het echte voertuig in de praktijk erg vergelijkbaar met wat werd ge-
zien in de simulatie. Dit toont aan hoe abstractie de systeemontwikkelaar tools biedt
om de robottoepassing te schalen naar verschillende voertuigen met verschillende
sensoroplossingen. Bovendien verbetert het de robuustheid van het geoptimali-
seerde gedrag naar omgevingsonzekerheden.

Als conclusie op de probleemstelling kan abstractie inderdaad worden gebruikt als
een hulpmiddel om de impliciete afweging van optimaliseringsvermogen en de ro-
buuste overdracht van simulatie naar de echte wereld in evenwicht te brengen.
Met deze tool is de gebruiker bevoegd om de reality gap effectief te beheersen.
Met een beperkte vermindering van de optimalisatiekracht kan robotgedrag wor-
den ontwikkeld in simulatie en effectiever worden overgedragen naar een robot de
echte wereld.

Over het algemeen lag de nadruk in de literatuur op het verbeteren van de individu-
ele simulatorelementen van de omgeving, robotsensoren of actuatorsystemen om
de simulatienauwkeurigheid te verbeteren. Als alternatief heeft een deel van het
werk zich gericht op een vorm van online heroptimalisatie om een nieuw gedrag in
de werkelijkheid te vinden dat betere prestaties levert. In dit proefschrift richten we
ons erop dat het robotgedrag goed kan worden overgedragen van simulatie naar
realiteit door de reality gap in gedragsweergaven aan te pakken. We laten zien dat
als de simulatie voldoende representatief is voor de echte wereld, het gedrag in si-
mulatie in werkelijkheid tot vergelijkbare prestaties zal leiden. Het probleem van het
overschrijden van de reality gap verandert daarom van het direct optimaliseren van
de prestaties tot het vergroten van de gelijkenis van het gedrag in werkelijkheid met
dat wat wordt waargenomen in de simulatie. In combinatie met verschillende vor-
men van abstractie is de vereiste simulatienauwkeurigheid vaak veel lager dan bij
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conventionele benaderingen, wat een opmerkelijke vermindering van de optimali-
satietijd mogelijk maakt. Deze eenvoudige verandering in perspectief verandert het
doel van het overdrachtsprobleem radicaal, met significante resultaten.

Dit proefschrift is slechts de eerste stap in het volledig begrijpen van de impact
van abstractie op de optimalisatie van het robotgedrag. Een belangrijk gebied voor
toekomstig werk is het beter begrijpen van de factoren die van invloed zijn op de
afweging tussen optimaliseringsvermogen en robuustheid voor verschillen in de si-
mulatie en de realiteit. Hoeveel abstractie is voldoende of in overmaat? Hier zouden
evaluatiemethoden die vergelijkbaar zijn met beheersbaarheid en waarneembaar-
heidsanalyse in de besturingstheorie, helpen beslissingen te nemen op het niveau
van abstractie dat geschikt is voor een gegeven opdracht.

Dit proefschrift heeft voornamelijk betrekking op de reality gap, maar abstractie
kan worden gebruikt als een hulpmiddel om de robuustheid voor het bredere over-
drachtsprobleem te verbeteren. Aanvullend onderzoek is nodig om te bepalen hoe
dit effectief kan worden gebruikt.

Afgezien van de reality gap, toonde dit proefschrift ook aan dat abstractie kan hel-
pen om de optimalisatietaak te segmenteren, waardoor de tijd die nodig is om be-
trouwbare prestaties te bereiken wordt verkort. Deze techniek kan worden gebruikt
om de online ontwikkeling van gedrag in belichaamde evolutionaire optimalisatie te
versnellen, een ander veelbelovend gebied voor toekomstig onderzoek.
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IѻҁѿѼѱ҂ѰҁѶѼѻ

Since before the word robot was first introduced by Karel Čapek in 1920 [25], the
dream of automated synthetic machines has fascinated humanity. This fantasy
has been immortalized in countless pop culture movie classics from Metropolis to
Terminator™and even Wall-E™. Driven in part by this dream, there has been a
concerted effort to bring about a future populated by robots.

Through the end of the 20th century, robots were mainly used to perform repetitive
tasks in sterile industrial environments [163]. These types of tasks are predictable
and relatively easy to automate. Additionally, the areas in which the robots operate
are typically strictly controlled, such that the operating conditions are unchanging.
Such ‘dull, dirty and dangerous’ jobs are well suited to simple robotic systems.

Although the scale of the automation is impressive, these types of robots are still
far afield from those conceived by dreamers over a century ago. Moving from the
sterile industrial environment to our everyday world has proven a greater challenge
than many imagined. Various research groups and companies have attempted to
tackle this problem, with varying levels of success.

One method that shows great promise in integrating useful robots into everyday
life, is the automatic development of autonomous robotic behavior. Many optimiza-
tion techniques are used to achieve this, with Evolutionary Robotics (ER) [129] and
Reinforcement Learning (RL) [161] being the most commonly used. Both of these
approaches leverage recent advances in simulation technology to optimize robotic
behavior in a virtual world rather than the real world. In this simulated environ-
ment, the robot cannot damage itself or its surroundings allowing for learning in a
safe space reducing the resources required. Additionally, optimization time can be
reduced by running the simulation at faster than real-time speed. This type of auto-
mated robotic development promises to fundamentally change the way we design
and use robots, significantly increasing their rate of development and deployment
in novel environments.

1
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Looking around us today, we can unfortunately see that the reality of this promise
has not yet been met. There are still several open challenges that must be com-
pleted before this dream can be achieved. Chief among them is bridging the reality
gap [51, 92, 132]. In short, the reality gap is the difference between the simulated
environment and the real world. These differences typically lead to a significant
degradation in task performance limiting the use of this type of optimization.

This thesis investigates methods to improve the robustness of the optimized robotic
behavior to environmental differences, bridging the reality gap. We will focus our
application to Micro Air Vehicles (MAVs), where the reality gap can be significant.
Typically weighing less than 500 g, these vehicles are very difficult to accurately sim-
ulate [5, 24]. At these small scales, the computational power needed to effectively
simulate the environment would slow the simulation, negating the time advantage
of using a simulator [131]. To date, there have been few demonstrations of behav-
ior optimized for an MAV being successfully transferred to a real-world vehicle to
complete a complex task.

To limit the scope of the work presented, we will focus on the Evolutionary Optimiza-
tion (EO) techniques used in ER to develop the behavior of our robotic agents. This
global heuristic optimization methodology provides the designer with a powerful and
varied toolset to solve a wide set of problems [71].

The following sections will dive deeper into what the sources of the reality gap are
and common methods to deal with it, the optimization technique used in this work
and eventually to the research questions.

1.1. RѲѮѹѶҁ҆ GѮѽ

When a robotic agent is automatically developed, the agent is required to learn a
particular mapping from its perception of the world, generated from sensor inputs,
to some action to take in the world to achieve a desired goal. This input-output
mapping is referred to as a policy. The robotic behavior is the result of the inter-
action between the physical robot, its policy, and the world. The performance of
the behavior is a measure of how well the robot is achieving the given goal. These
elements and their interaction are shown in Fig. 1.1. This figure highlights that the
development of a policy is directly coupled to the embodied robot and the environ-
ment in which it operates.

Now, when the policy is developed in simulation, the real world and all of the inter-
actions therein must be modeled and virtually evaluated. Due to limits in available
computation and our limited understanding of our physical world, every element of
this virtual world is subject to modeling error. The degree to which certain elements
of the simulation represent reality is referred to as fidelity, the closer the accuracy,
the higher the fidelity. Conversely, the difference between simulation and reality is
typically referred to as the reality gap.
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Figure 1.1: Schematic representation of an embodied agent highlighting the components of
the robot and their interaction.

An interesting analogy can be found in research investigating how accurate simula-
tor environments should be to allow human operators to learn the right set of skills
in preparation for real world flights. Simulation fidelity is an important issue when
training pilots. Here, four different measures of fidelity are typically defined [145].

• Objective Fidelity - The degree to which the simulation replicates all aspects
of the real world aircraft [6].

• Perceptual Fidelity - The degree to which a pilot cannot distinguish the differ-
ence between the simulated and real world input stimuli.

• Behavioral Fidelity - The degree to which the behavior of a skilled pilot in
simulation differs to that in reality [80].

• Error Fidelity - The degree to which the aircraft response represents that in
the real world.

We can appropriate these definitions to the use of modeling autonomous robotic
systems as shown in Fig. 1.2. Here the pilot is replaced with the robot and the
above definitions can be adjusted to suit.

There have been several approaches to tackle the reality gap with most attention
placed on the environmental, sensory and vehicular gaps. These approaches can
be broadly separated into three main categories [19].

• Adjusting objective and perceptual simulation fidelity Increasing the sim-
ulation fidelity is one way to reduce the reality gap but this comes at the cost of
a slower optimization process. Some researchers have used machine learn-
ing techniques [118] or novel noise models [116] to better model sensors pro-
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Figure 1.2: Schematic representation of the different measures of reality gap (adapted from
[145]).

viding agents with more realistic input data. Similar work has been done to
model the actuators [164]. Some work has perturbed the simulated robot
[166] or changed the environment [144, 164] while others have explicitly sim-
ulated the reality gap by evolving agents in multiple simulated environments
[18, 108], all with the goal of developing robust policies.

These approaches have all shown promise but none truly solve the problem.
Additionally, they often result in slower simulations, increasing optimization
times. An alternative approach which has had significant impact is based on
the idea that rather than accurately modeling the real world, it is better to apply
an appropriate amount of uncertainty to the simulated environment [92]. If this
uncertainty is sufficient, the optimized policy will have to become robust to the
eventual uncertainty it will encounter in the real world. This technique is the so
called envelope of noise [90]. This solution does have its drawbacks however,
from a purely optimization perspective, the added noise can cause the agent
to settle for a (potentially highly) sub-optimal solution.

• Mixed reality optimization These approaches perform some optimization
both in simulation and reality. Some work has been done to iteratively update
the simulation model by testing the optimized policies in the real world, re-
ducing the reality gap by artificially augmenting the simulated world [20, 177].
Other work has been done by evaluating the policies in the real world and
including a measure of their transferability in the optimization process [102].
Some have also alternated between simulated and real data to encourage the
agent to be robust to the differences and optimize a general policy [21]. This
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effectively tries to tackle the perceptual and vehicular reality gaps.

• Online Adaptation If the reality gap is small, the policies can be updated
after the transfer to the real world [73]. With this approach, the general macro
policy can be safely developed quickly in simulations and then fine-tuned in
the real world.

Rather than just optimizing the robotic behavior in simulation, some methods
have the optimization also develop a learning framework that can quickly learn
to solve the task in the real world [64, 133, 168]. This leads to a reduction in the
optimization time and actively reduces the reality gap on the real robot. This
approach has also been shown on relatively complex applications making it a
promising approach moving forward [40].

With this approach, the behavior of the vehicle is not important, only the objec-
tive performance is considered. The behavior optimized in simulation is sim-
ply a starting point from which the optimum behavior in reality can be quickly
achieved. One downside of this approach is that the final behavior of the ve-
hicle is not predetermined or predictable. This may limit where this approach
can be used.

In this thesis we will focus on the little discussed behavioral reality gap. The hy-
pothesis is as follows:

Proposition

Given a sufficiently accurate model of the world, the behavior optimized in
simulation should result in similar performance in reality. As such, goal of
the transfer should be to reduce the behavioral reality gap, ensuring that
the real world behavior is the same as the simulated behavior, rather than
directly optimizing real world performance.

This changes the problem from optimizing performance in reality, as done with on-
line learning, to simply reducing the difference in the behavior observed in simu-
lation and that in reality. To achieve this, we must ensure that the robot can have
a robust combination of perceptual and actuation systems that operate similarly in
both environments.

1.2. E҃Ѽѹ҂ҁѶѼѻѮѿ҆ RѼѯѼҁѶѰҀ

There are many types of optimization techniques used to develop robotic behavior
but one of particular interest is that used in the field of Evolutionary Robotics. This
optimization methodology is built around the concept of automatically developing a
robot’s policy, and possibly its physical body, using EO techniques [19, 131]. This
global optimization technique often results in unconventional methods which exploit
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sensorimotor coordination of the embodied agent and its environment to achieve
complex tasks [129].

The first applications of ER were done directly on real robotic platforms but this
process is very time consuming [61, 132, 160]. Although there has been a resur-
gence in performing evolutionary optimization on real robotic platforms, accelerated
by using swarms of agents [53–55], a significant part of the research community
uses simulation based optimization with transfer to the real world. Ever improv-
ing computing technologies has facilitated a significant improvement in simulation
techniques.

(a) Khepera wheeled robot [167] (b) Quadruped robot [20]

(c) Hexapod robot [40]

Figure 1.3: Some robots commonly used for Evolutionary Robotics

Early work focused on applications such as obstacle avoidance [92], homing [61,
74], T-maze [91, 134], foraging [26, 127] and walking [91, 123, 177]. Many of these
tasks were attempted using the simple Khepera wheeled robot shown in Fig. 1.3a.
The field has since moved to more complex platforms like the quadruped robot in
Fig. 1.3b [20] and hexapod robot in Fig. 1.3c [40]. Other research has been done
on MAVs with tasks including autonomous navigation [152], control [162] and even
odor source localization [42].

To truly optimize robotic behavior, it may sometimes be necessary to not only op-
timize robotic behavior but also the physical body of the robot. This has been the
focus of several research groups, some with impressive results [20, 86, 138, 159].
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E҃Ѽѹ҂ҁѶѼѻѮѿ҆ OѽҁѶѺѶ҇ѮҁѶѼѻ

All of these advances have been achieved with the use of evolutionary optimiza-
tion. This powerful tool is a heuristic global policy search technique modeled on the
theory of evolution as postulated by Charles Darwin in the mid 19th century [71].
Genetic Algorithms (GA) form the digital implementation of the Darwinian principle
of natural selection to artificial systems.

The process of the GA can be summarized in the following steps:

1. Initialization - Start with an initial population of feasible solutions.

2. Evaluation - In each iteration the performance or fitness of each individual of
the population is determined.

3. Selection and Procreation - Parents of the next generation are selected
based on some heuristic fitness function. Parents are paired and create chil-
dren though crossover where genes are combined in a random manner. Mu-
tation is then applied to the children based on a mutation rate.

Steps 2 and 3 are iterated until some stop condition is met. The GA is characterized
by 5 parameters:

• Population size - Total number of individuals in the GA. Each individual repre-
sents a policy on a multi-dimensional fitness-behavior landscape. Larger pop-
ulations can generally more effectively explore this landscape but this comes
at the cost of more computation as each individual must be evaluated.

• Selection of Parents - The heuristic used to determine which individuals of
the current generation will become parents. This is an important part of the
process as the selection pressure generated, drives the population to gener-
ally improve. Too high selection pressure causes the optimization to converge
prematurely, too low results in a slow process. Some popular implementa-
tions are Roulette Wheel, Rank Selection, Truncation Selection, Tournament
Selection [71, 120, 131].

• Genetic Variation - This typically includes some combinatorial operator which
takes attributes from two or more parents to generate members of the new
generation. This is typically referred to as a reproduction or crossover oper-
ator. In addition, there is also an operator to make random changes to an
individual, either to change it in-place or to generate a new individual. This is
referred to as a mutation operator [57].

• Genetic Operator Rates - The rate at which the genetic operators will affect
the population. Like the selection method, this determines how aggressive
the changes made to the population are. Too high rates result in an unstable
optimization whilst too low results in a very slow process.

• Stopping Rule - The GA is stopped based on some rule such as a maximum
number of iterations, amaximumCPU time or amaximumnumber of iterations
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without an improvement of the best individual fitness value.

The definition of the fitness function has significant impact on the resultant opti-
mized behavior and the performance of the EO [126]. It is very difficult to define a
measure of the robot’s performance without injecting undue amounts of user bias
to the solution. This problem is compounded once you consider that many tasks
actually require the behavior to balance multiple goals.

To tackle this, a popular method to evolve agents is with the use of a multi-objective
optimization [47, 176]. This allows the user to define relatively simple fitness func-
tions that can help the agents complete the given task, but still allows the optimiza-
tion the flexibility to trade-off one fitness for another to find new solutions. If we
consider all the different possible robotic behaviors as a multi-dimensional surface,
the multi-objective optimization is trying to have the population of agents spread out
to find the optimum in all directions.

Alternatively, some use the so-called novelty search method, where solutions are
not evaluated based on performance on completing the task, but rather on how
novel they are compared to previous solutions [72, 106]. Using the same multi-
dimensional analogy as before, novelty search is trying to spread the population of
agents evenly over the surface, covering as many different behaviors as possible.

1.3. MѶѰѿѼ AѶѿ VѲѵѶѰѹѲҀ

Recently, the development and use of Unmanned Air Vehicle have exploded. From
being used by enthusiasts as a hobby a few years ago, they are now being used to
secure our skies, observe our plants, inspect bridges and even deliver packages.
This has all been driven by the rapid reduction in cost of micro electronics that make
up the computation and sensing of these light weight flying robots [65, 156].

An important subset of these vehicles is the Micro Air Vehicle. Often defined as a
small flying vehicle weighing less than 500 g, these vehicles are potentially safe in
close proximity around humans, opening up a plethora of potential use cases. Due
to the comparable size and flight dynamics of these vehicles, they also provide a
flexible platform to perform research into biological systems [42, 95].

Due to their small size, their aerodynamics are not well understood and their as-
sociated flight dynamics are not well modeled [5, 24]. Additionally, the small parts
that constitute their body are fragile and susceptible to change or damage over time.
This is accompanied by relatively low-quality actuators and sensors. Although these
properties make it difficult to routinely and reliably operate these vehicles, it makes
them ideal platforms to investigate the reality gap and methods to bridge the gap.
Throughout this thesis, we will utilize MAVs to test different approaches to improving
the robustness of robotic behavior to the reality gap.
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Figure 1.4: DelFly Nimble flapping wing MAV [95]

1.4. RѲҀѲѮѿѰѵ Q҂ѲҀҁѶѼѻҀ

From the previous work done to cross the reality gap in ER, the work that most
stands out is that of the envelope of noise by Jakobi. At the cost of some op-
timization power, we can automatically develop autonomous robots in simulation
that actually work when transferred to the real world. This suggests that there is
some power in separating the robot behavior from the world by abstracting away
from some aspects of reality. This leads us to the problem statement of this thesis.

Problem Statement

How can abstraction be used to bridge the reality gap in evolutionary
robotics?

If the reality gap is large enough, it may be necessary to adapt the robotic be-
havior onboard the real robot after transfer to the real world. Most applications of
ER use Artificial Neural Networks (ANNs) to represent the policy [131]. Although
analysis of the ANNs is possible, this black-box framework does not lend itself well
to knowledge-based adaptation hence requiring complex machine learning tech-
niques to retrain the policy. It may be possible that by using a more abstracted
behavioral representation framework, the intentions of the robot can be made more
transparent, allowing the robot operator to understand the source of the reality gap
and actively reduce it. This concept leads us to our first research question.
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RQ1: Research Question 1

How can abstraction in the behavioral representation help in crossing the
reality gap?

Vehicle
-

+

Environmental
Disturbance

Sensors

Measurement
Noise

Desired
State

Controller

Observed
State

Vehicle
State

Error

Figure 1.5: Closed loop control scheme, minimizing the error between the desired and mea-
sured parameters, this scheme promotes robust flight control performance in the presence
of unknown environmental disturbances and sensor noise.

In control theory, abstraction is a powerful tool to improve the robustness of a control
system (shown in Fig. 1.5) [115]. Most complex systems are controlled by a closed-
loop controller which tries to minimize the error between some desired state and the
observed vehicle state [158]. These controllers can also be nested or cascaded
such that one layer generates the set-point for a lower layer generating a form of
hierarchical control scheme. This is typically done to address the uncertainty in
the vehicle and in the environment. This concept leads us to our second research
question.

RQ2: Research Question 2

How can abstraction in the control output be used to improve the robustness
of a robot to differences between simulation and reality?

When we look to more complex tasks for autonomous robots, we often must con-
sider more complex methods to sense our environment. Many robots use cameras
to observe the world around them. Converting raw data to some understanding of
the world around us and then to making decisions about what to do is no easy task.
Splitting this into two parts, perception and action, may speed up the behavioral
development process and result in a more robust solution. This concept leads us
to our final research question.
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RQ3: Research Question 3

How can abstraction on the sensory input be used to reduce the sensitivity
of the robotic behavior to the reality gap?

1.5. SѰѼѽѲ Ѯѻѱ LѶѺѶҁѮҁѶѼѻҀ

To isolate the impact of abstraction on the reality gap we investigate it in the ab-
sence of other common methodologies used to bridge the reality gap. As such,
in this work, we do not apply online machine learning or iterative model fidelity
improvement techniques. Although these techniques show significant promise in
aiding the transfer from simulation to reality, they fall outside the scope of this work.

There is a growing field of research in ER performing evolution directly on real world
robots, effectively circumventing the reality gap. If successful, this will change the
way we develop autonomous robots but until some fundamental problems, such as
optimization time, are addressed, bridging the reality gap is still important. It is even
possible that lessons learned here may help to speed-up developments in this new
field as well.

1.6. O҂ҁѹѶѻѲ

The following chapters will answer these three research questions, eventually shed-
ding light onto the full problem statement. Each chapter is comprised of work either
published or currently submitted for review in independent peer-reviewed journals
and conference proceedings. Each has an added introduction to tie it into the larger
body of this thesis.

Chapter 2 addresses RQ1 and describes the result of abstracting behavioral rep-
resentation into a form that is comprehensible to a human and the inherent benefit
therein. Here, Behavior Trees (BTs) were used in combination with ER to optimize
an exploration task where an MAV must autonomously find a window in a room and
fly through it. This is the first time BTs were used within an ER context.

RQ2 is considered in Chapter 3, which presents an investigation into abstraction
of the robotic control. To achieve this, two ANNs, using different levels of action
abstraction, were compared to each other. The ANNs were optimized to perform
coordinated formation flight of a swarm of threeMAVs. One controller was optimized
with a high level of abstraction controlling the speed of the MAV and the other was
tasked to control the rotor speeds of the MAV. We show how well these controllers
were able to cross the reality gap.

Before we can truly consider the impact of abstraction of sensors with RQ3, we
must first define an alternative to the conventional sensor processing pipeline to



1

12 IѺҀѾѻѰҁѯҀѵѻѺ

test the effect of the abstraction. This is presented in Chapter 4 where we describe
an efficient method to extract optic flow from the novel event-based camera. We
demonstrate the efficacy of this method on a quadrotor MAV performing high-speed
landings, the fastest demonstrated in literature to date (2019).

With this, we can effectively answer RQ3 in Chapter 5, and evaluate the effect of
abstracting robotic perception. We selected the same task as in Chapter 4, this
time, having the solution automatically optimized rather than user-defined.

Finally, some conclusions will be made from the presented results and the primary
research question will be answered. We will also reflect on the lessons learned and
what this means for the research community at large.

Chapter 3:
Closed-Loop Control to 
Bridge the Reality Gap

Acting

Chapter 2:
Behavioral Abstraction

and the Reality Gap

Thinking

Chapter 4:
Efficient Event-Based

Optic flow

Chapter 5:
Masking the Reality Gap
with Sensor Abstraction

Sensing

Chapter 6:
Conclusion

RQ1

RQ2

RQ3

Figure 1.6: Outline of the thesis chapters.
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BѲѵѮ҃ѶѼѿѮѹ AѯҀҁѿѮѰҁѶѼѻ Ѯѻѱ ҁѵѲ

RѲѮѹѶҁ҆ GѮѽ

There is a way out of every box; a solution to every puzzle. It’s just a matter of
finding it

- Jean-Luc Picard
Star Trek: The Next Generation, Season 7 Episode 8

The contents of this chapter have been published as:

Title Behavior Trees for Evolutionary Robotics
Journal Artificial Life, 22(1):23–48, 2016
Authors K.Y.W. Scheper, S. Tijmons, C.C. de Visser and G.C.H.E. de Croon

There are several sources that lead to the eventual reality gap when transferring
robotic behavior optimized in simulation, to the real world. One significant source is
in how the behavior is expressed. Many representation structures used to capture
robotic behavior are difficult for a human user to interpret. This makes it a challenge
to understand the source of the reality gap. A more intelligible structure should aid
in the transfer of behavior.

This chapter describes the process and result of automatically developing robotic
behavior in an abstracted, human legible structure. We use the Behavior Tree to
represent the behavior of the DelFly Explorer flapping wing MAV to find and fly
through an open window. This behavior is made in a virtual environment using
Evolutionary Optimization techniques. The following sections describe this task,
optimization implementation, results of the behavioral transfer, and the effect of the
representation structure.
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2.1. IѻҁѿѼѱ҂ѰҁѶѼѻ

Small robots with limited computational and sensory capabilities are becomingmore
commonplace. Designing effective behavior for these small robotic platforms to
complete complex tasks is a major challenge. This design problem becomes even
more complex when the robots are expected to collaboratively achieve a task as
a swarm. A promising methodology to address this problem is found in Evolution-
ary Robotics (ER), in which a robot’s controller, and possibly its body, is optimized
using Evolutionary Algorithms (EAs) [19, 89, 131]. This approach satisfies given
computational constraints, while often resulting in unexpected solutions which ex-
ploit sensory-motor coordination to achieve complex tasks [129].

Early investigations into ER used on-line EAs, in which behaviors generated by
evolution were evaluated on real robotic hardware. However, this process can be
time consuming [61, 132] and is not widely used, although notably there has been
renewed interest in online evolution with swarms of small robots [56]. With the ever
improving computing technologies, off-line EAs based on simulation have become
the predominant method used in ER. However, this method has some drawbacks
of its own. Simulated environments always differ to some degree from reality. The
resultant artifacts from the simulation are sometimes exploited by the evolved so-
lution strategy [61]. As a result the behavior seen in simulation can often not be
reproduced on a real robotic platform. This problem has been termed the reality
gap [92, 132].

Many methods have been investigated to reduce this reality gap, which can be
separated into three main approaches [19]. The first approach investigates the
influence of simulation fidelity on the EA, with investigation focusing on the influence
of adding differing levels of noise to the robot’s inputs and outputs [92, 116, 118].
It was shown that sufficient noise can deter the EA from exploiting artifacts in the
simulation but that this approach is generally not scalable as more simulation runs
are needed to distinguish between noise and true features. A notable exception to
this is the work of Jakobi who discusses the idea of combining limited but varying
noise with differing levels of simulation fidelity in what he calls Minimal Simulations
[90]. This approach requires the designer to make choices as to which aspects of
the environment the robot will use before evolution even begins, limiting the solution
space of the EA. Additionally, selecting the type and magnitude of the noise applied
requires some foreknowledge of the environmental model mismatch which is not
always the available.

The second approach focuses on co-evolution, this approach simultaneously de-
velops a robotic controller which is evaluated in simulation while the simulation
model is updated using the performance error with a real world robotic platform
[20, 177]. Alternatively, the error between the simulation and real world environ-
ment can be used to estimate the suitability of a learned behavior on the real robot.
A multi-objective function is used to trade off simulated robotic performance and the
transferability of the behavior [102].
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The third approach performs adaptation of the real robot behavior after first being
optimized by the EA. This can be achieved usingmanymethods which are differenti-
ated by their level of supervision and how the fitness of the behavior is determined.
One approach involves the use of unsupervised learning where the neural struc-
ture and ontogenetic learning rules are optimized using evolution and are used to
generate a population of adaptive individuals [62, 130, 133]. Alternatively, semi-
supervised methods such as Reinforcement Learning can be used to retrain the
neural nets after evolution [60]. This work shows that systems which adapt to their
environments are typically more robust to the reality gap. A typical downside of
this approach, however, is that the time needed for the on-line learning to converge
may be significant. This is especially problematic for robotic platforms performing
complex tasks and operating in an unforgiving environment.

One factor adding to the reality gap problem is that typically Artificial Neural Net-
works (ANNs) are used to encode the robot behavior [131]. Although analysis of
the evolved ANNs is possible, they do not lend themselves well to manual adapta-
tion hence requiring retraining algorithms to bridge the gap. Encoding the optimized
behavior in a more intelligible framework would aid a user in understanding the so-
lution strategy. It would also help to reduce the reality gap by facilitating manual
parameter adaptation when moving to the real robotic platform.

Traditionally, user-defined autonomous behaviors are described using Finite State
Machine (FSM) which has also been successfully used within ER [67, 100, 137,
143]. FSMs are very useful for simple action sequences but quickly become illeg-
ible as the tasks get more complex due to state explosion [121, 169]. This com-
plexity makes it difficult for developers to modify and maintain the behavior of the
autonomous agents.

A more recently developed method to describe behavior is the Behavior Tree (BT).
Initially developed as a method to formally define system design requirements, the
BT framework was adapted by the computer gaming industry to control non-player
characters [27, 52]. BTs do not consider states and transitions the way FSMs do, but
rather they consider a hierarchical network of actions and conditions [27, 79]. The
rooted tree structure of the BT makes the encapsulated behavior readily intelligible
for users.

Previous work on evolving BTs has been applied to computer game environments
where the state is fully known to the BT and actions have deterministic outcomes
[109, 136]. The evolution of BTs has not yet been applied to a real world robotic
task. Operating in the real world introduces complicating factors such as state and
action uncertainty, delays, and other properties of a non-deterministic and not fully
known environment. There is a growing body of research into proving the operation
of BTs through logic and statistical analysis which goes a long way to improving the
safety of using BTs on real vehicles [35, 99].

In this chapter, we perform the first investigation into the use of Behavior Trees
in Evolutionary Robotics. Section 2.2 will describe the DelFly Explorer [46], the
flapping wing robotic platform selected to demonstrate our approach as well as the
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fly-through-window task it had to perform. This is followed by a detailed descrip-
tion of the BT framework used in Section 2.3. Section 2.4 goes on to describe
how offline EAs techniques are used to automatically develop BTs. The results of
the optimization are presented in Section 2.5. Additionally, the performance of the
best individual from the EA is compared to a human user designed BT to show the
efficacy of this automatically generated behavior. The implementation of both be-
haviors on the real world DelFly Explorer is described in Section 2.6. The method
used to bridge the reality gap is described in Section 2.7. This is followed by the
real world test results in Section 2.8. Finally we provide a short discussion of the
results and talk about how this technique can be scaled to more complex systems
and applied to other applications in Section 2.9.

2.2. DѲѹFѹ҆ Fѹ҆-TѵѿѼ҂Ѵѵ-WѶѻѱѼ҄

The limited computational and sensory capabilities of the DelFly Explorer make it a
challenge to design even the most simple behavior. As a result, the DelFly Explorer
is an ideal candidate for the implementation of ER. We will give a brief description
of this platform and its capabilities.

2.2.1. DѲѹFѹ҆ E҅ѽѹѼѿѲѿ

Figure 2.1: DelFly Explorer 20-gram flapping wing MAV in flight with 4-gram dual camera
payload. An onboard stereo vision algorithm generates a depth map of the environment
which is used for autonomous navigation.
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The DelFly is a bio-inspired flapping-wing Micro Air Vehicle (MAV) developed at
the Delft University of Technology (TU Delft). The main feature of its design is its
biplane-wing configuration which flap in anti-phase [43]. The DelFly Explorer is a
recent iteration of this micro ornithopter design [46]. In its typical configuration, the
DelFly Explorer is 20 g and has a wing span of 28 cm. In addition to its 9 minute
flight time, the DelFly Explorer has a large flight envelope ranging from maximum
forward flight speed of 7 m/s, hover, and a maximum backward flight speed of 1
m/s. A photo of the DelFly Explorer can be seen in Fig. 2.1.

The main payload of the DelFly Explorer is a pair of light weight cameras used to
perform onboard vision based navigation as shown in Fig. 2.1. Each camera is
set to a resolution of 128 × 96 pixels with a field of view of 60◦× 45◦ respectively.
The cameras are spaced 6 cm apart facilitating stereo-optic vision. Using computer
vision techniques these images can be used to generate depth perception with a
method called Stereo Vision [153]. This makes the DelFly Explorer the first flap-
ping wing MAV that can perform active obstacle avoidance using onboard sensors
facilitating fully autonomous flight in unknown environments [46].

2.2.2. Fѹ҆-TѵѿѼ҂Ѵѵ-WѶѻѱѼ҄ TѮҀѸ

In this chapter, the DelFly Explorer is tasked to navigate a square room in search
for an open window which it must fly through using onboard systems only. This is
the most complex autonomous task yet attempted with such a light-weight flapping
wing platform. Due to the complexity of finding and flying through a window, we
currently limit the task to directional control: height control can be added in future
work.

Other work on the fly-through-window task include the H2Bird 13 g flapping wing
MAV [94]. Unlike the DelFly Explorer, the H2Bird used a ground based camera and
off-board image processing to generate heading set-points. In this work the DelFly
must perform all tasks using only onboard computation and sensing making the
task much more complex than that of the H2Bird.

2.2.3. VѶҀѶѼѻ S҆ҀҁѲѺҀ

In the light of the task, the following vision algorithms will be running onboard the
DelFly Explorer:

LѼѻѴSѲѾ SҁѲѿѲѼ VѶҀѶѼѻ

The DelFly Explorer uses a Stereo Vision algorithm called LongSeq to extract depth
information of the environment from its two onboard optical cameras [46]. The main
principle in artificial stereo vision is to determine which pixel corresponds to the
same physical object in two or more images. The apparent shift in location of the
pixels is referred to as the disparity. This can be applied to entire features, groups
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of pixels or to individual pixels. The stereo vision algorithm produces a disparity
map of all pixels in the images [153].

LongSeq is a localised line based search stereo vision algorithm. This is one can-
didate resulting from the trade-off between computational complexity and image
performance made by all image processing algorithms. The relatively low com-
putational and memory requirements of LongSeq makes it a good candidate for
application on the limited computational hardware onboard the DelFly Explorer.

WѶѻѱѼ҄ DѲҁѲѰҁѶѼѻ

An Integral Image window detection algorithm is used to aid the MAV in the fly-
through-window task. Integral image detection is a high speed pattern recognition
algorithm which can be used to identify features in a pixel intensity map [39, 93].
The integral image (II(x, y)) is computed as

II(x, y) =
∑

x′≤x,y′≤y

I(x′, y′) (2.1)

where x and y are pixel locations in the image I. As each point of the integral image
is a summation of all pixels above and to the left of it, the sum of any rectangular
subsection is simplified to the following computation

rect(x, y, w, h) =II(x+ w, y + h) + II(x, y)

− II(x+ w, h)− II(x, y + h)
(2.2)

This method has been previously used to identify a dark window in a light environ-
ment by using cascaded classifiers [45]. That algorithm was designed specifically
to operate when approaching a building in the daytime on a light day. Naturally, a
more generalizedmethod is to apply the same technique described above to the dis-
parity map rather than the original camera images. The disparity map would show
a window as an area of low disparity (dark) in an environment of higher disparity
(light).

2.2.4. SѺѮѿҁUAV SѶѺ҂ѹѮҁѶѼѻ PѹѮҁѳѼѿѺ

SmartUAV is a Flight Control Software (FCS) and simulation platform developed
in-house at the TU Delft [2]. It is used primarily with small and micro sized aerial
vehicles and it notably includes a detailed 3D representation of the simulation envi-
ronment which is used to test vision based algorithms. It can be used as a ground
station to control andmonitor a single MAV or swarms of manyMAVs. As SmartUAV
is developed in-house, designers have freedom to adapt or change the operating
computer code at will, making it very suitable for use in research projects.

SmartUAV contains a large visual simulation suite which actively renders the 3D
environment around the vehicle. OpenGL libraries are used to generate images on
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the PC’s GPU increasing SmartUAV’s simulation fidelity without significant compu-
tational complexity. In this chapter we will only utilize the simulation capabilities.

The BT will be placed in series following the LongSec disparity map generation and
the window detection algorithm. In terms of the larger SmartUAV simulation, the
vision based calculations are the most computationally intensive portion making it
the limiting factor for the speed of operation of the wider decision process. The
higher the decision loop frequency relative to the flight dynamics the longer a single
simulation will take. This must be balanced by the frequency at which the DelFly is
given control instructions, where generally higher is better. Considering this trade-
off, the decision loop was set to run at 10Hz. This is a conservative estimate of the
actual performance of the vision systems onboard the real DelFly Explorer.

2.2.5. SѶѺѽѹѶѳѶѲѱ DѲѹFѹ҆ MѼѱѲѹ

The modeling of flapping wing MAV dynamics is an active research area driven by
the largely unknown micro scale aerodynamic effects [4, 24, 43]. Due to the lack of
accurate models, an existing model of the DelFly II previously implemented based
on the intuition of the DelFly designers will be used in this work. This model is not
an accurate representation of the true DelFly II dynamics but was sufficient for most
vision based simulations previously carried out.

The DelFly II has three control inputs, namely: Elevator (δe), Rudder (δr) and Thrust
(δt). The elevator and rudder simply set the control surface deflection and the thrust
sets the flapping speed. The actuator dynamics of the DelFly rudder actuator is
implemented using a low pass filter with a rise time of 2.2 s and a settling time of
3.9 s. The elevator deflection and flapping speed have no simulated dynamics and
are directly set to the set-point.

For the simulated flights in this chapter, the throttle setting and elevator deflection
were held constant at a trim position resulting in a flight speed of 0.5 m/s and no ver-
tical speed. Additionally, the rudder deflection was limited to a resultant maximum
turn rate of 0.4 rad/s resulting in a minimum turn radius of 1.25 m. The simulated
dynamics had no coupling in the flight modes of the simulated DelFly which is a
significant simplification of real world flight.

Now, there are some notable differences between the DelFly II and DelFly Explorer.
Firstly the Explorer replaces the rudder with a pair of ailerons which allows the
DelFly Explorer to turn without the camera rotating around the view axis. Addi-
tionally, the DelFly Explorer is 4 g heavier and has a slightly higher wing flapping
frequency. It is expected that the DelFly model mismatch will exaggerate the resul-
tant reality gap.
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2.3. BѲѵѮ҃ѶѼѿ TѿѲѲ IѺѽѹѲѺѲѻҁѮҁѶѼѻ

BTs are depth-first, ordered Directed Acyclic Graphs (DAGs) used to represent a
decision process [14]. DAGs are composed of a number of nodes with directed
edges. Each edge connects one node to another such that starting at the root there
is no way to follow a sequence of edges to return to the root. Unlike FSMs, BTs
consider achieving a goal by recursively simplifying the goal into subtasks similar to
that seen in the Hierarchical Task Network (HTN) [59]. This hierarchy and recursive
action make the BT a powerful way to describe complex behavior.

2.3.1. S҆ѻҁѮ҅ Ѯѻѱ SѲѺѮѻҁѶѰҀ

A BT is syntactically represented as a rooted tree structure, constructed from a
variety of nodes. Each node has its individual internal function whilst all nodes have
the same external interface making the structure very modular. When evaluated,
each node in a BT has a return status which dictates how the tree will be traversed.
In its simplest form, the return statuses are either Success or Failure. As the terms
suggest, Success is returned on the successful evaluation of the node and Failure
when unsuccessful. As this does not provide much information as to the condition
under which the node failed, some implementations have augmented states such
as Exception or Error to provide this information.

Figure 2.2: Typical representation of the Behavior Tree showing the basic node types and
execution flow. The leaf nodes of the tree are composed of Action and Condition nodes
whilst the branches are referred to as Composites. All nodes return either Success or Fail-
ure. There are two types of Composite nodes used: Selectors and Sequences. Selectors
return Success if one of their children is successful and Failure if they all fail. Conversely,
Sequences return Failure if one of their children fail and Success is they all succeed. In
this example, Condition nodes 3, 13, 15, 17 and 20 return Failure in the given time step or
tick. The lightly shaded nodes return Success and the dark nodes evaluate Failure. The
nodes with no shading are not evaluated in this tick. The arrows show the propagation of
evaluations in the tree.

Fig. 2.2 shows a typical BT and node types used in this chapter. Basic BTs are
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made up of three kinds of nodes: Conditions, Actions and Composites [27]. Condi-
tions test some property of the environment whilst Actions allow the agent to act on
its environment. Conditions and Actions make up the leaf nodes of the BT whilst
the branches consist of Composite nodes. Naturally, leaf nodes are developed for
specific robotic platforms dependent on the available sensors and actuators.

Composite nodes however are not platform dependent and can be reused in any
BT. Each node requires no information about its location in the tree. Only Composite
nodes need to know who its children are in order to direct the flow of execution down
the tree. This structure makes BTs inherently modular and reusable.

The tree execution can also be seen in Fig. 2.2. This demonstrates how the Com-
posite nodes determine the execution path of the tree dependent on the return value
of their children. To understand this flow structure we must first describe the Com-
posite node in more detail. Although many different types of Composite nodes
exist, we will only consider the most basic nodes in this chapter: Selectors and
Sequences.

Composites evaluate their children in a fixed order, graphically represented from
left to right. Selectors will break execution and return Success when one of its chil-
dren return Success, or Failure when all of its children return Failure. Conversely,
Sequences will break execution and return Failure when one of its children fails,
or Success if all of its children return Success. The first node in the tree is called
the Root node, which is typically a Selector with no parent. The execution of the
behavior tree is referred to as a tick.

This execution framework means that not all nodes are evaluated in every tick.
The left most nodes are evaluated first and determine the flow through the tree
implementing a sort of prioritized execution.

2.3.2. DѲѹFѹ҆ IѺѽѹѲѺѲѻҁѮҁѶѼѻ

Aside from the generic Sequence and Selector Composite nodes, two condition
nodes and one action node were developed for the DelFly, namely: greater_than,
less_than and set_rudder. These behavior nodes are accompanied by a Black-
board which was developed to share information with the BT.

The Blackboard architecture implemented for the DelFly contains five entries: win-
dow x location (x), window response (σ), sum of disparity (Σ), horizontal disparity
difference (∆) and rudder deflection (r). The first four are condition variables and
the last item is used to set the BT action output. The condition variables are set be-
fore the BT is ticked and the outputs are passed to the DelFly FCS after the tick is
complete. Note that this implementation of a BT has no explicit concept of memory
or time.

The Condition nodes check if some environmental variable is greater than or less
than a given threshold. This means that each Condition node has two internal
settings: the environmental parameter to be checked and the threshold. The Action
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node set_rudder sets the DelFly rudder input and therefore only has one internal
setting. Actions were defined to always return Success.

2.3.3. UҀѲѿ DѲҀѶѴѻѲѱ BѲѵѮ҃ѶѼѿ TѿѲѲ

Figure 2.3: Graphical depiction of user-defined BT for the fly-through-window task. Different
sub-behaviors of the flight are encapsulated in boxes. x is the position of the center of the
window in frame, σ is window response value, Σ is sum of disparity, ∆ is the horizontal
difference in disparity and r is the rudder deflection setting for the simulated DelFly II.

A human designed behavior was used as a baseline to judge the performance of the
genetically optimized solution. The designed tree has 22 nodes and the structure of
the BT as shown in Fig. 2.3. The behavior is made up of four main sub-behaviors:

— window tracking based on window response and location in frame - try to keep
the window in the center of the frame

- - go straight when disparity very low - default action, also helps when looking
directly through window into next room

-.- wall avoidance when high disparity - bidirectional turns to avoid collisions with
walls, also helps to search for window

... action hold when disparity very high - ensures the chosen action is not changed
when already evading a wall

After validation of this BT, it was observed that for 250 random initializations in the
simulated environment, 82% of flights where successful. This behavior is good but
suffers from one main flaw which was observed during the validation. Unwittingly,
the bidirectional wall avoidance in a square room can result in the DelFly getting
caught in and crashing into corners. There are available methods to correct for this
behavior [165, 178] but as this is a conceptual error typical for human designed
systems, we will keep this behavior as is. Fig. 2.4 shows the path of successful and
failed flight realizations of DelFly with the user-defined behavior.
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Figure 2.4: Path of successful (x) and unsuccessful flight (o) initializations of DelFly with the
user-defined behavior (top-down view). Line types denote different decision modes: Solid
- window tracking; Dash - default action in low disparity; Dot Dash - wall avoidance; Dot -
action hold

2.4. E҃Ѽѹ҂ҁѶѼѻѮѿ҆ AѹѴѼѿѶҁѵѺ

Evolutionary Algorithms are a population based metaheuristic global optimization
method inspired by Darwinian evolution [71, 83]. A population of feasible solutions
for a particular problem are made up of a number of individuals. The fitness of each
individual is measured by some user-defined, problem specific, objective function.
The fitness of the individuals is evaluated each generation. Successful individu-
als are selected to generate the next generation using the genetic recombination
method crossover. Each generated child may also be subject to mutation where
individual parts of their genes are altered. These operations allow the EA to effec-
tively explore and exploit the available search space [117].

There are many implementations of EAs, each with a different method to encode
the genetic material in the individuals [60, 71, 103]. In this chapter we will use an
EA to optimize the behavior for a task using the BT framework. The custom EA for
BTs used in this work is described in the following sections.
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2.4.1. GѲѻѲҁѶѰ OѽѲѿѮҁѼѿҀ

Initialization The initial population of M individuals is generated using the grow
method [103]. Nodes are selected at random to fill the tree with Composite, Action
and Condition nodes with equal probability. Once a Composite node is selected,
there is equal probability for a Sequence or Selector. This was done as more leaf
nodes are typically needed in trees than branch nodes.

The grow method results in variable length trees where every Composite node is
initialized with its maximum number of children and the tree is limited by some max-
imum tree depth. This provides an initial population of very different tree shapes
with diverse genetic material to improve the chance of a good EA search.

Selection A custom implementation of Tournament Selection is used in this chap-
ter [120]. This is implemented by first randomly selecting a subgroup of s individuals
from the population. This subgroup is then sorted in order of their fitness. If two
individuals have the same fitness they are then ranked based on tree size, where
smaller is better. The best individual is typically returned unless the second indi-
vidual is smaller, in which case the second individual is returned. This was done to
introduce a constant pressure on reducing the size of the BTs.

Crossover Crossover is an operation where the composition of two or more par-
ents is recombined to produce offspring. In this chapter we use two-parent crossover
to produce two children. Each parent is selected from a different tournament se-
lection. The percentage of the new population formed by Crossover is defined by
the Crossover Rate Pc. The point in the BT used to recombine the parents is se-
lected at random. This selection is independent of its type or its location in the tree.
Crossover can be applied to any node location till the maximum tree depth after
which nodes are ignored. Figures 2.5 and 2.6 graphically show this process.

Figure 2.5: Sample parent trees with selected nodes for crossover highlighted. Two-parent,
single point Crossover is used for evolution.

Mutation Mutation is implemented using two methods, namely: micro-mutation
and macro-mutation (also referred to as Headless Chicken Crossover [3]). Micro-
mutation only affects leaf nodes and is implemented as a reinitialization of the node
with new operating parameters. Macro-mutation is implemented by replacing a se-
lected node by a randomly generated tree which is limited in depth by the maximum
tree depth. This is functionally identical to crossover with a randomly generated BT.
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Figure 2.6: Children of crossover of parents in Fig. 2.5.

The probability that mutation is applied to a node is given by the mutation rate Pm.
Once a node has been selected for mutation the probability that macro-mutation will
be applied rather than micro-mutation is given by the Headless-Chicken Crossover
Rate Phcc.

Stopping Rule Like many optimization methods, EAs can be affected by over-
fitting. As a result an important parameter in EA is when to stop the evolutionary
process. Additionally, due to the large number of simulations required to evaluate
the performance of the population of individuals, placing a limit on the maximum
number of generations can help avoid unnecessarily long computational time.

For these reasons, the genetic optimization has a maximum number of genera-
tions (G) at which the optimization will be stopped. Additionally, when the trees are
sufficiently small to be intelligible, the process can be stopped by the user.

2.4.2. FѶҁѻѲҀҀ F҂ѻѰҁѶѼѻ

The two main performance metrics used to evaluate the DelFly in the fly-through-
window task are: Success Rate and Tree Size. The fitness function was chosen to
encourage the EA to converge on a population that flies through the window as often
as possible. After trying several different forms of fitness functions a discontinuous
function was chosen such that a maximum score is received if the MAV flies through
the window and a score inversely proportional to its distance to the window if not
successful. The fitness F is defined as:

F =

{
1 if success
1

1+3|e| else
(2.3)

where success is defined as flying through the window and e is the vector from the
center of the window to the location of the MAV at the end of the simulation. This
particular form of fitness function was selected to encourage the DelFly to try to get
close to the window with a maximum score if it flies through. The values selected
are not very sensitive and were chosen at the discretion of the designer. Changing
the gain of the error term effects the selection pressure of the EA.
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Although not incorporated in the fitness function, we will also analyze some sec-
ondary parameters that are not vital to the performance of the DelFly. These define
the suitability of its behavior from a user point of view and define the character-
istics of a given fly-through-window behavior. These parameters are defined as:
Angle of Window Entry, Time to Success and Distance from center of Window at
Fly-Through.

2.5. DѲѹFѹ҆ TѮҀѸ ѼѽҁѶѺѶ҇ѮҁѶѼѻ

2.5.1. SѶѺ҂ѹѮҁѲѱ 3D Eѻ҃ѶѿѼѻѺѲѻҁ

The environment chosen to evaluate the DelFly in simulation was an 8×8×3m room
with textured walls, floor and ceiling. A 0.8×0.8 m window was placed in the center
of one wall. Another identical room was placed on the other side of the windowed
wall to ensure the stereo algorithm had sufficient texture to generate matches for
the disparity map when looking through the window.

As it is not the purpose of this research to focus on the vision systems, the envi-
ronment was rather abundantly textured. A multi-colored stone texture pattern was
used for the walls, a wood pattern was used for the floor and a concrete pattern
used for the ceiling as shown in Fig. 2.7. The identically textured walls ensure that
the behavior must identify the window and not any other features to aid in its task.

Figure 2.7: Virtual 8×8×3 m room used to evaluate DelFly fly-through-window task showing:
virtual DelFly Explorer, textured walls used for stereo vision and target 0.8×0.8 m window.
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2.5.2. E҅ѽѲѿѶѺѲѻҁѮѹ SѲҁ-҂ѽ

The evolved DelFly behavior should be robust and therefore must fly through the
window as often as possible. To evaluate this, each individual behavior must be
simulated multiple times in each generation defined by parameter k. Each run is
characterized by a randomly initiated location in the room and a random initial head-
ing.

Initially, it was observed that by randomly changing the initializations in every gen-
eration made it difficult for evolution to determine if the behavior in subsequent
generations improved due to its behavior or due to the initialization. To remedy this
initial conditions are held over multiple generations until the elite members of the
population (characterized by Pe) are all successful. Once all the elite members are
successful in a given initialization run, the initial condition in question is replaced
by a new random initialization. Each simulation run is terminated when the DelFly
crashes, flies through the window or exceeds a maximum simulation time of 100 s.

For the EA to converge to a near-optimum solution the Crossover rate must be high
enough to push the optimization to exploit the local maxima. Additionally, the mu-
tation rate must be high enough to explore the state space while not too high to
prematurely exit current solutions. The characteristic parameters for optimization
shown in this chapter are shown in Table 2.1. The parameter combination selected
is naturally only one realization of many possibilities. The relatively large number
of runs per individual selected should promote the development of robust flight be-
havior. This however increases the total simulation time needed to evaluate each
generation hence affecting the choice of population size.

Table 2.1: Parameter values for the Evolutionary Computation

Parameter Value
Max Number of Generations (G) 150
Population size (M ) 100
Tournament selection size (s) 6%
Elitism rate (Pe) 4%
Crossover rate (Pc) 80%
Mutation rate (Pm) 20%
Headless-Chicken Crossover rate (Phcc) 20%
Maximum tree depth (Dd) 6
Maximum children (Dc) 6
No. of simulation runs per generation (k) 6

The maximum tree depth is measured with the root node as depth 0. The maximum
tree size can be determined by maxchildrenmaxdepth. So a tree depth of 6 with at
most 6 children per Composite was used resulting in an upper limiting tree size of
over 46000 nodes. This is however not likely as the node type selected in the trees
is chosen at random over Composite, Condition and Action.
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2.5.3. OѽҁѶѺѶ҇ѮҁѶѼѻ RѲҀ҂ѹҁҀ

The main parameter which dictates the progress of the genetic optimization is the
mean fitness of the population. Fig. 2.8 shows the population mean fitness as well
as the mean fitness of the best individual in each generation. It can be seen in
Fig. 2.8 that at least one member of the population is quickly bred to fly through the
window quite often. Additionally, as the generations progress and new initializations
are introduced the trees have to adjust their behavior to be more generalized. The
mean fitness also improves initially and then settles out at around the 0.4 mark. The
fact that this value doesn’t continue to increase suggests that the genetic diversity
in the pool is sufficient to avoid premature conversion of the EA.
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Figure 2.8: Progression of the fitness score of the best individual and the mean of the popu-
lation throughout the genetic optimization. The fitness value is the mean of the k simulation
runs from each generation.

The other main parameter which defines the proficiency of the BTs is the tree size.
The mean tree size of the population as well as the tree size of the best individ-
ual from each generation is shown in Fig. 2.9. This figure shows that the average
tree size began at about 5000 nodes and initially increases to 7000 before steadily
dropping to around 1000 nodes at generation 50. The trees then slowly continue
to reduce in size and eventually drop below 150 nodes. The best individual in the
population oscillated around this mean value. The best individual after 150 gener-
ations had 32 nodes. Pruning this final BT, removing redundant nodes that have
no effect on the final behavior, resulted in a tree with 8 nodes. The structure of the
tree can be seen graphically in Fig. 2.10.
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Figure 2.9: Progression of the number of nodes in the best individual and the mean of the
population.

Fig. 2.11 shows the progression of the validation success rate for the best individual
of each generation. It can be seen that the score quickly increases and oscillates
around about 80% success. In early generations the variation of success rate from
one generation to the next is larger than later generations.

Figures 2.9 and 2.11 suggest that the population quickly converges to a viable so-
lution and then continues to rearrange the tree structure to result in ever smaller
trees. The fact that the best individual of each population does not improve much
above the 80% mark possibly indicates that the selected initial conditions used for
training are in-fact not representative for the full set of initial conditions. Onemethod
to make the initial conditions more difficult is to adapt the environment to actively
challenge the EA in a sort of predator-prey optimization. Alternatively, the fact that
the behavior does not continue to improve over the 80% mark may indicate that the
sensory inputs used by the DelFly are not sufficient.

The optimized BT was put through the same validation set as used with the user-
defined behavior resulting in a success rate of 88%. The performance character-
istics of the best individual from the optimization as compared to those from the
user-defined BT is summarized in Table 2.2. The optimized BT has slightly higher
success rate than the user-defined BT but with significantly less nodes. The results
of the secondary parameters suggest that the genetically optimized behavior typi-
cally has a sharper window entry angle and enters the window closer to the edge
than the user-defined behavior. It also has a longer time to window fly-through as
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Figure 2.10: Graphical depiction of genetically optimized BT. Different sub-behaviors of the
flight encapsulated by boxes. x is the position of the center of the window in frame, σ is
window response value, Σ is sum of disparity, ∆ is the horizontal difference in disparity and
r is the rudder deflection setting for the simulated DelFly II.
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Figure 2.11: Progression of the validation score of the best individual of each generation
subjected to the same set of 250 spacial initializations in the simulated room.

it circles the room more often than the user-defined behavior. This result highlights
the fact that EAs typically only optimize the task explicitly described in the fitness
function, sometimes at the cost of what the user might think is beneficial.

The successful flight shown in Fig. 2.12 shows that the behavior correctly avoids
collision with the wall, makes its way to the center of the room and then tracks into
the window. Analyzing the BT from Fig. 2.10, the logic to fly through the window
can be separated into three sub-behaviors:

- - slight right turn default action when disparity low

-.- max right turn to evade walls if disparity high (unidirectional avoidance)

— if window detected make a moderate left turn

Although this very simple behavior seems to be very successful, Fig. 2.12 also
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Table 2.2: Summary of validation results

Parameter User-defined Genetically Optimized
Success Rate 82% 88%
Tree size 26 8
Mean flight time [s] 32 40
Mean approach angle [◦] 21 34
Mean distance to center [m] 0.08 0.15

highlights one pitfall of this solution. As the behavior does not use the location of
the window in the frame for its guidance it is possible to drift off center and lose the
window in frame and enter a wall avoidance turn quite close to the wall resulting in
a collision.

These results show that based on the given fitness function and optimization pa-
rameters the genetic optimization was very successful. The resultant BT was both
smaller and better performing than the user-defined tree.
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Figure 2.12: Path of successful (x) and unsuccessful (o) flight initializations of DelFly with the
genetically optimized behavior (top-down view). Line styles denote different decision modes:
Solid - window tracking; Dash - default action in low disparity; Dash Dot - wall avoidance.
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2.6. DѲѹFѹ҆ OѻѯѼѮѿѱ FѹѶѴѵҁ TѲҀҁѶѻѴ

The BT was implemented on the camera module of the DelFly Explorer which is
equipped with a STM32F405 processor operating at 168 MHz with 192 kB RAM.
The BT is placed in series with the stereo vision and window detection algorithms as
was done in simulation and was found to run at ∼12 Hz. The commands were sent
from the camera module to the DelFly Explorer flight control computer using serial
communication. The DelFly flight control computer implements these commands
in a control system operating at 100 Hz.

2.6.1. TѲҀҁ 3D Eѻ҃ѶѿѼѻѺѲѻҁ

Figure 2.13: Photograph showing the room environment used to test the DelFly Explorer for
the fly-through-window task. Inset is collage of DelFly as it approaches and flies through
window.

The environment designed to test the MAV was a 5×5×2 m room with textured
walls. A 0.8×0.8 m window was placed in the center of one wall. The area behind
the window was a regular textured area. Artificial texture was added to the envi-
ronment to ensure we had good stereo images from the DelFly Explorer onboard
systems. This texture was in the form of newspapers draped over the walls at ran-
dom intervals. A sample photograph of the room can be seen below in Fig. 2.13.

2.6.2. E҅ѽѲѿѶѺѲѻҁ SѲҁ-҂ѽ

At the beginning of each run, the DelFly was initially flown manually and correctly
trimmed for flight. It was then flown to a random initial position and pointing direc-
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tion in the room. At this point the DelFly was set to autonomous mode where the
DelFly flight computer implements the commands received from the BT. The flight
continued until the DelFly either succeeded in flying through the window, crashed
or the test took longer than 60 s. As the BT controls the horizontal dynamics only,
the altitude was actively controlled by the user during flight which was maintained
around the height of the center of the window.

All flights were recorded by video camera as well as an Optitrack vision based mo-
tion tracking system. Optitrack was used to track the DelFly as it approached and
flew through the window to determine some of the same metrics of performance
that were used in simulation. As a result, information on the success rate, flight
time, angle of approach and offset to the center of the window can be determined.

2.7. CѿѼҀҀѶѻѴ ҁѵѲ RѲѮѹѶҁ҆ GѮѽ

The flight speed of the DelFly was set to ∼0.5 m/s, the same as was used in sim-
ulation. However, there were significant differences observed between the system
simulated in SmartUAV and that in the flight tests. Themost significant observations
are summarized in Table 2.3. In short, the turn radius was smaller and the actuator
response was faster and asymmetric. Additionally, aileron actuation would result in
a reduction in thrust meaning that active altitude control was required from the user
throughout all flights. It was also observed that there were light wind drafts around
the window which affected the DelFly’s flight path. These drafts would typically slow
down the DelFly’s forward speed and push it to one side of the window.

Table 2.3: Summary of the reality gap

Parameter Simulated Reality
Flight Speed [m/s] 0.5 0.5
Minimum Turn Radius [m] 1.25 0.5
Actuator Response Time [s] 2.2 <1
Decision Loop Speed [Hz] 10 12
Actuator Deflection Symmetric Asymmetric
Environmental No Disturbances Drafts

With these significant differences between the model used to train the BTs and
the real DelFly there was a clear reality gap present. Initially both behaviors were
not successful in flying through the window. To adjust the behavior to improve the
performance we first considered the definition of success as defined by Jakobi [90].
In his chapter he suggested that the performance of the robotic system should be
judged on a subjective measure of how reliably the robot performs the task in reality
with no consideration to how the behavior achieves the task objective. In the case
of this chapter, that would simply be defined as how often the DelFly flies through
the window.

We initially tried to directly adjust the behavior in reality without comparing it to the
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behavior seen in simulation. To improve the fly-through-window performance we
mainly considered the final portion of the flight but this proved ineffective. This
results from the fact that the embodied agent’s success is tightly coupled with in-
teraction of the robot’s sub-behaviors during the entire flight. For example, the way
the DelFly wall avoidance sub-behavior performed defined its approach to the win-
dow in such a way that the window approach sub-behavior would be successful.
This suggests then that to achieve a task reliably in reality the robot must behave
similarly to that observed in simulation for all sub-behaviors.

The insight into what parameters to change and how, comes from the user’s under-
standing of the BT. From this the user can identify individual sub-behaviors. The
technique of grouping nodes into sub-behaviors can be seen in Figures 2.3 and
2.10. This segmentation of the behavior helps to identify individual gaps simplifying
the behavior update process.

To demonstrate this let us first look at the evolved behavior tree shown in Fig. 2.10
which can be considered as made up of three sub-behaviors. Let us first look at
the window detection sub-behavior. We flew the DelFly around our test room and
observed the window response value was never achieved with the certainty value
of 69 (a lower value represents higher certainty that a window is in the frame). We
increased the threshold of node 7 till the node would be activated by the window
but false positives from other locations would not be likely.

Let us now investigate the wall avoidance sub-behavior. This mode is entered when
the total disparity is larger than a threshold set by node 3. Observing the behavior
in Fig. 2.12, the DelFly tries to circle in around the center of the room entering the
wall avoidance mode at ∼4m from the wall in the 8 × 8 m room. This would suggest
that the real DelFly should enter this mode at ∼2.5 m in the real 5 × 5 m room so
the threshold in node 3 should be changed accordingly.

It should be noted that it appears that evolution has optimized the DelFly behavior
to fly through windows in square rooms. The approach of avoiding walls at a fixed
distance to line the DelFly up for the window entry would be more difficult if the
window was not in the center of the wall or if the room size changed. This reiter-
ates the strong coupling between optimized behavior and the environment that is
characteristic of ER. It is therefore essential to vary the environment sufficiently to
encourage the EA to converge to solutions robust to changes in the environment.

Last but not least, applying this to the wall avoidance action, the simulated DelFly
had a minimum turn radius of 1.25 m which was much smaller in reality. A scaling
factor was applied to increase the turn radius to that seen in simulation.

Using this approach, tuning these parameters took about 3 flights of about 3minutes
each to result in behavior similar to that seen in simulation. The updated behavior
can be seen in Fig. 2.14.

This same approach was used with the user-defined BT with significantly more
nodes and took a total of 8 flights of about 3 minutes each to tune the parame-
ters to mimic the behavior observed in simulation. The updated behavior can be
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Figure 2.14: Graphical depiction of genetically optimized BT after modification for real world
flight. Encapsulating boxes highlight updated nodes. x is the position of the center of the
window in frame, σ is window response value, Σ is sum of disparity, ∆ is the horizontal
difference in disparity and r is the aileron deflection setting for the DelFly Explorer.

seen in Fig. 2.15.

Figure 2.15: Graphical depiction of user-defined BT after modification for real world flight.
Encapsulating boxes highlight updated nodes. x is the position of the center of the window
in frame, σ is window response value, Σ is sum of disparity, ∆ is the horizontal difference in
disparity and r is the aileron deflection setting for the DelFly Explorer.

2.8. FѹѶѴѵҁ TѲҀҁ RѲҀ҂ѹҁҀ

26 test flights were conducted for both the user-defined behavior as well as the
genetically optimized BT1. The results of the tests are summarized in Table 2.4. It
can be seen that the success rate of both behaviors is reduced for both behaviors
but notably, the relative difference of the two behaviors is maintained. Additionally,
the other performance parameters which are the characteristic behavior descriptors
are similar to that seen in simulation. This suggests that the user adaptation of
the real behavior to emulate the simulated behavior was successful. The relative
performance of the behaviors is also similar to that seen in simulation. The mean
flight time of the behaviors was reduced but notably the relative flight times of the
1An accompanying video with some of the test flights can be found at: https://www.youtube.com/
watch?v=CBJOJO2tHf4&feature=youtu.be

https://www.youtube.com/watch?v=CBJOJO2tHf4&feature=youtu.be
https://www.youtube.com/watch?v=CBJOJO2tHf4&feature=youtu.be
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behaviors is the same as seen in simulation. The reduction in the time to success
can be explained by the reduced room size.

Table 2.4: Summary of flight test results

Parameter user-defined genetically optimized
Success Rate 46% 54%
Mean flight time [s] 12 16
Mean approach angle [◦] 16 37
Mean distance to window center [m] 0.12 0.12

The mean distance to the center of the window was higher for the user-defined
behavior than observed in simulation. This can be the result of the drafts around
the window pushing the DelFly to the edges of the window. This draft would also
push the approaching DelFly into the window edge on some approaches. The time
to success was lower for both behaviors as compared to the values observed in
simulation. This is mainly due to the smaller room size used in reality.
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Figure 2.16: Flight path tracks of the last 7 seconds of all successful flights for the user-
defined behavior. o represents start location of each flight.

Notably, the user-defined behavior showed the characteristic failure of being caught
in corners. This happened 4/26 flights for the user-defined behavior but not once in
the genetically optimized behavior. This is representative of the observations of the
behavior in simulation, a fundamental deficiency of the bi-directional wall avoidance
in a room with corners. This observation additionally suggests that the behavior
seen in simulation is effectively transferred to the real DelFly. Figures 2.16 and
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Figure 2.17: Flight path tracks of the last 7 seconds of all unsuccessful flights for the user-
defined behavior. o represents start location of each flight.

2.17 show the last 7 seconds of the user-defined behavior for all flights grouped in
successful and unsuccessful tests respectively. The Optitrack flight tracking system
did not successfully track the DelFly in all portions of the room resulting in some
dead areas but did accurately capture the final segment of the window approach.

These plots show that the DelFly tried to approach and fly through the window from
various areas of the room at various approach angles. Approaches from areas of
high approach angle typically resulted in a failed flight as the DelFly would hit the
edge of the window. Additionally, the crashes in the wall due to being caught in
corners can also be seen. Fig. 2.18 shows one full successful and unsuccessful
flight of the DelFly user-defined behavior.

Similarly, Figures 2.19 and 2.20 show the successful and unsuccessful flights of
the genetically optimized behavior as captured from the Optitrack system. In these
figures it can be seen that the flight tracks of genetically optimized behavior are
tightly grouped with the same behavior repeated over multiple flights. The DelFly
always approaches from about the center of the room with a coordinated left-right
turn described earlier. It can be seen that some of the unsuccessful flights occur
when the DelFly makes an approach from farther way than normal so the coordi-
nation of the left-right turning is out of sync causing the DelFly to drift off course
and hit the window edge. Fig. 2.21 shows one entire successful and unsuccessful
flight of the genetically optimized behavior in more detail. The typical failure mode
was turning into the edge of the window in the final phase of the flight. This is likely
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Figure 2.18: Flight path tracks showing one complete successful (dash dot) and unsuccessful
(solid) flight for the user-defined behavior. o represents start location of test. Doted path
shows where tracking system lost lock of the DelFly.

mainly due to the drafts around the window. Additionally, the faster decision rate of
the BT in reality combined with the faster dynamics of the vehicle may play a role
here as well.

The fact that the real world test was conducted in a different sized room than tested
in simulation would have an effect on the success rate. In the future it would be
interesting to observe the converged behavior if the simulated room were not kept
constant during evolution. It is expected that this would result in behavior more
robust to changes in the environment.

The failure mode of hitting into the window edge for both behaviors can be in part
the result of the drafts observed around the window or in part due to the lack of
detailed texture around the window. These external factors would affect the two
behaviors equally so would not affect the comparison of behaviors.

The fact that both the user-defined and genetically optimized behaviors were initially
not able to fly through the window but after user adaptation were able to fly through
more than 50% of the time shows that the reality gap was actively reduced by the
user. These results show that it is feasible to automatically evolve behavior on a
robotic platform in simulation using the BT description language. This method gives
the user a high level of understanding of the underlying behavior and the tools to
adapt the behavior to improve performance and reduce the reality gap. Using this
technique an automated behavior was shown to be at least as effective as, if not
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Figure 2.19: Flight path tracks of the last 7 seconds of all successful flights for the genetically
optimized behavior. o represents start location of each flight.
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Figure 2.20: Flight path tracks of the last 7 seconds of all unsuccessful flights for the genet-
ically optimized behavior. o represents start location of each flight.
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Figure 2.21: Flight path tracks showing one complete successful (dash dot) and unsuccessful
(solid) flight for the genetically optimized behavior. o represents start location of test. Doted
path shows where tracking system lost lock of the DelFly.

better than, a user-defined system in simulation with similar performance on a real
world test platform.

2.9. DѶҀѰ҂ҀҀѶѼѻ

2.9.1. BѲѵѮ҃ѶѼѿ I/O AѯҀҁѿѮѰҁѶѼѻ

In this chapter we use the descriptive and user legible framework of the BT to im-
prove the user’s understanding of the solution strategy optimized through evolution.
With this insight the user can identify and reduce the resultant reality gap when
moving from simulation to reality. This approach therefore necessitates that the
elements of the tree are also conceptually tangible for the user, as such a higher
abstract level was used for the sensory inputs. Unlike standard approaches which
use ANNs where raw sensor data is used as input, we first preprocess the data into
a form that a user can understand. The only question is then, how do we determine
what is the best set of inputs to the robotic platform that will facilitate a robust and
effective solution to be optimized by evolution.

Now, compared to typical ER approaches, preprocessing the inputs may affect the
level of emergence of the EA such as hat seen in Harvey et al. [76]. That chapter
demonstrated a robot completing an object detection task which was simplified by
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an EA to the correlation of just a few image pixels. This level of optimization may
not be possible if the inputs are preprocessed. However, preprocessing the input
data typically reduces its dimensionality, thereby reducing the search space of the
EA. This reduction in search space is crucial as we implement this technique on
even more complex task and robotic platforms.

Robotic actions are typically not robust as they are susceptible to unmodeled sim-
ulator dynamics and changes in the operating environment. For example, in this
chapter we set the output of the BT to be the rudder deflection which in hindsight is
not a very robust parameter to control. It may have beenmore effective to have con-
trolled the turn rate and have a closed loop control system controlling the actuator
deflection. The closed loop controller would reduce the BT’s reliance on the flight
model in simulation. This would make the behavior more robust on the real robot
inherently reducing the reality gap. The concept of using nested loops to bound
control systems in order to improve robustness is a concept long used in control
theory.

Considering the reality gap, recent work suggests that by limiting the EA to a set
of predefined modules can actually improve the optimized behavior to the eventual
reality gap [67]. In this work, Francesca et al. compare an optimized FSM using a
limited set of predefinedmodules to a traditional system using an ANN. The two sys-
tems performed similarly in simulation but the ANN performed significantly worse
in reality whilst the FSM maintained its performance. Francesca et al. present their
work in the context of the bias-variance trade-off where they suggest that the intro-
duction of the appropriate amount of bias will reduce the variance of the optimized
system thereby improving its generality. Bias can be introduced to an optimization
problem by limiting the representational power of the system, which in this case is
achieved by limiting the options of the optimization to a limited input-output state
space [50]. This idea can also be considered in this chapter where the limitation of
the state space is not a hindrance or a limitation of the system but is in fact a benefit
of this approach.

The abstraction of the behavior from the low level sensor inputs and actuator output
importantly not only introduces a bias but additionally shields the behavior from the
simulation mismatch causing the reality gap. The improved intelligibility in combi-
nation with the improved generalizability and robustness to the reality gap should
ultimately make the approach presented in this chapter more suitable for extensive
use in real robots attempting complex tasks than conventional ER approaches.

2.9.2. SѰѮѹѮѯѶѹѶҁ҆

The task completed in this chapter is more complex than other ER tasks typically
quoted in literature. Yet in the larger scale of autonomous navigation this task is
only just a start. To facilitate this growing task complexity we will recommend some
points for future research. Firstly, it is interesting to investigate the implementation
of memory and time to the BT. Memory could be implemented as elements of the
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BlackBoard that are not outputs of the BT to the platform but rather just internal
variables. Time could be added by including a Running state to the nodes where
they would hold till the action is completed. Alternatively, an explicit Timer node
could be added that would run for a given number of ticks.

Another point worth consideration is the addition of a Link node to the BT framework.
This node creates a symbolic link to a static BT branch outside of the tree. Evolution
could select branches of its own behavior which could be linked and reused in other
parts of the tree. This should help the optimization to reuse already developed
behavior effectively throughout the tree. This would provide the EA with not only
the raw materials to build the behavior but the ability to save combinations of these
raw materials in a blueprint which can be reused at will.

With that said, the technique described in this chapter is dependent on the user’s
understanding of the underlying robotic behavior, so how does this change with the
growing task complexity? We showed in this chapter that the BT can be broken
down into sub-behaviors which helps the user to understand the global behavior.
The prioritized selection of behaviors based on their location in the tree creates an
inherent hierarchical structure. This structure will automatically group the nodes
of a sub-behavior spatially in the tree. This makes the identification of the sub-
behaviors straight forward. Tuning of the sub-behaviors would be accomplished
using a divide and conquer approach, one sub-behavior at a time.

2.9.3. E҃Ѽѹ҂ҁѶѼѻ Ѽѳ BѲѵѮ҃ѶѼѿ TѿѲѲҀ ѳѼѿ BѲѵѮ҃ѶѼѿѮѹ MѼѱѲѹ-
ѶѻѴ

The BT framework could also be used to model existing behavior or cognition of
robots or animals [75]. This would be in a similar vein as a recent ER study on
odor source identification, in which the insight into the evolved neural controller’s
strategy was verified by constructing an equivalent FSM controller [42]. Instead of
manually designing such a controller, EAs could be used to optimize a BT to best
approximate the behavior of a robot or animal. The BT, optimized to mimic real-
ity, would give researchers increased insight into the underlying system dynamics.
To mention a few examples, this approach can be applied to: self-organisation,
swarming, emergence and predator-prey interaction.

2.10. CѼѻѰѹ҂ҀѶѼѻ

We conclude that the increased intelligibility of the Behavior Tree framework does
give a designer increased understanding of the automatically developed behavior.
The low computational requirements of evaluating the Behavior Tree framework
makes it suitable to operate onboard platforms with limited capabilities as it was
demonstrated on the 20 g DelFly Explorer flapping wing MAV. It was also demon-
strated that the Behavior Tree framework provides a designer with the tools to iden-
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tify and adapt the learned behavior on a real platform to reduce the reality gap when
moving from simulation to reality.

Future work will also investigate further into optimizing the parameters of the evolu-
tionary algorithm used in this chapter. Multi-objective fitness functions and adaptive
simulated environments are possible avenues to improve the generality of the opti-
mized behavior. Additionally, work will be done on investigating how Behavior Trees
scale within Evolutionary optimization, both in terms of behavior node types but also
in task complexity. Regarding the DelFly, the most immediate improvement would
be extending the automated control to include height facilitating extended fully au-
tonomous flight.



3
CѹѼҀѲѱ-LѼѼѽ CѼѻҁѿѼѹ ҁѼ BѿѶѱѴѲ

ҁѵѲ RѲѮѹѶҁ҆ GѮѽ

Improve a mechanical device and you may double productivity, but improve
man, you gain a thousandfold.

- Khan Noonien Singh
Star Trek: The Original Searies, Season 1 Episode 24
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Aside from the behavioral representation, the previous chapter highlighted that a
significant reality gap is present at the lowest level of the control of a robot. Due to
differences in the actuator effectiveness or poorly simulated dynamics, the learned
motion primitives in reality are often different than those in simulation. This portion
of the reality gap can be tackled by abstracting away from the low level control and
adding a closed-loop mechanism to minimize any actuation errors on the real robot.
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This chapter presents an investigation into abstracting away from low level actions
and how this effects the reality gap and the optimization power of the automatic
behavior generator. Here, two controllers with different levels of abstraction are
optimized to form an asymmetric triangle with a homogeneous swarm of Micro Air
Vehicles. These two controllers are transferred into real robots and the reality gap
in both instances is reported.
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3.1. IѻҁѿѼѱ҂ѰҁѶѼѻ

ER is a robotic design methodology centered around the concept of evolving a
robot’s body and mind. Since its origins in the 1990’s, it was thought that the best
way to facilitate the evolution of intelligent behavior was to provide the robot with raw
sensor readings and control the motor output such that the resultant behavior would
solve the given task [128]. We refer to individual inputs and outputs accessible to the
evolutionary process as a primitive. Having evolution utilize all available primitives
gives the optimization the greatest freedom whilst removing user bias to the final
solution as primitive pre-selection is not necessary.

This design method was initially met with a series of quick successes with reactive
agents solving type-2 problems1: obstacle avoidance [61], object characterization
[15, 129], mapless spatial localization [70], just to name a few. These tasks were
however relatively simple when compared to other autonomous robotic applica-
tions. Additionally, the robotic platforms used were rudimentary with relatively few
sensors and actuators as well as slow dynamics. Extending ER to more complex
systems has proven difficult.

One of the major problems limiting the study of ER on more complex robotic sys-
tems and tasks is the reality gap. This gap is defined by the differences between the
relatively low fidelity simulated environments where the evolution takes place and
the real world. Evolutionary optimization often tends to exploit the intrinsic char-
acteristics of the sensory inputs, motor actions, and feedback between these two.
Due to differences between simulation and reality, these solutions don’t transfer
well to the real robot.

The tight coupling between the actions taken by the robot and the sensory inputs
received is referred to as Sensory-Motor Coordination (SMC). Utilizing SMC, an
agent can partially determine the sensory input patterns it receives by acting in a
particular way [129]. It has been suggested that this is the main reason that the
simple agents evolved have been able to solve many non-trivial type-2 problems.

With this in mind it may not be so beneficial to use low-level, unprocessed sensory
inputs and motor outputs as these tend to be environment and robot specific. The
combination of this reliance on a tight coupling between sensing and action and
the level of sensor and action modeling fidelity tends to exacerbate the reality gap,
limiting progress in the ER research.

Additionally, as we move to more complex tasks, the use of low-level primitives
makes it more difficult for evolution to find good solutions early on in the evolutionary
process. This so called bootstrap problem is caused by the fact that the fitness
function rewards performance on the complex, high-level task while the robot has
to master low-level sensor processing and control. It is very difficult to design fitness

1Type-1 problems denote data sets where a direct input-output mapping can be found through statistical
means. Type-2 problems do not have a direct mapping [34].
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functions that guide evolution in the correct direction whilst not introducing too much
designer bias to the final solution.

The main contribution of this chapter is to show that abstracting away from the con-
ventionally accepted use of low-level primitives can make the optimized behavior
more robust to the reality gap. To do this, we optimized two controllers to solve a
decentralized formation task with a homogeneous swarm of three quadrotor MAVs.
One controller, which we denote as the low-level controller controls the rotor rpm of
the quadrotor whilst the second controller will command a velocity which is sent to a
closed loop control system which controls the vehicle. Additionally, we investigate
the effect of using a closed loop control system and high-level primitives has on the
ability of evolution to develop SMC.

The following sections will describe work done to achieve our goal beginning with
Section 3.2 where we discuss SMC in more detail. Section 3.3 discusses the task
we optimized followed by Section 3.4 with a description of the real vehicle used in
our tests as well as the kinematic model implemented for the evolutionary optimiza-
tion. Section 3.6 details the implementation of the evolutionary optimizer used in
this chapter and the results of the optimization. The real world flight test results
are presented in Section 3.7 and a discussion of the reality gap is presented in
Section 3.8.

3.2. SѲѻҀѼѿ҆-MѼҁѼѿ CѼѼѿѱѶѻѮҁѶѼѻ

The main differentiator of autonomous robotic systems and many other forms of Ar-
tificial Intelligence (AI) is the core principle that robots must physically interact with
a real world environment. Robots are embodied agents which must perceive and
understand the world around them in order to take rational actions to achieve their
goals. This fact makes it imperative to understand embodied cognition and how it
relates to rational behavior. Early work in this field had trouble understanding the
cognition process until John Dewey first proposed the concept of a sense-think-act
cycle [49]. He theorized that instead of an open loop cognitive process where a
perceived state prompts and action, humans in fact exhibited a closed loop cogni-
tive process by which the actions we take alter our perceived state. Thus creating
a feedback loop with no clear initial point. He coined this tight coupling between
perception and action Sensory-Motor Coordination. These ideas in human cogni-
tion are most notably further developed by Jean Piaget where he investigated the
development of SMC in infants [141] and James Gibson’s work in perception in air-
craft pilots [68]. This concept can also be generalized to embodied agents within
an AI perspective [28, 33, 139].

Pfeifer et al. state that SMC serves 5 main purposes: (1.) physical control over
objects (i.e. interaction with the world); (2.) perception (i.e. understanding the
world); (3.) induced correlations of the world which reduces the dimensionality of the
sensor-motor space (i.e. simplifying the world); (4.) integration of several sensory
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modalities (i.e. sensor fusion); and (5.) for sensor-motor coordination itself [139].
They go on to say that not only does SMC make correlations it helps to filter out
sensory inputs which are not correlated to the action required to achieve a task
[138]. SMC can be seen as a structuring of the sensor inputs of our complex world
to facilitate the development of intelligent behavior [114].

If we consider our agent from a dynamical systems perspective, SMC can potentially
be seen as a lower dimensional projection of the higher dimensional interaction
with the world. If so, then optimizing behavior actually entails placing behavioral
attractors in this system which will solve the task at hand [122].

In ER, SMC has also been used in connection with self-organization and emer-
gence. Nolfi suggests that in embodied cognition, behavior cannot be considered
based on internal mechanisms only but in-fact emerges from a strong coupling with
the agent’s interaction with the environment [128]. Where emergence can be ex-
plained in three ways: (1.) an agent has a behavior that is surprising and not
fully understood; (2.) emergence refers to a property that is not constrained to
any of its parts (i.e. self-organization); and (3.) behavior resulting from the agent-
environment interaction whenever that behavior is not preprogrammed [140].

The general view in ER is to give evolution a bag of low-level primitives which it
has to sift through using SMC to find relevant correlations needed to achieve the
task. This adds little restriction or user biased direction to the task [114, 140]. This
however has the unwanted side-effect of introducing a large bootstrapping problem
for the optimization making the optimization of complex behavior difficult. Addition-
ally, the low-level primitives are typically raw sensor inputs and raw motor outputs,
which do not generalize well from one robot to another, nor from a simulated to a
real robot. The use of low-level of the primitives is not conclusive to the develop-
ment of complex robotic behavior within the ER framework.

Given these difficulties it seems beneficial to use higher level primitives when evolv-
ing behavior for a complex task but an unanswered question is: Can evolution still
exploit SMC when using high-level primitives with an underlying closed loop con-
troller? The remainder of this chapter will try to answer this.

3.3. TѮҀѸ

In this chapter, the evolutionary optimization is tasked with developing the behavior
of a homogeneous swarm of quadrotor MAVs to form a given asymmetric formation.
This task is based on that presented in [89] where a swarm of 3 SHERES space-
craft were optimized in simulation only. Before [89], methods had been developed
to autonomously form symmetric formations with the asymmetric case proving dif-
ficult [88]. The design of asymmetric formations using a distributed control system
without explicit roles in the formation is a non-trival task for most human designers
making it an ideal task for automatic optimization.
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Unlike [89], we use a simplified two dimensional formation task to make analysis of
the resultant behavior more straight forward. The goal of the swarm is to achieve
an asymmetric triangular formation with sides of length: 0.7 m, 0.9 m and 1.3 m.
The MAVs can observe the relative position to the other members in the formation
as well as relevant ego-motion primitives.

An ANN with one hidden layer was selected to perform the robotic control. A tanh
activation function was used in the neurons and network weights were constrained
to the range [-1,1]. Additionally, bias nodes were added to the input and hidden
layer with the exiting network weights were constrained to the range [-5,5].

To sense the relative position to the other members of the swarm, the main input
to the ANN is the sum of the Cartesian components of the relative positions of the
other members of the formation (r) defined in (3.1). Summing the components of
all aircraft relative positions instead of inputting individual vehicle distances ensures
the ANN cannot associate a specific input with a unique vehicle. Note that r is math-
ematically equivalent to triple the distance from the ownship to the centroid of the
formation (c). An additional and redundant input is the sum of absolute distances
(d) as given by (3.2), this was added to aid the ANN achieve accurate positioning.

r =

k∑
n=2

(pn − p1) (3.1)

d =

k∑
n=2

|(pn − p1)| (3.2)

Where p is the position vector of a vehicle and k is the total number of vehicles in
the swarm. These inputs are computed for each vehicle where p1 is the ownship
location. This formulation removes the possibility of inadvertently assigning vehi-
cles a role which may occur if the relative position to each other vehicle was given
a dedicated input to the ANN. Fig. 3.1 illustrates a possible solution to the formation
problem and a sample computation of the inputs to one of the vehicles.

3.4. Q҂ѮѱѿѼҁѼѿ KѶѻѲѺѮҁѶѰ MѼѱѲѹ

The Parrot ARDrone 2 quadrotor MAV was used for all real world experiments
shown in this chapter. This 420 g vehicle is equipped with a 1 GHz 32 bit ARM
Cortex A8 processor running a Linux operating system 2. The default flight soft-
ware provided by Parrot was overwritten by custom flight software implemented
using Paparazzi UAS, an open-source flight control software [77, 148].

The ARDrone2 has a typical X configuration widely used with quadrotors. These
vehicles have two clockwise and two counter-clockwise rotors. Controlling pairs of
2Parrot ARDrone 2 technical specifications: https://www.parrot.com/eu/drones/parrot-
ardrone-20-elite-edition

https://www.parrot.com/eu/drones/parrot-ardrone-20-elite-edition
https://www.parrot.com/eu/drones/parrot-ardrone-20-elite-edition
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Figure 3.1: Illustration of a possible formation and a sample computation of the spatial pa-
rameters for the highlighted vehicle position (green). Notice that the combination of the three
spatial inputs (r and d) represent a rotationally unique formation.

these rotors can create moments around the center of mass causing the vehicle to
rotate with 6 DOF. Controlling all motors collectively creates a net linear acceleration
in the direction of the rotors aligned with the vehicle’s z axis. Fig. 3.2 shows the rotor
directions and axis system for the ARDrone 2 quadrotor.

x

yz

(a) Outline of the ARDrone 2 showing ro-
tor directions and axis system.

(b) Resultant linear acceleration when assuming
constant altitude and vehicle has an angle w.r.t.
to ground.

Figure 3.2: ARDrone 2 quadrotor
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In this chapter we will only investigate rotations around the x and y directions or roll
and pitch respectively. Rotations around the z axis or yaw will be fixed for all flight
tests. Additionally, all flights are limited to the xy plane and a closed loop controller
is used to maintain a fixed altitude of the vehicle. To ensure the vehicle can maintain
constant altitude the maximum allowable pitch and roll attitude of the vehicle will be
conservatively constrained to ±20◦.

In this chapter the rotations around the x and y axises are generated by command-
ing a change in the rotational velocity of a pair of rotors. This will result in a moment
around the respective axis causing an eventual angular acceleration of the vehicle.
Given an actuator pair setting (ω), the angular acceleration (Ω̇) can be determined
using equation (3.3).

Ω̇ = Gω (3.3)

WhereΩ is the angular rate of the vehicle andG is the actuator effectiveness matrix.
The values of the parameters in G have been identified through experimentation
with a real ARDrone 2 [157]. Additionally, we model the rotors of the vehicle with a
first order response with the time constant τω = 0.0306.

Ignoring aerodynamic damping on the vehicle rotation, we can determine the ve-
hicle attitude angles around the x axis (roll or ϕ) and y axis (pitch or θ) by simply
integrating the angular rates. As all rotors have their thrust vector along in the z
axis of the vehicle, when the vehicle is rotated w.r.t. earth, the rotors will have to
produce more thrust to counteract gravity and maintain altitude. The acceleration
due to the force created by the rotors can be computed as a = g/(cosθcosϕ), where
g is acceleration due to gravity.

Now, the tilted thrust vector of the rotors will also induce a linear acceleration in the
direction of the vector. As the vehicle is not operating in a vacuum, as it picks up
speed it will encounter atmospheric drag. In practice this means that the vehicle will
not have a constant linear acceleration as suggested above but rather the vehicle
will achieve a fixed velocity given a particular attitude. To model this, we have
added two drag terms: profile or rotor drag (Dr ∝ v) caused by the rotors moving
through the air and parasitic drag (Dp ∝ v2) which is mainly caused by the non-
lifting structure moving through the air [9]. The velocity kinematics are described in
(3.4).

v̇ =

[
−sinθcosϕ

sinϕ

]
a−Dr|v|v−Dpv (3.4)

This velocity can then be directly integrated to update the vehicle position. The
kinematics are summarized in (3.5).
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_x =



− 1
τω+h

0 0 0 0 0 0 0

0 − 1
τω+h

0 0 0 0 0 0

Gωx 0 0 0 0 0 0 0
0 Gωx 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 −g · tan 0 Dx1 |vx|+Dx2 0
0 0 0 0 0 g·tan

cosθ
0 Dy1 |vy|+Dy2


x

+



ux
τω+h
uy

τω+h

0
0
0
0
0
0


ωmax

(3.5)

where x = [ωx, ωy, p, q, ϕ, θ, vx, vy]
T , u is the output of the neural network, h is

the time-step of the simulation and ωmax is the maximum rotor setting. Now, the
ARDrone, like many other MAVs is equipped with a sensor suite to provide feedback
on the real world performance of the vehicle. It is important to accurately model the
sensor response of the vehicle along with the eventual sensor noise [90]. For this
chapter we use the observation matrix y defined in (3.6) as identified from real world
flight testing.

y =


Rp ∼ N (p, σp)
Rq ∼ N (q, σq)

ϕ+ ϕ0
θ + θ0
vx
vy

 (3.6)

where σp and σq is the variance of p and q respectively and is set to 0.002 rad/s
for this work. ϕ0 and θ0 are the roll and pitch bias of the Inertial Navigation System
(INS), this is randomly generated each simulation run selected in the range ±3◦. In
this chapter, we perform all experiments in a motion capture arena which is used
to give position and velocity feedback to the vehicle, when fused with the on-board
INS, the resultant velocity estimate is quite accurate. As a result, we will not add
significant noise to this sensor reading as there is unlikely to be much reality gap
here. In addition to the sensor inputs, the simulation constants G, tauω, D1 and
D2 were all randomly perturbed ±5% from their ideal values at the start of each
simulation and for each vehicle.
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3.5. CѼѻҁѿѼѹ ҀѰѵѲѺѲҀ

To evaluate the effect of abstraction on SMC we will have evolution optimize two
different solutions to the same problem applying control to different levels in the
vehicle dynamics scheme described in Section 3.4. These two control schemes
will be referred to as low-level controller and high-level controller.

(a) low-level: Tasked with controlling vehi-
cle rotor pairs.

(b) high-level: Taskedwith controlling veloc-
ity.

Figure 3.3: Inputs, outputs and structure of the neural controllers used in this chapter. A
single hidden layer, fully connected ANN is used with a tanh activation function and an addi-
tional bias node at each layer. Shared inputs are the summed Cartesian components of the
relative positions to the other vehicles in the formation (r) along with the summed absolute
distances (d). Additional inputs are roll rate (p), pitch rate (q), roll angle (ϕ), pitch angle (θ)
and velocity (v).

3.5.1. LѼ҄-ѹѲ҃Ѳѹ CѼѻҁѿѼѹѹѲѿ

For the low-level controller, the ANN is tasked with commanding the moments gen-
erated by the rotors. The output of the ANN is scaled to 15% of the total range of
the rotor speeds to limit the maximum rotational rate of the vehicle.

As the controller must achieve a particular formation by controlling the moments of
the quadcopter, the controller must have a feedback mechanism to achieve stable
flight. As such, the inputs to the ANN controller are: roll rate (p), pitch rate (q), roll
angle (ϕ), pitch angle (θ), velocity in the x axis (vx), velocity in the y axis (vy) and the
formation inputs px, py and d. The structure of the ANN for this controller showing
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the inputs and outputs can be seen in Fig. 3.3a. We chose for a fixed structure,
single hidden layer network with 15 hidden neurons.

3.5.2. HѶѴѵ-ѹѲ҃Ѳѹ CѼѻҁѿѼѹѹѲѿ

To demonstrate a high-level of abstraction, the evolved behavior will be tasked with
controlling the velocity set-point of the quadrotor. The output of the ANN is linearly
scaled to the velocity limits of the vehicle, which in the case of this chapter is set
as vmax =0.5 m/s. This set-point is used as the input to closed loop control ar-
chitecture which achieves the given velocity by controlling the individual motors for
the quadrotor. This abstraction separates the optimization of the control system of
the quadrotor the optimization of the high-level robotic behavior. Designing control
systems is a long investigated area of research with many available methods to
effectively control a wide range of systems. In its most simple form, a controller
simply tries to reduce the error between a required state and the current state of a
system. Much work has been done to make the control performance robust to un-
modeled dynamics and environmental disturbances [112]. By definition, this makes
the system more robust to the eventual reality gap between the dynamics of the
simulated system and that of the real vehicle.

As a closed-loop controller will ensure performance of the vehicle dynamics, we
can simplify the model described in 3.4 to a first order system with time constant
τv = 0.3636 as shown in (3.7). As before, the value of tauv used in the simulation is
randomly perturbed by ±5% at the start of each simulation and is different for each
vehicle.

_v =

[
− 1

τv+h 0

0 − 1
τv+h

]
v+

[ ux

τv+h
uy

τv+h

]
vmax (3.7)

This assumption greatly reduces the computational requirements of the simulator.
As the time constant of the velocity system is relatively large we can use a large
time step in the simulation as compared to the low-level controller which requires a
very small time step. Additionally, the number of inputs to the ANN is also reduced
to only the formation inputs px, py and d as shown in Fig. 3.3b as the closed-loop
controller will account for all closed loop control.

3.6. E҃Ѽѹ҂ҁѶѼѻѮѿ҆ AѹѴѼѿѶҁѵѺ

All EAs share a common set of features, namely: Initialization, Evaluation, Selection
and Recombination [58]. As the ANNs used in this chapter have a fixed structure,
the EA is tasked with optimizing the neural weights interconnecting the neurons
of the network. A population of 100 individuals was generated with neural weights
initialized with a random number in the applicable range. Once initialized all individ-
uals were simulated using a kinematic simulator with model structure as described
in Section 3.4. The three vehicles were initialized at hover in a 4 × 4 m area with
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a minimum inter-vehicular separation of 1.5 m. The centroid of this initial formation
was set at the origin of the test area. All simulations were constrained to a max-
imum simulation time of 50 s. Simulations are cut short if any two vehicles came
within 30 cm which would constitute a real world collision or any vehicle exceeded
the maximum allowable bank angle of ±20◦. The resultant behavior was evaluated
using the set of fitness functions to be minimized as described in (3.8).

f1 = 1− tsim
tmax

f2 =
k∑

n=1
|Ln − ln|

f3 =
k∑

n=1
|vn|2

f4 =

{
0, |c| < 3

|c|, else

(3.8)

Where L is the required distance, l is the distance between the vehicles at the end
of the simulation, both L and l are sorted in ascending order. v is the velocity vector
of the MAV at the end of the simulation and c is the location of the centroid of the
triangle. tsim is the simulation time at the end of the simulation and tmax is the
maximum allowable simulation time. All fitness functions are limited to the range
[0,100].

These equations attempt to promote the EA to optimize individuals that complete the
desired formation (f2) with zero resultant speed (f3) with stable behavior indicated
by long flights (f1). f4 tries to impose a restriction on the behavior for the formation
to form within the 3 × 3 m box around the center of the simulation environment.
This is to facilitate the real world test which must occur in a flight arena which is
10 × 10 m. The final fitness function provides a negative reinforcement when the
simulation is prematurely terminated either due to a collision or due to exceeding
the vehicle’s maximum bank angle. f2 and f3 are similar to the function used in
[89].

Once evaluated, the population is ranked using the widely usedmulti-objective Non-
dominated Sorting Genetic Algorithm II (NSGA-II) with crowding sorting applied in
the fitness domain [47]. Selection is achieved using a tournament of eight ran-
domly selected individuals from the sorted population returning the highest ranked
individual.

Mutation was the only evolutionary operator used in this chapter as some works
have shown that mutation only evolution to be effective [175]. Each weight in the
ANN was considered for mutation with a probability of 10%. Mutation consisted of a
random perturbation of the previous value using roulette selection, small perturba-
tions have a higher probability than larger ones. All weights were keep in the range
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[-1,1] except for the weights from the bias nodes which were keep in the range
[-5,5].

3.6.1. LѼ҄-ѹѲ҃Ѳѹ CѼѻҁѿѼѹѹѲѿ OѽҁѶѺѶ҇ѮҁѶѼѻ

Fig. 3.4 shows the progression of the evolution for the low-level controller. Here
the best individual is the individual with the largest euclidean distance from the
origin in the 4-dimensional fitness space. Notice that around 500 generations were
needed before basic flight capability was evolved after which a slow but steady
improvement in the performance with the total formation error around 3 cm after
2500 generations. The total simulation time was about 18 hrs on a standard desktop
PC with a simulation time step of 0.01 s which is necessary to simulate the fast
dynamics of the actuators.
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Figure 3.4: Progression of the performance of the best individual and the mean of the pop-
ulation during evolution for the low-level controller.

The individual with the lowest average fitness was evaluated in more detail by a
validation run of 250 different initial conditions. During the validation run, the simu-
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lation was not cut short if a collision occurred. A formation is considered accurate
when the summed error of the lengths is below 0.15 m or 5 cm average error over
the final 2 seconds of the flight. The results show that 79% of runs resulted in a suc-
cessful triangle formation within 50 s, if we ignore crashes this increases to 90%.
Of these successful runs, the mean error was 0.0189 m with a standard deviation
of 0.01. Of the runs would not have completed the formation even when not consid-
ering crashes, the main failure case was that the vehicles exceeded the maximum
attitude limits. Fig. 3.5 shows one of the successful runs of the formation behavior
and one case where a collision would have occurred.
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Figure 3.5: Ground track of one successful and one unsuccessful flight of the low-level con-
troller. The length of each side is shown in text, +marks the start location and the circle with
a dot in the center marks the end location with the diameter of the vehicle to scale.

Interestingly, it was observed that the formation formed was always oriented with
the same rotation to the axis system. This suggests that the behavior is trying to
change the output of the network which would result in a unique set of formation
inputs (r and d) rather than a rotationally invariant formation.

3.6.2. HѶѴѵ-ѹѲ҃Ѳѹ CѼѻҁѿѼѹѹѲѿ OѽҁѶѺѶ҇ѮҁѶѼѻ

Fig. 3.6 shows the performance of the best individual from each generation of the
evolutionary optimization for this problem. This figure shows that evolution grad-
ually reduces the error in the final vehicle distances and the final velocity. This
figure also shows that the behavior does not guarantee a collision free flight for all
initial conditions. After 1000 generations the average error of each length of the
formation is about 2 cm. This was significantly faster than the low-level controller.
Additionally, the total optimization time was 30 minutes on a standard desktop PC
with a simulation time step of 0.2 s facilitated by the slower dynamics of the velocity
controller response.
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Figure 3.6: Progression of the performance of the best individual and the mean of the pop-
ulation during evolution for the high-level controller.

As before, the behavior for the best controller was evaluated by a validation run
of 250 different initial conditions. The results show that 84% of runs resulted in
a successful triangle formation within 50 s, again, if we ignore crashes this value
increases to 98%. Of these successful runs, the mean error was 0.0222 m with
a standard deviation of 0.0262 m. In the remaining 2% of the runs, the triangle
was not formed after the given 50s but was in-fact formed later, if we extend the
50 s simulation to 100 s and ignore collisions we find a 100% success rate. These
results are summarized in Table 3.1. Fig. 3.7 shows one of the successful runs of
the formation behavior and one case where a collision would have occurred.

An interesting observation was that the formation created was observed to be in
the same orientation to the axis system, a similar solution strategy to that seen in
the low-level optimization. The orientation of the formation for the two controllers is
different and in fact, each time the behavior was re-evolved a different orientation
was optimized suggesting that there is no special geometric optimum but rather the
output is being regulated to maintain a fixed combination of the inputs px, py and d.
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Figure 3.7: Ground tracks of a collision free flight and a flight that would have ended in a
collision of 3 ARDrones performing the asymmetric formation task. The length of each side
is shown in text, +marks the start location and the circle with the dot in the center marks the
end location with the diameter of the vehicle to scale.

Table 3.1: Success rate of the formation task.

Low-level High-level
With All Termination Conditions 79% 84%

Ignore Collision 90% 98%
Ignore Collision and tmax = 100 s 91% 100%

Average Formation error 0.0189 m 0.0222 m

3.7. FѹѶѴѵҁ TѲҀҁҀ RѲҀ҂ѹҁҀ

Moving from the simulated world to the real, the behaviors shown above were im-
plemented on a swarm of 3 ARDrones. Flights were performed in an 10 × 10 m
flight arena and the flight path of the vehicles was captured using an Optitrack mo-
tion camera system which was used to determine the relative location inputs to the
neural network 3. For the first set of tests, as in simulation, the 3 vehicles were
initialized at random in a 4 × 4 m area in the flight arena with the centroid of the
initial formation at the origin of the arena just like in simulation.

When testing the low-level behavior it quickly became apparent that there was a
significant disparity map. When switching from hover into autonomous mode, the
vehicles would quickly loose stability and exceed their 20◦ attitude limits ending the
trail. The root cause of the gap was not immediately clear and was quite difficult to

3A video of some of the flight tests can be found at the following url: https://www.youtube.com/
playlist?list=PL_KSX9GOn2P8ru70sZZj0H6K2R7lWCoDx

https://www.youtube.com/playlist?list=PL_KSX9GOn2P8ru70sZZj0H6K2R7lWCoDx
https://www.youtube.com/playlist?list=PL_KSX9GOn2P8ru70sZZj0H6K2R7lWCoDx
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pin point given the multiple inputs and the fast dynamics of the vehicle.

The high-level controller did however successfully cross the reality gap with the
flight path of one flight shown in Fig. 3.8 compared to a simulated flight with the
same initial position.
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(a) Real world
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Figure 3.8: Ground track of the real world flight test and the simulated flight for the same
initial positions. The length of each side is shown in text, + marks the start location and the
circle with a dot in the center marks the end location with the diameter of the vehicle to scale.

The flight path observed in reality was very similar to that predicted in simulation
however, deviations can be seen when the vehicles come into close proximity of
each other. This was due to aerodynamic interactions of the rotor downwash, some-
thing that was not modeled. The closed-loop controller was however able to cope
keeping the vehicles close to the desired formation. Fig. 3.9 shows the commanded
velocity of the ANN and the true vehicle velocity along with the result of the simula-
tion.

In contrast to the simulation, the real-world quadrotors have clear velocity tracking
errors and oscillations, in part due to the aerodynamic interactions. These tracking
errors represent a significant reality gap. Despite this, the observed high-level be-
havior is very similar to that seen in simulation with the correct formation achieved
with an average formation error of 0.034 m, only 10 cm deviation from that in sim-
ulation. The resultant stable formation in the face of these unmodelled external
disturbances highlights the robustness of the optimized solution.

Looking more closely at Fig. 3.9 we can see some overshoot and oscillation in
the real world velocity controller that was not seen in simulation. Unlike the first
order system used to model the velocity response of vehicle in simulation, the real
world controller resembles more a second order system with a short rise time. This
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Figure 3.9: Tracking performance of the velocity controller on the simulated and real
ARDrone 2 given the same velocity command highlighting the reality gap.

difference in simulated and real dynamics is one clear source of the reality gap. To
investigate the robustness of the optimized behavior this controller, we implemented
a second order system in our simulator with the following transfer function ω2

0 /(s2 +
2ζω0+ω

2
0). The natural frequency (ω0) and damping ratio (ζ) was varied and tested

with the previously optimized behavior. Table 3.2 summarizes the results of this
investigation. The parameters identified to best fit the observed velocity response
were ω0 = 3.854 and ζ = 0.9. Interestingly, the behavior was robust to a wide range
of velocity dynamics breaking down when the natural frequency dropped below
0.85. The damping ratio had little effect on the final formation performance but did
have effect in the number of collisions as the behavior became more oscillatory.

3.8. AѻѮѹ҆ҀѶҀѼѳ ҁѵѲSѲѻҀѼѿ҆-MѼҁѼѿCѼѼѿѱѶѻѮҁѶѼѻ

To analyze the effect of abstraction on the extent to which evolved robots exploit
their environment and make use of SMC, we must first dive deeper into the opti-
mized behavior. Firstly we will investigate an observation made in [89]. There, al-
though the task was solved by the genetic optimization during analysis, the evolved
behavior, researchers fixed two of robot satellites such that one leg of the formation
was correct. When the third satellite was left free tomove it did not settle into the cor-
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Table 3.2: Success rate of high-level controller when simulated with varying second order
vehicle dynamics.

ζ
0.9 0.6 0.3

3.854 96.0% 95.6% 97.2%
2.854 95.6% 94.0% 97.2%

ω
0 1.854 90.4% 94.4% 96.8%

0.854 87.2% 85.2% 0%

rect location to complete the formation. This led them to an interesting hypothesis:
perhaps the asymmetric formation could only be reached if all three satellites were
free to move. Here we will investigate if we can observe a similar phenomenon for
our specific evolved solution, and evaluate whether SMC plays a role in successful
formation flight.

In the flight tests performed in this chapter, it was observed that all successful for-
mations resulted in a triangular formation with the same rotational orientation to the
Cartesian axis system. The orientation can be seen in Fig. 3.7 and Fig. 3.8. Given
the location of any two vehicles separated by any of the three length of the for-
mation, there are four possible locations for the third vehicle that would satisfy the
task given. The optimized solution seems to only utilize one of these. Additionally,
there is a unique set of inputs to describe every possible rotational orientation of
the triangle formation. The fact that the formation always converges to the same
orientation suggests that the solution optimized in evolution is to define the output
of the ANN such that the commanded velocities forces the vehicle into a specific
relative location where the value for the inputs px, py and d produces a minimum
velocity command which is stable to disturbances.

If we fix two of the vehicles as done in [89] and evaluate the velocity output of the
ANN of the third vehicle when in various locations around the arena we can get an
idea for the solution strategy as shown in Fig. 3.10. Fig. 3.10a shows the velocity
map of the third vehicle when the other members of the swarm are aligned with the
x-axis, an orientation not seen when the vehicles were all free. It can be seen that
there are three stable minimums in this basin of attraction and none of them satisfy
the given formation. Notably, although the highlighted spots are stable points when
the two other vehicles are free, the commanded velocities of the other two vehicles
is non-zero showing that this formation is not stable. In Fig. 3.10b, the two fixed
vehicles are situated in a similar orientation to that seen when the vehicles were all
free. This basin of attraction shows only one stable minimum which does satisfy
the formation. We also performed real flight tests with two vehicles fixed along the
correct orientation with Fig. 3.10b showing that the ground tracks of the real flights
overlap almost exactly with this velocity field. This confirms the hypothesis of output
shaping to converge to a single relative position and therefore set of inputs px, py
and d and is a strong indication that the high-level controller is in fact using the SMC
to complete the task.
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(a) Velicity map when two fixed vehicles are
fixed in the wrong rotational orientation to fa-
cilitate the formation.
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(b) Velocity map when two fixed vehicles are
fixed in the correct rotational orientation to fa-
cilitate the formation. Overlain in green are
ground tracks of all real world flights. This
shows that the real world performance mirrors
what is expected from simulation quite well de-
spite a clear reality gap.

Figure 3.10: Basin of attraction for one vehicle given the other two vehicles (shown in red and
blue) are fixed in space. The hollow red circle highlights the solution to the formation problem
and the green dots show the stable attractor points. Color bar represents the magnitude of
the commanded velocity |vcmd|.

When considered from the point of view of the decentralized swarm, as mentioned
when two vehicles are fixed, it is possible to enter a local minimum that is not ob-
served when all are free to move. This would suggest that the solution strategy is
based on the fact that the swarm is homogeneous and therefore there is an inherent
modeling of the motion of the other members of the swarm. This implicit modeling
can be also expressed as a form of environmental exploitation which is a hallmark
of SMC. Given Nolfi’s suggestion that the emergence of behavioral attractors is in-
dicative of SMC [129], the high-level controller would appear to effectively exhibit
SMC albeit on a more abstract level. Although the evolution has no access to the
low-level control or sensory inputs, the resultant behavior was still able to exploit the
implicit knowledge that the other members of the swarm would implicitly cooperate
to solve the task.

3.9. DѶҀѰ҂ҀҀѶѼѻ

It was not the goal of this chapter to suggest that the use of low-level primitives
should not be used, or that it is not possible to evolve complex behavior using
these primitives. Although we were unable to bridge the reality gap for our low-level
controller, it does not mean that it is not possible. Likely, revising the modeled dy-
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namics, use of a recurrent neural network or incremental evolution may provide the
tools necessary to cross the gap but that is in itself one argument for using abstrac-
tion. We investigated what effect abstracting away from low-level primitives has on
the effectiveness of the optimized behavior and the optimization process itself. We
have shown that the abstraction of actions can reduce the effective dynamics of the
robotic platform which in combination with the reduced simulation fidelity required,
can reduce the computational load of simulations, speeding up optimization times.
Shifting the action space to a higher level also helps to reduce the search space of
the optimization reducing the bootstrapping problem. Importantly, we have demon-
strated that abstraction does not necessarily prevent the emergence of SMC as
some have suggested.

This chapter used abstraction on the actions but the authors expect similar success
when applied to the sensory inputs where large gains can be seen in the use of pre-
processed visual inputs. This however comes with a few caveats, by preselecting
a subset of abstracted inputs for evolution we are effectively reducing the search
space, which is beneficial for the optimization but also removing degrees of free-
dom which can be potentially detrimental. Open questions are: How do you select
the level of abstraction; How do we determine the inputs necessary to complete the
task at hand; How do we abstract away from raw inputs without injecting unnec-
essary amounts of designer bias? We hope to answer some of these questions in
future work.

Reflecting on the evolution of the behavior itself, it is interesting to note that both
behaviors did not find solutions which solved the formation while guaranteeing col-
lision free flight. Collisions were in-fact the highest source of failed flights. This may
be due to the fact that collision was used to preemptively end the simulation without
an explicit negative reward. It may have been more effective to have some explicit
fitness impact when a collision occurred.

The fact that the optimization selected a rotationally fixed solution to the formation
problem may be a result of the selection of the fitness functions. The fitness func-
tions used in this chapter tried to promote the formation of a triangle with three fixed
length sides but gives no definition of the required orientation. Given that freedom,
the optimization simply found the simplest solution to the problem, which in this
case is a formation resulting in a unique combination of the relative position inputs.

3.10. CѼѻѰѹ҂ҀѶѼѻ

In this chapter we investigated the application of abstraction on the inputs and out-
puts of a neural network controller within the Evolutionary Robotics paradigm. Two
flight controllers using differing levels of abstraction were evolved to solve an asym-
metric triangle formation task with a swarm of three MAVs. Both controllers were
able to control the vehicles to complete the swarming task however only the con-
troller using the higher level of abstraction successfully bridged the reality gap and
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worked on the real robot. We have shown that abstraction can be a useful tool
in making evolved behavior robust to the reality gap. Additionally, abstraction has
been shown to reduce the level of fidelity required of the simulator as low-level
interactions of the sensors and actuators are modeled by a higher level system
thereby reducing optimization time. Most importantly, we have demonstrated that
sensory-motor coordination, a typical emergent phenomenon of reactive agents,
is not necessarily lost when abstracting away from the raw inputs and outputs, as
some have suggested, but is rather is simply shifted to a higher level of abstraction.

The use of abstraction has the potential to accelerate the development of more
complex robotic behaviors than have been previously attempted. There are how-
ever some open questions that must be answered before it can be widely used.
The most significant of which is how this abstraction is selected. By only providing
the evolutionary optimization with a subset of possible sensory inputs or actions,
the user may inadvertently limit or unnecessarily guide the optimization process
away from a potential optimum. Future work will investigate how the optimal input
and output set can be automatically determined or optimized within the evolutionary
process.



4
EѳѳѶѰѶѲѻҁ E҃Ѳѻҁ-BѮҀѲѱ OѽҁѶѰ ѳѹѼ҄

Things are only impossible until they’re not.

- Jean-Luc Picard
Star Trek: The Next Generation, Season 1 Episode 17

The contents of this chapter have been published as:

Title Vertical landing for micro air vehicles using event-based optical flow
Journal Journal of Field Robotics, 35(1), 69–01, 2018
Authors B.J. Pijnacker Hordijk, K.Y.W. Scheper and G.C.H.E. de Croon
Contribution The research that lead to the original published work was the result of the MSc grad-

uate research of Bas Pijnacker Hordijk, whom I supervised together with Dr. Guido
de Croon. Apart from the natural conceptual collaboration, I specifically prepared
the onboard implementation of the software required to capture the data for the pre-
sented results. Additionally, I performed supplementary flight tests and data analy-
sis required for the revised version of the paper which was eventually published.

Expansion Since the early work presented in the Journal of Field Robotics, I have continued
developing the software. Specifically, I implemented the optical flow algorithms
on the Parrot Bebop 2 with the SEEM1 event-camera from Insightness. This re-
implementation has resulted in better optical flow results and higher processing rate.
The following will first present an edited version of the published paper followed by
some updated results with the updated setup.

The tight coupling sensori-motor coordination used by embodied robots makes
them susceptible to small changes in the environment. The previous chapter delved
into improving robustness of the actuation side of this loop whilst this and the next
chapter will delve into the perception side.

To investigate the how robotic behavior can be made robust to its input we will
first introduce a novel robotic input, namely the dynamic vision sensor. The low
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data throughput and low latency of the data produced by this event-based cam-
era promises to facilitate high speed perception of the surrounding world. This
novel camera architecture unfortunately requires novel computational infrastructure
to convert the raw data into a usable form.

This chapter presents an efficient method to compute optical flow from data pro-
duced by a dynamic vision sensor and show the first use of this camera in the
control loop of an autonomous robotic vehicle. This sensor system will be used in
the following chapter to investigate how the reality gap is influenced by the type of
robotic input used.
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4.1. IѻҁѿѼѱ҂ѰҁѶѼѻ

Rapid advances in micro-electronics catalyzed the development of tiny flying robots
[65], formally referred to as Micro Air Vehicles (MAVs). Due to their size and agility,
MAVs have the potential to perform activities in confined and cluttered environ-
ments. However, achieving autonomous flight with very small MAVs (for example,
the 20-gram DelFly Explorer [46]) is a significant challenge due to strict weight and
power limitations for on-board equipment. The speed of cutting edge autonomous
MAV navigation pales in comparison to their natural counterparts, the insect.

The main sensor system of most insects uses some form of visual light to per-
ceive the environment around them. Visual navigation in flying insects is primarily
based on optical flow, the apparent motion of brightness patterns perceived by an
observer due to relative motion with respect to the environment [69]. In essence,
optical flow provides information on the ratio of velocity to distance, such that the
actual metric distance to the environment is not directly available. Instead, flying
insects navigate based on certain visual observables extracted from the optical flow
field that relate to ego-motion. Honeybees were seen to control their descent dur-
ing landings based on the divergence of the optical flow field perceived from the
ground [7]. When looking down, flow field divergence conveys the ratio of verti-
cal velocity and height above the ground. By maintaining a constant divergence
in downward motion, an observer approaches the ground while exponentially de-
creasing its downward speed. For flying robots capable of vertical landing, this is
an interesting strategy. This application has been explored in several experiments
with rotorcraft MAVs [41, 81, 82, 84].

While such optical flow based navigation strategies are bio-inspired, most visual
sensors employed for measuring optical flow differ significantly from their natural
counterparts. Commonly used miniature cameras operate in a frame-based man-
ner: full frames are obtained by periodically measuring brightness at all pixels. This
is a relatively inefficient process for motion perception, since the information output
rate is independent of the actual dynamics in the scene. Static parts of a frame
are recorded as well as changing parts, even though only the latter are relevant
for motion perception. Therefore, follow-up processing of a full frame is necessary,
which at present still requires significant processing. In addition, fast inter-frame
displacements lead to motion blur, which limits the accuracy of resulting optical
flow estimates or requires complex algorithms to account for this. These character-
istics are undesirable for optical flowmeasurement on board miniature flying robots,
which are subject to strict computational limits and exhibit fast dynamics.

In contrast, biological vision systems, such as the compound eyes of insects, em-
ploy an event-driven mechanism; they measure changes in the perceived scene at
the moment of detection [147]. Several researchers have attempted to mimic the
sensory system in insects in order to measure optical flow. For example, in [151]
a tethered rotorcraft MAV was equipped with a 2-photodetector neuromorphic chip
for measuring translational optical flow. In [63] a miniature curved compound eye
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design, inspired by the fruit fly Drosophila, was presented.

In particular, event-based cameras are a promising class of sensors for optical flow
perception. When a pixel of an event-based camera measures a relative increase
or decrease in brightness, it registers an event, mapping its pixel location to the
timestamp and sign of the change. This timestamp is obtained with microsecond
resolution and latencies in the range of 3 to 15 µs. In addition, event-based pixel
architectures enable intrascene dynamic ranges exceeding 120 dB [174]. These
characteristics are highly desirable in robotic visual navigation. Experiments using
event-based cameras demonstrated high performance of visual control systems
through low-latency state updates, efficient data processing, and operation over a
wide range of illumination conditions [37, 48].

This novel approach to visual sensing is in general incompatible with state-of-the-
art computer vision algorithms for estimating optical flow, due to the lack of absolute
brightnessmeasurements. Therefore, several event-basedmethods for optical flow
estimation [10, 11, 16, 17, 23] as well as benchmarking datasets [13, 150] have been
developed. Of the existing techniques, the local plane fitting approach by [16] is the
most promising based on its application to estimating time-to-contact (the reciprocal
of flow field divergence) in simple scenes [31] and good results estimating optical
flow visual observables in [150]. However, until now, no study has discussed an
implementation of event-based optical flow into an optical flow based control loop
of an MAV.

This chapter contains three main contributions. First, a novel method for estimating
event-based optical flow inspired by [16] is introduced. Its applicability is extended
to a wider range of velocities, while improving computational efficiency. Second,
a method for incorporating event-based optical flow into visual estimation of diver-
gence is proposed, which accounts for the aperture problem that occurs in most ex-
isting event-based optical flow methods. Third, the proposed algorithms for event-
based optical flow divergence estimation are incorporated in a constant divergence
landing controller on-board of a quadrotor. To the best of the authors’ knowledge,
this chapter presents the first functional event-based visual controller on-board of
an MAV.

Figure 4.1: MavTec MAV flying outdoors with the DVS128 event based camera attached.



RѱѸѭҀѱѰ WѻѾѷ

4

71

We begin by discussing related work concerning landing using optical flow, event-
based vision, and optical flow estimation in Section 4.2. In Section 4.3 the estima-
tion method for event-based optical flow is described and evaluated. Subsequently,
Section 4.4 introduces the approach to estimating visual observables from event-
based optical flow, followed by an assessment of its performance in combination
with the optical flow method. Section 4.5 presents flight test results of the full es-
timation pipeline during constant divergence landing maneuvers. Lastly, the main
conclusions and recommendations for future work are presented in Section 4.7.

4.2. RѲѹѮҁѲѱWѼѿѸ

4.2.1. E҃Ѳѻҁ-BѮҀѲѱ CѮѺѲѿѮҀ

Inspired by the workings of biological retinas, event-based cameras rely on a sens-
ing mechanism that fundamentally differs from their frame-based counterparts. In
frame-based cameras the pixel values from all pixels are measured at fixed time
intervals to produce a sequence of images. In event-based cameras, on the other
hand, pixel activity is driven by light intensity changes. Whenever a pixel measures
a local change, it produces an event. Specifically, this occurs when the pixel’s log-
arithmic intensity measurement I(x, y, t) (at pixel location (x, y) and timestamp t)
increases or decreases beyond a threshold C:

|∆(log I (x, y, t))| > C (4.1)

Events are encoded according to an Address-Event Representation (AER) [107],
which consists of event information encoded by an address and the timestamp of
detection. Typically, an event encodes the pixel position (x, y), the timestamp t,
and the polarity P ∈ {−1, 1}, which indicates the sign of the intensity change. A
visualization of a basic stream of events, in comparison to an equivalent set of
frames, is shown in Fig. 4.2.

The sensor used in this work is the Dynamic Vision Sensor (DVS) - specifically,
the DVS128 - which is the first commercially available event-based camera [29].
It features a 128x128 pixel grid operating at an intrascene dynamic range of 120
dB, measuring events at 1 µs timing resolution with a latency of 15 µs [107]. A
picture of the DVS is shown in Fig. 4.3. Since the availability of the DVS, other
event-based cameras have been developed. Most notable are the Asynchronous
Time-based Image Sensor (ATIS) [146], which measures absolute intensity as well
as polarity for each event, and the Dynamic and Active pixel Vision Sensor (DAVIS)
[22], whose pixels record events as well as full frames. Interesting in the context
of this work is the 2.2 gram micro embedded DVS (meDVS) [36], which is highly
suitable for on-board MAV applications.

Event-based cameras have several interesting applications for robotic navigation.
Initial work has been performed on visual SLAM with event-based cameras [171,
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Figure 4.2: Frame-based and event-based visual output generated from a simple synthetic
scene, in which a black horizontal bar moves upward. The events are visualized as points
in space-time, hence showing the trajectory of the leading and trailing edges of the black
bar. Events with positive polarity are highlighted as light colored points; those with negative
polarity are marked as black.

172]. In [125] a pose estimation algorithm based on line tracking is applied to a
quadrotor, enabling it to perform aggressive maneuvers. Some studies demon-
strate the ability to simultaneously reconstruct intensity maps and relative pose [97]
and, more recently, three-dimensional structure [98]. Others aim at combining the
benefits of event-based and frame-based vision using the DAVIS. For example, the
method presented in [104] uses frames to identify visual features and events to
track their position in high-speed motion, in order to perform visual odometry. Early
work on optical flow estimation using the DVS was shown in [38].

4.2.2. E҃Ѳѻҁ-BѮҀѲѱ OѽҁѶѰѮѹ FѹѼ҄ EҀҁѶѺѮҁѶѼѻ

Since the introduction of the DVS and subsequently developed sensors, several
different approaches to event-based optical flow estimation have been developed.
Most of these techniques operate on each newly detected event and its spatiotem-
poral neighborhood, providing sparse optical flow estimates. However, in most
cases, the algorithms do not distinguish between corner points and other visual
features. Thus, they primarily estimate normal flow. In the following, a brief review
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Figure 4.3: Picture of the event-based camera employed in this work, the DVS128.

of recent approaches is presented.

An adaptation of the frame-based Lucas-Kanade tracker is introduced in [17]. Simi-
lar to the original algorithm, it solves the optical flow constraint by including the local
neighborhood of a pixel. Since absolute measurements of I are not available, the
authors replaced the intensity I by the sum of event polarities at a pixel location,
obtained over a fixed time window. The reconstructed ‘relative intensity’ is used to
numerically estimate Ix, Iy, and It. However, the number of events is generally too
low for this approach to provide accurate gradient estimates, in particular for the
temporal gradient It.

In [16] an algorithm is presented that operates on the spatiotemporal representation
of events as a point cloud (as shown in Fig. 4.2). When representing a sequence
of events by three-dimensional points of (x, y, t), they form surface-like structures.
The gradient of such a surface relates to the motion of the object that triggered the
events. By computing a local tangent plane to an event and its neighbor events,
normal flow for that event is estimated. A follow-up study employs this algorithm
for detecting and tracking corners from neighboring normal flow vectors, hence ob-
taining fully observable optical flow [32]. However, real-time results are not yet
demonstrated with a non-parallelized implementation.

In [11], a technique is introduced that estimates optical flow on object contours,
based on both events and absolute intensity measurements. Input events are used
to locate motion boundaries on contours. Along each boundary, motion is estimated
using the width of the contour, which is computed from the local event distribution
and the absolute intensity. The latter can be reconstructed from events, but having
separate intensity measurements (e.g. from a DAVIS or ATIS sensor) simplifies the
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process. [36] uses no spatio-temporal fitting but simply estimates the flow of events
by looking at neighboring pixels and the time difference between these events.

A bio-inspired approach is proposed in [23]. In this approach, optical flow is esti-
mated using direction- and speed-selective filters based on the first stages of visual
processing in humans. A bank of spatiotemporal filters is employed, each of which
is maximally selective for a certain direction and speed of optical flow. For each
new event, the neighboring event cloud is convolved with the filters to obtain a con-
fidence measure for each filter. Optical flow for that event is then obtained from the
sum of the confidence measures weighted by direction.

More complex event-based algorithms have also been developed, which have not
demonstrated real-time performance, but show promising results. In [12] a phase-
based optical flow method is discussed, which is developed for high-frequency tex-
tures. The algorithm is compared to other event-based methods [11, 16, 17], indeed
showing significant accuracy improvements. Also, an approach was presented for
simultaneous estimation of dense optical flow and absolute intensity [10]. This is
the only available approach aimed towards dense optical flow estimation. Visual
results of this method are encouraging, yet a quantitative evaluation has not been
performed.

Recently, several datasets for event-based visual navigation have been published.
The set in [13] provides both frame and event measurements from a DAVIS sen-
sor accompanied by odometry measurements. This facilitates comparison between
frame-based and event-based techniques for optical flow estimation or visual odom-
etry. However, to the best of the authors’ knowledge, an actual comparison of ex-
isting techniques has not yet been published for this set. In this respect, the work in
[150] is more relevant for this work, as it features both an event-based dataset and a
comparison of various optical flow algorithms. These are variants of the techniques
in [17] and [16], as well as a basic direction selective algorithm.

We select the local plane fitting algorithm in [16] as the basis of the approach in
our work. It has shown the most promising results in [150] and has recently been
incorporated into follow-up experiments [31, 32]. In addition, its implementations
yielded real-time operation for high event measurement rates.

4.3. RѲѮѹҁѶѺѲ E҃Ѳѻҁ-BѮҀѲѱ OѽҁѶѰ FѹѼ҄ EҀҁѶѺѮҁѶѼѻ

This section describes our optical flow estimation approach. Since it is based on the
work in [16], this baseline approach is explained first in Section 4.3.1. Then, the pro-
posed modifications for achieving higher efficiency (Section 4.3.2) and timestamp-
based selection (Section 4.3.3) are discussed. In Section 4.3.4 the result of our
improvements is evaluated in comparison to the baseline algorithm. This is done
as it is unlikely that a single edge will consist of both positive and negative contrast
points.
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4.3.1. TѵѲ BѮҀѲѹѶѻѲ PѹѮѻѲ FѶҁҁѶѻѴ AѹѴѼѿѶҁѵѺ

The main working principle of the baseline algorithm is based on the space-time
representation of events as a point cloud. In the following, an event is denoted as a
space-time point according to en = (x, y, t), where x and y represent the undistorted
pixel locations. Note that the polarity P is not considered; we group positive and
negative polarity events and process them separately.

Let Σe(x, y) = t be a mapping describing the surface along which events are po-
sitioned. The shape of Σe is a result of the feature geometry and, in particular, its
motion. In the case of a locally linear feature (such as an edge) and constant mo-
tion, this surface reduces to a plane. This is clearly visible in the example scene
in Fig. 4.2. With these assumptions, Σe can be approximated by a tangent plane
within a limited range of x, y, and t.

For each newly detected event en, a planeΠ is computed that fits best to all neigh-
boring events ei for which xi ∈

[
xn − 1

2∆x, xn + 1
2∆x

]
, yi ∈

[
yn − 1

2∆y, yn + 1
2∆y

]
,

and ti ∈ [tn −∆t, tn], where ∆x,∆y,∆t indicate spatial and temporal windows.
The spatial windows are generally small and are both set to 5 pixels. The temporal
window setting has a large influence on the detectable speed and interference of
multiple features, which is discussed further in Section 4.3.3.

The plane Π = [px, py, pt, p0]
T is computed through an iterative process of linear

least squares regression and outlier rejection. It is represented in homogeneous
coordinates, such that the following hold for any event ei that intersects with Π:

pxxi + pyyi + ptti + p0 = 0 (4.2)

Extending Eq. (4.2) with at least four neighboring events, an overdetermined system
of equations is obtained, which is solved through linear least-squares. After an initial
fit, the Euclidean distance of each event to the plane is computed. All events for
which the distance exceeds a threshold dmax, are rejected from this fit. Using the
remaining events, a new least-squares plane fit is computed. In [16], this process is
repeated until the change in Π is no longer significant. This is the case if the norm
of the change in all components in Π is smaller than a second threshold kd, i.e.
∥Π(i)−Π(i− 1)∥ < kd. In practice, the latter often occurs already after one or two
iterations. In this work, the values for dmax and kd specified in [150] are applied,
which are 0.01 and 1e-5 respectively.

The final plane is preserved and used to compute the local gradients of Σe:

∇Σe (x, y) =

[
∂Σe

∂x
,
∂Σe

∂y

]T
=

[
−px
pt
, −py

pt

]T
(4.3)

In [16] the gradient components of Σe are assumed to be inversely related to the
optical flow components (u, v):

∇Σe (x, y) =

[
1

u (x, y)
,

1

v (x, y)

]T
(4.4)
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However, as is also noted in [23, 150], Eq. (4.4) is subject to singularities when
computing u and v. If either component of ∇Σe tends to zero, the corresponding
optical flow component grows to infinity, which is incorrect. For example, consider
a horizontally moving vertical line. Along the y-direction, temporal differences be-
tween the resulting events are in this case very small. Therefore, ∂Σe

∂y is also small,
which leads to a high value of the vertical component v, even though the line is
moving horizontally.

In recent work, two modifications to the previously discussed methodology have
been proposed. First, in [23] an approach is presented that is robust to singularities
in u and v, which led to significant accuracy improvements in the comparison in
[150]. In this approach, an orthogonality constraint is imposed on the plane’s normal
vector [px, py, pt]t, the optical flow vector [u, v, 1] and the orientation [lx, ly, 0] of
the edge in homogeneous coordinates. This constraint leads to a new expression
of the optical flow components u and v in terms of the plane’s normal vector:[

u
v

]
=

1

∥∇Σe∥2
∇Σe = − pt

px2 + py2

[
px
py

]
(4.5)

Second, in the implementation in [150] not all events within the space-time win-
dow are considered. For each pixel location, only the most recent event is used
for computing optical flow. However, high contrast edges tend to produce multi-
ple events in quick succession at a single pixel. Hence, the most recent event at a
pixel occurs slightly later than the first event caused by such an edge, which leads to
over-estimation of its speed. It may also lead to optical flow estimates in the oppo-
site direction of the edge motion. To prevent this, a refractory period ∆tR (typically
0.3 s) is applied. Events that occur within∆tR are neither processed nor preserved
to support future events.

The discussed algorithmwith the previously proposedmodifications forms our base-
line algorithm. In the following, methods are proposed to increase its efficiency and
range of application.

4.3.2. EѳѳѶѰѶѲѻѰ҆ IѺѽѿѼ҃ѲѺѲѻҁҀ

In order to enable faster computation and scale the algorithm towards low-end pro-
cessing hardware, we propose two modifications.

The first modification is to reduce the number of parameters of the local plane. We
reduce Eq. (4.2) by introducing the new parameters p∗x, p∗y, p∗0:

p∗x =
px
pt
, p∗y =

py
pt
, p∗0 =

p0
pt

(4.6)

hence obtaining the nonhomogeneous, three-parameter form of Eq. (4.2):

p∗xxi + p∗yyi + p∗0 = −ti (4.7)
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A second reduction is performed by assuming that the new event en intersects with
the plane, which enables the definition of relative coordinates for neighbor events
as follows. Given en and a previously identified neighbor event ei, the relative
coordinates of the neighbor event are defined as δxi = xi−xn, δyi = yi−yn, δti =
ti − tn. Substituting these coordinates into Eq. (4.7) and rearranging terms, the
following relation is obtained:

p∗xδxi + p∗yδyi + δti = −p∗xxn − p∗yyn − p∗0 − tn (4.8)

By substituting Eq. (4.7) (for which we set i = n to enforce that en intersects with
the plane) into Eq. (4.8), the right-hand side of the latter equation reduces to zero.
Thus, the final plane Π∗ =

[
p∗x, p

∗
y

]
is described by two parameters, the slopes:

p∗xδxi + p∗yδyi = −δti (4.9)

This reduced approach requires significantly less computational effort than the base-
line. While solving a homogeneous least squares system is generally performed
using a Singular Value Decomposition (SVD), more efficient solvers such as the
commonly used QR-decomposition are applicable to nonhomogeneous problems.
With a system ofM events and N parameters, the computational complexity of the
SVD scales withO(MN2+N3). In comparison, the complexity of the QR decompo-
sition scales with O(MN2−N3/3) [78]. Hence, a four-parameter SVD solution has
a cost that is approximately proportional to 16M +64, which compares to 4M − 8/3
for a two-parameter QR-decomposition. Note that this is only a rough indication of
the true complexity, but it suffices for illustrating the efficiency gain of the parameter
reduction. Only a slight reduction in accuracy is introduced with this simplification.

The second modification consists of capping the rate at which optical flow vectors
are identified, denoted as the output rate ρF . Depending on the computational
resources available, input events can be processed at a limited rate to maintain real-
time performance. In addition, since the approach assumes that for each individual
event, motion needs to be estimated, neighboring events produce highly similar
optical flow vectors, making the information increasingly redundant with increasing
ρF . Therefore, capping this value also prevents unnecessary computational load
on follow-up processes. To achieve this, we keep track of the timestamp tf of
the event for which the latest optical flow vector was identified. If a new event en
occurs, optical flow is only estimated if tn− tf > 1/ρFmax

, where ρFmax
denotes the

output rate limit. The event is, however, still stored to support future events, taking
into account the refractory period. Hence, accuracy of the estimates that are still
performed, is unaffected. The resulting effect of the value of ρFmax on computational
performance is explored in Section 4.3.4.

4.3.3. TѶѺѲҀҁѮѺѽ-BѮҀѲѱ Cѹ҂ҀҁѲѿѶѻѴ Ѽѳ RѲѰѲѻҁ E҃ѲѻҁҀ

The baseline algorithm incorporates a fixed setting for the time window∆t to collect
recent events. There are two main drawbacks of using a fixed time window, which
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are illustrated in Fig. 4.4 for two simple one-dimensional cases. First,∆t defines the
lower limit for the magnitude of observable optical flow. For slower motion, the time
difference between neighboring events increases. If this difference is too large, all
neighboring events fall outside the time window (as illustrated in Fig. 4.4a), such
that the motion cannot be observed. Second, a larger time window can result in the
inclusion of unrelated events. For example, in Fig. 4.4b events are shown which
clearly belong to separate features. Still, a part of the outdated features falls within
the time window, which leads to an inaccurate fit. In some cases outlier rejection
may prevent this, but with tightly packed features this may still cause a failed es-
timate. A fixed time window therefore imposes a fundamental trade-off between
minimal observable speed and feature density. Since MAVs tend to move at a wide
range of velocities, from hovering to fast maneuvers, the capability of observing
both fast and slow motion is desirable. This issue has also been discussed in [124].

To accomplish this, we propose a very simple clustering method based on the
time order of events, which is illustrated in Fig. 4.4c for a one-dimensional motion
case. First, the minimum number of most recent events ei for observing velocity
is found. In the one-dimensional case in Fig. 4.4c, only one point is necessary
for constructing a line; for two-dimensional image motion, two linearly independent
points (δxi, δyi, δti) are required in order to construct a plane. From the point with
the largest δti, the relative timestamp defines a maximum time increment ∆tS be-
tween the timestamps of consecutive events. To provide a margin for noise, δti
is scaled with a factor kS (which has a value of 8 in our experiments), such that
∆tS = −δtikS (since δti should be negative). Second, we iterate through the re-
maining recent events, ordered by decreasing value of δti. If the time difference
between two consecutive events ei and ei−1 exceeds∆tS , ei−1 and all events that
occurred before it are assumed to belong to different features, and are rejected.

Note that this approach does not take spatial location into account, except for finding
the first linearly independent events. Therefore, a variation on the baseline process
of outlier rejection is still applied, which is independent of time-scale. Instead of
rejection based on a distance threshold, the overall fit quality is assessed through
the Normalized Root Mean Square Error (NMRSE), defined here as follows:

NRMSE =
n

n∑
i=1

δti

√√√√ n∑
i=1

(
δti − p∗xδxi − p∗yδyi

)2
n

(4.10)

Then, whileNRMSE > NRMSEmax, only the event having the maximum distance to
Π∗ is rejected. This is repeated until a maximum number of nR events are rejected.
If nR is exceeded, the estimated plane is rejected and no optical flow is computed.
Suitable values for attaining a high number of successful estimates, without sacri-
ficing significant quality, are empirically set at NRMSEmax = 0.3 and nR = 4.

Still, incorrect optical flow estimates may be detected, either due to noise in the
event stream or due to undesired inclusion of outlier events. Depending on the
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Figure 4.4: Examples with one-dimensional (x-t) event structures representing motion using
time windows to estimate motion. In (a), the time window is too small to perceive the slow
motion that triggers the events. (b) shows events from two sequential fast-moving features
enter the same time window. (c) illustrates the proposed clustering approach, in which the
time difference between the current event and the next most recent event δti defines the
maximum time difference ∆tS = kSδti, older events are ignored.

application, certain optical flow magnitudes can be deemed unrealistic in advance.
Optical flow estimates are therefore rejected if their magnitude exceeds a threshold
Vmax, which is set to 1000 pixels/s. In addition, a minimum number of events nmin

must be found through the clustering mechanism in order to have sufficient support
for a reliable fit. This number is set to 10 events. Further, a maximal time window
of ∆t = 1.5 s is maintained such that unnecessary event checking is prevented.
Note, however, that this time window can now be much larger than in the baseline
approach. All the parameters used in this chapter are summarized in Table 4.3
and were determined through genetic optimization and represent a parameter set
which performed best on a training dataset of real DVS landing data described in
the following section. Note that all results shown below are based on a validation
dataset not used in training.
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4.3.4. E҃Ѯѹ҂ѮҁѶѼѻ

To evaluate optical flow estimation performance, several datasets were recorded in
which the DVS was moved by hand, facing towards a ground surface covered with
a textured mat. The recordings are performed indoors, using an Optitrack motion
tracking system to measure ground truth position and orientation of the DVS. This
is performed for each event for which optical flow is identified, hence providing
the means for quantitative accuracy evaluation. Although currently datasets are
already available [13, 150], the recorded set specifically represents motion above
a flat surface in indoor lighting conditions, i.e. the environment in which flight tests
are performed in Section 4.5. The DVS bias settings used to make the sets is
summarized in Table 4.2.

Images of the recorded ground surfaces are shown in Fig. 4.5. The checkerboard in
Fig. 4.5a provides high contrast and clear edges and is hence relatively simple for
optical flow estimation. The roadmap texture in Fig. 4.5b has largely unstructured
features and lower contrast. It is used to show that our approach extends to more
general situations as well. Eight short sequences were selected to evaluate the
performance of the proposed method. Each sequence is approximately 1.0 s long
and consists of event and pose measurements in which one primary motion type is
present. Five sets are selected for the checkerboard; one for vertical translational
image motion (ϑy ≈ 1.0), one for rotational motion (r ≈ −1.3) rad/s, and three sets
with diverging motion of different speeds (ϑz ≈ {0.2, 0.5, 2.0}). For the roadmap
texture, three sets with divergingmotion were selected as well (ϑz ≈ {0.1, 0.5, 1.0}).

In the following analysis, the cap on ρF is not applied (i.e. ρFmax = ∞), except for
the assessment of computational complexity in Section 4.3.4.

(a) Checkerboard (b) Roadmap

Figure 4.5: Ground surface textures used during the experiments.

Q҂ѮѹѶҁѮҁѶ҃Ѳ Ѳ҃Ѯѹ҂ѮҁѶѼѻ

Fig. 4.6 shows optical flow vectors (yellow arrows) estimated using the improved
algorithm during three of the selected sequences, along with ground truth flow vec-
tors (blue arrows). Note that, for clarity, the time window for visualizing events is



RѱѭѸҀѵѹѱ E҂ѱѺҀ-BѭѿѱѰ OѼҀѵѯ FѸѻ҃ EѿҀѵѹѭҀѵѻѺ

4

81

larger than for visualizing optical flow, which is why for some event locations, it
appears that no optical flow estimates are found. Accurate normal flow estimates
are visible for the checkerboard datasets. In Fig. 4.6a optical flow is generally con-
stant along the checkerboard edges, matching well to the normal component of the
ground truth vectors. The rotating checkerboard sequence (Fig. 4.6b) also provides
accurate optical flow estimates. Clear variation of the normal flow magnitude along
the lines is seen.

(a) Translating checkerboard (b) Rotating checkerboard (c) Diverging roadmap (ϑz = 1.0)

Figure 4.6: Optical flow estimated in several sequences, shown as yellow arrows. The ac-
companying blue arrows show the ground truth optical flow. Events are shown as green dots
(positive polarity) or red dots (negative polarity). The time window for displaying optical flow
in each sequence is 10 ms. To better visualize the event input, a larger window of 50 ms is
applied for the events.

Last, in Fig. 4.6c it is clearly visible that the roadmap texture is more challenging.
Event structures are less coherent and the visible features are more noisy. Optical
flow vectors are sparsely present, yet the available estimates are sufficient for ob-
serving the global motion. At some location with noisy features the motion tends to
be underestimated, but the majority of the estimates is very similar to the normal
direction of the ground truth motion.

Q҂ѮѻҁѶҁѮҁѶ҃Ѳ Ѳ҃Ѯѹ҂ѮҁѶѼѻ

For quantitative evaluation, a comparison was made of the proposed optical flow
algorithm and the baseline algorithm by [16] (as detailed in Section 4.3.1). In this
comparison the fixed time window ∆t for the original approach is set to 100 ms,
and the rejection distance dmax is set to 0.001 to obtain a similar event density in
both algorithms. For a consistent comparison, the baseline algorithm incorporate
the same refractory period ∆tR, maximum speed limit Vmax, and minimum number
of events nmin as the proposed algorithm.

For benchmarking optical flow accuracy, several error metrics have been introduced
such as the endpoint error and angular error [8]. These metrics have been incor-
porated into recent event-based optical flow benchmarks as well [150]. However,
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they are defined for optical flow that is fully determinable and is not subject to the
aperture problem. The algorithms in this section both estimate normal flow. In [11]
a version of the endpoint error is applied that indicates the magnitude error of the
normal flow with respect to the projection of ground truth optical flow along the nor-
mal flow vector. This metric is employed here as well. For each optical flow vector,
we compute the Normalized Projection Endpoint Error (NPEE), which is defined as
follows:

NPEE =

∣∣∣∥V∥ − V
∥V∥ ·VGT

∣∣∣
|VGT |

(4.11)

where V = [u, v]
T is the normal flow estimate and VGT denotes the ground truth

optical flow vector.

A comparison of the resulting mean absolute NPEE values, and their standard de-
viations, is presented in Section 4.3.4. The optical flow density is also shown (ab-
breviated here as η) which indicates the percentage of events for which an optical
flow estimate was found. A high value of η indicates that more motion information
can be obtained with a given event input.

Table 4.1: Mean Normalized Projection Endpoint Error {25%, 50%, 75% percentile} and
density results of the baseline plane fitting algorithm, and the new algorithm proposed in this
work. Values highlighted are the lowest NPEE or highest density result of both algorithms.

Baseline [16] This work
NPEE [pix/s] η [%] NPEE [pix/s] η [%]

Checker, ϑy = 1.0 0.331 {0.058, 0.128, 0.295} 37.2 0.465 {0.057, 0.118, 0.205} 42.1
Checker, r = −1.3 0.622 {0.097, 0.219, 0.679} 32.3 1.503 {0.066, 0.138, 0.249} 36.4
Checker, ϑz = 0.2 0.568 {0.176, 0.350, 0.588} 19.8 0.572 {0.140, 0.290, 0.529} 21.6
Checker, ϑz = 0.5 0.519 {0.102, 0.290, 0.752} 24.7 0.480 {0.086, 0.202, 0.449} 29.2
Checker, ϑz = 2.0 0.766 {0.305, 0.928, 1.011} 42.8 0.504 {0.075, 0.159, 0.273} 35.6
Roadmap, ϑz = 0.1 0.671 {0.271, 0.585, 0.861} 7.5 0.737 {0.191, 0.472, 0.819} 8.0
Roadmap, ϑz = 0.5 0.720 {0.342, 0.719, 0.987} 7.9 0.618 {0.136, 0.293, 0.557} 12.0
Roadmap, ϑz = 1.0 0.743 {0.444, 0.822, 1.002} 10.3 0.605 {0.148, 0.310, 0.559} 11.9

Overall, the results are very similar. Both algorithms reach good scores on the
checkerboard sets with translation, rotation, and medium divergence (ϑz = 0.5).
However, some differences are observable. The proposed algorithm tends to reach
a higher optical flow density in the slow divergence (ϑz = 0.2) checkerboard scene
and in all roadmap scenes, since the baseline algorithm fails to perceive slowly
moving features. Still, this does not degrade the estimate accuracy with respect
to the baseline algorithm, or only to a limited extent. Note also that in both fast
diverging sequences (Checkerboard, ϑz = 2.0, and Roadmap, ϑz = 1.0) a lower
mean absolute NPEE is achieved with our approach.

Looking at the percentile distribution, we can see that the proposed algorithm con-
sistently has a lower error for each percentile bracket. As the mean value is typically
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worse, this would suggest that the proposed algorithm has lower absolute error but
with some significant outliers. We performed some genetic optimization trials to
investigate the effect of our parameter selection on the mean performance and the
density of the generated flow vectors. We found that generally there is a strong re-
lation between these two parameters that must be balanced, to increase the mean
performance you will reduce the number of generated vectors. This suggests that
some more advanced outlier detection may be required in the future to further im-
prove the performance of our estimator.

CѼѺѽ҂ҁѮҁѶѼѻѮѹ PѲѿѳѼѿѺѮѻѰѲ E҃Ѯѹ҂ѮҁѶѼѻ

An assessment of computational complexity is made using two datasets, one for
both texture types. Both sets have a duration of 12 s and contain approximately
40k events/s. This enables quantifying the potential of ρFmax

to regulate process-
ing time, as well as the effect of texture. The algorithm is implemented in C and
interfaced with MATLAB through MEX, running single-threaded on a 64bit desktop
computer running Ubuntu 16.04 with an Intel Xeon E5-1620 octacore CPU. Each
dataset and setting of ρFmax is processed ten times for consistent results.

The resulting computation time per event for several settings of ρFmax
is shown

in Fig. 4.7, in comparison with the maximal computation time with no control of
ρFmax . For both textures it is clearly possible to regulate processing time by ρFmax .
A lower limit appears to be present, which is due to the remaining overhead related
to event timestamp copying. Interestingly, there is a clear influence of texture. This
difference is due to higher contrast edges in the checkerboard texture, at which
several successive events are generated per pixel. Therefore, the refractory period
filter rejects these duplicate events before optical flow computation.
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Figure 4.7: Processing time per event for checkerboard and roadmap datasets, for different
settings of ρFmax . The dashed lines indicate the computation times when no limit on ρFmax .

Without the refractory period, computational effort is similar for both textures. In
this case, the maximal computation time per event, i.e. without control of ρF , is
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0.81 µs. This is equivalent to processing 1.23M events/s in real-time, which is eas-
ily sufficient for processing realistic scenes on the test machine. Event sequences
recorded for post-processing contained event peaks below 150k events/s. If hard-
ware capabilities are more restricted (e.g. in on-board applications for MAVs), con-
trol of ρF can be applied to scale the computational complexity of the algorithm
down if necessary.

4.4. EҀҁѶѺѮҁѶѼѻѼѳVѶҀ҂ѮѹOѯҀѲѿ҃ѮѯѹѲҀ ѳѿѼѺE҃Ѳѻҁ-
BѮҀѲѱ OѽҁѶѰѮѹ FѹѼ҄

This section describes our approach for estimating visual observables from event-
based optical flow. While optic flow estimation is performed asynchronously, most
existing control systems still operate on a periodic basis. Similarly, the proposed al-
gorithm aims to update the estimates of visual observables at a fixed rate. For each
periodic iteration, all newly detected optical flow vectors between the current itera-
tion and the previous one form a planar optical flow field, of which the parameters
are estimated.

The algorithm is based on two components. First, newly detected optical flow vec-
tors are grouped per direction and incorporated into a weighted least-squares esti-
mator for the visual observables, as discussed in Section 4.4.1. To enable preserva-
tion of flow field information over subsequent periodic iterations, a recursive update
technique is introduced in Section 4.4.2. In addition, a confidence value is com-
puted and applied to filter the visual observable estimates, as is described in Sec-
tion 4.4.3. The estimator is evaluated in combination with our event-based optical
flow algorithm in Section 4.4.4.

4.4.1. DѶѿѲѰҁѶѼѻѮѹ FѹѼ҄ FѶѲѹѱ PѮѿѮѺѲҁѲѿ EҀҁѶѺѮҁѶѼѻ

The presented approach is based on techniques introduced in [44] and used in
[1, 84], in which fully defined optical flow estimates are available. Since our optical
flow algorithm provides normal flow output, a regular optical flow field representation
leads to inaccurate parameter estimates. However, in planar flow fields, normal flow
may already provide sufficient information for computing the visual observables.
Along the direction of the flow vector, normal flow does provide accurate information.

An example diverging flow field with both optical flow and normal flow is sketched in
Fig. 4.8. Note that the normal flow in some cases deviates significantly from the op-
tical flow equivalent, which leads to significant errors when computing the flow field
parameters. However, when grouped by direction (which is done in Fig. 4.8 through
the arrow colors and their accompanying numbering), the normal flow vectors in-
deed show the original pattern of divergence. This idea is central to the proposed
directional flow fields approach.
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Figure 4.8: Example of a diverging flow field resulting from several randomly oriented moving
edges. The gray vectors indicate the true flow field, while the colored vectors show the normal
flow along the edge orientation. Vectors with a similar direction can be sorted into one of 6
directions where the inset numbering, as well as the colors, highlight the grouping for this
example.

When considering the flow vectors grouped by similar direction, at least two normal
flow vectors from separate non-parallel edges are required to observe flow field
divergence in that direction. The further apart these edges are the more reliably
the divergence can be estimated. For example, in Fig. 4.8 the purple group of
normal flow vectors does not, by itself, provide sufficient information for perceiving
divergence. Also, if the flow vectors are located in close proximity, errors in normal
flowmagnitude have a larger influence. In Fig. 4.8 the green group is more sensitive
to these errors than the red group, since the edges are located closely together.
Grouping per direction enables assessment of the reliability of the flow field in each
direction, taking the previous issues into account.

A set ofm directions {α1, α2, . . . , αm} is defined, whereα1 = 0 andαi−αi−1 = π/m.
In this work, m = 6 directions are used. For each newly available flow vector, we
first determine the closest match of αi to the flow direction αf . Each direction αi

accommodates both flow in similar and opposite direction, i.e. when −π < αf < 0,
a match is computed for αf + π.

Along the selected direction αi, the projected normal flow position S and magni-
tude V are computed, hence obtaining a one-dimensional representation of the
flow along αi: [

S
V

]
=

[
x̂ ŷ
û v̂

] [
cosαi

sinαi

]
(4.12)

Subsequently, it is corrected for rotational motion by subtracting the normal com-
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ponent of the rotational flow:

VT = V − cosαi

(
p− ŷr − qx̂ŷ + px̂2

)
+ sinαi

(
q − x̂r − px̂ŷ + qŷ2

) (4.13)

For each direction, a one-dimensional flow field is maintained. From Eq. (4.12), the
flow field in a single direction is expressed as:

VT = −ϑx cosαi − ϑy sinαi + ϑzS (4.14)

To solve Eq. (4.14) for the visual observables, a weighted least-squares solution is
computed using the flow vectors from all directions. Let cα = cosα and sα = sinα.
The overdetermined system to be solved is composed as follows:

−cα1
−sα1

S1,1

...
...

...
−cα1 −sα1 S1,n1

−cα2 −sα2 S2,1

...
...

...
−cα2 −sα2 S1,n2

...
...

...
−cαm

−sαm
Sm,nm



ϑxϑy
ϑz

 ≈



V1,1
...

V1,n1

V2,1
...

V2,n2

...
Vm,nm


(4.15)

which has the form AΘ ≈ y. The weighted least-squares solution is then obtained
from the normal equations:

ATWAΘ = ATWy (4.16)

in whichW a diagonal matrix composed of the weights per direction:

W = diag
(
W1, · · · ,W1,W2, · · · ,W2, · · · ,Wm

)
(4.17)

The weight Wi is used to represent the reliability of normal flow along a direc-
tion i based on the spread of Si along that direction. Its value is determined by
the variance Var{Si}. We let Wi scale linearly with Var{Si}, up to a maximum of
Var{S}min:

Wi =

{
Var{Si}

Var{S}min
Var{Si} < Var{S}min

1 Var{Si} ≥ Var{S}min

(4.18)

The minimum variance Var{S}min is set to 600 pixels2.

Note also that, through the formulation of Eq. (4.15), directions with more normal
flow estimates have a larger influence on Θ. Hence, directions for which more
information is available, contribute more to the solution.
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4.4.2. RѲѰ҂ѿҀѶ҃Ѳ UѽѱѮҁѶѻѴ Ѽѳ ҁѵѲ FѹѼ҄ FѶѲѹѱ

The solution to Eq. (4.16) for Θ provides the estimate for the visual observables.
However, depending on the sampling rate of the estimator, it is possible that, during
a single periodic iteration, too few normal flow estimates are available for an accu-
rate fit. This leads to noise peaks in the measurement of Θ, especially during low
speed motion. To limit this effect, the matrices A and y are not completely renewed
at each iteration. Instead, rows from previous iterations are retained and assigned
an exponentially decreasing weight, similar to an exponential moving average filter.

For an efficient implementation of the former, A and y are not explicitly composed
as shown in Eq. (4.15). Instead, our approach operates on the normal equations
in Eq. (4.16). For each direction independently, we recursively update parts of the
matrices B = ATWA and C = ATWy. These matrices are composed by the
following elements:

B =

 b11 b21 b31
b21 b22 b32
b31 b32 b33

 , C =

 c1
c2
c3

 (4.19)

From Eq. (4.15), it can be shown that the elements of B are expressed as:

b11 =
m∑
i=1

Wini(cαi
)
2
, b21 =

m∑
i=1

Winicαi
sαi

b22 =
m∑
i=1

Wini(sαi
)
2
, b31 =

m∑
i=1

Wicαi

ni∑
j=1

Si,j

b33 =
m∑
i=1

Wi

ni∑
j=1

S2
i,j , b32 =

m∑
i=1

Wisαi

ni∑
j=1

Si,j

(4.20)

and those of C are expressed as:

c1 =
m∑
i=1

Wicαi

ni∑
j=1

Vi,j

c2 =
m∑
i=1

Wisαi

ni∑
j=1

Vi,j

c3 =
m∑
i=1

Wi

ni∑
j=1

Si,jVi,j

(4.21)

We introduce a shorthand notation Σi
S =

∑ni

j=1 Si,j to represent the sums, cross-
product sums, and sums of squares of S and V for direction i. The unweighted
contribution of the associated flow vectors is then contained in ni and the sums
Σi

S , Σi
S2 , Σi

V , and Σi
SV . These values are further referred to as the flow field statis-

tics. Hence, a newly detected flow vector is included in the flow field estimate by
incrementing these quantities according to the values S and V of the new vector.
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What makes this decomposition interesting, is that the flow field statistics form a
compact summary of the flow field, independent of the actual number of flow vec-
tors. Thus, flow field information from a previous iteration can be efficiently included
in subsequent ones, without increasing the size of the system in Eq. (4.15). Now,
at the start of each iteration, it is possible to include information from the flow field
of the previous iteration, simply by preserving a fraction F of the previous flow field
statistics. Hence, the estimator accuracy is less dependent on the sampling rate of
the algorithm.

The preservation process is illustrated using the statistic Σi
V . At the start of iteration

k, Σi
V is initialized as Σi

V (k) = FΣi
V (k − 1). During iteration k, Σi

V is then updated
using newly available normal flow vectors that are allocated to direction i. Hence,
the complete update for Σi

V is performed as follows:

Σi
V (k) = FΣi

V (k − 1) +

ni∑
j=1

Vi,j (4.22)

The value of F is computed as:

F = 1− t(k)− t(k − 1)

kf
(4.23)

where the time constant kf is assigned a value of 0.02 s. This step is similar for
all statistics. When all newly available vectors are categorized and processed, the
flow field is recomputed using Eq. (4.16).

4.4.3. CѼѻѳѶѱѲѻѰѲ EҀҁѶѺѮҁѶѼѻ Ѯѻѱ FѶѹҁѲѿѶѻѴ

In visual sensing, the reliability of motion estimates varies greatly depending on the
environment. Factors such as visible texture and scene illumination have an effect
on the estimate. With event-based sensing, motion in the scene is another key
factor.

Therefore, a confidence value is computed based on several characteristics of the
flow field, in order to quantify the reliability of the estimate. This confidence value is
defined as a product of three individual confidence metrics based on the following
statistical quantities:

• The flow estimation rate ρF .

• The maximal variance Var{S} of all flow directions.

• The coefficient of determination R2 of the solution to Eq. (4.16), applied here
as a nondimensional measure of the fit quality.

R2 is generally computed through the following [173]:

R2 = 1− RSS
TSS (4.24)
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In this work, the Residual Sum of Squares (RSS) and Total Sum of Squares (TSS)
are computed in weighted form as follows:

RSS = yTWy−ΘTATWy

TSS = yTWy−

(
m∑
i=1

WΣi
V

)2

m∑
i=1

Wni

(4.25)

For each indicator, a confidence value k is computed ranging from 0 to 1 (higher is
better), similar to the variance weight in Eq. (4.18). The individual confidence values
are thus dependent on settings for R2

min, Var{S}min, and ρFmin
(not to be confused

with ρFmax
). The values ofR2

min and ρFmin
are set to 0.8 and 500 respectively. Note

that, since Eq. (4.18) already provides individual confidence values per direction in
the form ofW , we simply let kVar{S} = max (Wi : i = 1, . . . ,m).

The total confidence value K is then the product of kρF
, kVar{S}, and kR2 . Hence,

each individual confidence factor needs to be close to 1 in order to obtain a high
K. For example, when ρF and R2 are very large, but the flow is very localized (the
maximal value for Var{S} is small), the estimate is still not reliable. In this case, it
is likely that a single visual feature causes the normal flow, which is insufficient for
computing the visual observables.

The confidenceK is useful to monitor the estimate quality of the visual observables
during flight. In addition, it is the main component of a confidence filter for Θ. This
filter is based on a conventional infinite impulse response low-pass filter, in which
K is multiplied with the filter’s update constant. The final estimate for the visual
observables Θ̂ is determined through the following update equation at iteration k:

Θ̂(k) = Θ̂(k − 1) +
(
Θ(k)− Θ̂(k − 1)

)
K
t(k)− t(k − 1)

kt
(4.26)

where kt is the time constant of the low-pass filter, which is set to 0.04 s. Lastly, a
saturation limit is applied that caps the magnitude of the update of each individual
value in Θ to ∆ϑmax in order to reject significant outliers. The value for ∆ϑmax is
set to 0.3. A summary of all the settings used in this chapter are summarized in
Table 4.3.

4.4.4. RѲҀ҂ѹҁҀ

To evaluate the accuracy of the presented visual observable estimator, we use the
measurements generated for evaluating optical flow performance in Section 4.3.4,
which are generated through handheld motion. Optitrack position measurements
provide the ground truth estimates for ϑx, ϑy, and ϑz. For each set, normal flow esti-
mates are computed using the C-based implementation discussed in Section 4.3.4.
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The flow detection rate cap ρFmax
is set to 2500 flow vectors/s and the periodic esti-

mator samples the visual observables at 100 Hz, similar to the on-board implemen-
tation in Section 4.5.

In our experiments the main variable of interest is ϑz, as it forms the basis for the
constant divergence controller. Therefore, this variable is investigated over a wide
range of velocities. However, the estimates of ϑx and ϑy are also interesting to
assess, since a more elaborate optical flow based controller may also include the
horizontal components for hover stabilization. The latter process does require the
MAV to perform rolling and pitching motion, inducing rotational normal flow. There-
fore, the effectiveness of derotation is evaluated as well.

For assessment of ϑz estimates, vertical oscillating motion was performed above
both texture types. The vertical speed of these oscillations was gradually increased,
hence covering a wide range of divergence values. This enables a first-order char-
acterization of the estimator behavior.

Fig. 4.9 shows the resulting estimates compared to ground truth measurements.
Detail sections are shown for low and high divergence motion, for which also the
confidence value is shown.

The detail plots show that the estimator is relatively sensitive to local outliers in
normal flow at low speeds. In addition, the confidence K is generally low due to
lower detection rates of optical flow and low value of R2. At higher speeds, the
errors are relatively smaller. Note that K is also generally higher there. Somewhat
lower confidence values are seen for the roadmap texture.

Around sign changes, brief moments are present where the confidence value K
is low. The result of this is that, due to the confidence filter, the update of ϑ̂z at
these points is limited, which leads to a local delay with respect to the ground truth.
However, when higher confidence estimates are available, the estimate quickly con-
verges back to the ground truth value.

Based on the estimator results in Fig. 4.9 we can assess how the error varies with
the ground truth divergence. Fig. 4.10a shows the variation of the absolute error
εϑz

= |ϑ̂z − ϑz| with the magnitude of ϑz. The errors of both the checkerboard set
and the roadmap set are combined, since the estimator shows roughly the same
error distribution for both cases with the quantile plot almost flat for the divergences
tested. Interestingly, the largest absolute errors appear to be present at low diver-
gence. This results from the local delay occurring around zero-crossings in Fig. 4.9
where the confidence value of the filter is low due to the low number of events
produced by the slow motion. Note, however, that the error increase with the mag-
nitude of |ϑz| is limited, which enables application of the presented pipeline to a
wide range of velocities.

An extensive characterization of two frame-based visual estimators for ϑz was per-
formed in [85], which includes an assessment of the error distribution up to ϑz ≈ 1.3
(Fig. 10 in the chapter). For a first-order comparison, Fig. 4.9 also shows the
quadratic error fit obtained for the frame-based ‘size divergence’ estimator, which
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Figure 4.9: From top to bottom: Height measurements and estimates of ϑz (solid line) in
comparison to ground truth measurements (dashed line), detail sections of ϑz estimates
at low speed and high speed, as well as the accompanying estimate confidence value K.
Measurements are shown for (a) checkerboard and (b) roadmap textures separately.
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Figure 4.10: Error distribution for a set of landing tests performed at different constant vertical
speeds above the roadmap texture. (a) Absolute error distribution with error bars. For com-
parison, the model obtained for the frame-based size divergence estimator [85] is shown
as well. (b) Normalized error distribution of ϑz. The dashed black line shows the 25, 50
and 75% percentiles of the data. (c) Absolute error probability density distribution with a
Lognormal(−2.18, 1.56) fit. The mean (x̄) and quantiles are show in the insert.

performed best in [85]. Compared to the presented event-based estimator, the size
divergence estimator achieves slightly lower errors in the region of ϑz < 0.3. How-
ever, for faster motion, the error is lower for our event-based estimator.

Fig. 4.10b shows the distribution or error as a function fo the divergence. Here we
can see that the minimum divergence that our estimator produces accurate results
is 0.1. Values below this have a large uncertainty. Above 0.1 however, the estimator
seemingly improves the faster you go. Additionally, unlike [85], the error seen with
our estimator is not well captured with a Gaussian distribution but is fit better by a
log-normal error distribution with Lognormal(−2.18, 1.56), as shown in Fig. 4.10c.
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4.5. CѼѻҀҁѮѻҁ DѶ҃ѲѿѴѲѻѰѲ LѮѻѱѶѻѴ E҅ѽѲѿѶѺѲѻҁҀ

This section presents experimental results of constant divergence landings with the
presented algorithms in the control loop. In Section 4.5.1 the divergence control law
is defined, after which the experimental setup is detailed in Section 4.5.2. Results
from the experiments are presented and discussed in Section 4.5.3.

4.5.1. DѶ҃ѲѿѴѲѻѰѲ CѼѻҁѿѼѹѹѲѿ

The control law regulates ϑz through the vertical thrust T . The controller applies
a thrust difference ∆T with respect to a nominal hover thrust T0, such that T =
T0 +∆T . A simple proportional control law is applied to ∆T based on ϑz, similar to
[41]:

∆T = kP (ϑzr − ϑz) (4.27)

The nominal hover thrust T0 counteracts the weight of the test vehicle. Its value is
adapted in-flight in the height control loop of the test vehicle’s autopilot software.
Before the start of each landing, the vehicle first performs automatic hover to obtain
a stable estimate for T0. During the subsequent landing maneuver its value is kept
constant.

4.5.2. E҅ѽѲѿѶѺѲѻҁѮѹ SѲҁ҂ѽ

The flying platform used in this work is a customized quadrotor referred to as the
MavTec. Its main component is a Lisa/MX board, which features a 168MHz 32bit
ARMmicroprocessor as well as a pressure sensor and 3-axis rate gyros, accelerom-
eters, and magnetometers. The Lisa/MX runs the open-source autopilot software
Paparazzi1, which handles the control of the drone. The DVS is mounted at the bot-
tom of the MavTec facing downwards. Experiments are performed indoors, using
an Optitrack motion tracking system to measure ground truth position and attitude.

In addition, an Odroid XU4 board is mounted on the quadrotor, which processes
the event output of the DVS. It features a Samsung Exynos 5422 octacore CPU
(four cores at 2.1 GHz and four at 1.5 GHz). The Odroid receives the events from
the DVS through a USB 2.0 connection and processes these through the C-based
open-source software cAER [110].

An overview of the experimental setup is shown in Fig. 4.11, including an overview
of the on-board processing workflow in Fig. 4.11c. The estimation pipeline is sub-
divided in two stages. First, raw events are transmitted from the DVS to the Odroid
through a USB interface. In cAER, optical flow is computed from the events using an
implementation of our optical flow algorithm. Any event for which flow is estimated,
is transmitted to the Lisa/MX board through a serial UART interface. This process
1Paparazzi UAV, http://wiki.paparazziuav.org/

http://wiki.paparazziuav.org/
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(a) Top view

(b) Bottom view showing the DVS
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Figure 4.11: Overview of the experimental setup, including pictures of the MavTec. In (a)
a top view of the vehicle is shown. The DVS is located at the bottom, protected by a foam
cover. In (b) the cover is removed to expose the DVS. In (c) an overview of the processing
workflow is shown, indicating the distribution of processes over the Odroid and the Lisa/MX
processors.

is completely event-based and is performed in a single thread. Separate threads
handle event reception and transmission through the USB and UART interfaces.

Second, in Paparazzi, a periodic follow-up processing thread runs at 100 Hz. At
each iteration, all newly received optical flow events are collected and corrected for
the quadrotor’s attitude and rotational motion. When all new events are processed,
new estimates of the scaled velocities are computed with accompanying confidence
values. A separate thread running at 512 Hz performs divergence control using the
new update for ϑz, as well as horizontal position control and stabilization.

4.5.3. RѲҀ҂ѹҁҀ

CѼѻҀҁѮѻҁ DѶ҃ѲѿѴѲѻѰѲ, CѼѻҀҁѮѻҁ GѮѶѻ LѮѻѱѶѻѴ

Constant divergence landing maneuvers were performed for several values of the
setpoint ϑzr . During the tests, the target ground location was covered with the
roadmap texturedmat shown in Fig. 4.5b. In an ideal world, a fixed gain proportional
controller will result in a smooth landing with the vehicle never actually touching
down. In reality however, due to computational latency and actuator delays, the
vehicle will be come unstable as it approaches the ground [41]. Notably, the gain
which causes instability is directly proportional to the altitude of the vehicle above
the ground. As in [41], this feature is used to estimate the altitude of the vehicle
above the ground by analyzing the covariance of the thrust command. The gain
of the controller is selected such that the vehicle will become unstable about 0.3
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m above the ground, which in our case is a gain (kP ) of 0.25. Once a diverging
oscillation is identified in the thrust command, a final landing procedure is activated
which sets a constant thrust setting allowing the vehicle to perform a safe landing.
In our experiments, the final throttle was set to 80% of the hover throttle setting.

Resulting flight profiles are shown in Fig. 4.12 for setpoints ϑzr = {0.3, 0.5, 0.7, 1.0}.
Note that these values are much higher than the setpoints in comparable frame-
based experiments [81, 84]. The estimates for ϑz are shown in comparison to the
ground truth estimate and the corresponding setpoint.
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Figure 4.12: Height above ground, vertical speed, and divergence measurements with
ground truth during a constant divergence landings performed at four different divergence
setpoints. In the bottom graph, the dotted, dashed, and solid lines represent the setpoint,
ground truth, and estimate for ϑz respectively.

First looking at the accuracy of the ϑz estimate we can see that at the start of the
decent, there is a delay between the start of the landing and the any change in the
ϑz estimate. This is particularly evident in the landing with ϑzr 0.3. This is mainly
due to the minimum resolution of the estimator of around ϑz = 0.1, once ϑz is higher
than 0.1 the estimate is quite accurate.

For landings with a low ϑzr we can see that the tracking is quite good, although there
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is a relatively long rise time of the controller, there is little overshoot. As expected,
as the vehicle gets close to the ground the controller becomes increasingly unstable
until the oscillation is identified by the controller and the final landing procedure is
engaged. For the landings performed at ϑzr > 0.5 there is a noticeable overshoot
of the set point. This is caused by the vehicle thrust being saturated at max throttle.
Landing at speeds of around 2 m/s seems to be the limit of the MavTec in this
configuration.

CѼѻҀҁѮѻҁ DѶ҃ѲѿѴѲѻѰѲ, AѱѮѽҁѶ҃Ѳ GѮѶѻ LѮѻѱѶѻѴ
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Figure 4.13: Height above ground, vertical speed, and divergence measurements with
ground truth during a constant divergence landings with adaptive controller gains performed
at four different divergence setpoints. In the bottom graph, the dotted, dashed, and solid
lines represent the setpoint, ground truth, and estimate for ϑz respectively.

To improve the tracking performance and rise time of the landing controller as well
as to remove the oscillation during landing we implemented a method to adapt the
proportional gain of the controller as we descend. This has been shown to be an
effective method for performing constant divergence landings [85]. The update rule
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for the controller gain is defined as:

kP = kP0e
ϑzr t (4.28)

where kP0 is the initial gain used at the start of the landing and t is the elapsed time
of the landing.

Fig. 4.13 shows the results of landing with this adaptive approach where kP0
was

set to 0.8. This figure shows a faster rise time of the controller with reduced over-
shoot and generally better tracking performance. Some oscillation is still observed
suggesting that a derivative component would be beneficial to the controller.

Landing with the higher gain helps to reduce the rise time of the controller while
introducing a slight overshoot of the setpoint. The tracking of the setpoint is im-
proved with no oscillations. At high values of ϑzr there is still a clear overshoot of
the setpoint due to the saturation of he throttle with landing speeds peaking at 4
m/s. Also interesting to note is at the end of the landings, the vehicle experiences
an aerodynamic phenomenon called ground effect. When the vehicle is just above
the ground a pocket of air form between the rotors changing the effectiveness of
the rotors. This is a useful feature which helps to further guarantee a safe landing.
If this is in-fact undesired, an integral gain may be added to take the change of rotor
effectiveness into account.

4.6. E҅ҁѲѻҀѶѼѻҀ

The above algorithm was re-implemented onboard the light weight with the Parrot
Bebop 2 quadrotor MAV equipped with the significantly smaller Insightness SEEM1
event-based camera. This sensor has a more dense pixel density with 320×262
pixel resolution and a 16 g form factor. Directly connecting the SEEM1 to the Bebop
removes the need for the Odroid co-processor significantly simplifying the system.

An additional benefit of the SEEM1 is the inclusion of an onboard IMU. This high
speed data acquisition of rotational rates and acceleration using the same clock
time as that used for the camera events facilitates more accurate derotation of the
opticflow vectors. To achieve this, we pass the incoming rotation rates through a
moving windowed median filter at 1 kHz. We sample this moving filter and store
the rates at 250 Hz. As the opticflow method is based on a spatio-temporal plane
fit, the derotation should consider this time window. We do this by averaging the
rotational rates in the same time window used to generate the optical flow vector.
This tight coupling of the derotation results in better ventral flow performance.

For the confidence estimation, we determined that discounting the confidence with
low event rate was not appropriate and was therefore was removed. Only the vari-
ance and coefficient of determination are currently being used.

The high update rate of the pixels, although reducing the total data throughput of
a comparable high speed camera, does produce a high event rate. The higher
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Figure 4.14: SEEM1 event-based camera mounted on the Parrot Bebop 2 quadrotor MAV.

resolution of the SEEM1 also results in a higher event throughput than the DVS128
with some recordings have spikes of over 4M events/s. Additionally, the processor
on the Bebop is a dual core operating at 780 MHz, less powerful than the dual
quadcore processor at 2.1 GHz and 1.5GHz on the Odroid. The flow computation
takes about 30 µs onboard the Bebop, resulting in a maximum throughput of about
33k events/s. For this algorithm to run in real time, not all events can be processed.

To achieve this reduction in throughput, we first artificially make the input square,
reducing the resolution from 360×262 to 262×262. This results in about an 18%
reduction in the maximum event throughput. Next, with the refractory period for
a pixel is implemented as a combined check on both input channels (on and off
events) together rather than separately as previously done. With this, we can re-
duce redundant spikes caused by rapid changes or flashing. This allowed us to
reduce the refractory period 50 ms down from 300 ms, which should result in higher
resolution results. Finally, instead of regulating the output flow vector rate, we limit
the minimum time between computed flow vectors. This allows us to directly limit
the maximum computational load. We set the limit to 10k events/s to ensure we
can handle peak throughput with little added computational lag.

Despite the limitations with the new processor, we are able to consider more events
than the original implementation by removing the communication limitation with the
co-processor as can be seen in Fig. 4.15. The limiting factor is only the computa-
tional power of the flight platform and the performance can be scaled by a single
parameter.

Fig. 4.16 shows a comparison for divergence output of the original and new imple-
mentations. We can see that the number and magnitude of outliers is significantly
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Figure 4.15: Comparison of flow vector throughput of original and updated implementations
(for different flights).
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Figure 4.16: Comparison of divergence error of original and updated implementations.

reduced resulting in a slightly lower median and tighter percentile bounds when
compared to the original implementation. This leads to a generally better diver-
gence estimate overall.

4.7. CѼѻѰѹ҂ҀѶѼѻ

In this chapter we present a successful implementation of event-based optical flow
estimation into a constant divergence landing controller for flying robots. Three
main contributions lead to this result.

First, a novel algorithm for computing event-based optical flow is derived from an
existing local plane fitting technique. The algorithm is capable of estimating normal
optical flow with a wide range of magnitudes through timestamp-based clustering
of the event cloud. Its performance is evaluated in ground texture scenes recorded
by a DVS. Accurate estimates are seen in real event scenes with sparse, high con-
trast edges, as well as in scenes with densely packed, lower contrast features.
Compared to the existing technique, optical flow accuracy is slightly improved for
fast motion, while a larger number of successful optical flow estimates is obtained
during slowmotion. In addition, it is shown that the optical flow detection rate can be
capped to limit computational effort for the algorithm, which enables implementation
on low-end platforms without sacrificing accuracy.

Second, we introduce an algorithm for estimating optical flow based visual observ-
ables from normal optical flow measurements. By grouping flow vectors by their
direction, the aperture problem can be limited by estimating the parameters of a
planar optical flow field. The estimator assesses the reliability of its output through
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a confidence metric based on the flow estimation rate, the variance of optical flow
positions, and the coefficient of determination of the flow field. When coupled to
the optical flow algorithm, it is capable of estimating the visual observables accu-
rately over a wide range of speeds. Also, the influence of fast rotational motion
on the visual observables is adequately corrected through separate rotational rate
measurements.

Third, using the developed pipeline, fast constant divergence landing maneuvers
are demonstrated using a quadrotor equipped with a downward facing DVS. De-
cent tracking performance is achieved for the majority of the descent using a sim-
ple proportional controller. The final touchdown of the landing maneuver is not yet
performed due to self-induced oscillations close to the ground. However, stability-
based control methods have already been demonstrated that can resolve this issue.
A future controller based on these methods can, for example, autonomously detect
the oscillations and switch to a final touchdown phase based on constant thrust,
or perform a complete landing maneuver using an adaptive gains. In addition, our
controller does not yet incorporate the visual observables for horizontal stabiliza-
tion, but relies on an external position tracking system. However, with the estimate
accuracy and rotational motion correction presented in this work, this appears fea-
sible.

In a first-order comparison to recent work on landing using frame-based cameras
for estimating optical flow, the presented event-based pipeline demonstrates more
accurate measurements at high speed and a higher sampling rate, which enable
faster maneuvers than previously shown in literature. However, for a more solid
conclusion regarding real-time computational benefits of event-based vision, a com-
parison should be performed where both frame-based and event-based cameras
are incorporated in the same hardware configuration.

S҂ѽѽѹѲѺѲѻҁѮѿ҆ ѺѮҁѲѿѶѮѹ

• The dataset used to generate these plots and statistics is available at: http:
//hdl.handle.net/10411/FBKJFH

• DVS event processing software implemented in the cEAR framework is pub-
licly available at: https://github.com/tudelft/caer/tree/odroid-dvs

• Flight control software implemented within the PaparazziUAV framework used
in this chapter is publicly available at:
https://github.com/tudelft/paparazzi/tree/event_based_flow

• Video of the experiments performed can be found at: https://www.youtube.
com/playlist?list=PL_KSX9GOn2P8RBdSyzngewi76G37PI3SF

http://hdl.handle.net/10411/FBKJFH
http://hdl.handle.net/10411/FBKJFH
https://github.com/tudelft/caer/tree/odroid-dvs
https://github.com/tudelft/paparazzi/tree/event_based_flow
https://www.youtube.com/playlist?list=PL_KSX9GOn2P8RBdSyzngewi76G37PI3SF
https://www.youtube.com/playlist?list=PL_KSX9GOn2P8RBdSyzngewi76G37PI3SF
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Table 4.2: DVS bias settings applied in cAER during the experiments.

Bias Value
cas 864
diff 30153
diffOff 132
diffOn 482443
foll 102
injGnd 1108364
pr 108
puX 8159221
puY 16777215
refr 242
req 159147
reqPd 16777215

Table 4.3: Overview of all algorithm parameter values used in the experiments.

Parameter Value
Optical flow estimation
Refractory period, ∆tR 0.3 s
Time window, ∆t 1.5s
Spatial window, ∆x, ∆y 5 pix
Maximum number of rejected events nR 4
NRMSEmax 0.3
Time difference factor for clustering, kS 8
Minimum number of events in a fit, nmin 10
Maximum optical flow velocity, Vmax 1000 pix/s
Optical flow output rate setpoint, ρFmax 2500 s−1

Visual observable estimation
Number of flow field directions, m 6
Flow field preservation time constant, kf 0.02 s
Minimum variance, Var{S}min 500 pix2

Confidence filter,
Minimum optical flow estimation rate, ρFmin 500 s−1

Minimum coefficient of determination, R2
min 0.8

Low-pass filter time constant, kt 0.04 s
Max filter update, ∆ϑmax 0.3 s−1



5
MѮҀѸѶѻѴ ҁѵѲ RѲѮѹѶҁ҆ GѮѽ ҄Ѷҁѵ

SѲѻҀѼѿ AѯҀҁѿѮѰҁѶѼѻ

Fear exists for one purpose: to be conquered.

- Kathryn Janeway
Star Trek: Voyager, Season 2 Episode 23

The contents of this chapter have been submitted for publication as:

Title Evolution of Robust High Speed Divergence-Based Landing for Autonomous MAV
Journal Under review at the Journal of Robotics and Autonomous Systems
Authors K.Y.W. Scheper and G.C.H.E. de Croon

As robots are embodied agents, their perception of the world around them is directly
coupled to the actions that they take. This sensor-action loop or sensorimotor coor-
dination is integral to expressing the appropriate behavior on the robotic platform.
The previous chapter presented an efficient method to process the data from a
novel sensor, this chapter will use this to investigate the impact of abstracting the
robotic sensory system on the reality gap.

This chapter delves into the effect of abstracting away from raw sensor inputs of
a virtual robot on its transferability to the real world. We present a more detailed
description of the robotic task and the method used to investigate the effect of ab-
straction on the reality gap. This is followed by the simulated and real world results
with some conclusions.

The authorse would like to thank the team at Insightness AG for their assistance in porting the SEEM1
SDK to operate on the ARM processor of the Parrot Bebop 2. Without their assistance the results in the
paper would not be possible.
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5.1. IѻҁѿѼѱ҂ѰҁѶѼѻ

Insects are a significant source of inspiration for developing novel solutions to au-
tonomous flight of Micro Air Vehicles (MAVs). Even with limited computational and
energy resources, insects are able to effectively complete challenging tasks with
relatively complex behaviors. One behavior that is of particular interest, is landing.

Insects have been shown to primarily rely on visual inputs when landing, whereby
many insects regulate a constant rate of expansion (or divergence) of optical flow
[68] to perform a smooth landing [7]. This approach has inspired some robotic im-
plementations of constant divergence landing strategies [81]. Although simple in
concept, this approach is quite difficult to implement in reality. A direct implementa-
tion causes the robot to become unstable as the vehicle nears the ground. This is
a result of the non-linear interaction between the vehicle control and sensing, in the
presence of delay, measurement noise and environmental disturbance [41]. Differ-
ent augmentations to the standard control scheme have been made, most, simply
perform slow landings [81], use long landing legs to delay the onset of this instability
and touch the ground before they occur or by switching to alternative measures like
time-to-contact [31, 96] or velocity in-plane of the camera [119, 149]. More recently,
there have been attempts to identify the instability and adapt the landing strategy
by adjusting control gains [85, 142].

An alternative to these manually designed approaches is to have an optimization
technique automatically develop a suitable solution that is robust to these instabili-
ties. This optimization may reveal new solutions to this problem, and perhaps even
alternative hypotheses on what flying insects such as honeybees may be doing.
Some attempts have been made to do this [87] but to the best knowledge of the
authors, none of these have been implemented on real world robots.

This is due in part, to the effects of the differences between the simulated environ-
ment, commonly used for behavioral optimization, and the real world. This resul-
tant difference in the robotic behavior is commonly referred to as the reality gap
[19, 131]. Several approaches have been used to make controllers more robust to
the reality gap with the most significant being adding appropriate and varied noise
[92], co-evaluation of controllers in the real world to test transferability [101] and
inspired by conventional control theory, there are approaches utilizing abstracted
outputs from the neurocontroller with a closed loop control system to actively reduce
the effect of reality gap [154, 162].

In this paper, we describe a method to optimize a quick but safe landing maneuver
for a quadrotor MAV equipped with a downward facing camera. The neurocon-
trollers are given only the divergence of the optical flow field from the camera as
input and its time derivative. Although this abstracted input may reduce the pos-
sible behaviors the controllers can express, building on the work in [155], we will
demonstrate that this abstraction leads to a robust transfer from simulation to reality
after virtual optimization.
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The following consists of a summary definition of optical flow in Section 5.2. The
flight platform and simulation environment is then described in Section 5.3. Next,
the performance of conventional constant divergence landing approaches are pre-
sented in Section 5.4 to provide some baseline performance to compare the op-
timized policies against. The evolutionary setup and neural models used for the
neurocontrollers is then described in Section 5.5. This is followed by a presentation
and analysis of the optimized policies in Section 5.6. The reality gap and the results
from the real world experiments are presented in Section 5.7 and Section 5.8 from
which we draw some conclusions in Section 5.9.

5.2. OѽҁѶѰѮѹ FѹѼ҄ DѲѳѶѻѶҁѶѼѻ

To perform optical flow based landing as in [44, 84, 85, 142], we must first de-
fine the optical flow parameters. The formulation here is a summarized version of
that presented in [44]. This algorithm provides a good trade-off of accurate optical
flow estimates while using relatively limited computational resources. This allows
the perception and control loop to operate at high frequency and low latency on
the embedded flight platform used in this paper. Alternative optical flow estima-
tion methods could be used given that the estimation runs fast enough to facilitate
the flight control. An investigation of the accuracy and reliability of the optical flow
estimation is out of the scope of this paper.

If we assume that we have a downward-looking camera overlooking a static planar
scene, as shown in Fig. 5.1, we can derive the perceived optical flow as the result
of the camera ego-motion. The derivation of this optical flow model relies on the
two reference frames, the inertial world frame is denoted by W and the camera
frame centered at the focal point of the camera denoted by C. In each of these
frames, position is defined through the coordinates (X, Y , Z), with (U , V , W ) as
the corresponding velocity components. The orientation of C with respect to W is
described by the Euler angles ϕ, θ, and ψ, denoting roll, pitch, and yaw, respectively.
Similarly, p, q, and r denote the corresponding rotational rates.

The camera ego motion can be related to the optical flow, and visual observables
based on the pinhole cameramodel [111] with camera pixel coordinates are denoted
by (x, y), while (u,v) represent optical flow components, measured in pixels per
second. These can be non-dimensionalized using the intrinsic calibration of the
camera.

u = −UC

ZC
+
WC

ZC
x− q + ry + pxy − qx2

v = −VC
ZC

+
WC

ZC
y + p− rx− qxy + py2

(5.1)

Eq. (5.1) shows that the optical flow of a point can be resolved into translational and
rotational components. Since the latter is independent of the three-dimensional
structure of the visual scene, these expressions can be derotated if information
on the rotational rates of the camera is available. This derotation leads to pure
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ψ, r

Figure 5.1: Definitions of the world (W) and camera (C) references frames. Also shown are
the Euler angles (ϕ, θ, ψ), rotational rates (p, q r), and translational velocities (U , V ,W ) that
describe the motion of C [135].

translational optical flow components, denoted by (uT , vT ). Moreover, if the scene
is a planar surface, the depth ZC of all visible world points are interrelated through:

ZC = Z0 + ZXXC + ZY YC (5.2)

where Z0 is defined as the distance to the surface along the optical axis of the
camera, and ZX and ZY represent the slopes of the planar scene with respect to
the X- and Y -axis of C.

In [111], the relation between the position of an arbitrary point in C and its projection
onto the image plane is given by (x, y) = (XC/ZC , YC/ZC). Consequently, Eq. (5.2)
may also be written in the form:

ZC − Z0

ZC
= ZXx+ ZY y (5.3)

Further, let the scaled velocities of the camera ϑx, ϑy, and ϑz be defined as follows:

ϑx =
UC

Z0
, ϑy =

VC
Z0

, ϑz =
WC

Z0
(5.4)

Then, according to the derivations in [44], substituting Eq. (5.3) and Eq. (5.4) into
Eq. (5.1) leads to the following expressions for translational optical flow:

uT = (−ϑx + ϑzx)(1− ZXx− ZY y)

vT = (−ϑy + ϑzy)(1− ZXx− ZY y)
(5.5)
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From Eq. (5.5), and under the aforementioned assumptions, the scaled velocities,
which provide non-metric information on camera ego-motion, can be derived from
the translational optical flow of multiple image points. ϑx and ϑy are the opposites
of the so-called ventral flows, a quantification of the average flows in the X- and
Y -axis of C respectively [142]. Hence, ωx = −ϑx and ωy = −ϑy. On the other hand,
ϑz is proportional to the divergence of the optical flow field, D = 2ϑz [142].

The flow divergence can alternatively be estimated simply by the relative change
in the distance (l) between any two points at over time (t) [85]. This method is
referred to as size divergence (Dst ). A reliable estimate of the divergence (D̂) can
be generated by averaging the divergence estimate from a set of N points in the
image. Throughout this paper,N is limited to 100 if there were more than 100 points
or simply all points if fewer have been tracked.

Dst =
1

∆t

lt−∆t − lt
lt−∆t

D̂ =
1

N

N∑
i=1

Dst

(5.6)

5.3. FѹѶѴѵҁPѹѮҁѳѼѿѺ ѮѻѱSѶѺ҂ѹѮҁѶѼѻEѻ҃ѶѿѼѻѺѲѻҁ

The flight platform used in this paper is the Parrot Bebop 2 quadrotor MAV1, a picture
of this vehicle flying in our indoor test environment can be found in Fig. 5.2. This
vehicle is equipped with a 780 MHz dual-core Arm Cortex A9 processor, forward
and downward facing CMOS cameras, sonar, and barometer enabling autonomous
flight capabilities for up to 25 minutes. Full 3D flight control is enabled with the
onboard use of the open source PaparazziUAV autopilot software [77]. In this work,
we extract global optical flow from the downward facing camera using the Lucas-
Kanade optical flow method executed onboard the vehicle [113]2.

Throughout the paper, an Optitrack3 motion capture system was used to measure
a ground truth of the vehicle position and motion. As the control task in this paper is
only in the vertical axis, this ground truth measure was communicated to the vehicle
to facilitate the control of the lateral axis of the vehicle. This was however not used
in the vertical loop where instead the optical flow estimated onboard the vehicle was
used.

To optimize our behavior in simulation, we first need a model of the vehicle. To this
end we use a simple dynamical model of the vehicle, which is restricted to vertical
motion only. The thrust generated by the rotors is modeled as a first order response

1https://www.parrot.com/nl/en/drones/parrot-bebop-2
2Code used in this paper can be found https://github.com/kirkscheper/paparazzi/tree/
updated_event_based_flow

3https://optitrack.com/

https://www.parrot.com/nl/en/drones/parrot-bebop-2
https://github.com/kirkscheper/paparazzi/tree/updated_event_based_flow
https://github.com/kirkscheper/paparazzi/tree/updated_event_based_flow
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Figure 5.2: Parrot Bebop 2 quadrotor MAV equipped with SEEM1 Dynamic Vision Sensor.

with the dynamics defined in (5.7).

(∆t+ τT )Ṫi = Tsp − Ti−1 (5.7)

where Tsp is the thrust set-point and spin-up spin-down time constant τT has a
nominal value of 0.02 s. The thrust output is limited in the range [-0.8·g, 0.5·g] as a
conservative model the maximum acceleration of the real vehicle.

The model used to describe the divergence estimation is based on the work pre-
sented in [84]. The observed divergence is the result of adding latency to the true di-
vergence along with two types of noise, simple white noise drawn fromN (0,σ2

w) and
an additional noise proportional to the divergence magnitude drawn from N (0,σ2

p).
[84] identified typical values for σw and σp as 0.1 s−1 and the latency L in the range
of [50, 100] ms. We use similar nominal values for the standard deviations σw and
σp are 0.1 s−1 and an exaggerated range for the latency L in the range of [1,4] sam-
ples or [20, 133] ms. Some additional computational jitter has been included, this
simulates the situation of missed frames which happens when there are either in-
sufficient or too many image features to be tracked. The chance of a missed frame
is randomly determined with a given probability held constant for each simulation
run randomly drawn from the range [0, 0.2].

5.4. BѮҀѲѹѶѻѲ PѲѿѳѼѿѺѮѻѰѲ

Before we start to optimize a divergence based landing controller, let us first investi-
gate the naive approach of a constant gain, constant divergence landing as studied
in [41, 81, 170].
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Figure 5.3: Time history of a constant divergence landing with two controllers of differing
gain. C1 is a controller with high gain and C2 with low gain.

Fig. 5.3 shows the time history of a two constant divergence landing controllers per-
forming a landing with a divergence set-point of 0.5. Controller C1 has a relatively
high gain and C2 a low gain. The controllers are activated 1 s after the simulation
starts. Fig. 5.16 shows the steady-state response of the controller with the time
history control signal super-imposed.

These plots show that controller C1 quickly reaches the desired divergence but as
the vehicle descends the controller becomes increasingly unstable. This instability
is due to delays in the sensing and control loop and is well described in [41]. In
contrast, C2 does not quickly achieve the desired divergence due to the low gain
in the controller. Additionally, due to the non-linear relationship between the diver-
gence and acceleration, the vehicle overshoots the desired set-point before finally
slowing. Despite this poor tracking performance, the low gain does delay the onset
of instability observed with C1, resulting in a rather smooth landing profile.
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5.5. E҃Ѽѹ҂ҁѶѼѻѮѿ҆ OѽҁѶѺѶ҇ѮҁѶѼѻ

Every evolutionary process is defined by: a population of candidate individuals,
each with a given policy which must be evaluated; a way to evaluate these policies;
a selection mechanism to filter out bad policies; and a method to alter the individu-
als to generate new policies. Here, we use a mutation-only evolutionary algorithm
similar to (µ + λ) approach, where a population is maintained from which offspring
are generated using a mutation operator. Offspring that are better than members
of the population replace these members. The difference with the standard imple-
mentation is that we retest the current population on a random set of simulation
parameters with every generation, rather than once as is commonly done. With the
high level of non-determinism in our simulated environment, this ensures no indi-
viduals are preferred simply because they were tested on an easy set of conditions.

The evaluation of the individuals is done by simulating the policy on four indepen-
dent simulation runs, initializing the vehicle at a standstill from four different alti-
tudes, namely 2, 4, 6 and 8 m. The simulation ends when the vehicle exceeds 15
m above the ground, gets within 5 cm of the ground or exceeds 30 s of simulation
time.

We use a multi-objective approach here, where the individuals must minimize three
fitness functions measured at the end of a simulation: the total time to land (f1);
the final height (f2); and the final velocity (f3). NSGA-II is used to perform a non-
dominated sorting of the population and determine which individuals are better than
others in this multi-objective framework [47].

All the simulation parameters mentioned in Section 5.3 are randomly perturbed and
set at the start of a generation. The ranges of the evolutionary parameters used in
this work are summarized in Table 5.1. Altogether, this should encourage the opti-
mization to develop a policy that can reliably land quickly and safely from different
altitudes. This is all developed using the DEAP framework [66] with multi-threaded
implementation utilizing scoop in Python45.

The policy of each individual is encoded in a simple neural network. The neural
potential (γ) of each neuron in the neurocontroller is updated with a simple discrete
time Euler integration as described in Eq. (5.8).

γ(t) = γ(t− 1) + γ̇(t− 1)∆t (5.8)

where t represents the current time step and ∆t is the time step of the integration.

The input to the neurocontroller is the simulated divergence and the derivative of
the divergence ∆D = Dt−Dt−∆T

∆t . The output was used to control the thrust of the
vehicle leading to an acceleration. We utilized three types of neural networks to

4The software is openly available at: https://github.com/DEAP/deap
5Software used for the evolutionary process in this paper is openly available at: https://github.
com/kirkscheper/divergence_landing

https://github.com/DEAP/deap
https://github.com/kirkscheper/divergence_landing
https://github.com/kirkscheper/divergence_landing


5

112 MѭѿѷѵѺѳ ҀѴѱ RѱѭѸѵҀ҅ GѭѼ ҃ѵҀѴ SѱѺѿѻѾ AѮѿҀѾѭѯҀѵѻѺ

Table 5.1: Evolutionary parameters

Parameter Value
Number of Generations 250
Number of Runs 4
Range of delays [1, 4] samples
Range of computational jitter probability [0, 0.2]
Range of divergence noise (σ2

w) [0.05, 0.15] 1/s
Range of divergence noise (σ2

p) [0, 0.25] 1/s
Range of thrust time constant (τT ) [0.005, 0.04]
Range of simulation frequency [30, 50] Hz

investigate the effect of recurrent connections on the evolved solution. We imple-
mented a feed-forward neural network (hereafter referred simply as NN), a recurrent
neural network (RNN) and a continuous time recurrent neural network (CTRNN). All
networks had three layers, the first with 2 neurons, the hidden layer with 8 neurons
and the output with 1 neuron.

5.5.1. NN

The neural potential of an NN is defined by the instantaneous inputs to the network
such that the potential of a neuron i in a given layer l connected to N l−1 neurons
in the previous layer is determined simply by:

γli = σl(

N l−1∑
j=1

wl
ijγ

l−1
j ) + θli + I li (5.9)

where wij is the weight of the neural connection between the neuron i in layer
l = (2, 3, · · · ) and a given neuron j is the previous layer, θ is the neural bias, I is
the external input to the neuron and σ is the activation function of the neuron. Here,
the activation function is linear for the output layer and the Rectified Linear Unit
(ReLU) function for the hidden layer. We can rewrite this equation using Eq. (5.8)
to generate the neural dynamics.

∆tγ̇i = −γi + σ(

N∑
j=1

wijγj) + θi + Ii (5.10)

5.5.2. RNN

The NN has no effective way of explicitly considering previous states in determining
it’s current action. The behavior is simply a result of the emergent interaction of the
vehicle actions and the environment. Adding explicit memory may enable the vehi-
cle to exhibit more complex behaviors. RNNs are not only affected by an external
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input and the weighted sum of connected neurons but also by a weighted internal
connection to the previous potential as shown in Eq. (5.11).

γ̇i = γiri + σ(

N∑
j=1

wijγj) + θi + Ii (5.11)

where r is the weight applied to the recurrent connection. Like the NN, the activation
function is linear for the output layer and the ReLU function for the hidden layer.

Again, using Eq. (5.8), we can derive the neural dynamics:

∆tγ̇i = γi(ri − 1) + σ(

N∑
j=1

wijγj) + θi + Ii (5.12)

5.5.3. CTRNN

One pitfall of the RNN is that the recurrent connection does not consider the time
between updates. This can be an important consideration for systems with vari-
able time steps between updates. As such, we have also implemented the classic
CTRNN as shown in Eq. (5.13) [14].

(∆t+ τi)γ̇i = −γi +
N∑
j=1

wijσ(γj + θj) + Ii (5.13)

where τ is its time constant (τ > 0). The hyperbolic tangent activation function is
used here (σ(x) = tanh = (ex − e−x)/(ex + e−x)).

5.6. E҃Ѽѹ҂ҁѶѼѻ RѲҀ҂ѹҁҀ

The use of the non-dominated sorting and selection, results in the genetic opti-
mization spreading the population of policies over the pareto front of the fitness
landscape. As such, to evaluate the performance of the optimization, it is sensi-
ble to look at the ratio of the encapsulated volume and the area of the pareto front
(ν = volume/area) as shown in Fig. 5.4. This figure shows that the performance
generally improves before leveling off after about 150 generations. This perfor-
mance is also mostly stable as the performance remains flat after 150 generations.
This also shows that this trend is consistent over the multiple initializations of the
optimization and over the different types of neural architecture.

Fig. 5.5 shows the accumulated Pareto front of all individuals from the different
runs of the optimization. This figure only shows the performance on the touchdown
velocity and the time fitness as the fitness based on the height was consistently
minimized for all individuals. As such, all optimized policies converged to perform
the desired landing task. This figure shows how the policies are spread over the
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Figure 5.4: Performance of genetic optimization measured with ν which is the ratio of the
encapsulated volume and area of the pareto front. A smaller ν would suggest a general
improvement in the minimization of all individuals while they spread out over the available
optimum policies. The pareto front was generated by evaluating the entire population at each
generation to the same set of simulated environmental conditions.

inherent trade-off of reliable quick vs soft landing. The performance seems not to
be strongly correlated with the neural architecture as all three types are represented
in the pareto front. Additionally, the three architectures seem well distributed.

To investigate the sensitivity of the performance to different environmental condi-
tions, we subjected the individuals of the pareto front to a validation test with 250
simulations while varying the environmental settings of the run. All individuals where
subjected to the same set of conditions to make for a fair comparison. Fig. 5.6
shows that the individuals that optimized to have slow and soft landings have a
small spread in the fitness performance whilst individuals that were optimized to
faster landings have a larger variation in landing speed. This suggests that the
policies that perform faster landings may show oscillatory behavior causing their
touchdown speed to vary depending on the sensor noise or environmental pertur-
bations. We will investigate this more below.

As it is not feasible to analyse them all, three individuals from the each architec-
ture are be selected for further analysis of the landing behavior. The remainder of
this section will dive deeper into the types of behaviors optimized by the different
neurocontrollers.
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Figure 5.5: Performance of pareto front tested on 250 evaluations. Individuals selected for
further analysis are bold.
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Figure 5.6: Sensitivity analysis of a portion of pareto front showing 25th, 50th and 75th
percentile of performance over 250 evaluations.
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5.6.1. NN

Three neurocontrollers were selected from the Pareto front for some further anal-
ysis, their performance is shown in Fig. 5.7 and their steady-state response in
Fig. 5.17. Controller NN1 is a slow lander, NN3 is a fast lander and NN2 is in-
termediate.
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Figure 5.7: Vehicle states and observations from simulation with NN1 (blue), NN2 (red) and
NN3 (yellow).

Looking first at the world states in Fig. 5.7, we can see that NN1 and NN2 perform
smooth landings with little oscillation and touchdown at very low velocities. Exam-
ining the steady-state response, NN1 is similar to the low gain baseline C2 except
that instead of being a constant gain for all inputs, NN1 is piece-wise linear with a
high gain for positive values D and a low gain for negative values. This asymmetric
control scheme is a significant result as this will delay the onset of the oscillation
seen in higher gain controllers.

NN2 is similar to NN1 but has a higher gain and a noticeable gradient in the ∆D
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with reduced thrust at negative ∆D. This is also an interesting result as a nega-
tive ∆D occurs when the vehicle is slowing while descending or accelerating while
ascending. In both cases, it would indeed be desirable to reduce the control input.

NN3 has clear oscillations and is similar to the high gain controller C1 but is even
higher gain, this causes the controller to act as a bang-bang controller. This type
of control will cause the rotors of the vehicle to try to spin up and down very often,
however, due to their inertia, they do not achieve the desired values. As such this
control scheme relies on the simulated spin-up and spin-down reaction time of the
rotors (τT ) for the desired behavior to work well and will likely not transfer well to
the real world. This may also explain why the controllers on the left of the pareto
front in Fig. 5.6 have vertically elongated bounding boxes.

5.6.2. RNN
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Figure 5.8: Vehicle states and observations from simulation with RNN1 (blue), RNN2 (red)
and RNN3 (yellow).
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The selected RNN neurocontrollers are shown in Fig. 5.8 and Fig. 5.18. RNN1 and
RNN2 show similar behavior to the policies with NN1 and NN2. These relatively high
gain landings with a gradient on the ∆D seems to be a reliable way to perform this
type of high speed yet smooth landing. RNN3 is a little different than NN3 in that
high speed landings with a negative divergence rate have a lower throttle response.
This would occur when the vehicle is descending quickly but slowing down. This
control scheme would ensure that the vehicle doesn’t over react when the vehicle
is descending quickly but not accelerating towards the ground. This results in a
reduced oscillatory behavior with the RNN3 controller.

5.6.3. CTRNN
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Figure 5.9: Vehicle states and observations from simulation with CTRNN1 (blue), CTRNN2

(red) and CTRNN3 (yellow).

The three CTRNN neurocontrollers selected from the Pareto front in Fig. 5.9 and
Fig. 5.19 all show variations on a similar control scheme. Effectively, these con-
trollers split the control scheme into 4 segments, depending on the sign combina-
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tion of the inputs D and ∆D. When descending with an increasing divergence, the
vehicle will try to decelerate. When descending with an decreasing divergence, the
vehicle will decelerate less aggressively. When ascending with increasing rate, the
vehicle will reduce thrust. Finally, when the vehicle is descending with a negative
divergence rate, the vehicle will reduce thrust less aggressively than the increas-
ing rate case. This results in high speed yet smooth landings with little oscillation.
This approach is similar to that shown by RNN3. Portions of these controllers seem
discretized, but as they only show the steady state throttle response, the temporal
response may be more smooth.

5.7. RѲѮѹѶҁ҆ GѮѽ

Everything discussed so far has been in a simulated environment, one that is a sig-
nificant simplification of reality to facilitate high speed evaluation of the neurocon-
trollers. As we move to the real world, we can therefore expect various differences
leading to a reality gap. This section aims to identify some of these differences.

Let us first look at the control of the vehicle, in simulation, the output of the neuro-
controller was acceleration, which after being fed through a low pass filter to sim-
ulate the spin-up of the rotors was implemented by the simulated rotors. In reality,
this desired acceleration must first be converted to a thrust command for the ro-
tors. If we use a naive approach here, we can simply determine a linear transform
from desired acceleration to thrust, the results of which are shown in the top plot
of Fig. 5.10. This figure shows a set of real world neurocontroller landings using
a constant scaling factor for desired acceleration to thrust. As the vehicle starts
to move the command tracking is good but as it starts to descend the tracking de-
grades. This is almost certainly due, in part, to the unmodeled drag and non-linear
aerodynamic effects of descending through the downwash of the propellers.

This poor tracking leads to a noticeable reality gap in the landing performance. This
can be reduced with the use of a closed loop controller as proposed in [154], instead
of a linear transform. The results using a Proportional-Integral (PI) controller, min-
imizing the error between the commanded and measured acceleration on the ve-
hicle, are shown in the bottom plot of Fig. 5.10. The controller effectively abstracts
away from the raw motor commands to a desired acceleration, which significantly
improves the tracking performance allowing us to cross this reality gap.

The goal of this paper is to highlight the use of abstracted inputs to improve the
robustness of optimized policies to differences in the input. To do this we will inves-
tigate the performance of the vehicle with the use of two different types of cameras
with significantly different divergence signal output performance characteristics.

The first camera uses the bottom looking CMOS camera built into the Parrot Be-
bop 2 using the size divergence estimation method described in [85]. The second
camera is the Insightness SEEM1 Dynamic Vision Sensor (DVS) using the efficient
plane fitting optical flow estimation technique described in [142]. This event based
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Figure 5.10: Thrust command (blue) and subsequent vehicle acceleration (red) for some real
world landings. (Top) Unmodeled dynamics such as drag and other non-linear aerodynamic
effects lead to a poor thrust command tracking using a naive approach. (Bottom) The tracking
error can be substantially reduced with the use of a simple closed loop PI controller.

camera does not generate frames as a conventional image sensor but rather mea-
sures logarithmic light changes at each pixel independently and asynchronously.
This makes the sensor conditioned to operate with high speed motion with low la-
tency and relatively low data throughput. This type of camera has been previously
used to facilitate high speed landings as shown in [142]. A schematic showing the
optical flow processing pipeline for the CMOS and event-camera can be found in
Fig. 5.11.

Fig. 5.12 shows a comparison of the divergence estimation error from these two
cameras highlighting how different the output of these camera is and how different
they both are to the camera statistics used in simulation. Some additional differ-
ences in the camera properties are summarized in Table 5.2. We will investigate in
the next chapter if these differences result in a significant reality gap.

Table 5.2: Camera properties

Property Simulated CMOS DVS

Sensor - mt9v117 SEES1
Resolution used - 240 x 240 262 x 262

Field of View - 58◦ 79◦
Divergence Rate [30, 50] Hz 45 Hz 100 Hz
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Figure 5.11: Process schematic of the optical flow computation for the CMOS camera (top)
and the event-camera (below).
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Figure 5.12: Divergence estimation error for the CMOS (blue) and DVS (red) cameras. The
trend and distribution of these two cameras are quite different.

5.8. FѹѶѴѵҁ TѲҀҁ RѲҀ҂ѹҁҀ

Using the closed loop PI controller to control the thrust as described in the previous
section, we performed a set of landings with some of the neurocontrollers identified
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in Section 5.5. All flights were initiated from a steady hover at an altitude of 4 m.
Fig. 5.13 shows the results from the controllers NN1 and NN2, Fig. 5.14 shows the
results from RNN1 and RNN2 and Fig. 5.15 shows the results from CTRNN1 and
CTRNN2. These results are plotted for both the CMOS and DVS cameras to see
how well these two sensors affect the landing profile. The results from simulation
have also been plotted to see how well the real world performance fits with the
simulated, a measure for the eventual reality gap. NN3, RNN3 and CTRNN3 were
not tested in reality as their relatively high touchdown velocity in simulation may
cause damage to our real world vehicle. This is in-fact a benefit of themulti-objective
optimization scheme used here, the user can simply choose a policy that performs
the trade-off of the fitness functions as desired.
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Figure 5.13: Vehicle states and observations from real world flights with the NN1 (blue) and
NN2 (red) controllers. The results using the CMOS camera is shown in solid and the DVS in
dashed. The simulated performance is also plotted in dot-dash for comparison.
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In spite of the differences in the generation of the divergence, the landing perfor-
mance is very similar. These two systems are also so similar to the simulated
landing that the plot is hardly visible. This would suggest that the eventual reality
gap is small despite significant differences in the way the input was generated.

Also notable is the repeatability of the landing maneuvers. The landings were per-
formed three times each and each landing resulted in very similar trajectories. This
shows that the evolutionary optimization converged to a robust solution as sug-
gested by the analysis in Section 5.5.
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Figure 5.14: Vehicle states and observations from real world flights with the RNN1 (blue) and
RNN2 (red). The results using the CMOS camera is shown in solid and the DVS in dashed.
The simulated performance is also plotted in dot-dash for comparison.
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Figure 5.15: Vehicle states and observations from real world flights with the CTRNN1 (blue)
and CTRNN2 (red). The results using the CMOS camera is shown in solid and the DVS in
dashed. The simulated performance is also plotted in dot-dash for comparison.

5.9. CѼѻѰѹ҂ҀѶѼѻ

This paper investigated the influence of abstraction of the sensory input to the re-
ality gap for automatically optimized UAV agents tasked with performing quick yet
safe landing. We have shown over multiple evolutionary runs and neurocontroller
architectures, that abstraction does not unduly hamper the optimization power of
the optimization as the agents developed a robust and effective method to land.

The optimized agents showed some landing strategies that were before not imag-
ined by the human designers. One notable strategy is that instead of a simple
proportional controller for the entire state space, an asymmetric response may be



CѻѺѯѸҁѿѵѻѺ

5

125

more appropriate to delay the onset of oscillations when performing the landing
procedure. A strong response when the divergence error is positive and a weaker
response when negative seems a good approach.

Tests in the real world showed the presence of significant differences between simu-
lation and reality. The most significant was that the acceleration command tracking
performance was poor, likely due to the drag and other non-linear aerodynamic
effects which were not considered in simulation due to their modeling complexity.
The resultant reality gap was crossed with the use of a closed loop controller repre-
senting another layer of abstraction, from the low-level raw motor control values to
a desired vertical acceleration, which ensures robustness to the real world uncer-
tainty.

Finally, we showed that abstraction on the sensory input of the neurocontroller was
robust to the reality gap when using two different input estimation techniques. Al-
though two cameras with different imaging techniques were used, the resultant
landing profile was very similar. Abstraction can therefore be a powerful tool when
crossing the reality gap.

AѱѱѶҁѶѼѻѮѹ MѮҁѲѿѶѮѹ: CѼѻҁѿѼѹѹѲѿ SҁѲѮѱ҆ SҁѮҁѲ
Iѻѽ҂ҁ-O҂ҁѽ҂ҁ MѮѽѽѶѻѴҀ
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(a) Controller C1
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(b) Controller C2

Figure 5.16: Steady state input-output mapping for hand designed controllers.
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Figure 5.17: Steady state input-output mapping for NN controllers.
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(c) RNN3

Figure 5.18: Steady state input-output mapping for NN controllers.
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Figure 5.19: Steady state input-output mapping for NN controllers.
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CѼѻѰѹ҂ҀѶѼѻ

In this final chapter, we will first answer the research questions and problem state-
ment laid out in the introduction. Next we reflect on how the work presented here
can potentially affect the wider scientific research field. Finally, we summarize some
ideas for future work.

6.1. AѻҀ҄ѲѿҀ ҁѼ RѲҀѲѮѿѰѵ Q҂ѲҀҁѶѼѻҀ

RQ1: How can abstraction in the behavioral representation help in crossing the
reality gap?

Chapter 2 investigated the use of a more intelligible behavioral representation for
the robotic behavior than the commonly used neural network structure. This was
tested by optimizing behavior for the 20 g DelFly Explorer flapping wing MAV using
a Behavior Tree representational structure. The DelFly was tasked to fly around
a small room, avoiding the walls while searching for and eventually flying through
an open window. After being trained in simulation with success rates above 85%,
there was a clear reality gap when testing on the real vehicle with a 0% success
rate. The intelligible nature of the Behavior Tree allowed the human operator to
quickly understand the desired robotic behavior and identify the source of the real-
ity gap, in this case differences in the sensing and actuation of the real world vehicle.
The structure of the Behavior Tree also easily lends itself to simple augmentation,
allowing the user to update the behavior actively reducing the reality gap improv-
ing performance to 54%, higher than the baseline user-designed behavior at 46%.
The resultant difference in performance was likely due to unmodeled aerodynamics
effects and drafts.

The Behavior Tree achieves this increased intelligibility at the cost of representa-
tional power as compared to the neural network. With its subsumption-like architec-
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ture, the behavior abstracts away from a global input-output mapping, segmenting
the actions to a finite set of options. For the behavior to remain intelligible, the trees
must remain small, somewhat limiting the ability of the evolutionary optimization
to find the ideal solution to the problem. That said, without the intelligibility of this
representational structure the optimized behavior would have been useless once
transferred. This trade-off therefore seems worthwhile. Abstracting the behavioral
representation can help to speed-up the re-optimization process by segmenting the
behavior to simpler sub-behaviors.

RQ2: How can abstraction in the control output be used to improve the robustness
of a robot to differences between simulations and reality?

Chapter 3 presented the optimization of two different neurocontrollers tasked to
control a swarm of three quadcopters to form a predetermined pattern. Each quad-
copter had the same neurocontroller making the swarm homogeneous, a non-trivial
optimization task. The two different neurocontrollers optimized, differed in how they
controlled the quadcopter. One controller directly controlled the rotor speed of the
vehicle whilst the other controlled the velocity of the vehicle with the use of tradi-
tional nested closed-loop controllers to eventually actuate the rotors.

After optimization in simulation, both controllers were able to robustly achieve the
desired swarming formation, however, when transferred to the real world, only the
abstracted controller was successful. So successful in-fact, that with no augmenta-
tion, the real world flight behavior was near identical to that observed in simulation.
The use of closed-loop controllers helps to increase the robustness of the behavior,
actively rejecting environmental disturbances and adjusting for any unique vehicle
bias due to manufacturing and operational differences.

Additionally, the abstraction allowed the simulation to be significantly sped-up. The
abstracted neurocontroller only required a simple velocity model representing the
response of the closed-loop controller whilst the non-abstracted neurocontroller re-
quired a significantly higher fidelity aerodynamic model.

Perhaps most significantly, this work shows that when done well, abstracting away
from the low level details of the real world do not unduly limit the optimization
scheme from finding a valid solution to the problem. The simplification of the task
even reduces the computation required to find the optimal solution. This is a pow-
erful tool to improve the robustness of robotic behavior developed in simulation to
the reality gap.

RQ3: How can abstraction on the sensory input be used to reduce the sensitivity
of the robotic behavior to the reality gap?

Chapter 4 and Chapter 5 presented the results of experiments testing the impact of
abstraction of the inputs to the robot on the inevitable reality gap experienced. Here,
a quadcopter was required to perform a high speed landing using an abstracted
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input from a visual camera, namely the divergence of the optical flow field. This
abstracted input gives the user the freedom to use any sensor that can generate
this signal, reducing the dependence of the robotic behavior to the input used.

This was demonstrated by performing real world experiments using a conventional
CMOS camera and the novel event-based Dynamic Vision Sensor. These two sys-
tems produced significantly different input signal statistics than that used to optimize
the robotic behavior in simulation. Nevertheless, the resultant landing behavior of
the real world vehicle was almost identical to that seen in simulation. This again
demonstrates how abstraction provides the system developer with tools to scale
the robotic application to various vehicles with different sensor solutions. Addition-
ally, it improves the robustness of the optimized behavior to eventual environmen-
tal uncertainties. Notably, Chapter 5 also extended the investigation of the transfer
problem to not just the reality gap by testing the solution with two different real world
sensors. This highlights that this approach is more broadly applicable than just the
reality gap.

6.2. AѻҀ҄Ѳѿ ҁѼ PѿѼѯѹѲѺ SҁѮҁѲѺѲѻҁ

Problem Statement: How can abstraction be used to bridge the reality gap in
evolutionary robotics?

All the results in this work have shown that abstraction can indeed be used as a
tool to balance the implicit trade-off between optimization power and robust trans-
fer from simulation to the real world. With this tool, the user is empowered to ef-
fectively control the reality gap. With limited reduction in the optimization power,
robotic behavior can be developed in simulation and effectively transferred to the
real world. This principle builds upon the envelope of noise presented by Jakobi.
Similarly, we mask the details of the real world from the optimization, encouraging
the development of robust control solutions, but we additionally ensure that the real
world performance closely resembles that in simulation to ensure a small reality
gap. We are essentially changing both simulation and reality to be more like each
other, reducing the behavioral reality gap. In combination with a shift to a higher
level of abstraction, this results in very robust behavioral development with a small
reality gap. We effectively change the goal of the transfer problem to focus on the
behavior rather than on performance.

6.3. DѶҀѰ҂ҀҀѶѼѻ

Advancements in the evolutionary robotics field have been relatively slow, due in
large part to the reality gap. This was a constant impediment to implementing the
approach of simulation-based robotic optimization with transfer to the real world.
Even with compelling innovations in bridging this gap [91, 102], evolution in em-
bodied agents directly in the real world [54], evolution of mind and body [138], and
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smart adaptation on the real world vehicles [40], it was still difficult moving to more
complex tasks. The abstraction techniques presented in this thesis should help both
to simplify the optimization problem and make transfer to the real world more ro-
bust. This will eventually lead to the ability to develop ever more complex behaviors
in complex environments.

Recently, the field of deep learning has seen a large surge in interest and develop-
ment due to a break-through in the neural structure, allowing more complex infor-
mation to be learned. This has for the most part been restricted to virtual agents.
The few applications with embodied agents have been plagued with the reality gap
[21, 30, 164]. The work presented in this thesis is not limited to ER but can also be
applied to reinforcement learning. The expansion to a wider field of research will
undoubtedly accelerate development, suggesting that major improvements are just
around the corner.

6.4. F҂ҁ҂ѿѲWѼѿѸ

This thesis investigated abstraction on different aspects of the robotic platform with
quite significant results but was limited to only three demonstrations of its efficacy.
More work is needed to understand what aspects of abstraction are the most ef-
fective to improve robustness and what aspects are the most detrimental to the
optimization process. This type of research would better inform the roboticist as to
the effects of the trade-offs being made by selecting the level of abstraction.

Little adaptation was done to the behavior after transfer in this thesis. Although
some behavioral augmentation was manually done by the human user in Chap-
ter 2, this process can be automated. In fact, the abstracted behavioral archi-
tecture should aid in segmenting the re-optimization problem from a large global
optimization to several smaller, simpler ones, potentially significantly speeding up
the re-optimization process. Some early work has been done to achieve this auto-
mated re-optimization in the real world with the abstracted behavior [105] but more
investigation is required.

As abstraction helps to segment and compartmentalize the behavior and reality
gap, it should simplify the optimization while improving robustness. This should
allow more complex behavior to be developed in simulation and successfully trans-
ferred to the real world. This hypothesis should be tested by actually applying the
abstraction techniques presented to learn even more complex behavior.

Additionally, this segmentation of the optimization task can lead to significant re-
duction in the time to optimize a given task. This may aid the field of embodied
evolutionary optimization. Abstraction may help speed up the development time
making this approach more feasible.
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Propositions

accompanying the dissertation

AѯҀҁѿѮѰҁѶѼѻ ѮҀ Ѯ TѼѼѹ ҁѼ BѿѶѱѴѲ ҁѵѲ RѲѮѹѶҁ҆ GѮѽ Ѷѻ E҃Ѽѹ҂ҁѶѼѻѮѿ҆
RѼѯѼҁѶѰҀ

by

Kirk YannickWillehm SѰѵѲѽѲѿ

1. Abstraction can be used as a tool to control the trade-off between optimization
power and robustness of robotic behavior to the transfer problem. [This thesis]

2. Given a sufficient model of the world, behavior optimized in simulation should
result in similar performance in reality. As such, the goal of the transfer should
be to reduce the behavioral reality gap rather than directly optimizing real world
performance. [This thesis]

3. Abstraction segments the optimization problem into a set of smaller sub-problems,
each of which can be independently optimized improving robustness and reducing
overall optimization time. [This thesis]

4. Abstraction reduces the objective simulation fidelity required to optimize robotic
behavior, leading to a faster optimization process. [This thesis]

5. To the perceptual system of a robot, reality is nothing more than a very complex
simulation.

6. Science fiction as a looking glass to view our current and future world is a powerful
method to perform thought experiments about what future technologies will benefit
humanity and how they will impact on our society.

7. Lasting advances in science, as in life, often require a change in perspective.

8. Focusing solely on graduating on schedule comes at the cost of missing
potentially life-changing opportunities and experiences.

9. Developing strong personal relationships with the locals in a foreign land is the
most effective way for both parties to learn a new language.

10. Unlike methods commonly used in the military, the best method to generate group
cohesion and trust, is to go on a self-organized vacation.

These propositions are regarded as opposable and defendable, and have been
approved as such by the promotors Prof. dr. ir. M. Mulder and Dr. G.C.H.E. de Croon.
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