
Faculty of Electrical Engineering, Mathematics and Computer Science

Signal Processing
Systems
Mekelweg 4,

2628 CD Delft
The Netherlands

https://sps.ewi.tudelft.nl/

CAS-2023-00

M.Sc. Thesis

Prediction of Post-induction Hypotension
by Machine Learning

Shuoyan Zhao





Prediction of Post-induction Hypotension by
Machine Learning

Thesis

submitted in partial fulfillment of the
requirements for the degree of

Master of Science

in

Electrical Engineering

by

Shuoyan Zhao
born in Hefei, China

This work was performed in:

Signal Processing Systems Group
Department of Microelectronics
Faculty of Electrical Engineering, Mathematics and Computer Science
Delft University of Technology



Delft University of Technology

Copyright © 2023 Signal Processing Systems Group
All rights reserved.



Delft University of Technology
Department of

Microelectronics

The undersigned hereby certify that they have read and recommend to the Faculty
of Electrical Engineering, Mathematics and Computer Science for acceptance a thesis
entitled “Prediction of Post-induction Hypotension by Machine Learning” by
Shuoyan Zhao in partial fulfillment of the requirements for the degree of Master of
Science.

Dated: August 15, 2023

Chairman:
prof.dr.ir. J.Dauwels

Advisor:
prof.dr.ir. J.Dauwels

Committee Members:
dr. M.Gürel
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Abstract

Anesthesia-related hypotension is a significant concern during surgery, occurring shortly
after induction and potentially leading to severe complications. Since the anesthetic
drug is believed to have an important role in the occurrence of post-induction hypoten-
sion (PIH), anesthesiologists now advocate for the appropriate selection of anesthetics
dosage to avoid PIH. To facilitate such decision-making, an accurate prediction of
PIH associated with a certain dosage of anesthetics is necessary. This thesis presents
a high-accuracy prediction model for PIH that supports anesthesia decision-making.
The model is trained on data from the VitalDB database of 320 patients undergoing
general anesthesia. The target output of this classification model is the occurrence of
PIH, as defined through comprehensive analysis that incorporates clinical operations.
Besides demographic data and vital signs, our model incorporates the dosage of propo-
fol administered during the induction period as an input variable, mimicking real-world
anesthetic plans. By employing the model in the target control infusion system of anes-
thesia, the anesthetics dosage can be varied as input, providing outcome predictions
as security suggestions. An ensemble algorithm is employed to balance the prediction
performance and the ability to elucidate the positive relationship between propofol and
PIH risk, forming an anesthetics advice model. Compared to previous PIH prediction
studies, our prediction model is validated in more reliable nested cross-validation ap-
proach and achieves a higher performance (precision of 0.83 and recall of 0.84). We
believe utilizing demographic and dynamic vital signs to predict HIP can be useful in
determining the appropriate anesthetic dosage plan, offering potential improvements in
patient care and safety.
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Introduction 1
1.1 Motivation

Our project aims to improve the safety of anesthesia in surgeries by offering personal-
ized advice on anesthetic dosage. Presently, the dosage is determined by algorithms
within the target-controlled infusion (TCI) system. The TCI system automatically
calculates the appropriate dosage and infusion rate of anesthetics to achieve the
desired depth of anesthesia, using basic patient information such as gender, weight,
and age and employing built-in pharmacokinetic models. However, the current system
lacks accuracy and personalization, frequently resulting in adverse outcomes during
operations, especially for patients with compromised health conditions. Traditional
modeling techniques are inadequate in addressing the complex factors contributing to
these adverse events. To tackle this issue, researchers are exploring the integration of
machine learning (ML) models capable of analyzing extensive sets of vital signs and
demographic data to offer safer anesthesia plans for patients [2][3].

As an initial step in this project, our work focuses on predicting one of the most
common adverse events related to perioperative and anesthesia care: hypotension.
Specifically, we aim to predict acute hypotension that often occurs shortly after
the induction of anesthesia, known as post-induction hypotension (PIH). Providing
feedback on the predictive risk of PIH based on anesthetic dosage could facilitate safer
decision-making for individual patients.

Before we proceed with the technical details, it is essential to clarify the current
background related to clinical matters. Firstly, the prediction of hypotension is not
an entirely new topic in anesthesia. Traditional methods such as blood pressure
(BP) monitoring and electrocardiogram measurements have offered references for
anesthesiologists to make timely adjustments to anesthesia. Some commercial devices
also provide risk warnings by monitoring changes in blood vessels. While these devices
are effective at early warning and enabling early healthcare, they do not assist in
decision-making before anesthesia, which has the potential to directly prevent adverse
events from occurring. Additionally, relying solely on the hemodynamic data from
these devices might overlook other personal variations among patients. Researchers
suggest that integrating demographic data could improve the accuracy of predictions [4].

Another drawback of the current hemodynamic monitoring approaches is their
cost and associated risks. In most surgical scenarios, BP monitoring is achieved
through either invasive arterial lines or non-invasive inflatable cuffs. Arterial lines
involve inserting a small catheter into a patient’s artery to provide continuous BP
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(a) Arterial line [10] (b) Volume clamp BP monitor [11]

(c) Upper arm BP monitor [12]

Figure 1.1: Three types of clinical-use BP measurement device. (a) Arterial line for ICU
environment BP monitoring. (b) Volume clamp BP monitor provides continuous BP data
but is less accurate and stable. (c) Upper arm BP monitor is a traditional and intermittent
approach.

measurements. While this method offers continuous and high-fidelity BP waveforms,
it is expensive, technically demanding, and carries some risk of complications. Arterial
lines are typically reserved for high-risk patients undergoing surgery or in intensive
care units, which may introduce a bias in the health situation data. Therefore,
non-invasive BP (NIBP) measurements are commonly preferred in clinical settings
whenever possible, especially in pre-operative environments, despite their relatively
lower accuracy [5]. Non-invasive devices utilizing cuff-based oscillometric methods
automatically inflate the cuff and calculate BP. While some products offer continuous
NIBP through additional volume clamping [6][7], this approach is costly and not
widely utilized. Generally, NIBP measurements are intermittent, with a frequency
of approximately every 3 minutes in the operating room at Erasmus Medical Center
(EMC). Although the intermittent nature of these measurements may lead to missed
detection of hypotension [8], a study on hypotension prediction in ICUs (Intensive
Care Units) argues that even with a measurement interval of 5 minutes, the predictive
ability is not substantially impaired [9]. Therefore, using NIBP data in ML-based
hypotension prediction is preferred in clinical practice. Consequently, the prediction
tool is expected to utilize intermittent NIBP measurements to ensure its applicability
across a broader range of cases.
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1.2 Problem Formulation

In light of the stated motivation, the primary objective is to develop a ML model
for predicting PIH using common pre-operation medical data. This predictive model
aims to offer valuable decision-making suggestions on anesthesia dosage plan to medical
professionals. To accomplish this, we must address the following key objectives:

1. Prediction Based on Pre-Induction Data: The ML model should solely rely on
pre-induction data to enable proactive decision-making. This will allow us to
forecast the likelihood of PIH before any medical interventions are initiated.

2. Intuitive Output for Anesthesiologists: The model’s output should be presented in
a comprehensible manner for anesthesiologists, providing them with dose-related
information. We might illustrate the PIH risk with respect to changes in anesthetic
dosages, making the results easily explainable and actionable.

3. Ensuring Prediction Accuracy: We should emphasize reliable ML techniques to
achieve a high level of prediction accuracy. This accuracy is crucial to instill
confidence in the model’s results and pave the way for further research on this
topic.

4. Practicality with Limited Data Types: Given practical constraints, our model
should utilize a limited set of data types, specifically intermittent and NIBP mea-
surements and other commonly available data in the operation room.

1.3 Contribution

This work collaborated with Dr. Niki Ottenhof and Dr. Jan Wiebe Korstanje from
the Department of Anesthesiology in EMC, who provided professional criteria from
an anesthesia perspective. In this study, we aimed to improve the prediction of PIH
using ML techniques. We proposed a set of advancements that enhance the accuracy
and practicality of the prediction model, enabling more effective clinical use. By com-
bining insights from previous medicational studies on PIH and binary ML prediction
knowledge, we presented the following improvements:

1. We introduced a novel labeling algorithm that offers a more practical definition
of HIP based on two types of intermittent NIBP, thereby facilitating its clinical
application in real-world scenarios.

2. Through the implementation of advanced ML tools in feature engineering and
model training, we enhanced the performance of our PIH prediction compared to
previous ML-based approaches.

3. We demonstrated the feasibility of predicting PIH using intermittent BP mea-
surements instead of relying on costly continuous and invasive data, which may
lead to a more practical and convenient approach for monitoring and predicting
PIH.
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4. To validate our approach effectively despite having a single small-sized dataset
of 320 cases, we employed a leave-one-out nested cross-validation methodology,
providing a more robust and persuasive validation technique.

5. Additionally, we proposed an ensemble model capable of accurately and intu-
itively illustrating the PIH risk corresponding to propofol dosage. By leveraging
data from before induction and medication information during induction, the TCI
system could proactively adjust dosage decisions prior to administration, enhanc-
ing patient safety and care.

1.4 Outline

The rest part is organized as follows:

• Chapter 2 reviews previous studies on PIH, ranging from medical statistical ap-
proaches to ML-assisted methods, including discussion on clinically validated ML
approaches. Additionally, it presents explorations of ML-based dosage recommen-
dation algorithms.

Chapter 3 to 5 follows the pipeline of a binary-classification prediction problem.

• Chapter 3 discusses the dataset and our preprocessing strategies. The outcome
labeling and feature extraction methods incorporate up-to-date medical back-
ground knowledge. Furthermore, we combine three feature selection approaches
to identify the most valuable input for the ML models. We also provide medical
explanations for the selected factors.

• Chapter 4 presents several strategies used to improve the performance of the
predictive and dosage advice models.

• Chapter 5 elaborates on the assessment algorithm, along with the dosage advice
model capable of providing risk warnings correlated to propofol dosage.

• Chapter 6 summarizes the contributions of this thesis and suggests ideas for future
research from different aspects.
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Background and Related Work 2
2.1 Medical Background

This section aims to provide an overview of the academic background behind the HIP
prediction study. It starts by defining PIH in a clinical context and then explores its
relative predictors, which have been validated as highly correlated to PIH through med-
ical research or adopted in machine learning studies. In addition to presenting machine
learning algorithms, we will also delve into ML-based decision-making approaches. The
interest lies in understanding how such algorithms validate their generated cases, which
may lack ground truth.

2.1.1 Overview of HIP

Hypotension is a condition characterized by abnormally low BP in a patient. Unlike
hypertension, which is usually a long-term health issue, hypotension often occurs
as a result of specific events such as blood loss, sudden posture changes, or using
of medication. Prolonged hypotension can lead to serious complications or even
mortality due to insufficient blood supply to organs and tissues [13]. While clini-
cal experience plays a vital role in determining hypotension, there is currently no
consensus on the precise definition of hypotension, resulting in varying rates of
hypotension during operation being reported [14]. The definitions are based on BP
thresholds and duration. In our work, we adopt the definition provided by EMC,
which is further elaborated in the primary outcome statement in Chapter 3. In the
context of surgical procedures, intraoperative hypotension (IOH) refers explicitly to
occurrences of low BP during surgery in the operating room, while PIH refers to those
that happen just after the “induction” period or also be explained as “hypotension
before intubation” in some literature. Generally, an anesthesiologist will take care
of patients during the entire duration of surgery. The anesthesia period could be
divided into three stages: induction, maintenance, and emergence. The first stage,
“induction,” involves rapidly sedating the patient to induce unconsciousness. This is
accomplished through the administration of anesthetics at a high rate of injection.
Following the induction, the “maintenance” phase begins. A low infusion rate of
anesthetics helps to sustain the patient’s deep sleep state. This stage ensures that
the patient remains unconscious and stable throughout the surgery. The end of the
“emergence” stage marks the end of the anesthesia period, when the infusion of anes-
thetics is ceased, allowing the patient to gradually recover from their unconscious state.

PIH is a significant concern that often occurs within the first 15 minutes after
induction due to hemodynamic instability during this period [15][16]. To mitigate the
occurrence of PIH, various clinical strategies are commonly employed, such as the use
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Table 2.1: Predictors and the performance in related literature.

Predictors/Risk Factors OR (95% CI) * Supporting Literature

Age 1.03 (1.02–1.04) [15]

Baseline BP

SBP 70 mmHg 5.00 (2.78-9.02) [17]

SBP increment 0.97 (0.97–0.98) [15]

MAP increment 1.05 (1.01-1.11) [18]

Gender

Male 1.41 (1.12–1.79) [15]

Medication Plan

propofol (v.s. thiopental or etomidate) 3.94 (2.42–6.43) [17]

Weight 0.85 (0.79-0.91) [19]

Shock Index (SI)

0.7 < SI ≤1.0 1.8 (1.1–2.8) [20]

1.0 < SI ≤1.3 2.9 (1.3–6.1) [20]

ASA III-V 1.55 (1.22–1.99) [17]

* OR: Odds Ratio, CI: Confidence Interval.

of more moderate anesthetics, administration of vasopressor drugs to high-risk patients
or when hypotension occurs, or adjusting the depth of anesthesia (DoA). Ideally, an
optimal anesthesia plan should be designed to efficiently achieve the target DoA while
minimizing the potential risk of PIH, which is the motivation for our project.

2.1.2 Predictors Studies of PIH

The data collection process involves deciding which kind of data to collect, and it
largely depends on the application context. The choice is especially deliberate-careful
in medical applications where the clinical measurements are costly or even harmful.
Previous studies thus explored deeply to identify the most valuable predictors of hy-
potension. Some medical works attempt to prove the relationship between predictors
and hypotension through statistical approaches in either prospective or retrospective
experiments. In Table 2.1, we survey the medical literature and present the predictive
factors which are considered highly associated with PIH and their performance. The
predictors under investigation include not only the raw and statistical features but
also some artificial features. Shock index (SI), for example, is a valuable factor which
is the ratio of blood pressure to heart rate, which does not has physical meaning.

Medication is the key factor directly associated with PIH during anesthesia.
Therefore, the knowledge of anesthetics and anesthesia devices can provide insights
into predicting hypotension. The current dosage plan for anesthetics in TCI products
is calculated based on input information such as weight, age, gender, and height,
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which is manually input before induction. Manual adjustments can be made by
setting a lower target concentration for induction in weaker patients diagnosed with
pre-existing hypertension or other cardiovascular conditions. Some TCI products
simplify the anesthesia process by automatically filling in standard data, saving time
for anesthesia doctors. TCI controls the infusion of two anesthetic drugs, propofol,
which is primarily used to induce intoxication, and remifentanil, which is used for
analgesia, in combination to achieve the depth of hypnosis required for surgery.
Vasodilators such as ephedrine, norepinephrine, and epinephrine are also administered
during surgery to treat acute hypotension.

However, only the relationship between drug regimens and hypotension is generally
studied in the research, and the effect of a particular drug at a particular dose is not
widely studied, although the improper dosage is considered the direct cause. It is
probably due to the difficulty of controlling variables in a clinical setting and complex
potential pathophysiologic mechanisms [21].

2.2 ML-based Hypotension Prediction

In this section, we will discuss the literature concerning the prediction of acute intra-
operative hypotension. Additionally, we will explore the level of trust that clinicians
place in these prediction methods and how engineers validate their performance.

2.2.1 ML Applications on Acute Hypotension Prediction

In Table 2.2, we summarize a comprehensive overview of machine-learning-based acute
studies of hypotension prediction, categorized into two groups: one group studies the
prediction of PIH, and the other one focuses on the prediction of IOH and hypotension
occurrences during ICU stay. It is important to note that the studies in this table
exclude long-term prediction approaches which predict hypotension 30 minutes later or
longer. There are several distinctions between the two types of hypotension predictions.
Firstly, PIH is a symptom directly associated with anesthesia induction, whereas IOH
and ICU hypotension are more related to the temporary health condition of patients
during the maintenance stage of anesthesia. This fundamental difference is also why
IOH and ICU hypotension can sometimes be accurately predicted solely through vital
signs while that is not the case for PIH [24]. Secondly, PIH prediction is limited to
detecting outcomes within a narrow and fixed time range, specifically shortly after
anesthesia induction. This restriction results in only one case being available from all
recordings for a single patient. On the other hand, IOH retrospective labeling can
generate multiple cases by analyzing monitoring data throughout the entire surgery,
significantly enriching the training data. Lastly, PIH predictions face challenges due
to limited access to comprehensive databases in terms of both duration and fidelity.
During the pre-operative stage, when the patient has just entered the operating
room, few monitoring devices are available. Moreover, unlike ICU studies that benefit
from solid support from the MIMIC (The Medical Information Mart for Intensive
Care) database [25], which provides large and de-identified public ICU data, machine
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learning studies on hypotension in surgical settings have primarily relied on private or
commercial data until the publication of VitalDB [26]. Unfortunately, VitalDB still
lacks enriched pre-operative data. In the following paragraphs, we will explore these
two groups of studies in detail, discussing their methodologies and performance.

Kendale et al. [22] predicted PIH within 10 minutes after the start of induction,
strictly defining PIH as a single value of mean arterial pressure (MAP) < 55 mmHg
since MAP is measured intermittently every minute. In their study of 13,323 cases
(1185 of which experience PIH), minimal preprocessing was performed on raw data
to mimic real-world conditions. They extracted features from demographic data,
intraoperative medications, and vital signs within the same 10-minute window.
Notably, medication information is more detailed and plays a crucial role in the
final model compared to other similar studies. However, there is no clarification on
how they avoid potential data leakage, and there might be a slight concern about
predictions using data collected after the event “happens”. Furthermore, a repeated
10-fold cross-validation strategy was employed during the training process, but the
training-testing-set splitting was performed only once without cross-validation. The
work also lacks detailed evaluation metrics except for AUC (Area under the receiver
operating characteristic curve), and there is no indication of how the model handles
the data imbalance problem in the dataset, which only contains 8.89% positive events.
Although it acknowledges that a model capable of dealing with imbalance performs
better, this aspect remains unexplored. Furthermore, among the eight machine
learning classification models tested in the tenfold cross-validation, the GBM model
achieves the highest AUC of 0.76, which is far from perfect accuracy and has been
criticized for potential misclassification issues and the inherent weaknesses of boosting
models related to this misclassification.

Kang et al. [16] employed a different definition of the post-induction period,
specifically referring to the short interval between tracheal intubation and incision.
They labeled hypotension occurring after intubation as positive when a singular
measurement of systolic blood pressure (SBP) < 90 mmHg or MAP < 65 mmHg
is observed. However, it should be noted that the definition provided in the article
appears somewhat ambiguous. Additionally, they collected data on the frequency
and duration of early PIH, which takes place between induction and intubation, as
input features. This approach essentially divides the PIH labeling period into training
and labeling stages, a distinction that can significantly impact classification results,
particularly when working with limited data for which a clear and direct reference
in the PIH topic is lacking. By selecting 15 features from electronic health records
(EHR), medications, and vital signs collected before intubation, the random-forest
model achieves an impressive AUC of 0.84. However, a statistical analysis of the 222
cases reveals a PIH ratio of 56.8%, considerably higher than the clinically occurring
ratio of 20% reported in [27]. The article attributes this difference to more frequent
BP measurements, but it is essential to consider the small size of the database and the
potential impact of variations in the PIH definition as other contributing factors.
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Hatib et al. [24] introduced the HPI (Hypotension Prediction Index) algorithm
for predicting hypotension events in the ICU. The classification outcome, “HPI”,
represents the probability of a hypotension event occurring 5 minutes later, generated
by a logistic regression model. The algorithm leverages high-fidelity waveforms of
arterial pressure from the records of 293 patients and employs 3022 extracted features
from waveform featurization, achieving an impressive performance with an AUC of
0.95. The results are further validated using an external database of 204 patients.
However, the performance of model diminishes when attempting to predict hypotension
events happening 15 minutes later or when setting a higher classification threshold. It
is important to note that the applicability of this work to PIH prediction is limited
for several reasons. Firstly, the labeling of long-term hypotension events is done
retrospectively. In the record of a patient, several positive and negative events are
identified and then matched with data 5 minutes ahead to form the training and testing
sections, creating specific distinctions in time. This can not be generalized to PIH
prediction, which predicts in a short induction period. Secondly, the use of invasive
measurements of BP, which is not common in standard surgeries, may introduce
data bias concerning the health conditions of patients. Additionally, some subtle
features can only be reliably captured within high-fidelity signals, potentially limiting
the generalizability of algorithm to scenarios with less precise or invasive measurements.

2.2.2 Clinical Validation

As mentioned earlier, what anesthetists desire from the system is the detection of
hypotension risks that might be overlooked with basic monitoring alone. Therefore,
clinical validation holds more significance and persuasiveness than the accuracy of
the predictive models. Some recent studies have focused precisely on this aspect. For
instance, Palla et al. [28] conducted a study on the prediction of post-anesthesia
care unit (PACU) hypotension using binary classification. In their research, nine
anesthesiologists reviewed real data and made anesthesia-related decisions, simulating
a real clinical environment. Comparative experiments involving decisions made with
and without the assistance of AI models demonstrated that the predictive models
indeed had a positive impact on decision-making. Furthermore, there have been
several clinical experiments on HPI-guided care [29][30]. The study in [30] showed
that early intervention implemented when HPI<80 (indicating a hypotension risk of
more than 80% as calculated by the HPI algorithm) led to a reduction in the duration
of hypotension in patients, thus validating the effectiveness of the HPI algorithm.
However, it should be noted that the originally suggested threshold given by HPI is
43, largely different from 80, and as a result, retrospective validation may not be as
persuasive.

In conclusion, it is evident that there is still a long road ahead before ML-based
hypotension prediction can be practically employed, regardless of the type of acute
hypotension being addressed. Further research and thorough clinical validation are
necessary to ensure the reliability and applicability of such predictive models in
real-world healthcare settings.
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2.2.3 ML Algorithms

In this section, we will offer a concise overview of the two primary groups of basic
machine learning models employed in the literature and this project: logistic regression
and decision tree. Additionally, there is also a discussion of the explainability and
reliability of ML models in the context of medical prediction.

2.2.3.1 Logistic regression

Logistic regression (LR) is a popular statistical model for binary classification tasks. It
uses the sigmoid function, also known as the logistic function, to generate probabilities
for binary events, with the outcome interpreted as the probability of predicting an
event. The sigmoid function ensures that the predicted probabilities lie between 0 and
1, as shown in Figure 2.1, allowing the model to classify data into two classes based
on a chosen threshold. LR assumes independence among variables, which can be a
limitation in certain scenarios. This assumption, however, may not hold true when
dealing with correlated variables. Another limitation of LR is its linearity assumption,
assuming a linear relationship between independent variables and the log-odd of the
dependent variable. This may not accurately capture complex data relationships. LR
is sensitive to outliers, as extreme values can distort the predictions of the model and
affect its performance. Additionally, LR assumes the proportional odds assumption,
which assumes the relationship between variables and the log-odd remains constant.
Violations of this assumption can lead to biased results. Despite these limitations, LR
remains valuable for its simplicity and interpretability. It is often used when the data
characteristics align with the assumptions behind the model.

Figure 2.1: The sigmoid function.
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2.2.3.2 Decision Tree

Decision tree is a popular type of machine learning model, adept at handling both
classification and regression problems. The construction of the big tree is built by
recursively partitioning the input space based on the values or scores of the selected
features. A decision rule is applied at each internal node to determine the branch
to follow, leading to further partitioning. The process continues until the terminal
nodes, or leaves, are reached, which hold the final prediction or regression value. The
main drawback of the decision tree is its vulnerability to overfitting, where the model
captures noise in the data, leading to poor generalization.

Random forest (RF) models address the limitations of decision trees by employing
an ensemble learning technique [31]. They consist of an ensemble of decision trees,
each of which is trained on a different subset of the training set. During the training
process, a random subset of features is considered for splitting at each node. The final
prediction of a random forest is obtained by averaging the predictions of all individual
trees. Random forests mitigate overfitting by reducing the variance associated with a
single decision tree, resulting in improved generalization performance and the ability
to handle large feature spaces.

XGBoost (Extreme Gradient Boosting) further leverages gradient boosting to
create a powerful ensemble model [32]. It builds decision trees sequentially, where
each subsequent tree corrects the mistakes made by the previous trees. XGBoost
incorporates regularization techniques such as shrinkage, feature subsampling, and
tree pruning to prevent overfitting. It uses a differentiable loss function to optimize
the model’s performance, enabling efficient training and scalability. XGBoost is known
for its ability to handle complex tasks, high-dimensional datasets, and imbalanced
data. It has gained popularity in both academia and industry due to its exceptional
predictive accuracy and flexibility.

2.2.3.3 Explainability of ML models

Medical applications of AI require high interpretability before implementation, as
the medical industry seeks to understand the reasons behind predictions, especially
when it affects decision-making. While some ML models may be considered simple
and easy to interpret traditionally, the field of Explainable AI (XAI) aims to find
a certain set of features within complex predictive models to achieve both accuracy
and interpretability. XAI research in the medical domain began in 2018, and many
studies employ methods like SHapley Additive exPlanations [33] in XGBoost or
RF algorithms, which are traditionally considered black-box models. For instance,
Lundberg et al. [34] applied a predictive system to warn of hypoxemia during surgery
while visualizing the weighting of features over time to explain the model’s predictions.
This model also underwent clinical validation, where doctors made decisions based on
the prediction results and explanations. The results showed that anesthesiologists,
with the help of machine learning, could increase their anticipation by 15%.
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2.3 ML-based Dosage Recommendation

Data-driven treatment recommendation studies have gained significant attention in
the medical field for quite some time. However, the application of machine learning
algorithms to build medical recommendations is relatively new. In this section of the
review, we will focus on the model-building and result-accessing approaches of those
studies rather than the training process of their models. Specifically, we are interested
in the validation process without clinical prospective experiments. The results are
typically compared to baseline values, which can either be the manual diagnoses
provided by doctors or specific target scores or detection.

Javad et al. [35] employ Q-learning to recommend personalized insulin dosage
levels for controlling the symptoms of type 1 diabetes mellitus (T1DM). The reward in
this reinforcement learning model is determined by the change in glycated hemoglobin
levels, which is considered positive when levels decrease. The evaluation is based on
a comparison between the generated Lantus dose and the actual dose prescribed by
the patient’s physician. The results show an 88% agreement with the physician’s
decision, demonstrating the effectiveness of the model in dosage recommendations that
physicians accept. In a word, the way the model calculates an optimal dosage is based
on the patient’s health condition and validates it through manual comparison. Such a
strategy also is effective for recommending in-time or long-term dosages if a persuasive
score (reward) can be established. For example, the optimization of warfarin is based
on a reward related to the International Normalized Ratio (INR), which indicates
bleeding risk [36].

Bertsimas et al. [37][38] explore the prediction of adverse events from the time of
diagnosis to a potential adverse event (TAE). The study benefits from a large dataset
that includes diverse cases of various treatments under consideration. In their 2020
work, the model is trained on the entire dataset, while in their later work, separate
models are trained for each treatment, and an ensemble method is used to determine
the final result. Multiple models ”vote” to predict whether the health condition will
improve or worsen under such treatment. During testing, a case is evaluated using all
individual models for different treatments, and the optimal treatment choice is selected
based on the treatment that receives the maximum ”will improve” judgments from
the machine learning models. Bertsimas designs prescription effectiveness (PE) and
prescription robustness (PR) metrics to evaluate the prediction. For each testing case,
the ground truth is the actual treatment the patient undergoes and the real change
in the antihypertensive situation. Therefore, PE compares the predictive outcome in
the actual treatment model with the real outcome, while PR compares the predictive
outcome with other outcomes from different treatments.

In summary, while there is limited research on anesthesia dosage recommendations
using ML, the idea of using ML to assist in dosage decisions has been explored, and
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cautious and conservative attempts have been made. However, the lack of a definitive
”correct answer” for medication dosages makes validation challenging. Clinical and
prospective experiments could be persuasive, but they are expensive and difficult to
conduct. New validation metrics, like PE and PR, show promise but require further
theoretical validation and development to establish their effectiveness and reliability.
As the field progresses, finding suitable and robust validation methods will be crucial
for advancing ML-based medical recommendation systems.
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Dataset and Preprocessing 3
This study employs a classification pipeline to predict medical outcomes using various
features. The pipeline includes several interconnected steps that systematically process
and analyze the data, yielding the desired classification results. Specifically, this chapter
will focus on the first three steps of the classical classification pipeline:

1. Data Collection: The raw data used in this study were obtained from an open-
source surgical database. To facilitate further analysis, various methods for in-
formation management were employed to ensure data integrity and enhance the
quality of the dataset for further analysis.

2. Data Pre-processing: The data underwent a preprocessing procedure to ensure
its quality and suitability, preparing for a high-quality of further analysis. This
involves addressing any errors or inconsistencies present in the data.

3. Feature Extraction and Selection: The raw data was transformed into meaningful
features that capture relevant information for the predictive model. Feature Se-
lection then identified the most relevant and informative features to enhance the
model’s accuracy and efficiency.

Detailed methodologies and techniques related to data collection and pre-processing
will be explored, laying the foundation for a robust and data-driven prediction process.

3.1 Primary Outcome

The primary outcome of our work is to identify PIH, defined as an SBP of less than 75
mmHg or a relative SBP drop of more than 30% from the baseline. It is essential to
note that there is no academic consensus regarding the exact definition of hypotension
[39]. The literature varies in the different thresholds, with some adjustments based on
recorded physician activity. To ensure a comprehensive analysis, we considered these
factors and defined PIH as follows:

• For the NIBP recordings measured every 2 seconds, a case was labeled with PIH
when, within a one-minute measurement window, at least 90% of the measure-
ments are below the threshold. However, if the mean value of the measuring
window is higher than 100 mmHg, further detection was performed, as this range
is disputed in the medical field [40]. Additionally, if SBP increases by more than
20 mmHg within 3 minutes, it was considered a healthcare intervention and con-
firms the presence of PIH. On the other hand, if the situation persists for the rest
of the operation without any significant increase, the PIH label was considered er-
roneously marked due to the initial SBP value, which is common due to patients’
stress.
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Figure 3.1: A sample recording of frequent SBP measurements vs. intermittent SBP mea-
surements at the beginning of anesthesia.

• The threshold was determined by anesthesiologists following the clinical regula-
tions of EMC. To match this, a 3-minute intermittent simulation of BP measure-
ments should be built based on the 2-second NIBP records from VitalDB. Thus,
for the EMC external database, the decision was made based on at least one sin-
gle value of SBP of NIBP recorded within the first 15 minutes after anesthesia
induction.

We performed a simulation on the 2-second BP data to discuss the possibility and
performance of using more intermittent BP measurements in PIH prediction. For con-
venience, we will call the original BP data, which is measured every 2 seconds, as
“frequent BP”, and call the 3-minute simulated BP “intermittent BP” in the following
content. While both measurements are intermittent in theory, the latter aligns better
with the clinical definition as BP monitoring during anesthesia is usually performed
in minute-based intervals. Figure 3.1 illustrates the comparison between the original
frequent SBP measurement and the generated intermittent measurements. The inter-
mittent SBP values were sampled from the first value of a 3-minute interval due to the
auto-collecting interval in practice. The different measurements of BP also influence
the way that a PIH event is detected. The results in Table 3.1 demonstrate that more
frequent detection leads to more acute identification of hypotension events, supporting
the possibility proposed by Kang et al. [16]. However, in the following experiments, we
only use the labels generated by frequent SBP. Although the simulation of more inter-
mittent data leads to different labeling results, it should not affect the ground truth of
whether a patient has undergone PIH or not.

Table 3.1: Distribution of PIH under different definitions.

Data Size Determine of PIH Measurement PIH Non-PIH Positive Rate

320 sujects SBP < 75 mmHg or ∆SBP > 30%
frequent 199 121 62.2%

intermittent 194 124 60.6%
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3.2 Data Collection and Processing

We considered data from VitalDB [26] to be used for model development and internal
validation. VitalDB is an open-source surgical database containing records of 6388
cases that underwent non-cardiac routine or emergency surgery at Seoul National
University Hospital, Seoul, Republic of Korea. As illustrated in Figure 3.2, specific
criteria were employed for data selection. The study focuses only on general anesthesia
cases, requiring patients to receive propofol during anesthesia for inclusion in the
propofol dosage analysis later. NIBP recordings, which contribute to generalizability,
are required. To enable pre-anesthesia dosage suggestions, data must be captured
at least one minute before induction. Moreover, instances of missing or extremely
erroneous data were excluded from the dataset, which will be explained in the next
paragraph. In the end, data from 320 patients were selected for this study.

Figure 3.2: Cases filtering process based on the availability of time-series data.

We cleaned the data as follows. Firstly, we removed cases containing NaN
(Not a Number) values in the demographic data. While decision-tree models can
effectively handle the dataset containing NaN values, others, namely the logistic
regression, may struggle to manage them. Next, we excluded cases in which vital
signs had 1-minute successive missing values or more than 15% missing values in
total, as well as cases with incorrect values. As a result, a total of 32 cases were
excluded due to missing values, and 6 cases were filtered out due to the presence
of incorrect data. The incorrect data tends to concentrate on the TCI system.
There are two types of erroneous values: infusion rates higher than 2000 mL/hr
and decreases in the accumulated infused volume of the anesthetics. Throughout
our experiments, we did not identify any significant error in the vital signs. Data
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cleaning ensures the data is reliable and free from artifacts that could negatively
impact the analysis. While filling null values with current or mean data is a popular
method, analysis of available data samples from VitalDB showed that there is a
significant difference between the lost data and the mean or nearby values. This
disparity can be attributed to the hemodynamic instability during the induction period.

The VitalDB dataset lacks precise timing information for the induction phase. To
overcome this limitation, we developed a method to identify the onset of the induction
phase by analyzing the infusion data collected through the TCI system. We defined the
onset of induction phase as the point when the infusion rate of propofol or remifentanil
first exceeds 100 mg/hr. This approach to determining the induction phase has been
proposed by the Department of Anesthesia at EMC.

However, in clinical practice, there is a lack of a clear distinction between the end
of the induction phase and the beginning of the maintenance period. Additionally,
it is common to administer additional doses after a certain monitoring period during
the maintenance phase. Moreover, the absence of intubation and incision information
makes it difficult to define the post-induction period as the post-intubation period
precisely. To address these challenges, we established the following criteria for
determining infusion medication information. During the period prior to the start of
the operation, we divided the time based on the propofol infusion rate series. The
period when the rate exceeds 100 mg/hr was considered the induction phase, and
the accumulated injected volume was calculated as the induction dosage during these
phases. A similar process was applied to the remifentanil information.

3.3 Feature Extraction

In order to identify and capture relevant patterns and characteristics in the data, various
data engineering techniques were employed. However, research on PIH faces a signifi-
cant limitation in terms of data availability compared to other popular medical stud-
ies like ECG (Electrocardiogram) or EEG (Electroencephalogram). The pre-operative
studies of anesthesia suffer from challenges such as the busy anesthesia environment,
cost considerations, and risk factors. Collecting high-fidelity data in real clinical condi-
tions is seldom achieved, even in clinical prospective experiments. As mentioned above,
without invasive devices, only intermittent vital signals are available. The original mea-
surements in VitalDB are recorded every 2 seconds, but for intermittent simulation,
we consider BP measurements to be taken every 3 minutes. Therefore, it is reasonable
to focus on time-domain features and statistical features. Additionally, we can extract
extra-temporal trend features for frequent BP and other vital sign signals. The fol-
lowing tables provide a comprehensive overview of the different types of features. In
summary, the feature groups consist of the following:
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Figure 3.3: Information extraction from time-series data. (a) and (b) demonstrate the ex-
traction process of induction dosage information from propofol infusion data. Specifically, the
effective induction dosage is determined by considering only the dosage administered during
the recognized induction period, depicted by the blue rectangle. (c) illustrates the detection
of PIH using both frequent NIBP and intermittent NIBP approaches. The monitoring of PIH
continues until the end of the first 15 minutes after induction, indicated by the green vertical
dotted line. However, due to the presence of large intermittency in the simulated SBP data,
there is a detection omission marked by the red area.

1. Demographic features:
These features are directly provided in VitalDB in CSV (Comma Separated Val-
ues) format and are ensured to be available in all cases.
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Table 3.2: List of demographic features.

Features Description

Age -

Gender -

BMI (Body Mass Index) Ratio of weight to height

Height -

Weight -

Preoperative disease records Records of diseases before the operation

Preoperative hypertension Preoperative hypertension status

Preoperative diabetes Preoperative diabetes status

Preoperative ECG diagnosis Cardiac diagnosis from preoperative ECG

Operation Type -

2. Medication features:
We included features related to medication. In VitalDB, anesthetics in TCI have
concentration, volume, and rate information recorded, allowing us to calculate
time-domain features about volume and rate. However, for other drugs used for
vasopressor and analgesia, only the whole intra-operative dosage data is collected,
which may potentially lead to some minor data leakage issues in this context.
Target concentration refers to the concentration of anesthetics in order to keep
certain DoA and was calculated by the embedded algorithm inside TCI. Since
target concentration is not a reliable measure of actual dosage, we rely instead
only on induction time and dosage.

Table 3.3: List of medication features.

Features Description

Intraoperative anesthetics

Propofol Dosage Propofol administrated during induction

Remifentanil dosage Remifentanil administrated during induction

Time Start time of induction

Phenylephrine dosage Phenylephrine intraoperative usage

Ephedrine dosage Intra-operative usage of ephedrine

Epinephrine dosage Intra-operative usage of ephinephrine

3. Time-domain features of vital signs:
These features encompass statistical measures such as mean, standard deviation,
minimum, maximum, variance, slope, intercept, and delta changes. Specific fea-
tures like pulse pressure (pp) for BP are also included.
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Table 3.4: List of features about blood pressure.

Features Description

Blood Pressure

Systolic Blood Pressure

first/baseline Average of first 5 seconds measurement

SBP before induction A single value of SBP right before induction

mean, min, max -

standard deviation -

delta-change from baseline A single value before induction v.s. baseline

pulse pressure (pp)

pulse pressure variation (PPV)

Mean Arterial Pressure

first/baseline -

MAP before induction -

mean, min, max -

standard deviation -

delta-change from baseline -

pulse pressure (pp)

pulse pressure variation (PPV)

Diastolic Blood Pressure

first/baseline -

DBP before induction -

mean, min, max -

standard deviation -

delta-change from baseline -

pulse pressure (pp)

pulse pressure variation (PPV)

Table 3.5: List of features from other vital signs.

Features Description

Peripheral capillary oxygen satu-
ration (SpO2)

delta change from baseline -

SpO2 before induction -

moving mean, min, max -

moving standard deviation -

rate in low The rate of saturation that under the threshold
in a 1 min window
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rate in high -

Heart rate

mean, min, max -

standard deviation -

delta change from baseline -

Heart rate before induction -

moving mean, min, max -

moving standard deviation -

ECG (AVF, II, III)

mean, min, max -

standard deviation -

moving mean, min, max -

moving standard deviation -

elevation or depression com-
pared to baseline

”eleORdep”

4. Combinatorial features:
This group comprises features derived from 2-degree polynomial combinations and
ratios of one demographic feature and one feature from the previous three groups.
Additionally, it includes ratios of two vital sign features that have been validated
in other literature.
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Table 3.6: List of combinatorial features.

Features Description

Shock Index (SI) HR/SBP

age Shock Index age*SI

Modified shock index (editSI) HR/MAP

Propofol to weight propofol.dose/weight

Propofol to bmi propofol.dose/bmi

Remifentanil to weight Remifentanil.dose/weight

Remifentanil to bmi Remifentanil.dose/bmi

Polynomial or Ratio with age -

aged propofol dosage age ∗ propofol.dose
aged remifentanil dosage age ∗ remifentanil.dose

Polynomial or Ratio with weight
or BMI

-

SBP.mean to weight -

MBP.mean to weight -

SBP.mean to bmi -

MBP.mean to bmi -

Other Polynomial or Ratio

SBP.std to Heart rate -

MBP.std to Heart rate -

SBP.mean to Heart rate -

MBP.mean to Heart rate -

The combinatorial strategy was integral for enhancing the representation of raw
features, while techniques like encoding also contributed to this enrichment of the
feature set. For example, textual demographic and medication history data were
transformed into numerical representations. Categorical variables such as gender were
encoded as 1 or 0, improving compatibility between the features and the modeling
process.

We extracted a total of 88 individual features from three groups of data. Addi-
tionally, we synthesized 17 combinatorial features, resulting in a combined set of 105
features. However, for intermittent experiments, the total number of features decreased
to 90 due to certain features, such as pulse pressure (pp) of BP, not being available in
the intermittent data. Moreover, these features were normalized after being extracted.
The normalization process aimed to eliminate the magnitude differences among the
various features. For instance, in our dataset, while BMI values ranged between 12.9
and 34.6, induction time values fell within the range of 9.215 to 1034.013. As a result,
even minor fluctuations in the BMI values could significantly impact the predicted out-
comes, thereby complicating the search for stable optimization results. Scaling both
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these features to a range between 0 and 1 will benefit the classifier’s optimization per-
formance.

3.4 Feature Selection

Features in a dataset may not always be helpful for a given prediction task. Instead,
they may add unnecessary complexity or introduce noise that jeopardizes the predic-
tion. To create accurate predictions, it is important to identify the most relevant and
informative features from the original feature sets. Various algorithms have been pro-
posed for feature selection, which can be grouped into three categories [41][42]:

• Filter methods [43]: These methods use statistical tools to assign a score to each
feature. Features with scores below a certain threshold are considered unqualified
and filtered out. The filter methods do the evaluation on each individual feature
independently, therefore efficient in handling high-dimensional datasets. However,
they may ignore feature interactions, thus discarding potentially useful features
in some cases.

• Wrapper methods [44]: These methods search for an optimal combination of fea-
tures based on an evaluation score. This evaluation is performed by iteratively
training the model with different feature subsets, which can be done randomly
or by following certain search strategies (such as forward selection and backward
elimination). Wrapper methods tend to yield better results than filter methods
since they account for feature interactions [41]. Their disadvantages are the higher
computational cost due to multiple model training iterations and the increased
risk of overfitting, as they may select features that perform well on the training
data but generalize poorly to new, unseen data. The choice of the evaluation
metric during the feature selection process can also influence the performance of
model and may introduce bias in the final feature subset selected.

• Embedded methods [43]: Feature selection in these methods are integrated into
the model training process itself rather than being performed as a separate step. It
thus reduces the computation cost of reclassifying subsets in the wrapper methods
[44]. Particularly, it benefits classification with a large number of features and also
reduces the training complexity by removing the selection procedure.

For our study, we employed multiple approaches, including Recursive Feature Elim-
ination (RFE), which is a representative algorithm of the wrapper method, and elastic
net, which is an embedded method. We have also used feature importance and corre-
lation analysis, which are filter methods. Before conducting feature selection, we split
the dataset into training and testing sets, which will be discussed further in chapter 4.

3.4.1 Correlation Analysis

A correlation analysis is conducted to examine the relationships between features and
the target variable, thus identifying any strong associations indicating feature relevance.
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To do so, we computed the Pearson correlation coefficient, which determines the linear
dependence between two variables as:

r =

∑
(xi − x̄)(yi − ȳ)√∑

(xi − x̄)2
∑

(yi − ȳ)2
. (3.1)

Here xi and yi represent the individual observations of the variables X and Y ,
respectively. x̄ and ȳ represent the means of X and Y , respectively. The sums are
taken over all the observations in the dataset.

This coefficient helps assess the strength and direction of the linear relationship
between each feature and the target variable. When the correlation coefficient is
close to 1, it indicates a strong positive linear relationship. Conversely, when the
correlation coefficient is close to -1, it indicates a strong negative linear relationship.
A correlation coefficient near 0 suggests a weak or no linear relationship between the
variables. However, it is important to note that the Pearson correlation coefficient
only captures linear relationships and may not detect complex non-linear associations.
This means that significant relationships might be missed if they exist in a non-linear
form. Additionally, correlation does not imply causation, so even if two variables are
highly correlated, it does not necessarily mean that one variable causes the other.

In Figure 3.4, we show the correlation coefficients and the corresponding p-values
for each feature-target pair. We observed that several features exhibited a strong cor-
relation with the target variable, surpassing a significance threshold of p < 0.05, which
suggests that the observed results are less than 5% to be due to chance alone. These
highly correlated features were considered potential candidates for inclusion in our pre-
dictive model.

3.4.2 Feature Importance

We also applied feature importance techniques to evaluate the relevance of each feature
in predicting the target variable. Decision trees and ensemble methods based on
decision trees, such as Random Forest, Gradient Boosting Machines, and XGBoost,
naturally provide feature importance as part of their output. The decision tree model
uses a criterion, often Gini impurity or entropy, to identify the optimal feature and
split point that reduces the impurity of the target variable most effectively. This
reduction in impurity is determined by comparing the impurity of the parent node with
the weighted impurity of the child nodes after the split [45]. The feature importance is
calculated as the mean impurity reduction when each feature is selected for splitting
during the construction of the ensemble. In our project, we utilized the Random Forest
model, a widely used ensemble-based decision tree model, to estimate the importance
of each feature based on its contribution.
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Figure 3.4: Correlation analysis of dataset within a sample loop of leave-one-out cross-
validation (LOOCV).

Figure 3.5: The features with a mean score larger than 1% in one loop of LOOCV, generated
by a 5-fold cross-validation.

The weighted impurity at a splitting node is computed as follows:

Weighted Impurity =
∑
child

(
num samples child

num samples parent
× impurity child

)
. (3.2)
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Figure 3.6: The mean accuracy result of the different selecting number of features in one loop
of LOOCV. The measurement is tested by a 5-fold cross-validation.

Here num samples child represents the number of samples in a specific child node
and num samples parent means the total number of samples in the parent node.
The impurity child is the impurity measure of a specific child node belonging to the
splitting root. This function sums the weighted impurities, weighted by the fraction of
samples it contains relative to the total number of samples in the parent node of all
child nodes resulting from the split.

The feature importance scores obtained from the Random Forest model are illus-
trated in Figure 3.5. Certain features exhibited notably higher importance scores com-
pared to others. These highly ranked features were considered strong indicators for the
target variable in our predictive model. We chose to focus on the feature importance of
Random Forest for further selection to prioritize simplicity and resource efficiency over
using other bagging algorithms like the XGBoost model, which also provides built-in
importance ranking.

3.4.3 Recursive Feature Elimination

RFE is a powerful feature selection technique used to systematically eliminate less
important features from a given dataset to improve the model’s predictive ability
while reducing the complexity. The RFE algorithm starts by training the model on
the entire set of features and then iteratively removes the least significant feature(s)
based on a predefined criterion, such as feature importance scores or coefficients. This
recursive process continues until a predetermined number of features remains.
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Figure 3.6 presents the outcomes of RFE, illustrating the count of retained features
on the x-axis and the corresponding performance metric (e.g., accuracy, F1 score) on
the y-axis. To ensure consistent results and mitigate random bias, a repeated k-fold
validation was employed during testing. Notably, the accuracy validation attains its
peak at the 26-feature point. This number is chosen as the optimal feature subset to be
incorporated in this iteration. By employing RFE, we aimed to enhance the explain-
ability and generalizability of our models by focusing on the most relevant features.
The resulting feature subset will be used as the input for subsequent modeling and
analysis tasks.

3.4.4 Elastic Net

The Elastic Net method serves as both a feature selection and regularization technique,
combining L1 (Lasso) and L2 (Ridge) regularization within the regression. By adjust-
ing the alpha hyper-parameter—used to control the level of regularization—between 0
(Ridge) and 1 (Lasso), the Elastic Net adapts to achieve the desired degree of feature
selection [46][47].

In the context of binary classification problems, the embedded feature selection
procedure of Elastic Net involves an iterative process that minimizes the logistic loss
function alongside L1 and L2 regularization terms. This iterative process leads the
model to recognize and emphasize significant features while reducing the influence of
less relevant ones. Over the course of optimization iterations, the L1 penalty effectively
pushes certain coefficients to zero, facilitating feature elimination [47]. The selected
features are those associated with non-zero coefficients, indicating their significance in
predicting binary outcomes. After training, the model makes predictions by applying
a threshold to the predicted probabilities.

3.4.5 Hybrid Approach

After employing the three distinct non-embedded selection techniques, we obtained
three unique sets of chosen features. To enable more potentially optimal feature
combinations, we adopted an ensemble approach that intersects or unites these three
sets. This process yields two new hybrid feature sets known as the ”intersection”
and ”union” methods. Generating both the intersection and union feature sets holds
several possible advantages. The ensemble strategy enhances stability by mitigating
sensitivity to small data variations. Moreover, it reduces the risk of overfitting by
restraining the complexity of the model. However, this approach should be carefully
assessed for its appropriateness to the specific problem and dataset. We hereby
compared the prediction performance of models that use the previously-mentioned
feature selection methods respectively, as shown in Figure 3.7.

The comparison depicted in 3.7 presents the classification metrics observed during
a LOOCV. As per the outcomes, when we established a threshold of 0.4 for distin-
guishing binary outcomes, the RFE method demonstrates the most favorable overall
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(a) When the threshold of the classification is 0.4.

(b) The precision is fixed as 0.80 when varying the threshold of classi-
fication.

Figure 3.7: Comparison of performance evaluation metrics across multiple feature selection
approaches. The initial five models utilized the XGBoost algorithm, whereas the last one
model employed Elastic Net.
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performance. On the other hand, when we maintained a precision of 80%, both the
union method and RFE exhibited commendable results. Hence, within the context
of our dataset and the specific problem configuration, the model employing the RFE
method stood out as the top performer. Consequently, our subsequent analyses were
conducted based on the feature set selected by the RFE method. Nevertheless, it is
worth highlighting that these results could potentially be influenced by variables such
as the validation methodologies employed and the choices made for hyper-parameters.

3.5 Features Analysis

In this section, we will summarize the explanation of the selected features obtained
through the above approaches. Our expectation was that these explanations would
strongly support the selection process and demonstrate the reasonability of the model.

• Demographic group: Among all the demographic features, age ranked first
as a significant predictor of PIH. Age is highly related to patients’ cardiovascular
health. Older patients, for example, tend to have reduced vascular compliance and
decreased baroreceptor sensitivity, making them more susceptible to fluctuations
in BP during anesthesia induction. Additionally, age-related comorbidities, such
as atherosclerosis or hypertension, can further exacerbate the risk of PIH. Other
demographic factors like height, weight, and BMI also held importance. These
variables can impact drug distribution and metabolism during anesthesia. They
are also required input for a TCI system to calculate dosage plans.

• Medical history: Only the medical history of preoperative hypertension mat-
tered here. Preoperative hypertension can cause changes in the cardiovascular
system, such as increased vascular resistance and decreased vascular compliance.
Hypertension also indicates that the patient already has elevated baseline BP,
which the body’s compensatory mechanisms may regulate. Anesthesia induction
and surgical stress can disrupt these compensatory mechanisms, leading to a drop
in BP, especially in patients with poorly controlled hypertension. Besides, pa-
tients with preoperative hypertension may be on antihypertensive medications.
The interaction between these medications and anesthesia drugs can influence BP
regulation.

• BP group: The BP features were driven from all three waveforms (SBP, MAP,
and DBP). The “first” feature, namely the first value of a recording, represents
the baseline BP, which is used to determine the PIH. In other literature that used
a single threshold of BP as the determinant of PIH, the first value of BP usually
dominated the prediction [16]. They were very intuitive. The setting of a single
threshold means that their determination of PIH never considers the basic con-
dition of the patient. That means a patient with a higher baseline MAP will, of
course, be less likely to undergo a PIH, even if the patient has already suffered
a sudden steep drop in BP because her or his MAP is still more than 65 mmHg.
Such influence is more several when prediction is done in a small database, which
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is also the case in our project. Additionally, the delta (change over time) and
standard deviation features of BP reflect the patient’s current hemodynamic sys-
tem stability. Large fluctuations in BP or higher standard deviation may suggest
impaired cardiovascular compensatory mechanisms and increase the likelihood of
PIH.

• SI group: The SI, calculated as the ratio of heart rate to SBP, and its derived
features are strong predictors of hypotension during anesthesia induction. SI
has been validated in clinical settings as a reliable indicator of hypotension, as
mentioned in chapter 2. An elevated SI suggests an imbalance between oxygen
demand and supply to the tissues, which can lead to hypotension and other adverse
events.

• Medication group: This group includes vasoconstrictors and anesthetics, both
of which play significant roles in PIH. Vasoconstrictors lead to an increase in
vascular resistance and BP. On the other hand, anesthetics, namely propofol and
remifentanil, can lead to vasodilation and reduced vascular resistance. When the
body’s compensatory mechanisms fail to maintain BP, hypotension may occur.

• Heart rate group: Anesthesia induction can cause a drop in sympathetic out-
flow, leading to vasodilation and reduced vascular resistance, resulting in PIH. In
response, the body may activate the baroreceptor reflex, leading to an increase
in heart rate as an attempt to compensate for the decreased BP and maintain
cardiac output [15].

• ECG group: During perioperative periods, patients may experience fluctua-
tions in BP, including episodes of hypotension. Hypotension can lead to reduced
coronary blood flow, compromising oxygen supply to the heart muscle, and sub-
sequently manifest as ST segment changes on the ECG. Therefore, continuous
monitoring of the ST segment can be an invaluable tool in the detection of PIH
and its potential adverse effects on cardiac function. However, it is important
to note that while ST segment changes can raise suspicion for PIH, they are not
specific to this condition and can also be influenced by other factors, such as
myocardial ischemia or medication effects.

• Oxygen Saturation: SpO2 (Oxygen Saturation) is not a predictor of hypoten-
sion; rather, it is a monitoring factor. Hypotension can lead to reduced perfusion
to various organs, including the lungs. As a result, the oxygen saturation lev-
els may drop, indicating inadequate tissue oxygenation. Continuous monitoring
of SPO2 allows prompt detection of hypoxemia, enabling timely intervention to
prevent adverse outcomes.

• Other combinational features: The ratio of propofol to weight is an additional
important predictor in PIH. Propofol is commonly used for anesthesia induction,
and its dosage is typically calculated based on the patient’s weight to ensure safe
and effective administration. However, individuals with different body weights
may metabolize, distribute, and clear drugs at varying rates. Therefore, con-
sidering the propofol-to-weight ratio can improve the accuracy of hypotension
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prediction during anesthesia induction. Traditionally, a dosage ratio of 1.5 to
2.5 is selected, with the specific value varying depending on the patient’s health
condition and individual characteristics.

3.6 Summary

Chapter 3 dealt with data preparation for analysis and modeling. It began with a
discussion of the primary outcome (Section 3.1) and moved on to data collection and
processing (Section 3.2). Feature extraction (Section 3.3) was explored, followed by
feature selection (Section 3.4), which included methods like correlation analysis, feature
importance, recursive feature elimination, Elastic Net, and a hybrid approach. Section
3.5 analyzed the selected features to gain insights into the relationships of features
with the target variable. This chapter formed the foundation for building accurate and
effective predictive models.
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Model Development 4
At this stage, we have gathered all the essential components required to train a
machine-learning model and enable it to generate predictions. However, as with any
ML application, several crucial tasks need to be addressed to ensure the development
of a high-quality model. In this chapter, we comprehensively discuss our strategies for
addressing data imbalance, the tuning tool to optimize the model, and the implemen-
tation of ensemble learning to fit an explainable model for the decision-suggestion of
anesthetics.

4.1 Dealing with Dataset Imbalance

Dataset imbalance refers to a situation where the distribution of the dataset will tilt
to certain classes. The severity of the imbalance can vary, depending on the specific
problem and dataset. Generally speaking, in a binary classification, when the minority
class only takes less than 40% of the whole dataset could lead to a mild imbalance
problem and less than 20% to a moderate one [48]. Therefore a slight imbalance is
present in our dataset. It is important to address this issue since PIH or hypotension
data suffer from data imbalance in most cases, although our project is less vulnerable
due to the relatively small dataset size. To tackle dataset imbalance, there are two
directions of solution:

1. Assigning different weights to individual classes during training.
It is commonly known as weighting training. By assigning higher weights to the
minority class and lower weights to the majority class, the model will thus pay
more attention to the minority class, mitigating the impact of dataset imbalance.

2. Under-sampling the major class or over-sampling the minor class.
Under-sampling that removing some cases from the majority class will effectively
reduce its dominance in the dataset, allowing the model to pay equal attention
to classes during training. On the other hand, over-sampling will increase cases
of minority classes to improve their representation in the dataset. Duplicating
some samples, called naive random over-sampling, is one approach to doing so,
but it may also lead to over-fitting problems. Another way is using interpolation
instead of duplication. Synthetic samples through algorithms such as SMOTE
(Synthetic Minority Over-sampling Technique) [49], ADASYN (Adaptive Syn-
thetic Sampling) [50], etc. They differ in the selection of samples for interpolation.
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Figure 4.1: An example imbalance dataset with different oversampling approaches, generating
with the 0.11 version of imbalanced-learn library [1]. The imbalance ratio here is 0.05:0.95.

SMOTE randomly selects a minority class instance and finds its k nearest
neighbors. Next, it generates new samples by connecting the selected instance to
its neighbors in the feature space, effectively expanding the minority class. SMOTE
assumes that all minority class samples are equally important and does not consider
the distribution of the minority class in the feature space, which may lead to an
unrealistic or irrelevant generation.

ADASYN attempts to create samples in regions where the class imbalance is
more pronounced. It assigns a weight to each sample based on the density distribution
of classes and then randomly selects a minority instance and determines the number
of synthetic samples to be generated based on the weight of sample.

However, it should be noted that oversampling technique does not always guarantee
improved performance. As previously discussed, the algorithm relies on the generated
synthetic samples to make accurate inferences. When working with insufficient data,
oversampling can potentially introduce additional noise during the training process.
When applying the oversampling techniques using the XGBoost model, the SMOTE
approach improved the average accuracy by approximately 1%, while ADASYN showed
an improvement of less than 1%. Similarly, in the Random Forest model, the improve-
ment was around 2%, which, although not significant, indicates a modest enhancement.
Nonetheless, despite the marginal improvements and potential noise risk, the utiliza-

34



tion of oversampling techniques is still promising for future research and may yield
significant improvements when applied to larger and more diverse datasets.

4.2 Hyper-parameter Tuning

During the ML model training process, certain parameters are automatically learned
from the data and learning algorithm, representing the model’s behavior. These
are known as model parameters. In contrast, model hyper-parameters are external
settings that define the structural limitations of the model and are set before training
begins. They include variables like learning rate, iteration times, depth of trees,
and regularization strength. Selecting appropriate hyper-parameters is crucial as
they significantly influence the performance of the model, balancing computational
complexity, accuracy, and generalization to new data. To accomplish this, nested
cross-validation was used, which involves dividing the data into multiple folds. In
each iteration of the outer loop, one partition serves as the validation set, while the
rest are used for training. Within each outer loop iteration, the inner loop of cross-
validation is performed, further dividing the training set into training and validation
subsets. It is within this inner loop that feature selections are performed and evaluated.

For hyperparameter tuning within the inner loop, the Python package Hyperopt [51]
is employed. Hyperopt is a powerful and distributed asynchronous hyperparameter op-
timization tool that utilizes the Bayesian optimization algorithm. This approach allows
for a more efficient hyper-parameter space search than traditional grid search methods.
Hyperopt also leverages Tree of Parzen Estimators (TPE) algorithms, which enhance
computation speed and effectiveness [51]. By using Hyperopt within each inner loop
of nested cross-validation, researchers can systematically explore the hyperparameter
space and identify optimal combinations that yield the best performance for the model
on the given task. This approach is more efficient and effective, especially when dealing
with large datasets or complex models, as it avoids the need to exhaustively try out all
possible hyperparameter combinations through grid search.

4.3 Ensemble Learning

The introduction of ensemble learning [52] into our pipeline aims to address the follow-
ing problems:

1. Explainability: Explainability is particularly important in our work to explore
the relationship between anesthesia drugs and risks. Models that are highly ex-
plainable, such as decision trees and LR, provide intuitive interpretations of input
factors as coefficients or weights. This not only enhances the credibility of the
model for medical applications but also facilitates a clearer understanding of the
associations between variables and outcomes due to their simpler structures. XG-
Boost, being an ensemble of decision trees, is generally less interpretable compared
to simpler models like LR, which directly models the linear relationship between
features and the target variable. By combining XGBoost with an LR model, you
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Figure 4.2: Illustration of ensemble learning with an averaging strategy.

can retain some level of interpretability from the LR part, as it allows you to
understand the impact of each feature on the predictions more explicitly.

2. Overfitting Mitigation: By incorporating an LR model in the ensemble, which
inherently has a more straightforward and linear structure, the combined model
can become more resistant to overfitting. The LR model is less likely to overfit
due to its simplicity and its focus on the linear relationship between features and
the target variable. The ensemble leverages the strengths of both models, strik-
ing a balance between complexity and simplicity. XGBoost can capture intricate
relationships and non-linear interactions, while LR helps provide a smoother ap-
proximation of the true underlying patterns. This enhances the generalization
performance and makes the ensemble more capable of handling unseen data.

3. Improvement of Accuracy: Ensemble learning can also lead to improved pre-
diction accuracy. By combining multiple models with different strengths and
weaknesses, the ensemble can outperform individual models, especially when the
base models are diverse and complementary to each other. This can be particu-
larly valuable in our work, where accurate predictions regarding anesthesia drug
risks are crucial for medical decision-making.

Ensemble methods can be categorized into two main groups: averaging and
boosting. Boosting methods, including Gradient Boosting [53] and XGBoost, build
models in a stage-wise manner, minimizing the loss function of the previous residuals
of models. Averaging methods, such as Bagging and Random Forests, train multiple
base models independently, and their predictions are combined through averaging
or majority voting. In our approach, we are currently averaging the outputs of the
XGBoost model and LR in proportion. Since both models produce probability values
between 0 and 1, their weighted average can yield a new probability. By applying a
certain threshold to this probability, we can obtain a new binary classification result.
Ensemble methods can also take into account the importance of different features in
making predictions. For example, if the propofol dosage is considered highly significant,
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an ensemble model can assign more weight or emphasis to the predictions of models
that have demonstrated a good understanding of the dosage-result relationship.
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Results 5
In this chapter, the focus is on evaluating the algorithm’s performance. The evaluation
begins with an analysis of the binary classification metrics, followed by the implementa-
tion of cross-validation techniques. Additionally, the dosage advice model is introduced.
This chapter aims to provide a comprehensive understanding of the algorithm’s effec-
tiveness and its potential application in practical scenarios.

5.1 Evaluation

We employed leave-one-out validation, a particular case of k-fold cross-validation,
which can better estimate model performance based on the small-size dataset. Besides,
we also applied nested cross-validation in order to include hyper-parameter optimiza-
tion inside the cross-validation.

5.1.1 Evaluation of Binary Classifier

To evaluate the performance of a binary classifier, various scores were calculated,
each with its own preferences in different areas. These scores provide insights into
different aspects of the classifier’s performance. In this work, we aimed to provide an
overall evaluation of the performance by reporting popular scores, namely precision,
sensitivity, specificity, accuracy, and the F1 score. We illustrate the classification result
metrics along with these scores in Figure 5.1.

1. Precision: Precision measures the proportion of correctly predicted positive in-
stances out of the total instances predicted as positive. It assesses the model’s
ability to avoid false positives. A classifier aiming at predicting positive outcomes
may concentrate more on precision.

2. Sensitivity (or recall and true positive rate): Sensitivity calculates the percentage
of accurately predicted positive instances among all actual positive instances. It
evaluates the model’s ability to identify positive cases correctly. A high sensitivity
indicates that the model is effective at capturing positive instances.

3. Specificity (or true negative rate): Specificity measures the proportion of correctly
predicted negative instances out of the total actual negative instances. It evaluates
the model’s ability to identify negative cases correctly. Opposite to precision,
specificity may be more important to the negative-aiming classifier.
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4. Accuracy: Accuracy measures the overall correctness of the classifier by calculat-
ing the proportion of correctly predicted instances (both positive and negative)
out of the total instances. It provides a general assessment of the model’s perfor-
mance.

5. F1 score: The F1 score is a harmonic mean of precision and sensitivity. It pro-
vides a balanced assessment of the model’s performance by considering both false
positives and false negatives. The F1 score is particularly useful when dealing
with imbalanced datasets.

Figure 5.1: Evaluation metrics of the binary classification problem.

In addition to the previously mentioned scores, two other commonly used metrics
are the PR curve (Precision-Recall curve) and the ROC curve (Receiver Operating
Characteristic curve). Including these curves will provide a comprehensive evaluation
of the classifier’s performance.

1. PR Curve: The PR curve represents the precision-recall trade-off of the classifier
at different probability thresholds. It plots precision (positive predictive value)
on the y-axis against recall (sensitivity) on the x-axis. The PR curve provides
insights into the classifier’s ability to maintain high precision while capturing
positive instances. A curve that is closer to the top-right corner indicates better
performance.

2. ROC Curve: Similarly, the ROC curve shows the true positive rate (sensitivity)
against the false positive rate (1 - specificity) at various thresholds. It shows
how well the classifier distinguishes between positive and negative instances. The
ROC curve enables the analysis of the trade-off between sensitivity and specificity.
ROC AUC (Receiver Operating Characteristic Area Under the Curve) is a famous
measurement in statistics, with values closer to 1 indicating better performance.
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Although a classification threshold of 50% may seem intuitive for determining
the possibility of an event happening, the interpretation changes when it is viewed
as a warning for risk. In the context of risk assessment, however, instead of merely
predicting an event, we view the output as a warning sign indicating the likeli-
hood of a risk. For example, the HPI, proposed by Hatib et al. in their work
on ML for risk prediction [24], suggests varying the threshold depending on the
specific application. The researchers found that the optimal threshold for predicting
hypotension differed based on the time horizon. For instance, when predicting
hypotension five minutes ahead, the best-performing threshold was identified as 41.
However, for a 15-minute prediction horizon, the optimal threshold was 36. These
findings highlighted the importance of discussing the threshold choice instead of
treating it solely as an evaluation score. The selection of an appropriate threshold
can significantly impact the performance and effectiveness of the risk prediction system.

To visually represent the trade-offs associated with threshold adjustment in binary
classification, we present Figure 5.2. The graph illustrates how various performance
metrics change as the classification threshold is varied. It is important to note that we
did not assert the existence of an optimal threshold since the model’s performance can
be influenced by factors such as class distribution, feature selection, or hyperparameter
tuning. The threshold selection process requires careful consideration of overall perfor-
mance metrics and the underlying data characteristics. Considering our concern about
positive hypotension risk and the evaluation metrics, a threshold between 0.4 and 0.55
appears to be reasonable, as it achieves a balanced and high performance at these levels.
In the subsequent sections of this chapter, we will also present a comparison of setting
the threshold at 0.4 and 0.5.

5.1.2 Cross-validation

When dealing with a limited dataset, k-fold cross-validation (CV) is a good approach
to assess the overall performance of the prediction model. The whole dataset is
randomly or proportionally divided into k folds of approximately equal size. In one
validation, k − 1 folds are used for training, with the remaining fold for validation.
Such validation iterates k times on each different sub-fold. This strategy promises
that the validation considers each component of the dataset. The final performance
is calculated on the average of every iteration. A stratified k-fold cross-validator
is an edited improvement of the k-fold that it will make sure all folds will contain
the approximately same distribution of every class. An illustration of the k-fold CV
approach is provided in Figure 5.3.

The selection of k relies on comprehensive factors, such as the size of the dataset,
computational resources, and the desired trade-off between bias and variance. Gener-
ally, a higher k value (larger than 10) lead to a more reliable estimate of the model.
However, the dataset is small enough to better take the leave-one-out cross-validation
(LOOCV) into consideration. LOOCV is a special case of k-fold cross-validation where
k equals the size of the whole training set. In this approach, we trained the model
on all but one sample, and the left-out sample was used for testing. This process was
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Figure 5.2: The illustration of how the decision threshold of binary result influence evaluation
scores.

Figure 5.3: K-fold CV illustration.

repeated for each sample in the dataset, ensuring that every sample had a chance to
be tested individually.
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Figure 5.4: Neated k-fold cross-validation approach.

The average performance across all folds in k-fold CV provide an estimate of the
model’s overall performance, while LOOCV helped to assess the model’s performance
on individual samples, taking into account dataset imbalance. The overall results of
the LOOCV approach with different classification thresholds are presented in Table
Table 5.1.

5.1.3 Nested Cross Validation

In the classical k-fold CV way, the model is trained and evaluated within a single
cross-validation loop. However, literature has pointed out that the classical cross-
validation (usually k-fold CV) tunes the model on the same data causing overfitting
and obtaining overly optimistic performance estimates [54]. It thus proposes the
nested cross-validation approach, which is claimed to have near accuracy as the truth.
Nested cross-validation introduces the outer and inner loops into the structure. The
outer loop divides the data into training and testing sets, as in the k-fold CV we
mentioned before. The inner loop, which is nested within each outer loop iteration,
is responsible for training and evaluating the model with a specific feature selection
and a hyper-parameter combination. Then in each iteration of the outer loop, the
model is trained on the training set using the optimal hyper-parameter combination
generated by inner loops and then evaluated on the corresponding test set. The
outer loop is responsible for assessing the performance of the model with the selected
hyper-parameters. It provides the training data for the inner loop and keeps a separate
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test set to evaluate the performance of the model obtained from the inner loop. By
using this approach, information leakage is prevented, and a more unbiased estimate
of the model’s performance can be obtained. This process is illustrated in the Figure 5.4.

The nested cross-validation is not intuitive because it generates k sets of hyper-
parameters (and may also include feature selection) during the validation process. A
simpler way to understand it is that the nested approach treats cross-validation as an
evaluation of the procedure or training process rather than only evaluating the model
itself. Some tutorials suggest setting aside a separate testing set before performing
cross-validation, but this can introduce new bias into the methodology.

An alternative approach to validation could be to train the model on the entire
dataset and introduce an external validation set during the evaluation process. By
incorporating an external validation set that is independent of the training and testing
data, we can gain a more comprehensive understanding of the model’s performance
in real-world scenarios while making full use of data collected for training. However,
currently, we do not have an external validation set available. Therefore, we have made
the decision to keep this question open for future research.

5.1.4 Result

Table 5.1 and Figure 5.5 present a summary of our predictive model’s performance
under different validation approaches.

Firstly, we compared the performance of models under different classification
threshold settings. Notably, the XGBoost model demonstrated superior performance
when the threshold was set to 0.4. Specifically, it achieved an accuracy of 0.81, a
precision of 0.83, and a recall of 0.84. These metrics are crucial since the positive PIH
event’s correct detection is essential for an effective risk assessment project. Further-
more, all models exhibited high AUC values of PR curves, indicating their excellent
ability to distinguish the positive class. The theoretical strength of XGBoost aligns
with our experimental results, owing to its powerful ensemble strategy and boosting
structure. However, in some cases during k-fold validation, XGBoost’s superiority is
compromised. Several reasons could explain this phenomenon, such as misclassified
data affecting boosting algorithms and the susceptibility of the model to overfitting. In
contrast, simpler LR performs better in such scenarios. Additionally, Random Forest’s
averaging strategy is more adept at handling noise. Another factor that affects the
predictive ability of XGBoost is its intricate parameter tuning. Moreover, the choice
of threshold slightly impacted the model’s performance. Although the differences were
not significant between thresholds of 0.4 and 0.5, medical considerations should guide
threshold selection rather than solely relying on the best metrics.

Secondly, we also tested a k-fold CV with the results from LOOCV. It showed that
LOOCV consistently outperformed the latter in our small-sized model validation. This
suggests that LOOCV benefits from more training data, exhibits lower variance, and
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Table 5.1: Performance of the models of PIH prediction under different settings.

Model Threshold Accuracy Precision Recall f1-score Specificity

Frequent-LOO

XGBoost

40%

0.81 0.83 0.84 0.83 0.79

Random Forest 0.78 0.74 0.91 0.82 0.85

Logistic Regression 0.77 0.75 0.88 0.81 0.81

Naive Bayesian 0.71 0.82 0.61 0.70 0.63

Ensemble 0.79 0.77 0.89 0.83 0.83

XGBoost

50%

0.80 0.81 0.83 0.82 0.78

Random Forest 0.79 0.79 0.85 0.82 0.82

Logistic Regression 0.75 0.77 0.77 0.77 0.72

Naive Bayesian 0.70 0.82 0.58 0.68 0.62

Ensemble 0.79 0.87 0.73 0.80 0.72

Frequent-Kfold

XGBoost

40%

0.76 0.73 0.91 0.81 0.83

Random Forest 0.79 0.75 0.93 0.83 0.87

Logistic Regression 0.77 0.74 0.90 0.81 0.83

Naive Bayesian 0.70 0.80 0.61 0.69 0.62

Intermittent-LOO

XGBoost

50%

0.78 0.77 0.76 0.76 0.75

RF intermittent 0.75 0.75 0.75 0.75 0.72

LR intermittent 0.76 0.77 0.74 0.76 0.72

may handle imbalanced datasets better. The lower variance in LOOCV is attributed
to its training set remaining consistent across iterations. Nevertheless, LOOCV’s
reliance on a large training set could make it computationally expensive and prone to
capturing dataset noise, resulting in over-optimistic outcomes.

Thirdly, while ensemble learning generally improved performance, it did not
guarantee enhanced results in all cases. We performed ensemble learning on models
that used frequent BP measurements in order to balance between accuracy and
robustness by combining XGBoost and LR. In the 40%-threshold experiment, while
this improved performance in recall, f1-score, and specificity, it did not always lead
to improvements. Factors such as metric sensitivity, model disagreement, and loss of
model-specific information could result in decreased performance.

Finally, our experiment comparing intermittent and frequent BP measurements
for predicting PIH revealed that intermittent data did not perform as accurately as
frequent data. The intermittent approach decreased the precision of all models by
less than 6% and reduced recall (sensitivity) by more than 10%. This indicates that
less frequent measurements impair the prediction’s ability to detect positive events,
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(a) Performance of the model built on frequent (every 2 seconds) BP measurement.

(b) Performance of the model built on intermittent (every 3 minutes) BP measurement.

Figure 5.5: ROC and PR curve as well as their AUC of different models.

which is understandable since intermittent data are less representative. However, using
intermittent measurements ensures practicality and safety in a clinical setting, even
though they may not be as effective for the model as frequent measurements.

5.2 Dosage Advice Model

The dosage advice model aims to predict the risk of PIH based on changes in input
features related to propofol dosage. The ultimate goal is to develop a reliable and safe
propofol dosage warning system. This section explores different modeling approaches
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and their implications for predicting PIH risk.

Initially, an LR model is considered practical due to its ability to provide valuable
insights into the relationship between features and outcomes. The LR output serves
as the foundation for building the prediction model. But it is clear that the success
of this approach will rely heavily on the accuracy of the prediction model. While
XGBoost and other decision tree models boast high accuracy, they may lack the ability
to present a relationship between individual input and the outcome, which LR offers.
A comparative analysis, as depicted in Figure 5.6, reveals that XGBoost exhibits some
instability despite accurately distributing testing samples. This instability may be at-
tributed to overfitting, particularly when dealing with limited data. In some instances,
as the dosage increases, the likelihood of a PIH event decreases, seemingly contrary to
established medical knowledge. Conversely, LR consistently demonstrates a positive
relationship between dose-related features and the prediction value, aligning with the
medical understanding. To address these issues, ensemble learning is introduced to
strike a balance between the performance of LR and XGBoost. The ensemble model,
as shown in the third column of Figure 5.6, corrects the negative slope observed in
some cases of the XGBoost model and marginally improves accuracy compared to
standalone LR as in Table 5.1.

The model also considers the impact of another anesthetic used in the TCI system,
namely remifentanil. However, the combined effect of propofol and remifentanil is
not simply additive [55], introducing further complexities in the model. Although the
feature related to remifentanil did not play a significant role in the model compared
to propofol, as shown in the figures, this observation may be influenced by potential
biases in the distribution of the anesthesia plan.

In conclusion, the dosage advice model built through our approach holds promise
for predicting the risk of PIH by leveraging LR, XGBoost, and ensemble learning.
Further refinements and adjustments may be necessary to address the complexities
arising from multiple anesthetics interactions and potential biases. Nonetheless, this
model represents a step forward in developing a robust and reliable propofol dosage
warning system to enhance patient safety during medical procedures.
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Figure 5.6: The change of PIH probabilities corresponding to the change of propofol dosage.
Each line in the plot presents an individual test case in a LOOCV. Along the x-axis, ”0%”
represents no change in the propofol dosage-related features, which is the prediction made by
original data, while ”100%” means all the dosage-related features are risen to 200% compared
to the ground truth.
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Figure 5.7: PIH probability v.s. propofol and remifentanil dosage. Along the x-axis, ”0%”
represents no change in the propofol and remifentanil dosage, while ”100%” means both of
them have risen to 200%.
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Conclusion and Future Work 6
6.1 Conclusion

In this work, we investigated pre-operative demographic data, vital signs, and medica-
tion information to predict PIH. Compared to previous PIH studies, our data-driven
approach has been validated using nested cross-validation, which incorporates feature
selection and hyper-parameter optimization into the evaluation process. This enhance-
ment not only improves the performance of complex models but also prevents data
leakage. Additionally, we have employed a leave-one-out validation technique to maxi-
mize the utility of our limited dataset. By utilizing ensemble learning, the final model
effectively balances explainability and prediction accuracy. Consequently, we have de-
veloped an intuitive dosage-risk model that suggests a safe dosage of propofol to prevent
PIH before induction. Importantly, it is the first attempt to combine probability pre-
diction of hypotension with pre-operative input of anesthetics dosage to aid decision-
making in anesthesia plans.

6.2 Limitation

This section provides an overview of the challenges that remain to be addressed
within the scope of our project, along with potential resolutions and future works.
Our examination of these challenges is approached from three angles: a data-driven
perspective, an ML aspect, and a medical model-building aspect.

6.2.1 Data Limitation

As previously discussed, PIH studies suffer from limitations on experimental data in
terms of length, type, fidelity, and size. The main reasons behind these limitations
are the historical neglect of data-driven methods in PIH research and the scarcity of
datasets that meet specific requirements. Furthermore, the lack of data sharing among
researchers and organizations contributes to the clustering of studies within certain
groups.

To address these challenges and improve future research in PIH, we propose the
following suggestions:

1. Increase Database Availability: One way to overcome data limitation is by
encouraging the creation and sharing of more databases. A practical approach
to research could involve collaborating with existing databases like VitalDB and
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combining them with private databases within research organizations. For ex-
ample, our project is collaborating with EMC to access its more extensive and
diverse dataset in the future.

2. Enhance Data Collection Methods: To obtain more comprehensive data, it
is essential to improve data collection methods. Despite the medical history and
demographic information, additional data from anesthesia machines and other
clinical operations which provide valuable insights are hardly recorded. While
automation has limits in medical settings due to the importance of experience-
based diagnosis, finding more flexible and efficient ways to collect data beyond
vital signs can be beneficial. For instance, involving doctors and nurses in data
collection could lead to a more accurate and practical diagnosis of hypotension.

3. Prospective Experimentation: Conducting prospective experiments can offer
several advantages. Not only would this approach solve the problems associated
with limited data and data collection, but it would also enable the inclusion of
various data types that may otherwise be challenging to obtain. For example,
information related to induction time and dosage could be easily and accurately
captured. However, it is crucial to ensure the safety and ethical compliance of
such experiments, especially when using invasive devices which introduce the risk
of incision.

With an enriched database, promising possibilities can be explored, leading to sub-
stantial improvements in the predictive model. The incorporation of multiple high-
quality data enhances the learning process and generality while increasing reliability.
External databases provide valuable additional context, such as patient demographics,
comorbidities, or medication history, further enhancing the model’s understanding of
factors influencing hypotension. However, when integrating external data, it is essential
to address potential challenges that may arise:

1. Data Compatibility: Merging and aligning different healthcare databases can
be complex due to variations in data formats, structures, and terminologies. Ad-
dressing these issues will require thorough data preprocessing and normalization
to ensure meaningful integration.

2. Privacy Concerns: When incorporating external data, it is crucial to handle
sensitive patient information with the utmost care to protect patient privacy.
Strict adherence to data anonymization and de-identification protocols should be
maintained to uphold ethical standards in the model development process.

3. Data Quality Assurance: External databases may have varying levels of data
quality and reliability. Rigorous data quality assurance processes are necessary
to identify and mitigate potential biases or inaccuracies that could impact the
model’s performance.

By thoughtfully considering these considerations and leveraging external databases,
hypotension prediction models can be significantly improved, providing more accurate
and clinically relevant predictions to aid in patient care and decision-making.
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6.2.2 Machine Learning Improvement

While data quality undoubtedly plays a critical role in predictive performance, there are
several issues in the ML pipeline that, if addressed, could further enhance the accuracy
of PIH prediction. Currently, our PIH prediction results need to be more accurate and
reliable. Despite having built a comprehensive pipeline based on prior-induction data,
there is room for improvement in our methods. To address this, we can explore several
avenues:

1. Feature Engineering: Our current approach to feature generation heavily relies
on previous studies of hypotension predictors. For instance, we calculate poly-
nomial features only if they have been documented in prior literature. However,
there is a possibility that novel combinations could provide more representative
features. By exploring diverse feature engineering techniques and integrating do-
main knowledge into feature selection, we can achieve a more effective represen-
tation of patient profiles and improve the identification of hypotensive events.

2. Ensemble Strategies: While the current ensemble strategy has been applied,
its implementation is relatively simple, relying on a straightforward weighting
average. More sophisticated ensemble techniques, such as voting or stacking, could
be explored to leverage the diversity of multiple models and enhance the overall
predictive power. Although these approaches might require more computation,
the potential gain in accuracy justifies the investment.

3. Model Selection and Hyperparameter Tuning: Careful selection of appro-
priate ML algorithms and thorough hyperparameter tuning can significantly im-
pact model performance. Exploring various algorithms and tuning their respective
hyperparameters can optimize predictive capabilities for PIH.

4. Interpretability: Interpretability is crucial in medicine, but our project cur-
rently ignores it. Since TCI systems calculate anesthetic dosage using embedded
equations, it would be highly beneficial if the prediction model could explain
which factors affect the PIH and how they do so. This would enable advanced
auto-decision-making. Moreover, it would also foster trust among clinicians and
validate the model’s decisions.

6.2.3 Medical Perspective

From a medical perspective, although anesthesiologists from EMC acknowledge the
promising results generated by our dosage advice model, several challenges still need
to be addressed before the model can be practically applied. Further improvements
and considerations are essential for the model’s effectiveness and safety.

Firstly, the dosage curve demonstrates a clear relationship between dosage and risk,
but it is evident that minimizing propofol dosage does not necessarily translate to im-
proved anesthesia quality. To enhance the control system, additional factors like the
DoA should be incorporated. DoA provides an estimation of the patient’s anesthesia
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level and can somehow reflect the overall risk. Moreover, determining the threshold of
a ”safe enough” dosage requires thorough discussions that balance prediction perfor-
mance with medical plausibility. Finding the right balance is crucial to ensure patient
safety and effective anesthesia. Secondly, the result still lacks essential validation. It
is clear that currently, we can only validate the prediction with the ground truth. It is
the same with the PE validation proposed in [37], but the PR performance could only
provide an evaluation of the robustness rather than accuracy. Also, the treatment rec-
ommendation method it proposed is not easy to replant since there is no conclusion on
which kind of strategy the original cases use. Although the TCI system always follows
a calculation function, the process usually includes the intervention of anesthesiolo-
gists who make decisions based on their experience and will not record the ”strategy”
they used. Therefore, validation study, or even the problem formulation, needs further
studying. Thirdly, our project builds a pipeline of predicting intra-operative adverse
events. Such a framework provides good guidance for other events which also need
binary predictions. Hypoxemia, for example, is a reasonable object which also plays a
vital role in anesthesia safety. Other events, such as delirium and acute kidney injury,
have also been studied in Ml-based prediction. However, They can be enabled when
more data, such as text diagnostic logs, are available.
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