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Abstract
With increasing urbanization and a need to reduce greenhouse gas emissions, new forms of urban
mobility are studied worldwide. An interesting transportation method is ridesharing, where people can
share parts of their rides with other passengers travelling in a similar direction in the same car. To im-
prove the attraction of ridesharing systems, research into extensions to the existing ridesharing model
formulation is required. The goal of this research is to make ridesharing more attractive to potential
users by including the option to make reservations.

In this work, the inclusion of reservations (pre-bookings) into the on-demand ridesharing problem is
studied. The inclusion of ridesharing has to potential to make better assignments by having knowledge
on part of the future demand. The main challenge from reservations is the increased computational
load generated by having more available information. This thesis proposes multiple adjustments and
different heuristics for a state-of-the-art on-demand ridesharing system to deal with the requirements
and challenges brought by the incorporation of reservations. An additional consideration is a trade-off
between providing benefits for reservations and serving on-demand requests.

Numeric experiments are performed on the Manhattan street network with NYC taxicab request data.
The results indicate that reservations can be included in on-demand ridesharing at a tolerable compu-
tational cost with the proposed framework. Passengers that make reservations shortly in advance can
be guaranteed service once initially accepted by the system. Having passengers make reservations in
advance does increase the overall service the system can provide.
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1
Introduction

With increasing urbanization and a need to reduce greenhouse gas emissions, new forms of urban
mobility are studied worldwide. An interesting transportation method is ridesharing, where people can
share parts of rides with other passengers travelling in a similar direction in the same car. Another
common name for this type of ridesharing is ridepooling. The specific type of ridesharing employed
in this thesis is one in which a fleet of vehicles is centrally controlled to provide transportation through
ridesharing. Matches for fellow passengers are made based on overlapping trajectories. The exact
route taken and the other passengers on the vehicle can differ each time the same route is requested.

The implementation of large-scale ridesharing has shown potential. With current technology, large
numbers of passengers can be efficiently allocated for ridesharing Santi et al. (2014). In Alonso-Mora
et al. (2017), 98% of taxi demand in Manhattan can be served with just 30% of the taxis, while staying
within reasonable constraints on delays. Ridesharing shows a potential upside for users, operators and
society as a whole in case of widespread adoption [Agatz et al. (2012); OECD (2015)]. These advan-
tages do require a sufficiently high density of travel demand to make appropriate matches. Therefore,
the application shows more promise for urban areas compared to rural areas. The advantages of
ridesharing could potentially be amplified by the adoption of autonomous vehicles (AVs). Conditions
for AVs to succeed and technological readiness are discussed in Luo et al. (2021).

From a societal perspective, ridesharing has clear benefits. The vehicle miles driven can be reduced
compared to both taxi services and private transport, thus reducing energy consumption, noise pollu-
tion, etc. Mobility can be provided on-demand, with fewer vehicles needed to service demand, therefore
creating more space in cities. For example, more greenspaces can be created instead of existing park-
ing areas. Next to this, ridesharing can offer attractive door-to-door service. However, ridesharing is
still not employed on a large scale in reality. For potential users (passengers), the (perceived) disad-
vantages apparently outweigh the offered advantages. Otherwise, ridesharing would be expected to
already be more commonly used. Sharing has some potential downsides, leading to an unwillingness
to share. For example reduced privacy, less convenience and perceived longer travel times.

To improve the attraction of ridesharing systems, research into extensions to the existing rideshar-
ing model formulation is required. The goal would be to increase the advantages and/or reduce the
perceived disadvantages. If successful, the real-world adoption and the corresponding benefits might
become more widespread. One potentially relevant extension to the rideshare formulation is the inclu-
sion of reservations. A reservation (pre-booking) is a request that is known to the system a certain
time before its first pick-up time. Reservations would provide the system with additional knowledge
about how parts of the demand in the future will look and thus allow for better assignment in the current
iteration. If specific user benefits would be attached to placing reservations (e.g. guaranteed service
or faster pick-up), the inclusion can be considered user-friendly.

From a model’s perspective, incorporating reservations into the ridesharing problem formulation brings
challenges. Firstly, a higher computational load can be expected since more knowledge of future

1



1.1. Research objective 2

demand is available to the system. This is caused by having more potential combinations between
passengers and vehicles. Secondly, it is reasonable to assume passengers will only make reserva-
tions if placing a reservation is associated with benefits. These benefits will impose constraints on the
solution space and thus potentially reduce the quality of the passenger assignments.

In the research approach, an existing state-of-the-art model will be extended to study the effects from
the inclusion of reservations in an on-demand ridesharing system. The extensions are focused on
restricting the increase in computational load and reviewing the impact of reservations over different
operational scenarios. An important objective of this research is to allow for reservations in a large-
scale ridesharing setting.

For this research, reservations that are placed shortly in advance are considered. This is applica-
ble in an on-demand ridesharing system where passengers can indicate if they want to be served as
soon as possible or intend to leave in for example 10 minutes.

Numerical simulations will be performed with the Manhattan road network and the NYC yellow cab
data set.

1.1. Research objective
The objective of this work is to assess the effectiveness and feasibility of the inclusion of reservations in
a large-scale on-demand ridesharing system. This is done by developing a method to include reserva-
tions into an existing system and study their impact on the solution quality and the consequent trade-offs.
The different effects and trade-offs that emerge because of reservations will be quantified to assess
the effectiveness of including reservations in the model.
The research objectives for this thesis are listed below.

• Include reservations efficiently into a state-of-the-art on-demand ridesharing method, allowing for
implementation on a large scale.

• Quantify the effects of having reservations available on multiple Key Performance Indicators
(KPIs) and review the imposed computational burden.

• Study the trade-offs in providing benefits to reservations over normal requests.

1.2. Contribution statement
A state-of-the-art on-demand ridesharing system is modified to allow for reservations. The adjustments
focus on decreasing the imposed computational load to allow for large-scale ridesharing systems with
reservations and assign benefits to passengers making reservations. To reach this goal, reservations
are only revealed to the system a short time in advance and heuristics are applied to reduce the com-
putational load.

More specifically, the contributions are listed below:

• A method to reveal and assign reservations into an on-demand ridesharing system is developed
and implemented, with the aim of being effective and lightweight.

• Detailed experiments are designed and subsequently performed to gain insights into the potential
benefits from the inclusion of reservations, while at the same time assessing the computational
costs of doing so.

• A numerical study assessing the potential trade-off between providing improved service for reser-
vations over on-demand requests is performed, including an assessment of different types of
benefits on the overall service level of the system.

• Multiple heuristics to limit computational burden are developed, applied, tested and evaluated for
their effectiveness and efficiency.

1.3. Thesis overview
The work in the research is presented as follows. In chapter 2, relevant background literature on the
working principles of ridesharing is discussed. Multiple research gaps with respect to ridesharing are



1.3. Thesis overview 3

discussed. The inclusion of reservations is the topic selected for further research. The methodology
of the research is described in chapter 3. The chapter consists of three main parts. The first part
describes the problem formulation, the second part provides insights into a state-of-the-art method for
on-demand ridesharing. The third part contains the methodical extensions used to include reservations.
Chapter 4 contains the experimental setup for the research. The results are discussed in chapter 5. In
this chapter, the effects of reservations, computational load, benefits for reservations and the effect of
heuristics are discussed. Finally, chapter 6 consists of conclusions, discussions and recommendations
for further work.



2
Literature review

In this section, core aspects of ridesharing will be discussed from both the passenger and operator
perspectives.
First, different aspects of static and dynamic ridesharing are discussed. This section is followed by a
review of matching algorithms. Matching is the process where passengers are assigned to vehicles.

The general concept of rideshare is to use fewer vehicles to service more demand. This can be
achieved by assigning passengers to vehicles efficiently, thus reducing the vehicle miles to transport
the passengers to their destinations.

2.1. Static and dynamic ridesharing
Ridesharing can be done statically and dynamically. In the static version, the assignment is made be-
forehand and is set in stone. This requires all information to be known beforehand so that passengers
and vehicles can be matched. The most important information is the set of requests and the travel
times in the network. In the dynamic version of ridesharing, the assignment is not determined before-
hand but remains flexible over time, i.e. during the ride. This allows the assignment to respond to
new situations, such as emerging demand or stochastic/varying travel times. The downside is that the
assignment procedure should be run repeatedly to optimize for the new situation. In this section details
regarding static or dynamic ridesharing are discussed.

The assignment of passengers to vehicles can be done statically where all information over the
planning horizon is known beforehand. Having all information over the planning horizon allows for a
solution to be non-myopic (optimized over the entire planning horizon). To achieve the most benefit
from the available knowledge, sufficient time should be available to make the best possible overall
planning. The required time to utilize the information is highly dependent on the size of the problem,
this will be discussed in more detail in section 2.3.1.

A reason to use static assignments is to solve for often occurring instances. In this case, finding a
better solution is worth the effort as the solution is used multiple times. An example could be classical
carpooling, where the solution is used regularly with the same people. As most people prefer to use
the same mode of transport each day, optimizing for this behaviour is relevant (Aarts, Verplanken, and
Knippenberg (1998)).

Another option is to assign passengers dynamically to vehicles. An often studied problem is the
on-demand assignment of passengers. In the on-demand scenario requests for trips can emerge at
any time. Another aspect of ridesharing that could benefit from re-optimization is if stochastic travel
times in the network are taken into account. This scenario is discussed in detail in section 2.5.3. In this
current section, the focus will be on-demand assignment.

In case on-demand assignment is used, this is usually processed in batches of incoming requests
instead of instantaneous. This allows for more combinations to be considered and thus better matches
to be made compared to assigning every passenger one by one in order of arrival. Batch time can vary

4
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from 10 seconds (Simonetto, Monteil, and Gambella (2019)) to multiple minutes. This means that all
current demand is known once the assignment is made, but future demand is unknown. In this situation,
methods have to make a trade-off between possible matches and usability from a customer point of
view. A longer batch time allows for better matches to be made at the cost of increased complexity
during the assignment for a batch. On the other hand, a shorter batch time means passengers have a
shorter waiting period before they are assigned to a vehicle. Direct assignment to a vehicle for emerging
demand is also possible, which is described by Fagnant and Kockelman (2018). A downside of direct
assignment is that it is myopic and greedy, thus not reaching optimum system-wide performance.

The advantage of dynamic assignment comes from the usability side since it allows for on-demand
ridesharing and/or the consideration of stochastic parameters, for example travel times. The advan-
tage of on-demand ridesharing is that it offers an easy way for passengers to use the service. Since
dynamic assignment does not have information about future demand, the current optimum does not
have to be the global optimum if more information would have been available. As a consequence, the
assignment is not necessarily the best in the long run. Steps taken to account for future demand are
discussed in section 2.5.1.

The assignment of passengers to vehicles can be solved in two ways, either exact or with heuristics.
The advantage of exact solutions is that the optimum can be found, however, this might take a lot of
computational power. Therefore, exact solutions are mostly used for small problem sizes. Heuristics
don’t necessarily provide optimal solutions, but can reach good results in a limited time. This makes it
an obvious candidate for dynamic problems where batches of requests have to be assigned quickly. A
possible heuristic is a local search algorithm, as described in Beraldi et al. (2010).

An important method to dynamically assign passengers to vehicles is provided in
Alonso-Mora et al. (2017). Themethod contains multiple steps that lead to an integer linear optimization
problem (ILP). The method is anytime optimal, meaning it converges to the optimum over time. The first
step in the method is focused on creating groups of riders that can share a ride within the constraints of
the problem. Secondly, the ILP problem is solved to assign groups of passengers to the best vehicles.
The ILP is initialized with a greedy solution and optimizes over time. Lastly, rebalancing empty vehicles
is added to better accommodate for future demand. Passengers that are not yet picked up by a vehicle
might still be re-assigned, as long as their waiting time does not increase as a consequence. New
demand can thus be used to improve the solution and the routing for passengers.

A different approach is proposed by Simonetto, Monteil, and Gambella (2019), where a linear as-
signment formulation is used. In this concept, cars make a bid to pick up a single passenger. The
bids are then combined and the best overall outcome is looked for. The method works by having cars
make a bid to pick up a certain passenger. To calculate the costs, cars calculate the resulting detour
time for the current passengers and the waiting time for the new passenger. The algorithm can reach
good results by having short batch times. These batch times are very short, therefore grouping has no
additional value. The method is thus computationally lighter compared to the method by Alonso-Mora
et al. (2017) as no groups are made. In the next batch, the bids can lead to similar groups forming
without going over as many possibilities. To reduce computational complexity, the only vehicles that
can make a bid for a passenger are those within a certain range from the passenger. The order of
pick-up and drop-off for the new passenger is only inserted in the order of the vehicle for vehicles with
a capacity larger than 4. If the capacity is 4 or lower, all possible orders of pick-up and drop-off are
checked. This leads to a limited number of possible combinations to check and thus a reduction in the
required time.

Exact algorithms for dynamic ridesharing are also available. The previously mentioned difficulties at
large-scale problems have to be addressed before an exact algorithm be executed fast enough. An
option is to reduce the number of potential matches to be evaluated. This is described in Kucharski
and Cats (2020). Here a pre-selection is made for good matches, only these good options are then
solved exactly. The pre-selection is based on the concept of utility, which will be discussed in section
2.2.

To summarise, the trend in literature is towards the dynamic assignment of ridesharing. This trend
is enabled by increases in computational power required for quicker optimization methods. Most re-
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search focuses on assigning on-demand requests. Requests are often bundled within a batch time to
improve the assignment.

2.2. Matching methods
Matchmaking in ridesharing is the action where passengers are assigned to vehicles. Matching can
be done both for groups or for individual requests. There are two fundamental ways in which these
matches can be made.

The first and most used option is based on time windows. In this method, there are time constraints
on how much waiting time and detour time are allowed. An important reason to use time windows is
to limit the number of possible combinations of riders. This is necessary since otherwise the number
of possible groups grows exponentially with the number of passengers. The assumption is made that
the constraints on waiting and detour time are acceptable for users. The objective function for match-
making in this case usually consists of minimizing the waiting + detour time for the passengers. Time
windows are used in Alonso-Mora et al. (2017) and Simonetto, Monteil, and Gambella (2019). In some
studies, monetary costs are assigned to waiting and driving. In practice, the difference is small as
usually there is a linear scaling in time and monetary value.

A different basis for matchmaking is the concept of utility. Utility is how attractive a match is from
the passenger’s perspective. In Kucharski and Cats (2020) utility is based on the required time, in-
curred cost, perceived delay and sharing discomfort. These factors combined lead to how attractive
a certain match is. This can be combined between different potential matches and also with different
modes of transport. The method assumes fixed values for the value of time, cost, etc for all passen-
gers in the network. As indicated in the paper, fixed values are not ideal, but are easy to use. The
objective function for this method consists of maximizing the utility of transportation. An important ad-
vantage of this methodology is that the attractiveness of ridesharing can be compared to other modes
of transport. The method by Kucharski and Cats (2020) allows the calculation of the fare reduction
required to make ridesharing attractive from a passenger perspective relative to the alternatives. By
the nature of ridesharing, the trip can take longer than expected once the trip has been accepted. This
happens when another passenger pick-up has been inserted between acceptance of the ride and drop
off. Therefore, the value of delay perception should also be affected by delays once the trip is accepted.
Effects and consequences of this unpredictability are described by Fielbaum and Alonso-Mora (2020).
Here a trade-off between unreliability in prediction and system performance is identified. There is also
a differentiation between one-time unreliability (within a single trip, due to new demand being inserted
in a ride) and daily unreliability (differences between multiple trips).

The differences between utility and time windows are in effect limited as smaller waiting times also
lead to better utility and higher waiting time to lower utility (at the same fare for the trip).

In short, matching is mostly done based on time windows. An important advantage of this method is
that the number of options is more limited, as will be discussed further in the following section. Matching
based on utility has the advantage that it allows to study competition with other forms of transport as
people will take the option that is best for them.

2.3. Scaleability of ridesharing
In this section, the effects of problem size in a ridesharing assignment are discussed. Firstly, the
combinatorial effects caused by the scale of the rideshare problem are evaluated. Secondly, the effects
on performance due to scale are reviewed. With an increase in possible combinations it becomes more
difficult to find good solutions as more options could be considered.

The scale of the problem is defined by multiple parameters. The most important ones are the
road network, number of passengers, shareability between passengers, number of vehicles and their
capacity.

2.3.1. Combinatorial effects of scale
The road network is represented as graph G = (N,E), with N the pick-up/drop-off locations that are
in the network. E represents the edges (roads) between these locations. Most nodes are connected
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to multiple other nodes, so the number of edges is considerably larger than the number of nodes. The
nodes and edges together can be used to create a graph of the network. This graph can, but does not
have to be, bi-directional. A reason could be one-way streets, so that travel one way is different from
the other way.

Closely related to the number of nodes and edges is the geographical size of the area for which the
system is designed. The size of the area corresponds with the travel time from location A to location B
and thus with the fleet size required for a certain level of service. The scale of the assignment problem
is further defined by the number of passengers.

The number of passengers and the number of vehicles both influence the number of possible combi-
nations. The number of passengers leads to a (up to exponential) growth in the possible combinations
of passengers. These groups are then assigned to vehicles which is another combinatorial problem.

Vehicle capacity is an important parameter as it influences the maximum size of groups and thus
the number of potential groups. Additionally, the vehicle capacity affects how many options there are
for the pick-up/drop-off order for the passengers in the vehicle. As discussed earlier, time window con-
straints are an effective way of reducing the number of groups that can be created.

To improve service, Fu and Chow (2022) considers the option of transfers between different ridesharing
vehicles. The inclusion of transfers in ridesharing would increase the number of possible combinations.
Passengers that could not be in the same group due to time window constraints might now be matched
because they could transfer to other vehicles. Next to this, there are multiple possible locations where
transfers could occur thus increasing the number of routing options. This effect is amplified as mul-
tiple transfers within the system would be allowed. The added complexity due to transfers could be
constrained with limits on the number of transfers, maximum times between transfers and other limits.
Fu and Chow conclude that gains in travel time can be achieved by allowing transfers, however, the
assignment procedure scales poorly for larger ridesharing instances due to the combinatorial problem.

In Fielbaum, Bai, and Alonso-Mora (2021), the option to include walking in the rideshare assignment
is considered. Here the pick-up and drop-off locations are not only the exact origin and destination
but also include a set of points within a certain range that could easily be walked. The advantage of
allowing a small bit of walking is that more efficient routes can be used. For example around one-way
streets or by not entering streets with lower maximum speeds. This means less detour time for all other
passengers and less waiting time for future passengers. These advantages in travel time for multiple
passengers could outweigh the (potential) additional time and discomfort for the passenger that has to
walk. Walking here can also be seen as a transfer to a different mode of transport with specific costs
and benefits (no transfer time in this case). The added complexity comes in the form of a lot of addi-
tional combinations between origin and destination pairs to be considered (a set of points around the
original origin and destination). The increase in combinations is even larger for rideshare, as multiple
sets of pick-up and drop-off points (for the different passengers) have to be compared.

A possible solution for very large problems is provided in Pelzer et al. (2015), where a method to
split up the problem into smaller sections and later combine these is proposed.

2.3.2. Performance effects of scale
The scale of a rideshare problem affects the efficiency of the assignments in the model. As described
in Fielbaum, Tirachini, and Mora (2021), the Mohring effect is present for ridesharing vehicles. The
Mohring effect is an effect originating from public transport research. The main concept of the paper is
that low demand leads to low supply. At low demand there is little possibility to share as there is little
overlap in origin and destination pairs, therefore most rides will be private. At higher demand more
detours will become necessary to deliver passengers to their destination, while the shared distance
travelled is still limited. This deteriorates the service to the customers. At higher demand, the share-
ability increases and thus the effectiveness of ridesharing becomes evident. The Mohring effect is also
studied in Kaddoura and Schlenther (2021). In this paper, the scalability of a simulation is researched.
The paper describes how the effects of ridesharing can be studied on smaller problem instances and
how these would scale to large problem instances. The goal is to gain insights from simpler and thus
easier to solve problems.
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To summarize, the scale of problems assessed in ridesharing has significant implications. On the
one hand, there are effects on the number of combinations that can be assigned. A larger number of
possible assignments could lead to better matches as more overlap in requests emerges. On the other
hand, having additional options within a set computational budget could lead to worse performance as
less convergence in the solution can be reached.

2.4. Ridesharing and public transport
The combination of ridesharing and public transport is interesting to review as the two systems have
different strengths and could work symbiotically. Public transport (PT) offers the advantage of being ef-
ficient in miles travelled compared to passengers transported. Furthermore, PT requires limited public
space relative to the number of passengers transported and provides a large capacity. The downside of
PT is that it doesn’t have a dense first/last mile system. This could potentially be provided by rideshar-
ing systems.

Combining ridesharing with public transport could provide mutual benefits as the strengths of the one
can cover parts of the weaknesses of the other (Ma et al. (2019)). People from areas around a transit
station could walk or use ridesharing to arrive at the transit station. The high capacity transit could
then be used for long-distance transport and walking/rideshare could be used as a last-mile transport
mode. Origin and destination pairs far away from transit systems can be served with rideshare. A
schematic version is given in figure 2.1. The letters R, T and W stand for ridesharing, (public) transport
and walking respectively.

Figure 2.1: Integration of ridesharing and public transport, taken from Ma et al. (2019).

Hall, Palsson, and Price (2018) showed that public transport ridership has increased 2 years after
the introduction of Uber in large US cities. However, the effects show heterogeneity over different cities.
An important factor seems to be the size of the PT network. Positive effects are larger in geographically
bigger networks. The effect of ride-hailing on public transport is more thoroughly explored in Cats et al.
(2022). The interplay between ride-hailing (Uber-like service) and public transport largely depends on
the quality of the PT network. A lack of suitable PT options leads to a large ride-hailing market share.

In research on how to combine public transport and ridesharing networks, the public transport net-
work can either be a fixed existing network, or it can be flexible. The details for both types are discussed
in the following sections.

2.4.1. Fixed public transport services
The high capacity of public transport means that busy routes (where PT is designed to be) require a
limited amount of vehicles. The highest capacity lines are usually light rail networks that have fixed
routes because of the required infrastructure. The networks have the highest efficiency in moving
people for the vehicle miles travelled as they have a large capacity. In a combination with rideshare,
the large capacity of public transport leads to more cars being available for first/last mile transport, as
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cars have shorter trips on average. This is a positive effect from the combination of PT and rideshare
(Ma et al. (2019)).

The situation where rideshare is used solely for first/last mile transport is referred to in the literature
as a feeder model. A feeder model is used in Shen, Zhang, and Zhao (2018). A study is performed on
first-mile transport to the large capacity light rail network of Singapore. The paper shows the possible
advantages of replacing the least busy bus lines with shared vehicles. For areas with very high demand
buses are still more effective than ridesharing in cars, because buses are in effect large rideshare
vehicles if people are willing to walk to a limited set of meeting points.

A simple version of ridesharing in combination with public transport is performed by Chen and Nie
(2017), where ridesharing is restricted to an area around a certain PT line. This uses ridesharing as
a strict feeder model. In Maheo, Kilby, and Van Hentenryck (2019) ridesharing vehicles are used in
off-peak hours to bring people from low demand areas to high demand bus lines where buses are still
efficient.

As shown by Wardman, Hine, and Stradling (2001), people perceive transfers between modes of trans-
port to take significantly longer than they actually do. This effect should also be considered when
designing a system with transfers. Next to this, the perceived time in public transport is also influenced
by the crowding in bus/metro/etc (A. Tirachini, Hensher, and Rose (2013)). If the information on crowd-
ing is available, this could be shared with the ridesharing planning if integrated mobility planning is
executed as in Ma et al. (2019). In this method, a trip from the origin to the destination is planned
based on available public transport, rideshare and walking. Total travel time and cost are considered
and the best combination for a specific request is returned to the passenger. The different modes of
transport can be used with a transfer between them, but this is not required. The method in the paper
works on-demand, making it attractive for passengers. To keep the computational load limited, public
transport only looks at the k nearest neighbours stations. If passengers transfer from public transport
to rideshare, the vehicle is only contacted once the PT mode arrives at the station. This could be
improved by having the vehicle arrive at the same time

2.4.2. Flexible public transport services
Another line of research on the topic of public transport and rideshare is the option to use flexible bus
routes. This either means the bus routes and frequencies shift over the day or respond directly to
current demand. This can be done with buses as these don’t require special infrastructure, as opposed
to the metro for example.

In Banerjee et al. (2021), historic demand is used to plan bus lines to maximize social welfare.
Cars are used as feeders into the, to be designed, bus lines. The method has an available budget
to open bus lines from a pre-made selection of feasible routes. Pinto et al. (2018) solves a similar
problem. Bus routes are selected from a set and the required size of the shared vehicle fleet size is
tuned. The optimization is done for a batch of requests spanning 30minutes where demand is all known
beforehand. A budget is allocated for a rideshare fleet based on demand. The method also contains a
low-level optimization where passengers are assigned to shared vehicles. This part works on-demand
to see if the allocated fleet size is sufficient for the demand. The method penalizes transfers as these
are experienced worse by passengers, as described by Wardman, Hine, and Stradling (2001).

The second case, where buses plan their route based on demand, can also be seen as a ridesharing
problem with multiple vehicle sizes and transfers between them. This problem is complex to solve as
there are a lot of possibilities to consider.

Also, if PT lines are not predictable that would mean they become less accessible for people less
into the newest technology. An example of this could be some elderly people that become unable to
cope with the new ways of transport and thus lose part of their mobility. On the other hand, it could
allow for the symbiotic relationship between PT and ridesharing as described above. With the current
algorithms, it would depend on predicted demand as the methods are too slow to solve on demand.
This means that the bus schedule is predictable, but has a lot of changes over the day/week/year.

To summarise, ridesharing could be used as an extension to public transit services. A commonly
studied problem in literature is the scenario where ridesharing vehicles are used as a first or last-mile
solution in a transit system. Another option is to optimize the assignment of buses and ridesharing si-
multaneously, however, the computational complexity of this problem is a drawback for this framework.
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2.5. Additional aspects of ridesharing
In this section, aspects that broaden the scope of ridesharing will be discussed. First, methods that
take into account future demand are reviewed. Second, systems that are not centrally controlled will
be discussed. Last, the effect of stochastic travel on the ridesharing model is evaluated.

2.5.1. Non-myopic methods
Predictions of future demand can be used during matchmaking to improve the future performance of
the ridesharing system. The improved performance can be reached by adding a rebalance step. In
rebalancing, vehicles are re-positioned so that they are better able to serve future demand. Rebalanc-
ing can be implemented more efficiently with a non-myopic view since rebalancing can be performed
during operation by routing them with future requests in mind. By routing occupied vehicles with future
requests in mind, a trade-off between current and future service levels should be made.

The prediction of future demand is a complicated task that can be solved in different ways. In A.
Fielbaum, Kronmueller, and J. Alonso-Mora (2021) past requests from the system are utilised to predict
future requests. This has the benefit that the method can also be used without existing knowledge of
demand and could adapt to new travellers using the system regularly. J. Alonso-Mora, Wallar, and
Rus (2017) uses historical data to create a probability distribution for requests. Alternatively, X. Li et al.
(2020) creates a probability distribution for future demand based on historic demand, processed with
neural networks.

The first option to incorporate the predicted demand is by assigning a certain number of predicted
requests in the current batch. This creates a bias in the matchmaking towards future demand, at the
cost of optimizing for current demand. A similar approach is taken by J. Alonso-Mora, Wallar, and Rus
(2017), where future demand is predicted based on a probability distribution function and added to the
current demand to be assigned. A slightly different methodology is proposed by Tsao et al. (2019).
Tsao et al. use model predictive control (MPC) with a demand forecast to consider future demand. The
method proposed is restricted to only two passengers per vehicle to reduce the potential number of
combinations that emerge from looking further ahead. Riley, Van Hentenryck, and Yuan (2020) apply
MPC on a zone-to-zone version of ridesharing. The reason to reduce the problem to a more course
zone-to-zone formulation is to save on computational complexity (smaller network graph). MPC is
used to predict how many vehicles should be rebalanced towards each zone based on predictions
for future demand. Lowalekar, Varakantham, and Jaillet (2021) proposes the use of zone-to-zone
formulation as well. The proposed method makes use of future demand predictions between zones
and current demand to be between exact locations. Furthermore, future demand is not allowed to
be assigned to a vehicle that carries other passengers at that moment. Together with the zone-based
demand predictions, this reduces computational complexity for assigning future demand. In this method
predicting demand 15 minutes ahead seems to be optimal. This leads to enough response time without
overflowing the assignment algorithm with potential matches.

In addition to introducing bias towards future demand by assigning future requests, another problem
emerges. By adding future requests the shareability graph increases in size. Since adding demand
causes the number of people that can be assigned together to grow quickly, more combinations are
possible for the best assignment. With equal calculation time, this could lead to worse overall assign-
ment for both current and future requests as less convergence might happen.

A second method to improve the future efficiency of the system is by rewarding certain assign-
ments that are beneficial for the future. Different reward strategies are possible in this concept. In
A. Fielbaum, Kronmueller, and J. Alonso-Mora (2021), this is incorporated by rewarding assignments
towards high-demand areas (that usually have worse service rates). The new cost function equals the
old cost function minus the reward. Shah, Lowalekar, and Varakantham (2020) propose to use a neu-
ral network to determine the value of a certain assignment concerning future requests. Approximate
dynamic programming is used to assign passengers to vehicles in a way that takes the predicted future
value into account. An advantage of using such data-driven methods to determine the value of a certain
assignment is that they can take advantage of complex reward evaluations. On the other hand, a large
dataset is required to determine the values for the state-action space. Next to this, the values assigned
to actions in certain states are not necessarily flexible with respect to changes in for example fleet size,
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demand forecast or travel times. Haliem et al. (2021) proposes to use a deep reinforcement learning
model to assign passengers in a state-action space where future demand is taken into account. The
assignment based on the predicted value is done in a greedy way to speed up the assignment proce-
dure.

To recap, with the predictions on future demand the fleet can be allocated more efficiently for future
demand. Two main methods of anticipating future demand are evaluated in the literature. In the first
method, some future (artificial) demand is added to the current assignment leading to a bias towards
future demand and increasing the combinatorial problem by adding requests. In the second method,
a certain reward is added in the current assignment phase based on the predicted value for certain
routing. The value of this reward can be determined based on strategic insights or data analysis.

2.5.2. Non centralised control
Most ridesharing research assumes a centralized system where all vehicles can be continuously con-
trolled. In reality, this might not be the only available market setting as multiple companies could offer
these services. Having competitive services might be a desirable setting as well since it could encour-
age competition and improvements in service quality.

In Pandey et al. (2019) three different market settings for ridesharing are discussed, these are
centralized, cooperative and competitive. The centralized system is the most researched situation in
which one controller has complete control of each vehicle in the fleet. This allows the operator to
optimize for all demand and make decisions on the service quality versus operational profits trade-off.
In the cooperative model, companies make an offer for each current customer in the batch. These
bids are combined and the best matches in the batch are made, optimizing the entire batch. Each bid
and request in the batch is seen as equal and the collectively best solution is looked for. To achieve
this, a central bid processor is required that assigns passengers to bids based on a publicly available
algorithm. An important assumption is that all cars make bids only based on their current time required
for each bid they place. In the competitive model greedy assignment is performed for each passenger.
This means that the different operators still make a bid for each passenger. The bids are solely based
on current demand. The passenger is then assigned to the best bid for that passenger. This method
can be extended to requested service by a particular company, for example a request to be transported
in a vehicle from company X.

The results show that a cooperative system can reach almost comparable performance to a central-
ized system. The competitive system performs worse on average and performance deteriorates further
if personal preference from users for a certain brand is taken into account.

For cooperative systems, matchmaking is performed with a central auction algorithm. An extension
to this methodology is proposed in Xi et al. (2021). According to the proposed procedure, both opera-
tors and passengers make a bid for a certain trip. The assignment is made according to a two-sided
auction. This also introduces the ability to differentiate passengers on their willingness to pay.

To sum up, most systems are controlled by a centralized operator that has influence over all ve-
hicles in the system. Other methods of organizing a ridesharing market are possible, but not widely
studied.

2.5.3. Stochasticity in ridesharing
Multiple parameters in ridesharing are often assumed to be fixed, but could prove to be stochastic in
reality. An important parameter that is often considered static, but stochastic in reality, is travel time.
Other stochastic processes could be the time required to enter/leave the vehicle, trip cancellations and
no-shows. In this section, the focus will be on stochastic travel times, as the potential impact is signifi-
cant.

An important aspect to take into account when planning trips, including ridesharing, is the travel time,
as in reality, the duration of a trip is not certain. The travel time can be considered a stochastic variable
that can vary based on traffic conditions and other factors. How to consider the stochastic travel times
is relevant since it impacts all passengers in the vehicles and the people to be picked up. If transfers
to other vehicles, such as public transport are considered, not being late might be even more important.
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Stochastic travel times can be studied in multiple ways. Data can be used to determine the average
speed in New York City for all moments in the day with a moving average for each hour as output (Si-
monetto, Monteil, and Gambella (2019); Hörl and Zwick (2022)). This data is used to predict travel time
for each moment of the day. In effect, a shift in average speed is used to compensate for the average
rush-hour effects to be expected. The resolution of this method is limited to hours and large regions
are used to calculate speeds. In Van Woensel et al. (2008) the average speed is calculated based on
road and vehicle density parameters. This can be used as an estimation with a higher resolution based
on current information (if this is available).

Another option would be to look into the effects of unexpected, local events. This could be done
by revealing the travel time of an edge once the edge is entered. This situation would better simulate
stochastic effects due to accidents for example.

A third method to deal with travel times is to assume that not all information is present. A certain
standard deviation and bias are taken on the expected travel time. The bias could shift over the day to
represent the shift in average speed. A distribution could be used to add the effects of local disruptions.

The use of robust optimization with a one-sided uncertainty box is discussed in
Y. Li and Chung (2020). The proposition is that arriving earlier than planned is fine. The one-sided
uncertainty box is meant to compensate for travel delays.

Besides travel time, there could also be other stochastic events that influence time requirements in
ridesharing. A relevant parameter is the service time required for passengers to get in or out of the car.
This is mainly important as people can be late for the pick-up time. The effects of people being late
lead to accumulating delay (Kucharski, Fielbaum, et al. (2021)). Last-minute trip cancellations could
also be a source of uncertainty. However, this leads to shorter travel times in general as less detour is
needed to make the pick-up.

A method to allow for transfers under travel time uncertainty is described in
Kim and Schonfeld (2014). The main idea can be summarised by taking a buffer that is a function of the
remaining travel time. So for stops close by a smaller buffer can be used as the risk of large disruptions
is smaller. A second aspect researched is who should wait for whom. In the paper, high-demand bus
lines and low-demand bus lines are used. The most logical solution is to let a bus with low occupation
wait for a bus with high occupation.

As mentioned, stochastic travel times are especially important in case the connection to public
transport is relevant for an itinerary. The public transport side of the transport can also be early/late.
Different modes of transport can here have different sources of stochastic travel times as they can be
of different modes. The travel time for a metro does not depend on congestion but is dependent on
delays in the network itself. Buses on the other hand might be affected by traffic, but could also tend
to depart early if the bus is ahead of schedule.

Connecting to these transfers could be accomplished by adding larger time buffers. This is not the
optimal solution as additional constraints limit the solution. The other option is to accept the risk or
accept the waiting cost as part of the collaboration with public transport.

Communication between public transport and ridesharing services might provide better overall ser-
vice for the passenger. This communication could be straightforward if there is one mobility provider but
can become more complex if multiple companies have to share their data. The amount of time gained
by communication would depend on how many of the passengers would use a multi-modal route and
the gains made by communication.

To sum up, multiple stochastic parameters in ridesharing influence the travel time. The most
straightforward way to incorporate congestion effects is to shift the mean velocity in the network over
the day. More complex measures are also possible but come at a computational cost. An important
reason to study stochastic travel times is the inclusion of transfers in a rideshare model.

2.6. Research gaps
Based on the objective to improve the performance of ridesharing systems, multiple research gaps
have been identified that can turn out to be relevant. Different research directions are discussed in
this section and their potential upside is examined. The research gaps are identified to the best of my
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knowledge.

Centralised system or competition
In research on non-centralized ridesharing systems, operators are currently assumed to only optimize
for current demand.

A potential research gap would be to study incentives under different market settings. This corre-
sponds with company strategies on where to position vehicles/how to bid on certain (less profitable)
trips. Research can be performed on how to design incentives in the system to align operator objec-
tives with the best outcome that maximizes social utility.

The value of waiting, transfers from public transport to rideshare and back
As indicated in sections 2.4 and 2.5.3, some research has been done on transfers between differ-
ent modes of transport and stochastic travel times. Being late for a transfer due to congestion is un-
favourable, as it means additional trip time. Vehicles could potentially wait for each other if the delay is
small enough.

A research gap is identified in the communication between different vehicles (including PT) for trans-
fers. Communication could make explicit how long and with what profit waiting can be considered. In-
sights could be created to show the potential gains that are available from communication.
An extension to this topic and the previous topic would be if the value of waiting changes in a different
market setting (non-centralized). Since different parties could have diverse priorities, some incentives
could need specific studying to optimize system performance.

Combination of pre-booked and on-demand requests
In the on-demand version of ridesharing, new demand is revealed over time as it emerges. A potentially
interesting research area is to add some known future demand in an on-demand market setting. A
reason why this is relevant is provided in Ma et al. (2019). In an integrated mobility service system,
people want to move from their origin to their destination. This could thus also include rideshare after
public transport. In this situation, some demand for rideshare is known in advance. This information
could be used to improve the rideshare outcome and thus also benefit the passenger, for example with
less waiting time.

Research can be done on the gains that can be achieved by the ridesharing system from knowing
some demand upfront. Three important aspects can be studied on this topic. First of all, how much
of the upcoming demand is known. This can be considered alongside how far upfront this information
becomes available. Secondly, how system performance is impacted if there is any kind of immediate
benefit for the user. Examples of immediate benefits that could be offered to people pre-booking could
include a no-rejection rule or less waiting time. Lastly, the impact of the spatial and temporal distribution
of known demand can be studied. If there is a certain benefit of booking a trip in advance, then areas
that currently experience the worst service might be expected to use this option more. Another spatial
effect to be studied is related to public transit stations as both first and last-mile travel from transit has
a spatial aspect. Transit systems could also lead to temporal differences when these known requests
are used.

Heterogeneous service
In the reviewed research there is a general assumption that all vehicles in ridesharing are identical. In
real life, this does not have to be the case however.

It could be interesting to do research on fleets with different capacities. This is partly done in section
2.4.2, where buses have a flexible route but do assume vehicles as a feeder. This makes for a system
with two-vehicle sizes, with additional constraints on the larger vehicles. In the current on-demand
algorithms there is experimentation with different vehicle capacities, but not with mixed-capacity fleets.
This might also require a heuristic to make the most efficient use of the larger vehicles or allow transfers.
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An interesting research line could be to consider heuristics that utilize the benefits of different vehicle
capacities in a single fleet. Fleet sizing for mixed-capacity fleets is another subject that is not yet studied
extensively in the literature.



3
Methodology

A state-of-the-art on-demand ridesharing model is used as the starting point for this research. The
model is based on the work in Alonso-Mora et al. (2017).

In this chapter, first the problem formulation is provided. This is followed by a section on the algo-
rithm of Alonso-Mora et al. Thirdly, a section on the adjustments to the method to handle the challenges
of reservations is included.

3.1. Model formulation
The goal of on-demand ridesharing is to assign a set of passenger requests to a set of vehicles with
minimal overall cost and within determined constraints in each time step. Requests are collected in
batches and assigned collectively. The problem takes place on a directional graph G = (N,E), with
N the nodes in the network and E edges connecting nodes. The edges are directional and weighed
based on the average travel time needed to pass the encoded road section.

The simulation works with timesteps of 30 seconds, which is chosen because it offers a balance be-
tween the desirable on-demand characteristics for users and the possibility to combine requests for a
better assignment. Requests are collected during a time step and assigned in batches. This means
that requests have to wait for the next iteration of the model before they are considered. The maximum
time a request has to wait before the assignment method starts is thus 30 seconds. Once the request is
added to the list of requests to be assigned to a vehicle, the algorithm has another timestep available to
solve this assignment. Vehicles that have movement instructions from the previous iteration do move
during this time. After the assignment is made, the vehicle instructions are updated. For example, a
request comes in 12 seconds after the simulation start. This request will be assigned in a batch with all
other requests that came in before the 30 seconds mark. The assignment will be made during the time
step between 30 and 60 seconds. At the 60 seconds mark, the final assignment will be communicated
to all vehicles and their trajectories are updated accordingly.

Requests that will be picked up before the next time step (in this example at 90 seconds) will not be
considered for re-assignment. All other requests, both assigned but not yet picked up and unassigned,
will go back into the pool of requests. The pool of requests will be expanded with new requests coming
in. The request pool will then be used for the next iteration of assignments. Requests that have passed
their maximum waiting time are taken out of the request set and counted as unserved.

Requests are assigned to cars based on the objective to minimize overall waiting and detour time
while staying within the constraints of the system. Also, the number of rejected requests is minimized,
according to a weight function so that it can be compared with induced waiting/detour times.

Waiting time for request r wr is the time between when a request emerges re and when the request
is picked up rp, wr = rp − re. Detour time is the delay a passenger on board a vehicle experiences
compared to an unshared vehicle. The detour time for request r dr is given by the drop off time rd
minus the pickup time minus the minimum travel time rmin, dr = rd − rp − rmin. The waiting time and
detour time combined give the total delay time for a request δr, δr = wr + dr.

15
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The goal of the assignment is to minimize equation 3.1. In this equation, the sum of the detour
times for all passengers on board Pv a vehicle, the total delays for all assigned requests Rok plus the
rejection penalty Πr for all requests that are not assigned Rno, is minimized. This is done for each
vehicle v in the set of all vehicles V.∑

vϵV

∑
rϵPv

dr +
∑
rϵRok

δr +
∑
rϵRno

Πr (3.1)

This equation is slightly different compared to the original paper from Alonso-Mora et al. (2017). The
original paper considers the total delay for passengers already on board. In the proposed implementa-
tion, only the detour time for passengers already on board is considered. This small difference means
that you only consider the cost that you can still influence. A downside is that passengers that had a
long waiting time are now less compensated for that in the assignment procedure when their detour
time is considered. The overall costs of trips will as a consequence be lower. This can have an impact
on the rejection penalty that should be set. Also, assigning trips to vehicles with more passengers
becomes cheaper compared to the original method. This decision is made as a consideration for the
heuristics to be designed. This is discussed further in section 3.3.3.
The model’s objective can be reached by providing the best assignment from the set of requests to the
set of vehicles. This problem is solved with an integer linear problem (ILP). To formulate the problem
as an ILP, the cost of assigning trips to vehicles has to be calculated. A trip T is a group of requests
that can be assigned together to the same vehicle.

A function to determine the best route and corresponding cost for a trip assigned to a vehicle is de-
signed. The cost of a trip consists of the detour time for the passengers on board, plus the total delay
for the requests in the trip. The formula for the cost of assigning trip T to a vehicle v is given in equation
3.2. The function will return “unfeasible” in case the constraints for one of the individual requests is not
respected. This means that the trip will not be added to the potential set of trips. If there are multiple
feasible outcomes, the one with the lowest cost is selected.

Limits on individual constraints ensure the maximumwaiting timeΩ andmaximum detour time∆ are
not exceeded. Furthermore, requests have to be picked up before they can be dropped off. Lastly, the
vehicle capacity can not be exceeded at any time during the trip. Since the waiting time for passengers
on board can not be impacted anymore (and is guaranteed to be within the constraint already), this is
not considered in determining the feasibility of a trip. The limits on waiting time are considered for all
requests in the trip. The detour times are considered for all passengers on board and the requests in
the trip. Furthermore, a check is done that there are at no time during the trajectory more people on
board than the vehicle capacity.

cost(T , v) =
∑
r∈Pv

dr +
∑
r∈T

(wr + dr)

subject to dr ≤ Ω ∀r ∈ Pv ∪ T
wr ≤ ∆ ∀r ∈ T
rp < rd ∀r ∈ T

(3.2)

The trips are used to create a graph linking requests via trips to vehicles. The nodes in this graph
consist of the requests, the trips and the vehicles. There are two kinds of edges in the graph. First,
there are edges between requests and trips that contain these requests. Requests can be part of
multiple trips and trips can consist of multiple requests. Secondly, there are edges between trips and
vehicles that can serve that particular trip. Again, a trip can potentially be served by multiple vehicles
and vehicles can be matched to multiple requests. The cost for each edge between trips and vehicles
is given by equation 3.2.

The constraints in the ILP formulation will ensure that each request is assigned to 1 vehicle or
ignored. Also, each vehicle will have at most 1 trip assigned. The ILP assignment has two sets of
decision parameters. First, ϵi,j ∀e(Ti, vj) is a parameter for all edges between trips and each vehicle
that can serve that trip. This is a binary parameter, whether a trip is assigned to a vehicle or not. Second,
Xr ∀r ∈ R is a parameter if a request is assigned to a vehicle. This is also a binary parameter since
a request can only be assigned to 1 vehicle or not be assigned. Xr = 1 means that a request is not
assigned.
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The ILP has the number of edges in the e(T , v) set, plus the number of requests as decision param-
eters. The number of constraints is equal to the number of vehicles plus the number of requests.

Three subsets are used in this formulation, namely Tv=j is the set of trips that can be served by
vehicle j. TR=r is the set of trips that contain request r. VT =i is the set of vehicles that can serve trip i

The ILP formulation is given in equation 3.3.

minimize
∑
Ti∈T

∑
vj∈V

ci,j ∗ ϵi,j +
∑
r∈R

Πr ∗ Xr

subject to
∑

i∈Tv=j

ϵi,j ≤ 1 ∀vj ∈ V∑
i∈TR=r

∑
j∈VT =i

ϵi,j + Xr = 1 ∀r ∈ R

(3.3)

The ILP uses a greedy solution as an initial guess. The solution will be improved over time. The
ILP problem will be solved using the commercial Gurobi solver under an academic license.

Incorporation of reservations
Reservations can be included in the existing formulation. Reservations can be added to the set of
requests to be assigned as all other requests. The difference with on-demand requests is that reserva-
tions can not yet be picked up once they are revealed to the system. An additional parameter is added
for the reveal time of a request rr. For normal requests, rr = re, for reservations rr is the time the
request is added to the set of requests to be assigned. To ensure the correct implementation of reser-
vations, an additional constraint is needed to determine the feasibility of a trip. This extra constraint
states that a trip is only feasible if all requests are picked up as soon as, or after they emerge. Equation
3.2 should thus be updated to include this extra constraint. The updated equation is given in 3.4.

cost(T , v) =
∑
r∈Pv

dr +
∑
r∈T

(wr + dr)

subject to dr ≤ Ω ∀r ∈ Pv ∪ T
wr ≤ ∆ ∀r ∈ T
rp < rd ∀r ∈ T
rp ≥ re ∀r ∈ T

(3.4)

3.2. Existing algorithm
An important challenge in making the system work is in determining the cost of trips. Since there is a
large computational cost to determine trip costs, this has to be executed efficiently and in an effective
order. To reach this goal, multiple steps are taken. First, the requests are grouped in the RV graph,
which is then extended to the RTV graph. This graph is used as input for the ILP formulation to assign
requests to vehicles. Afterwards, idle vehicles are rebalanced for improved performance.

The steps taken are visualized in figure 3.1. Requests are linked with vehicles and if relevant pair-
wise couples. Then requests are combined into trips that are in turn linked to vehicles. Finally, trips are
assigned to cars and idle vehicles are used to rebalance. The details of each step are explained in the
following sections.
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Figure 3.1: Visualization of the steps taken in Alonso-Mora et al. (2017).

3.2.1. Request Vehicle (RV) Graph
The main step taken in creating the RV graph (initial combinations of requests and vehicles) is to
connect requests to vehicles that could serve these individual requests within the constraints. These
connections are built upon further in the next step. Secondly, in the RV graph pairs of requests that
could be serviced together are connected. This is done by computing the cost for an empty virtual
vehicle starting at one of the two nodes. If the result is a feasible trip, the pair of requests is accepted.
Pairs of requests that can not be serviced by an empty vehicle starting at one of their start locations can
in no case be serviced by a real vehicle. This check is a method to reduce the number of combinations
that have to be studied for feasibility in later steps. This is implemented since checking these trips for
multiple vehicles is a waste, since the outcome will remain unfeasible. This method is only implemented
for trips of size 2 (a trip consisting of 2 requests). The same method could also be applied to larger
trip sizes but might be less beneficial there. The potential number of trips for larger sizes increases ex-
ponentially, while constraints on the vehicles will makemost of these trips irrelevant to consider anyway.

Another consideration is that for a trip to be feasible, all sub-trips have to be feasible individually. In
this context, it means that if a request can not be serviced by any vehicle it will not be considered for
the pairwise part of the RV graph. This is because the pair would never be able to be assigned to
a real vehicle, even though the pairwise cost might be feasible. This is because the pairwise cost is
calculated for an empty vehicle starting at the start node. In the RTV stage of the process, this property
means that there is a computationally cheap way to determine if it is reasonable to compute the cost
of a trip.

3.2.2. Request Trip Vehicle (RTV) graph
In this step, requests are combined into larger trip sizes and matched to available vehicles. This is
implemented on a per-vehicle basis. The implementation is multi-threaded to speed up the calculation
time (as are the other steps), this does not affect the steps taken. Single requests that can be added to
vehicles are already calculated in the RV graph. In the RTV graph, requests are bundled into trips and
then connected to vehicles that can serve these bundled trips. For each vehicle, trips are calculated in
increasing size, as long as the calculation time limit is not met and there are more options to consider.

The process of making the RTV graph is the same for each vehicle. Initially, the RV graph is
checked for single requests that can be added to the vehicle. Secondly, all possible combinations of
two requests are created, based on the individual requests that can be served by the car. If the combi-
nation of the two requests is feasible according to the check on the pairwise feasibility in the RV graph,
the cost of serving that trip with this vehicle is calculated.

Trips of larger sizes are created if the available computation time has not been yet been exceeded.
This is done by taking two trips of size k-1 with k the size of the trip to be made. So for a trip of 3,
two trips of size 2 are considered. If there is one request of overlap between the trips (so 3 different
requests), it is checked if all possible subsets of this trip exist. For a trip of size 3, there are 3 possible
subsets of size 2. More generally, for a trip of size k, there are k subsets of size k-1. If all these subsets
can be served by the vehicle, the cost for serving the trip is calculated. This operation to check the
feasibility of the subsets is relatively cheap as it is a lookup operation for edges that can be served by
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this vehicle. If not all subsets can be served, there is no need to calculate the cost since the trip will be
infeasible anyway.

The same process is used to determine which combinations of trips of size 3 are used to create
trips of size 4. Trips of size larger than 4 are not considered, as the cost for calculation increases
exponentially, while the usefulness of the calculation is limited in the experimental settings applied.
The possibilities to assign larger trip sizes are influenced by the overlap in demanded trajectories for
passengers and vehicle capacity.

It is important to consider the order in which trips are calculated since there is a limited time to
compute trips. The method to determine which requests to combine is based on the idea of mixing the
trips with the lowest cost first. This is achieved by ordering the cost for the trips of size k-1. The ordered
trips can be represented as a matrix as in figure 3.2. The red squares do not have to be considered
since they are a combination of the same request. This can not lead to the correct trip size. The purple
squares are not considered since they are the same as the squares opposite the diagonal. The values
on the x and y axis are the trip number, in order of cost to assign to the current vehicle. All these trips
are of size k-1. The trip numbers are for illustration purposes only.

The combination of trips to be checked can be implemented horizontally through the matrix, as in
figure 3.3a, or vertically as in figure 3.3b. The arrows in the figure indicate which trips are first tried as
a combination. The advantage of running through the matrix vertically over horizontally is that for the
same amount of tries, more low-cost trip combinations are tested as a combination. A trip with a low
cost indicates that there is more available delay before individual constraints on waiting/detour time are
violated. Therefore, it is more likely that these trips are able to be combined into larger trips.

In a 100x100 matrix (meaning 100 feasible trips of size k-1 for this vehicle) after considering 80
combinations, the best trip has been combined with 80 trips of increasing cost with the horizontal setting.
For the vertical setting, the 12 lowest-cost trips have all been cross-examined. This is no guarantee for
finding better options, but a heuristic to find better options earlier on in the process since trips with a
high cost indicate a lot of delays. The high delay reduces flexibility as it is more likely you would reach
the constraint for waiting or detour time for one of the requests.

If a trip is viable and not yet in the RTV graph, the trip node is added. The edges linking the requests
that make up the trip are added as well. If the trip node was already present in the graph (because it
was added when calculating the edges for another vehicle), only the edge is added to the graph.

Once the time limit for the calculation of the RTV edges for a specific vehicle is reached, the edges
for the next vehicle are calculated.

Figure 3.2: The different trips that can be combined (numbers are for illustration purposes only).
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(a) Combinations of trips horizontal through the matrix. (b) Combinations of trips vertical through the matrix.

Figure 3.3: Different orders to make combinations from trips.

3.2.3. Solve
In the solve step, trips are assigned to vehicles according to the objective function and within the
constraints. The problem is implemented as an integer linear programming problem (ILP). In this for-
mulation, each trip is assigned to a vehicle or not. This is a binary process.

This model can be visualized as a matrix with each row a vehicle and each column a trip. Based
on the constraints trips can, or can not, be assigned to a vehicle. This means that the value can be 1
or 0 if there is a potential match and 0 if there is no potential match between the vehicle and the trip.
The constraints on trips assigned to vehicles mean that the sum of each row is 1. The constraint on
each request being assigned to at most 1 vehicle means that the sum of all columns (trips) where that
request is part of, is at most 1.

Since most trips can not be serviced by a lot of cars, the matrix will be very sparse and thus not
efficient to model as a matrix. If it would be modelled as a matrix, a lot of variables are added that have
to be 0 by constraint. Therefore, a better implementation only adds the variables that are potentially
non-zeros.

The initial guess for a solution is based on a greedy initialization. Trips are assigned in decreasing
size and with increasing cost over the vehicles. The principle is to serve as many requests for the
lowest cost. Having an initial guess can improve the solving time for the ILP solver. Furthermore, it
guarantees a feasible solution which is incrementally improved upon.

3.2.4. Rebalance
In the rebalancing step vehicles that are not assigned to requests and don’t have passengers on board
are considered available for rebalancing. The goal of rebalancing is to move vehicles from areas where
they are not useful to areas where they are potentially more useful. This is done by re-directing those
vehicles to areas where there currently is unserved demand. These vehicles are not able to serve that
particular demand (otherwise they could have been assigned to that demand), but the idea is that it will
allow more requests to be served in the future. This is because areas with unserved demand are more
likely to also contain demand in the future that can then be serviced by the vehicle.

This problem is implemented as a separate ILP to solve. The objective is to minimize the total travel
time for all idle vehicles and still assign them to nodes with unserved demand. Constraints are that
unserved demand nodes can be assigned to at most 1 vehicle and that each vehicle can be assigned
to 1 unserved demand origin node.

3.3. Additions to algorithm
The inclusion of reservations in an on-demand ridesharing system brings both computational chal-
lenges and potential upside. Adjustments are made compared to the existing algorithm to accommo-
date reservations computationally and increase the potential benefit. This part of the methodology
contains the core of the practical research and findings of this thesis.
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3.3.1. Challenges from reservations
First of all, reservations that are available significant time in advance could in the worst case be available
to be added to each trip of a certain vehicle. In this case, the number of potential trips would be
multiplied by 2, plus 1 (only serving that reservation) for each reservation available to the vehicle. This
phenomenon is shown for 1 reservation in figure 3.4, where a blue reservation is added.

A second effect is that reservations can be assigned to more vehicles than on-demand requests.
Reservations are revealed to the system longer in advance, thus allowing more vehicles to serve them.
Therefore, extra trips have to be computed for more vehicles compared to normal requests.

Not only are there more trips, but the trips also become longer and thus significantly more expensive
to compute. As shown in table 3.1a and 3.1b, larger trip sizes are especially expensive as you compute
more new passengers. Longer trips are more expensive since there are more possible permutations
of actions in the trip.

Since reservations can be added to more trips than on-demand requests, the inclusion of reserva-
tions has a significant impact on the amount of larger trip sizes that are available.

Lastly, reservations stay in the request pool longer than on-demand requests. This means that the
potential trips are computed more often as well. An on-demand request with a maximum waiting time
of 5 minutes would at most be considered in 10 iterations (with time steps of 30 seconds). A reservation
revealed 10 minutes in advance would be considered between 20 and 30 iterations.

On the other hand, the impact of a reservation that is placed far in advance could be limited with
logic checks to keep the number of permutations somewhat limited. For example, a reservation that is
revealed far in advance can be limited to being picked up and dropped off after all other passengers
are served. In this case, the number of permutations would not grow. However, most situations will be
somewhere in between. They can be added to a lot of trips and have multiple possible permutations.
The growth in practice will be discussed in the results section 5.

It should be noted that additional normal requests have a scaling effect on the computational load
as well. However, reservations do scale much worse in practice.
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Figure 3.4: Worst case growth in RTV size if a blue reservation is added.

Methods to deal with the increased computational load from the inclusion of reservations have to be
implemented. In this section, multiple suitable methods are explained. The biggest gains can be made
in how to calculate the cost of a trip and which trips to calculate. Furthermore, additions to the model
are made to increase the potential benefit of reservations and to reward reservations made. Lastly,
reservations are only revealed to the system a set time in advance. In case reservations are revealed
to the system 10 minutes in advance, a reservation placed a day in advance will be treated the same
as a reservation placed 12 minutes in advance. Both reservations will be revealed to the system 10
minutes in advance and are not differentiated in any way.

3.3.2. Travel function
In the travel function, the cost of adding a certain set of requests to a vehicle is calculated. The cost
in this case is the sum of the waiting times for all passengers that are not yet in the car and the sum
of the detour time for all passengers, including those in the car. Trips are made by checking all the
feasible permutations in which pick-up and drop-off can happen. Only the nodes where pick-ups/drop-
offs happen are modelled. The time to move from node to node is read from a look-up table. The
induced delays are added up and compared to the constraints at each step of the route. The route
determination has the option to wait at nodes in case this is beneficial for the overall delay and does
not violate any of the constraints.

The most expensive part of determining the cost of a trip is to compute the cost of all feasible permu-
tations. A permutation in this case means the sequence of pick-ups and drop-offs for all passengers.
The goal is thus to limit the permutations to be checked. Two methods are considered in this section.

The first decision is to only compute trips based on an insertion heuristic. The second step is to use
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logic checks to determine if a certain permutation of a trip is sensible to compute.

The order in which the passengers can be dropped off is limited. Passengers that are already in the car
do not shift in the drop-off order. This is an insertion heuristic, where new requests are inserted in the
existing order, without shuffling the existing order. This heuristic limits the number of combinations that
have to be checked for cost. On the other hand, potentially better options are not considered because
of this heuristic. Since the drop off order is set, the number of feasible permutations is reduced by the
factorial of “Passengers_on_board”.

A reason to use the insertion heuristic is to speed up the calculation of the travel cost. In table 3.1a
and 3.1b the potential number of feasible, unique permutations are shown for the insertion heuristic
and a complete shuffle respectively. In this number of permutations, the constraint that requests have
to be picked up before they can be dropped off is implemented. The other logic checks are not used,
as they depend on the specific scenario. The results are thus a worst-case scenario. The difference
between the numbers in table 3.1a and table 3.1b is the factorial of “On_Board_passengers”.

An important conclusion is that more new passengers explode the number of options because 2
parameters are added, the origin and the destination locations. Passengers already on board only add
1 parameter, their drop off moment.

New Passengers

On board
passengers

1 2 3 4
0 1 6 90 2520
1 3 30 630 22680
2 6 90 252 113400
3 10 210 7560 415800
4 15 420 18900 1247400

(a) Number of potentially feasible permutations with the insertion heuristic.
New Passengers

On board
passengers

1 2 3 4
0 1 6 90 2520
1 3 30 630 22680
2 12 180 5040 226800
3 60 1260 45360 2494800
4 360 10800 453600 29937600

(b) Number of potentially feasible permutations without insertion heuristic.

Table 3.1: Number of unique feasible permutations with and with the insertion heuristic with a vehicle capacity of 4.

Multiple logic checks can be done to determine if it is sensible to compute the cost for a certain
permutation. Permutations are different sequences in which pick-up/drop-off actions are planned. The
initially performed checks are listed in order below:

1. The permutation does not contain an infeasible subset
2. No drop-off can happen before the pick-up of that request (constraint)
3. The order of drop-offs for passengers already in the car remains the same (insertion heuristic)
4. Reservation sequence limitations
5. The vehicle capacity should not be violated at any time during a trajectory (constraint)

In case a subset of a permutation is determined to be infeasible, all other permutations starting with
this subset will also be infeasible. For example, if the permutation 1-2-3-6-5-8-7 is infeasible because
action 6 happens before action 5 (say, 5 is the pick up of a passenger and action 6 is the drop off for that
passenger), then you know already that the permutations 1-2-3-6-8-5-7, 1-2-3-6-8-7-5, 1-2-3-6-5-7-8,
etc are also infeasible. This is because action 6 still happens before action 5. It is easy to check if a
permutation starts with an infeasible subset because of the encoding. This check is performed first, as
it makes other checks unneeded if it is a limiting factor.

No drop-off can happen before the request’s pick-up has happened means that only passengers
that were already on board can be dropped-off. This excludes permutations where a passenger would
be dropped off before being picked up.



3.3. Additions to algorithm 24

The order of drop-offs for passengers already on board is set, because of the insertion heuristic.
If new passengers are picked-up during an iteration, the order will be updated based on the planned
moment to drop off the new passengers.

For reservation sequence limitations, there is a limit on where reservations can be in the sequence
of pick-up/drop-off orders. The time a reservation emerges (can be picked up) has to be before the
last potential drop-off time for a request still on board that is later in the sequence. For example, a
request that emerges in 10 minutes can not be placed in the sequence before a request that has to be
dropped off within the next 8 minutes. The last potential drop-off time is the time a passenger got on
board plus the minimal travel time for that passenger plus the maximum detour time. This check can
affect reservations and thus limits the computational cost of including reservations.

Furthermore, the vehicle capacity should not be violated at any time during a trajectory to be consid-
ered. Since pick-ups/drop-off permutations are considered, it is straightforward to count the occupancy
beforehand.

Once a permutation passes the logic tests, the actual feasibility is checked based on waiting and de-
tour time constraints. If the permutation turns out to be infeasible, the subset leading up to that point is
added to the list of infeasible subsets. So if a certain sequence leads to exceeding the detour constraint
of request 2, the part of the sequence leading up to this point is added to the infeasible subset. The
permutations that include this part (but a different sequence after this part) will also be infeasible as the
same constraint will be violated anyway.

The same idea is applied to the other logic checks. If a permutation is not feasible according to
one of the checks, the subset leading to that point is added to the infeasible set. Sn efficient stopping
criterion is available because of the encoding used.

The road network is pre-processed such that the shortest path between every node is calculated in
advance. Therefore, only the start and end nodes of the requests in the trip are considered. Since the
route between these nodes can be filled in later, it is not relevant to model this at every permutation.
The distance between each pair of nodes is given in travel time and read from a look-up table.

For completeness, a speed factor is included in determining the used time. This would make it
possible to simulate with different average speeds. For example, a scenario where all vehicles can
travel 20% faster can be simply simulated.

If there is no feasible route for a certain trip, the function will return that the trip is unfeasible. The
edge will thus not be added to the RTV graph. This is a guarantee that all trips that are eventually
assigned will be feasible.

3.3.3. Heuristics
Multiple heuristics have been designed to reduce the computational load while maintaining as much
as possible of the advantages from reservations. The goal of the heuristics is to reduce the number of
trips to be computed. The different heuristics will be discussed in this section. In the section on results,
the effect of the different heuristics is compared to see where the most gains are possible. Heuristics
are designed to be simple to be efficient in the implementation and to ensure the results can be more
generalized and trends are valid over multiple data sets.

The designed heuristics can be split into two categories. First, some heuristics can apply to all
requests/vehicles. Secondly, there are heuristics that specifically apply to reservations.

Heuristics applied to all requests
Maximum requests per vehicle A straightforward heuristic to apply would be to sort the cost of
assigning trips of size 1 to each vehicle and only select the X best requests for combinations in larger
trip sizes for this vehicle. X is here a variable for how many requests can be assigned to a vehicle.
This heuristic can also be applied to larger trip sizes. The method is also implemented to prune the
RTV graph at trips of size 2.

The edge between a vehicle and the not selected trips is still added in the RTV graph, as the cost for
combinations that are not used for larger trip sizes is already calculated. The working principle of this
method is that fewer requests become available for larger trip sizes, thus limiting the number of large
trip sizes that have to be calculated. An underlying assumption is that cheap trips can be combined
into longer trips, whereas expensive trips come closer to the waiting/detour time constraints and thus
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are less likely to be part of successful longer trips.

Maximum vehicles per request Another option to limit the number of large trips is to constrain the
number of vehicles a request can be assigned to in each iteration. In this method, the cost to assign
a trip of size 1 to all available vehicles is calculated. Only the Y vehicles with the lowest cost can use
this particular request to create trips larger than size 1. Y is here a variable to be tuned. The trip stays
available for assignment to the other vehicles since the cost is calculated already. Themain idea behind
this heuristic is that requests will usually be serviced by vehicles with a low cost. Requests that have a
low cost for a specific vehicle are a better match with the location of the vehicle and the destinations of
current onboard passengers for this vehicle. Requests with a low cost impose less constraint on trips
that they are matched with and thus could on average be successfully matched with more other trips.

Limit the trip size Based on the results from table 3.1a, large trip sizes (new passengers) cause
longer computation times. To reduce this problem, a limit on trip sizes can be imposed. A strict cap on
the trip size to be assigned is the most straightforward way of decreasing the computational cost and
also the least refined. A more refined approach where the maximum trip size is calculated could be
based on the current number of passengers. It is not unreasonable to assume that vehicles with more
onboard passengers are on average a worse match for large trips because more constraints have
to be considered. An example of this method would be a limit on the new passengers plus current
passengers on board.

Heuristics applied to reservations only
Maximum vehicles per reservation Similar to the “Maximum vehicles per request” method, only
applied solely to reservations. The idea is that reservations cause the increase in computational time
compared to the base scenario. Therefore, restricting the growth in computation time can be limited
by restraining reservations to be assigned only to a set of vehicles and thus having fewer vehicles with
more large trip sizes to compute. This heuristic is applied again at each iteration.

Restrict future requests to a set of vehicles In this heuristic, reservations are restricted to a set
of vehicles that can serve the request. The set of vehicles is based on the vehicles with the lowest
cost of serving this vehicle once it is revealed to the system. Contrary to the heuristic before, the set
of vehicles is not updated over time. This does impose a stricter constraint on RTV growth, as not the
best X vehicles are used to construct large trips, but a pre-determined set that was best at the moment
the requests were revealed.

This method does not consider other reservations that have been assigned to this vehicle, but only
passengers that will be on board at the start of the next iteration are included. This decision is made
since requests that are not yet picked up can still be assigned to other vehicles and then be irrelevant to
the cost determination. An additional parameter to this heuristic is whether or not a request is put back
in the general pool so that it can be assigned to all vehicles a certain time before, or once, it emerges.
This allows for a middle way where some vehicles will consider this request once it is revealed, but if
the system finds a better alternative shortly before it emerges that can be allowed.

3.3.4. Pledged service constraint
An additional constraint that can make ridesharing more user-friendly is implemented. The effects will
be discussed in the results section.

The constraint states that all passengers that have been assigned to a vehicle before, and thus ex-
pect to be served, have to be served by the system. This is implemented by formulating the constraint
that all requests that were assigned before, have to be assigned to a vehicle in this iteration as well.
Since requests that are picked up are removed from the list of requests to be assigned, this phrasing
is equivalent.
Two new subsets are defined for this constraint. Rdb for demand that was assigned before and Rrb

specifically for reservations that have been assigned before.
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In mathematical form this can be written as:∑
TiϵTr=k

∑
jϵVT =i

ϵi,j = 1 ∀r ∈ Rdb (3.5)

A slightly more specific version of this constraint can be formulated to only apply this constraint to
reservations. ∑

TiϵTr=k

∑
jϵVT =i

ϵi,j = 1 ∀r ∈ Rrb (3.6)

To ensure these constraints can be satisfied, it is required to add the edge of the previous assign-
ment to the RTV graph for all vehicles. A reason the edge is not yet in the RTV graph could be that
the computation limit for a certain vehicle was reached before the specific trip was calculated. The trip
to compute can be slightly different compared to the previous assignment as some requests can be
picked-up already. The previous assigned trip should always the feasible as the vehicle has taken that
route as the trajectory to follow. To guarantee a feasible solution, the previous solution is used is as
the initialization of the ILP in case the pledged service constraint is applied. This guarantees a viable
solution to be found as the previous assignment will be feasible.

The subsets of the previous assignment are not separately added to the RTV graph. Thismeans that
there is a reduced chance of re-assigning these requests to different vehicles since the other requests
can not be assigned as a subset. However, as subsets are smaller trips that are computed earlier in
the process, most likely they have been added already.

3.3.5. Vehicle options
Vehicles have to finish an edge they have started on. For route planning, this means that the vehicle
will start at the end node of the current edge. The remaining time for the current edge is added to the
travel cost for moving towards the first node. In case an arc will not be finished in the next time step,
then it is not necessary to assign new requests as the vehicle can not re-plan its route before the next
time step anyway.

This is a heuristic where some slightly less optimal assignments are made in return for less compu-
tational time. The worse assignment can be caused by assigning a request to a different vehicle as the
rejection penalty can be higher than the total delay caused to this vehicle. A straightforward method
to maintain the benefit and lose the downside is to only calculate the last assigned trip for this vehicle.
This does still allow for re-assignment of requests if it is more beneficial system-wise but does not neg-
atively impact the solution space too much. A small downside to the implementation is that subsets of
the trip are not calculated. Therefore the flexibility is reduced as it became harder to re-assign requests
from this trip to other vehicles.

Another aspect of a vehicle update is the waiting at node function. Based on the inclusion of reser-
vations, it might be relevant to wait a limited amount of time at a node since you know a request is
going to emerge there at a certain time. The ability to wait is included in the calculation of the best
route in a trip. In case waiting is employed in a route, an additional node is added in the route, and an
additional time and node pair is added.

The node is the same as the previous node (you can only wait at nodes), but the arrival time is later.
The reason not to increase the time of arrival at that node is that it would make the system think the
vehicle would be very slow to reach that node. This would imply that the vehicle is not available for
re-assigned in the meantime, while in reality the vehicle is just waiting and can be re-assigned at any
time if that would be better for the system.



4
Experimental setup

In this section, the experimental setup is discussed in detail. This includes the requests and road
network used, the vehicle initialization and the warm-up procedure. The KPIs to be evaluated are
introduced as well. Furthermore, the default parameters for the experiments are discussed and a
second data set to experiment with the sensitivity is elaborated on. Last, the hardware used is listed
for reproducibility purposes.

4.1. Network layout
The network for the experiments is from Manhattan, New York City. The graph describing the network
consists of 4091 nodes and 9454 directional edges. The cost for each edge in the graph is given in
seconds and based on the average real-world travel time for that specific edge. The shortest route and
distance between each pair of points in the graph is calculated beforehand using the Dijkstra algorithm
and stored in a lookup table. The cost to go from a node to itself is always set to 0. The distance look-up
table is a matrix of 4091 by 4091 with the cost to go from each node everywhere. The matrix has to
be filled, as the edges are directional. To compute routes, the best next node to go to is determined
for each node pair in the network. This means that if you want to go from A to B, you look at row A,
column B. It will state what node you need to go to next, say F. You then iterate to row A, column F. You
continue this process until you reach node B. With this method, you have to store less data, as only
nodes are stored instead of complete routes.

An option to vary the speed of vehicles is implemented. This is done by creating the option that
vehicles travel more/less distance per second of simulation time.

4.2. Request creation
Requests are taken from actual data for taxi demand in Manhattan from 12 AM till 1 PM, on the 15th of
January 2013. The set of requests consists of 10784 requests, of which 226 have the same start and
end point and thus are neglected. This results in 10548 valid requests to be considered. Each request
has starting and end coordinates. These have been matched to the closest node in the road network.
The requests consist of pick-up and drop-off nodes, request time and group size. For the numerical
simulations run, all group sizes are set to 1. The request times are given in minutes. The requests for
each minute are split in half and assigned to start times for each half minute. This is done to have the
requests enter the system spread more evenly over the time steps in the model.

In figure 4.1, the locations where the requests originate and want to go to are shown. Uncoloured
areas have a very low origin/destination density. The images do not show from where to where demand
flows.
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(a) Spatial distribution of the origin nodes for requests. (b) Spatial distribution of the destination nodes for requests.

Figure 4.1: Request origin/destination distribution.

4.3. Vehicle initialization
The vehicles in the system have to be assigned a starting location before the simulation starts. The
decision is made to have a uniform distribution over the network to start with. This is implemented as
every Xth node has a vehicle with that start location. X can be determined by rounding the number of
nodes in the network (4091) by the number of vehicles. In the case of 1000 vehicles, every 4.091th
node will have a vehicle. Since vehicles are initialized at whole nodes, a rounding method is used. This
means vehicles will be initialized at nodes 1, 5, 9, etc in this example.

Results have been generated for 750 and 1000 vehicles, in some relevant cases, the scenarios have
also been simulated with 1250 vehicles. In the result section, the results for 750 will be highlighted while
the other results are placed in the appendix. The reason to discuss the results with 750 vehicles in more
detail is that the differences are slightly larger and trends are slightly clearer.

4.4. Test scenario
The standard test scenario used consists of a warm-up phase and a “real” part. The goal of the warm-
up phase is to approximate what the initial conditions would be with service in the previous hour. This
includes the location and occupation (with the accompanying constraints on waiting/detour time) for
each vehicle.
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(a) Assignment to vehicles without a warm-up phase. (b) Occupation of vehicles without a warm-up phase.

Figure 4.2: Average vehicle assignment and occupation without a warm-up phase.

Figure 4.3: Request distribution over time.

4.4.1. Warm-up phase
In the warm-up phase, 5250 requests are added to the system over half an hour. This is approximately
half of the requests that will enter the system in the hour of “real” simulation. This means that the
workload will be equivalent and thus that vehicle occupation and positions are representative. The set
of 5250 requests is randomly drawn without redraw from all possible requests and equally spaced over
the available time for warm-up. Spacing uniformly over time is approximately similar to the request
emergence rate during the real experiment, as is shown in figure 4.3. The implicit assumption is made
that the number of requests and the origin/destination ratios are similar to the current data set.

The need for a warm-up phase is shown in figure 4.2. Time is needed before steady-state behaviour
is reached. A steady state is desirable as it shows the impact on prolonged performance.

To ensure that the conditions at the end of the warm-up are as similar as possible to the “real” ex-
periment, the same percentage of requests are considered reservations. This is necessary since reser-
vations do increase the average vehicle occupation. Furthermore, the same parameters for heuristics
are used.

After the warm-up time, the KPIs are reset to monitor the behaviour of the system from the “real” ex-
periment. The distance travelled by the vehicles is reset to 0. The state data from the solve time, solve
state, RTV building time, rebalance time, vehicle occupation and assignment and total computational
time for each iteration are reset. The warm-up requests are still available for pick-up and assignment
as long as their maximum waiting time is not violated. This is because removing them would cause a
decrease in assignments and vehicle occupation.
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Figure 4.4: Assignment to vehicles with a warm-up phase.

4.4.2. Test phase
In the real test phase, the performance of the system is monitored and stored. The actual test consists
of 10548 requests.

The inclusion of a warm-up phase as described above leads to average vehicle assignment as in
figure 4.4. As can be observed, the starting level of vehicle assignments is much more in line with the
rest of the experiment. Therefore, the experiment is considered to have reached a steady state before
the KPIs are recorded. The dip in assignments at the end of the simulation is because there are no
reservations and requests included from the next hour of operation. The simulation ends when there
are no more requests, which happens once the last request is served or retracted because the waiting
time constraint has been violated.

4.5. Reservations
Requests are called reservations if they are revealed to the system before they emerge. This means
that the system is aware that a request with those specifications will emerge at a certain time from now
on. The system can thus already assign the request. For a request to emerge means that the first time
it can be picked up has happened. For “normal” requests, this is the same time as when that request
is revealed to the system.

Reservations can be placed any time in advance. In the experiments, all requests will be revealed
to the system X minutes before they emerge, with X a variable to be examined. The motivation to show
reservations only a set time in advance is the growth in computation time as described in section 3.3.1.
The focus is on reservations that are revealed shortly in advance.

Two different cases of requests as reservations will be used during testing. In the case of “random
reservations”, a sample of all requests is selected and the reveal time for these requests is reduced
with the time in advance the requests are to be revealed to the system. In the case of “rejections
as reservations”, the rejected (unserved) requests from the base case (without reservations) can be
selected to become reservations for a new experiment. This is a scenario where more difficult requests
make reservations to improve their service.
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4.6. Evaluation parameters
Multiple key performance indicators (KPIs) will be used to evaluate the performance of the system. The
different KPIs used are listed below. Not all KPIs are equally relevant to evaluate different aspects of
the model. The relevant KPIs will be discussed for each result.

• Service rate
• Service rate for reservations
• Waiting time, detour time and total delay time
• Distance ratio
• RTV build time
• Computation time
• Number of RTV edges

Service rate is a number that indicates how many of the requests are serviced by the system. This
means requests that are picked up, transported and dropped off within the time constraints. The service
rate is given as a fraction of all requests placed, both normal requests and reservations. The service
rate is also determined for reservations. This provides insight into the differences between normal
requests and reservations.

The average waiting and detour time for each served request is monitored. The sum of these two
values provides the average total delay experienced by people in the system.

The distance ratio is a parameter to show the efficiency of the vehicle’s distance travelled. The
distance ratio is the sum of all effective distance travelled divided by all vehicle distance passed. Ef-
fective distance is the minimum distance between the origin and destination for a request, this is the
route an unshared vehicle would take. By using this ratio, the KPI tells something about how efficient
the sharing that the system provides is. It is influenced by how many people are on board and how
much of a detour they experience. It also includes rebalancing distance and automatically adjusts for
the number of requests served.

RTV build time is the time spent on creating the RTV graph. This part should be a heavy part of the
simulation. It is only the time for the “real” requests, the warm-up phase is not considered here.

Computation time is the total time used for the computational steps. This means creating the RV
and RTV graphs and solving the ILP problem.

The number of RTV edges indicates how many trips can be assigned to vehicles. This gives an
impression of the solution space for the assignment algorithm to use for the best combinations of
requests and vehicles.

4.6.1. Default parameters
The experiments will test different parameters for the system. In order to keep results comparable,
the other parameters will be set as the default parameters described in this section unless mentioned
otherwise.
Heuristics are by default not applied unless stated that they do. The pledged service constraint on
requests that have been assigned before is also not used in the default settings.

Parameter Default value
Maximum waiting time 300 [s]
Maximum detour time 300 [s]
Vehicle capacity 4
Rejection penalty 10
Reservation penalty factor 2
RTV build time 75 [s]
ILP solve time 15 [s]
Maximum trip size 4

A rejection penalty of 10 means that the rejection penalty is 10 times larger than the maximum
waiting time. A reservations penalty factor of 2 means that the rejection penalty for reservations is
twice as high as for normal requests.
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RTV build time is implemented as the total time available to generate the RTV graph of all vehicles.
The time is divided equally among the vehicles. As not all vehicles reach the time limit, computation is
significantly faster in most cases.

4.7. Sensitivity analysis
The sensitivity towards the underlying request data will be examined. A second set of requests from
Manhattan is used for this purpose. The control set is taken from the morning peak. The morning re-
quest set consists of 28030 requests. To be comparable with the noon data set, 10548 unique samples
will be drawn from this morning hour. The distribution of origin/destination nodes is shown in figure 4.5.
Compared with the original distribution from figure 4.1, significant differences are observed, therefore
this data set can be used for validation of the sensitivity to the demand data.

(a) Spatial distribution of the origin nodes for requests.
(b) Spatial distribution of the destination nodes for

requests.

Figure 4.5: Request origin/destination distribution used in the sensitivity test.

4.8. Hardware used for simulations
For the results to be as comparable as possible, all simulations are performed on the same hardware
with minimal background programs running. For reproducibility, the relevant computer specifications
are provided below.

• CPU: Intel i7-4770 quad core
• RAM: 8GB



5
Results

In this section, the results from different experiments are discussed. First, a scenario without benefits
for reservations is tested. Second, a test on available computational time is performed. Third, the
effects of benefits for reservations are evaluated. This is done for the pledged service constraint and
increased rejection penalties. Fourth, different heuristics are evaluated to speed up the process. Fifth,
the heuristics and pledged service constraint are applied to test performance with more available infor-
mation. Sixth, the sensitivity with respect to the request data is evaluated. Last, the performance of
the model is tested during morning rush hour to evaluate performance at a large scale.

5.1. Reservations without benefits
Initially, the system will be tested without benefits for reservations nor heuristics in order to see the
potential system-wide effects. Compared with the default settings, the reservation penalty factor is set
to 1. It can be expected that by having additional information on future demand without cost to that
information (optimization-wise, computationally you still have to pay the price), a better solution will be
found. Both more reservations and reservations that are placed longer in advance will lead to better
results.

The results for this simulation are shown in table 5.1. The rows indicate the percentage of reservations.
A number as a percentage indicates that random requests from the set are taken as reservations. Re-
jections in this column mean that all requests that are not served in the scenario without reservations
will be considered as reservations for this experiment. Each column indicates the time in advance the
reservations are revealed to the system. A time of 0 means that there are no reservations revealed
earlier to the system.

Each cell contains the outcome for a simulation run with the settings as in the row/column. There
are five numbers in each cell. The top number shows the overall service rate. The second number is
the service rate for the reservations in the system. The third numbers indicate the average total delay
served passengers experience. The fourth number is the ratio of effective distance travelled. This
is the the effective passenger distance travelled divided by total distance travelled from all cars. The
effective distance a passenger travels is the minimum distance that trip would be if the trip would be
unshared. The fifth number is the simulation time needed for that particular run in seconds.

33
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Time revealed in
advance [minutes]
5 10

0%

0.692
-
274
1.06
82

0.692
-
274
1.06
82

Random
reservations 10%

0.71
0.842
270
1.09
231

0.726
0.841
267
1.11
901

Service rate (SR)
Reservation service rate
Average total delay [s]
Distance ratio
Simulation time

20%

0.737
0.849
267
1.09
430

0.749
0.866
263
1.14
3064

30%

0.746
0.844
265
1.13
738

0.76
0.866
262
1.15
6034

Rejections as
reservations 30.8%

0.749
0.728
266
1.13
705

0.77
0.777
273
1.15
5714

Table 5.1: Performance with reservations for 750 vehicles in case of no benefits for reservations and no heuristics applied.

Service rate improves with more information, both with more reservations and reservations that are
revealed to the system longer in advance. The maximum increase in service rate with this setup is
from 69.2% up to 77% in case the rejections are reused as reservations, this is an increase of 11.3%.
Based on the trends in the table, the maximum benefits could be larger in case of more reservations
are placed or reservations are revealed longer in advance to the model. However, one would expect
diminishing returns with more information, as some vehicles are already assigned optimally at least
some iterations with the current settings. The best overall service rate is reached in case the rejections
from the scenario without bookings are used as reservations in a scenario. In the table above, this
is also the scenario with the highest percentage of reservations (slightly). However, the difference in
reservation rates is not enough to explain all of the differences in service rates. In appendix B.1, where
the results from the same scenario for 1000 vehicles are shown, the rejections as reservations scenario
performs relatively better than random reservations as well. The higher service rate achieved is paid for
by increased waiting and detour time compared to random reservations. This is because the requests
that are reserved are harder to service. This shows from the fact that they would be rejected without
reservations. However, if you know in advance you can consider them a bit better and the value of this
information seems to be more relevant than in the case of random reservations.

The service rate for reservations is higher than for on-demand requests in the case of random re-
quests. This can be explained by the fact that the assignment to vehicles takes routing towards these
reservations into account and thus reduces the cost in the next iteration compared to requests that are
not yet considered. This effect is less obvious in the rejections as reservations scenario. The requests
that are not served without reservations are those requests that are not a good match in time and
origin/destination compared to the other requests/vehicle occupation at that moment.

As opposed to a trade-off between service rate and total delay time, a general decrease in total delay
can be observed with increasing service rates. This is less contradictory than it seems at first glance,



5.2. Available computational time 35

as a decrease in total delay time is also strongly correlated with more reservations or reservations that
are revealed to the system longer in advance. Since total delay time is in the objective function, better
optimization, allowed by having more information, will also decrease the total delay time. Another
aspect to consider in evaluating the service rate and the total delay time is the rejection penalty, as
this value determines the weight each aspect has in the objective function. An in-depth review of the
rejection penalty is done in section 5.3.2.

An explanation for the decreased delay time and higher service rate with more reservations can be
found in the increased distance ratio. This indicates vehicles travel more relevant distance per distance
travelled. Since the service rate is not close to 1, it can be assumed that (as good as) all vehicles are
continuously busy, either picking-up/dropping-off passengers or rebalancing. If vehicles travel more
relevant distance during the same time they can serve more passengers.

With more reservations or reservations revealed longer in advance, vehicles will spend less time
rebalancing. With 10% random reservations, revealed 10 minutes in advance, with 750 vehicles, less
than 2% of vehicles are assigned to rebalance at any iteration. Without reservations, up to 5% of
vehicles are rebalancing. The optimal assignment of 1 reservation for a vehicle that otherwise would
rebalance becomes more and more possible. This means that the vehicle is in effect still rebalancing,
but with the certainty of there being demand in the future where the vehicle is going.

Computation time clearly increases with more information. Scaling towards the right side is more
expensive than going downwards in the table. This is because requests that are available longer in ad-
vance can be combined with more vehicles, and more importantly become part of larger trips. Based on
the results from table 3.1a, these longer trips are significantly more expensive to calculate as there are
more possible permutations to be considered on pick-up and drop-off actions. The required computa-
tion time grows with orders of magnitude, highlighting the problem. The large increase in computation
time moving right in the table is the reason results are for now only considered up to 10 minutes in
advance. Once relevant heuristics to limit the computational time have been established, longer in-
advance reveal times can be studied effectively. Using rejections as reservations does decrease the
computational time slightly as these requests are harder to service.

The trends in the results described do hold for larger vehicle fleets as well. The results are shown
in similar tables in appendix B.1 and B.2 for 1000 and 1250 vehicles respectively. As can be expected,
the inclusion of reservations shows slightly diminishing returns with more vehicles, as there are fewer
requests not serviced yet that can be serviced additionally.

5.2. Available computational time
The main time-consuming step in the simulation is creating the RTV graph. The second largest time
consumer is solving the ILP assignment problem with the Gurobi solver. However, this step takes a lot
less time compared to creating the RTV graph.

The time available for creating the RTV graph is determined beforehand and split equally over the
available vehicles. Since most vehicles don’t reach this time limit, the simulation can still run in real-
time (meaning iterations take less than the time step to compute) if the total time available is set larger
than the time step.

In table 5.2 the simulation results with different combinations of computational time constraints are
shown for a scenario with 750 vehicles where 10% random reservations are placed 10 minutes in
advance. Furthermore, the reservation penalty factor is set at 2.0, these effects will be thoroughly
discussed in section 5.3.2.
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ILP time [s]
5 15 25

RTV build time

30 s
0.04s per vehicle

0.726
0.991
2140

0.729
0.992
2092

0.729
0.991
2104

Service rate
Reservation service rate
Computational time

75 s
0.1s per vehicle

0.731
0.986
3243

0.727
0.986
3042

0.729
0.991
3042

150 s
0.2s per vehicle

0.732
0.988
4087

0.73
0.983
4209

0.733
0.991
4043

Table 5.2: Performance with different limits on computational time for 750 vehicles. The scenario is with 10% random
reservations, revealed 10 minutes in advance.

Based on the result in table 5.2, more available time for solving the ILP does have a very small effect
on the results of the simulation. This is because most often, the optimal solution for the assignment is
found within 5 seconds for the tested scenario. The general trend with increased computational time per
vehicle is a very slight improvement in performance in return for significant increases in computational
time. The large increase in computational time is explained by the order in which trips are created. First,
small trips are created and once a trip size is complete, the next trip size is calculated. This process
continues until a timeout is reached. With more time available, all this extra time is used to calculate
larger trip sizes. Based on the marginal increase in performance, it appears that these larger trip sizes
are barely assigned to vehicles.

In a scenario with more requests, where more vehicles can be shared with extra passengers, larger
trip sizes can show more benefits. Additional time for finding better solutions to the ILP problem can
also improve the solution in these scenarios. Experiments where more reservations are made or if
reservations are revealed longer in advance benefit from additional computation time as well.

The results for the same scenarios, but with 1000 vehicles, are shown in appendix B.3. The results
are consistent.

When looking at very small differences in the results, it is important to keep in mind that the results
are impacted by computational performance. The system created is deterministic in computing the
cost of trips. Based on small variances in computational time, a small difference in which trips are
computed can happen over different runs. The ILP solver is deterministic as well, but only for the same
input. Because of the multi-threaded implementation, small differences in variable order can happen.
For example, a trip can be number 6 or 7 in different runs based on priority in threads. Based on these
small differences, the ILP solver will take slightly different paths in optimizing the solution. In case two
solutions have the same objective value, the optimum solution can be different over different runs. An
easy example how this can happen is if only 1 reservation needs to be assigned to 5 vehicles. If the
reservation is revealed far enough in advance, all vehicles can serve this request without any delay,
thus all having a cost of 0. The optimum solution will thus have an objective value of 0 but can assign
the request to different vehicles based on the initialization of the ILP. Small differences lead to different
vehicle routing and thus to different trip availability in consecutive time steps. A second explanation
can be in the implementation of optimality tolerance. This phenomenon is not experimented with and
the default value from the ILP solver is used.

The results for 10 runs with the exact same settings and requests are visualized in fig 5.1. The
service rate is plotted over the different runs in figure 5.1a and versus the total simulation time in figure
5.1b.



5.3. Benefits for reservations 37

(a) Service rate over 10 runs with the same settings on the same
request data.

(b) Scatterplot of service rate vs simulation time for 10 runs on
the same request data.

Figure 5.1: Results for 10 consecutive runs with the same settings.

Based on the results from figure 5.1, it becomes clear that swings in service rate can occur over
different runs, in an unpredictable pattern. Based on figure (b), the runtime for the simulation can fluc-
tuate up to 5% and the service rate 0.6% under these settings.

Because of these fluctuations, all results shown in this chapter (except for these results) are the aver-
age of 3 runs with the same settings. This solution mitigates, but not excludes, the variance in solution
quality.

5.3. Benefits for reservations
Benefits to reservations are assigned in two different ways. First, the effects of the pledged service
constraint are evaluated. Second, the impact of the rejection penalty is discussed. Last, the two
methods to assign benefits to reservations are compared against each other in different scenarios.

5.3.1. Pledged service constraint
As observed from the raw data with respect to the rejection of reservations, as good as all reserva-
tions have been assigned to a car at one moment or another. As mentioned in section 3.3.4, an
additional constraint, the pledged service constraint, can be added to ensure that requests that have
been assigned before should be assigned in each iteration afterwards. This constraint can be applied
to reservations or to all requests. The results of a scenario with 20% random reservations revealed 10
minutes in advance, with the pledged service constraint active for either reservations or all requests,
are shown in table 5.3. The results shown are for an overall rejection penalty of 10, with a reservation
penalty factor of 1. Based on experiments, these parameter settings do not impact the solution sig-
nificantly. The results for different rejection penalty parameters are shown in appendix B.4. Results
in case rejections from the base case (without reservations) are used as reservations can be found in
appendix B.5. The trends in results are the same for different rejection penalties, reservation penalty
factors and the different reservation set.

The results shown are for 750 vehicles, the results for 1000 vehicles are in the appendix for com-
pleteness.

Pledged service constraint
20% random reservations
Revealed 10 minutes in advance Not active Applied to

reservations
Applied to
all requests No reservations

Service rate 0.749 0.731 0.708 0.692
Reservation service rate 0.866 1 1 -
Average total delay [s] 263 268 278 274

Table 5.3: Impact of pledged service constraint on the average service rate and the service rate for reservations. Experiment
with 20% random reservation revealed 10 minutes in advance.

Based on the results in table 5.3, it can be seen that the service rate for reservations increases
to 1 in both cases where the pledged service constraint is activated. This means that all reservations
have been assigned to a vehicle at least once and then again each iteration afterwards. The additional
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constraints on assignment do lead to a lower overall service rate and increased total delay. This is
explained by the reduced optimization space available to the ILP solver.

5.3.2. Impact of the rejection penalty
The effect of different rejection penalties in the system is tested on a scenario with 750 vehicles, with
20% random reservations revealed 10minutes in advance. Rejections as reservations will be discussed
later in this section. Since a higher rejection penalty will guide the ILP assignment algorithm to assign
more passengers, the optimization will consider total delay for passengers (waiting time plus detour
time) less. Furthermore, in this simulation, the penalties for reservations are increased as a factor of
the rejection penalty for normal requests. The rejection penalty in general is a multiplication of the
maximum waiting time. The results for the simulation with 750 vehicles are shown in table 5.4

Rejection penalty = 5
750 vehicles

Reservation
penalty factor
1 1.2 1.5 1.8 2 2.5 5

service rate 0.744 0.739 0.74 0.74 0.741 0.74 0.731
reservation service rate 0.872 0.931 0.971 0.986 0.996 0.998 1
average total delay [s] 254 258 258 259 259 259 260

(a) Rejection penalty 5
Rejection penalty = 10
750 vehicles

Reservation
penalty factor
1 1.2 1.5 1.8 2 2.5 5

service rate 0.735 0.737 0.741 0.735 0.732 0.722 0.727
reservation service rate 0.86 0.928 0.953 0.977 0.90 0.998 1
average total delay [s] 267 269 267 267 265 267 270

(b) Rejection penalty 10

Table 5.4: Effect of different reservation penalty factors over two rejection penalties with random reservations.

Based on the results in table 5.4, a clear increase in service rate for reservations can be observed
with increases in the reservation penalty factor compared to normal requests. This is as expected,
since rejecting reservations is now more expensive compared to rejecting regular requests and/or in-
creased delay for passengers assigned to/in the car. Based on the KPIs in the table, there seems to
be a substitution effect between serving reservations and serving on-demand requests at increased
reservation penalties. The differences are generally small in the scenario with random reservations.
Since on average, requests are similar in how costly they are to service compared to reservations,
substitution on which to service can be done for very limited costs.

The overall service rate is barely affected by the increase in reservation penalty, except for the
largest reservation penalty. This is similar for the average total delay passengers experience.

Compared to the pledged service constraint being applied to reservations, an almost similar service
rate for reservations can be accomplished with an increased penalty for reservations. This does lead to
a slightly higher service rate for all requests overall and slightly shorter average total delays. However,
there is no guarantee for reservations that they are serviced in the end.

In case the rejections from the scenario without bookings are used as reservations, the effect of tuning
the rejection penalty and reservation penalty factor increases. This is because the reservations are
actually harder to service compared to the normal requests. In this scenario, there are 30.8% reser-
vations (compared to 20% in the scenario above), based on results from table 5.1, the overall service
level is expected to be higher in this scenario for the same condition. The results are shown in table
5.5
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Rejection penalty = 5
750 vehicles

Reservation
penalty factor
1 1.2 1.5 1.8 2 2.5 5

service rate 0.779 0.768 0.762 0.756 0.752 0.746 0.747
reservation service rate 0.791 0.864 0.934 0.955 0.976 0.991 0.999
total delay time [s] 253 256 260 262 265 262 266
Distance ratio 1.17 1.16 1.16 1.15 1.14 1.13 1.12
RTV edges *1e6 7.16 7 7.23 7.37 7.31 7.36 7.6

(a) Rejection penalty 5
Rejection penalty = 10
750 vehicles

Reservation
penalty factor
1 1.2 1.5 1.8 2 2.5 5

service rate 0.762 0.759 0.752 0.744 0.745 0.741 0.725
reservation service rate 0.756 0.857 0.913 0.951 0.959 0.981 0.997
total delay time [s] 270 271 274 272 275 276 278
Distance ratio 1.15 1.14 1.14 1.12 1.11 1.11 1.08
RTV edges *1e6 6.54 6.82 6.88 6.91 7.06 7.03 7.46

(b) Rejection penalty 10

Table 5.5: Effect of different reservation penalty factors over two rejection penalties with rejections as reservations.

Based on 5.5a, it becomes clear that the expected trade-off between servicing reservations or nor-
mal requests is present in this scenario. Furthermore, not all reservations are served with the highest
set reservation penalty factor. This could be “solved” by increasing the reservation penalty factor fur-
ther. Another trend is that the average total delay time does increase with a higher service rate for
reservations. This is because the reservations are the requests that are more costly to service. This
also leads to a decreasing distance ratio, indicating that more vehicle distance is travelled per passen-
ger distance. The total number of feasible RTV edges does increase with a higher rejection reservation
penalty factor. This is because, at a lower service rate, there are more requests that are not in vehicles
and thus can become part of trips.

For the situation with a higher rejection penalty, the trends are similar. A remarkable result is that
a higher rejection penalty in general does lead to a slightly lower service rate overall. Reservation
service rates are closer between the different rejection penalties though. This is unexpected, as a
higher rejection penalty does incentivize the system to assign more passengers at the cost of more
delays. On the other hand, this also makes the system a bit more greedy as passengers are assigned
to vehicles with worse matches (just to not reject). Rejecting requests that were assigned before does
not happen significantly more often compared to the scenario with a rejection penalty of 5.

The assignment to worse matches at a higher rejection penalty does in later iterations lead to fewer
options for additional passengers since the vehicles will be less flexible for assignment (worse matches
mean more total delay and thus being closer to waiting and detour time constraints). This reduction in
flexibility can be observed as an increase in average total delay and also in a reduction in the amount of
RTV edges found over the course of the simulation. This last parameter provides some insight into the
optimization space available to find the best solution. Furthermore, the distance ratio is decreased at
a higher rejection penalty. Since served passenger distance is divided by the total distance, the num-
ber of served passengers is already included. A decrease in this parameter indicates that the system
spends more time transporting fewer passengers or taking longer detours. The used time to construct
the RV and RTV graphs is very comparable between the settings. This indicates that approximately
the same amount of trips are calculated, but fewer trips are returned as feasible options.

5.3.3. Comparison between benefits for reservations
The two methods to assign benefits to reservations are compared in this section. The average service
rate is plotted in case of random reservations revealed 5 minutes in advance. The results are plotted in
case of “no benefits” in green, “pledged service” in blue and “increased rejection penalty” in orange. The
pledged service constraint is only applied to reservations. The dotted lines represent the service rates
for reservations in the corresponding colour. The results are plotted in Figure 5.2. The experiments
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are done with 1000 vehicles.

Figure 5.2: A comparison between the methods to assign benefits for reservations in case of random reservations revealed 5
minutes in advance. The results are for a scenario with 1000 vehicles.

Based on the results, the service rate is slightly lower on average in case benefits are awarded to
reservations. The service rate for reservations (dotted lines) is close to 1 with the increased rejection
penalty. Applying the pledged service constraint has the benefit that passengers know they will be
served as soon as their reservation is revealed to the system. The difference in average service rate
between the pledged service constraint and an increased rejection penalty is marginal.

In case the pledged service constraint is applied in further results, this is in combination with a small
increase in the rejection penalty. In this way, reservations have a higher likelihood to be assigned
initially in scenarios with high numbers of reservations.

5.4. Heuristic parameters
The result of using the heuristics described in section 3.3.3 are discussed in this section. The selected
scenario for the simulations is with 10% random reservations, revealed 10 minutes in advance. The
rejection penalty is set at 10, with a reservation penalty factor of 2. The rejection penalty is set at 10
since this is the same as for the earlier experiments.

The experiments have been run with 750, 100, and 1250 vehicles. This is to examine the results
over different stress levels for the system. Trends over the different vehicle levels are similar, therefore
only the results for 750 vehicles are discussed here. The results for 1000 and 1250 vehicles are shown
in tables in appendix B.6 till B.12. For reference, the scenario is also run without heuristics. The results
as shown in table 5.6. The RTV build time is reported as the heuristics aim to reduce RTV construction
time.

Vehicles 750
service rate 0.719
reservation service rate 0.987
RTV build time 747

Table 5.6: Reference results: KPIs for 750 vehicles without heuristics used. The scenario is with 10% random reservations
revealed 10 minutes in advance.



5.4. Heuristic parameters 41

Maximum vehicles per request
The first experiment to run is based on limiting the number of vehicles a request can be assigned to.
This is done for all requests, or just for reservations. Based on the results in table 5.7, an increase
in performance is observed with more available vehicles. This comes at the cost of increased com-
putational time used. A second observation is that the increase in service rate flattens out with more
vehicles available. This happens since a vehicle with a mediocre match does not often lead to the
cheapest larger trip sizes or best assignments.

The results in case the heuristic is only applied for reservations show similarity with the case it
is applied to all requests. The similarity of results can be explained by the idea that the increase in
service rate is caused by reservations. The reasons for this are both more options and longer trips. By
limiting the reservations, the benefits are maintained while the costs are kept in check better quite well
as unlikely options are not calculated.

Overall, gains in computational time can be achieved at very limited to no apparent reductions in
service rate.

max vehicles per request 1 10 20 40 60
service rate 0.594 0.711 0.72 0.72 0.717
reservation service rate 0.684 0.983 0.993 0.987 0.996
RTV build time [s] 38 232 333 510 608

(a) Heuristic applied to all requests.
max vehicles per reservation 1 10 20 40 60
service rate 0.675 0.716 0.719 0.719 0.721
reservation service rate 0.777 0.991 0.988 0.991 0.991
RTV build time [s] 63 223 379 443 681

(b) Heuristic applied to reservations only.

Table 5.7: Limit on the number of vehicles available for each request to create trip sizes larger than 1. Results for 750 vehicles.

Prune the RTV graph
In table 5.8, the results of pruning per layer of the RTV graph are shown. The first number of “prune per
layer” indicates the limit on the first layer of the RTV graph (trips of size 1), and the second number is
the limit on trips of size 2 to make larger trips. To emphasize the difference with the previous heuristic,
the limit on trips of size 1 means that there is a limit on requests per vehicle.

Based on the results, it becomes clear that limiting the first layer holds back the potential for longer
trips and thus system performance. A large limit on the first layer does not limit the growth effectively.
This is because only a few vehicles can at any point serve more than 80 different requests. The
prerequisite to achieve this would be an almost empty vehicle at a high-demand origin location. A
larger limit on the second RTV layer does allow for more options at larger trip sizes. Based on these
results, there is a small benefit in those extra trips at the cost of some more computational time. The
overall gains in computational time are small for the less restricted scenarios.

prune per layer 20, 20 20, 40 20, 80 40, 40 40,80 40, 120 80, 80 80, 120 120, 120
service rate 0.678 0.675 0.682 0.707 0.709 0.71 0.711 0.716 0.716
reservation SR 0.946 0.923 0.947 0.952 0.952 0.954 0.995 0.991 0.994
RTV build time [s] 322 366 416 537 522 553 639 759 769

Table 5.8: Heuristic to limit growth by pruning per trip size. Pruning is done on trip sizes 1 and 2.

Restrict reservations to X best vehicles
In case reservations are assigned to a set of cars once they are revealed, there still is the option to make
those reservations available to all vehicles some time in advance. The result of revealing reservations
to all vehicles 5 minutes in advance, once emerged, or never are shown in table 5.9.

Compared to the results from table 5.7, where requests the best set of vehicles is determined each
iteration, both service rate and computation times are lower for the same vehicle set size.

This is because requests are assigned a set of vehicles in the iteration they are revealed. This
initial assignment takes only the passengers into account that are currently on board the vehicle. It can
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therefore happen that two requests that can not be serviced together get assigned to the same vehicle.
Furthermore, the service for reservations is restricted to only a set of vehicles and the reservation
penalty factor is 2. The system will thus focus on servicing reservations. Since there is limited flexibility
in servicing reservations, this will come at the price of serving normal requests. In case requests can
be serviced by more vehicles, the system will be more flexible and thus be able to serve more normal
requests.

The performance differs in whether or not the reservations should be exposed to all vehicles some-
time in advance are not conclusive. The effect of revealing the demand to all vehicles has a small
positive impact in the case that only 1 or 10 vehicles are available in the set. An explanation would
be that reservations are in general served by vehicles from the subset regardless of the availability of
different vehicles since it offers the best or only match.

With a larger vehicle set, the results vary. A possible explanation is that if the cost of assigning a
request to different vehicles is the same for more vehicles than there are places in the set, a random
subset from the vehicles with the best scores will be used. This can impact the results if it happens often,
for example because the reservations are placed a long time in advance. This variance is implemented
to prevent a skew towards the vehicles that are computed first (those with the lowest vehicle ID). If all
requests would be only assigned to the lowest scores, they would be more inclined to be selecting
the same set. Another explanation could be that most of the requests can not/barely be serviced by
vehicles outside the set anyway if the set is sufficiently large.

Assigned to X best vehicles 1 10 20 40 60
service rate 0.685 0.701 0.706 0.717 0.718
reservation service rate 0.901 0.975 0.988 0.994 0.987
RTV build time [s] 31 81 198 329 553

(a) Available for all vehicles 5 minutes in advance.
Assigned to X best vehicles 1 10 20 40 60
service rate 0.694 0.698 0.704 0.721 0.717
reservation service rate 0.889 0.967 0.989 0.992 0.994
RTV build time [s] 31 102 188 335 523

(b) Available for all vehicles once emerged.
Assigned to X best vehicles 1 10 20 40 60
service rate 0.696 0.701 0.708 0.711 0.718
reservation service rate 0.913 0.97 0.99 0.992 0.994
RTV build time [s] 34 87 190 354 524

(c) Only available to selected vehicles.

Table 5.9: Restriction on the available vehicles to assign reservations to.

Maximum trip size
The last studied heuristic to limit the computational time works by limiting the size that trips can take.
The results for this experiment are shown in table 5.10. From the results, it becomes clear that larger
trip sizes are the reason for longer RTV calculation times. The service rate for all requests and for
reservations is remarkably similar over the different settings. This can be attributed to the request set
used. The set of requests is taken around noon, not the busiest moment for taxi transport in Manhattan.
This modest amount of requests also translates into a modest number of trips at each moment that can
be efficiently shared. Based on the results, it can be concluded that for the shareable trips in this
scenario, a limit on a trip size of 2 or 3 would be sufficient to handle the demand. With trips of size 2 or
3, the computation time required to construct the RTV graphs is reduced enormously compared to the
reference scenario in table B.6, while maintaining a similar level of service.

It should be noted that determining a heuristic based on the trip size is sensitive to the used request
set and reservation scenario used. A set with more options to efficiently share trips will show benefits
from larger trip sizes. Vehicle capacity is also an important factor in the effect of maximum trip size.
Vehicles with a smaller capacity will benefit less from larger trip sizes for example.
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max RTV layers 2 3 4
service rate 0.713 0.717 0.718
reservation service rate 0.996 0.99 0.993
RTV build time [s] 32 129 708

Table 5.10: Limit on trip sizes that can be made.

To summarize
The results from designed heuristics show that significant reductions in RTV build time can be reached
at a limited loss in service rate.

Limiting the number of vehicles a request can be assigned to shows comparable results with the
reference case, while the RTV build time is reduced +- 55%, see table 5.7.

Pruning the RTV size in the first and seconds layer can reach similar performance, but only at a
small reduction in computational time required, see table 5.8.

Assigning reservations to a set of vehicles that can serve them and only reveal them to all vehicles
at a later stage does show good results, but does require a longer time than if the set of vehicles is
recomputed each iteration. This is because a larger set of vehicles is needed if the best vehicles are
only determined beforehand. Similar performance as in the reference case can be achieved with +-
30% less RTV build time, see table 5.9.

Limiting the trip size (RTV layers) shows very good results at a great reduction in computational
load, see table 5.10. The method could scale worse with larger request sets though.

Combined heuristics
Different heuristics could also be combined. Settings for heuristics are determined so that each individ-
ual setting does not yet deteriorate performance.

The maximum trip size is combined with the other effective heuristics to study the combined impact.
The results are in table 5.11.

Reference values
without heuristics

Maximum trip size 3
10% random reservations

Random
reservations:

Restrict to X
best vehicles

Max vehicle
per request

Max vehicle
per reservation

0% 10% 40 60 20 20 40
Service rate 0.692 0.719 0.713 0.714 0.717 0.715 0.715
Reservation service rate - 0.987 0.995 0.993 0.992 0.994 0.992
Computation time [s] 82 747 73 96 81 83 103

Table 5.11: Combination of a maximum trip size 3 with other heuristics.

The most impact can be had by combining a limit on the trip size with a maximum number of vehi-
cles per request. However, the difference is small indicating that by far most computation requirements
come from reservations. The number of on-demand requests that can be assigned to more than 20
vehicles and be part of larger trip sizes seems to be very small.

The heuristics are tuned on one scenario with 10% random reservations revealed 10 minutes in ad-
vance. Reservations receive the benefit of an increased rejection penalty. Results prove similar with
the pledged service constraint applied as a benefit for the reservations.

The combination of a maximum trip size of 3 and a maximum number of vehicles per request of 20
will be used as the heuristic for further results.

5.5. Applied heuristics
The reason to apply heuristics is to be able to process more reservations revealed longer in advance.
The goal is to use this additional information for better overall service. In this section, the heuristic
described above and the pledged service constraint are both applied. Results are shown for 1000 ve-
hicles.
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First, the added value of applying the heuristic is shown in Figure 5.3a. The blue line represents
the average service rate with the heuristic and the orange line without a heuristic. All reservations are
revealed to the system 5 minutes in advance.

(a) Average service level with and without the heuristic for
different percentages of random reservations. Results are for
1000 vehicles with the pledged service constraint applied to

reservations.
(b) Computational time required to run the simulations with and

without the heuristic.

Figure 5.3: The reachable service quality with the use of the heuristic.

Initially, a steady increase in service rate is reached with more reservations. At more than 60%
reservations, the average service rate starts to decrease without the heuristic. The reason for the drop
in performance of the orange line is given in Figure 5.3b. The computation time for each scenario is
shown with and without the heuristics. It is clear that for more reservations the experiment without
heuristics reaches the computational time limits and deteriorates in performance as a consequence.
The computational time limit will be elaborated on in the discussion.

The reason to use heuristics is to allow for more information to be used effectively by the model.
This means that more reservations can be revealed to the system longer in advance. The heuristics
will still reach a point where more information decreases system performance. However, this point is
reached later and therefore a better solution becomes computationally feasible. A second reason to
apply the heuristic is to simulate rush hour demand.

The heuristic will be used in the following results in this paper.

With the effect of applying the heuristic established, experiments with reservations revealed longer
in advance can be performed. Both random reservations and the scenario with rejections as reser-
vations are evaluated five to twenty minutes in advance. The resulting service rate, service rate for
reservations and required computational time are listed in Table 5.12.
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Time revealed in
advance [minutes]
5 10 15 20

Random
reservations 0%

0.858
-
39

0.858
-
39

0.858
-
39

0.858
-
39

SR
Reservation SR
computational time

10%
0.864
1
61

0.868
1
107

0.874
1
240

0.874
1
921

20%
0.871
1
103

0.883
1
382

0.885
1
2136

0.834
1
2367

30%
0.874
1
151

0.888
1
2677

0.8
1
2730

0.804
0.993
2775

40%
0.885
1
395

0.836
1
2786

0.806
0.985
2890

0.808
0.976
3101

50%
0.892
1
639

0.819
0.995
2932

0.816
0.965
3036

0.805
0.959
3435

Rejections as
reservations 14.2%

0.864
1
75

0.871
1
325

0.877
1
1209

0.862
1
3242

Table 5.12: Result from the incorporation of reservations in an on-demand ridesharing system for varying random reservations
and times in advance the reservations are revealed. The heuristic and the pledged service constraint are applied. The results

are for 1000 vehicles.

The results from Table 5.12 are plotted in Figure 5.4. Each row in the table is visualized as a colour
in the figure.

Figure 5.4: Service rate results from Table 5.12 visualized.

Based on these results it can be concluded that additional reservations improve performance more
strongly than reservations that are revealed longer in advance, especially if there is a large fraction of
all requests placed as reservations. Reservations that were placed are still being served significantly
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better compared to on-demand requests because of the pledged service constraint.
The average service rate decreases partly because the heuristic parameters are tuned on just one

scenario with limited reservations revealed shortly in advance. Since the tuning is not effective for all
scenarios, the model can not both adhere to the pledged service constraint and pick effective options
as these are not sufficiently created. Furthermore, the heuristic is too strict in limiting computations for
reservations that are revealed longer in advance as the computation time limit is not always reached.
The goal of heuristics is to compute the most likely trips in the available time. If not all time is used,
the heuristics limit too many options that are potentially relevant. This problem was not present in the
scenario where the parameters are tuned as most of the relevant options were calculated within the
options allowed by the heuristic.

By tuning heuristic parameters to the selected scenario, a better result can probably be achieved
with more reservations revealed longer in advance. A better tuned heuristic should be able to perform at
least as well with more information as you can ignore the additional information. The added information
can then be used only if it is beneficial. A downside of revealing more information longer in advance
is that the pledged service constraint is applied to more requests in the set to be assigned and thus
constrains the solution space more.

5.6. Sensitivity analysis
Experiments are run with the morning peak request set are run to assess the impact of the underlying
request set. Since the heuristic parameters are optimized on reservations being revealed shortly in
advance, these settings will be used for the comparison in Figure 5.5. All reservations are revealed 5
minutes in advance. The orange line indicates the service rate in the morning hour. The dotted lines
indicate the service rate for the passengers that placed a reservation. Results are for a simulation with
1000 vehicles

Figure 5.5: Simulations for sensitivity data set compared to the test set. Requests are all revealed 5 minutes in advance,
experiment with 1000 vehicles.

The most important conclusion for the results is that the trend service rate is similar for the different
request set used. The overall service rate is slightly higher, indicating that is possible to combine more
requests into trips. This is because there is slightly more overlap in the origin/destination combinations
in the set.
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5.7. Rush hour performance
The request set from the morning peak will be used to test if the methodology works at a large scale.
For this, all 28030 requests from the morning data set are used. The results will be run for random
reservations ranging from 0-50%, with all reservations revealed 5 minutes in advance. As the request
set consists of 28030/10548 = 2.66 times more requests, additional vehicles will be needed to serve
the demand. As more requests allow for more sharing, increased performance can be expected with
the same fraction of vehicles. The resulting service rates are shown for 2000 and 2500 vehicles in
Figure 5.6. Extensive results are in Table 5.13.

Figure 5.6: Service rate during morning rush hour with 2000 and 2500 vehicles. Random reservations are revealed 5 minutes
in advance.

Random reservations
0 10% 20% 30% 40% 50%

Vehicles 2000

0.821
-
304
1.22
402

0.83
1
302
1.24
761

0.839
0.999
308
1.25
1586

0.848
0.999
308
1.25
3973

0.838
0.998
303
1.23
6265

0.823
0.989
298
1.2
6537

Service rate
Reservation service rate
Average total delay
Distance ratio
Computational time

2500

0.928
-
288
1.16
474

0.936
1
286
1.17
902

0.949
1
281
1.19
2042

0.959
1
284
1.2
5299

0.946
1
285
1.18
6243

0.931
0.999
277
1.14
6558

Table 5.13: Detailed results for the performance of 2000 and 2500 vehicles of capacity 4 in the morning rush hour with random
reservations revealed 5 minutes in advance.

Based on these results, it can be concluded that the method can be used to increase the service rate
during the morning rush hour at a limited computational cost. Having more vehicles allows for serving
more passengers at a slightly reduced efficiency from the operator’s point of view, as can be seen in
the reduced distance ratio. More vehicles reduce the average total delay passengers experience. The
service rate for reservations is higher as well with more available vehicles. This is because the system
is more flexible and can actually assign the reservations once they are revealed.



6
Conclusions

This chapter summarises the conclusions with regard to the incorporation of reservations into an on-
demand ridesharing system. This is followed by a discussion of the research, methods and assump-
tions. Lastly, future work related to the topic is discussed.

6.1. Conclusion
The objective of this work has been to assess the effectiveness and feasibility for the inclusion of reser-
vations in a large-scale on-demand ridesharing system. Reservations are included in an on-demand
ridesharing model by revealing reservations at a certain time in advance to the system. The existing
problem formulation is extended with a constraint stating that requests for a ride can only be handled
once passengers actually need to be picked up.

The upside from having information on future demand is demonstrated when there are no additional
benefits for reservations. Both the service rate and average delay times are improved. From the re-
search, it follows that the service provided to reservations is better on average compared to on-demand
requests. The relevance and effectiveness of employing the designed heuristics is demonstrated for
scenarios where more information about future demand is given to the system.

If reservations are awarded a distinct benefit, a trade-off emerges with the service level for on-demand
requests. Two different benefits are implemented and tested. As a first option, a pledged service con-
straint is implemented. Reservations revealed in advance have a small cost initially and are assigned
all consecutive timesteps, leading to a (far) higher service rate with this constraint applied. The results
show a trade-off between servicing on-demand requests and reservations. The second option to let
reservations receive a benefit in service is by assigning a higher rejection penalty to these requests.
The results show that the service rate for on-demand requests is slightly better compared to the “no
benefits” scenario and slightly worse than the pledged service scenario. Overall, an increased rejection
penalty serves more on-demand requests if almost all reservations are serviced, it does however not
provide any guarantees to reservations that they are not rejected last minute.

The inclusion of reservations is facilitated by developing methods to reduce the number of trips to
compute. Different heuristics are developed and tested to determine which trips to compute in the (lim-
ited) available time. The results show that large reductions in computation time can be achieved with
a limited effect on the solution quality. The tested heuristic is less effective in scenarios where reser-
vations are revealed to the system longer in advance. Scenarios with reservations revealed longer in
advance pose different challenges compared to reservations revealed shortly in advance. Therefore,
the heuristics should be tuned specifically for the intended time in advance reservations are to be re-
vealed.

In conclusion, the incorporation of reservations into an on-demand ridesharing system can provide
significant advantages for system-wide performance and the experienced service of passengers that
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place the reservations. A trade-off between providing better service to reservations and on-demand
requests exists. However, even with benefits for reservations, the service level for the on-demand pas-
sengers is higher on average than without reservations in the system. System-wise, the computational
load from reservations is large but can be managed with appropriate heuristics. The heuristics prove to
be effective at problem sizes for which they are tuned but not particularly at scenarios with reservations
revealed longer in advance. The trends in the results prove not sensitive to the underlying request data
set.

Based on the results, this methodology seems most suited to increase the service level for certain
on-demand ridesharing systems. The largest gains can be made in a scenario where passengers
have the option to leave as soon as possible, or make a reservation to leave in for example 10 minutes
from now. The designed methodology is capable of using the available information for better service
overall and can provide service guarantees for reservations. The results show that the method can be
applied effectively to large scale problems and can be run on standard hardware.

6.2. Discussion
An important consideration would be if passengers see sufficient benefits to using ridesharing more
often if the possibility of reservations would be included. Based on the results it is not effective to guar-
antee service for reservations placed long in advance. Reservations placed a short time in advance
can receive a service guarantee, while at the same time increasing system performance. The improved
system performance includes better service overall and more effective use of vehicles. Since vehicles
drive less distance per passenger serviced, the operators’ cost decreases. Depending on market con-
ditions this would thus benefit passengers, operators or both.

A second consideration would be to look at the price of computational power. Results in this study
focused on limiting the computational load because of the available hardware. The additional compu-
tation power required to handle more information has a certain computational price and represents a
certain value. With current trends in increasing computational power, the trade-off in how much addi-
tional information is useful and can be applied economically will shift over time towards handling more
information. A future extension could also include options for distributed computing, for example on
the phone of each driver.

With respect to the designed heuristics, this is just a subset of all possible heuristics. The focus of
this research was to identify the trade-offs, benefits and costs of the inclusion of reservations in an on-
demand ridesharing model. The designed heuristics are kept simple to provide general usability and
provide enough improvement to perform the numerical analysis for the described scenarios. More de-
tailed and dedicated heuristics can be designed for specific situations and improve performance further
and/or reduce the computational load.

An important consideration for evaluating the heuristic is that the underlying parameters are tuned
on just one scenario. Since this was a scenario with some reservations revealed shortly in advance, the
heuristic parameters prevent the model from taking advantage of information that is available longer in
advance. Based on the limited computational load used by reservations that are revealed a short time
in advance, sufficient computation time would be available to consider reservations revealed longer in
advance with appropriate heuristics. Better results can likely be obtained with heuristics tailored to the
available information.

Last, the simulations in this research are done with a certain limit on computation time. The time limit
is used to mimic the requirements of the system to find solutions fast enough to allow for on-demand
ridesharing. The exact value the time limit should have is debatable. This is because it is closely re-
lated to computational power. With faster hardware, you make more computations in the same time
span. To take this into account, slower hardware can be used with more available time as the answer
is not needed in real time for a simulation. The trade-offs in handling more information and the need
for heuristics will exist even on the best hardware as the combinatorial problem grows exponentially.
By implementing the time limit as in this work, the relevant trade-offs show in the results.
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6.3. Future research
Multiple avenues for future research related to the incorporation of reservations in an on-demand
ridesharing system are discussed in this section. Ideas for future research on ridesharing in general
are provided at the end of the literature chapter.

First, an option would be to improve performance in the proposed model by improving the heuristics.
This can consist of three approaches. The first option is to tune the heuristic parameters or make better
combinations of the existing heuristics for other reservation scenarios. Moreover, other working prin-
ciples/information used by the heuristics can be applied to design more sophisticated heuristics that
would scale well with large problem sizes and take advantage of different types of information available.
Another option would be to use machine learning to predict which trips to compute. This research angle
could employ available data to have modern machine learning algorithms design the heuristics. This
can identify more/different underlying patterns than humans ever could and therefore allow for the in-
clusion of more knowledge in the ridesharing formulation.

Second, on-demand requests can be incorporated in a scenario where most of the passengers make
day-ahead reservations. This is a different problem and would have its own methods to solve. A rea-
son to solve this problem is to be able to provide service guarantees for day-ahead reservations while
increasing system performance. An option could be to investigate static solutions with a slack variable
or a method to quantify flexibility in the objective function. These solutions can be computed in ad-
vance and don’t have to be recomputed all timesteps. Therefore, different types of algorithms could be
applied to utilize all available information.

A third option is to design heuristics based on the expected use case. For example, consider a scenario
where passengers use ridesharing as last-mile transport. Requests could come from passengers who
use the train for long distances and ridesharing only for the last part of their trip. This will creates large
spatial and temporal differences in demand around train stations. Heuristics to take advantage of this
information can specifically be created.
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With increasing urbanization and a need to reduce green-
house gas emissions, new forms of urban mobility are studied
worldwide. An interesting transportation method is rideshar-
ing, where people can share parts of rides with other passen-
gers travelling in a similar direction in the same car.
In this work, the inclusion of reservations (pre-bookings) into
the on-demand ridesharing problem is studied. The poten-
tial benefit from the inclusion of reservations is in the better
assignment that can be made with knowledge about a part
of the future demand. The main challenge from reservations
is the increased computational load required. This paper pro-
poses multiple adjustments and different heuristics for a state-
of-the-art on-demand ridesharing system to deal with the re-
quirements of reservations. An additional consideration is
a trade-off between providing benefits for reservations and
serving on-demand requests.
Numeric experiments are performed on the Manhattan street
network with NYC taxicab request data. The results indicate
that reservations can be included in on-demand ridesharing
at a tolerable computational cost with the proposed frame-
work. Passengers that make reservations shortly in advance
can be guaranteed service once initially accepted by the sys-
tem. Having passengers make reservations in advance does
increase the overall service the system can provide.

1 Introduction

With increasing urbanization and a need to reduce greenhouse
gas emissions, new forms of urban mobility are studied world-
wide. An interesting transportation method is ridesharing,
where people can share parts of rides with other passengers
travelling in a similar direction in the same car. The type of
ridesharing reviewed in this paper is where a dedicated fleet
of vehicles is centrally controlled to provide transportation
through ridesharing.

With current technology, large numbers of passengers can
be efficiently allocated for ridesharing [9]. 98% of taxi de-
mand in Manhattan can be served with just 30% of the number
of taxis, while staying within reasonable constraints on de-
lays [3]. In general, ridesharing shows a potential upside for
users, operators and society as a whole from the widespread
adoption of ridesharing mobility [2]; [8]. The advantages of
ridesharing could potentially be amplified by the adoption of
autonomous vehicles (AVs). However, ridesharing is still not
employed on a large scale in reality. For potential users (pas-
sengers) and/or operators, the perceived disadvantages appar-
ently outweigh the offered advantages.

To improve the attraction of ridesharing systems, research
into extensions to the existing ridesharing model formulation
is required. The goal is to increase the advantages and/or

reduce the perceived disadvantages. If successful, the real-
world adoption and the corresponding benefits might become
more widespread. One potentially relevant extension to the
rideshare formulation is the inclusion of reservations. A reser-
vation (pre-booking) is a request that is known to the system
a certain time before its desired pick-up time.

Reservations would provide the system with additional knowl-
edge about how part of the demand in the future will look like
and thus allow for better assignment in the current timestep.
Increased performance with better anticipation of future de-
mand is shown in literature [6].

From a model’s perspective, incorporating reservations into
the ridesharing problem formulation brings challenges. Firstly,
a higher computational load can be expected. Secondly, it is
reasonable to assume passengers will only make reservations
if placing a reservation is associated with benefits.

For this research, reservations that are placed shortly in ad-
vance are considered. This is applicable in an on-demand
ridesharing system where passengers can indicate if they want
to be served as soon as possible or intend to leave in for ex-
ample 10 minutes.

Research objective

The objective of this work is to assess the effectiveness and
feasibility of the incorporation of reservations in an on-demand
ridesharing system.
• Include reservations efficiently into a state-of-the-art on-

demand ridesharing method, allowing for implementa-
tion on a large scale.
• Quantify the effects of having reservations available on

multiple KPIs and review the imposed computational bur-
den.
• Study the trade-offs in providing benefits to reservations

over normal requests.

Contribution statement

A state-of-the-art on-demand ridesharing system is adjusted
to allow for reservations to be assigned together with on-demand
requests. The adjustments focus on decreasing the imposed
computational load by limiting the computation cost for pas-
sengers and using heuristics to restrict the combinations of
passengers and reservations. The result is a lightweight method
able to incorporate reservations made shortly in advance and
benefit from the additional information.

More specifically, the contributions are listed below:
• Detailed experiments are performed to gain numeric in-

sights into the potential benefits from the inclusion of
reservations and the imposed computational cost.
• A numerical study about the trade-off between provid-

ing improved service for reservations over on-demand
requests.
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• The development, application and testing of multiple heuris-
tics to limit the computational burden imposed by the
inclusion of reservations is performed.

Structure of this paper

The work in the research is presented as follows. In section 2,
relevant background literature is discussed. The methodology
of the research is described in section 3. The section consists
of two parts. The first part describes the problem formula-
tion. The second part provides insights into a state-of-the-
art method and contains the methodological extensions used
to include reservations. Section 4 contains the experimental
setup for the research. The results are discussed in section 5.
Here the potential benefits and trade-offs concerning reserva-
tions are analyzed. Finally, section 6 consists of conclusions,
discussions and recommendations for further work.

2 Related literature

The main challenge in ridesharing is to assign a set of passen-
gers to a set of vehicles that service the demand for mobility.
Previous work shows that most demand in Manhattan can be
serviced by shared vehicles [9]. The assignment of passen-
gers to vehicles can be performed statically and dynamically.

In a static assignment, all decisions are made beforehand.
This allows for additional computation time available and pre-
dictable service. The predictability of service is an important
aspect of the perceived level of service [1].

The option to dynamically assign passengers during oper-
ation allows for attractive on-demand service to be imple-
mented. The dynamic nature of the problem demands effi-
cient algorithms as large problems have to be computed in
reasonable time to allow for re-assignment as new informa-
tion becomes available. The assignment is usually performed
in batches to allow for better matching between requests and
vehicles. The method proposed by Alonso Mora et al.[3]
(used in the methodology of this paper) combines requests
into groups that are collectively assigned to vehicles. The
method allows for anytime optimal assignment in large-scale
ridesharing systems. A modification is made by Simonetto et
al.[10], where requests are assigned individually to vehicles
in shorter batch times. This heuristic allows for a speedup in
computation time at the cost of the service level provided.

Significant research to improve ridesharing by estimating fu-
ture demand is performed. The use of historic demand distri-
bution to predict future requests is done in [4]. More historic
data is processed with machine learning to more accurately
predict demand in [7]. Alternatively, current system parame-
ters can be used to anticipate future demand and take it into
account when assigning passengers to vehicles [6]. A differ-
ent approach is taken in [11], which incentives some vehi-
cles to remain idle to handle future demand. These different
methods show that (estimated) information on future demand
improves the service level that can be offered.

The incorporation of reservations in an on-demand rideshar-
ing system is to the best of my knowledge only done by [5].
In this method reservations (pre-bookings) are placed a day
ahead and confirmed or rejected directly. Acceptance of a

reservation is considered binding to the operator.
Opposed to [5], this paper focuses on reservations that are

made shortly in advance.

3 Methodology

The methodology section is structured as follows: First, the
problem description is provided. Second, modifications to a
state-of-the-art model to allow for reservations are discussed.

3.1 Problem description

The goal of on-demand ridesharing is to assign a set of travel
requests to a set of vehicles with minimal overall costs and
within predetermined constraints. Requests are collected in
batches during 30 seconds and assigned collectively. The
problem takes place on a directed graph G = (N, E), with
N the nodes and E the edge in the graph. The edges are direc-
tional and weighted based on the required travel time of the
road segment it represents.

Waiting time for request r wr is the time between when
a request emerges re and when the request is picked up rp,
wr = rp − re. Detour time is the delay a passenger on board
a vehicle experiences compared to an unshared vehicle. The
detour time for request r dr is given by the drop off time rd

minus the pickup time minus the minimum travel time rmin,
dr = rd−rp−rmin. The waiting time and detour time combined
give the total delay time for a request δr, δr = wr + dr.

The goal of the assignment is to minimize Equation 1. In
this equation, the sum of the detour times for all passengers
Pv on board vehicle v, the total delays δr for all assigned re-
quests Rok plus the rejection penalty Πr for all requests that
are not assigned Rno, is minimized. This is done for each ve-
hicle in the set of all vehicles V.∑

vϵV

∑
rϵPv

dr +
∑
rϵRok

δr +
∑
rϵRno

Πr (1)

Assignment of requests to vehicles is done via an integer
linear program (ILP) method. To use this method, requests
are combined into trips. Trips are assigned to vehicles based
on the cost of serving that trip. The method is similar to [3].
A trip T is a group of requests that can be assigned together
to the same vehicle.

Trip computation A trip is feasible if all requests in that
trip and all passengers on board the vehicle to serve that trip
can be serviced within the waiting and detour time constraints.
To include reservations in this framework, they can simply be
added to the set of requests to be assigned.

Individual constraints ensure the maximum waiting time Ω
and maximum detour time ∆ are not exceeded. Furthermore,
the vehicle capacity can not be exceeded at any time during
the trip.

The cost of adding a trip to a vehicle is given in Equation
3.1. If multiple feasible routes (sequence of pick up and drop
off actions) are found for a trip, the one with the lowest cost
is selected.

cost(T , v) =
∑
r∈Pv

dr +
∑
r∈T

δr (2)
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The goal of the ILP is to assign requests, via trips, to vehi-
cles and minimize cost overall.

Feasible trip-vehicle combinations are computed for increas-
ing size with the property that for trip (T, V) to be feasible, all
(T’, V) with T ′ ∈ T have to be viable. Last, idle vehicles are
rebalanced to nodes with unserved demand. The ILP formu-
lation is given in Equation 3. The ILP is initialized with an
updated version of the previous assignment.

ILP assignment The ILP assignment has two sets of deci-
sion parameters. First, ϵi, j ∀e(Ti, v j) is a parameter to de-
scribe a feasible combination between trips and each vehicle
that can serve that trip. This is a binary parameter, whether a
trip is assigned to a vehicle or not. Second, Xr ∀r ∈ R is a
parameter if a request is assigned to a vehicle. This is also a
binary parameter since a request can only be assigned to one
vehicle or not be assigned. Xr = 1 means that request r is not
assigned.

The constraints in the ILP formulation will ensure that each
request is assigned to one vehicle or ignored. Also, each ve-
hicle will have at most one trip assigned.

The ILP has the number of edges in the e(T , v) set, plus the
number of requests as decision parameters. The number of
constraints is equal to the number of vehicles plus the number
of requests. Three subsets are used in the ILP formulation,
namely Tv= j is the set of trips that can be served by vehicle j.
TR=r is the set of trips that contain request r. VT=i is the set of
vehicles that can serve trip i

minimize
∑
Ti∈T

∑
v j∈V

ci, j ∗ ϵi, j +
∑
r∈R

Πr ∗ Xr

subject to
∑

i∈Tv= j

ϵi, j ≤ 1 ∀v j ∈ V∑
i∈TR=r

∑
j∈VT=i

ϵi, j + Xr = 1 ∀r ∈ R

(3)

Once the assignment procedure is done, it is communicated
to the vehicles. If a request is not picked up before the next
time step, it is put back in the set of requests to be assigned.

An additional constraint that can make ridesharing more
user-friendly is implemented. This constraint states that all
passengers that have been assigned to a vehicle before, and
thus expect to be served, have to be served by the system.
This constraint will only be applied to reservations.

For this purpose, an additional subset Rrb is defined for all
reservations that have been assigned before.

In mathematical form this can be written as:∑
TiϵTR=r

∑
jϵVT=i

ϵi, j = 1 ∀r ∈ Rrb (4)

3.2 Modifications

The computational load from the inclusion of reservations
into the set of requests to be assigned will grow exponentially
if no provisions are taken.

First of all, reservations could in the worst case be available
for each trip of a certain vehicle. This phenomenon is shown
for one reservation in Figure 1, where a blue reservation is
added.

Figure 1: Worst case growth in the number of feasible trips if a
blue reservation is added

A second effect is that reservations can be assigned to more
vehicles than on-demand requests. Therefore, extra trips have
to be computed for more vehicles compared to on-demand
requests.

Third, reservations stay in the request pool longer than on-
demand requests. This means that the potential trips are com-
puted more often as well.

Not only are there more trips, but the trips also become
longer and thus significantly more expensive to compute. As
shown in Table 1 larger trip sizes are especially expensive as
you compute more new passengers. Since reservations can be
added to more trips than on-demand requests, the inclusion of
reservations has a significant impact on the amount of larger
trip sizes that are available.

New Passengers
1 2 3 4

0 1 6 90 2520
On board
passengers 1 3 30 630 22680

2 6 90 252 113400
3 10 210 7560 415800
4 15 420 18900 1247400

Table 1: Number of potentially feasible permutations with
insertion heuristic

It should be noted that additional on-demand requests have
a scaling effect on the computational load as well. However,
reservations do scale much worse in practice.

Because of the scaling effects from reservations, countermea-
sures are required. First off, reservations are revealed to the
system a limited time in advance, even when placed longer in
advance. Second, an insertion heuristic is applied to trip com-
putation cost. The insertion heuristic locks the order in which
passengers already on board are dropped off. This reduces
the number of possible permutations by a factor of “passen-
gers on board" factorial compared to not using this heuristic.
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Further steps to limit the impact on computation time are re-
quired.

The additional methodology proposed in this research con-
sists of 2 parts. The first part is to limit the cost of comput-
ing a trip by applying logic checks on which permutations
to consider. For the second part, heuristics are developed
to determine which trips should be considered. The goal is
to minimize the number of trips to compute the costs while
maintaining the performance of the system.

Logic checks

Multiple logic checks are used to determine if it is sensible
to compute the cost for a certain permutation. Permutations
are different sequences in which pick-up/drop-off actions are
planned. The idea is that considering a logic check is com-
putationally far cheaper than computing the cost for a permu-
tation. The checks done initially are as follows: 1) The per-
mutation does not start with a subset previously determined
to be infeasible to start with. 2) Reservations are limited in
their position in the sequence to respect the time constraints
for other passengers. 3) The vehicle capacity is not violated
(constraint). Furthermore, only permutations that could pro-
vide a valid solution are considered. These considerations can
be computed beforehand once and tested against the permu-
tation to be considered.

Once a permutation passes the logic tests, the actual feasi-
bility and cost is checked based on waiting and detour time
constraints. If the permutation turns out to be infeasible, the
subset leading up to the constraint is added to the list of in-
feasible subsets. The same principle is applied to the other
logic checks. If a permutation is not feasible according to one
of the checks, the subset leading to that point is added to the
infeasible set.

Heuristics

Heuristics have been designed to reduce the computational
load while maintaining as much as possible of the advantages
from reservations. The goal of the heuristics is to reduce the
number of trips to be computed by only computing relevant
trips. An assumption made in the design of heuristics is that
trips with a lower cost are easier to combine. The cost of a trip
is correlated with the margin to the constraints for waiting and
detour time. A lower cost thus indicates more flexibility while
staying within the set constraints.

Based on testing a heuristic is designed and tuned on an
average scenario. The heuristic consists of two parts. First,
the heuristic limits the trip size to be considered to three. Sec-
ond, all requests (including reservations) are only considered
by the X cheapest vehicles in each iteration (we use X = 20).

4 Experimental setup

The network for the experiments is from Manhattan, New
York City. The graph describing the network consists of 4091
nodes and 9454 directional edges. 1000 vehicles with a ca-
pacity of four passengers are used for the simulation. The
shortest route and distance between each pair of points in the
graph are calculated beforehand using the Dijkstra algorithm

and stored in a lookup table.
Requests are taken from actual data for taxi demand in

Manhattan from 12 AM till 1 PM, on the 15th of January
2013. The set of requests consists of 10548 valid requests to
be considered. Each request has starting and end coordinates.
These have been matched to the closest node in the road net-
work. The requests consist of pick-up and drop-off nodes,
request time and group size. For the numerical simulations,
all requests are for 1 person.

The standard test scenario used consists of a warm-up phase
and a “real" part. The goal of the warm-up phase is to ap-
proximate what the initial conditions would be with service
in the previous hour. This includes the location and occu-
pation (with the accompanying constraints on waiting/detour
time) for each vehicle.

In the warm-up phase, 5250 requests are added to the sys-
tem over half an hour. The set of warm-up requests is ran-
domly drawn without redraw from all possible requests and
equally spaced over the available time for warm-up. Service
for the warm-up set is not considered in the KPIs evaluated.

The results in this paper will be discussed for random reser-
vations and for “rejections as reservations". In the case of
random reservations, a sample of all requests is taken and the
reveal time for these requests is reduced with the time in ad-
vance the requests are revealed to the system. For rejections
as reservations, the requests that are not served without reser-
vations are assumed to make a reservation. This represents a
set of requests that are harder to service in the case without
reservations.

To examine the sensitivity towards the underlying request
data, a second set of requests from Manhattan is used for this
purpose. The control set is taken from the morning peak.
There is a significant difference in origin/destination distri-
bution, therefore the set can be used for sensitivity analysis.
The distributions are shown in Figure 2. The morning request
set consists of 28030 requests. To be comparable with the
noon data set, 10548 unique samples will be randomly drawn
from this morning hour. The warm-up data for the test set is
drawn from the same request set.

Figure 2: Origin and destination distribution for the test case
and the sensitivity analysis.

5 Results

In this section the results are discussed. First, the impact of
benefits for reservations are discussed. Second, the effects
from the designed heuristic are shown. Third, the results
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for scenarios with both pledged service and the heuristics are
evaluated. Last, the sensitivity of the results to the request
data is analyzed.

Pledged service

Passengers that place a reservation would expect some to re-
ceive a benefit for making that reservation. This benefit can be
provided using the pledged service constraint or by increasing
the rejection penalty for reservations.

A comparison between the average service rate and the ser-
vice rate for reservations (dotted lines) is shown in Figure 3.
The experiments are performed with random reservations re-
vealed 5 minutes in advance.

Figure 3: Effects on service rate if benefits are assigned to
reservations.

From the figure it shows that providing benefits to reserva-
tions does lead to a small reduction in average service rates
compared to a “no benefits” scenario. The service rate is on
average still higher compared to a scenario without reserva-
tions.

Reservations do receive slightly better service in case of
pledged service over the increased rejection penalty at higher
reservation fractions. This is because the pledged service
constraint does differentiate between reservations and the in-
creased rejection penalty does not.

Based on the objective to make ridesharing more attractive,
the further sections of the results will be discussed with the
pledged service constraint applied for all reservations.

Heuristics

More available information does lead to better possible as-
signments and thus increased system performance. However,
a limit on the available computational time is applied to allow
for on-demand service. The impact of more information on
the service rate is shown in Figure 4. The orange line is with-
out heuristics and the blue line a simulation with heuristics.
In this experiment all reservations are revealed to the system
5 minutes in advance.

Initially a steady increase in service rate is reached with
more reservations. The reason for the drop in performance of
the orange line is given in Figure 5. The computation time
for each scenario is shown with and without the heuristics.
It is clear that for more reservations the experiment without
heuristics reaches the computational time limits and deterio-
rates in performance as a consequence.

Figure 4: Service rate with random reservations revealed 5
minutes in advance.

Figure 5: Computational time with random reservations
revealed 5 minutes in advance.

The reason to use heuristics is to allow for more informa-
tion to be used effectively by the model. This means that more
reservations can be revealed to the system longer in advance.
The heuristics will still reach a point where more information
decreases system performance. However, this point is reached
later and therefore a better solution becomes computationally
feasible. A second reason to apply the heuristic is to be able
to simulate rush hour demand with more requests per hour.

The heuristic will be used in the following results in this
paper.

5.1 Combined results

The results from including reservations in an on-demand rideshar-
ing system are summarized in table 2. The results are with the
described heuristic and the pledged service constraint. Each
cell in the table shows the service rate, service rate for reser-
vations and the computational time used for the simulation.

Based on these results it can be concluded that additional
reservations improve performance more than reservations that
are revealed longer in advance. In case rejections are used as
reservations, the average service rate is lower compared to
random requests. The costly requests that made a reservation
are all served, this shows the trade-off in providing benefits
for reservations.

If too much information becomes available, the service rate
can deteriorate significantly to levels lower than without reser-
vations. Reservations that were placed are still being served
significantly better because of the pledged service constraint.

The average service rate decreases partly because the heuris-
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Time revealed in
advance [minutes]

5 10 15 20

Random
reservations 0%

0.858
-
39

0.858
-
39

0.858
-
39

0.858
-
39

SR
Reservation SR
sim time

10%
0.864
1
61

0.868
1
107

0.874
1
240

0.874
1
921

20%
0.871
1
103

0.883
1
382

0.885
1
2136

0.834
1
2367

30%
0.874
1
151

0.888
1
2677

0.8
1
2730

0.804
0.993
2775

40%
0.885
1
395

0.836
1
2786

0.806
0.985
2890

0.808
0.976
3101

50%
0.892
1
639

0.819
0.995
2932

0.816
0.965
3036

0.805
0.959
3435

Rejections as
reservations 14.2%

0.864
1
75

0.871
1
325

0.877
1
1209

0.862
1
3242

Table 2: Result from the incorporation of reservations in an
on-demand ridesharing system for different percentages of
random reservations revealed a certain time in advance.

tic parameters are tuned on just one scenario with reservations
revealed shortly in advance. Since the tuning is not effective
for all scenarios, the model can not both adhere to the con-
straint and pick effective options as these are not sufficiently
created.

Reservations revealed shortly in advance do show signifi-
cant gains to be achieved and good service for reservations.

The service rate for each result in the table is plotted in
Figure 6.

Figure 6: Visualization of the service rates as in Table 2.

5.2 Sensitivity

Experiments are run with the morning peak request set to as-
sess the impact of the underlying request set. Since the heuris-
tic parameters are optimized on reservations being revealed
shortly in advance, these settings will be used for the com-
parison in Figure 7. All reservations are revealed 5 minutes

in advance. The orange line indicates the service rate in the
morning hour. The dotted lines indicate the service rate for
the passengers that placed a reservation.

Figure 7: Simulations for sensitivity data set compared to the
test set. Requests are all revealed 5 minutes in advance.

Service rate is slightly higher in the morning peak as there
is a bit more overlap in desired trajectories for passengers.
Trends in performance are similar and more reservations re-
vealed shortly in advance increase the service rate signifi-
cantly in both scenarios.

From these results it can be concluded that the method is
not sensitive to the underlying spatial distribution of origin
and demand for the requests.

6 Conclusion

The objective of this work has been to assess the effectiveness
and feasibility of the inclusion of reservations in a large-scale
on-demand ridesharing system.

In conclusion, the incorporation of reservations into an on-
demand ridesharing system can provide significant advantages
for system-wide performance and the experienced service level
for passengers that make a reservation. A trade-off between
providing better service to reservations and on-demand re-
quests exists. System-wise, the computational load from reser-
vations is large but can be managed with appropriate heuris-
tics if reservations are not revealed far in advance. The trends
in the results prove not sensitive to the underlying request data
set.

Based on the results, this methodology seems most suited
to increase service of on-demand ridesharing systems where
passengers have the option to leave as soon as possible or
make a reservation to leave in for example 10 minutes from
now. The methodology is capable of using the information
for better service overall and can provide service guarantees
for these kinds of reservations.

Discussion

An important consideration would be if passengers see suffi-
cient benefits to use ridesharing more often if the possibility
of reservations would be included. Based on the results, it is
not effective to guarantee service for reservations placed long
in advance in this methodology. Reservations placed a short
time in advance can receive a service guarantee, while at the
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same time increasing system performance.

A second consideration would be to look at the price of com-
putational power. Results in this study focused on limiting the
computational load because of the available hardware. The
additional computation power required to handle more infor-
mation has a certain computational price and provides a cer-
tain value. With current trends in increasing computational
power, the trade-off in how much additional information is
useful and can be applied economically will shift over time
towards handling more information. A future extension could
also include options for distributed computing, for example
on the phone of each driver.

Concerning the designed heuristic, the components represent
just a subset of all possible heuristics. The focus of this re-
search was to identify the trade-offs, benefits and costs of the
inclusion of reservations in an on-demand ridesharing model.
The designed heuristics are kept simple to provide general us-
ability and provide enough improvement to perform the nu-
merical analysis for the described scenarios. More detailed
and dedicated heuristics can be designed for specific situa-
tions and improve performance further and/or reduce the com-
putational load.

An important consideration for evaluating the heuristic is
that the underlying parameters are tuned on just one scenario.
Since this was a scenario with some reservations revealed
shortly in advance, the heuristic parameters prevent the model
from taking advantage of information that is available longer
in advance. Based on the limited computational load used by
reservations that are revealed a short time in advance, suffi-
cient computation time would be available to consider reser-
vations revealed longer in advance with appropriate heuris-
tics. Better results can likely be obtained with heuristics tai-
lored to the current status and number of reservations in the
network.

Future research

In this research, the goal was to include reservations in an
on-demand ridesharing problem. Relevant future work could
focus on two aspects of this problem.

First, an option would be to improve performance in the pro-
posed model by improving the heuristics. Other working prin-
ciples/information used by the heuristics can be applied to de-
sign more sophisticated heuristics that would scale well with
large problem sizes and take advantage off different types of
information available.

Another option would be to use machine learning to predict
which trips to compute. This research angle could employ
available data to have modern machine learning algorithms
design the heuristics. This can identify more/different under-
lying patterns than humans ever could and therefore allow for
the inclusion of more knowledge in the ridesharing formula-
tion.

Second, on-demand requests can be incorporated in a scenario
where most of the passengers make reservations sufficiently
long in advance. This is a different problem and would have

its own methods to solve. A reason to solve this problem is to
be able to provide service guarantees for day-ahead reserva-
tions.
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B
Additional results

In this appendix, additional results are shown. The results are for the experiments without benefits for
reservations nor heuristics; the value of computational time; for the effects of an increased rejection
penalty; the tuning of the heuristic parameters. The experiments are done with the same settings as
the corresponding ones in the thesis. The variable to review is the number of vehicles to use.

The first results are for the experiments without benefits for reservations and without the use of heuris-
tics. The results below are for experiments with 1000 or 1250 vehicles.

Time revealed in
advance [minutes]
5 10

0%

0.863
-
261
1.02
98

0.863
-
261
1.02
98

Random
reservations 10%

0.877
0.95
252
1.03
207

0.886
0.952
268
1.04
899

Service rate (SR)
Reservation service rate
Average total delay [s]
Distance ratio
Simulation time

20%

0.882
0.941
149
1.05
424

.899
0.96
145
1.05
3258

30%

0.9
0.948
240
1.07
752

0.912
0.963
236
1.07
6643

Rejections as
reservations 13.7%

0.888
0.845
262
.04
223

0.902
0.882
262
1.05
1260

Table B.1: Performance with reservations for 1000 vehicles in case of no benefits for reservations and no heuristics applied.
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Time revealed in
advance [minutes]
5 10

0%

0.928
-
250
0.98
109

0.928
-
250
0.98
109

Random
reservations 10%

0.939
0.975
241
0.97
184

0.953
0.979
235

Service rate (SR)
Reservation service rate
Average total delay [s]
Distance ratio
Simulation time

20%

0.945
0.973
228
0.98
388

0.963
0.981
225
0.99
3473

30%

0.951
0.981
226
1.01
755

0.978
0.993
206
1.01
7177

Rejections as
reservations 7.2%

0.941
0.885
251
0.99
128

0.945
0.912
255
1
485

Table B.2: Performance with reservations for 1250 vehicles in case of no benefits for reservations and no heuristics applied.

The next result is for the test on available computational time, in this case with 1000 vehicles. The
results are for 10% reservations, revealed 10 minutes in advance.

1000 vehicles ILP time
5 15 25

30 s 0.89 0.894 0.893 service rate
0.03s per vehicle 0.998 0.999 0.998 future service rate

2302 2232 2285 simulation time
75 s 0.89 0.891 0.892
0.075s per vehicle 0.998 0.999 0.999

3464 3450 3410
150 s 0.892 0.888 0.89
0.15s per vehicle 0.997 0.997 0.999

4602 4486 4506

Table B.3: Performance with different limits on computational time for 1000 vehicles.

Third, the results on the combined effects of an increased rejection penalty for reservations and the
pledged service constraint applied to reservations or to all requests. The results are for 750 vehicles.
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Rejection penalty = 5
750 vehicles pledged service for reservations pledged service for all requests

Reservation penalty factor 1 1.5 2 5 1 1.5 2 5
service rate 0.731 0.729 0.731 0.732 0.708 0.706 0.703 0.702
reservation service rate 1 1 1 1 1 1 1 1
total delay time [s] 268 267 269 269 278 280 281 278

(a) Rejection penalty 5
Rejection penalty = 10
750 vehicles pledged service for reservations pledged service for all requests

Reservation penalty factor 1 1.5 2 5 1 1.5 2 5
service rate 0.73 0.736 0.736 0.733 0.702 0.701 0.706 0.705
reservation service rate 1 1 1 1 1 1 1 1
total delay time [s] 265 270 270 265 283 283 278 280

(b) Rejection penalty 10

Table B.4: Effect of different rejection penalties with random reservations and the pledged service constraint active.
Experiment with 750 vehicles.

Rejection penalty = 5
750 vehicles pledged service for reservations pledged service for all requests

reservation penalty factor 1 1.5 2 5 1 1.5 2 5
service rate 0.726 0.725 0.724 0.725 0.7 0.693 0.698 0.686
reservation service rate 1 1 1 1 0.995 0.996 0.999 0.999
total delay time [s] 278 279 279 277 287 286 288 290
Distance ratio 1.09 1.1 1.09 1.09 1.06 1.05 1.05 1.04
RTV edges *1e6 7.17 7.2 7.26 7 6.98 7.19 7.43 7.52

(a) Rejection penalty 5
Rejection penalty = 10
750 vehicles pledged service for reservations pledged service for all requests

reservation penalty factor 1 1.5 2 5 1 1.5 2 5
service rate 0.727 0.719 0.726 0.716 0.696 0.698 0.694 0.693
reservation service rate 1 1 1 1 0.993 0.997 0.999 0.998
total delay time [s] 279 277 277 279 289 287 289 286
Distance ratio 1.1 1.08 1.1 1.08 1.05 1.06 1.05 1.05
RTV edges *1e6 7.2 7.02 6.88 7.24 6.95 6.96 6.86 7.33

(b) Rejection penalty 10

Table B.5: Effect of different rejection penalties with rejections as reservations and the pledged service constraint active.
Experiment with 750 vehicles.

Last, the tuning for the heuristics parameters is performed for 1000 and 1250 vehicles. First, the
reference value without the application of heuristics is shown. Afterwards, the results for the different
heuristics are shown. The most important takeaway is that trends are similar to a scenario with 750
vehicles.

Vehicles 1000 1250
service rate 0.86 0.948
reservation service rate 0.999 1
RTV build time [s][s] 1128 1298

Table B.6: Performance without heuristics in the reference scenario, 10% random reservations revealed 10 minutes in
advance.
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max vehicles per request 1 10 20 40 60
service rate 0.69 0.828 0.847 0.854 0.86
reservation service rate 0.864 0.985 0.999 0.997 0.999
RTV build time [s][s] 30 399 507 769 959

(a)
max vehicle per reservation 1 10 20 40 60
service rate 0.783 0.829 0.852 0.853 0.851
reservation service rate 0.809 0.989 0.996 0.999 0.998
RTV build time [s][s] 45 322 510 786 1079

(b)

Table B.7: Maximum vehicles per request/reservation, experiment with 1000 vehicles.

max vehicles per request 1 10 20 40 60
service rate 0.786 0.939 0.944 0.948 0.944
reservation service rate 0.927 0.998 1 1 1
RTV build time [s][s] 27 263 450 739 944

(a)
max vehicle per reservation 1 10 20 40 60
service rate 0.904 0.941 0.948 0.948 0.953
reservation service rate 0.887 0.998 1 1 1
RTV build time [s][s] 39 254 440 722 1080

(b)

Table B.8: Maximum vehicles per request/reservation, experiment with 1250 vehicles.

prune per layer 40, 40 40,80 40, 120 80, 80 80, 120 120, 120
service rate 0.803 0.81 0.806 0.848 0.842 0.856
reservation service rate 0.958 0.957 0.959 0.979 0.977 0.991
RTV build time [s][s] 422 673 712 792 884 911

(a) 1000 vehicles
prune per layer 40, 40 40,80 40, 120 80, 80 80, 120 120, 120
service rate 0.896 0.901 0.901 0.942 0.936 0.948
reservation service rate 0.979 0.983 0.982 0.984 0.985 0.999
RTV build time [s][s] 438 674 775 805 945 953

(b) 1250 vehicles

Table B.9: Pruning applied per trip size for sizes 1 and 2. Results for 1000 and 1250 vehicles.
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Restricted to X best vehicles 1 10 20 40 60
service rate 0.81 0.813 0.826 0.844 0.845
reservation service rate 0.959 0.977 0.99 0.997 0.997
RTV build time [s][s] 35 115 262 508 989

(a) Available for all vehicles 5 minutes in advance
Restricted to X best vehicles 1 10 20 40 60
service rate 0.817 0.808 0.832 0.848 0.85
reservation service rate 0.95 0.978 0.994 0.997 0.999
RTV build time [s] 36 120 271 525 768

(b) Available for all vehicles once emerged
Restricted to X best vehicles 1 10 20 40 60
service rate 0.81 0.806 0.83 0.946 0.95
reservation service rate 0.964 0.976 0.992 1 1
RTV build time [s] 33 119 264 418 625

(c) Only available to selected vehicles

Table B.10: Restricted to X best vehicles heuristic, applied to 1000 vehicles.

Restricted to X best vehicles 1 10 20 40 60
service rate 0.916 0.925 0.937
reservation service rate 0.983 0.995 0.999
RTV build time [s] 33 78 177

(a) Available for all vehicles 5 minutes in advance
Restricted to X best vehicles 1 10 20 40 60
service rate 0.922 0.928 0.941
reservation service rate 0.988 0.993 1
RTV build time [s] 33 78 184

(b) Available for all vehicles once emerged
Restricted to X best vehicles 1 10 20 40 60
service rate 0.915 0.92 0.937
reservation service rate 0.986 0.995 0.999
RTV build time [s] 29 78 189

(c) Only available to selected vehicles

Table B.11: Restricted to X best vehicles heuristic, applied to 1250 vehicles.

max trip size 2 3 4
service rate 0.85 0.855 0.855
reservation service rate 0.999 0.998 0.999
RTV build time [s] 24 459 1100

(a) 1000 vehicles

max trip size 2 3 4
service rate 0.952 0.948 0.947
reservation service rate 1 1 1
RTV build time [s] 28 597 1264

(b) 1250 vehicles

Table B.12: Maximum trip size with 1000 or 1250 vehicles.
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