

Delft University of Technology

Detecting Code Smells in Spreadsheet Formulas

Hermans, FFJ; Pinzger, M; van Deursen, A

DOI
10.1109/ICSM.2012.6405300
Publication date
2012
Document Version
Accepted author manuscript
Published in
Proceedings of the International Conference on Software Maintenance (ICSM)

Citation (APA)
Hermans, FFJ., Pinzger, M., & van Deursen, A. (2012). Detecting Code Smells in Spreadsheet Formulas. In
P. Tonella, M. Di Penta, & JI. Maletic (Eds.), Proceedings of the International Conference on Software
Maintenance (ICSM) (pp. 409-418). IEEE. https://doi.org/10.1109/ICSM.2012.6405300

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1109/ICSM.2012.6405300
https://doi.org/10.1109/ICSM.2012.6405300

Detecting Code Smells in Spreadsheet Formulas

Felienne Hermans, Martin Pinzger and Arie van Deursen

Delft University of Technology

Delft, the Netherlands

{f.f.j.hermans, m.pinzger, arie.vandeursen}@tudelft.nl

Abstract—Spreadsheets are used extensively in business pro-
cesses around the world and just like software, spreadsheets
are changed throughout their lifetime causing maintainability
issues. This paper adapts known code smells to spreadsheet
formulas. To that end we present a list of metrics by which
we can detect smelly formulas and a visualization technique
to highlight these formulas in spreadsheets. We implemented
the metrics and visualization technique in a prototype tool to
evaluate our approach in two ways. Firstly, we analyze the
EUSES spreadsheet corpus, to study the occurrence of the
formula smells. Secondly, we analyze ten real life spreadsheets,
and interview the spreadsheet owners about the identified
smells. The results of these evaluations indicate that formula
smells are common and that they can reveal real errors and
weaknesses in spreadsheet formulas.

Keywords-spreadsheets; code smells; refactoring;

I. INTRODUCTION

The use of spreadsheets is very common in industry,

Winston [1] estimates that 90% of all analysts in industry

perform calculations in spreadsheets. Spreadsheet develop-

ers are in fact end-user programmers that are usually not

formally trained software engineers. There are many of

those end-user programmers, more than there are traditional

programmers, and the artifacts they create can be just as

important to an organization as regular software. Techni-

cally, spreadsheets also have similarities to software. One

could view spreadsheet formulas as little pieces of source

code, since both consist of constants, variables, conditional

statements and references to other parts of the software.

It therefore seems logical to research what principles from

software engineering are also applicable to spreadsheets.

In previous work [2] we have defined code smells between

worksheets, such as high coupling between worksheets and

middle men worksheets. The evaluation of those smells

showed that they can indeed reveal weak spots in a spread-

sheet’s design. In this paper we follow that line of thought,

but focus our attention on smells within spreadsheet formu-

las. To that end we present an set of formula smells, based

on Fowler’s code smells. We subsequently define metrics

for each of the formula smells, to enable the automatic

detection of the smells. We then describe a method to

detect these formula smells. Our detection approach uses

thresholds to divide the severeness of each formula smell

into low, moderate, and high. The thresholds are based on the

analysis of 4,233 spreadsheets from the EUSES corpus [3].

Thereon we address the issue of communicating identified

smells to spreadsheet users. We choose to do this within the

spreadsheet itself, with a spreadsheet risk map, a colored

overlay on the spreadsheet, indicating risk in the spreadsheet

formulas. Finally we evaluate the catalog of smells in two

ways, with a quantitative and qualitative evaluation. We

perform a quantitative evaluation on the EUSES spreadsheet

corpus. The qualitative analysis was performed with ten real

life spreadsheets and their developers from industry. With

both studies we aim to answer the three research questions:

R1 What formula smells are most common, and why? R2 To

what extent do formula smells expose threats to spreadsheet

quality? R3 To what extent are risk maps an appropriate way

to visualize formula smells?
The results of these evaluations show that formula smells

can indeed reveal weaknesses, and even find real mistakes

in a spreadsheet. The risk maps, although not yet perfect,

are a good aid in helping to locate and understand formula

smells.

II. FORMULA SMELLS

We define a number of formula smells, based on the

existing work in the field of source code smells, initiated

by Fowler [4]. Smells in source code indicate suspicious

parts, that the developer might want to refactor to improve

readability and minimize the chance of future errors. For-

mula smells are inspired by source code smells: they indicate

formulas that are suspicious; not easy to read or error-prone.

In the following we present our set of formula smells plus

ways to refactor them.

A. Multiple Operations

One of the most well-known code smells is the Long

Method. Inspired by this code smell, we define the formula

smell Multiple Operations. Analogous to a long method,

a formula with many different operations will likely be

harder to understand than a shorter one. Especially since in

most spreadsheet programs, there is limited space to view a

formula, causing long formulas to be cut off.
A corresponding refactoring is the division of the Multiple

Operations over multiple cells in a spreadsheet. For instance,

instead of putting SUM(A1:A6)*(B1+8)/100 in one cell, this

could be split into two cells, one for the SUM, and one for

the division, that are subsequently multiplied.

978-1-4673-2312-3/12/$31.00 c© 2012 IEEE

2012 28th IEEE International Conference on Software Maintenance (ICSM)

409

B. Multiple References

Another code smell we use as a basis is the Many

parameters code smell. A method that uses many input

values might be split into multiple methods to improve

readability. The formula equivalent of this smell occurs

when a formula references many different other cells, like

SUM(A1:A5; B7;C18;C19;F19). In this case the essence

of the formula is clear; some cells are summed. However

locating the different cells that are contained in the sum can

be challenging.

In this case there are several options to refactor. Firstly,

like in the case of a formula with many operations, we

could split the formula into several smaller formulas, each

performing one step of the calculation. A second option is

the relocation of the cells in the spreadsheet. One solution

is to place the values in B7;C18;C19;F19 in A6 until A10,

and to rewrite the formula as SUM(A1:A10).

C. Conditional Complexity

Fowler states that the nesting of many conditional opera-

tions should be considered a threat to code readability, since

conditionals are hard to read. Since spreadsheet systems

also allow for the use of conditionals, spreadsheet formulas

are at risk of this treat too. We hence consider a formula

with many conditional operations as smelly, like the for-

mula IF(A3=1,IF(A4=1,IF(A5<34700,50)),0), because of

the many conditional branches, the formula is hard to read.

To reduce conditional complexity of a formula, again it

could be split into multiple steps, by putting each branch

of the if in a separate cell, turning our example formula

into IF(A3=1,B1,B2), where cell B1 contains IF(A4=1,

IF(A5<34700, 50)) and B2 contains 0. B1 could again

be refactored in this fashion. By separating the ifs, it is

easier to understand what happens in each case. A different

option is to combine multiple if formulas into one SUMIF

or COUNTIF formula, by putting the branches of the if in

separate cells.

D. Long Calculation Chain

Spreadsheet formulas can refer to each other, hence

creating chains of calculation. To understand the meaning

of such a formula, a spreadsheet user has to trace along

multiple steps to find the origin of the data. Nardi and

Miller [5] described that spreadsheet users find tracing a

long calculation chain a tedious task.

To lower the number of steps of a calculation chain, steps

of the chain could be merged into one cell. Note that there

is a trade off between this metric and Multiple Operations

and Multiple References. When they are lowered, this metric

will be increased, and vice versa. Such trade offs occur in

source code smells too.

E. Duplicated Formulas

Finally there is the duplication code smell, that indi-

cates that similar snippets of code are used througout

a class. This is a concept common in spreadsheets too,

where some formulas are partly the same as others.

Consider, for example, a worksheet that contains a cell

with formula SUM(A1:A6)+10% and a second formula

SUM(A1:A6)+20%. This formula exhibits duplication; the

part SUM(A1:A6) is contained in more than one formula.

Duplication is suspicious for two reasons. Firstly it poses a

threat to maintainability, since when the duplicated part of

the formula is adapted, this adaptation has to be performed at

multiple places. This could be forgotten by the spreadsheet

user, or a mistake could be made in some of the cases.

Secondly, there is an impact on readability, when long parts

of the formula are duplicated, it is hard to see how they

differ from each other.

Duplicated formulas can be refactored by putting the

shared subtrees in a separate formula and replacing the

subtree with a reference to that formula.

III. FORMULA METRICS

To identify smell occurrences automatically, we make use

of metrics, an approach common in the automatic detection

of code smells [6]. We follow our approach outlined in [2]

defining a metric to detect each of the formula smells in

spreadsheets. This method entails the definition of a metric

for each of the smells to indicate the presence of that

particular smell.

1) Multiple Operations: We measure the length of a

formula in terms of the total number of functions that the

formula contains.

2) Multiple References: This metric is counted in terms

of the number of ranges a formula is referring to.

3) Conditional Complexity: Conditional complexity is

measured in terms of the number of conditionals contained

by a formula.

4) Long Calculation Chain: This metric is defined as

the length of the longest path of cells that need to be

dereferenced when computing the value of the formula.

5) Duplicated Formula: For the localization of this smell

more information about spreadsheet formulas is needed.

Consider the spreadsheet in Figure 1. All the formulas in

column E calculate the minimum of the four cells left to it,

followed by the addition of a certain percentage. We argue

that in this case, duplication should be detected. However,

looking at the formulas, they do not look similar. We

therefore will use the relative R1C1 notation when detecting

duplication.

In the relative R1C1 notation, references to other cells

are expressed relative to the cell containing the formula.

MIN(A2:D2) in cell E2 is written as MIN(RC[-4]:RC[-1])

in relative R1C1 notation. With this notation, all formulas

in Figure 1 contain the subtree MIN(RC[-4]:RC[-1]), with

2012 28th IEEE International Conference on Software Maintenance (ICSM)

410

Figure 1. Formulas containing similar subtrees

different percentages. With this, we will measure the dupli-

cate code smell as the number of formulas, located in the

same worksheet and expressed in relative R1C1 notation,

with which a formula shares at least one proper subtree. We

exclude the entire tree as subtree, since having the same

R1C1 formula in an entire row or column is the usual way

of defining a formula in spreadsheets.

IV. DETERMINING SMELL THRESHOLDS

In order to use the metrics as smell indicators, we

determine thresholds for each of the metrics. We do this

by analyzing a large body of spreadsheets and based on

the values for the metrics we find in that large body of

spreadsheets, we set the thresholds for the metrics that

indicate the smell.

The body of spreadsheets we use is the EUSES Spread-

sheet Corpus [3]. This corpus consists of more than 4,223

real life spreadsheets, from all sorts of domains, ranging

from educational to financial, and from inventory to biology.

It was created in 2005 and has since then been used by

several researchers to evaluate spreadsheet algorithms, for

instance [7].

Figure 2. A quantile plot (% of formulas) for the five metrics for formulas
in the EUSES corpus, with a logarithmic scale for the y axis

The total of 4,223 spreadsheets together contain 15,015

worksheets and 426,986 formulas. A spreadsheet however

often contains many rows with formulas that are equal in

the relative R1C1 notation, which we call unique formulas.

We collect the metrics for all unique formulas, of which

there are 55,736 in the EUSES corpus.

Figure 2 shows on overview of the metric values for

all unique formulas in the EUSES corpus. As can been

seen in this figure, the metrics all follow a power law like

distribution, having most of their variability on the tail. We

therefore propose to select the values at 70, 80 and 90%

of the metric values, that will correspond to risk levels

low, moderate and high. These are percentages that are also

common in the analysis of source code smells [8]. Table I

shows the thresholds that follow from the given selection

for the five formula smells.

Smell 70% 80% 90%

Multiple Operations 4 5 9
Multiple References 3 4 6
Conditional Complexity 2 3 4
Message Chain 4 5 7
Duplication 6 9 13

Table I
THRESHOLDS FOR THE METRICS THAT INDICATE THE FORMULA

SMELLS

V. RISK MAPS

Having established a method to detect the formula smells,

in this section, we investigate a way to communicate the

located smells to spreadsheet users. We have chosen to show

the formula smells inside the spreadsheet itself. We have

seen in previous work that, when reasoning about formulas,

spreadsheet users like to see the context of the formula [9].

We therefore use a colored overlay over the spreadsheet that

indicates the formula smells, inspired by other spreadsheet

tools like UCheck [10], [11], [12], combined with pop-

ups showing what smell is detected, similar to those in

UFix [13]. We call this the spreadsheet risk map.

Figure 3. A spreadsheet with its risk map

We attach a comment to each colored cell, so when a

spreadsheet user clicks a cell, an explanation about the

located smell will pop up. The three different risk levels

are marked with different colors; yellow for low; orange for

moderate and red for high.

VI. IMPLEMENTATION

The generation of the risk maps is incorporated into the

existing spreadsheet analysis system Breviz [14]. Breviz

2012 28th IEEE International Conference on Software Maintenance (ICSM)

411

is implemented in C# 4.0 using Visual Studio 2010. It

utilizes the Gembox component to read Excel files. 1 Breviz

reads an Excel file and calculates the metrics described

above and subsequently generates the spreadsheet risk map.

Furthermore the metric values are stored in a SQL Server

2008 database to perform the threshold detection.

VII. EVALUATION

In order to evaluate the formula smells, metrics, thresh-

olds, and risk map visualization, we perform two separate

evaluations. In the first evaluation we turn our attention back

to the Euses Spreadsheet corpus. We analyze all spreadsheets

in the corpus and investigate the occurrence of the five

spreadsheet smells. With this analysis, we seek to find a

preliminary answer to research question R1: what formula

smells are common, and why.

For the second evaluation, aimed at a deeper under-

standing of R1, plus answers to R2 and R3, we ask ten

professional spreadsheet developers for access to their real

life spreadsheets. We let our tool Breviz identify possible

formula smells and show the participants the generated risk

map. We thereon ask the spreadsheet users to reflect on the

identified spreadsheet smells, in a semi-structured interview.

The following sections describe the two evaluations in

more detail.

VIII. SMELL OCCURRENCES IN THE EUSES CORPUS

A. Goal

The objective of the first study is to understand how

common the five formula smells are, given the thresholds

we have selected. While the thresholds were chosen such

as percentages of formulas containing a smell, here we

are interested in the distribution of smelly formulas across

spreadsheets.

B. Setup

We use the Breviz tool to analyze the spreadsheets in

the EUSES corpus for the presence of formula smells and

their severity. Per spreadsheet the tool outputs the metric

values for each of the five formula smells. We use this

data to analyze the distribution of the formula smells over

the three metric categories; above the 70%, 80% and 90%

thresholds.This gives a first idea of the distribution of the

formula smells over the spreadsheets.

C. Results

Table II shows the results of the first evaluation. As shown

in this Table, Multiple Operations and Multiple References

are most common in the EUSES Corpus. This is consistent

with previous spreadsheet experiments, where it has been

shown that spreadsheet are often adapted by their users [9].

In that process, spreadsheet formulas tend to get longer

1http://www.gemboxsoftware.com/spreadsheet/overview

Smell > 70% > 80% > 90%

Multiple References 23.8% 18.4% 6.3%
Multiple Operations 21.6% 17.1% 6.3%
Duplication 10.8% 7.1% 3.7%
Long Calculation Chain 9.0% 7.9% 3.3%
Conditional Complexity 4.4% 3.0% 1.1%
Any of the above smells 42.7% 31.4% 19.7%

Table II
PERCENTAGE OF SPREADSHEETS IN THE EUSES CORPUS THAT SUFFER

FROM AT LEAST ONE OF THE FIVE SPREADSHEET SMELLS IN EUSES
CORPUS, FOR THE THREE THRESHOLDS

and more complex. As opposed to software development,

where code is sometimes rewritten to improve readability

or maintainability, the answers of the ten subjects of the

second evaluation (see below) have taught us that this is

not common practice among spreadsheet creators. Hence,

when a formula has become long and complex, it is likely

to remain that way.

Third and fourth come the Duplicated Formula and Long

Calculation Chain. These two smells share the property

that they are not immediately visible to the spreadsheet

user. In most modern spreadsheet systems, when a cell is

clicked, the formula it contains is shown. However in the

case of Duplicated Formula and Long Calculation Chain,

the formula does not reveal where the calculation chain

of the formula ends, and with what formulas a cell shares

subtrees. So it is interesting to see that around 10 percent

of spreadsheets suffer from a smell that is not visible to a

spreadsheet user that is not explicitly looking for it.

Conditional Complexity is the least common smell. This

is surprising, since we have seen before that conditional

operations are quite common in spreadsheets. We therefore

dived into this phenomenon deeper. We found that of the

total of 426,986 formulas in the corpus, 5,976 contain at

least one conditional operation, this is 1.4% of all formulas.

These formulas are divided over 380 spreadsheets, which

amounts to 22.2% of the spreadsheets with formulas. We can

hence state that the use of conditional operations is relatively

common.

However, only 92 of the spreadsheets (5.3%) contain

formulas with more than 2 conditional operations in one

formula, adding up to only 695 formulas (0.2%). Evidently,

the nesting of conditional formulas is not very common.

We will hence devote attention to this fact in the second

evaluation.

Regarding the thresholds, given our current choices a

substantial percentage of the corpus suffers from spreadsheet

smells, especially in the low category. In the second case

study we will continue to investigate the thresholds, by

observing how spreadsheet users from industry feel about

formulas that are marked as smelly by these thresholds.

2012 28th IEEE International Conference on Software Maintenance (ICSM)

412

IX. FORMULA SMELLS IN AN INDUSTRIAL CASE STUDY

A. Goal

The aim of our second evaluation is investigating which

of the formula smells actually poses a threat to spreadsheets

(R2), and whether risk maps help spreadsheet users find and

understand formula smells (R3). To determine this, we have

surveyed 10 spreadsheet users and interviewed them about

a spreadsheet that they often work with and that they found

was large and complicated.

B. Setup

For the second evaluation we interviewed 10 professional

spreadsheet users from the financial domain. We conducted

our evaluation at Robeco, a Dutch asset management com-

pany with approximately 1600 employees worldwide, and

over 130 billion Euro worth of assets under management.

We invited 27 participants of a previous study performed

at Robeco [9] to participate in this evaluation, where they

were asked to provide us with a spreadsheet that they worked

with regularly. We explained to participants that we were

going to analyze the quality of their spreadsheet, and discuss

it with them. We provided subjects with a list of the five

formula smells and a short explanation of each smell, so

they could study this before the experiment. During each

of the 10 case studies, the procedure was as follows. First

we asked the subject to explain the spreadsheet to us. We

then analyzed the spreadsheet and generated the spreadsheet

risk map, which we showed to users in Excel 2010. We

subsequently let subjects inspect the risk map, and asked

them in a semi-structured interview setup, for each of the

located formula smells 1) whether they understood the smell

that was identified and 2) whether they thought this smell

posed a threat to spreadsheet understandability, and if yes,

why, and how severe the threat was, according to them. We

finally asked them how the risk map and the pop-up helped

them in understanding the formula smells.

C. Results

Table III shows an overview of the spreadsheets used

in the case study in terms of the numbers of worksheets,

cells, formulas, unique formulas and file size. The five final

columns indicate the number of unique formulas in the

spreadsheets suffering from the given smell, Multiple Oper-

ations (MO), Duplicate Formula (DF), Multiple References

(MR), Conditional Complexity (CoC) and Long Calculation

Chain (CaC). As can be seen from this table, formula smells

occur frequently in the ten spreadsheets. The following

describes the result of the case studies in detail.

1) General observations: When confronted with the most

smelly formula cells, participants often needed time to

explain the formula. In all cases the participants expressed

statements like “what was this formula again?” or “let me

just have a quick look”. A commonality among the ten cases

in the study is the fact that all participants immediately

recognized the impact a smelly, hence complex formula

could have on spreadsheet formulas understandability. When

we discussed the most complex formulas in the spreadsheet

with the participants, they indicated that it was going to be

very hard to understand or adapt this formula for someone

else than the spreadsheet’s creator.

Most participants (8) had never considered the situation

where another spreadsheet user had to understand their

formulas that much. A previous study by Hermans et al.

confirms the importance of such transfer scenarios [9]. What

we found in our present study, however, is that participants

did not realize prior to this study that keeping formulas

short and simple would help future users of the spreadsheet

understand it better and faster. A side effect of our study was

increased awareness with our participants that they should

take maintainability into account when building and adapting

spreadsheets.

We found that the three thresholds and the corresponding

coloring help subjects estimate severeness of the detected

smell. One of the subjects compared this to the triangle

function in Excel. This function marks potential errors, like

calculations over empty cells with a small green triangle at

the bottom of a cell. He stated:“That function is annoying,

since many cells get colored. Because you have different

shades, I can start inspecting the red ones, and ignore the

yellow ones for now”.

Regarding the values of the thresholds, we discussed

each colored cell with the spreadsheet owner, systematically

going through the worksheets. In all but one case the

subjects agreed with the classification of the formulas. Only

spreadsheet user S3 stated that he felt that the system

was too strict. His spreadsheet contained 3 cells with five

different references and four operations. These cells were

hence marked as having both the Multiple Operations and

the Multiple References smell, while the user still found this

acceptable. In the other formulas in his spreadsheet where

these smells were located, he did found they were smelly,

since the metric values for those formulas where higher than

respectively 5 and 4. So from the perspective of this user

the thresholds should be higher, however as stated above, he

was the only one; the other nine subjects stated all marked

formulas were indeed smelly.

2) Multiple Operations: Findings Multiple Operations

were found in all ten spreadsheets, making them the number

one common smell. In all cases we found that the subjects

said that keeping the formulas short makes them easier

to read and understand. Two of the subjects believed that

formulas with many operations are often a cause of errors,

saying “the chance of errors in such a long formula is so

much bigger; when I find errors, it is almost always in

long formulas”. When asked for the reason that Multiple

Operations where created, all subjects stated that this was

an evolutionary process. Multiple Operations are hardly ever

2012 28th IEEE International Conference on Software Maintenance (ICSM)

413

ID Spreadsheet Description #Wrks. #Cells #Form. #Un. F Size(Kb) MO MR DF CaC CoC

1 Calculate dividend 5 13,697 6,012 53 183 14 6 3 7 -
2 Investment strategies 5 21,600 3,031 98 605 9 8 4 3 -
3 Model energy companies 14 82,000 14,742 531 826 58 31 11 - -
4 Valuation of swaps 8 31,485 5,034 67 1,690 17 - 4 - 21
5 P&L overview of all traders 10 17,263 9,152 142 4,261 26 23 17 7 -
6 Risk overview for different sectors 9 9,190 148 12 332 4 3 2 - -
7 Comparing calculation models 14 24,580 3,388 39 348 17 14 23 - -
8 Planning of trades 1 2,329 1,683 64 76 15 33 - 4 -
9 Report interest and liquidity risk 25 59,116 17,930 117 1,693 32 18 - 9 -
10 General ledger data for analysis 11 11,906 3,049 56 1,732 10 23 7 - 4

Table III
CHARACTERISTICS AND NUMBER OF SMELLS ABOVE THE 70% THRESHOLDS OF SPREADSHEETS USED IN THE CASE STUDY.

created at once. They are the result of the repeated adaptation

of a formula, adding operations as the spreadsheet changes.

As one of the subjects stated “Usually it starts with just a

sum, but than you want to round it, add something and before

you know it, the formula is two lines long”. The two subjects

above — the ones who had realized the error risk of Multiple

Operations— did try to minimize formula length. However,

sometimes, for instance, when a deadline was approaching,

Multiple Operations were introduced anyway. There was no

common practice among the spreadsheet users to restructure

the spreadsheet after such a deadline. One of these two

subjects mentioned “when it works, it works. No one really

cares how it is done”.

We found that the risk map helped in the case of Multiple

Operations. In the case where this smell was located, the

smelly cells were clearly marked with a color (yellow,

orange or red). Hence, the reason why the smell was detected

was immediately clear; many subjects stated something like

“I understand why this formula is selected by your system,

it is quite long.”

Conclusions Spreadsheet users feel that Multiple Oper-

ations are more error prone than shorter formulas. Since

Multiple Operations are harder to read, it is more difficult

for users to spot an error, so formulas with multiple oper-

ations will less likely be corrected when they are wrong.

Multiple Operations are often the result of changes to the

spreadsheets, and the refactoring of complex formulas is not

something that spreadsheet users do.

3) Multiple References: Findings Experiences with Mul-

tiple References were similar to those with Multiple Op-

erations; when confronted with the smelly cells, it took

the nine subjects a considerable amount of time, in the

longest case even ten minutes, to explain the formula. This

made them realize that it would be very hard for others to

understand and adapt the formula, especially since locating

the references can be a challenge. Excel supports users

in locating the references by coloring the referenced cells.

However, if there are many references and colors users find

this feature to be more annoying than helpful as confirmed

by nine of our participants. One of the subjects stated, when

looking at a formula that referred to no less than 17 ranges

“this formula is a real puzzle”.

In this case, as opposed to the Multiple Operations smell,

some participants did not immediately understand how to

adapt this formula to make it less smelly. When asked,

one of the participants even stated “but I need all that

input to make the calculation”. Splitting the formula into

different steps seemed more difficult than with the Multiple

Operations. In that case the formulas consist of different

operations, and the splitting would consist of separating the

operations. In this case however, we encountered formulas

like SUM(A1:A5;B6;D7;E12), of which it was not imme-

diately clear to the spreadsheet users how to improve it. It

can be split into multiple steps, but what steps are logical

is not so easy to determine for the user. We asked the nine

participants to describe how they were going to split the

formula, and only one was able to formulate a strategy. The

other hesitated, one of them stated “I don’t know where I

should start, because I don’t remember how I made this

formula”. As an alternative, cells could be moved, such

that this formula will refer to one range. This made the

participants hesitate even more. They clearly felt that moving

formulas around was a tricky operation, since the effect of

this move on other formulas is not clear. One of the subjects

that tried to lower the references said “if I move this, what

will happen to the other formulas? I would like to preview

that”.

For this smell again, the risk maps are a good way

of conveying this smell. Formulas with many references

were colored red, orange or yellow; and hence attracted

the attention of the spreadsheet users. Clicking the formula

revealed easily that the formula had too many references.

Conclusions Subjects found that formulas with many

references are not easy to understand, since finding all refer-

ences can be difficult. Even though the risk was understood,

subjects found it hard to come up with the right refactoring

to overcome this smell. This is partly caused by the fact that

a long list of references can indicate that the placement of

formulas is not optimal, and hence this smell can also reveal

a weakness in the organization of the spreadsheet.

2012 28th IEEE International Conference on Software Maintenance (ICSM)

414

Refactorings to the location of formulas were found

especially hard for the subjects, and support for this, like a

preview, is definitely a promising avenue for future research.
Finally we found it interesting that Excel’s feature to color

the cells referenced by a formula is only helpful in cases with

few references (typically above 6 it got confusing for the

participants). There is apparently a need for better support

in locating references.
4) Duplicated Formula: Findings In the evaluation we

found that the cases in which duplicated formulas are

detected can be divided into two distinct categories.

• Sharing Subtrees: Different formulas are sharing a

subtree, and there is an opportunity for refactoring.

• Rare Formulas: There is one formula that differs

slightly from its neighbors, and therefore shares a

subtree with these neighbors.

Figures 4 and 5 illustrate the two categories. In Figure

4 the highlighted formula (in cell B13) shares the subtree

SUM(B7: B11) with the formula in cell B12. The same sub-

tree occurs twice, so it might be better to replace SUM(B7:

B11) in B13 with a reference to B12. In Figure 5 however

something different is happening. The selected formula (E4)

shares a subtree with the other formulas in the same row,

each summing up the values of the three cells above it.
However, there is a small difference with the other for-

mulas, which is the ‘+0.1’, denoting the formula as rare,

it is not like other formulas in the worksheet. Excel itself

recognizes the risk of this type of formulas. This is one of

the possible errors that Excel marks with a green triangle

in case a formula in a row or column differs from its direct

neighbors. Others are the referencing of an empty cell, and

numbers formatted as text.

Figure 4. A formula with duplication

In our ten spreadsheets, we encountered two cases of a

Rare Formula. In both of them, a formula was marked as

having a lot of duplication, turned out to differ from the

other formulas in its column, while the participants stated

that this was actually wrong. Thus, the smell indicated an

actual error in the spreadsheet.
Note that Excel was able to mark only one of these cases

as possibly dangerous: Excel spots discrepancies between

directly adjacent cells, whereas one of these errors involved

cells disconnected from each other.

Opinions differed on the six cases in which sharing

subtrees were encountered. Four of the subjects understood

that having the references at one place made the structure of

the spreadsheets better. However the remaining two saw no

harm in the duplication of formulas. This is notable, since

with source code many people agree that duplication should

be avoided.

With respect to the risk maps, we noticed that the current

implementation of the pop up as does not yet provide enough

information: It only marks the formula that shares subtrees

with many formulas, but does not indicate with what cells

the subtrees are shared. This resulted in participants looking

through formulas in the spreadsheet to find the formulas that

shared a subtree. A possible solution could be to include the

list of sharing formulas in the pop up, or create an Excel

plug in that highlights the sharing formulas when a formula

suffering form duplication is selected. We will address this

in future work.

Figure 5. A rare formula

Conclusions Rare formulas can reveal true weaknesses

and even errors in spreadsheets, and spreadsheet users agree

with that.

However, the refactoring of duplicate pieces of formulas

— in source code refactoring very common— is not con-

sidered to be am improvement to all spreadsheet users.
5) Long Calculation Chain: Findings This smell trig-

gered most discussion with the five subjects whose spread-

sheets were diagnosed with this smell.

The main reason was the fact that the risk maps do

not provide enough information to understand this smell

immediately. When a certain cell suffers from the Long

Calculation Chain smell at the 70% level, this means that

the path from this formula to the beginning of the longest

calculation chain is at least 5 steps. The cells that are

included in this calculation chain were not shown in the

pop up. This led to spreadsheet users repeatedly stepping

through formulas to check whether a formula indeed had a

long calculation chain; and whether that was necessary.

Two of the subjects found that the calculation chain (in

one case 10, in the other 17 steps) was indeed long, and

that some restructuring would improve readability. The other

three subjects found that, although the number of steps was

2012 28th IEEE International Conference on Software Maintenance (ICSM)

415

high, this was necessary in order to calculate the needed

values. We did notice that it is easier to trace and understand

the different calculation steps when they are located in the

same row or column. When we asked the five subjects about

this, they concurred. This means there is a need for an

additional metric based on the location of the cells involved

in the calculation chain. We will look into this in future

research.

Furthermore there is the trade off between Multiple Op-

erations and Multiple References on one the hand, and

Long Calculation Chain on the other. When discussing this

phenomenon with the five subjects, we learned that they felt

in need of guidance where the right balance is. Hence, better

support for managing this trade off is needed. This might be

done with our risk maps or with other interfaces to help users

to find the proper balance between the formula smells.

Conclusions Long Calculation chains are relatively com-

mon, but are difficult to refactor for spreadsheet users. Hence

more support to help users to understand and refactor this

smell is necessary.

6) Conditional Complexity: Findings This metric was the

least common in the case study, similar to the finding in the

evaluation of the Euses corpus. In the two spreadsheets in

which it was located, the risk maps easily helped in locating

the Conditional Complexity smell. When the users selected

the cells suffering from the smell, they learned from the pop

up that nested conditionals were found in the formula.

The two subjects understood and even apologized for the

detected smell, stating “I know this formula is too hard, I was

trying to get something to work, and then it just remained

like that”. Both subjects were well aware of the fact that

nesting more than two conditional formulas was not such a

good idea.

Conclusions The Conditional Complexity smell is in fact

already known to spreadsheet users. Apparently there is

some notion among the spreadsheet users that conditional

operations are complex and should be handled with some

care, probably explaining the low occurrence of this smell.

X. ANSWERS TO RESEARCH QUESTIONS

With the results of the EUSES analysis and the case

studies, we revisit the research questions.

R1 What spreadsheet smells are most common,

and why? In both evaluations we have seen that Multiple

Operations and Multiple References are the most common

smells, and from the second evaluation we have learned that

this is often caused by the modification of a spreadsheet,

sometimes under time pressure. Since there is little aware-

ness of the risks of Multiple Operations, spreadsheet users

seem not to be concerned too much about maintainability

of formulas. They keep extending formulas with more op-

erations and more references, causing formulas to become

long and complicated.

R2 To what extent do formula smells expose threats

to spreadsheet quality? We found two actual faults in

a spreadsheet by looking at the Duplication Smell. With

respect to the other smells, the concern caught is lack of

understandability. Spreadsheet users found that our current

smell detection strategies reveal the formulas that are the

least maintainable. These formulas will be time consuming

to change, and changes made will be more error prone.

R3 To what extent are risk maps an appropriate way to

visualize spreadsheet smells? The strengths of risk maps

include their simplicity and the fact that the visualization is

shown within the context of the spreadsheet. Seven subjects

explicitly stated they liked the risk maps, posing statements

like “these colors draw my attentions to the formulas that

deserve a second check”. Users furthermore appreciated

the different levels of the smells, allowing them to inspect

the worst formulas first. For the Long Calculation smell,

however, additional interface elements are needed, in order

to help spreadsheet users understand the cause of the smell.

Beyond risk maps, three of the subjects asked for a general

score of the quality of their spreadsheet. Although we could

provide them with the number of smells and their severity

by looking into our database, an aggregation of the metrics

is not provided by the current prototype. This could, for

instance, be added by generating an extra worksheet in the

spreadsheet in which overviews of all metrics are shown.

XI. DISCUSSION

A. Named Ranges

In the current set of smells we have not taken into account

named ranges, a spreadsheet feature allowing users to assign

a name to a number of cells. We encountered named ranges

in one of the case studies, where a formula that summed a

named range, SUM(NamedRange), was marked as having

the Many Reference smells. Initially the subject did not

understand why it was marked as referring to many different

ranges, since there was only one reference. The named range

itself however consisted of several separate ranges. This

raises the question whether we think this is smelly, and

why. Note that the smells is in fact related to the named

range itself —it is probably not a good idea to create a

named range consisting of multiple ranges— rather than to

the formula referencing the named range.

B. Applicability of the risk maps

Our risk map visualization exhibits limitations if the smell

in question addresses concerns not exclusively contained in

the smelly formula itself. This explains why some subjects

were dissatisfied with the pop-ups of Long Calculation

Chain and Duplicated Formulas, which essentially require

information from cells outside the smelly formula itself. In

future research we will explore how to present smells at

different levels of abstraction in one integrated view.

2012 28th IEEE International Conference on Software Maintenance (ICSM)

416

C. Spreadsheet Evolution

While performing the case study, subjects shared that

spreadsheets tend to undergo many changes during their

life time (an observation also made in [9]), and that these

changes can lead to a degradation of formula quality. This

is an issue that warrants further investigation, calling for a

longitudinal study of spreadsheet quality, and opening up

the possibility of spreadsheet quality monitoring tools.

D. Threats to Validity

A threat to the external validity of our quantitative eval-

uation concerns the representativeness of the Euses Cor-

pus spreadsheet set. This set, however, consists of 4223

spreadsheets covering 11 different domains. Furthermore, it

has been used in many other studies and is collected from

practice.

A threat to the external validity of our qualitative evalu-

ation concerns the representativeness of the selected set of

employees of Robeco and their spreadsheets. However other

papers [15], [16] report on industrial spreadsheet stories

similar to the ones we found at Robeco, so their practice

seems representative. Further studies are however needed to

generalize our findings.

With respect to internal validity, one of the threats is

the fact that we did not pick a random sample of people.

This effect can be decreased by using a larger test group

in future experiments. We however believe the current test

group serves as a good reference group, as the persons

varied in age, function and daily tasks with spreadsheets. By

working with practitioners we tried to maximize the realism

of our evaluation, which unfortunately comes at the price of

reduced repeatability.

XII. RELATED WORK

Research efforts related to ours include papers that pro-

vide spreadsheet design guidelines. Raffensberger [17], for

instance advises to merge references that occur only once.

He furthermore states that unnecessary complex formulas

with many operations and parenthesis should be avoided.

Rajalingham et al. [18] also propose guidelines to improve

spreadsheet quality, which they base on principles of soft-

ware engineering.

Secondly, there are papers that address common errors

in spreadsheets, like [19], [20], together with their causes.

Powell et al. for instance [21] names conditional formulas

(which is one of our smells) among the top three of

commonly occurring spreadsheet error categories.

Furthermore there is related work on finding anomalies on

spreadsheets, for instance the work on the UCheck tool [10],

[11], [12]. UCheck determines the type of cells, and locates

possible anomalies based on this type system. UCheck uses

a similar visualization, with colors in the spreadsheet, to

indicate found anomalies.

We ourselves have worked on spreadsheet smells in pre-

vious work [2]. In that paper we focused on detecting smells

between worksheets, like high coupling. That paper followed

our earlier work, in which we worked on the visualization of

spreadsheets by means of class diagrams [22] and dataflow

diagrams [9].

This paper differs from our previous work by focusing

on detecting smells in spreadsheet formulas. Recently, other

work on spreadsheet smells has been published [23], that

aims at smells in values, such as typographical errors and

values that do not follow the normal distribution. Other

recent work by Badame and Dig [24] suggests an approach

to support spreadsheet users in removing formula smells by

refactoring.

XIII. CONCLUDING REMARKS

The goal of this paper is to investigate the applicability

of code smells to spreadsheet formulas as a means to asses

and improve spreadsheet quality.

To that end we have created a list of formula smells,

based on our experiences with spreadsheets, related work

in spreadsheet guidelines and literature on code smells.

We then defined a set of metrics for detecting five formula

smells and presented the visualization of these smells with

the spreadsheet risk map. We have evaluated the metrics and

the risk map with a qualitative and quantitative evaluation.

The quantitative evaluation was performed on the spread-

sheets from the EUSES corpus. The qualitative evaluation

was with spreadsheets from ten professional spreadsheet

users from industry.

The key contributions of this paper are as follows:

• An analysis of the risky types of spreadsheet formulas

• An evaluation of these formula smells on the EUSES

corpus and with ten professional spreadsheet users and

their spreadsheets.

We have found that spreadsheet formula smells occur

frequently, and can pose a real threat to spreadsheet under-

standability, and can even detect actual errors. Spreadsheet

users in our qualitative evaluation found that the risk maps

were a good way of indicating formula smells, and that the

three thresholds helped them get a feeling of the importance

of the located smells.

The current research gives rise to several directions for

future work. Firstly, the definitions of the current set of

metrics could be refined; as mentioned in the evaluation

section, we could split the duplication metric, and add

a metric for the location of cells in a long calculation

chain. Secondly, some smells ask for a more elaborate

visualization, for instance to indicate the balance between

Multiple Operations and Long Calculation Chain. Finally,

more support for formula refactoring is needed. We plan

to investigate means to suggest such refactorings to the

spreadsheet user, give them a preview of the result, or even

perform them automatically.

2012 28th IEEE International Conference on Software Maintenance (ICSM)

417

REFERENCES

[1] W. Winston, “Executive education opportunities,” OR/MS
Today, vol. 28, no. 4, pp. 8–10, 2001.

[2] F. Hermans, M. Pinzger, and A. van Deursen, “Detecting
and visualizing inter-worksheet smells,” in Proceeding of the
34rd international conference on Software engineering (ICSE
2012). ACM Press, 2012, pp. 451–460, to appear.

[3] M. Fisher and G. Rothermel, “The EUSES spreadsheet
corpus: A shared resource for supporting experimentation
with spreadsheet dependability mechanisms,” in Proceedings
of the Workshop on End-User Software Engineering. ACM,
2005, pp. 47–51.

[4] M. Fowler, Refactoring: improving the design of existing
code. Boston, MA, USA: Addison-Wesley Longman Pub-
lishing Co., Inc., 1999.

[5] B. Nardi and J. Miller, “The spreadsheet interface: A basis
for end user programming,” in Proceeding of Tthe IFIP
Conference on Human-Computer Interaction (INTERACT).
North-Holland, 1990, pp. 977–983.

[6] N. Moha, Y.-G. Guéhéneuc, L. Duchien, and A.-F. L. Meur,
“Decor: A method for the specification and detection of code
and design smells,” IEEE Trans. Software Eng., vol. 36, no. 1,
pp. 20–36, 2010.

[7] R. Abraham and M. Erwig, “Inferring templates from spread-
sheets,” in Proceedings of the 28th International Conference
on Software Engineering (ICSE 2006). ACM, 2006, pp.
182–191.

[8] T. L. Alves, C. Ypma, and J. Visser, “Deriving metric
thresholds from benchmark data,” in 26th IEEE International
Conference on Software Maintenance (ICSM 2010). IEEE
Computer Society, 2010, pp. 1–10.

[9] F. Hermans, M. Pinzger, and A. van Deursen, “Supporting
professional spreadsheet users by generating leveled dataflow
diagrams,” in Proceeding of the 33rd international conference
on Software engineering (ICSE 2011). ACM Press, 2011,
pp. 451–460.

[10] R. Abraham and M. Erwig, “Ucheck: A spreadsheet type
checker for end users,” Journal of Visual Languages and
Computing, vol. 18, pp. 71–95, February 2007.

[11] C. Chambers and M. Erwig, “Automatic detection of dimen-
sion errors in spreadsheets,” J. Vis. Lang. Comput., vol. 20,
pp. 269–283, August 2009.

[12] M. Erwig, “Software engineering for spreadsheets,” IEEE
Softw., vol. 26, pp. 25–30, September 2009.

[13] R. Abraham and M. Erwig, “How to communicate unit error
messages in spreadsheets,” in WEUSE I: Proceedings of the
first Workshop on End-User Software Engineering. ACM
Press, 2005, pp. 1–5.

[14] F. Hermans, M. Pinzger, and A. van Deursen, “Breviz:
Spreadsheet visualization and quality analysis,” in Proceed-
ings of the EuSpRIG 2011 Symposium, 2011, pp. 63–72.

[15] D. G. Hendry and T. R. G. Green, “Creating, comprehending
and explaining spreadsheets: a cognitive interpretation of
what discretionary users think of the spreadsheet model,”
International Journal of Human-Computer Studies, vol. 40,
no. 6, pp. 1033–1065, 1994.

[16] R. Panko, “Facing the problem of spreadsheet errors,” Deci-
sion Line, vol. 37, no. 5, 2006.

[17] J. Raffensperger, “New guidelines for spreadsheets,” Interna-
tional Journal of Business and Economics, vol. 2, pp. 141–
154, 2009.

[18] K. Rajalingham, D. Chadwick, B. Knight, and D. Edwards,
“Quality control in spreadsheets: a software engineering-
based approach to spreadsheet development,” in Proceedings
of the 33rd Annual Hawaii International Conference on
System Sciences. IEEE Comput. Soc, 2000, pp. 133–143.

[19] Y. Ayalew, M. Clermont, and R. T. Mittermeir, “Detecting
errors in spreadsheets,” in Proceedings of EuSpRIG 2000
Conference, 2000, pp. 51–62.

[20] R. Panko, “What we know about spreadsheet errors,” Journal
of End User Computing, vol. 10, no. 2, pp. 15–21, 1998.

[21] S. Powell, K. Baker, and B. Lawson, “Errors in operational
spreadsheets: A review of the state of the art,” in Proceedings
of the 42nd Hawaii International Conference on System
Sciences (HICCS 2009). IEEE Computer Society, 2009, pp.
1–8.

[22] F. Hermans, M. Pinzger, and A. van Deursen, “Automatically
extracting class diagrams from spreadsheets,” in ECOOP
2010 - Object-Oriented Programming, 24th European Con-
ference, Maribor, Slovenia, June 21-25, 2010. Proceedings.
Springer, 2010, pp. 52–75.

[23] J. Cunha, J. P. Fernandes, J. Mendes, and J. S. Hugo Pacheco,
“Towards a Catalog of Spreadsheet Smells,” in The 12th
International Conference on Computational Science and Its
Applications, ser. ICCSA’12. LNCS, 2012, to appear.

[24] S. Badame and D. Dig, “Refactoring meets spreadsheet for-
mulas,” in IEEE 28th International Conference on Software
Maintenance, ICSM 2012. IEEE, 2012, to appear.

2012 28th IEEE International Conference on Software Maintenance (ICSM)

418

