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Abstract. Advances in cryptography have enabled the features of con-
fidentiality, security, and integrity on small embedded devices such as
IoT devices. While mathematically strong, the platform on which an
algorithm is implemented plays a significant role in the security of the
final product. Side-channel attacks exploit the variations in the system’s
physical characteristics to obtain information about the sensitive data.
In our scenario, a software implementation of a cryptographic algorithm
is flashed on devices from different manufactures with the same instruc-
tion set configured for identical execution. To analyze the influence of
the microarchitecture on side-channel leakage, we acquire thirty-two sets
of power traces from four physical devices. While we notice minor differ-
ences in the leakage behavior for different physical boards from the same
manufacturer, our results confirm that the difference in microarchitecture
implementations of the same core will leak different side-channel infor-
mation. We also show that TVLA leakage prediction should be treated
with caution as it is sensitive to both false positives and negatives.

Keywords: Microarchitecture · Side-channel leakage · TVLA

1 Introduction

The question we ask in this work is both simple and practically relevant for
an embedded system developer assigned to implement an existing cryptographic
algorithm on a microcontroller. The developer is free to choose any microcon-
troller meeting the project’s functional requirements, e.g., ARM Cortex M0, a
popular choice in the IoT industry. Our developer has several options for a given
core from the diverse SoC range offered by different manufacturers.

Devices supporting a similar instruction set architecture (ISA) vary in design
depending on the implementation choices. The ISA represents an abstraction of
the underlying hardware implementation, known as the microarchitecture [9].
Figure 1 shows the relation between the ISA and the microarchitecture. The
ability to separate the ISA design from the microarchitecture was a significant
step in the development of modern computing, granting functional compatibility
c© Springer Nature Switzerland AG 2022
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Fig. 1. We refer to the ISA implementation as the microarchitecture, which is
manufacturer-specific and considered a trade secret. The illustration is inspired by [13].

while allowing for flexibility in the implementation. As the choices made during
the ISA implementation significantly impact the final product’s performance,
the microarchitecture implementation is considered a trade secret, and details
are typically not available in the public domain.

All other things being equal, our developer would like to choose the microar-
chitecture implementation, which minimizes the side-channel leakage. Con-
cretely, the question relevant to our embedded system developer is:

Given the choice between two implementations of the same core, how sig-
nificant is the difference in side-channel leakage?

This study selected two devices designed with an ARM Cortex M0 core from
the same family, the same ISA, and different vendors. To detect the source of
differences between different implementations, we took special care to synchro-
nize the traces between two devices for identical execution. We labeled the time
samples in the trace with the executed instruction to identify and explain, where
possible, the source of difference.

Contributions. We present a methodology for comparing software implemen-
tations across devices with the same instruction set and comment on the influ-
ence of microarchitecture implementation on side-channel leaks. We compare
the manufacturing variability between different physical devices from the same
manufacturer. To reveal the effects of the microarchitecture implementation,
we compare devices from different manufacturers. We contrast the accuracy of
leakage detection techniques with the “real” leaks obtained by profiling for the
evaluation. We show that leakage detection techniques are prone to false posi-
tives and false negatives, and their results should be treated with caution.

2 Related Works

The results presented in this paper have a wider application than the practical
relevance for our embedded system engineer. First, to the area of side-channel
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leakage simulators, which face the problem of portability across devices. For
example, both ELMO [10] and [11], were created specifically for an ARM Cortex
M0 STM32F0 (30R8T6) device. If the microarchitecture implementation signif-
icantly impacts the side-channel leakage, the simulator needs to be retrained
when the target is an ARM Cortex M0 NRFf51 board. The creation of sophis-
ticated gray-boxed leakage models required for accurate side-channel simulators
requires including microarchitecture information. While we know that reverse-
engineering the microarchitecture of commercial processors is possible [4,10], the
effort is intensive.

Second, our results have an application to the area of deep learning for SCA,
where training and attacking across different physical boards using the same
model is possible but requires a special training procedure [3]. Golder et al.
extended the previous work and explored the cross-device perspective for a large
number of devices (3) [5]. Van der Valk et al. aimed to analyze the portability
problem from the AI explainability perspective and discussed the overspecializa-
tion phenomenon. Bhasin et al. showed that portability makes the deep learning
attacks more difficult as the deep learning algorithms will easily overfit [1]. To
prevent this, the authors proposed the Multiple Device Model approach. Over-
specialization denotes the situation when a machine learning attack does not
overfit when using the test set from the same device (as when not considering
portability), but it overfits when attacking a different device [14]. Wu et al. pro-
vide a workaround for the Multiple Device Model where ablation can reduce the
overfitting effect [15]. Zhang et al. investigated the difficulty of profiling attacks
when considering homogeneous (same devices) and heterogeneous settings (dif-
ferent devices) [16]. Another challenge for profiled attacks is that the collection
of side-channel traces becomes less reliable after a long period. Consequently,
certain trend noise must be added to the side-channel traces due to temperature
and environmental conditions evolution over time. Heuser et al. characterized
this effect and proved that trend noise drastically impedes SCA [7]. Similar find-
ings are confirmed by Cao et al. [2].

3 Background

ARM Cortex M0. The Cortex M0 is a 32-bit RISC processor developed by
ARM that implements version v6M of the ARM instruction set [8]. It is one
of the most widely used embedded devices due to an efficient instruction set
and affordable development costs with comprehensive development tools and
support. The Cortex M0 has a Harvard architecture with both 16-bit (THUMB)
and 32-bit instructions and a 32-bit data path. It does not include a data cache
or memory management unit (MMU) but comes with a prefetch buffer. The
ARM6 has 37 registers, consisting of thirty-one 32-bit general-purpose registers
and six additional status registers. The instruction set determines the functional
capabilities of a processor by specifying the list of all supported instructions.

Test Vector Leakage Assessment (TVLA) [6] is one of the most popular
leakage detection methods due to its simplicity and relative effectiveness. It is
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based on statistical hypothesis tests and comes in two flavours: specific and
non-specific. The ’fixed-vs-random’ is the most common nonspecific test and
compares a set of traces acquired with a fixed plaintext with another set of
traces acquired with random plaintext. In the case of a specific test, the traces
are divided according to a known intermediate value tested for leakage. Welch’s
two-sample t-test for equality of means is applied for all trace samples in both
cases. A difference between two sets larger than a given threshold is taken as
evidence for the presence of a leak.

Key Rank Estimate is a commonly used metric in SCA for assessing the
performance of an attack. It is performed in a known key scenario and returns the
rank of the correct key candidate in the sorted score vector of all key candidates.
The key ran estimate is related to the success rate curve [12], which shows the
evolution of the correct key candidate as more traces are added. There are two
differences compared to the success rate: first, key ranking is performed on a fixed
set of traces, whereas the success rate is performed on a variable set of traces to
capture the evolution of the correct key candidate; second, key ranking can be
performed for all samples in the trace, whereas the success rate is typically shown
for one sample. The result of the key rank estimate is affected by the number
of traces used for analysis. If leaks are present, key rank converges towards the
first position as more traces are added.

4 Experimental Setup

Target Devices. We selected for this study two ARM Cortex-M0 cores as com-
prehensive literature is available, and the Cortex M0 has found wide application
in embedded and IoT devices:

1. STM32 Discovery is a development board from ST Microelectronics for the
STM320f051 device, which consists of an on-board MCU interface enabling
easy flashing and debugging using STLink over USB. The development board
also offers a PPI port that connects a current probe to measure the current
consumption. On inspection of the STM32 board’s schematic, we observe that
the MCU interface and the target device share the same power source. The
target MCU is powered by an external 3V3 supply from the current mea-
surement port using the USB port. The coupling capacitors attached to the
power pins of the target MCU are removed; they act as a low pass filter on
the input power supply to the target MCU. We used two STM32 boards for
our experiments, referring to them as STMAand STMB.

2. NRFf51 is an SoC designed for Bluetooth Low Energy applications based on
Cortex M0 running at 16 MHz. The NRFf51 development kit also offers a
current measurement port, and we found no coupling capacitors to the power
line circuitry. The target MCU is already isolated from the interface MCU
when the board is powered externally using 3V3, so no hardware modifications
are required. We used two NRFf51 boards for our experiments, referring to
them as NRFAand NRFB.
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Fig. 2. Acquisition setup for (a) STM32 and (b) NRFf51 boards. Pin A9 and A10 are
used on STM32, and pin 9 and pin 11 are used on NRFf51board for UART Rx and Tx,
respectively. For connecting the trigger signal, we use pin A11 for the STM32and pin
A14 for the NRFf51 boards. For both, the signal from the current probe is attached to
the oscilloscope through a 50Ω impedance. For the NRFf51 board, the signal from the
current probe is passed through a signal amplifier.

Measurement Setup. Throughout this paper, we maintain the same exper-
imental setup, shown Fig. 2. We use Riscure’s Inspector SCA toolchain 1 for
acquisition and signal processing. Furthermore, we use a Picoscope 3000 and a
Riscure-CP189 current probe. An important requirement for our setup is that
both boards execute the same instructions in sync. Since the two boards have a
different startup script for configuration and execution, we took special care to
ensure the code between the triggers is identical for both targets. The same com-
piler was used to generate the binary files, and we compared the disassembled
code on both boards to verify that the execution was identical. For a consistent
toolchain, the software projects for both devices were created and compiled using
Kiel Vision 5. An unmasked implementation of AES-1282 was flashed on both
target boards. The execution sequence is:

1. On boot/reset, a startup code runs on both target devices, which sets the
system and peripheral clocks. While the NRFf51 device works at a fixed clock
speed of 16 Mhz, the STM32 device supports operation over a wide clock fre-
quency. The startup code sets the clock frequency to 16 MHz.

2. Core and UART drivers are initialized.
3. System tick interrupt is disabled.
4. Control enters the main function, AES object with a preset key is initialized.
5. Enter an infinite loop, repeat the steps below:

(a) Receive 16 bytes of data over UART.
(b) Set trigger pin low, which signals the oscilloscope to start recording.
(c) 16 bytes of data are encrypted.
(d) Encrypted ciphertext is returned over UART.

1 https://www.riscure.com/security-tools/inspector-sca.
2 https://github.com/ARMmbed/mbedtls.

https://www.riscure.com/security-tools/inspector-sca
https://github.com/ARMmbed/mbedtls
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Fig. 3. An example of labeled traces.

Synchronization of Traces. To provide an accurate analysis of the observed
effects, we want to align the traces with clock cycle accuracy. We compared the
accuracy of the trigger signal from the oscilloscope to the recorded traces to find
the level of drift. Using the disassembly of C code, the assembly code line that
sets the trigger pin low is found to have exact timing. We use the number of
cycles it takes the program flow to enter the encrypt function, and we use it to
identify the start of the encrypt function in the recorded traces.

Adding Instruction Labels. We used the ARM process simulator in Keil
MDK version 53 to record the execution trace of instructions. The tool outputs
a CSV file with disassembly code and the execution time for each instruction.
We use the execution trace information to link the instruction labels to their
power trace segments. An example of the results of combining power traces
with instruction labels obtained from the execution trace is shown in Fig. 3.
The example presents the acquired power trace immediately after acquisition
and up until add round key operation on the first four bytes. Unless otherwise
mentioned, for the rest of the experiments we use the power trace corresponding
to the Listing 1.1. To confirm the correctness of the labeling, we also visually
verified that repeated instruction sequences show a similar power consumption.

Trace Sets. We collected a total of 32 trace sets, 2500 traces each, from the
four physical boards (STMA, STMB, NRFA, NRFB) available. Half of the traces are
provided with a fixed 16-byte plaintext, and half have 16-byte random plaintext.
We used two different keys, key 1 and key 2, for the encryption and two different
values for the fixed input D1 and D2. As the TVLA methodology [6] specifies
performing a repetition to verify the results, the trace sets are labeled by 1 or 2,
representing two repetitions. Figure 4 shows an overview of the collected traces.

3 https://www2.keil.com/mdk5/docs.

https://www2.keil.com/mdk5/docs
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1 CMP r1, #0x04

2 BLT 0x08000818

3 LSLS r3,r1,#2

4 ADDS r3,r3,r2

5 LDRB r3,[r3,r0]

6 LDR r4,[pc,#28] : @0x0800083C

7 LDRB r3,[r4,r3]

8 LSLS r4,r1,#1

9 ADDS r4,r4,r2

10 STRB r3,[r4,r0]

11 ADDS r3,r1,#1

12 UXTB r1,r3

13 CMP r1,#0x04

14 BLT 0x08000818

15 LSLS r3, r1,#2

16 ADDS r3,r3,r2

17 LDRB r3,[r3,r0]

18 LDR r4, [pc,#28]: @0x0800083C

19 LDRB r3,[r4,r3]

20 LSLS r4,r1,#1

21 ADDS r4,r4,r2

22 STRB r3,[r4,r0]

23 ADDS r3,r1,#1

Listing 1: Code sequence captured during the experiments.

5 A Closer Look at the Implementation

The raw traces from the STM32 and NRFf51 board are shown in Fig. 5. A quick
visual comparison confirms that the power consumption for the two devices
differs significantly. The operations performed are based on repetitive patterns
that can be distinctly identified for both devices.

S-box Leakage. To understand how the devices are leaking, we isolate the
samples corresponding to the S-box computation in round one, as shown in
Fig. 5. We profile the targets using the Hamming Weight (HW) leakage model.
We select all 16 bytes of the S-box and correlate the intermediate values with
the selected samples. We rank the probability of leak for all the possible key-
byte combinations. With this approach, we relate observable leaks at each time
sample index with the probability of the correct key byte leaking to an attacker.
The results are shown in Fig. 6.

For the STM32 device, Fig. 6 (top), we observe that key data leaks strongly
while the subsequent byte is loaded, which seems evidence for data-overwrite
leaks from registers. A small section of leaks is observed again when a key element
from the same group is operated upon. This can relate to how key data is stored
in subsequent memory locations, and memory access loads more than 1-byte
data on the bus. This effect can be due to 4-byte memory access in Cortex M0;
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Fig. 4. Overview trace sets. The nomenclature is class board key data repetition. For
example, a trace set with the name NRF B key2 D1 1 means it was collected from
NRFB board, key K2 is used for encryption, D1 is provided as fixed input, and 1 is the
repetition cycle.

Fig. 5. The raw power trace for the STMA device (top) and NRFA device (bottom). The
highlighted section marks the 1st round of the S-box operation on the first byte of
data. The selection starts at index 14 910 and has a length 1 235 samples. This section
of trace has been used for the evaluation in Sects. 6 and 7.

the old key bytes are also sent on the bus due to a word size of 4 bytes. (i.e. we
observe leak of k[0][0] when operations are performed on k[0][1], leak of k[0][0],
k[0][1] when operation are performed on k[0][2]; similarly We observe leak of
k[0][0], k[0][1], k[0][2] when operation are performed on k[0][3]).

Similarly, the results for the NRFf51 device are presented in Fig. 6 (bottom).
We observe that the correct key intermediate is leaking consistently after the
first time it is read from memory, and key data is leaking when operations are
performed on byte data stored in subsequent memory locations. Memory access
read 4 bytes of consecutive data from the provided memory address. Comparing
the leaks across the two devices, we note that data-overwrite leaks are observed
at similar trace sections. The key bytes start to leak subsequent to the STR
instructions and leak while the next byte data is loaded by LDR instructions. We
surmise that the contrasting behavior results from the difference in microarchi-
tecture implementation. The NRFf51 device is a low power board; memory access
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Fig. 6. (To be viewed in colors.) Key rank results for the STM32 (top) and NRFf51 (bot-
tom) devices. The selection captures the s-box operation. We perform key ranking on
all 16 bytes in round 1. The red color indicates strong leaks, where the correct key
candidate is ranked in the first position, whereas other colors represents weak leaks.

consumes significant power and impacts dynamic power consumption. The choice
of memory technology will impact the leaks observed from the board.

For the remainder of the report, we select the leaks from the S-box operation
on 1 byte of data (Byte 1). To maintain uniformity in the analysis, the same
trace section will be used for all comparisons.

6 The Influence of Manufacturing Variability

Manufactured silicon chips have variations due to the raw material used or vari-
ations in the manufacturing process. Non-uniform etc.hing can introduce incon-
sistencies in transistors’ depletion layer, which will affect the leakage current
generated on switching. Inconsistencies are spread out across peripherals at the
microarchitecture level, which means that each physical device will have its power
fingerprint resulting from the accumulation of these effects.

This section explores the manufacturing differences between boards from the
same manufacturer, namely, the differences in side-channel leaks from STMA vs.
STMB, and NRFA vs. NRFB. These results are useful for putting in perspective
the results obtained in Sect. 7. The devices are prepared with similar hardware
modifications and flashed with the same binary, keeping the key and input data
parameters identical, as described in Sect. 5.

The result of the TVLA test for both STMA and STMB, Fig. 7 (a), shows a similar
shape for the leakage. Additionally, the repetition of the test (with different
inputs and keys) shown with a dotted line confirms these results. Key rank
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Fig. 7. (To be viewed in color.) Results of data leakage comparison for STMA and STMB.
From the top: (a) TVLA traces, (b) key rank results for STMA, (c) key rank results
for STMB. The red rectangle indicates the area of the trace where TVLA shows false
negative (profiling indicates leakage).

results in Figs. 7 (b) and (c) show leaks over a wider section of power traces for
both devices compared to the results predicted by TVLA. Key rank results for
the STMA device show leaks at the beginning of the trace, a behavior not seen
in the key ranking results for the STMB device. These leaks are probably caused
by manufacturing defects in STMA. Gaps in leakage are observed for both boards
during the execution of UXTB and BLT instructions, which can be sourced from
effects in the physical layer. We observe gaps in the results of key rank analysis
during the ADDS and the BLT instruction, which is consistent for both boards.
We could attribute this effect to operations being implemented at the hardware
level, which mask the leakage of key data at those locations.

The TVLA results shown in Fig. 8 (a) indicate a very similar trend for both
NRFf51 boards. Key rank analysis results for the two boards are shown in Fig. 8
(c) and (d). While we note a slight variation between the leakage NRFA and NRFB,
the overall trend is similar. However, we note a significant difference between
the leakage predicted by TVLA, which indicates both false positive and false
negative leakage.

To summarize, we confirm that the manufacturing process may create slight
differences between the leaks in the different physical devices we examined, but
the overall trend seems consistent. Based on the experimental results, we con-
clude that there are significant differences between the leakage predicted by
TVLA and the ground truth as indicated by profiling the targets.
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Fig. 8. (To be viewed in color.) Results of data leakage comparison for NRFA and NRFB.
From the top: (a) TVLA traces, (b) key rank for NRFA, (c) key rank for NRFB. The blue
rectangle indicates the area of the trace where TVLA shows false positive (leakage
while profiling indicates no leakage). The red rectangle indicates the area of the trace,
where TVLA shows false negative (no leakage while profiling clearly indicates leakage).

7 The Influence of Microarchitectural Implementation

The ARM Cortex-M0 microprocessor has a three-stage pipeline, which means
there can be up to three instructions implemented in the fetch, decode, and exe-
cute stages of the pipeline. Memory access greatly impacts the dynamic power,
so the effect of memory instructions is significant and can be diffused to be
visible while other instructions are executed. Furthermore, while we know the
instruction executed at every clock cycle, we note that the power trace consists
of a cumulative effect from all pipeline stages of the processor.

When porting code to a device with a similar hardware architecture, the
grouping of instructions in pipeline stages will probably be also similar. However,
the magnitude/contribution of leaks from different pipeline stages may vary for
different devices. Additionally, as microarchitectural implementation choices are
not public, the best we can do for describing the difference in side-channel leakage
between the STM32 and NRFf51 boards is a plausible explanation.
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Fig. 9. Fixed vs. random mean trace plot for STM32 (top) and NRFf51 (bottom). The
y-axis shows the power consumption, and the x-axis represents time. The numbers on
the x-axis are the instruction being executed, see Listing 1.1.

7.1 Power Profiles

Mean Traces. Fixed vs. random mean plots comparing the two devices are
presented in Fig. 9. The power traces from STM32 devices have a higher power
consumption than the traces obtained from the NRFf51 device, as evident from
the scale of the y-axis. STM32 is designed for general-purpose IoT applications,
whereas the NRFf51 is a low energy device with a current consumption of 2mA.
The low power of the NRFf51 device makes it more sensitive to noise.

Comparing the mean trace plots from both devices, we observe the fixed vs.
random lines deviating at the same power trace sections. In Fig. 9, this is visible
in the difference between the red (random set) and blue (fixed set) lines for both
plots. The deviations reveal sections of code with a dynamic power component. If
the underlying data is changed in the code section, we will observe fluctuations in
the specific section of power traces. We repeated the experiments with a different
value for the input data to verify that the observations were not incidental.
We distinguish between the two repetitions by presenting results with a solid
and a dotted line in the power profile comparison plots. Repeating artifacts are
observed for LDR (labeled 6 and 18) and STRB (labeled 10 and 22) instructions
in power trace, confirming the correct labeling of traces with instructions. In
the case of the NRFf51 devices, the effects of individual instructions are not as
prominent and are difficult to distinguish visually.

From the mean plots of fixed (blue) vs. random (red) execution for both
the device, we observe both the sets exhibit a similar trend though they differ
along certain sections of the traces. In Fig. 9 (top), we notice that the deviation
between the random and fixed sets is visible only following the STRB r3,[r4,r0]
(labeled 10) instruction until the BLT branch (labeled 14). In Fig. 9 (bottom), we
can distinctly see the execution trace of fixed as well as random sets. The inter-
esting observation is that the distance between the mean of two sets increases
substantially after the STRB r3,[r4,r0](labeled 10) instruction and then slowly
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Fig. 10. Fixed vs. random standard deviation trace plot for STM32 (top) and
NRFf51 (bottom). The y-axis shows the power consumption, and the x-axis represents
time. The numbers on the x-axis are the instruction being executed, see Listing 1.1.

decreases up until the BLT instruction (labeled 14). From the results in the pre-
vious section, we know that these are the locations where leaks are observed.
The software implementation seems to show evidence of data overwrite leaks at
similar sections across devices of both classes.

Standard Deviation. The operands influence the power consumption due to
the toggling of bits when new data is loaded. An increase in the standard devi-
ation of the random set is observed where the power consumption depends on
the underlying data. The standard deviation of the fixed set provides us with a
base level for executing a set of operations with constant data.

Standard deviation plots in Fig. 10 show that the standard deviation for the
fixed set consistently varies for every clock cycle. This behavior is consistent for
the fixed sets for all boards and repetitions. The increase in standard devia-
tion for the random sets provides evidence of leaks, and interestingly these are
observed at similar trace sections for both the STM32 and NRFf51 devices. For
the STM32 traces, the deviation in random vs. fixed plot occurs near the ADDS
r4,[r4,r2] (labeled 9), STRB r3,[r4,r0] (labeled 9) and BLT 0× 08000818
(labeled 14) instructions where variance of random set is visibly higher in com-
parison to the fixed set. In the case of NRFf51 boards, the variance of a random
set is higher compared to the fixed set for all sections of the trace. Following
the execution of the STRB r3,[r4,r0] instruction (labeled 10), the variance of
random set increases until the CMP r1,#0× 04 instruction (labeled 13) where it
peaks and goes down until LSLS r3,r1,#2 instruction (labeled 15) where the
operation on next byte starts.
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Fig. 11. TVLA results for the STMA and NRFA devices. The numbers on the x-axis are
the instructions being executed, see Listing 1.1.

7.2 Data Leakage

TVLA Results. Fig. 11 shows the TVLA results for the STMA (red line) and the
NRFA(blue line) devices. A green line represents the threshold value of 4.5. The
plot shows that the side-channel leaks for the two devices differ significantly. For
the STMA, the TVLA value rises above the 4.5 threshold at STRB r3,[r4,r0]
instruction, goes down at UXTB r1, r3 instruction and rises again covering CMP
r1,#0× 04(labeled 13) and BLT 0× 08000818 (labeled 14) instructions. For the
NRFA device, the TVLA results show leakage for almost all instructions (labeled
1–21). However, as seen in the previous section, the TVLA results need to be
considered with caution.

Key Rank Analysis results have been added as a transparent layer over
the TVLA for both boards in Fig. 12.

Fig. 12. (To be viewed in colors.) Overlay of the key rank estimate on the TVLA
results for STMA device(top) and NRFA device (bottom). Red regions represent the index
locations where the correct key is ranked first. The rectangles highlight differences in
leakage between the two boards. The numbers on the x-axis are the instruction being
executed, see Listing 1.1.

For the STMA device, the correct key data starts leaking Fig. 12 (top)
from the LDRB r3, [r4,r3] instruction (labeled 7) until the STRB r3,[r4,r0]
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instruction (labeled 22). Our hypothesis for the leak observed during the LDRB
r3,[r4,r3] instructions (labeled 7) is that the key byte is being loaded on the
bus. The key byte also leaks while the arithmetic instructions are being per-
formed, at ADDS r4,r4,r2 instruction (labeled 9). We believe this is an effect of
the three-stage pipeline: while the ADDS instruction is being executed the data
is being pre-fetched for the STRB instruction.

We see that the correct key byte continues to leak in the subsequent instruc-
tions even though no operations are performed directly on the key data. In the
analyzed s-box implementation, the loop operates on 4 bytes, four times to oper-
ate on a total of 16 bytes of data; the check for the loop occurs at CMP r1,#0× 04
instruction(labeled 13). The check compares the relative value of R1 to #0 × 04
and branches to the next instruction if the R1 value is less than 4.

The subsequent instructions LSLS and ADDS compute the relative index from
which the next key data is to be loaded by the LDRB instruction, which is when
the leak of key data stops. We find this to be an interesting behavior since the
data stops leaking when the data in the memory bus-A is overwritten by new
data. We do not have an explanation for the gaps in the resulting leaks for the
STRB (labeled 10) and UXTB (labeled 12).

Figure 12 (bottom) shows the key rank analysis for the NRFA device. The
correct key byte starts leaking at STRB, r3,[r4,r0] instruction (labeled 10),
and leaks until LDR r4,[pc,#28] instruction (labeled 18). The leaks observed
in the NRFA device seem to have a strong effect on the dynamic power, and its
effects seem diffused, showing up while other instructions are being executed.
We can infer that the correct key byte is on the bus after the STRB instruction
(labeled 10), which leaks over the subsequent instructions as the data is being
overwritten. An interesting behavior observed in NRFAboards is the leak of the
first key byte when the operations are being performed on the next byte of data,
due to register overwrites from LDR instruction.

To summarize, we confirm that the influence of microarchitecture imple-
mentation has a significant effect on the leakage behavior of the two boards
we analyzed. The results for the NRFA device differ from the key rank results on
STMA device showing an additional leak of arithmetic (LSLS) instruction (labeled
15). The results for the STMA and the NRFA devices show a similar trend subse-
quent to the STRB instruction.

8 Conclusions and Future Work

Our results show that while the power traces collected from the boards of the
two manufacturers have very different visual profiles, some instruction sequences
leak in the same way, which can be explained by the similar pipeline executions
of instructions for both cores. To answer whether the microarchitecture impacts
side-channel leakage, we first investigate the influence of manufacturing varia-
tion. While we observe differences between physical boards, the trend for side-
channel leakage for the two boards we investigated is similar. When comparing
the side-channel leak between different chips, we see clear evidence of leakage
behavior that we attribute to microarchitecture implementation differences.
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In terms of the impact on the design of side-channel simulators, our results
show that the existence of a generic simulator, e.g., for an ARM-Cortex M0,
is improbable. Differences in microarchitecture, such as differences in memory
implementation or other functional optimizations, require that a simulator pre-
dicting side-channel leakage be trained for different silicon implementations. For
the portability of templates between different core implementations, we extrap-
olate that the differences in microarchitecture will be a deciding factor.

We compared TVLA, probably the first choice of leakage assessment tech-
nique, with the leakage obtained by profiling. Despite its simplicity and based on
the differences observed in our results, we would caution our embedded system
developer against using TVLA alone to determine leakage behavior and suggest
using key ranking as a more robust, albeit more effort-intensive technique.
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