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A B S T R A C T

Virtual sensing techniques have gained traction in applications to the structural health monitor-
ing of monopile-based offshore wind turbines, as the strain response below the mudline, which
is a primary indicator of fatigue damage accumulation, is impractical to measure directly with
physical instrumentation. The Gaussian process latent force model (GPLFM) is a generalized
Bayesian virtual sensing technique which combines a physics-driven model of the structure
with a data-driven model of latent variables of the system to extrapolate unmeasured strain
states. In the GPLFM, unknown sources of excitation are modeled as a Gaussian process (GP)
and endowed with a structured covariance relationship with response states, using properties of
the GP covariance kernel as well as correlation information supplied by the mechanical model.
It is shown that posterior inference of the latent inputs and states is performed by Gaussian
process regression of measured accelerations, computed efficiently using Kalman filtering and
Rauch–Tung–Striebel smoothing in an augmented state-space model. While the GPLFM has
been previously demonstrated in numerical studies to improve upon other virtual sensing
techniques in terms of accuracy, robustness, and numerical stability, this work provides one
of the first cases of in-situ validation of the GPLFM. The predicted strain response by the
GPLFM is compared to subsoil strain data collected from an operating offshore wind turbine in
the Westermeerwind Park in the Netherlands. A number of test cases are conducted, where
the performance of the GPLFM is evaluated for its sensitivity to varying operational and
environmental conditions, to the instrumentation scheme of the turbine, and to the fidelity of
the mechanical model. In particular, this paper discusses the capacity of the GPLFM to achieve
relatively robust strain predictions under high model uncertainty in the soil-foundation system
of the offshore wind turbine by attributing sources of model error to the estimated stochastic
input.

. Introduction

With many existing monopile-based offshore wind farms approaching the end of their service life and the frequency of extreme
limate events on the rise in recent years, offshore wind turbines (OWTs) face increasingly greater risk of fatigue-induced structural
ailure. The fatigue life of an offshore wind turbine (OWT) is driven by its dynamic response to the rotor motion of the nacelle in
ddition to wind and wave loading, which fluctuates over the lifetime of the structure [1]. For newly constructed offshore wind
arms, where OWTs are larger and more slender in design in order to maximize power generation capacity, there is a greater risk
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of resonance effects from the rotor frequency coinciding with the fundamental frequency of the structure, leading to accelerated
fatigue damage [2].

Structural health monitoring (SHM) techniques offer a means to obtain information necessary for fatigue life evaluation of
xisting OWTs and design validation of recently installed OWTs. In practice, the strain response at critical locations can be measured
ver time to predict the accumulation of fatigue damage. However, current approaches to SHM which rely on physical measurements
f strains are not well adapted for OWTs, because fatigue damage in monopile-based turbines concentrates in the foundation
elow the mudline where accurate strain readings are impractical to obtain. The installation and maintenance of sensors at subsoil
atigue hotspots is cost-prohibitive, and for monopiles instrumented prior to installation, the sensors are often damaged during the
ile-driving process [3].

To overcome these challenges, virtual sensing approaches to SHM have received considerable attention in OWT monitoring
pplications, since they provide a full-field estimation of an unobserved quantity of interest (e.g. strains) using measurements
f a proxy response variable (e.g. accelerations) from physical sensors. These methods can be efficiently implemented using a
mall number of standard sensors, such as accelerometers, placed at accessible locations of an operating structure. The response
t unmeasured locations of the structure is then reconstructed from the measurements through a dynamics model of the system
r transfer function. This approach to SHM not only reduces sensor deployment costs significantly, but also improves the quality
f data collected, as accelerometers are more reliable, less sensitive to noise, and capable of recording at higher sampling rates
ompared to strain gauges [4,5]. Virtual sensing approaches may be categorized into two broad classes: (1) deterministic model-
ased extrapolation, where the estimation of response states beyond measured locations is obtained through a well-calibrated
echanical model, such as a finite element model, and (2) probabilistic state estimation, where strain response states are treated

s random variables whose probability distributions are learned from measured data.
Among the deterministic techniques, the predominant method in practice is modal decomposition and expansion (MD&E) by

liopoulos et al. [6], which decomposes the dynamical system into mode shape components from which the response between
easured points may be inferred. The accuracy of MD&E depends on the parameters of the finite element model, which are calibrated
sing system identification techniques such as operational modal analysis. In applications to operational data from OWTs, MD&E
roduces a good estimate of the strain response in the time domain but faces difficulty with estimating higher frequency regions of
he response spectrum [1]. Moreover, because MD&E derives displacements from the double integration of measured accelerations,
he strain estimate is susceptible to low-frequency noise amplification, a numerical issue termed the ‘‘drift effect’’ which is detailed
n [5]. To address the difficulty in the frequency domain strain estimate, Iliopoulos et al. [7] introduce a multi-band method where
he dynamic frequency range is separated into two sections, such that a variable number of sensors and modes may be chosen for
ach frequency band. Studies by Noppe et al. [4,8] show that the multi-band method may lead to discontinuities in the estimate at the
efined frequency band limits. Henkel et al. [3,9] extends the studies in [1,4,8] to the estimation of subsoil strains, where multi-band
D&E is observed to result in a phase lag in the time domain and an underestimation of the first mode spectral density for periods

f high wind speeds. Generally, ill performance of MD&E can be attributed to its fully deterministic nature, such that it remains
ighly sensitive to discrepancies between the physical system and idealized model. In particular, MD&E does not explicitly account
or stochastic measurement noise and model error resulting from uncertainty in soil-foundation interaction properties. Moreover,
ince calibration of the model must be performed offline, MD&E cannot account for shifts in the modal parameters of the system
e.g. natural frequencies, damping ratios) across operational states and loading conditions, which limits the robustness of its use.

The other class of techniques takes a Bayesian inference approach to virtual sensing and has a number of notable differences from
eterministic methods. First, in estimating the trajectory of the unknown state, Bayesian inference methods produce a probability
istribution of values of the state over time, reflecting additional information on the level of uncertainty in the predicted state rather
han a single estimate of the time series. Secondly, sources of uncertainty from stochastic measurement noise and model error
re explicitly incorporated in the construction of the inference problem. Finally, these virtual sensing methods offer a statistical
ramework to account for the direct dependence of the dynamic response on qualities of the force, or ‘‘input’’, acting on the
ystem, such as its magnitude, variability, and correlation structure. As no practical means exist for direct measurement of forces,
he unknown input is either implicitly modeled as a form of process noise or treated as an additional random variable whose
ime evolution may be derived simultaneously with that of the strain response. The latter of these approaches, in which the joint
istribution of unknown inputs and states is inferred from measurement data, is referred to as ‘‘joint input-state estimation’’ and
onstitutes the focus of this paper.

Bayesian inference approaches to virtual sensing are commonly implemented using the Kalman filter [10], whose sequential
tructure to inferring states from measurements is suitable for long time series-type data. Among the Kalman filter-based techniques,
ne version comprises of minimum variance unbiased filters derived from optimal control theory which do not assume prior knowl-
dge of the time-varying behavior of the input. While early methods addressed the state estimation problem exclusively [11,12],
sieh et al. [13] recognized the value of performing input estimation to improve the state estimation. The methods of [11,13]
ere extended in Darouach et al. [14] to include direct feedthrough between the inputs and states. These contributions lead

o the development of the joint input-state estimator by Gillijns & de Moor [15,16], abbreviated as GDF or JIS in literature,
hich formalized a filter for simultaneously estimating inputs and states in linear systems satisfying minimum variance and
nbiasedness conditions. Since then, the method has been extended for cases with a time delay using Rauch–Tung–Striebel (RTS)
moothing [17,18], for cases with a reduced order model and equivalent forces [19], and with a method to account for estimation
ncertainty and correlation between inputs and states [20]. The GDF is evaluated extensively in literature, using numerical tests
n [21–23], experimental tests in [19,24], and operational data in [1,19,25,26]. Notably, the GDF is compared to other state-of-
2

he-art virtual sensing techniques using in-situ data from an offshore wind turbine in [27], where it is concluded that methods
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are competitive and interchangeable. However, other work has noted difficulties with the robustness of the GDF in virtual sensing
applications. In particular, the GDF is observed to be susceptible to numerical instability [19,22,26] arising from rank deficiency
of system matrices, which occurs in overdetermined systems where the number of sensors exceeds the number of modes in the
model [19] and where the sensor configuration results in near linear dependence between the inputs and states [26]. A comparison
test in [24] demonstrates that the GDF is more susceptible to the drift effect from the accumulation of integration errors than other
state-of-the-art joint input-state estimators. While the theoretical performance of the GDF guarantees minimum variance unbiased
estimates for systems without model error, Maes et al. [20,25] note that the GDF no longer produces minimum variance estimates
in applications where loading, noise, or structural conditions deviate from those assumed in the model. Moreover, the estimated
error covariance matrices of the inputs and states no longer correspond to the true error. Optimality of estimates by GDF are with
respect to the noise covariance matrices on the inputs and states, which must be known a priori or tuned appropriately for a given
application.

In contrast to the GDF, which makes no prior assumption on the input, more recent developments in Kalman filter-based
stimators assume that the input takes the form of a random walk model, where the time evolution of the input is driven by
ero-mean white Gaussian noise. The augmented Kalman filter, or AKF [28], performs simultaneous estimation of the input and
tate variables in augmented state-space; in comparison to Maes et al. [1,27], which implements a classical Kalman filter for pure
tate estimation by assuming the process noise term encompasses contributions from the input, the AKF defines the covariance
tructure of the unknown input separate from that of process noise. To address issues of unobservability of the augmented state
atrix when acceleration-only measurements are used, Naets et al. [29] proposes the AKF-dm, supplementing the AKF with artificial

‘dummy displacements’’ as additional measurements in order to stabilize the state estimate. The dual Kalman filter, or DKF [21],
as also been proposed to overcome unobservability issues by introducing a successive structure to the filter, where the input
stimation is followed by the state estimation. The performance of the Kalman filter-based estimators is compared using numerical
ata in [22,23], experimental data in [24], and operational data in [8]. A well-known shortcoming of the AKF, AKF-dm, and DKF is
hat their accuracy largely depends on an appropriate choice of noise covariance matrices, including process noise on dynamic states,
easurement noise of observed states, and modeled noise in the unknown input [21,28]. While tuning procedures for covariance
atrices have been proposed, including heuristic rules of thumb, a maximum likelihood estimation approach [30], and exhaustive

earch by the L-curve criterion [21,28], manual adjustment of the covariance matrix is often implemented to estimate an appropriate
rder of magnitude for the covariances. In several instances, the problem of estimating the covariance matrix is simplified by
onstraining the matrix to have a diagonal structure with constant values [21,28], placing the strict assumption that all inputs
nd states are uncorrelated and have equal magnitude variance. All these methods face the additional important limitation that the
hite noise assumption on the input may be too restrictive for real life applications. In the case of OWTs, which are assumed as

inear time-periodic (LTP) systems, cyclic load sources are expected to contain harmonic components which violate the broadband
ssumptions of white noise input.

Recently, latent force models have been proposed as a generic case of Bayesian estimators which allow for greater flexibility
n the treatment of the unknown input. Latent force models mark a connection between the control theory-based perspective and
achine learning-based perspective of the state estimation problem; whereas purely data-driven approaches in statistical modeling

raditionally suffer in cases of extrapolation and sparse datasets, the hybrid approach of a latent force model supplements the
tatistical model with a mechanical model of the underlying system dynamics to guide regression in the latent variable space [31].
n virtual sensing applications, the latent force model relates the measured accelerations, or observed variables, to the inputs and
tates, which comprise the unobserved or ‘‘latent’’ variables of the structural system [23]. Alvarez et al. [31] introduced the concept
f the Gaussian process latent force model, or GPLFM, where a linear system is driven by an unknown Gaussian process whose
ovariance matrix is characterized by a kernel function. The GPLFM exploits properties of Gaussian processes to construct covariance
elationships between the inputs and states, using parameters of the assumed kernel as well as correlation information supplied by
he mechanical model. Posterior inference of latent variables may then be reduced to a problem of Gaussian process regression of the
bserved variables with joint inference of the unobserved variables. Whereas [31] provides a convolution-based solution to Gaussian
rocess regression, Hartikainen & Särkkä [32] demonstrate that Gauss-Markov processes may be reformulated in state-space such
hat regression can be more efficiently performed using Kalman filtering [10] and RTS smoothing [17]. Their study is extended to
he joint input-state estimation problem in [33], which provides the state-space framework for the GPLFM.

A numerical comparison of the GPLFM with competing joint input-state estimation algorithms for linear structural systems is
arried out in Nayek et al. [23]. This investigation demonstrated that the GPLFM consistently outperforms or is on par with the
erformance of the AKF, AFK-dm, and DKF for joint input-state estimation across various loading scenarios. While Bayesian joint
nput-state estimators share many core characteristics, the superior performance of the GPLFM can be attributed to the nature of
he statistical model parameters which require tuning [23]. The GDF, AKF, AKF-dm, and DKF all rely on individual definition and
nference of full covariance matrices, leading to a complex covariance matrix estimation problem. To simplify the problem, Yuen
t al. [30] propose one approach of taking a maximum likelihood estimate of the matrix diagonal using the negative log likelihood
xpression recovered from the Kalman filter; however, in this approach, the covariance matrix is parameterized using constraining
ssumptions, such as independent variance in each state dimension, and requires the solution to an optimization problem whose
omplexity scales with the dimension of the model. In [19,21], a modified L-curve criterion is adopted, which exhaustively searches
or a constant variance parameter defining the noise covariance matrix which minimizes estimation error. Both of these procedures
or covariance matrix estimation correspond to model fitting based on variance minimization, but either do not explicitly account
or frequency content of the input, as in the case of the GDF, or fix an assumption of broadband frequency in the input using a white
3

oise model, as in the case of the AKF, AKF-dm, and DKF. In contrast, the GPLFM characterizes the relationship between inputs and
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states in terms of a GP covariance kernel. The kernel function is parameterized by a relatively small set of hyperparameters, the
number of which are independent of the state dimension. Consequently, tuning hyperparameters by parameter estimation techniques
such as maximum likelihood estimation [23] or Bayesian inference [34] leads to a much more efficient exploration of the tunable
parameter space compared to full covariance matrix estimation. Moreover, these hyperparameters often correspond to interpretable
properties of the input and response, such as the amplitude, frequency content, and smoothness or differentiability of the signal, in
contrast to parameters describing individual covariance terms.

The GPLFM is first applied to structural health monitoring applications in Nayek et al. [23], where it is shown that the GPLFM is
generalization of the AKF which offers greater flexibility in the definition of the input in augmented state-space. Rogers et al. [34]

xtends the study to address system parameter estimation in addition to the joint input-state estimation problem. While the GPLFM
as been evaluated in numerical studies, literature on the experimental or operational validation of the GPLFM in SHM is sparse.
etersen et al. [35] demonstrates the potential of combining analytical wind load models with the latent force model for long-span
uspension bridges, but without the availability of validation data. Using data collected from an operating onshore wind turbine,
ilbao et al. [36] evaluates the performance of the GPLFM for strain estimation across the height of the tower above the foundation.

This contribution provides a critical study of the in-situ validation of the GPLFM and associated practical considerations for
ts use in fatigue monitoring. The fatigue assessment of offshore wind turbines serves as a suitable case study, as the GPLFM is
xpected to offer particular advantages in state estimation for systems subject to high model uncertainty and variable excitation
ources which are not well characterized by the white noise assumption grounding other virtual sensing techniques. Moreover, this
ork presents the rare opportunity for validation of strain estimates in the OWT foundation below the mudline, as measurements

rom strain gauges embedded within the monopile are available in the considered case study. The paper is organized as follows:
ection 2 presents the formulation of both the mechanical model of the system and the stochastic model of the unknown input in
tate-space, as well as the theoretical framework of the GPLFM. Section 3 presents the case study for in-situ validation, using subsoil
ata obtained in a monitoring campaign of an OWT in the Westermeerwind Park in the Netherlands. Section 4 presents the results
f strain estimation for fatigue assessment and an evaluation of the sensitivity of the GPLFM to both measurement data fidelity and
odel fidelity. Section 5 concludes and provides recommendations for future research directions.

. Mathematical formulation

.1. Mechanical model of structural system

In structural dynamics, the response states of a physical system under forced vibration are described by a mechanical model
hich takes the form of a linear second-order differential equation:

𝐌�̈�(𝑡) + 𝐂�̇�(𝑡) +𝐊𝐮(𝑡) = 𝐒p𝐩(𝑡) (1)

where 𝐮(𝑡) ∈ R𝑛u are the displacement states at 𝑛u degrees of freedom of a system with mass, damping, and stiffness properties
defined by 𝐌,𝐂,𝐊 ∈ R𝑛u×𝑛u respectively. The system is externally excited by 𝑛p forces 𝐩(𝑡) ∈ R𝑛p , with spatial distribution indicated
by the selection matrix 𝐒p ∈ R𝑛u×𝑛p [19]. In this presentation, the system is assumed to be time-invariant, i.e. the model parameters
and force locations are constant in time.

For complex models with several degrees of freedom, the solution for the response states may be more efficiently computed using
model order reduction as in [19,37]. The eigensolution to 𝐊Φ = 𝐌ΦΩ2 returns the mass-normalized mode shapes 𝜙𝑗 , given by
the columns of matrix Φ ∈ R𝑛u×𝑛u , and the natural frequencies 𝜔2

𝑗 in rad/s, which are collected in the diagonal matrix Ω2 ∈ R𝑛u×𝑛u .
In the modally reduced order formulation, the matrices are truncated into Φ̄ ∈ R𝑛u×𝑛m and Ω̄

2 ∈ R𝑛m×𝑛m to retain a subset of
modes 𝑛m which dominate the system response. By casting into modal states 𝐫(𝑡) ∈ R𝑛m with the transformation 𝐮(𝑡) = Φ̄𝐫(𝑡) and
premultiplying by Φ̄

T, Eq. (1) becomes:

Φ̄
T𝐌Φ̄�̈�(𝑡) + Φ̄

T𝐂Φ̄�̇�(𝑡) + Φ̄
T𝐊Φ̄𝐫(𝑡) = Φ̄

T𝐒p𝐩(𝑡) (2)

With mass-normalized mode shapes, the orthogonality conditions Φ̄
T𝐌Φ̄ = 𝐈 and Φ̄

T𝐊Φ̄ = Ω̄
2 are satisfied. Assuming

roportional damping, the modal damping ratios 𝜉𝑗 are given by Φ̄
T𝐂Φ̄ = Γ̄, where Γ̄ = diag(2𝜉𝑗𝜔𝑗 ) for 𝑗 = 1,… , 𝑛m. The forces

are transformed into their modal contributions by 𝐟 (𝑡) = Φ̄
T𝐒p𝐩(𝑡), where 𝐟 (𝑡) ∈ R𝑛m is the vector of modal force time histories. The

modally reduced order model then becomes:

�̈�(𝑡) + Γ̄�̇�(𝑡) + Ω̄
2𝐫(𝑡) = 𝐟 (𝑡) (3)

To formulate the model for filtering and inference, the continuous-time linear differential equation is converted to state-space
form. By defining the state vector 𝐱(𝑡) =

[

𝐫(𝑡) �̇�(𝑡)
]T, Eq. (3) can be expressed as:

[

�̇�(𝑡)
�̈�(𝑡)

]

=

[

𝟎 𝐈
−Ω̄2 −Γ̄

]

⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟
𝐀c

[

𝐫(𝑡)
�̇�(𝑡)

]

+
[

𝟎
𝐈

]

⏟⏟⏟
𝐁c

𝐟 (𝑡) (4)

which is succinctly written as:

�̇�(𝑡) = 𝐀 𝐱(𝑡) + 𝐁 𝐟 (𝑡) (5)
4

c c
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Eq. (5) constitutes the dynamical model of the state-space system, which describes the evolution of response states over time as
function of the system parameters, given by 𝐀c, and of the input forces, whose influence is given by 𝐁c.

To facilitate numerical implementation, the dynamical model is converted from continuous-time to discrete-time with time step
ize ∆𝑡 using the zero-order hold assumption. The discretized dynamical model is as follows:

𝐱𝑘 = 𝐀𝐱𝑘−1 + 𝐁𝐟𝑘−1
𝐀 = exp(𝐀c∆𝑡), 𝐁 = [𝐀 − 𝐈]𝐀−1

c 𝐁c
(6)

In addition to the dynamical model, a discrete-time measurement model is defined to describe the relation between state variables
and observed variables of a distinct sampling frequency. While accelerometers are predominantly used in SHM applications, axial
strain readings from strain gauges may be additionally available with certain sensor configurations. Heterogeneous data fusion with
displacement measurements is presented in [5,38]; for the case where strain measurements are available at an equal sampling rate
as acceleration measurements, the measured quantities 𝐲𝑘 ∈ R𝑛y for 𝑘 = 1,… , 𝑁 are related to the original displacement, velocity,
and acceleration states by:

𝐲𝑘 =
[

𝜺𝑘
�̈�𝑘

]

=
[

𝐒s𝐓s 𝟎 𝟎
𝟎 𝟎 𝐒a

]

⎡

⎢

⎢

⎣

𝐮𝑘
�̇�𝑘
�̈�𝑘

⎤

⎥

⎥

⎦

(7)

where 𝐒a ∈ R𝑛acc×𝑛u is the selection matrix of degrees of freedom where 𝑛acc accelerations are recorded and 𝐒s ∈ R𝑛str×𝑛e is the
selection matrix of elements where 𝑛str strains are recorded. 𝐓s ∈ R𝑛e×𝑛u is the transformation matrix which computes axial strain
deformation 𝜺 ∈ R𝑛e from lateral displacements of a finite element model with 𝑛e elements based on shape functions from beam
theory, provided in Appendix A.2. The total dimension of the observation vector is therefore 𝑛y = 𝑛acc + 𝑛str .

The observation equation with respect to the modal states 𝐱 is then given by:
[

𝜺𝑘
�̈�𝑘

]

=

[

𝐒s𝐓sΦ̄ 𝟎
−𝐒aΦ̄Ω̄

2 −𝐒aΦ̄Γ̄

]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝐆

[

𝐫𝑘
�̇�𝑘

]

+
[

𝟎
𝐒aΦ̄

]

⏟⏟⏟
𝐉

𝐟𝑘 (8)

which can be reduced to the following equation, with output influence matrix 𝐆 and direct feedthrough matrix 𝐉:

𝐲𝑘 = 𝐆𝐱𝑘 + 𝐉𝐟𝑘 (9)

Together, Eqs. (6) and (9) give the discrete-time state-space model of the physical system:

𝐱𝑘 = 𝐀𝐱𝑘−1 + 𝐁𝐟𝑘−1 + 𝜂𝑘−1 (10a)

𝐲𝑘 = 𝐆𝐱𝑘 + 𝐉𝐟𝑘 + 𝐯𝑘 (10b)

The process noise term 𝜂𝑘 with covariance E[𝜂𝑘𝜂T
𝑙 ] = 𝐐x and measurement noise term 𝐯𝑘 with covariance E[𝐯𝑘𝐯T

𝑙 ] = 𝐑 are added
to account for model uncertainty and measurement error, respectively. The noise terms are mutually uncorrelated white Gaussian
noise processes, i.e. E[𝜂𝑘𝐯T

𝑙 ] = 𝟎.
In its current form, the linear state-space model in Eq. (10) cannot be used to directly solve for the response states because the

forcing process 𝐟𝑘 is unknown. Whereas Maes et al. [27] simplifies the problem by grouping the unknown input with the white noise
term 𝐰𝑘, this approach has limited robustness in capturing the frequency range of dynamic strains for events with non-white input.

2.2. Gaussian process models

This section provides a brief overview of properties of Gaussian processes (GPs) and GP regression, which form the basis of the
GPLFM methodology. In the case of a single dimensional input 𝑡 ∈ R, a Gaussian process defines a probability density over possible
functions ℎ(𝑡) of a random variable 𝑡. A GP has the property of being completely characterized by the first two moments of the
process, namely its mean and covariance functions, expressed as follows:

ℎ(𝑡) ∼ 𝐺𝑃 (𝜇(𝑡), 𝜅(𝑡, 𝑡′; 𝜃)) (11)

where 𝜇(𝑡) denotes the mean function and 𝜅(𝑡, 𝑡′; 𝜃) denotes the covariance function, also referred to as the kernel, representing the
covariance as a function of distance between any two points 𝑡 and 𝑡′ of the process. Several options for forms of the kernel and
its corresponding hyperparameters 𝜃 exist to control the smoothness and differentiability properties of ℎ(𝑡), discussed further in
Section 2.3.1.

Gaussian processes are commonly employed in regression problems to define a non-parametric mapping between inputs and
outputs, e.g. ℎ ∶ 𝑋 → 𝑌 . Consider a training dataset 𝐷 = {𝑋, 𝑌 } with inputs 𝑋 = {𝑡1,… , 𝑡𝑁} and corresponding outputs
𝑌 = {𝑦1,… , 𝑦𝑁}. The observed 𝑌 are assumed to be noisy measurements of the underlying process, modeled as ℎ(𝑋):

𝑌 = ℎ(𝑋) + 𝝂, 𝝂 ∼ 𝒩 (𝟎, 𝜎2𝜈 I) (12)

Discrepancy between measurements 𝑌 and the model ℎ(𝑋) is represented with additive white Gaussian noise 𝝂 with variance
2 ∗
5

𝜎𝜈 . In regression, ℎ provides an approximation of the unobserved output corresponding to a test set of values 𝑋 which are separate
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(or held out) from the observed dataset 𝐷. In GP regression, moments of the Gaussian posterior distribution 𝑝(ℎ(𝑋∗)|𝑌 ) may be
omputed with closed form expressions, as provided in [32,39]. The main drawback of this solution to GP regression is the high
rder of computational complexity, scaling with respect to the number of data points 𝑁 by 𝒪(𝑁3), due to the inversion of a 𝑁 ×𝑁
atrix. Rasmussen & Williams [39] provide an algorithm for the practical implementation of the closed form solution, by addressing
atrix inversion with Cholesky decomposition. However, it can be shown that for stationary Gauss-Markov processes, a recursive

olution to GP regression by means of Kalman filtering and RTS smoothing may be implemented with a computational complexity
caling linearly with the dataset size, e.g. 𝒪(𝑁) [32]. For particularly large datasets, as in cases with time series-type data, the
ecursive solution has substantial computational advantage.

.2.1. Special case of stationary Gaussian processes
A stationary GP which satisfies Markov properties may be formulated in state-space such that Kalman filtering and RTS smoothing

an be implemented to solve for its posterior distribution [32]. For the zero-mean stationary case of the GP, the mean function
valuates to zero, e.g. 𝜇(𝑡) → 0, and the covariance function does not change over time shifts 𝜏 = 𝑡 − 𝑡′, becoming:

ℎ(𝑡) ∼ 𝐺𝑃 (0, 𝜅(𝜏; 𝜃)) (13)

The temporal GP ℎ(𝑡) of Eq. (13) may be equivalently expressed as the output of a linear time-invariant (LTI) system driven by
a white noise process 𝑤(𝑡), taking the form of a stochastic differential equation (SDE) of order 𝛽:

𝑑𝛽ℎ(𝑡)
𝑑𝑡𝛽

+ 𝑎𝛽−1
𝑑𝛽−1ℎ(𝑡)
𝑑𝑡𝛽−1

+…+ 𝑎1
𝑑ℎ(𝑡)
𝑑𝑡

+ 𝑎0ℎ(𝑡) = 𝑤(𝑡) , 𝑆𝑤(𝜔) = 𝑞𝑤 (14)

in terms of coefficients 𝑎0,… , 𝑎𝛽−1 and the spectral density of the white noise, 𝑞𝑤. Eq. (14) may be converted to state-space through
its companion form, in which the 𝛽-order linear SDE is represented as a system of 𝛽 first-order linear SDEs. Defining a vector of ℎ(𝑡)
nd its derivatives up to order 𝛽 − 1 as 𝐳(𝑡) =

[

ℎ(𝑡) 𝑑ℎ(𝑡)
𝑑𝑡 … 𝑑𝛽−1ℎ(𝑡)

𝑑𝑡𝛽−1

]T
, the companion form follows:

⎡

⎢

⎢

⎢

⎢

⎣

𝑑ℎ(𝑡)
𝑑𝑡

𝑑2ℎ(𝑡)
𝑑𝑡2
⋮

𝑑𝛽ℎ(𝑡)
𝑑𝑡𝛽

⎤

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎣

0 1 0 … 0
0 0 1 … 0
⋮ ⋮ ⋮ ⋱ ⋮
0 0 0 … 1

−𝑎0 −𝑎1 −𝑎2 … −𝑎𝛽−1

⎤

⎥

⎥

⎥

⎥

⎥

⎦

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝐅c

⎡

⎢

⎢

⎢

⎢

⎣

ℎ(𝑡)
𝑑ℎ(𝑡)
𝑑𝑡
⋮

𝑑𝛽−1ℎ(𝑡)
𝑑𝑡𝛽−1

⎤

⎥

⎥

⎥

⎥

⎦

+

⎡

⎢

⎢

⎢

⎢

⎢

⎣

0
0
⋮
0
1

⎤

⎥

⎥

⎥

⎥

⎥

⎦

⏟⏟⏟
𝐋c

𝑤(𝑡) (15)

or simply as:

�̇�(𝑡) = 𝐅c𝐳(𝑡) + 𝐋c𝑤(𝑡) (16)

The SDE in Eq. (16) constitutes the state-space model of the GP. It must be highlighted that properties of the SDE — namely, the
pectral density 𝑞𝑤, the order of the model 𝑚, and the value of coefficients 𝑎0,… , 𝑎𝛽−1 - are a function of the kernel chosen for the

GP. Certain conditions must be met in order to construct a state-space model of the GP with the intended stationary kernel 𝜅(𝜏): the
ernel must satisfy positive semi-definiteness, and the kernel produces a GP ℎ(𝑡) whose spectral density 𝑆ℎ(𝜔) is in rational form.
or GPs which meet these criteria, the equivalent state-space model (𝐅c,𝐋c, and 𝑞𝑤) may be computed by spectral factorization, the
teps of which are detailed in [23,32].

From Eq. (16), our interest is to estimate the probability density of the state vector, 𝑝(𝐳(𝑡)). The Fokker–Planck–Kolmogorov
FPK) equation provides the complete probability density of the solution of a generic SDE, as detailed in [40]. However, due to
roperties of GPs, computation of the FPK equation can be bypassed and the first two moments of the distribution can be directly
olved to provide a complete probabilistic description of the state vector, 𝑝(𝐳(𝑡)) ∼ 𝒩 (�̂�(𝑡),𝐏(𝑡)). For the case of linear time invariant
LTI) SDEs with the initial condition 𝐳(𝑡0) ∼ 𝒩 (�̂�0,𝐏0), the differential equations of the mean and covariance of 𝐳(𝑡) reduce to:

𝑑�̂�(𝑡)
𝑑𝑡

= 𝐅c�̂�(𝑡) (17a)

𝑑𝐏(𝑡)
𝑑𝑡

= 𝐅c𝐏(𝑡) + 𝐏(𝑡)𝐅T
c +𝐐c (17b)

where the spectral density of the stochastic term is transformed as 𝐐c = 𝐋c𝑞𝑤𝐋T
c . The solutions are then given by:

�̂�(𝑡) = exp(𝐅c(𝑡 − 𝑡0)) �̂�0 (18a)

𝐏(𝑡) = exp(𝐅c(𝑡 − 𝑡0)) 𝐏0 exp(𝐅c(𝑡 − 𝑡0))T + ∫

𝑡

𝑡0
exp(𝐅c(𝑡 − 𝜏)) 𝐐c exp(𝐅c(𝑡 − 𝜏))T 𝑑𝜏 (18b)

Rather than computing the integral in Eq. (18b) directly, the covariance 𝐏(𝑡) can be solved for from the matrix Riccati differential
equation in Eq. (17b) using the method of matrix fraction decomposition, detailed in [40,41]. However, the solution is further
simplified in the case of zero-mean stationary processes, where it may be deduced that the SDE has a steady-state solution in which
the state vector has a constant distribution at all time points, 𝐳 ∼ 𝒩 (𝟎,𝐏 ). Considering the asymptotic behavior 𝑑𝐏(𝑡) → 𝟎 and
6

𝑘 ∞ 𝑑𝑡
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𝐏(𝑡) → 𝐏∞ in the steady-state condition, Eq. (17b) becomes the Lyapunov equation, a special case of algebraic Riccati equations [40]:

𝟎 = 𝐅c𝐏∞ + 𝐏∞𝐅T
c +𝐐c (19)

The Lyapunov equation is solvable with numerical algorithms [42] to obtain the steady-state covariance matrix 𝐏∞. To recover
he kernel function 𝜅(𝜏) of the process, we can define the following relationship to extract ℎ(𝑡) from 𝐳(𝑡):

ℎ(𝑡) = 𝐇𝑐𝐳(𝑡)
𝐇𝑐 =

[

1 0 … 0
] (20)

Then, the kernel may be computed from the solution to the LTI SDE of Eq. (16), following the algebra in [40], to obtain:

𝜅(𝜏) =

{

𝐇c 𝐏∞ exp(𝐅c𝜏)T 𝐇T
c , 𝜏 ≥ 0

𝐇c exp(−𝐅c𝜏)T 𝐏∞ 𝐇T
c , 𝜏 < 0

(21)

.2.2. Recursive solution to Gaussian process regression
For the special class of Gauss-Markov processes, GP regression may be more efficiently performed using recursive Bayesian

iltering. Unlike the batch solution to GP regression, which considers all data at once by constructing the joint distribution across
oints, the recursive solution processes the data sequentially by exploiting the Markov property, where upon observation of the
resent state of the process ℎ(𝑡), future instances of the state are independent of past observations [40]. Let 𝑦𝑖∶𝑗 = {𝑦𝑖,… , 𝑦𝑗} denote
he subset of data 𝑌 between time steps 𝑡𝑖 and 𝑡𝑗 . First, the steady-state solution is placed as the prior, 𝑝(𝐳0) = 𝒩 (𝟎,𝐏∞). Then, the
ndependence condition between past and future observations allows for the construction of the recursive Bayesian filter as follows:

𝑝(𝐳𝑘|𝑦1∶𝑘) =
𝑝(𝑦𝑘|𝐳𝑘) 𝑝(𝐳𝑘|𝑦1∶𝑘−1)

∫𝑥 𝑝(𝑦𝑘|𝐳𝑘) 𝑝(𝐳𝑘|𝑦1∶𝑘−1) 𝑑𝑥
∀ 𝑘 = 1,… , 𝑁 (22)

in which the filtering posterior distribution 𝑝(𝐳𝑘|𝑦1∶𝑘) ∀ 𝑘 = 1,… , 𝑁 is obtained from a sequential ‘‘forward pass’’ through the data
via Kalman filtering. What is worthy to note is that the prior distribution at time step 𝑘 is taken to be the posterior distribution
from the previous time step 𝑘 − 1. Hence, Bayes’ rule can be applied recursively as the probability distribution of 𝐳𝑘 is updated
incrementally with each data point in 𝑦1∶𝑘.

Kalman filtering and RTS smoothing is a practical algorithm for performing recursive Bayesian estimation for linear Gaussian
systems. First, the state-space equations of the GP are discretized to suit numerical implementation:

𝐳𝑘 = 𝐅𝐳𝑘−1 + 𝐋𝑤𝑘−1 (23a)

ℎ(𝑡𝑘) = 𝐇𝐳𝑘 (23b)

with discrete matrices 𝐅 = exp(𝐅c∆𝑡), 𝐋 = 𝐋c, 𝐇 = 𝐇c. In this sense, Eq. (23a) constitutes the dynamics model representing the time
evolution of the states, and Eq. (23b) constitutes the measurement model relating samples of ℎ(𝑡) to the states. As the process is a
linear SDE with normally distributed states, its posterior distribution can be recovered through the Kalman filter, which provides the
prediction 𝑝(𝐳𝑘|𝑦1∶𝑘) using past observations in sequence, followed by the RTS smoother, which provides the prediction 𝑝(𝐳𝑘|𝑦1∶𝑁 )
using a backward pass through the full observation dataset. The combination of filtering and smoothing gives the exact solution to
GP regression for a set of noisy samples of the process [32]. The filtering and smoothing algorithms are detailed in Appendix A.3.

In order to implement Kalman filtering and RTS smoothing, the covariance matrix 𝐐 of the discrete white noise 𝐋𝑤𝑘 is required.
𝐐 may be calculated from the spectral density of the continuous case of 𝑤(𝑡), 𝐐𝐜, as:

𝐐 = ∫

∆𝑡

0
exp(𝐅c(∆𝑡 − 𝜏)) 𝐐c exp(𝐅c(∆𝑡 − 𝜏))T 𝑑𝜏 (24)

In the steady-state condition, a practical method of computing 𝐐 is by enforcing 𝐏𝑘 → 𝐏∞ in the Kalman filter prediction equation
see Appendix A.3):

𝐐 = 𝐏∞ − 𝐅𝐏∞𝐅T (25)

.3. Gaussian process latent force model

In the GPLFM, modal components of the unknown input driving the dynamic response of a physical system are modeled
robabilistically as a GP, and a posterior estimate of their evolution over time may be computed through GP regression. However, in
he context of latent forces, no direct measurements of the process are available; rather, regression of the unknown input is performed
hrough its relation with observed dynamics of the system captured in a hybrid model consisting of a mechanical component and
stochastic component. The hybrid model provides a stochastic representation of the system dynamics, therefore allowing for the

oint posterior inference of all latent variables, including unobserved dynamics such as the strain states.
7
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Using the reduced-order formulation of the mechanical model from Section 2.1, unique sources of inputs 𝐩(𝑡) may be identically
ecomposed into modal components 𝐟 (𝑡) =

[

𝑓1(𝑡) ... 𝑓𝑛m (𝑡)
]T. It is assumed that modal forces can be expressed as mutually

ncorrelated GPs, leading to the following linear block-diagonal state-space model for multiple modal forces:

⎡

⎢

⎢

⎣

�̇�1(𝑡)
⋮

�̇�𝑛m (𝑡)

⎤

⎥

⎥

⎦

=
⎡

⎢

⎢

⎣

𝐅c,1
⋱

𝐅c,𝑛m

⎤

⎥

⎥

⎦

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
�̃�c

⎡

⎢

⎢

⎣

𝐳1(𝑡)
⋮

𝐳𝑛m (𝑡)

⎤

⎥

⎥

⎦

+
⎡

⎢

⎢

⎣

𝐋c,1
⋱

𝐋c,𝑛m

⎤

⎥

⎥

⎦

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
�̃�c

⎡

⎢

⎢

⎣

𝑤1(𝑡)
⋮

𝑤𝑛m (𝑡)

⎤

⎥

⎥

⎦

⏟⏞⏟⏞⏟
�̃�(𝑡)

(26a)

⎡

⎢

⎢

⎣

𝑓1(𝑡)
⋮

𝑓𝑛m (𝑡)

⎤

⎥

⎥

⎦

=
⎡

⎢

⎢

⎣

𝐇c,1
⋱

𝐇c,𝑛m

⎤

⎥

⎥

⎦

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
�̃�c

⎡

⎢

⎢

⎣

𝐳1(𝑡)
⋮

𝐳𝑛m (𝑡)

⎤

⎥

⎥

⎦

(26b)

where for the 𝑗th modal force, 𝐳𝑗 (𝑡) =
[

𝑓𝑗 (𝑡)
𝑑𝑓𝑗 (𝑡)
𝑑𝑡 … 𝑑𝛽−1𝑓𝑗 (𝑡)

𝑑𝑡𝛽−1

]T
is the vector of derivatives corresponding to the companion

orm of the 𝛽-order SDE and 𝐅c,𝑗 , 𝐋c,𝑗 , 𝐇c,𝑗 , the white noise forcing 𝑤𝑗 (𝑡) and its spectral density 𝑞𝑤𝑗 are defined by the GP covariance
ernel and associated hyperparameters from Section 2.2. Eqs. (26a), (26b) may be written in shorthand using the block state vector
(𝑡) =

[

𝐳1(𝑡) ... 𝐳𝑛m (𝑡)
]T as:

�̇�(𝑡) = �̃�c𝐬(𝑡) + �̃�c�̃�(𝑡) (27a)

𝐟 (𝑡) = �̃�c𝐬(𝑡) (27b)

The spectral density �̃�c of the term 𝐋c�̃�(𝑡) is a block matrix with 𝐋c,𝑗𝑞𝑤𝑗𝐋T
c,𝑗 along the diagonal.

Because the mechanical model and the block GP model of the latent modal forces both take the form of a linear differential
quation, it is possible to linearly combine the two into an augmented state-space model. We define the augmented state vector
a(𝑡) =

[

𝐱(𝑡) 𝐬(𝑡)
]T, where 𝐱(𝑡) =

[

𝐫(𝑡) �̇�(𝑡)
]T ∈ R2𝑛m denotes the modal displacement and velocity states. The GPLFM is given as:

[

�̇�(𝑡)
�̇�(𝑡)

]

=
[

𝐀c 𝐁c
𝟎 �̃�c

]

⏟⏞⏞⏞⏟⏞⏞⏞⏟
𝐅ac

[

𝐱(𝑡)
𝐬(𝑡)

]

+
[

𝟎
�̃�c�̃�(𝑡)

]

⏟⏞⏞⏟⏞⏞⏟
�̃�a(𝑡)

(28a)

𝐲𝑘 =
[

𝐆 𝐉�̃�c
]

⏟⏞⏞⏞⏟⏞⏞⏞⏟
𝐇a

[

𝐱
𝐬

]

𝑘
(28b)

or in the form:

�̇�a(𝑡) = 𝐅a
c𝐳

a(𝑡) + �̃�a(𝑡) (29a)

𝐲𝑘 = 𝐇a𝐳a𝑘 (29b)

where the spectral density 𝐐a
c of the augmented white noise vector �̃�a(𝑡) is given as:

𝐐a
c =

[

𝟎 𝟎
𝟎 �̃�c

]

(30)

Eq. (29) constitutes the continuous-discrete version of the GPLFM, describing the time evolution of both the latent forces and
latent system states. The hybrid model adopts the form of a linear SDE driven by a steady-state Gaussian input, and because the
solution to the SDE is a linear operation of the input, the resulting system states are also GPs [43]. Therefore, joint posterior inference
of the augmented states 𝐳a(𝑡) reduces to a GP regression problem, where regression of the measured variables provides evidence to
simultaneously extrapolate the latent variable response [33].

Kalman filtering and RTS smoothing may be implemented to solve GP regression. The model is discretized and noise sources are
considered for the purpose of filtering and inference, with 𝐅a = exp(𝐅a

c ∆𝑡):

𝐳a𝑘 = 𝐅a𝐳a𝑘−1 + �̃�a
𝑘−1 (31a)

𝐲𝑘 = 𝐇a𝐳a𝑘 + 𝐯𝑘 (31b)

where as in Eq. (10), 𝐯𝑘 is additive white Gaussian measurement noise with covariance 𝐑. Process noise is considered within the
term �̃�a

𝑘, a notion which is discussed further in Section 2.3.2.
We may adopt the same steps as in Section 2.2.2 to derive moments of the LTI SDE solution. In particular, the augmented

steady-state covariance 𝐏a
∞ of the augmented states 𝐳a(𝑡) is computed from the Lyapunov equation:

𝟎 = 𝐅a
c𝐏

a
∞ + 𝐏a

∞(𝐅a
c)

T +𝐐a
c (32)

and the augmented covariance matrix 𝐐a of the discrete noise 𝐰a
𝑘 follows as:

a a a a a T
8

𝐐 = 𝐏∞ − 𝐅 𝐏∞(𝐅 ) (33)
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2.3.1. Parameter inference for the GP kernel function
Given a GP kernel, the corresponding hyperparameters 𝜃 which govern the length scales of the resulting process may be tuned

according to the measurement dataset for a particular system. Nayek et al. [23] proposes to use maximum likelihood estimation
for parameter inference, in which the optimal hyperparameters are obtained from the least squares solution which minimizes the
residual norm between the observed data and model predictions. For Markov processes, maximization of the likelihood function
𝑝(𝑌 |𝜃) may be reframed as the minimization of the negative log likelihood and computed iteratively using the Kalman filter
quations. However, since such linear least squares problems are frequently ill-posed [44], the negative log likelihood function
ay not result in real-valued evaluations and its optimization is known to be susceptible to false solutions at local minima [23]. A
iscussion of the computational issues can be found in [35]. Rogers et al. [34] suggest a random walk Metropolis–Hastings algorithm
o enforce a log acceptance ratio and avoid complex values in the objective function. Moreover, they note that initialization of the
bjective function at the prior 𝑝(𝜃) produces the maximum a posteriori (MAP) estimate of the hyperparameters.

As the iterative computation of the objective function using the Kalman filter is computationally intensive, particularly for
long time-series data, this work implements a parameter fitting procedure for obtaining optimal values of the hyperparameters
𝜃∗ prior to filtering. Through properties of linear Gaussian systems, the GPLFM inherently places a Gaussian prior over the both
latent and observed variables of the system. As prior assumptions are encoded by the kernel function assumed in the GPLFM, the
hyperparameters of the Gaussian prior correspond exactly to those of the augmented model. Empirical qualities of the measurement
data, such as the empirical mean and covariance, are then leveraged as prior information which is used to tune the kernel
hyperparameters. In this approach, model parameters are fit by minimizing the distance 𝑑 between the empirical distribution of the
measurements, 𝑝(𝑌 ) ∼ 𝒩 (𝟎,𝐏y

0), and the modeled Gaussian prior on the observed states 𝑝(𝑌 |𝜃) ∼ 𝒩 (𝟎, �̂�y
∞), where by the steady-state

ondition, the prior covariance is �̂�y
0 = �̂�y

∞. For shorthand notation, 𝑝(𝑌 |𝜃) is referred to by 𝑝𝜃(𝑌 ). The optimal 𝜃∗ is then solved
rom:

𝜃∗ = arg min
𝜃

𝑑(𝑝, 𝑝𝜃) (34)

In this work, the distance metric 𝑑 between two probability measures is taken to be the Hellinger distance 𝐻(𝑝, 𝑝𝜃), which is
rovided in Appendix A.5.

As the distributions are taken to be zero-mean, parameter inference reduces to a problem of matching the covariance predicted by
he model to the underlying covariance in the data. The empirical measurement covariance 𝐏y is computed directly from time-series
ata of the sensor channels. The modeled measurement covariance, �̂�y

∞, may be derived from the augmented steady-state covariance
ncoded by the GP kernel function, 𝐏a

∞, by passing it through the measurement model 𝐇a of the GPLFM with the transformation:

�̂�y
∞ = 𝐇a 𝐏a

∞ (𝐇a)T (35)

Rather than computing the likelihood function iteratively over each measurement, this approach takes advantage of the linear
aussian nature of the GPLFM, such that the likelihood of 𝜃 may be computed efficiently using low-order moments of long time-series
ata. As the distance between Gaussian distributions in Eq. (34) results in a smooth, unimodal optimization surface across a defined
earch domain, the minimization problem may be solved efficiently using gradient descent methods.

.3.2. Treatment of noise in the GPLFM
A feature of the GPLFM which stands in contrast to other Kalman filter-based estimators is that the definition of stochastic

rocess noise on the augmented states, whose covariance 𝐐a is solved for by means of the Lyapunov equation in Eqs. (32) and
33), is inherent to the formulation of a stationary GP in state-space. That is, the joint noise covariance of inputs and states are
arameterized in terms of a handful of GP hyperparameters. This parameterization provides a more complete characterization of
he model compared to the parameterization suggested in [30] for other estimators, where tunable parameters are limited to diagonal
lements of the covariance matrix, or in [21,28], where a constant representing the order of magnitude of variance across all states
s estimated using the L-curve criterion. Using Eq. (33), an appropriate augmented process noise covariance matrix 𝐐a may be solved
or by a data-driven technique of parameter inference, where the parameters are the GP kernel hyperparameters, rather than by
euristic tuning or ad-hoc methods. The resultant noise covariance matrix captures correlations between the unknown inputs and
tates which are generally neglected in the AKF and DKF.

An underlying assumption in the GPLFM of Eq. (28) is that sources of process noise on response states – any dynamical behavior
hich is unaccounted for in the mechanical model – are treated as additional external input. In this sense, the GPLFM does not
istinguish between noise contributions and input excitation, which are characterized together as a GP perturbed by additive white
oise. As a consequence, the input estimation is relatively sensitive to large model uncertainty, and the strain estimation may
e susceptible to overconfidence. This aspect is generally not a concern in applications where one is less interested in the input
stimation for which validation is impractical. However, for applications where an accurate input estimate is necessary, or wider
ariance bounds on the strain estimate are expected, process noise in the system states 𝐱 may be distinguished either by the addition
f process noise in the latent system states [𝐐x 𝟎; 𝟎 𝟎], adding 𝐐x ∈ R2𝑛m×2𝑛m to the augmented covariance matrix in Eq. (33),
s in [23,35], or by the incorporation of the spectral density of the process noise 𝜂(𝑡) into the vector of hyperparameters 𝜃 to solve
or, as in [34].

The accuracy of the GPLFM is also sensitive to the choice of measurement noise covariance 𝐑. Rather than choose a prior estimate
f the measurement noise covariance, a method for posterior tuning of 𝐑 is adopted from [45], where measured data channels are

a ̂a a
9

sed as an indicator of sensor noise. Upon obtaining a posterior estimate 𝑝(𝐳 (𝑡)|𝑌 , 𝜃) = 𝒩 (𝐳 (𝑡),𝐏 (𝑡)) from Kalman filtering/RTS
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Fig. 1. Diagram of GPLFM methodology.

smoothing, the measurement noise is taken to be the residual 𝐫𝑘 between the observed data 𝑌 and prediction on the observed
variables 𝐇a�̂�a𝑘 as follows:

𝐲𝑘 = 𝐇a�̂�a𝑘 + 𝐫𝑘 (36a)

𝐫𝑘 = 𝐲𝑘 −𝐇a�̂�a𝑘 (36b)

Measurement noise tuning then becomes a problem of minimizing the error between the assumed measurement noise covariance
𝐑 in the model and the covariance of the residual time series �̂� = E[𝐫𝑘𝐫T

𝑘 ], executed through multiple iterations of posterior
estimation using the GPLFM. One may specify termination criteria for arriving at a final estimate of the measurement noise
covariance, such as a tolerance between consecutive iterates of 𝐑. It is observed that the measurement noise covariance tuning
procedure results in greater accuracy of estimates of latent states, as demonstrated in a numerical example in Appendix A.1.

An overview of the GPLFM methodology is illustrated in Fig. 1. Source code for this work is publicly available at
https://github.com/joannajzou/GPLFM.

2.3.3. Effect of modeling assumptions
This section discusses the degree of sensitivity of the GPLFM to various sources of model error which may be encountered in

virtual sensing applications. In the following, we give emphasis to modeling assumptions chosen for this study and their impact
on estimation quality, as well as possible extensions to more general assumptions. To substantiate the discussion on model error,
an illustrative example is presented in Appendix A.1 in which the sensitivity of the GPLFM to perturbation in model properties is
evaluated on a synthetic model, where the true input and response are known.

Gaussianity of the input and structural response. An underlying assumption in the adoption of the GPLFM for virtual sensing is
that the unknown input and response states of the structure are linearly related and Gaussian in distribution. This assumption is
deemed valid in structural health monitoring applications which utilize ambient vibrations to determine long-duration changes in
structural conditions, a setting where only the linear elastic regime of structural response is engaged. In the case study which follows
in Section 3, it is affirmed that the strain and acceleration data collected from an operating offshore wind turbine have ensemble
distributions which are very close to Gaussian in nature. Moreover, an illustrative example of the GPLFM implemented on a synthetic
model is presented in Appendix A.1, where for a structure excited by a non-Gaussian load, the response is still well captured using
the GPLFM. Therefore, the assumption of Gaussianity is not expected to introduce significant error in joint input-state estimation
results for the present in-situ validation study. While the present work focuses on an approach to fatigue monitoring over long time
scales, Rogers et al. [34] have explored the coupling of input and state estimation with parameter estimation, to track shifts in
modal parameters which can indicate nonlinear damage.

Stationarity of the GP. In the present study, the GP adopted in the formulation of the GPLFM is assumed to be zero-mean stationary.
This assumption is hypothesized to be sufficient for the virtual sensing of dynamic strains, in which low-frequency components
are not considered, for a structure subject to low-intensity ambient vibration, and is further evaluated in subsequent validation
experiments. Assumptions of first-order stationarity allow for the GP to be modeled as a steady-state linear time invariant (LTI)
SDE; for such systems, the Lyapunov equation may be invoked as an computationally convenient method to solve for the steady-
state probability density over the states, as in Eq. (19). The GPLFM may be implemented with assumptions of first-order stationarity
removed by computing the time-dependent probability density over states 𝐳(𝑡) via Eq. (18) for GPs with time-invariant system
matrices, which produces a solution with a non-zero prior mean sequence. A further extension would be to consider time-varying
system matrices of the GP, for which the probability density is computed by direct solution to the Fokker–Planck–Kolmogorov
equation [40].

Choice of GP covariance kernel. The performance of the GPLFM in joint input-state estimation depends on an appropriate choice
of the GP kernel and its hyperparameters. Generally, the kernel is chosen from a standard set of convenient kernels which meet the
10
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criteria for conversion to state-space, as discussed in Section 2.2.1, based on qualitative prior knowledge of the time-varying behavior
(e.g. periodicity, smoothness and differentiability) of the stochastic input. One example of a suitable kernel is the Matérn kernel
function, which characterizes processes that are finitely differentiable [32]. In this work, we exclusively make use of the Matérn
kernel function, as it is flexible enough to accommodate a broad range of process traits and is commonly employed in engineering
applications to represent physically realistic processes. In the case of the Matérn kernel with smoothing parameter 𝑝 = 2, covariance
relationships are governed by two hyperparameters 𝜃 = [𝛼, 𝑙𝑠], where the vertical length scale 𝛼 controls the amplitude and the
horizontal length scale 𝑙𝑠 controls the rate of time variability, and therefore the frequency content, of the resulting function. For
convenience, the state-space model of the Matérn kernel is provided in Appendix A.4. Other common kernel choices which are valid
for state-space implementation include the white noise (or Brownian motion) kernel function, which represents each time step of
the GP as independent and identically distributed; the squared exponential kernel function, which describes infinitely differentiable
processes; and the periodic kernel function, which captures strong harmonic components in time series data. Both the squared
exponential kernel and periodic kernel require an approximation of the spectral density to be converted into state-space form, the
details of which are provided in [32,46], respectively. For certain applications, GP regression may be particularly sensitive to the
choice of kernel, where the substitution of another kernel function leads to a substantially different posterior prediction. While an
evaluation of GP kernel sensitivity is beyond the scope of this work, an optimization-based approach to such a sensitivity study can
be found in [47].

Identical GP model for all modal force components. In the virtual sensing case study which follows in Section 3, it is assumed that
all modal forces 𝑓𝑗 (𝑡), 𝑗 = 1,… , 𝑛m are endowed with the same GP prior. In other words, in Eq. (26), the modal forces are modeled
with state-space matrices 𝐅𝑐,𝑗 ,𝐋𝑐,𝑗 ,𝐇𝑐,𝑗 , 𝑤𝑗 (𝑡) which are identical for all 𝑗 and determined by a common set of GP hyperparameters
. It is important to note that while these hyperparameters determine the prior variance placed on the companion form of the modal
orces 𝐳𝑗 (𝑡), the posterior variance on these states is solved for via a Kalman filter update of the prior variance utilizing information
rom measurement data. Therefore, the posterior distribution will differ between components of the modal force even if the same
P hyperparameters are used to define the prior distribution. Moreover, in the Bayesian framework to posterior inference, with the
vailability of a sufficiently large set of measurement data, influence over the posterior is dominated by the likelihood and prior
ssumptions become negligible [44]. While it is possible to assign unique GP hyperparameters 𝜃𝑗 to each modal force, it is observed,
ut not shown in the paper for the sake of brevity, that this approach does not improve accuracy in the posterior estimate of the
atent states in the present case study, and comes at the cost of a more expensive high-dimensional optimization problem which
ncreases the complexity of achieving optimal hyperparameter tuning.
Uncorrelated modal forces. The simplifying assumption is made that all modal forces 𝑓𝑗 (𝑡), 𝑗 = 1,… , 𝑛m are uncorrelated with

ach other, represented by diagonal terms being set to zero in the block-diagonal state-space model in Eq. (26). In reality, structural
ystems exhibit coupling between dynamic modes, which must be captured for a complete characterization of the covariance
elationship between inputs and states. Neglecting information on the correlation between modal forces leads to reduced estimation
ccuracy and underestimation of uncertainty. In this work, this assumption is taken as necessary in the absence of prior knowledge
f the nature of linear correlation between modal components of the unknown forcing. Nevertheless, our results on joint input-state
stimation for a numerical system in Appendix A.1 and the case study wind turbine system in Section 4 provide empirical evidence
hat this assumption still delivers good estimates. Moreover, the state-space form of the GPLFM provides a useful framework for
vercoming this assumption; an initial data-driven approach to modeling the correlation between modal forces is to parameterize
he covariance term between (𝑓𝑖(𝑡), 𝑓𝑗 (𝑡)) for 𝑖 ≠ 𝑗 in the appropriate matrix entries of Eq. (26) and append these parameters to the
et of kernel hyperparameters jointly inferred in an optimization routine.
Fixed modal parameters of the mechanical model. In practical applications of the GPLFM for virtual sensing, the mechanical model is

n idealization of the structural system and cannot be known exactly. In general, the mechanical model is constructed to fit measured
roperties of the in-situ structure — in particular, modal properties such as the modal damping ratios, natural frequencies, and
ode shapes which dictate dynamic response. However, for large scale structures, these modal properties must be inferred rather

han measured directly. Modal identification of offshore wind turbines by traditional operational modal analysis (OMA) techniques
s generally limited to the prediction of modal properties of the OWT in the idling state, when loading conditions most closely
atch the white noise assumption for ambient loading in OMA [48]. In the run-up and production states, these modal properties

hift due to variation in damping sources and the introduction of interaction with harmonic loads from the environment and rotor
lade dynamics [49]. Damping identification presents a particular challenge as the level of contribution of aerodynamic damping,
n addition to hydrodynamic damping and soil damping in offshore contexts, is expected to fluctuate widely over time [2,49].
herefore, the results of OMA obtained from data from the idling state do not fully reflect the true modal properties of the OWT in
ther states and are expected to result in an underestimation of modal damping levels, as well as a mismatch in natural frequencies
nd mode shapes. It is shown in an illustrative example in Appendix A.1 that errors in modal properties of the system affect input
stimation by the GPLFM, but as a measure to result in reduced influence on estimates of response states such as displacements
nd accelerations. It is expected that error in response estimation resulting from error in modal properties will be present but not
ecessarily significant, due to compensatory effects of the input estimation.
Beam theory model for the transformation of displacements to axial strains. Since the strain response of a structure is required to assess

atigue damage accumulation, the objective of virtual sensing is to estimate the strain response at fatigue-critical locations where
irect measurement of strains is infeasible. When representing the structure with a mechanical model of the form in Eq. (1), dynamic
esponse states of the model correspond to displacements and its higher order derivatives, including velocities and accelerations.
stimates of axial strain response must be computed by an appropriate transformation of the lateral displacement response produced
11

y the model. A simplifying but practically necessary assumption is to perform the transformation using elastic beam theory as
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presented in Appendix A.2, which relies on approximations of translational, rotational, and shear deformations described by finite
element shape functions. In the present validation study, the shape functions are chosen to be those of Timoshenko beam elements,
provided in [50]. Due to this approximation, it is likely that deterministic conversion of displacements to strains will result in
mismatch between the predicted strain response and the true strain response of the structure.

2.3.4. Practical notes for numerical implementation
This section briefly discusses numerical sensitivities particular to the presented formulation of the GPLFM and approaches to

esolve such issues, which are in part sourced from [41].
High dimensionality. For physical systems with several degrees of freedom, operations on large matrices in the Kalman filter and

TS smoother is susceptible to roundoff error and challenges with the inversion of sparse matrices. With model order reduction
f the mechanical model in Section 2.1, the dimension of the system becomes equal to the 𝑛m number of modes considered, thus

reducing the cost of computation and controlling for stable matrix inversion. Moreover, the reduced order formulation produces
an estimate of the modal contribution of any number of forces rather than the exact forces, such that knowledge of the location
of the unknown inputs is not necessary [51,52]. For instance, in the transformation of forces into their modal contributions by
𝐟 (𝑡) = Φ̄

T𝐒p𝐩(𝑡), 𝐒p may be taken to be the identity matrix such that the collective effect of all possible forces 𝐩(𝑡) acting at any
degree of freedom is considered and no error is introduced from incorrect assumptions on the force locations.

Ill-conditioning of covariance matrices. The Kalman filter algorithm is sensitive to ill-conditioning of the covariance matrices,
which more commonly occurs in the companion state-space model where higher derivatives of a process are included in the state
vector [41]. The ill-conditioning may be resolved through (a) reformulating the update equation in the Kalman filter using matrix
decomposition methods, such that filtering is performed using stable factors of the covariance matrix 𝐏𝑘, and (b) ensuring the
addition of non-zero measurement noise 𝐑 to stabilize the update equation in events of near-zero change from 𝐏𝑘−1 to 𝐏𝑘.

Numerical instability from scale difference. Numerical instability may arise if there exists a large scale difference between
components of the state vector 𝐱 or measurement vector 𝐲, as the filtering of large components may cause cancellation of the
ignificant digits of small components. Scale differences are particularly common when heterogeneous measurement data of different
nits are used, as is the case with the combination of acceleration and strain measurements. Such numerical errors can be avoided
hrough either a change of units or a rescaling of the vector. In this work, we recommend at a minimum to normalize the measured
uantities 𝐲 prior to filtering, then applying the reverse operation to the posterior estimate to recover the true signal magnitude.

. Offshore wind turbine case study

In this contribution, validation of the GPLFM for dynamic strain estimation is performed using measurement data from the SWT
.0-DD offshore wind turbine on a monopile foundation, referred to as the W27 turbine hereon. The W27 turbine is a member of
estermeerwind Park, an operating near-shore wind farm situated in the IJsselmeer Lake in the Netherlands. The instrumentation

cheme for the W27 turbine is rare by industry standards, as it contains strain sensors on the monopile foundation at varying depths
elow the mudline.

.1. Measurement setup and data processing

The measurement set used for validation consists of the following data, which was gathered from separate data acquisition
ystems. All positions of sensors are given with respect to the mean water level (NAP) and illustrated in Fig. 2.

• Rotor-nacelle assembly (RNA) data: data obtained from the SCADA system, where associated sensors are located at the level
of the rotor axle at +95.0 m NAP. Accelerations in the fore-aft (FA) and side-side (SS) directions of the turbine are recorded
at the RNA, where FA references the direction of the rotor axis and SS is the perpendicular direction. In addition, the RNA
data consists of measurement channels for wind direction and wind speed, rotor speed, blade pitch angle, power generation
level, and yaw angle (rotational position of the nacelle).

• Support structure (SUS) data: data from accelerometers and strain gauges installed along the height of the turbine tower and
monopile foundation. Three accelerometers are located above the waterline: Acc. 1, measuring in the east-west direction at
+4.5 m NAP; Acc. 2, measuring in the north-south direction at +4.5 m NAP; and Acc. 3, measuring along the 39.4◦–219.4◦

line from North at +42.5 m NAP. The SUS data includes nine rings of 4 strain gauges labeled A, B, C, D, measuring axial
strains at four faces of the monopile; however, several of the strain gauges at positions C and D, as well as all strain gauges
in the first ring level, were damaged during the pile-driving process. Therefore, strain gauge readings at positions A and B in
the five rings located below the mudline (Rings 2–6) and three rings located above the mudline (Rings 7–9) are retained for
validation. The inclinometer reading at +4.5 m NAP is neglected in this study.

The RNA and SUS data are collected continuously and organized into 10-min increments over a 15-month period between 2016
nd 2017. The turbine is monitored over various operational states of the OWT, namely the idling state (minimal rotor motion),
roduction state (full rotor speed), and run-up state (the transitional state). Each of the 10-min records is categorized by operational
tate using state curves, such as the wind speed-rotor speed curve in [53].

Due to the use of different data acquisition systems, signal processing steps are applied to ensure synchronization between the
NA and SUS data. First, the RNA data is downsampled to meet the 50 Hz sampling rate of the SUS data, which is determined

o be sufficient for capturing the frequency resolution of all data channels, as the significant frequency content is expected to fall
12
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Fig. 2. Position of 8 strain gauge rings and 3 accelerometers along the support structure of the W27 wind turbine.
Source: Figure adopted from [Versteijlen et al.].

below 10 Hz. Resampling is followed by the time series synchronization of the data channels based on cross-correlation sequences.
Full details on the time series synchronization procedure are provided in [54]. Because the primary interest in this study is to
estimate dynamic strain response which drives fatigue damage accumulation, quasi-static components are removed via a bandpass
Butterworth filter of order 6 with stopband frequencies of 0.12 Hz and 10 Hz.

3.2. Modal analysis

To identify in-situ modal parameters of the structural system – such as mode shapes, natural frequencies, and damping
ratios – operational modal analysis (OMA) is conducted using the covariance-driven stochastic subspace identification (SSI-Cov)
technique [48]. For the W27 turbine, acceleration measurements at three elevations from Acc. 1 and 2, Acc. 3, and the accelerometer
in the RNA are transformed into the local RNA coordinate system to allow for separate identification of the FA and SS modes. From
the stabilization diagram produced by the SSI-Cov routine, stable columns corresponding to structural modes are identified using
the OPTICS clustering algorithm [55,56].

As with the majority of OMA techniques, it is implicitly assumed in SSI-Cov that (1) the system is linear time invariant, meaning
the modal parameters remain unchanged over time; (2) the system is driven by unobserved ambient excitation which takes the
form of white Gaussian noise; and (3) the system response is not colored by nonstructural damping sources. Therefore, to ensure
robust and accurate results, a number of considerations are made in the selection of 10-min records to use for modal analysis. (A)
The dataset is filtered for records which correspond to the idling state, as loading conditions in this state most closely match the
assumption of white noise excitation in the SSI-Cov method and allow for structural resonance to be discerned from noise [2].
(B) The records are further filtered based on the yaw angle of the turbine in order to allow for distinction between the FA and SS
modes. The specific sensor configuration of the W27 turbine presents the limitation that Acc. 3 only provides a uniaxial measurement
along the 39.4◦–219.4◦ line, meaning it cannot measure components of motion perpendicular to its axis. Therefore, the RNA must
be oriented parallel to the axis of Acc. 3 for the channel to be utilized in identifying FA modes and perpendicular to its axis for
SS modes, such that the measurement corresponds completely to the motion in the respective direction. Records with little to no
deviation in yaw angle across the 10-min period are chosen to reduce conflation with out-of-plane modes. (C) Of the remaining
records, those which correspond to low wind speeds are prioritized in the selection in order to reduce the effect of aerodynamic
damping on the modal estimate. (D) Records in the final selection are truncated to sections of the data with relatively consistent
time-frequency content which reflects stationary conditions. Following these criteria, the FA and SS modal parameters are each
derived from twelve 10-min records taken across the 15-month duration of the monitoring campaign, with a sample record shown
in Fig. 3. It should be clarified that these criteria for record selection only applies to the dataset used for modal identification by
SSI-Cov; the validation records used in strain estimation are not subject to such constraints, but rather are chosen broadly across
operational states and wind speeds.
13
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Fig. 3. Sample 10-min record of the three acceleration channels used for modal identification, shown with the filtered time series (left column), discrete Fourier
transform (center column), and spectrogram (right column) of the data. The cutoff frequencies of the bandpass filter are indicated in the Fourier spectrum.

3.3. Finite element model

A mechanical state-space model of the W27 turbine is derived from a Finite Element (FE) model which is first constructed based
on known geometric and material properties, then tuned to match with the modal parameters identified through OMA. A relatively
simple FE model, such as a cantilever beam model, is sufficient for capturing the dominant modal properties of the system. The FE
model consists of 124 Timoshenko beam elements, each 1.0 m in length, to span across the 29.0 m monopile depth and 95.0 m
tower height. The tower does not have a separate transition piece as the monopile and tower have a bolted connection. The tapered
profile of the top section of the turbine is modeled using pipe cross sectional elements which diminish in diameter linearly with
height. All elements of the turbine are made of structural steel with Young’s modulus 𝐸 = 210 GPa, Poisson’s ratio 𝜈 = 0.3, and
mass density 𝜌 = 7850 kg/m3. External components such as the RNA, platform, and power unit are represented with concentrated
masses at their respective elevations.

A nontrivial source of model uncertainty is in the subsoil properties of the foundation. Mass and stiffness contributions of the soil
are modeled by adding a mass density of 1500 kg/m3 and a stiffness profile to the elements located below the mudline. A custom
1D soil stiffness profile for the W27 turbine is taken from Versteijlen et al. [57,58], where detailed studies of soil characterization
and modeling were conducted for the site. In their work, geophysical measurements from Cone Penetration Tests (CPT), Seismic
Cone Penetration tests (SCPT), and laboratory testing of borehole samples are used to develop an initial 1D effective Winkler profile
𝑘𝑒𝑓𝑓 (𝑧) which fits elastic properties of the soil-structure system as a function of depth 𝑧. Then, in-situ shaker tests of the W27
monopile are performed to obtain dynamic strain measurements from Rings 2–7, which are used to solve for an optimal scale factor
𝛾 which tunes the magnitude of the profile. It is found that while the optimal 𝛾 varies as a function of frequency, a constant factor
𝛾 = 0.78 is most appropriate for the low-frequency regime which governs the response in OWTs. The resultant 𝛾 𝑘𝑒𝑓𝑓 (𝑧) is illustrated
as a distributed springs model in Fig. 4. Note that in the absence of high-fidelity soil characterization data, the p-y curve [57] is an
alternative soil stiffness profile which is commonly adopted in practice.

Table 1 compares five modes of the final FE model, denoted with subscript 𝑓𝑒𝑚, with those identified by OMA, denoted with
subscript 𝑖𝑑. From OMA, natural frequencies are identified with relatively high confidence, reflected by low sample standard
deviation, whereas there is greater sample standard deviation in estimates of the modal damping ratios. Between the FE model
and OMA results, there is a very good match in the natural frequencies for the first four modes, with the relative error well below
1%. The high modal assurance criterion (MAC) above 0.9 indicates a strong fit between the mode shapes, as is visible in Fig. 5. In
general, the FA and SS modes are close to symmetric; any deviations from total symmetry are likely due to differential local soil
damping and stiffness. There is greater difficulty in fitting the third SS mode of the FE model to the OMA results, which is due to
the fact that the dynamic response of the OWT is controlled primarily by the first two modes. Therefore, higher modes are identified
with significantly greater sample variance and reduced certainty in the OMA procedure; for instance, it was not possible to identify
the third FA mode from the dataset. It is expected that the first two modes in each of the FA and SS directions dominate modal
contributions to the dynamic response of the OWT across operating states.

4. Application to virtual sensing

This section discusses validation of the GPLFM for virtual sensing using operational data from the W27 turbine. First, the fitting of
kernel hyperparameters using the approach of Eq. (34) is presented. The results of dynamic strain and modal force estimation using
acceleration-only measurement data are shown for sample records from each of the turbine’s operational states. Next, the sensitivity
14
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Fig. 4. Diagram of Winkler foundation model and soil stiffness profile.
Source: Figure adopted from [Versteijlen et al.].

Fig. 5. Mode shapes identified by OMA (solid blue) and estimated by the finite element model (dashed red).

Table 1
Mean and standard deviation of modal damping ratios and natural frequencies identified by OMA. Error in natural frequencies (𝑒𝑓 ) and
mode shapes (MAC) of the FE model are computed with respect to the mean modal parameters from OMA.
Mode 𝜁𝑖𝑑 𝑓𝑖𝑑 [Hz] 𝑓𝑓𝑒𝑚 [Hz] 𝑒𝑓 [%] MAC

mean std. mean std.

FA1 1.932 2.051 0.296 0.015 0.296 0.01% 0.999
SS1 3.011 1.703 0.290 0.009 0.289 −0.12% 0.996
FA2 2.379 2.126 1.869 0.058 1.874 0.23% 0.988
SS2 2.887 1.931 1.885 0.029 1.883 −0.09% 0.939
SS3 2.604 1.615 4.563 0.252 5.193 13.79% 0.743

f the GPLFM to the sensor configuration is examined to determine the minimum sufficient measurement setup for characterizing the
ynamic strain response of the OWT. Finally, perturbation to the foundation stiffness profile is introduced to evaluate the ability
f the GPLFM to accommodate model uncertainty. The performance of the GPLFM is calculated using the correlation coefficient
CC) and mean relative error (MRE) of the predicted strain time series in relation to the validation measurements, as well as by
onverting the strain estimate into a Damage Equivalent Load (DEL) [54,59] to measure the impact of estimation error on fatigue
ssessment.

In this application of the GPLFM, the finite element model of the W27 turbine is translated into a reduced-order model retaining
he first 𝑛 = 3 modes in each of the FA and SS directions of the structure. The stochastic model of the input assumes the three
15
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Fig. 6. Wind speed-rotor speed state curve of 10-min records taken over the period of March 2016 to June 2017 for the W27 turbine. The records selected for
validation in each of the operating states are labeled.

modal forces are independent and identically characterized by a Matérn kernel with 𝜈 = 5∕2, such that 𝜅1(𝜏) = 𝜅2(𝜏) = 𝜅3(𝜏). The
corresponding augmented model is therefore driven by two hyperparameters, 𝜃 = [𝛼, 𝑙𝑠].

The acceleration-only measurement dataset consists of acceleration time series transformed into FA and SS coordinates at three
elevations of the structure; these elevations are referred to as A1 (combination of orthogonal Acc. 1 and Acc. 2 at +4.50 m NAP),
A2 (uniaxial Acc. 3 at +42.50 m NAP), and A3 (accelerometer in the RNA at +95.0 m NAP). The validation dataset consists of strain
time series recorded at position A for FA motion and position B for SS motion within the rings at six depths below the mudline,
referred to by their corresponding ring numbers as Str. 2–7 (refer to Fig. 2 for an illustration). Validation is shown for eight records
from each of the operating states of the turbine, with each record identified by a numeral preceded by the letter ‘D’ for the idling
state, ‘R’ for the run-up state, and ‘P’ for the production state. The records are selected with the intention to encompass a wide range
of wind and rotor conditions in each operating state, as shown on the wind speed-rotor speed state curve in Fig. 6.

4.1. Hyperparameter fitting

For each record in the validation dataset, the hyperparameters of the GPLFM are fit according to the approach of Eq. (34). It
is consistently observed that evaluation of the objective function produces a convex surface with a clear optimum 𝜃∗, illustrated
in Fig. 7a for sample record P3 with search domain 𝛼 = [0, 50] and 𝑙𝑠 = [0, 1]. To visualize the goodness of fit, the empirical
distribution of the measurements (in blue) and the predicted prior distribution corresponding to the optimal model hyperparameters
𝜃∗ (in orange) are overlaid on the time series plots and histograms of the measured variables in Fig. 7b. The near exact match in
the distributions across all three measurement channels indicates an appropriate fit of the model to prior information on the true
system dynamics.

The optimal hyperparameters for all validation records are shown in Fig. 8. In the leftmost plot, the hyperparameter sets {𝛼, 𝑙𝑠} for
each of the operating states are observed to fall in distinct clusters. In particular, the idling state (records D1, …, D8) corresponds
to large values of 𝑙𝑠 and small values of 𝛼 due to the dominance of low frequency oscillations driven by low-powered ambient
excitation of the tower. The production state (records P1, …, P8) corresponds to small values of 𝑙𝑠 and large values of 𝛼 due to
the combination of high wind speeds and higher-frequency motion resulting from interaction with the turbine rotor. From these
correlations, we may draw physical interpretation of the controlling hyperparameters of the Matérn kernel as they relate to qualities
of the unknown input. To substantiate this reasoning, we refer to the center plot showing a positive correlation between 𝛼 and the
mean wind speed of the record, implying the vertical length scale parameter relates to the amplitude of the input as it varies with
the magnitude of wind speed. In the rightmost plot, 𝑙𝑠 is compared with a metric of relative power in the low frequency range,
which is computed as the ratio of the power (integration of area under the power spectral density function) from 0.1 to 1.0 Hz with
the power from 1.0 to 5.0 Hz. Larger values of this ratio indicate greater contributions of low frequencies to the response spectrum.
From the positive correlation observed, it can be inferred that the horizontal length scale parameter relates to the dominance of
low frequency inputs, which varies with both ambient conditions and rotor-induced loads.

The run-up state (records R1, …, R8) corresponds to hyperparameters falling between the ranges of the idling and production
states, as it marks the transition between these two states. Moreover, lower variance in the hyperparameters is observed compared
to the other two states because run-up of the OWT always occurs in predefined wind conditions, whereas the OWT may remain
stationed in the idling or production state across a wider range of wind speeds (see Fig. 6).
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Fig. 7. (a) The optimization surface across the search domain 𝛼 = [0, 50] and 𝑙𝑠 = [0, 1] for hyperparameters of the Matérn 𝜈 = 5∕2 kernel. (b) Measurement time
series and histogram of acceleration data at 3 channels for record P3, with the empirical distribution indicated in blue and modeled distribution indicated in
orange.

Fig. 8. Optimal 𝑙𝑠 vs. optimal 𝛼 (left), wind speed vs. optimal 𝛼 (center), and optimal 𝑙𝑠 vs. relative power in low-frequency range 0.1–1.0 Hz (right) for eight
records in each operational state.

4.2. Response estimation

The strain estimation results in the idling, run-up, and production states are given in Figs. 9, 10, and 11, respectively. Overall,
the GPLFM attains remarkable accuracy in the estimation of the frequency content of sub-soil strains; discrepancy is observed in
the high frequency range in Fig. 9, where low signal-to-noise ratio in the idling state results in difficulty with capturing the signal
where it falls below the level of sensor noise in the validation data. This discrepancy disappears for the run-up and production states,
as the response is no longer obscured by the noise amplitude. Despite the good performance in capturing the dominant frequency
components, an overestimation of the strain response is evident from both the time- and frequency domain plots. The error in the
amplitude is most apparent in the idling state in Fig. 9 as well as at periodic impulses caused by turbine rotor motion in the run-up
and production states, shown in the time series of Figs. 10 and 11 respectively. The discrepancy in the predicted signal amplitude
is caused by a slight overestimation in the contribution of low frequencies falling below the first natural frequency of the system,
which may be attributed to the general challenge of the estimation of low frequency strains. In particular, low frequency noise in
measured accelerations is inevitably amplified over double integration of accelerations to obtain strains [5], leading to the observed
inflation of low frequency content in the estimated strains. Moreover, effective characterization of the quasi-static behavior of the
turbine generally requires a large number of modes to be included in the modal decomposition of the model, a number which
exceeds the 2–3 modes which are able to be accurately identified in the present study [27]. The inflation of low frequencies may
17
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Fig. 9. Strain estimation for a record from the idling state (D7), shown with the full time series (left column), zoomed-in view of the time series (center column),
and power spectral density (right column) for five strain channels.

also be indicative of mischaracterization of measurement noise; as shown in the sensitivity study in Appendix A.1, underestimation
of measurement noise variance leads to an overestimation of low frequency content in the displacement response. These challenges
are encountered in a similar study in [27], where a high-pass filter which removes frequencies below 0.25 Hz is applied to the
predicted strain sequence before drawing comparison to the validation data.

Strain estimation results for all validation records is shown in Fig. 12, where the boxplots are computed from accuracy metrics
of the strain estimate across eight records in each operating state. In general, high accuracy in the frequency domain estimate is
reflected by a very high correlation coefficient (CC) near 1, while fair accuracy in the time-domain estimate is reflected by a mean
relative error (MRE) generally falling in the range of 5%–10%. There is a reduction in accuracy in the run-up state due to larger
variance in the wind and rotor speed (and therefore aerodynamic damping) among the records. Lower accuracy observed at strain
gauge 2 may be a result of sensor noise in the particular strain gauge or extrapolation uncertainty, as the sensor is located at the
furthest depth in the foundation where uncertainty in the soilbed properties is highest.

Samples of the modal force estimate from each of the operational states of the OWT are shown in Fig. 13. While it is not possible
to obtain direct measurements of the loads for validation of the input estimate, the frequency spectrum of the prediction provides
insights to the joint relationship between inputs and states defined in the GPLFM. First, it is clear that the magnitude of the input
increases from the idling state to the production state, reflected by the difference in signal amplitude in the time series plots. Higher
estimation uncertainty for higher modes is shown by the larger shaded area representing the ±3 standard deviation bounds on the
modal force prediction. Of particular interest is the frequency content estimated at the natural frequencies of the system, noted
by dashed lines in the PSD plots. For the run-up state and production state, there is a visible dip in the frequency spectrum at
the first natural frequency, which is an indicator of underestimation of the damping ratio in the first mode. In particular, when an
underdamped model of the structural system predicts response amplitudes which exceed that of the measured acceleration response,
the GPLFM compensates for the mismatch by reducing the power at that natural frequency in the frequency spectrum of the modal
force. This effect is also observed in numerical experiments presented in Appendix A.1, where perturbations to modal damping
ratios in a synthetic model causes artificial suppression of frequency content about modes where damping is misidentified. The input
estimate is likely also affected by errors in mode shapes and natural frequencies of the system. Since congruence in the mode shapes
identified from OMA and those of the mechanical model may only be evaluated at three points where accelerations are recorded,
there is a high likelihood for deviation in the section of the mode shape profile falling below the mudline where strains are estimated.
Moreover, modal properties in the run-up and production states shift under varying operational and environmental conditions [2].
It is observed in the numerical experiments that while the input estimate is particularly sensitive to errors in the modal properties,
the strain estimate is left relatively unperturbed. This effect indicates that in the prediction of latent strain states, the inclusion of
input estimation acts to accommodate error in modal properties by attributing its source to stochastic noise, reflected by adjustments
to the predicted spectrum of external excitation to the system in order to fit the data provided. However, the input estimate has
18
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Fig. 10. Strain estimation for a record from the run-up state (R5), shown with the full time series (left column), zoomed-in view of the time series (center
column), and power spectral density (right column) for five strain channels.

Fig. 11. Strain estimation for a record from the production state (P4), shown with the full time series (left column), zoomed-in view of the time series (center
column), and power spectral density (right column) for five strain channels.
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Fig. 12. Correlation coefficient (CC) and mean relative error (MRE) across the 6 sub-soil strain channels in the idling (left), run-up (center), and production
(right) states.

Fig. 13. Estimation of the first three modal forces for records in the idling, run-up, and production states, shown with the full time series on the left and power
spectral density on the right.

limited efficacy in accounting for other sources of systematic model error, such as error in the assumed level of measurement noise or
mismatch in the relationship defined between displacements and strains. Nevertheless, these results in response estimation provide
strong evidence that the GPLFM overcomes several challenges with reconstructing subsoil strain response compared to similar studies
conducted using dual-band MD&E for virtual sensing in [3] and the classical Kalman filter in [27], which were not able to achieve
the same level of accuracy in the frequency domain estimate and phase synchronization of the time domain estimate.

4.3. Sensitivity to sensor configuration

In this section, the performance of the GPLFM is examined under different assumptions with respect to the availability and
configuration of measurement data. The motivation is twofold: to determine an instrumentation scheme which aids in correcting for
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the overestimation of strain amplitude, and to determine the minimum instrumentation scheme which provides sufficient evidence
to characterize the strain response and inform future measurement campaigns for fatigue monitoring of similarly sized OWTs.
Considering the practicality of in-situ implementation, we assume only sensors at accessible locations above the waterline are used
for virtual sensing of subsoil response. Strain estimation with the GPLFM is conducted with three sensor configurations, labeled as:

• A3, using only the acceleration channel in the RNA (+95.0 m NAP);
• A3+A1, using two acceleration channels with one located in the RNA (+95.0 m NAP) and the other at +4.50 m NAP; and
• A3+S8, using the acceleration channel in the RNA (+95.0 m NAP) and the strain gauge ring located at +6.95 m NAP.

While the single sensor set-up of the A3 configuration results in the observability of only the first mode, it is included in the
following comparison as a point of reference for the added value of the second sensor in the A3+A1 and A3+S8 configurations.
Validation of the strain estimate with Record P3 for the three sensor configurations is given in Fig. 14. For brevity, only strain
channels 2, 6, and 7 are shown. It is observed the A3 configuration is only capable of capturing the first modal response, with the
accuracy at frequencies above the first natural frequency rapidly declining. The introduction of the second acceleration channel
in A3+A1 allows for accurate estimation of higher frequency contributions to the response. However, A3 and A3+A1 lead to a
comparable level of overestimation of the signal amplitude due to the inability of the model to overcome challenges with low
frequency noise amplification using acceleration-only measurements. In contrast, the inclusion of a strain channel in A3+S8 leads
to substantial improvements in capturing the strain amplitude across channels, in exchange for reduced accuracy in the estimation
of non-governing frequencies falling between natural frequencies of the system. Compared to A3, the single strain channel in A3+S8
adds information on not only the high frequency response (such as the second modal response) in the tower section closer to the
mudline, but also the amplitude of strains, thereby overcoming low frequency error.

The quality of the strain estimate for different sensor configurations may be compared using fatigue assessment measures.
In this work, the S-N diagram, also referred to as the Woehler curve, is constructed using a rainflow counting algorithm which
translates time series data into the number of cycles counted within defined stress ranges [54,59]. The S-N diagram of Fig. 15
shows the stress cycle counts of the true signal and the predicted signals at Str. 6, where the highest bending moments in the
tower-foundation system are expected to occur, across four records from the production state. From this illustration, it is clear that
configurations A3 and A3+A1 lead to an overestimation of the stress magnitude for lower cycle counts, which corresponds to low
frequency oscillations. For the A3 case, the contribution of low-magnitude high frequency oscillations to fatigue stress accumulation
is completely miscalculated. Fig. 15 affirms the A3+S8 configuration provides the best estimate of the stress-cycle curve. This result
is further reflected in the damage equivalent load (DEL) measures of fatigue stress accumulation, where the deviation of the DEL of
the prediction from that of the true strain response is 106.89% for A3, 98.43% for A3+A1, and 16.04% for A3+S8. In other words,
the fatigue estimate from the acceleration-only configurations A3 and A3+A1 is on the order of double that of the true fatigue
damage accumulation.

4.4. Sensitivity to model uncertainty

Previously, in Section 2.3.2, we showed that the mathematical construction of the GPLFM attributes noise sources to the unknown
input. This section evaluates this effect using in-situ validation data, by imposing controlled model error in the mechanical model
and evaluating the consequences on the strain estimation. In this case study, as well as in general for offshore wind turbines,
one significant source of uncertainty is in properties of the foundation stiffness, which impacts mode shapes corresponding to the
mechanical model. Whereas the stiffness profile 𝑘𝑒𝑓𝑓 (𝑧) is derived from soil characterization data which is customarily collected at
wind farm sites, the subsoil strain data used to tune the magnitude of the profile 𝛾 in [57] is generally not available. Without such
data, there is the potential for substantial error in the assumed soil stiffness magnitude. We examine both extremes of introducing
error in the soil stiffness scaling 𝛾 by an order of magnitude above and below the baseline stiffness magnitude, with all other FE
model parameters remaining constant. The following model variants representing different levels of model fidelity are compared:

• 𝛾 = 0.078: limiting case of underestimating the soil stiffness scaling by an order of magnitude
• 𝛾 = 0.78: baseline case of soil stiffness scaling to reflect the best fit to true in-situ conditions, determined in [57]
• 𝛾 = 7.8: limiting case of overestimating the soil stiffness scaling by an order of magnitude

The modal parameters of the three model variants are shown in Fig. 16 and reported in Table 2, where the relative frequency
error 𝑒𝑓 and MAC values are with respect to the modal parameters identified through OMA. It is observed that the lowest two mode
shapes in each of the FA and SS directions, which dominate the OWT response, are relatively unaffected by scale differences in the
soil stiffness profile. A larger effect is observed in the third SS mode. In terms of both 𝑒𝑓 and MAC, the error is greater in the case
of underestimation of 𝛾 than in the case of overestimation.

Fig. 17 shows the strain estimate obtained with each model variant using the acceleration-only measurement setup. The difference
in the accuracy of the strain estimate varies with the depth of the strain location: there is comparatively lower change in the
strain estimate at higher elevations (Str. 6 and 7) than at the lowest elevation (Str. 2), where underestimation of stiffness leads
to underdamped response and the overestimation of stiffness leads to overdamped response. The difference is non-uniform across
channels due to the fact that there is significantly lower stiffness at the upper section of the profile, where 𝑘𝑒𝑓𝑓 (𝑧) is on the order
of 107 N/m3, than at lower sections of the profile, where 𝑘𝑒𝑓𝑓 (𝑧) is on the order of 1011 N/m3 (see Fig. 4). The scale difference
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Fig. 14. Strain estimation with different sensor configurations for record P3.

Fig. 15. S-N diagram with different sensor configurations across 4 samples in production state.

by the model error, the shape of the distribution of power over frequencies remains relatively unchanged up to the second natural
frequency across all channels.

The difference in prediction by the model variants is more apparent in the modal force estimate, shown in Fig. 18. Here, the
discrepancy in the natural frequencies between the model variants is illustrated with dashed lines in the frequency spectrum. What
is particularly notable is the dip in the frequency spectrum at the 𝑗th natural frequency for the 𝑗th modal force, where the natural
frequencies differ for each model variant. These dips reflect adjustments to the frequency contributions of the input by the GPLFM
in order to compensate for error between the dominant frequencies of the measured response with that of the predicted response
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Fig. 16. Modal parameters of model variants.

Table 2
Modal parameters from each model variant, where accuracy metrics 𝑒𝑓 and MAC are computed with respect to the modal parameters
identified by OMA.
Mode 𝛾 = 0.078 𝛾 = 0.78 𝛾 = 7.8

𝑓𝑓𝑒𝑚 [Hz] 𝑒𝑓 [%] MAC 𝑓𝑓𝑒𝑚 [Hz] 𝑒𝑓 [%] MAC 𝑓𝑓𝑒𝑚 𝑒𝑓 [%] MAC

FA1 0.279 −5.82 0.999 0.296 0.01 0.999 0.307 3.55 0.999
SS1 0.269 6.70 0.990 0.289 −0.12 0.996 0.300 3.74 0.998
FA2 1.636 −12.47 0.991 1.874 0.23 0.999 2.041 9.18 0.994
SS2 1.665 −11.66 0.886 1.883 −0.09 0.939 2.025 7.44 0.964
SS3 4.486 −1.69 0.987 5.193 13.79 0.743 5.745 25.88 0.310

Table 3
Damage equivalent load (DEL) values corresponding to Str. 6 of each model variant for two sensor configurations,
A1+A2+A3 and A3+S8. The relative error is computed with respect to the true value of DEL.

A1+A2+A3 A3+S8

DEL Error [%] DEL Error [%]

True 2.946 – 2.946
Gamma = 0.078 7.131 142.1% 4.295 45.8%
Gamma = 0.78 6.652 125.8% 3.418 16.0%
Gamma = 7.8 4.994 69.5% 2.227 −24.4%

by the perturbed model. For instance, where the GPLFM expects greater presence of the perturbed second natural frequency of the
model than what exists in the measurement data, the contribution of that frequency in the corresponding input estimate is reduced
accordingly. In this manner, error in modal properties is accounted for through the stochastic input estimate, thus retaining the
relatively robust accuracy observed in the strain estimate.

To evaluate the effect of model fidelity as a function of the instrumentation scheme, Fig. 19 shows the S-N diagram corresponding
to four records from the production state, produced from the estimate of Str. 6, for two sensor configurations: the original scheme
of using all three acceleration measurement channels (A1+A2+A3) and the best performing scheme from the investigation in
Section 4.3 (A3+S8). For both instrumentation schemes, the three model variants result in relatively comparable stress-cycle curves,
indicating relative invariance to perturbation in the model. As before, A3+S8 provides the most robust reproduction of the true
stress-cycle curve while the acceleration-only scheme in A1+A2+A3 universally overestimates the stress magnitude of low-frequency
oscillations. The improvement gained from the use of A3+S8 over the acceleration-only scheme is reflected in the DEL values
reported in Table 3, where A3+S8 results in both lower error and lower variance in the DEL estimate across levels of model
perturbation.

5. Conclusions

This work is among the first studies to provide in-situ validation of the GPLFM as a virtual sensing technique. In contrast
to other Kalman filter-based techniques to virtual sensing, the GPLFM characterizes the unknown input as a Gaussian process
which can describe a greater breadth of time-varying behavior than the standard assumption of white noise input. The joint
posterior distribution of latent inputs and states is determined by Gaussian process regression of acceleration measurements, which
is performed sequentially in augmented state-space using Kalman filtering/RTS smoothing. Rather than using heuristic or ad hoc
tuning procedures, the process noise covariance in the dynamics model is solved for in a data-driven fashion, in which the structure
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Fig. 17. Strain estimation for varying levels of model fidelity using all acceleration measurement channels for record P2.

Fig. 18. Modal force estimation for varying levels of model fidelity using all acceleration measurement channels for record P2. The natural frequencies of each
model variant are noted by dashed lines in the frequency spectrum.

of the GPLFM is utilized to define the joint relationship between input and state variables and the kernel hyperparameters governing
the process noise covariance matrix are fit to acceleration data prior to filtering. Compared to other Kalman filter-based techniques
for joint input-state estimation, the GPLFM has several notable theoretical advantages, in enforcing a characterization of covariance
between inputs and states consistent with stochastic differential equations theory, as well as practical advantages, in providing an
efficient and descriptive parameterization of statistical model parameters.
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Fig. 19. S-N diagram for varying levels of model fidelity for records from the production state, for sensor configuration A1+A2+A3 on the left and sensor
configuration A3+S8 on the right.

In this contribution, the GPLFM is applied to the fatigue monitoring of offshore wind turbines. The validation data is taken from
a monitoring campaign of an operating nearshore wind turbine from the Westermeerwind Park in the Netherlands, where six strain
gauge rings embedded along the profile of the monopile foundation provide subsoil strain measurements for validation. This dataset
presents the opportunity to evaluate the GPLFM for its ability to address the challenge in fatigue monitoring of OWTs with high
model uncertainty in the soil-structure system of the monopile foundation. First using acceleration-only data from an offshore wind
turbine, the GPLFM implemented with a Matérn covariance kernel is able to reconstruct the frequency spectrum of the subsoil strain
response with excellent accuracy across operating conditions of the OWT. In the time domain, overestimation of the strain amplitude
is attributed to a small level of low frequency noise amplification. In order to test the sensitivity of the GPLFM to the level of model
fidelity, perturbation to the scale of the foundation stiffness model is introduced. It is demonstrated that with induced errors in
the natural frequencies and mode shapes of the mechanical model, the strain estimate by the GPLFM remains relatively insensitive,
particularly at depths of interest near the mudline where the highest bending moments are expected to occur. This result illustrates
that robustness in the strain estimate is attained by attributing sources of error in modal properties to the stochastic input estimate.
Moreover, it provides evidence that the input estimate may be used as a type of heuristic indicator of error in modal properties,
particularly of error in damping levels in the run-up and production states of OWTs. Through a study of the influence of the sensor
configuration on the performance of the GPLFM, it is evident that estimation bias may be systematically accounted for through
the inclusion of a strain channel in the measurement data. Not only does the strain data aid in correcting the predicted signal
amplitude along all depths of the foundation, but it may be used to supply important information on the quasi-static behavior
of the strain response which cannot be captured by high-frequency acceleration measurements alone [4,5]. The best performing
instrumentation scheme minimally consists of a single acceleration channel and single strain channel, where the GPLFM achieves a
relative error of 16% in the DEL, mean correlation coefficient of 0.968, and mean relative error of 2.28% in the estimated subsoil
strain time series across records from the production state of the OWT. The use of a heterogeneous dataset consisting of acceleration
and strain measurements is deemed sufficient for curtailing model uncertainty, allowing the GPLFM to attain strong robustness and
transferability properties in estimating the subsoil strain response to variable operational and environmental loads.

We believe it is possible to further improve the performance of the GPLFM for subsoil strain estimation by two measures:
deliberate estimation of quasi-static response, and explicit consideration of the dynamic evolution of modal properties of the
structure. Regarding the former, other than by inclusion of strain data, low frequency error in the predicted strains can be mitigated
by estimating measurement noise covariance with greater accuracy or by utilizing accelerometers with a lower noise baseline.
Regarding the latter, this work demonstrates that the benefits of the GPLFM in providing a more flexible characterization of the
input in the context of filtering are inhibited when this characterization is not extended to the context of modal identification. In
other words, traditional OMA techniques, whose formulation relies on the assumption of white noise input, are not appropriate
for the modal identification of offshore wind turbines in the run-up and production states, where environmental loads and rotor
blade dynamics introduce harmonic components to the excitation [49]. Therefore, applications of the GPLFM for virtual sensing
warrants additional developments to online modal identification techniques which allow for real-time modal parameter estimation
accounting for non-white excitation in the system. To this end, the authors recommend further evaluation of proposed adjustments
and alternatives to damping identification techniques for LTP systems which are reviewed in [49]. The reader is also referred to [34]
where modal identification is treated with a Bayesian approach, in which inference of system parameters such as mass, stiffness,
and damping is performed jointly with the estimation of the unknown ambient excitation by means of the GPLFM. This approach
enables posterior state inference and modal identification to be performed jointly with a fully cohesive model of the input and may
be applied across a greater range of contexts compared to traditional OMA methods.
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There is potential for further improvements to the strain estimation through model choices in the GPLFM. In particular, a major
ssumption of uncorrelated modal forces may be overcome by explicitly inferring a covariance parameter between modal force
equences in the state-space matrices of Eq. (26). Secondly, model uncertainty could be addressed through the definition of a process
oise variance parameter on response states (displacements and velocities) in the spectral density of the white noise term of the
PLFM. These additional model parameters, together with the hyperparameters of the GP kernel, constitute an augmented vector
f hyperparameters which may be inferred with a maximum likelihood estimation approach. In theory, these improvements would
ead to more accurately estimated statistics of the latent states, though at the cost of a higher dimensional optimization problem.
inally, there are opportunities to investigate the role of the choice of GP covariance kernel in the GPLFM for response data which is
riven by inputs of varying degrees of periodicity and temporal correlation. Beyond model choices, the results of this work promote
urther studies on efficient and practical sensor placement schemes in monopile-based offshore wind turbines, to select the most
nformative data for the purpose of virtual sensing-based fatigue monitoring.
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Appendix

A.1. Effect of model error on an illustrative example

A synthetic model is used to illustrate the quality of estimation by the GPLFM when model error is introduced, as well as to
show the efficacy of the measurement noise covariance tuning procedure described in Section 2.3.2. The synthetic model is a 10-dof
vertical mass–spring system with fixed-free end conditions representing a cantilever structure. The system is defined by ten point
masses of 𝑚 = 200 kg and a stiffness of 𝑘 = 5×103 N∕m. Degrees of freedom are horizontal and aligned with the direction of forcing.
Mass proportional damping with modal damping ratios of 𝜉𝑗 = 0.02 for all degrees of freedom is assumed. An artificial input is
defined as the combination of a sinusoidal force with an amplitude of 100 N and a frequency of 0.2 Hz, applied at the top (10th)
level of the model, and a Gaussian process with a Matérn 𝜈 = 5∕2 kernel with parameters 𝛼 = 50, 𝑙𝑠 = 1, applied to all 10 levels of
the model. In this example, the number of degrees of freedom are 𝑛u = 10 and the number of forces are 𝑛p = 2, with the locations
of the forces denoted by the selection matrix 𝐒p ∈ R𝑛u×𝑛p . The synthetic system is constructed to loosely represent environmental
and operational load conditions on a wind turbine support structure, where the sinusoidal force represents the harmonic frequency
of vibration induced by the rotor motion of the turbine and the GP force represents ambient wind excitation distributed along the
height of the tower. Fig. A.20 shows the artificial input acting at the top level of the structure, where the harmonic frequency at
0.2 Hz is clearly visible in the frequency spectrum. The ensemble distribution of the input, shown by the histogram in the top right
plot, illustrates how the input is non-Gaussian due to the contribution of the sinusoidal force.

To set up the filtering problem, the ground truth response of the cantilever structure to the artificial load is simulated using the
Newmark average acceleration method [60] for numerical integration with a time step of 0.001 s. The simulation model used for
generating the ground truth is a full-order model of the system, whereas the prediction model is a modally reduced-order formulation
of the GPLFM of the form in Eq. (28) retaining the first 𝑛m = 3 modes of the system, such that modal states 𝐱(𝑡) ∈ R2𝑛m , modal
forces 𝐟 (𝑡) ∈ R𝑛m , and its higher derivatives up to order 𝛽 constitute the augmented state vector 𝐳𝑎(𝑡). For more details on notation,
see Section 2. The measurement data consists of the acceleration response at all 10 degrees of freedom, observed at a sampling
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Fig. A.20. The ground truth input applied to the top level of the 10-dof cantilever structure, shown in terms of the time series (top left), histogram of realized
values (top right), and frequency spectrum (bottom).

frequency of 100 Hz and colored with white noise with covariance 𝐑 = 𝜎𝑅𝐈, where 𝜎𝑅 = 10−2. It is assumed that no process noise
exists in the system, such that response states are known exactly, and that measurement noise is known to be independent across
channels of measurement data with variance 𝜎𝑅.

Numerical experiments are conducted to examine the effect of model error. In each experiment, filtering is performed without
perturbation, where the prediction model is directly a reduced-order formulation of the simulation model which generated the
ground truth. Additionally, filtering is performed where the prediction model is a reduced-order model with perturbation in one of
its properties, in order to illustrate the ability of the GPLFM to accommodate for misidentified model parameters in its prediction of
latent states. Each version of the prediction model is fit independently using the method of GP hyperparameter inference described
in Section 2.3.1; in the following studies, we assess the extent to which the GP hyperparameters corresponding to the Matérn 𝜈 = 5∕2
kernel for the prediction model with perturbation differ from that without perturbation. In this synthetic example, the true value
of the latent states over time, including displacements, velocities, and modal components of the force, are available for comparison
with the prediction by the GPLFM.

Error in modal damping ratios

The prediction model without perturbation assumes the modal damping ratios 𝜉𝑗 are known exactly to be equal to 0.02. Two cases
of model perturbation are considered, where (a) the first three modal damping ratios are underestimated by an order of magnitude
to be 𝜉𝑗 = 0.002 and (b) the first three modal damping ratios are overestimated by an order of magnitude to be 𝜉𝑗 = 0.2.

Fig. A.21 shows the estimated displacement, velocity, and acceleration response at level 5 of the 10-dof cantilever model for
each of the prediction models. We observe good congruence between the true response and predicted response in the time domain
for all models, with some error in the predicted displacement time series. Due to the use of model order reduction to 3 modes in
the prediction models, the frequency content of the estimate loses accuracy for frequencies above 0.6 Hz, beyond the third natural
frequency of the system. In general, there is negligible effect of error in the modal damping ratio on the response states estimated
by the GPLFM. This can in part be attributed to compensation in the modal force estimate, shown in Fig. A.22, where the estimated
first, second, and third modal forces are compared to the modal components of the true force. In the frequency spectrum, a visible
drop in the frequency about the 𝑗th natural frequency of the system is observed in the 𝑗th modal force estimate by the model with
underestimated damping; similarly, a visible inflation of frequency is observed for the model with overestimated damping. The
effect illustrates how the input estimate is utilized to account for mismatch between the system model and the measured response:
in the case of underdamping, where greater frequency content about the natural frequencies would be expected according to the
system model than what is present in the measurement data, the input estimate is adjusted such that the contribution of those
particular frequencies from the input are reduced. This experiment lends evidence that Bayesian joint input-state estimators have
an advantage over state-only estimators in that the inclusion of input estimation can mitigate certain sources of model error and
aid the primary objective of achieving accurate state estimation. It is notable that the presence of the harmonic frequency between
the first and second natural frequencies of the structure does not interfere with the accuracy of either the response estimate or the
input estimate.
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Fig. A.21. Estimates by the GPLFM of displacement (top row), velocity (center row), and acceleration (bottom row) states at level 5 of the 10-dof cantilever
model with no perturbation (red), underestimated modal damping (blue), and overestimated modal damping (cyan), compared to the true response (black).

Fig. A.22. Estimates by the GPLFM of the first three modal forces (top, center, bottom rows respectively) using the 10-dof cantilever model with no perturbation
(red), underestimated modal damping (blue), and overestimated modal damping (cyan), compared to the true modal forces (black).
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Fig. A.23. Estimates by the GPLFM of displacement (top row), velocity (center row), and acceleration (bottom row) states at level 5 of the 10-dof cantilever
model with known measurement noise variance (red), underestimated measurement noise variance (blue), and overestimated measurement noise variance (cyan),
compared to the true response (black).

Error in the measurement noise variance

In the prediction model without perturbation, the variance of measurement noise in each channel is known to be 𝜎𝑅 = 10−2. Two
cases of model perturbation are considered, where (a) the measurement noise variance is overestimated by 3 orders of magnitude to
be 𝜎𝑅 = 101 and (b) the measurement noise variance is underestimated by 3 orders of magnitude to be 𝜎𝑅 = 10−5. In this experiment,
erroneous values of the measurement noise covariance matrix are provided as input to the Kalman filter with no tuning performed.

In Fig. A.23, it is observed that while high accuracy is retained in the predicted velocity and acceleration response, the
introduction of measurement noise results in reduced accuracy in the estimation of low frequency components of the response
states, to the greatest degree in the displacement response. This same low frequency drift is observed in the modal force estimate
in Fig. A.24, with a larger effect in the second and third modal forces. Measurement noise affects the frequency content of the
measurement data by introducing greater contributions of higher frequencies. In the case where measurement noise variance is
overestimated, the predicted signal has reduced contributions of high frequencies which are expected by the prediction model but
not present in the measured signal. In the case where measurement noise variance is underestimated, the predicted signal captures
this presence of high frequencies in the measured signal; however, it is countered by inflation of low frequencies which the prediction
model expects to observe in the absence of significant measurement noise.

An additional experiment is conducted to demonstrate the efficacy of the measurement noise covariance tuning procedure in
Section 2.3.2, which refines the measurement noise covariance matrix 𝐑 in the prediction model using the residual sequence between
the predicted and measured acceleration response over 𝑘 iterations. It is observed that the sequence {𝐑𝑘} converges to the true
value of 𝐑 over a number of iterations on the order of 𝑘 = 3. While this convergence is observed regardless of the initial value,
this experiment presents the case where the measurement noise covariance is initialized at 𝐑0 = 𝜎𝑅𝐈, 𝜎𝑅 = 10−5. Using the tuning
procedure, prediction error is effectively eliminated once the order of magnitude of the measurement noise variance is correctly
identified, as shown in the response estimation in Fig. A.25 and modal force estimation in Fig. A.26.

Error in the modal frequencies and mode shapes

The prediction model without perturbation assumes modal properties are known exactly, where the first three natural frequencies
of the system are 0.12 Hz, 0.35 Hz, and 0.58 Hz. One case of model perturbation is considered, where the prediction model has
reduced stiffness of 0.5𝑘 and a concentrated mass of 2000 kg at the top of the tower, thus having modal properties which deviate
from that of the simulation model. The first three natural frequencies of the perturbed model are 0.05 Hz, 0.19 Hz, and 0.36 Hz.
The mode shapes of the two prediction models are shown in Fig. A.27.

In Fig. A.28, it is observed that even with error in the modal properties of the prediction model, the estimation of response states
is highly accurate with respect to the true response and on par with the estimate using the error-free prediction model. Fig. A.29
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Fig. A.24. Estimates by the GPLFM of the first three modal forces (top, center, bottom rows respectively) using the 10-dof cantilever model with known
measurement noise variance (red), underestimated measurement noise variance (blue), and overestimated measurement noise variance (cyan), compared to the
true modal forces (black).

Fig. A.25. Estimates by the GPLFM of displacement (top row), velocity (center row), and acceleration (bottom row) states at level 5 of the 10-dof cantilever
model with known measurement noise variance (red) and with measurement noise covariance tuning using the procedure in Section 2.3.2 (blue), compared to
the true response (black).
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Fig. A.26. Estimates by the GPLFM of the first three modal forces (top, center, bottom rows respectively) using the 10-dof cantilever model with known
measurement noise variance (red) and with measurement noise covariance tuning using the procedure in Section 2.3.2 (blue), compared to the true response
(black).

Fig. A.27. First three mode shapes of the 10-dof cantilever model without perturbation (black) and with perturbation (blue) from the modal properties of the
simulation model.

shows that this high accuracy in the response states is attained by a corresponding adjustment to the modal force estimate. In
particular, we draw attention to the frequency content of the modal forces about the natural frequencies of both the perturbed and
unperturbed prediction models. In the first modal force, the frequency contribution of the first natural frequency of the perturbed
model is suppressed, while that of the unperturbed model is inflated. A similar pattern is observed in the second and third modal
forces with respect to the second and third natural frequencies, respectively. Even in the second modal force, where the second
natural frequency of the unperturbed model nearly coincides with the nonstructural harmonic frequency, the power of frequency
in the vicinity of the structural frequency is reduced. This effect illustrates that the input estimate accounts for error in modal
properties of the system by identifying frequencies which are dominant in the measurement data as well as frequencies which are
less prevalent in the measurement data than what would be expected, such as frequency bands about the natural frequencies of the
prediction model.
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Fig. A.28. Estimates by the GPLFM of displacement (top row), velocity (center row), and acceleration (bottom row) states at level 5 of the 10-dof cantilever
model with no perturbation (red) and with perturbation from the true simulation model (blue), compared to the true response (black).

Fig. A.29. Estimates by the GPLFM of the first three modal forces (top, center, bottom rows respectively) using the 10-dof cantilever model with no perturbation
(red) and with perturbation from the true simulation model (blue), compared to the true response (black).
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Fig. A.30. Percent difference in the GPLFM hyperparameters corresponding to a Matérn kernel (𝜈 = 5/2) with respect to the value of hyperparameters computed
with the unperturbed model. The left plot shows percent change in the two hyperparameters from underestimation and overestimation of the first three modal
damping ratios. The right plot shows percent change in the two hyperparameters from underestimation and overestimation of the measurement noise variance.

Changes in GP kernel hyperparameters in response to model error

While this interchange between the state estimate and input estimate is characteristic of the general class of Bayesian joint
input-state estimators, the GPLFM can provide a concise parametric description of how the model adjusts to account for mismatch
with measured data. For the prediction model both with and without perturbation, the GPLFM is fit by means of the parameter
inference procedure in Section 2.3.1, where the parameters in this instance are the GP kernel hyperparameters, 𝜃 = [𝛼, 𝑙𝑠]. Fig. A.30
shows the percent change in the parameters 𝜃 fit for the perturbed model with respect to the parameters fit for the error-free
model for each of the conducted experiments. When error in the modal damping ratio is introduced, a large change in the variance
parameter 𝛼 is observed - a nearly 100% increase in 𝛼 in the case of overestimated damping and a decrease of a similar magnitude
in the case of underestimated damping. In contrast, very small change is observed in the length scale parameter 𝑙𝑠. The opposite
is the case in the experiment where error in the mode shapes and natural frequencies is introduced, where large change in the
length scale parameter 𝑙𝑠 and negligible change in the variance parameter 𝛼 are observed. The mechanism by which error in modal
properties are compensated for in the GPLFM is reflected in the change in GP kernel hyperparameters, where error in damping
levels primarily affects the amplitude of the latent states, measured by 𝛼, and error in the natural frequencies primarily affects
the frequency content of the latent states, measured by 𝑙𝑠. When error in the measurement noise variance is introduced, there is
noticeably greater change in 𝑙𝑠 compared to 𝛼, reflecting the influence of measurement noise on frequency content; however, in
comparison to the change in parameters observed from errors in the modal properties of the system, the adjustment is considerably
smaller or even negligible. This demonstrates that while the GP kernel hyperparameters of the GPLFM are the statistical model
parameters which are most sensitive to error in modal properties such as modal damping ratios, natural frequencies, and mode
shapes, these parameters are not sensitive to other sources of error, such as error in qualities of the measurement noise. Rather
than use the GP kernel hyperparameter tuning process, error from misidentified measurement noise covariance is more effectively
addressed by the aforementioned measurement noise covariance tuning process.

A.2. Transformation of lateral displacements to axial strain

From elastic beam theory, the lateral deformation of a 2D beam element 𝑣 is represented with a third order polynomial of the
form:

𝑣(𝜉) = 𝑎0 + 𝑎1𝜉 + 𝑎2𝜉
2 + 𝑎3𝜉

3 (A.1)

𝜉 = 𝑥
𝐿 is the normalized axial distance along length 𝐿 of the element. The unknown coefficients 𝑎0, 𝑎1, 𝑎2, 𝑎3 can be solved for by

enforcing boundary conditions which relate the deformation to the vector of degrees of freedom of the element 𝐝e, one translational
and one rotational degree of freedom at each end:

𝑣(𝜉) =
[

𝑁1(𝜉) 𝑁2(𝜉) 𝑁3(𝜉) 𝑁4(𝜉)
]

⎡

⎢

⎢

⎢

⎢

⎣

𝑣1
𝜃1
𝑣2
𝜃2

⎤

⎥

⎥

⎥

⎥

⎦

= 𝐍e𝐝e (A.2)

The solution provides the element shape functions 𝐍e, which approximate the continuous spatial distribution of deformation
between finite element nodes. The derivations of shape functions for an Euler–Bernoulli beam element and Timoshenko beam
element are detailed in [50,61], respectively.

For small deformations, the axial displacement 𝑢 may be approximated by the rotational deformation 𝜃𝑧 and distance from the
element centroidal axis 𝑦 as:

𝑢 = −𝑦𝜃 (A.3)
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The axial strain 𝜀𝑥𝑥 is related to the rate of change of the axial displacement with respect to 𝑥, which is given as:

𝜀𝑥𝑥 = 𝜕𝑢
𝜕𝑥

= −𝑦
𝜕𝜃𝑧
𝜕𝑥

= −𝑦 𝜕2𝑣
𝜕𝑥2

(A.4)

Substituting the expression for 𝑣 from Eq. (A.2), Eq. (A.4) becomes:

𝜀𝑥𝑥 = −
𝑦
𝐿2

𝐍′′
e (𝜉)𝐝e = 𝐁e(𝜉)𝐝e (A.5)

where 𝐁e(𝜉) =
[

𝐵1(𝜉) 𝐵2(𝜉) 𝐵3(𝜉) 𝐵4(𝜉)
]

is the element strain matrix.

For a finite element model with a chain of 𝑛e identical elements and free end conditions, the global strain vector can be computed
as the matrix product 𝜀 = 𝐓𝐝, which is written in expanded form as follows:

⎡

⎢

⎢

⎢

⎢

⎣

𝜀𝑥𝑥(𝜉1)
𝜀𝑥𝑥(𝜉2)

⋮
𝜀𝑥𝑥(𝜉𝑛e )

⎤

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎣

𝐵1(𝜉1) 𝐵2(𝜉1) 𝐵3(𝜉1) 𝐵4(𝜉1)
𝐵1(𝜉2) 𝐵2(𝜉2) 𝐵3(𝜉2) 𝐵4(𝜉2)

⋱
𝐵1(𝜉𝑛e ) 𝐵2(𝜉𝑛e ) 𝐵3(𝜉𝑛e ) 𝐵4(𝜉𝑛e )

⎤

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑣1
𝜃1
𝑣2
𝜃2
⋮
𝑣𝑛e
𝜃𝑛e

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(A.6)

Each entry in the global strain vector provides the strain estimate at a distance 𝜉𝑖 along the 𝑖th element, for 𝑖 = 1,… , 𝑛e. If the
elements are non-identical, then each row of the global strain matrix 𝐓 corresponds to the strain functions of the 𝑖th element.

A.3. Kalman filtering and RTS smoothing equations

Given a discrete linear time-invariant state-space model of the form

𝐳𝑘 = 𝐅𝐳𝑘−1 + 𝐰𝑘−1 (A.7a)

𝐲𝑘 = 𝐇𝐳𝑘 + 𝐯𝑘 (A.7b)

where the state vector has a prior distribution 𝐳0 ∼ 𝑁(�̂�0|0,𝐏0|0) and the additive white Gaussian noise terms have covariances
E[𝐰𝑘𝐰T

𝑙 ] = 𝐐, E[𝐯𝑘𝐯T
𝑙 ] = 𝐑, and E[𝐰𝑘𝐯T

𝑙 ] = 𝟎.

Let 𝐳𝑝|𝑞 denote the state predicted at time step 𝑝 given all time steps 1 ∶ 𝑞. The Kalman filter of Algorithm 1 solves for the
posterior filtering distribution, where the mean and covariance in 𝐳𝑘|𝑘 ∼ 𝑁(�̂�𝑘|𝑘,𝐏𝑘|𝑘) is predicted from a ‘‘forward pass’’ through
time steps 𝑘 = 1,… , 𝑁 and updated at time steps where measurements are available [10]. The RTS smoother of Algorithm 2 solves for
the posterior smoothing distribution, where the predicted mean and covariance from the Kalman filter (denoted with superscript
‘‘-’’ for clarity) is updated with a fixed-interval ‘‘backward pass’’ through time steps 𝑘 = 𝑁 − 1,… , 1 [17]. The final distribution
𝐳𝑘|𝑁 ∼ 𝑁(�̂�𝑘|𝑁 ,𝐏𝑘|𝑁 ) constitutes the complete posterior distribution of the state given all measurements in a sequence of 𝑁 steps to
estimate. From this distribution, a posterior estimate of the measurement states may be recovered as 𝐲𝑘|𝑁 ∼ 𝑁(�̂�𝑘|𝑁 ,𝐏𝑦

𝑘|𝑁 ).

Algorithm 1 Kalman Filter
for 𝑘 = 1, ..., 𝑁 do

Filter prediction equations:
�̂�−𝑘|𝑘−1 = 𝐅�̂�𝑘−1|𝑘−1
𝐏−
𝑘|𝑘−1 = 𝐅𝐏𝑘−1|𝑘−1𝐅T +𝐐
if 𝐲𝑘 is observed then

Filter update equations:
𝐞𝑘 = 𝐲𝑘 −𝐇�̂�−𝑘|𝑘−1 ⊳ prediction error
𝐒𝑘 = 𝐇𝐏−

𝑘|𝑘−1𝐇
T + 𝐑

𝐊𝑘 = 𝐏−
𝑘|𝑘−1𝐇

T(𝐒𝑘)−1 ⊳ Kalman gain
�̂�𝑘|𝑘 = �̂�−𝑘|𝑘−1 −𝐊𝑘𝐞𝑘
𝐏𝑘|𝑘 = 𝐏−

𝑘|𝑘−1 −𝐊𝑘𝐇𝐏−
𝑘|𝑘−1

end if
end for
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Algorithm 2 Rauch–Tung–Striebel (RTS) Smoother
for 𝑘 = 𝑁 − 1, ..., 1 do

Smoothing update equations:

𝐆𝑘 = 𝐏𝑘|𝑘𝐅T
(

𝐏−
𝑘+1|𝑘

)−1

�̂�𝑘|𝑁 = �̂�𝑘|𝑘 +𝐆𝑘

(

�̂�𝑘+1|𝑁 − �̂�−𝑘+1|𝑘
)

𝐏𝑘|𝑁 = 𝐏𝑘|𝑘 +𝐆𝑘

(

𝐏𝑘+1|𝑁 − 𝐏−
𝑘+1|𝑘

)

𝐆T
𝑘

Moments of measurement states 𝐲:
�̂�𝑘|𝑁 = 𝐇�̂�𝑘|𝑁
𝐏𝑦
𝑘|𝑁 = 𝐇𝐏𝑘|𝑁𝐇T + 𝐑

end for

A.4. SSM for Matérn kernel

The Matérn family is a class of covariance functions of the form

𝜅(𝜏; 𝜈, 𝛼, 𝑙𝑠) = 𝛼2 2
(1−𝜈)

Γ (𝜈)

(
√

2𝜈
𝑙𝑠

𝜏

)𝜈

𝐾𝜈

(
√

2𝜈
𝑙𝑠

𝜏

)

(A.8)

where Γ (𝜈) is the Gamma function and 𝐾𝜈 is the modified Bessel function of the second kind. The Matérn kernel defines the covariance
between two points 𝑡, 𝑡′ of a process to be a function of only the distance 𝜏 = 𝑡′ − 𝑡 between them, resulting in stationary stochastic
processes. The hyperparameters influence qualities of the covariance relationship derived from the distance: the vertical length scale
𝛼 controls the magnitude of variance at 𝜏 = 0, the horizontal length scale 𝑙𝑠 controls the distance 𝜏 over which covariance diminishes
to zero, and the parameter 𝜈 controls the smoothness of the resulting process. Note that in its limits, a Matérn kernel with 𝑙𝑠 → 0
obtains the Dirac delta function for the covariance, which corresponds to a white noise kernel, and 𝜈 → ∞ obtains the squared
exponential covariance function corresponding to infinitely differentiable processes [32,39].

This section presents the form of the Matérn kernel with smoothing parameter 𝜈 = 𝑝 + 1∕2 = 5∕2, where 𝑝 = 2, leading to
processes which are twice differentiable. The associated hyperparameters are then 𝜃 = [𝛼, 𝑙𝑠]. The covariance function becomes:

𝜅5∕2(𝜏; 𝛼, 𝑙𝑠) = 𝛼2
(

1 +

√

5
𝑙𝑠

𝜏 + 5𝜏2

3𝑙2𝑠

)

exp
(

−

√

5
𝑙𝑠

𝜏

)

(A.9)

A Gaussian process ℎ(𝑡) ∼ 𝐺𝑃 (0, 𝜅5∕2(𝜏)) may be expressed as a third-order linear stochastic differential equation of the form:

𝑑3ℎ(𝑡)
𝑑𝑡3

+ 3𝜆
𝑑2ℎ(𝑡)
𝑑𝑡2

+ 3𝜆2
𝑑ℎ(𝑡)
𝑑𝑡

+ 𝜆3ℎ(𝑡) = 𝑤(𝑡) (A.10)

where 𝜆 =
√

5∕𝑙𝑠. The system is driven by white noise with spectral density:

𝑞𝑤 = 𝑆𝑤(𝜔) =
400

√

5𝛼2

3𝑙5𝑠
(A.11)

Consequently, we can use the form of the Matérn kernel to derive the spectral density of ℎ(𝑡) as 𝑆ℎ(𝜔) = 𝑞𝑤(𝜆2 + 𝜔2)−(𝑝+1).
The companion form of (A.10) gives rise to the state-space model of process ℎ(𝑡), with the continuous-time matrices [23]:

𝐅𝑐 =
⎡

⎢

⎢

⎣

0 1 0
0 0 1

−𝜆3 −3𝜆2 −3𝜆

⎤

⎥

⎥

⎦

, 𝐋𝑐 =
⎡

⎢

⎢

⎣

0
0
1

⎤

⎥

⎥

⎦

, 𝐇𝑐 =
[

1 0 0
]

(A.12)

.5. Hellinger distance

The Hellinger distance is a type of f-divergence which integrates the error between two probability densities 𝑝(𝑥) and 𝑞(𝑥) as
ollows:

𝐻2(𝑝, 𝑞) = 1
2 ∫

(

√

𝑝(𝑥) −
√

𝑞(𝑥)
)2

𝑑𝑥 = 1 − ∫
√

𝑝(𝑥) 𝑞(𝑥) 𝑑𝑥 (A.13)

In the discrete case, the Hellinger distance between the probability distributions 𝑝 = {𝑝1,… , 𝑝𝑚} and 𝑞 = {𝑞1,… , 𝑞𝑚} may be
computed as a Riemann sum over 𝑚 subdivisions:

𝐻(𝑝, 𝑞) = 1 −
𝑚
∑

√

𝑝𝑖 𝑞𝑖 (A.14)
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A.6. Sensor specifications

The instrumentation scheme of W27 wind turbine considered in the present study consists of the following sensor types:

• Strain gauge XY101-3/350: cross strain gauge with two grids in the 0◦ and 90◦ directions, with a resistance of 350 Ohm and
active gauge factor of 2.01. From stability tests conducted using a Quantum MX1615B amplifier, the strain gauge is estimated
to have an accuracy of approximately 3%.

• Accelerometer AAA323-001: accelerometers with an output of ±5VDC. The bidirectional accelerometers with a grid of 0◦ and
90◦ have a range of ±2 g and the unidirectional accelerometer has a range of ±1 g.

• MGCPlus data acquisition system (DAS), which utilizes the HBM Catman data acquisition software to retrieve data at a sampling
rate of 50 Hz. A Bessel low-pass filter at 5 Hz is automatically applied as an anti-aliasing feature.
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