

Identification of walkable space in a voxel model, derived from a point cloud and its corresponding trajectory

CGI ŤUDelft Bart Staats P5 July 5th 2017

In collaboration with

Thesis + paper

AUTOMATIC GENERATION OF INDOOR NAVIGABLE SPACE USING A POINT CLOUD AND ITS SCANNER TRAJECTORY

B. R. Staats^a, A. A. Diakite^b, R. L. Voûte^{c,d}, S. Zlatanova^{b,*}

^a Master of Science Geomatics, Faculty of Architecture and the Built Environment, TU Delft, The Netherlands – b.r.staats@student.tudelft.nl ^b3D Geo-Informatie, Faculty of Architecture and the Built Environment, TU Delft, The Netherlands - (a.clinkite, s.zlatanova)@tudelft.nl ^c Department of Urbanism, Faculty of Architecture and the Built Environment, TU Delft, The Netherlands - r.voute@tudelft.nl ^d CGI Nederland BV, The Netherlands - robert.voute@gic.com

KEY WORDS: Navigation space, MLS, Floorplan, Indoor, Trajectory, Voxel, Dynamic objects, 3D laser scanning

ABSTRACT:

Automatic generation of indoor navigable models is mostly based on 2D floor plans. However, in many cases the floor plans are out of due. Buildings are not always built according to their blue prints, interiors might change after a few years because of modified walls and doors, and furniture may be repositioned to the user's preferences. Therefore, new approaches for the quick recording of indoor environments should be investigated. This paper concentrates on laser scanning with a Mobile Laser Scanner (MLS) device. The MLS device stores a point cloud and its trajectory. If the MLS device is operated by a human, the trajectory contains information which can be used to distinguish different surfaces. In this paper a method is presented for the identification of walkable surfaces based on the analysis of the point cloud and the trajectory of the MLS device is operated by a human, the trajectory contains information which floor regions by the use of a region growing process. By identifying dynamic objects, doors and furniture, these floor regions can be molified so that cach region represents a specific navigable space can be identified for any type of building even if the interior is scanned during business hours. Moons (1997)

1. INTRODUCTION

Navigation from a room inside a building to a room inside another building across the street consists of three parts: a first indoor part in the building where you start your journey, an outdoor part in a second indoor part in the destination building (?). In the outdoor environment, a navieation aid is well inmelemented and used in all

according to their blue prints, interiors might change after a few years by modification of walks and doors and furniture may be repositioned to the users preferences. Therefore, new approaches for the efficient 3D recording of indoor environments should be investigated. This paper concentrates on the automatic generation of indoor navigable space for pedestrians based on laser scanning with a Mobile Laser Scanner (ML3) device. These de-

Thesis + paper

Content

- 1. Problem statement
- 2. Research question
- 3. Method
- 4. Implementation
- 5. Results
- 6. Conclusion

Navigation

CGI ŤUDelft

Indoor navigation system

- Indoor positioning system
- Indoor navigable map
- Specific destinations
- Appropriate guidance

Indoor navigation system

- Indoor positioning system
- Indoor navigable map
- Specific destinations
- Appropriate guidance

Floor plans

- A lot of research
- Floor plans are out of date
 - Not build according to blueprints
 - Interior changing over time (walls, doors)
 - Furniture missing
 - Connection between maps difficult

Point cloud

- A lot of research
- Methods:
 - Histogram, RANSAC and more
- Limitations
 - Manhattan world assumption
 - Only horizontal surfaces
- Need for a new method!

Problem statement Research question Method Implementation Results Conclusion 11

Research question

Which indoor walkable space can be identified from a voxelized point cloud using the trajectory of a mobile laser scanner?

CGI ŤUDelft

Problem statement

Research question Method Implementation Results Conclusion 18

CGI ŤUDelft

Problem statement Research of

CGI ŤUDelft

Problem statement

CGI ŤUDelft

Problem statement

Voxel model

CGI TUDelft

Voxel model

Voxel model

Trajectory information

CGI **ŤU**Delft

Connection information

26

Problem statement Results Research question Method Implementation Conclusion

CGI

CGI ŤUDelft

CGI ŤUDelft

Data capture

CGI ŤUDelft

Data capture

CGI ŤUDelft

Voxelization: Octree structure

22	232	233	
	230	231	З
20	2	1	5
0			1

CGI ŤUDelft

CGI
ŤUDelftVoxel size:
3,6 cmProblem statementResearch quest

Research question Method Implementation Results Conclusion 53

Problem statement Research question Method Implementation Results Conclusion

54

CGI TUDelft

Voxelization

CGI ŤUDelft

	Focus on dynamic objects	Scanning one time	Occusion no large impact	Detect dynamic objects one place	Beginning of process	No proble long drawn shadows
N-amount of voxels						
Different time frames						
Unique time stamps	-		-		-	-
Floor and voxels above						
Count voxels above				-		

CGI

	Focus on dynamic objects	Scanning one time	Occusion no large impact	Detect dynamic objects one place	Beginning of process	No proble long drawn shadows
N-amount of voxels		-				
Different time frames					•	-
Unique time stamps				-		-
Floor and voxels above						
Count voxels above	-			-		

CGI

Filling gaps

Original voxel model

Filled if distance = 1

CGI ŤUDelft

Filling gaps

Filled if distance = 5

CGI ŤUDelft

Trajectory classification

Testing	Slope			Stair		
Set	Minimum	Maximum	connected	Minimum	Maximum	connected
	\mathbf{angle}	angle	elements	angle	angle	elements
	in degree	in degree		in degree	in degree	
1	2.3	18.4	2	7.1a	90	4
2	2.3	11.3	2	7.1a	45	4
3	3.8	18.4	2	14	90	4

CGI

Trajectory classification

CGI

ŤUDelft

Trajectory classification

CGI

ŤUDelft

CGI ŤUDelft

Voxel model + seed voxels

CGI ŤUDelft

Voxel model + seed voxels

Voxel model + entryways

CGI ŤUDelft

Voxel model + entryways

CGI ŤUDelft

Region growing

- Find neighbors on the same level
- Two termination criteria:
 - Two voxels directly above
 - Entryway voxels

CGI ŤUDelft

Region growing: two methods

Ordered checking

DBSCAN

Region growing: two methods

Region growing type	Processing time	Number of voxels	Largest region	
	in minutes		in voxels	
ClusterDBSCAN $eps = 1.5$	17	84540	48320	
Ordered checking	169	90292	48568	
Region growing: furniture

CGI ŤUDelft

Classification check

CGI ŤUDelft

Classification check

Subtract furniture: actor height

Subtract furniture

CGI ŤUDelft

Results: representation

Results: representation

Checking type	Halway	First floor Orange rock
	in m^2	in m^2
CAD model	74.0	68.0
$7.3 \mathrm{~cm}$ voxel model	67.7	61.3
$3.65 \mathrm{~cm}$ voxel model	67.5	61.9
Difference between CAD and 7.3 cm	-8.5 %	-9.9 %
Difference between CAD and 3.7 cm	-8.8 %	-9.0 %

CGI

Results: processing time

CGI

ŤUDelft

Problem statement Research question Method Implementation Results Conclusion

ion 80

CGI TUDelft

CGI ŤUDelft

CGI TUDelft

Research question

Which indoor walkable space can be identified from a voxelized point cloud using the trajectory of a mobile laser scanner?

- Possible to detect: stairs, slopes and horizontal walkable space
- M² accuracy of 10%

CG

• Identification entryways: split building into spaces

Problem statement Research question Method Implementation Results Conclusion

86

Future work

- Identification of walls
- Identify types of furniture elements
- Identification of dynamic objects, which do not move during the scanning
- Generation of a node network (network graph)

CGI ŤUDelft

CGI ŤUDelft