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SUMMARY

Quantum technology is a promising area of research, with the quantum computer as the
prime example. Quantum computers can perform calculations thought to be impossi-
ble by conventional means. The fundamental building block of a quantum computer is
a qubit, which is a quantum system which can be used to process and store quantum in-
formation. Most qubits can hold on to this quantum information for only a short period
of time due to environmental noise. The resulting errors can be mitigated by storing the
information in multiple qubits. An alternative approach uses qubits which are insensi-
tive to noise. This can be achieved by using topological quantum states.

An example of a topological quantum state is the Majorana zero mode. Majorana zero
modes can be realized in a 1D system with strong spin-orbit coupling and superconduc-
tivity, in an external magnetic field. Such materials are not known in nature, but can be
engineered by coupling a semiconductor nanowire to a superconducting material. To
use these Majorana zero modes as qubits, multiple nanowires have to be connected to
each other in a 2D network. The experiments described in this thesis aim to develop
such networks based on InSb (indium antimonide) semiconductor nanowires.

A few necessary theoretical concepts are briefly introduced. Subsequently, the nanofab-
rication and electrical measurement techniques used to study the nanowires are de-
scribed, with emphasis on the challenges related to working with hybrid semiconductor-
superconductor (InSb-Al) materials. Two methods are then presented to realize nanowire
networks. Transport experiments on these networks show strong phase coherence and
a hard superconducting gap, demonstrating the high quality of the material.

In addition to the intrinsic quality of the material, the electrostatic environment plays
an important role for the functionality of hybrid materials. The coupling between the
superconductor (Al) and the semiconductor (InSb) is studied by applying an external
electric field. This electric field influences material properties such as the spin-orbit
coupling and the Landé g -factor. An essential property of the Majorana zero modes is
the fact that their state cannot be described locally. Exploratory experiments with the
aim of demonstrating this non-locality are described, followed by theoretical simula-
tions demonstrating the limitations of common experimental practice based on local
measurements. Finally, several suggestions for future experiments are made, aimed at
demonstrating and manipulating Majorana zero modes.

xi





SAMENVATTING

Kwantumtechnologie is een veelbelovend onderzoeksgebied, met als belangrijkste ex-
ponent de kwantumcomputer. Kwantumcomputers kunnen berekeningen uitvoeren
die met conventionele computers onmogelijk worden geacht. De fundamentele bouw-
steen van een kwantumcomputer is een qubit, een kwantumsysteem waar kwantum-
informatie mee verwerkt en opgeslagen kan worden. De meeste qubits kunnen de kwan-
tuminformatie echter slechts korte tijd vasthouden vanwege ruis. De resulterende fouten
kunnen worden geminimaliseerd door de informatie in meer qubits op te slaan. Een al-
ternatieve oplossing is de qubits ongevoelig te maken voor ruis. Dit kan worden bereikt
met zogenaamde topologische kwantumtoestanden.

Een voorbeeld van een topologische kwantumtoestand is de Majorana toestand. Majo-
rana toestanden kunnen worden gerealiseerd in een 1D systeem met sterke spin-baan
koppeling en supergeleiding in een extern magnetisch veld. Een dergelijk materiaal
komt niet voor in de natuur, maar kan worden gerealiseerd door een halfgeleider nano-
draad te koppelen aan een supergeleidend materiaal. Om deze Majorana toestanden te
kunnen gebruiken als qubit, moeten zulke nanodraden met elkaar worden verbonden
in een 2D netwerk. De experimenten die zijn beschreven in dit proefschrift hebben als
doel de ontwikkeling van dergelijke netwerken op basis van InSb (indiumantimonide)
halfgeleider nanodraden.

Eerst worden enkele noodzakelijke theoretische concepten kort geïntroduceerd. Ver-
volgens worden de nanofabricagetechnieken en elektrische meettechnieken beschreven
die zijn gebruikt om de nanodraden te bestuderen, met nadruk op de moeilijkheden
die gepaard gaan met het werken met hybride halfgeleider-supergeleider (InSb-Al) ma-
terialen. Hierna worden twee verschillende methoden gepresenteerd om nanodraad-
netwerken te realiseren. Transport experimenten in deze netwerken laten een sterke
fasecoherentie en een zogenaamde harde supergeleidende kloof zien, wat de hoge kwaliteit
van het materiaal aantoont.

Naast de kwaliteit van het materiaal zelf is de elektrostatische omgeving van groot belang
voor het functioneren van hybride materialen. De koppeling tussen de supergeleider (Al)
en de halfgeleider (InSb) wordt bestudeerd door de aanleg van een extern elektrisch veld.
Dit elektrisch veld beïnvloedt de materiaaleigenschappen zoals de spin-baan koppeling
en de Landé g -factor. Een essentiële eigenschap van de Majorana toestand is het feit dat
deze niet lokaal beschreven kan worden. Inleidende experimenten met als doel het aan-
tonen van deze niet-lokaliteit worden beschreven, gevolgd door theoretische berekenin-
gen die de beperkingen laten zien van de gangbare experimentele praktijk gebaseerd op
lokale metingen. Tot besluit worden enkele suggesties voor toekomstige experimenten
gedaan, gericht op het aantonen en manipuleren van Majorana toestanden.

xiii
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1
INTRODUCTION

There is nothing more difficult to take in hand, more perilous to conduct, or more
uncertain in its success, than to take the lead in the introduction of a new order of things.

Niccolò Machiavelli, Il Principe
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2 1. INTRODUCTION

1.1. FROM QUANTUM PHYSICS TO QUANTUM TECHNOLOGIES

The defining technologies of the second half of the twentieth century, such as the laser
and the semiconductor transistor, are rooted in our improved understanding of mat-
ter, enabled by quantum mechanics. In this sense, they can be considered the first
generation of quantum technologies. In most cases, however, their operation can be
understood in classical or semiclassical terms, without resorting to quantum principles
such as superposition or entanglement. The second generation of quantum technolo-
gies promises to leverage these properties as resources for secure communication [1],
high precision metrology [2] and sensors [3], and computation [4]. Quantum research
has gone from the seminal experiments demonstrating entanglement [5, 6] and initial
schemes for its use as a resource [7, 8] to large scale efforts to build a universal quantum
computer, along with a plethora of other proposals [9], which appear to be on the cusp
of entering the commercial domain.

The fundamental unit of a quantum computer is the quantum bit, or qubit [10]. A
qubit consists of a two-level quantum system, or an isolated pair of states in a multi-
level system, which can be decoupled from its environment and addressed using suit-
able control signals [11]. Interest in quantum computation has surged with the demon-
stration of qubits in solid state platforms, such as spin qubits [12] or superconduct-
ing transmon qubits [13]. Because they can be fabricated using natural extensions of
current technological capabilities, paths towards scaling up these systems seem wide
open [14]. However, several bottlenecks have been identified that have so far limited
solid state platforms to a handful of qubits. An important limitation of these qubits is
their susceptibility to noise from the surrounding material. One can think of electrical or
charge noise [15], for example from dislocations in the crystal lattice or nearby surfaces,
or magnetic noise due to localized magnetic moments in the nuclei of the constituent
atoms [16] or at thin film interfaces [17]. These noise sources interact with the quantum
bits in an uncontrolled manner, scrambling the information stored in them. This type
of information loss can be mitigated by storing the information in a redundant fash-
ion [18]. Following classical error correction codes used e.g. in hard drives, advances in
the field of quantum error correction have brought optimism to the prospect of realizing
a fault-tolerant universal quantum computer [19]. These error correction schemes work
by discretizing and keeping track of errors as they occur, and then using feedback to keep
the system in the desired state. As long as the additional errors applied due to imperfect
feedback are small, and the errors that have to be corrected infrequent, architectures
such as the surface code can be used to robustly store quantum information [20].

Although these schemes are expected to be succesful in protecting quantum informa-
tion, they require a large amount of overhead. One estimate puts the number of physical
superconducting transmon qubits required for fault-tolerant operation of a single logi-
cal qubit at 49 [21], which represents a significant overhead for the execution of quantum
algorithms. It is therefore of great interest to explore alternative ways of storing quantum
information which are intrinsically protected from errors.
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1.2. TOPOLOGICAL QUANTUM STATES
While in three dimensions the wave function representing a quantum state of many
identical particles is either symmetric (bosons) or antisymmetric (fermions) with respect
to the exchange of two particles, other possibilities arise if the system is two dimen-
sional [22]. These new particles are referred to as anyons [23]. Anyonic excitations are
found in topological phases of matter, which are characterized by a many-quasiparticle
ground state that is degenerate as long as the quasiparticles are well-separated from each
other [24]. Different types of anyons are distinguished by the effect of operations ex-
changing the positions of two particles (called braiding operations or braids), and the
number of ways two anyons can be combined to form new quasiparticles (their fusion
channels).

For Abelian anyons, consecutive braiding operations commute. Braiding two Abelian
anyons results in the same state with an added global phase factor, and there is only one
way to fuse two Abelian anyons. In contrast, for non-Abelian anyons braiding operations
do not commute in general, and braiding two quasiparticles can result in a non-trivial
rotation in the ground state subspace. Importantly, braiding is the only way to perform
such a rotation. Additionally, there is more than one fusion channel for non-Abelian
anyons, i.e. combining two of them can have multiple results. These properties allow us
to use non-Abelian anyons to form topological quantum bits: we can initialize the qubit
by creating anyonic particles in a well-defined state, perform qubit operations by braid-
ing them, and read out the result by fusing the anyons at the end of the computation. As
there are no local operations which can perturb the qubit, and the errors due to finite
overlap between the quasiparticle wave functions decay exponentially with system size,
a topological qubit is intrinsically fault-tolerant [25]. In a sense, it can be considered the
physical manifestation of the surface code architecture mentioned in the previous sec-
tion.

A seemingly unrelated topic is the study of band insulators and superconductors. In
such systems, there is a finite energy cost for single particle excitations, called the energy
gap. These systems can be classified according to the symmetries of their Hamiltonian
and their dimensionality [26]. In this classification, two Hamiltonians are considered
topologically distinct if they cannot be continuously changed into one another without
closing the energy gap of the system. This means that when we create an interface be-
tween two gapped systems with a different topology, the gap must close at the interface.
This can create zero energy surface states, which are protected against local perturba-
tions as long as the bulk gap does not close. These surface or edge states (terminology
depending on the dimensionality) are called symmetry protected topological states [27].

In one dimension, it has been demonstrated that the Hamiltonian in the class BDI de-
scribing a p-wave superconductor can harbor zero energy states which are localized at
the ends of the one dimensional chain [28]. These zero energy states represent a non-
local way to store a single fermionic degree of freedom, which can be described by two
Majorana bound states. These Majoranas are non-Abelian anyons, following the braid-
ing statistics and fusion rules of so-called Ising anyons. The wave function overlap of
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the Majoranas can be used to fuse them and read out the occupation of the fermionic
state. The states of the qubit are given by the parity of the Majorana state: |0〉 = even,
|1〉 = odd. As changing the parity requires an additional fermion to enter the supercon-
ductor, two Majorana bound states are insufficient to form a qubit in a closed system.
However, one can use four Majorana bound states, which combined with parity con-
servation create a two level system that can be manipulated using braiding operations.
In principle, every pair of Majorana zero modes which is added to the system will in-
crease the ground state degeneracy by a factor of 2, adding a qubit to the computational
space. However, because the effect of specific braiding operations changes depending
on the number of anyons present, this is impractical because the gate operations have
to be redefined every time a qubit is added or removed [24]. Therefore, qubits are gener-
ally defined in closed systems with a fixed number of Majorana zero modes, which can
then be connected to other qubits via a suitable interface. Although braiding and fusing
Ising anyons is not sufficient for topologically protected universal quantum computa-
tion, one can achieve universal operation by using an ancillary qubit and a distillation
procedure [29], or a magic gate protocol [30].

semicond.supercond.top. supercond. MZM quantum dot gate

Figure 1.1: Proposals for topological qubits based on nanowire networks. (a) Flux controlled Majorana in-
teraction using nanowire T-junctions and SQUID loops. Adapted from ref. [31]. (b) Majorana box qubit based
on a superconducting island coupled to multiple quantum dots via a nanowire grid. Adapted from ref. [32].
(c) Topological qubit based on a comb-like nanowire structure connected to quantum dots to form a nanowire
network. Adapted from ref. [33].
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1.3. TOPOLOGICAL QUANTUM COMPUTATION IN NANOWIRE NET-
WORKS

During the discussion of Majorana zero modes in the previous section, we neglected
to mention that there are no known 1D p-wave superconductors in nature. They can,
however, be engineered by combining an s-wave superconductor with a semiconductor
nanowire with strong spin-orbit coupling [34, 35]. The system is predicted to go through
a topological phase transition upon application of a suitable magnetic field, creating
Majorana zero modes at the wire ends. In such a 1D system, there is no well defined
way to exchange two particles, which is problematic because we want to use braiding
for our qubit operations. To overcome this particular hurdle, it has been suggested to
connect multiple 1D Majorana wires in a 2D network to create the required connectiv-
ity [36]. While this type of architecture can be utilized to physically move the domain
walls where the MZMs are localized, this is impractical. Several other proposals have
emerged which use the controlled interaction between Majorana bound states to effec-
tively braid and fuse them. In Fig. 1.1, we show several such proposals. Instead of physi-
cally moving the positions of the Majoranas, these schemes control the Majorana inter-
actions via Coulomb energy [31, 37], or by coupling the MZMs to an external quantum
dot which can be used to make projective measurements [32, 33]. While these schemes
differ in their details, they all require semiconductor nanowires hybrized with supercon-
ductors and connected in some kind of two dimensional network.

1.4. THESIS OUTLINE
The work presented in this thesis aims to develop semiconductor nanowire networks as
a platform for topological information processing. This is achieved by using nanofabri-
cation techniques to make nanowire based devices and exploring their properties using
electrical measurements.

Chapter 2 introduces theoretical concepts that are useful to understand the compo-
nents of nanowire network based topological qubits, such as the 1D nanowire model
developed by Lutchyn et al. [34] and Oreg et al. [35], which is the workhorse of nanowire
based Majorana physics. We also give brief introductions to superconductivity, transport
through an interface between a semiconductor and a superconductor, and the Aharanov-
Bohm effect in mesoscopic rings. The methods used to fabricate samples and measure
devices are introduced in chapter 3. Specifically, results relating to the selective etch-
ing of Al on InSb nanowires are presented. Chapter 4 describes the growth of nanowire
networks using the vapor-liquid-solid (VLS) growth technique. The transport proper-
ties of these networks are characterized by measuring the Aharonov-Bohm effect in the
magnetoconductance, as well as by tunneling spectroscopy measurements of the super-
conducting gap. An alternative method of growing nanowire networks, the selective area
growth method (SAG), is described in chapter 5. We use the Aharonov-Bohm effect to
investigate dephasing mechanisms in these nanostructures. Chapter 6 describes exper-
iments performed on hybrid superconductor-semiconductor nanowires to explore the
effects of the electrostatic environment on the hybridization between the two materi-
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als. We find that the device behavior is strongly affected by the electric fields generated
by the gates surrounding the nanowire device. In chapter 7 we describe experiments
performed in InSb nanocrosses with the aim of investigating the non-local structure of
Majorana zero modes. Chapter 8 provides an overview of recent literature on the topic
of local zero modes, which can mimic Majorana properties under certain experimental
conditions. This discussion is supplemented by numerical simulations. Finally, in chap-
ter 9 we provide an outlook on future experiments in nanowire networks, with an eye
towards Majorana physics.
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THEORY

I have a theoretical degree in physics.

Fantastic, Fallout New Vegas

This chapter describes theoretical concepts which are useful for understanding the work
performed in this thesis. We start with an overview of BCS superconductivity. Then we
describe the transport through an interface between a normal conductor and a super-
conductor. The principles behind tunneling spectroscopy are briefly introduced. We
also give an overview of the 1D Majorana nanowire model, which will be expanded upon
in the rest of the thesis. Finally, we review the Aharanov-Bohm effect in mesoscopic de-
vices.
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2.1. SUPERCONDUCTIVITY AND THE BOGOLIUBOV-DE GENNES

EQUATION
Superconductivity describes the scenario where the electrical resistivity of certain mate-
rials goes to zero when they are cooled to low enough temperatures, allowing charge to
flow without dissipation [1]. These freely flowing currents can screen any magnetic fields
from the interior of the superconductor, resulting in perfect diamagnetism, also known
as the Meissner effect [2]. The superconducting state is a consequence of a low tem-
perature phase transition, which can be understood macroscopically using Ginzburg-
Landau theory [3].

At the microscopic level, superconductivity is generally described using the theory by
Bardeen, Cooper, and Schrieffer (BCS theory) [4]. We follow the treatment of ref. [5], and
write the following pairing Hamiltonian:

Hk = ∑
k,σ

ξk c†
kσckσ+

∑
k,k ′

Vkk ′c†
k ′↑c†

−k ′↓c−k↓ck↑. (2.1)

In this Hamiltonian, ξk is the single particle energy relative to the Fermi energy EF, the
operators c†

kσ (ckσ) are the creation (annihilation) operators for an electron with mo-
mentum k and spin σ, respectively, and Vkk ′ is the matrix element of the pairwise in-
teraction between two electrons. In the BCS description of superconductivity, this inter-
action is mediated by phonons. Furthermore, it is assumed that this interaction is at-
tractive and is non-zero only in a small range of energies around EF, with the cut-off set
by the Debye energy. Under these conditions, pairs of electrons will form bound states
called Cooper pairs. All that is required for the formation of Cooper pairs is a Fermi sea
with an interaction which is attractive for energies close to the Fermi energy, and neg-
ligible beyond a certain cut-off energy determined by the nature of the interaction [6].
The Cooper pairs condense into a new ground state, called the BCS condensate.

If the density of states at EF is large, we can assume that the expectation value of the
number of particles taking part in the superconducting state is also large, and that fluc-
tuations around the expectation value are small. In this case, we can use a mean field
approximation to convert equation 2.1 to

HMF = ∑
k,σ

ξk c†
kσckσ−

∑
k

(
∆k c†

k↑c†
−k↓+∆∗

k c−k↓ck↑
)

, (2.2)

with ∆k =−∑
k ′ Vkk ′〈c−k ′↓ck ′↑〉. Note that this description no longer conserves the num-

ber of particles, but rather the parity. Because we are interested in single particle exci-
tations from the ground state, terms that add only to the ground state energy have been
omitted. We can diagonalize this Hamiltonian via a transformation introduced by Bo-
goliubov [7]:

ck↑ = u∗
kγk,1 + vkγ

†
k,2,

c†
−k↓ =−v∗

kγk,1 +ukγ
†
k,2.

(2.3)

The eigenstates of the Hamiltonian are Bogoliubov quasiparticles, or Bogoliubons, γk,(1,2),

with energies Ek =
√
ξ2

k +∆2
k . They consist of electron-like (u) and hole-like (v) compo-
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nents. We see that the minimum energy cost for a quasiparticle excitation is∆, the super-
conducting gap. Taking ∆k = ∆, we can calculate u and v by solving the Bogoliubov-de
Gennes (BdG) equation:

HBdG

(
uk

vk

)
= Ek

(
uk

vk

)
, HBdG =

(
ξk ∆

∆∗ −ξ∗k

)
, (2.4)

with the solution

|uk |2 = 1−|vk |2 =
1

2

(
1+ ξk

Ek

)
. (2.5)

Note that while it appears we have obtained two solutions to the BdG equation, these
solutions are in fact not independent. For each solution with an energy E , there is a
corresponding solution with energy −E . This particle-hole symmetry is the result of the
mean field approximation. Together the two solutions describe the same single particle
excitation.

2.2. TRANSPORT THROUGH AN NS-INTERFACE
The Bogoliubov-de Gennes equation can also be used in case the superconductor is not
uniform in space. To illustrate this, we examine the interface between a normal con-
ductor (N) and a superconductor (S). In Fig. 2.1 we show the linearized dispersion of the
normal conductor, E(k) =ħvFk −EF, on the left, and the dispersion calculated using the
solution to the BdG equation with ξ(k) = ħvFk −EF on the right. At the interface, we in-
clude a potential barrier V (x) =V0δ(x).

-kF kF k

E

AB

-kF kF

∆

k

E

N S
Barrier

D C

Figure 2.1: Transport processes at an NS-interface. Interface between a normal conductor (N) and a su-
perconductor (S). Depending on the energy of the electron incident from the N side, it can be reflected or
transmitted as a hole or an electron.

An electron incident on the interface from the N side can undergo four processes. It can
be reflected back into the normal conductor as an electron (normal reflection, ampli-
tude B), or as a hole, transferring a Cooper pair into the superconductor in the process
(Andreev reflection, amplitude A). Additionally, if the energy of the electron is larger
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than ∆, it can be transmitted as an electron- (amplitude C ) or hole-like (amplitude D)
quasiparticle. Describing the electron as a plane wave, we can write the wave functions
in the N and S regions as

ψN =
(
1
0

)
e i kN

e x + A

(
0
1

)
e i kN

h x +B

(
1
0

)
e−i kN

e x

ψS =C

(
u
v

)
e i kS

e x +D

(
u
v

)
e−i kS

h x .

(2.6)

The coefficients A, B , C , and D are found by matching the wave functions at the inter-
face. Their derivatives should also be matched, taking into account the barrier, which
we parameterize as Z = V0/(ħvF). The conductance through the interface can then be

written as [8] GNS(E) = 2e2

h (1+ A(E)−B(E)), with

A(E) =


∆2

E 2+(∆2−E 2)(1+2Z 2)2 E <∆

u2v2

γ2 E >∆
, (2.7)

B(E) =


1− A E <∆

(u2−v2)2
Z 2(1+Z 2)
γ2 E >∆

, (2.8)

γ= (
u2 +Z 2 (

u2 − v2))2
. (2.9)

At E = 0, this result can be simplified to [9]

GNS(0) = 2e2

h

2T 2

(2−T )2 , T = 1

1+Z 2 . (2.10)

If the normal conductor and superconductor are not made of the same material, their
Fermi velocities will generally be different, which will cause additional reflections at the
interface. This can be accounted for by changing the effective barrier strength to [10]

Zeff =
(

Z 2 +
(
1− vF,N

vF,S

)2 vF,S

4vF,N

)1/2

. (2.11)

In the above discussion we have used a linearized dispersion for both the normal con-
ductor and the superconductor, which is a good approximation if EF À ∆. This is gen-
erally true for metals, but the approximation fails in the case of low density materials
such as semiconductors. In this case, more sophisticated treatments are required, as
discussed in Ref. [11].

2.3. TUNNELING SPECTROSCOPY
We can generalize the situation described in the previous section to transport between
two general conductors separated by a barrier using the Landauer-Büttiker formalism [12,
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13]. The density of states on the left (right) side of the barrier is DL(R)(E), with the occu-
pation of the states determined by the Fermi-Dirac distribution fL,R(E) with a chemical
potential µL(R). If we assume the transition probability T from a state on the left to a
state on the right only depends on energy, we can write the current at a voltage differ-
ence eV =µL −µR as [14]

I (V ) =− (2π)2|e|
h

∫
dET (E)DL(E)DR(E)

(
fL(E)− fR(E)

)
. (2.12)

For small bias voltages eV ¿ kBT , the differential conductance G = dI
dV is then given by

dI

dV
= (2π)2e2

h

∫
dET (E)DL(E)DR(E)

−∂ f (E +eV )

∂eV
. (2.13)

In the tunneling limit, T ¿ 1, the transmission can be considered independent of en-
ergy. If in addition the density of states of the left reservoir is approximately independent
of energy in the range of interest, the differential conductance is directly proportional to
the density of states of the right reservoir, with a spectroscopic resolution which is set by
the derivative of the Fermi-Dirac distribution.

2.4. THE 1D MAJORANA NANOWIRE MODEL
While there are several candidate systems for the realization of Majorana zero modes [15–
17], the most commonly studied system consists of a one dimensional semiconductor
nanowire coupled to a superconductor. At the interface between the nanowire and the
superconductor, Andreev reflection processes introduce superconducting correlations
in the semiconductor. This is called the proximity effect [18]. While in general the prox-
imity effect depends on details of the materials involved as well as the interface between
them, here we assume that it simply introduces a superconducting pairing with strength
∆ into the semiconductor. The proximity effect will be explored in more detail in chap-
ter 6. Combined with spin-orbit coupling and a suitable magnetic field, this system can
go through a topological phase transition which results in Majorana bound states at the
nanowire’s ends. We will give a short overview of the general concepts, with a more de-
tailed discussion in chapter 8. For further information we direct the reader to refs. [19–
21].

The 1D Majorana nanowire system is described by the Hamiltonian [22, 23]

H =
(

p2
x

2m∗ −µ
)
τz − α

ħ pxσyτz +EZ +∆τx . (2.14)

Here we have used to Nambu basis, Ψ =
(
ψ↑,ψ↓,ψ†

↓,−ψ†
↑
)T

, with ψσ and ψ†
σ describ-

ing electron and hole states, respectively. The first term in the Hamiltonian describes
a one dimensional conductor oriented in the x-direction, with an effective mass m∗
and chemical potential µ. The second term describes the Rashba spin-orbit interaction,
which introduces an effective magnetic field α

ħ px Ez ŷ = BSO ŷ . Here we have assumed
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there is an effective electric field along the z-direction. In general, this can be the re-
sult of any perturbation which breaks the symmetry along the z-direction, such as the
presence of the superconducting material. The next term describes the Zeeman energy
EZ = 1

2 gµBB ·σ, with g the Landé g -factor of the material, µB the Bohr magneton, and B
the magnetic field. Finally, the superconducting pairing potential is given by ∆. The ma-
trices σ and τ are the Pauli matrices acting in spin and particle-hole space, respectively.

For an infinitely long wire, we can substitute px = ħkx , and calculate the dispersion.
First we examine the superconducting nanowire without spin-orbit coupling, α = 0. In
the absence of a magnetic field (EZ = 0, Fig. 2.2(a)), the dispersion consists of electron-
(blue) and hole-like (red) spin degenerate parabolas, which are coupled by the super-
conducting pairing, creating a gap at k = kF

1. The spin degeneracy is lifted by applying a
finite magnetic field (Fig. 2.2(d)). Once the Zeeman energy exceeds the superconducting
gap (Fig. 2.2(g,j)), the system becomes gapless.

When we include a finite spin-orbit coupling strength, the picture changes. Because
the spin-orbit field is momentum dependent, spin is no longer a good quantum num-
ber, and the previously spin degenerate parabolas are shifted in momentum by ±kSO

(Fig. 2.2(b)). At EZ = 0, the electrons and holes are spin polarized parallel or antiparallel
to the spin-orbit field. If we then apply a magnetic field perpendicular to the spin-orbit
field, the electrons at finite momentum are only weakly influenced by the field because
their spin projection on the magnetic field axis is minimal. This does not happen at k = 0,
however, because there the spin-orbit field is zero. At EZ =

√
µ2 +∆2 = EZ,crit, the gap at

k = 0 closes (Fig. 2.2(h)), and subsequently reopens if EZ is increased further (Fig. 2.2(k)).
We see that now, even though the Zeeman energy exceeds∆, the system remains gapped
because the states at larger momenta are insensitive to the magnetic field. Additionally,
the character of the states near k = 0 has changed, with electron-like (blue) states now
above the Fermi energy and hole-like (red) states below. This inversion of the energy
gap is a topological phase transition. The inverted gap regime is generally referred to as
the topological regime, with the gap ordering at EZ called the trivial regime. These two
regimes correspond to the two possible values of the topological invariant in one dimen-
sional class D Hamiltonians such as the one of equation 2.14, which have particle-hole
symmetry and broken spinful time-reversal symmetry [24].

If the magnetic field is aligned with the spin-orbit field, the system again becomes gap-
less for EZ >∆ (Fig. 2.2, right column). This is due to the fact that now the spin states can
simultaneously be eigenstates of the spin-orbit and magnetic field, which is in effect the
same as the situation described in the left column of Fig. 2.2.

The transition to the topological regime is accompanied by the appearance of Majorana
bound states (MBSs) localized at the wire ends, with a wave function amplitude which
decays exponentially into the bulk with a characteristic length scale ξ. If the length of

1The Fermi wave vector kF is defined as kF =
√(

m∗α
ħ2

)2 + 2µm∗
ħ2 . For finite α, the shifted parabolas cross the

Fermi energy at k =±kF ±kSO, with kSO = m∗α
ħ2 .
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Figure 2.2: Dispersion of the 1D Majorana nanowire for different values of the Zeeman energy. For a wire
without spin-orbit coupling (left column), the gap closes when EZ = ∆. Finite spin-orbit coupling protects
the gap at finite k from closing as long as the magnetic field is aligned perpendicular to the spin-orbit field
(middle column). If the magnetic field and spin-orbit field are aligned, the gap is again closed for EZ ≥∆ (right
column). Parameters used in the calculation: m∗ = 0.013me, µ = 0.5 meV, and∆ = 0.2 meV. When α 6= 0, it is set
to 0.3 eV Å.
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the nanowire L is finite, the wave functions of the Majorana zero modes at opposite ends
will overlap, causing them to couple and split to finite energy. For a long wire, L À ξ, the
energy of the Majorana state can be approximated by [25]

∆E ≈ħ2kF,eff
e−2L/ξ

m∗ξ
cos

(
kF,effL

)
. (2.15)

Here the parameter kF,eff is the wave vector describing the oscillatory part of the Majo-
rana wave function. For weak spin-orbit interaction (EZ À m∗α2/ħ2), kF,eff ≈ kF, while
for strong spin-orbit interaction (EZ ¿ m∗α2/ħ2) kF,eff ≈ kSO [26]. While in general the
splitting depends on α, µ, and EZ in a non-trivial way, we can identify three regimes.

Semi-in�nite L >> ξ L ≈ ξ

Figure 2.3: Effect of finite wire length. Spectrum of the Majorana nanowire as a function of Zeeman energy
for different lengths. (a) In a semi-infinite wire, the energy of the Majorana bound states is exactly 0. Above
the gap, there is a continuum of states (shaded area). (b) In a relatively long wire (L À ξ), the energy of the
Majorana state oscillates with increasing Zeeman energy due to the finite overlap between the two ends. The
continuum of states is replaced by discrete energy levels due to finite size quantization. (c) In a short wire
(L ≈ ξ), the finite size effects are so strong that the energy of the Majorana state is considerable on the scale of
the gap. Parameters used in the simulation: m∗ = 0.013me, µ = 0.5 meV, α = 0.3 eV Å, and ∆ = 0.2 meV. For the
finite length wires, L = 4µm in panel (b), and L = 1µm in panel (c).

In Fig. 2.3 we plot the Majorana nanowire spectrum as a function of Zeeman energy
for different lengths of the nanowire. For a semi-infinite wire (Fig. 2.3(a)), the nanowire
spectrum is a continuum of states above the gap. After the closing and reopening of the
gap at k = 0 for EZ = EZ,crit, a zero energy Majorana state emerges. Because the two Majo-
rana bound states are infinitely far apart, there is no energy splitting. This changes when
the wire is long, but finite, as shown in Fig. 2.3(b). Instead of the continuum of states
above the gap we now have energy levels due to finite size quantization. For EZ > EZ,crit,
the energy of the Majorana states oscillates with increasing Zeeman energy due to the
fact that it changes kF,eff. The amplitude of the oscillation remains small compared to the
gap. This is no longer the case when the wire length becomes comparable to ξ, Fig. 2.3(c).
The Majorana bound states overlap so strongly that their energy becomes comparable
to∆. In this situation, equation 2.15 no longer applies, and one generally needs to resort
to numerical methods to calculate the overlap energy [27].
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The 1D Majorana nanowire model considers only a single subband in the semiconductor
wire. This can be generalized to a quasi-1D system with multiple transverse subbands.
Because Majorana zero modes originating from different subbands can couple to each
other at end of the wire, splitting them to finite energy, the total number of zero modes
in a system with N occupied subbands will be N mod 2 [28]. Thus, the nanowire will
have a pair of Majorana zero modes at its ends when the number of spin resolved bands
crossing the Fermi level is odd [29].

2.5. AHARONOV-BOHM EFFECT IN MESOSCOPIC RINGS
The Aharonov-Bohm effect describes the effect of the electromagnetic vector potential
on a charged particle [30]. Remarkably, this effect persists even if the electromagnetic
fields vanish at every point along the particle’s trajectory. This is due to the fact that the
vector potential couples directly to the phase of the particle’s wave function. As such, the
Aharanov-Bohm effect has no classical analogue, making it a quintessentially quantum
mechanical phenomenon.

The effect of the magnetic flux on the electronic wave function can be observed in inter-
ference experiments, for example in the magnetic field dependent conductance through
a mesoscopic ring. We schematically depict such a set-up in Fig. 2.4. The ring consists
of an upper and a lower channel, labeled 1 and 2 respectively, connected to the lead
modes 3L(R) via the scattering matrices sL(R). Electron waves propagating in the upper
arm acquire a dynamic phase χ1, while those traveling in the lower arm acquire a phase
χ2. Additionally, the electrons acquire a magnetic phase φ1(2) while traveling along the
upper (lower) arm of the ring, with the sign depending on the direction of propagation
(clockwise: +, counterclockwise: -). The sum of the phases φ1,2 is determined by the
magnetic field penetrating the ring:

φ1 +φ2 = e

ħ
∮

L
A ·dl = e

ħ
Ï

S
B ·dS = 2πΦ

Φ0
, (2.16)

where L is the closed trajectory along the ring’s perimeter, S is the area of the ring, A is
the electromagnetic vector potential, B is the magnetic field, andΦ0 = h

e is the magnetic
flux quantum2.

We assume that an electron incident upon the ring from the leads has a probability |r |2
to be reflected back into the lead. Additionally, we assume that the ring is symmetric
with respect to the upper and lower arms. For a time-reversal symmetric system3, the
scattering matrices sL,R are then given by

sL,R =


− 1−r

2
1+r

2

√
1−|r |2

2
1+r

2 − 1−r
2

√
1−|r |2

2√
1−|r |2

2

√
1−|r |2

2 −r

 . (2.17)

2Note that the magnetic flux quantum is often defined asΦ0 = h
2e , the superconducting flux quantum.

3Although we apply a magnetic field, we assume the field is weak enough to approximately preserve time-
reversal symmetry.
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Figure 2.4: Schematic representation of a mesoscopic Aharanov-Bohm ring. A single mode ring, consisting
of transport channels 1 and 2 connected in parallel, is connected to leads through the scattering matrices sL,R .
While propagating through the ring, electrons pick up a phase which has a dynamic (χ1,2) and magnetic (φ1,2)
component.

To calculate the conductance through the ring, we follow the procedure of ref. [31]. The

conductance can be calculated by using the Landauer formula G = 2e2

h |t |2 [32], where t
is the coherent sum of all the transport processes connecting the left and the right leads.
The simplest of such processes is an electron wave being scattered from the left lead into
the upper branch of the ring, picking up a phase while propagating inside the ring, and
then being scattered from the ring into the right lead. The amplitude of this process is

given by
√

1−|r |2
2 e i (χ1+φ1)

√
1−|r |2

2 . There is an equivalent process which has the electron
wave being scattered into the lower branch before being transmitted to the right lead,

with amplitude
√

1−|r |2
2 e i (χ2−φ2)

√
1−|r |2

2 .

Figure 2.5: Diagram of the scattering processes contributing to the conductance through an Aharonov-
Bohm ring.

There is a finite probability the electron wave is reflected back into either the upper or
lower branch of the ring instead of continuing to the right lead, before arriving back at
the left scattering region. For the process to contribute to the conductance from left to
right, the electron wave should be again reflected back into the ring, into either the up-
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per or lower branch, which was the previous starting point for the propagation through
the ring. We can thus recursively list all the processes contributing to the conductance
through this general scheme, illustrated in Fig. 2.5.

Each process must start with the electron being transmitted from the left lead into the
ring, and end with the electron being transmitted from the ring to the right lead (straight
arrows pointing to the right). All processes that connect these two events are represented
by the circle between square brackets. As described above, the simplest such processes
are propagation through the upper (clockwise half circle, arrow pointing to the right) or
lower (counterclockwise half circle, arrow pointing to the right) branch of the ring. There
are four distinct ways to be scattered back to this starting point without leaving the ring
(listed between small parentheses), each of which is again followed by all possible pro-
cesses which connect left and right (square brackets).

While it is straightforward to sum up all of these processes, the resulting expression is
rather cumbersome [33]. For the special case of r = 0 and χ1 = χ2 = 1

2χ, a more elegant
expression can be obtained [31, 34]:

G(Φ) = 2e2

h

(
1−cosχ

)(
1+cos2

(
2πΦ
Φ0

))
sin2χ+

(
cosχ−

(
1
2 + 1

2 cos
(

2πΦ
Φ0

)))2 . (2.18)

The conductance is h/e periodic in the magnetic flux, with an amplitude of 2e2

h . A more
intuitive way of looking at this expression is to write it as a Fourier series:

G(Φ) = 2e2

h

∑
n
|tn |2cos

(
2nπΦ

Φ0

)
. (2.19)

We see that the conductance can be written as a sum of harmonics, with the nth har-
monic being h/ne periodic with amplitude |tn |2. The lowest order process contributing
to the nth harmonic involve electrons travelling a distance of nπR, where R is the radius
of the ring.

So far we have assumed that all possible paths through the loop sum up coherently.
In reality, electron waves suffer from decoherence due to fluctuations in the environ-
ment, leading to an uncertainty in the phase when the partial waves interfere with each
other [14]. If we describe this fluctuating environment by a potential V (t ), we can ap-
proximate the phase uncertainty as

〈δφ2〉 ≈ 1

ħ2

∫ t0

0
d t

∫ t0

0
d t ′〈V (t )V (t ′)〉. (2.20)

Here t0 is the time the electron wave spends in the loop. The interference amplitude is

decreased by a factor e−1/2〈δφ2〉 [35]. The fluctuation-dissipation theorem tells us that
the amplitude of the environmental fluctuations increases with temperature. Assuming
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the phase uncertainty grows linearly in time4, we can write

〈δφ2〉 = t0

τφ(T )
= L

LAB
φ

(T )
, (2.21)

where τφ(T ) is the dephasing time, L is the distance travelled along the loop, and LAB
φ (T )

is the phase coherence length. We infer that the amplitude of the nth harmonic is de-

creased by a factor e
− nπR

LAB
φ , with R the radius of the ring, and LAB

φ the phase coherence

length. For ballistic systems, LAB
φ ∝ T −1, while for diffusive systems LAB

φ ∝ T −1/2 [36].
It is important to note that while the concept of a phase coherence length also plays a
role in weak localization, in general LAB

φ can be device geometry dependent, while LWL
φ

is considered to be universal [37].
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3
FABRICATION PROCEDURES AND

EXPERIMENTAL METHODS

A test device is never a good test for a real device.

Önder Gül

This chapter describes the device fabrication and measurement methods used to obtain
the results presented in this thesis. For our experiments we use InSb nanowires grown
by MOVPE in the group of Erik Bakkers at TU/e. Epitaxial Al is deposited by MBE in the
group of Chris Palmstrøm at UCSB. Additional details of the InSb nanowire growth and Al
deposition are given in chapter 4. Over the course of this chapter we will describe how to
transfer nanowires or nanowire networks from a growth chip to a sample substrate, how
contacts are made, and how the devices are measured. Particular attention is given to the
handling of InSb nanowires with an epitaxial Al shell, which require a careful approach
during fabrication. The focus is on the general workflow, with more detailed recipes for
the devices used to generate experimental results provided in their respective chapters.
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3.1. FABRICATION OF NANOWIRE DEVICES
The nanowires are transfered from the growth substrate to the device chip with a micro-
manipulator. The micromanipulator consists of a needle with a very sharp tip, made of
tungsten or indium. Tungsten tips are commercially available, whereas the indium tips
are freshly made from an indium melt [1] prior to each deposition session. Figure 3.1
shows a optical microscope image of a nanowire growth chip at 1000x magnification.
The nanowires are perpendicular to the substrate, and can be seen as small black dots.
The manipulator tip can be seen on the right, indicated by the black arrow.

x
y

(2)

(1)
y

z

Figure 3.1: Nanowire deposition. (a) Optical microscope image of a nanowire growth chip. The nanowires are
visible as black dots. The tungsten tip of the micromanipulator is indicated by the black arrow. (b) Schematic
illustration of wire pick-up methods. Trajectories (1) and (2) illustrate different approaches to picking up
nanowires. Figure adapted from ref. [2].

In order to pick up a nanowire (NW) from the growth chip and deposit it on the de-
vice substrate, the tip has to make contact with the wire and break the connection to
the growth chip. To facilitate the transfer to the device chip, it is most convenient if the
nanowire lies in the x y-plane. This can most easily be achieved by pushing the tip side-
ways against the wire, and subsequently pushing it down as the wire is bending under
the force exerted by the tip (as indicated by trajectory (2) in Fig. 3.1(b)). Once the tip has
collected the wire in this fashion, it can be brought into contact with the device substrate.
As the surface area of the wire making contact with the substrate is larger than the area
making contact with the tip, the wire can be transferred to the device chip at a desired
position through van der Waals forces. If trajectory (1) is followed, wires tend to bend
but not break off from the growth substrate. Even when they do, their angle and position
on the tip are usually unfavorable for controlled deposition on the device substrate [2].
Therefore, it is recommended to use trajectory (2) when possible.

Lithography Development Deposition Lift-o�

Figure 3.2: Schematic representation of the fabrication process. A general nanofabrication process consists
of these four steps: lithography, development, deposition/etching, and lift-off.
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Once the nanowires have been deposited onto the device substrate at the desired loca-
tion, we use CAD software to design a mask for electron-beam lithography. This mask is
then used to selective deposit or remove materials from specific regions on the chip. The
general process is schematically depicted in Fig. 3.2. The chip is covered by an electron-
beam sensitive polymer resist (cyan), such as PMMA, and is exposed to a beam of ener-
getic electrons in a selected region (dark cyan). This lithography process is performed
using a Raith EBPG 5000 or 5200, with electron beams of 100 kV. In the case of positive
resist shown here, the parts of the resist exposed to the electron beam will be removed
in the development step. The electron beam breaks the bonds in the resist layer, mak-
ing the exposed polymer more soluble in a suitable developing chemical. This allows
the selective removal of resist to form the desired pattern. For PMMA, we use MIBK:IPA
in a ratio of 1:3 for 60 s to dissolve the exposed polymers, followed by 60 s in IPA as an
etch stop. Once the mask has been realized, we can perform the desired process, such as
metal deposition. Finally, the remaining resist layer is removed in a lift-off process, leav-
ing the deposited metal behind only in the patterned regions. For PMMA lift-off, we use
acetone, even though it is known to leave behind polymer residue. More aggressive resist
strippers such as PRS-3000 have been found to adversely affect the InSb nanowires.

1 μm 1 μm

Figure 3.3: Example nanowire device. (a) Scanning electron micrograph of an InSb nanowire cross on a pre-
fabricated bottom gate pattern, overlayed with the lithographic mask design. Different colors correspond to
separate processing steps. (b) Finished device using the mask designs in (a).

Figure 3.3 shows an example of a nanowire cross device. Panel (a) is a scanning elec-
tron micrograph overlayed with the designed mask. Different colors indicate shapes that
will be written in separate lithography steps. The yellow pattern will be used to create a
Cr/Au contact to the cross, while superconducting NbTiN will be deposited in the areas
enclosed by the green pattern. The finished device is shown in Fig. 3.3(b). Comparing
Fig. 3.3(a) and (b) shows devices can be made with high (<20 nm) precision.

To create transparent contacts to the nanowires, we need to remove the native oxide be-
fore depositing the metal or superconductor. This can be done by e.g. ion milling. The
advantage of this method is that it can be done in situ, preventing contamination of the
nanowire surface before contact deposition. However, as this is a physical etching pro-
cess, it is not selective to just the oxide, and causes substantial damage to the semicon-
ductor crystal. An alternative method uses an ammonium polysulfide solution to selec-
tively remove the native oxide, and passivate the surface to prevent reoxidation [3]. This
sulfur passivation process gives highly transparent ohmic contacts, and has been shown
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to produce devices with ballistic transport characteristics with high yield [4]. The solu-
tion is prepared by mixing 3 ml ammonium sulfide, (NH4)2S (20% in H2O), with 290 mg
of sulfur powder, creating ammonium polysulfide, (NH4)2Sx . We take 2 ml of this mix-
ture and dilute it in DI water at a ratio of 1:200. The sample chip with contacting area
exposed through the mask is then submerged in the solution for 30 minutes at 60 ◦C.
Afterwards, the sample is rinsed in DI water and loaded into the deposition machine of
choice. For normal contacts, Cr/Au is evaporated (about 10 nm of Cr is used as a sticking
layer to promote adhesion of the gold to the substrate). The best results are obtained if
the sulfur passivated surface is exposed to a brief, mild ion mill prior to metal deposi-
tion.

200 nm 200 nm

Figure 3.4: Gold diffusion along the InSb nanowire surface. (a) Scanning electron micrograph of an InSb
nanowire cross contacted by Cr/Au (left contact) and NbTiN (right contact). Gold has diffused over the surface
of the nanowire (visible in the red rectangle), shorting the junction. (b) A similar device from the same chip as
shown in (a), with visible gold grains on the InSb nanowire junction.

If a device needs to be processed further after gold contacts have been made, excessive
heating should be avoided. The reason for this is showcased in Fig. 3.4: the gold diffuses
into the InSb nanowire, causing a metallic short in the device. In this instance, the chip
was baked for a total of 20 minutes at 175 ◦C after Cr/Au contacts had already been evap-
orated onto the nanowires. Choice of sticking layer (Cr or Ti) doesn’t appear to make
a large difference. Performing a second sulfur passivation step (at 60 ◦C) after gold de-
position doesn’t lead to shorts, suggesting the activation temperature for the diffusion
process is higher than this.

3.2. PROCESSING OF INSB NANOWIRES WITH EPITAXIAL AL
When fabricating devices out of InSb nanowires with an epitaxially grown Al shell, sev-
eral additional considerations come into play. The Al can diffuse into the InSb semi-
conductor through an exchange reaction, substituting the Al for In, forming AlSb and
Alx In1−x Sb compounds. Notably, this reaction occurs at room temperature [5, 6], and
results in the interface between the two materials degrading over time. It is therefore
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imperative that elevated temperatures are avoided during the fabrication process. In-
stead of relying on baking to remove the resist solvent during mask preparation, we put
the chip in a high vacuum system (vacuum of approximately 1·10−4 mTorr) for several
hours. This method has been tested for masks up to 700 nm thick, with no difference in
performance when compared to masks baked on a hot plate.

The ammoniumpolysulfide solution reacts with the Al shell, removing it from the wire.
Therefore, it can’t be used to create clean contacts to the InSb nanowire while keeping
the Al shell intact. Instead, we use a plasma based Ar bombardment to clean the surface
before depositing metallic contacts. To avoid excessive heating during the bombard-
ment, we turn on the plasma in cycles of 20 s, with a 40 s cooldown period in between.
The etching time is usually 4-6 minutes, requiring 12-18 cycles.

500 nm 200 nm

500 nm 100 nm

Figure 3.5: Selective etching of Al on InSb NWs. (a) InSb nanowire etched for 90 s in Transene D:H2O 1:2 at
40 ◦C. (b) Close-up of the image in (a), showing extensive damage in the etched region. (c) InSb nanowire
etched for 210 s in MF-321 at RT. (d) Close-up of the image in (c). The white dashed rectangle indicates the
lithographically defined etch window for all panels.
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3.3. SELECTIVE ETCHING OF EPITAXIAL AL ON INSB NANOWIRES
The InSb nanowires with epitaxial Al used in this thesis are typically covered by Al along
their entire length. In order to make devices out of these wires, we would like to se-
lectively remove the Al from certain parts, while preserving it in the areas of the device
where we want to induce superconductivity. One approach to this uses wet chemical
etchants in combination with electron-beam lithography. Another approach is to use
masking techniques during the deposition of the Al on the wires. In this section we will
describe our efforts on the former approach, while the latter is described in detail in
chapter 4.

Several factors determine whether an etchant can be used for our purpose. It should se-
lectively remove the Al while minimally damaging the nanowire, as defects act as scatter-
ing centers and deteriorate the transport properties. It should also conform to the litho-
graphically defined mask, such that devices can be made with high precision. It should
be homogeneous across a chip, such that the spread in results between the wires etched
in the same run is small, as well as repeatable, such that the variation between runs is
small. Finally, the etchant should not leave any residues as these can act as scattering
centers and charge traps. Four different wet chemical etches have been investigated.

TRANSENE D ALUMINUM ETCHANT

Transene D is an aluminum etchant developed for use with III-V materials [7]. It consists
of 55-65 wt.% phosphoric acid, 5-10 wt.% sodium-M-nitrobenzene sulfonate, 1-5 wt.%
acetic acid, and DI water. The sodium-M-nitrobenzene sulfonate oxidizes the Al, with
the phosphoric acid subsequently removing the AlOx [8]. This reaction is exothermic
and produces H2 gas, which can cause problems with etching homogeneity across a
chip due to bubble formation. Therefore, long etching times (>30 s for the pure solu-
tion) without intermittent rinsing are not recommended. The solution is buffered by
acetic acid. Transene D has proven succesful in selectively removing epitaxial Al films
from InAs nanowires [9]. Because the pure solution aggressively reacts with InSb, it is
diluted in DI water for most etching tests. The tests are conducted on a wire batch with
an Al shell of ≈40 nm thick, grown at 250 ◦C and oxidized at room temperature (RT)1.
Various recipes have been attempted, with variations in dilution (1:2 and 1:4 in DI wa-
ter), etching time (25 to 120 s), and temperature (40 ◦C and 50 ◦C). Figure 3.5(a) shows
the result for a 90 s etch at 40 ◦C in a Transene D:H2O 1:2 solution, followed by a 45 s
rinse in H2O (50 ◦C), a 45 s rinse in H2O (room temperature (RT)), and a 180 s bath in
H2O (RT). The extensive rinsing procedure is necessary to achieve a homogeneous re-
sult across the chip. Zooming in on the etched region (Fig. 3.5(b)), it becomes clear that
Transene D succesfully removes the Al from the etch window defined by the mask. A
small undercut is seen, which is common for isotropic etching processes. The darkened
layer hanging over the etched region is likely residual native AlOx , which is etched at a
different rate than the Al underneath it. The InSb nanowire is substantially damaged by

1Note that this is a different procedure from the one described in chapter 4, which could impact the charac-
teristics of the Al shell.
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the etching process, as is evident from the rough surface in the etched region (especially
when compared to the smooth facetting in the non-etched parts visible in Fig. 3.5(a)).
Several combinations of dilution, temperature, and etching time have been attempted,
with none yielding an acceptable degree of selectivity.

MF-321
Microposit MF-321 is a developer for photo resists which is made by the Shipley Com-
pany [10]. It contains 2.14 wt.% TMAH, which is known to etch both Al [11] and Al2O3 [12].
Etching is performed for 150 to 300 s with the solution at room temperature, followed by
a 20 s rinse in DI water. Figure 3.5(c) shows an InSb nanowire with Al shell etched for
210 s in MF-321 (RT). In Fig. 3.5(d) we see that the etch conforms nicely to the window
defined by the mask, making it possible to create small features. However, damage to
the InSb nanowire is visible, although it is not as severe as in the case of Transene D.
Transport through these kinds of channels invariably shows Coulomb blockade, which
is indicative of significant disorder.

15 s 30 s 60 s

90 s 105 s 120 s

Figure 3.6: Sulfur-based etching of Al on InSb NWs. (a-f) InSb nanowires with Al shell etched in ammonium
polysulfide solution (diluted 1:200 in DI water) at 60 ◦C for different durations. The dashed white rectangles
indicate the exposed etching windows. Scale bars correspond to 200 nm.

AMMONIUM POLYSULFIDE
The ammonium polysulfide solution used to remove the native oxide from InSb nanowires
also removes the Al shell. Because it leaves a clean, nicely terminated surface on the InSb
nanowires [13], it seems an ideal choice as an etchant. In Fig. 3.6, we show the results of
etching InSb-Al nanowires with ammonium polysulfide solution (diluted in H2O with a
1:200 ratio) at 60 ◦C, the same solution that is used to clean the nanowire surface before
making contact (see section 3.1). Initially, a dark spot appears in the etch window, which
grows as the etching time is increased. As mentioned before, this darkened material is
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likely AlOx . After about 90 s, this darkened material starts to disappear, with a completely
etching channel opening at around 105 s. However, the etching progresses very rapidly
from this point, underetching the mask and removing the Al shell over about 1µm length
in the span of 15 s. This process is not homogeneous across the chip, with the onset time
varying at least 20 s between different wires (i.e. the result shown in Fig. 3.6(f) can also
be observed on the chip which was etched for 105 s). The etching process leaves sig-
nificant residue on the wire channel, which could be reaction products or the collapsed
native oxide shell. In either case, this is likely detrimental to device performance. The
rapid etch rate combined with varying delay time makes it difficult to control the pro-
cess. Etching with room temperature ammonium polysulfide solution has shown no
discernible effect on the nanowires and the shell.
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Figure 3.7: BOE etch of Al on InSb NWs. (a) Scanning electron micrograph of an InSb nanowire cross with
epitaxial Al shell, before BOE treatment. (b) The same nanowire cross after 10 s of etching in BOE 7:1. The
areas exposed to the etch (etch windows indicated by red dashed rectangles) show significant darkening of the
contrast. (c) AFM image of the same nanowire cross. The etched regions are clearly visible in the underlying
substrate. (d) Height along the red and blue lines indicated in (c), showing a step of ∼10 nm between etched
and unetched regions.
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BUFFERED OXIDE ETCH
The Al shell on InSb nanowire crosses is grown at lower temperature than the shell on
the wires described in the previous sections2, which changes its etching properties. For
this batch of nanowires, we use a buffered oxide etch (BOE) consisting of NH4F:HF in a
ratio of 7:1, for a duration of 10 to 20 s. A SEM image of an InSb nanowire cross before
BOE treatment is shown in Fig. 3.7(a). The chip is dipped in BOE 7:1 for 10 s, followed
by a 60 s rinse in DI water. The exposed areas of the Al shell (etch masks indicated by
the red dashed rectangles) show a significant darkening, which indicates removal of the
Al and possibly residual AlOx . AFM imaging (Fig. 3.7(c)) shows the etch mask as dark
regions where the SiO2 of the substrate has been partially etched away. In Fig. 3.7(d) we
show the height measured along the blue (substrate) and red (nanowire cross) lines indi-
cated in Fig. 3.7(c). A 10 nm step is observed on the nanowire cross near the edge of the
etch mask, which is the expected thickness of the Al shell. This suggest that the Al has
been removed in this area. The etched region extends roughly 100 m beyond the edge
of the mask in this case, which is sufficient for most fabrication purposes. However, the
amount of underetching varies wildly even on the same chip, which combined with the
short etching time makes it difficult to reliably control the process.

We summarize the results of our various wet etching experiences in Table 3.1. The recipe
deemed most succesful for each etchant is listed as an indication, but should not be
taken as definitive. Judging each etchant at a qualitative level on the criteria we set out
at the beginning of this section, it seems that none meet all of our demands. Priority
should be given to selectivity, as this seems to be the best predictor of device perfor-
mance. A score of “Very poor” in any category practically renders the etchant unusable,
which disqualifies Transene D.

Etchant Best recipe Selectivity
Mask

conformity
Control Residue

Transene D
1:2 in H2O,
90 s (40 ◦C)

Very poor Excellent Excellent Good

MF-321 210 s (RT) Mediocre Good Excellent Good

Ammo-
nium

polysulfide

1:200 in
H2O, 105 s

(60 ◦C)
Excellent Mediocre Poor Poor

BOE 7:1 10 s (RT) Good Poor Mediocre Mediocre

Table 3.1: Comparison of different wet chemical etchants for selective removal of Al from InSb NWs.

The other etchants could possibly be considered, given further optimization. In partic-

2The nanowire crosses described in this section are grown by the method described in chapter 4.
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ular, BOE 7:1 and ammonium polysulfide show good selectivity, which we identified as
the most important criterium. Literature suggests more concentrated HF should have a
lower Al etch rate than the BOE used here [14], which could be an attractive option to
make the etch more controllable if the underetching is not too severe.

3.4. ELECTRICAL MEASUREMENT SET-UP
Electrical measurements are performed using the IVVI rack, a low noise electronics sys-
tem developed in house by Raymond Schouten and DEMO [15]. It allows us to reliably
apply and measure voltages and currents in the nV and fA regime. To isolate the mea-
surement modules from external electrical noise sources, the rack is powered by batter-
ies and communicates with the data acquisition system via an optical link. A schematic
overview of a typical experiment is shown in Fig. 3.8. We measure the conductance of our
device (shown as a variable resistance RDevice

3) in a two-terminal voltage bias configu-
ration. The voltage is supplied by a S3b module, which can be used to simultaneously
apply a dc (VBias) and low frequency ac (VExc) voltage to the sample. It has an output
impedance ROut which depends on the gain setting (typically in the range of 10-100Ω).

VBias

V

VExc

ROut

S3b
RFilter

CFilter

T = 20 mK

RDevice

RGain

RIn

M1bT = RT
VSignal

Dilution refrigerator

CFilter

RFilter

Figure 3.8: Schematic overview of the electrical measurement set-up. Measurement set-up used to measure
the conductance through a nanowire device, shown as a variable resistance RDevice. Additional contributions
from the filters are represented by RFilter and CFilter, respectively. The room temperature voltage bias (S3b)
and IV-converter (M1b) modules are used to bias the sample and measure the resulting current.

We connect the bias voltage to the electrical lines going into the dilution refrigerator,
which are connected to our sample which is mounted to the cold finger. The electrical
lines are filtered at the mixing chamber plate, with the filtering consisting of low-pass
RC-filters (<40 kHz), low-pass π-filters (<100 MHz to <1 GHz) and low-pass Cu-powder
(<1 GHz) filters. The current through the sample is measured with a M1b module, which
converts the current to a voltage with the gain determined by RGain. The resulting volt-

3The capacitance of the device to ground is typically in the fF range, which is too small to be significant at the
typical frequencies used in our experiments.
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age VSignal is then measured with a Keithley 2000 multimeter. The input impedance RIn

is determined by the gain. For typical gain settings of 1-10 MV/A, RIn is 2-12 kΩ.

To measure the differential conductance dI
dV

∣∣∣
V =VBias

we use a SR830 digital lock-in am-

plifier to apply a sinusoidal excitation VExcsin(ωExct ) to the sample, which will result in
a voltage signal VResponse, which is then used as an input for the lock-in. The total signal
can be written as a Fourier series:

Vsignal(t ) =VResponsesin(ωExct +φResponse)+∑
k

Vk sin(ωk t +φk ). (3.1)

Here we have singled out the contribution at the excitation frequency ωExc, VResponse.
Components Vk at other frequencies ωk can be caused by e.g. non-linearities in the cir-
cuit or noise. The lock-in amplifier multiplies Vsignal(t ) by an internal reference VRefsin(ωReft ).
It then uses a low-pass filter to filter out any ac components of the signal. This leaves a dc
component proportional to VResponse if ωRef = ωExc, allowing a very low noise detection
of the circuit response to the applied excitation [16].

For small deviations δV , and low frequencies such that the response of the circuit can be
considered purely resistive, we can write the dc current due to an applied bias voltage as

I (VBias +δV ) ≈ I (VBias)+ dI

dV

∣∣∣∣
V =VBias

δV , (3.2)

Setting δV = VExcsin(ωExct ), we see that the signal recorded by the lock-in amplifier is
a direct measure for the differential conductance at the dc bias voltage VBias, as long as
VExc is small.

The bandwidth of the lock-in amplifier detection is set by the integration time constant.
For typical experiments, this time constant is 0.1-0.3 s, resulting in a bandwidth of ≈3-
10 Hz. The frequency ω is typically in the range of 20-100 Hz. Because of excessive noise
coming from the main power grid, frequencies around multiples of 50 Hz should be
avoided. For tunneling spectroscopy, the spectroscopic resolution is set by the excita-
tion amplitude Vexc. We use typical amplitudes of 5-10µV at the sample, which is below
the smearing expected from the finite sample temperature.

3.5. LOW TEMPERATURE SET-UPS
The experiments in this thesis have been performed in bottom loading Oxford Triton
200 (K4) and Oxford Triton 400 (K3, K5) dilution refrigerators, with a base tempera-
ture of about 20 mK on the mixing chamber plate. The Aharanov-Bohm measurements
presented in chapter 4 have been performed in a closed cycle He-3 cryostat from Janis
(known as Vector Janis), with a base temperature of about 300 mK. Because a high sam-
ple temperature limits the resolution that can be achieved in tunneling spectroscopy
experiments, very low temperatures are required. In order to achieve the lowest tem-
perature, the sample must be sufficiently isolated from the warmer parts of the set-up.
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The relevant temperature for our experiments is the temperature of the electrons as they
enter our devices from the attached leads. This temperature can be significantly higher
than the temperature of the mixing chamber if thermalization at the coldest stage of the
fridge is weak, for example due to thermal decoupling of the electrons from the substrate
lattice [17].

Figure 3.9: Effect of sample lid on electron temperature in K4. (a) I −V characteristics of a NIS junction
without (black circles) and with (red squares) a copper sample lid. Fits to the model of ref. [18] indicated by the
blue lines. (b) Extracted electron temperature as a function of the mixing chamber temperature. The addition
of the sample lid significantly lowers the temperature of the electrons going through the device.

We characterize the electron temperature of the K4 dilution refrigerator with a Cu-AlOx -
Al NIS junction device, developed by the group of J. Pekola at Aalto University [18]. When
the device is voltage biased below the gap of the superconductor, the sub-gap current de-
pends on the smearing of the Fermi-Dirac distribution in the normal metal. We measure
the I −V characteristic and then fit the sub-gap current using the model of ref. [18] to
extract the electron temperature (Fig. 3.9(a)).

In 3.9(b), we plot the extracted electron temperature as a function of the mixing chamber
temperature, Tmix. If the electrons are well thermalized, we expect the data points to fall
onto the dashed line. However, Telectron becomes significantly higher than Tmix as the
fridge is cooled to base temperature (black circles). One possible reason is insufficient
shielding from radiation close to the sample stage, which heats up the electrons. We
cover the sample with a light-tight copper lid, which is coated with an absorptive black
paint on the inside, in order to minimize heating due to residual radiation, which sig-
nificantly reduces the electron temperature (red squares), and keeps the electrons well
thermalized all the way to base temperature. The difference can also clearly be seen
in Fig. 3.9(a), where the rise of the current with bias voltage is much sharper with (red
squares) than without the lid (black circles).

A few additional remarks are in order. The fitting procedure requires estimates for the
superconducting gap, the normal state resistance of the junction, and the Dynes param-
eter, which are then assumed to be temperature independent in the range of interest.
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For these fits, we fixed the parameters to the following values: RN = 16 kΩ, γ = 1 ·10−5,
and ∆ = 205µeV.

For the experiment without the sample lid, the sample was loaded using the bottom
loading system. During this procedure, the fridge is at low temperature (∼ 20 K) when
the sample is inserted. For the experiment with the lid, the sample was loaded while the
fridge was at room temperature. The thermalization of the sample depends on the an-
choring to the mixing chamber plate, which is different between a cold and warm load.
This means not all of the difference is necessarily related to the sample lid. Because
warming up the entire dilution refrigerator to room temperature for every sample load
is a significant time investment, all of the nanowire experiments in this thesis have been
performed with cold loaded samples.

Previously it was found that extracting the electron temperature by fitting the Coulomb
peaks in a nanowire quantum dot gives slightly different results than the NIS junctions [19].
As the NIS junction consists of micron size metallic leads, it is plausible that it will ther-
malize better to the substrate than our nanowire devices, which are significantly smaller
(similar to the nanowire quantum dot case). Therefore, the relevant temperature in
our experiments is most likely slightly higher than the temperature measured using the
NIS junction. When we apply the same model to the hard gap tunneling data from e.g.
chapter 4, the extracted electron temperature is typically 15-25 mK higher than what we
would expect based on the NIS measurements, giving us a typical Telectron of 50 mK for
practical purposes.
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EPITAXY OF ADVANCED NANOWIRE

QUANTUM DEVICES

S. Gazibegovic*, D. Car*, H. Zhang*, S. C. Balk, J. A. Logan, M. W. A. de
Moor, M. C. Cassidy, R. Schmits, D. Xu, G. Wang, P. Krogstrup, R. L. M. Op
het Veld, K. Zuo, Y. Vos, J. Shen, D. Bouman, B. Shojaei, D. Pennachio, J. S.
Lee, P. J. van Veldhoven, S. Koelling, M. A. Verheijen, L. P. Kouwenhoven,

C. J. Palmstrøm, and E. P. A. M. Bakkers

Semiconductor nanowires are ideal for realizing various low-dimensional quantum de-
vices. In particular, topological phases of matter hosting non-Abelian quasiparticles
(such as anyons) can emerge when a semiconductor nanowire with strong spin-orbit
coupling is brought into contact with a superconductor [1, 2]. To exploit the poten-
tial of non-Abelian anyons—which are key elements of topological quantum comput-
ing—fully, they need to be exchanged in a well-controlled braiding operation [3–8]. Es-
sential hardware for braiding is a network of crystalline nanowires coupled to supercon-
ducting islands. Here we demonstrate a technique for generic bottom-up synthesis of
complex quantum devices with a special focus on nanowire networks with a predefined
number of superconducting islands. Structural analysis confirms the high crystalline
quality of the nanowire junctions, as well as an epitaxial superconductor-semiconductor
interface. Quantum transport measurements of nanowire ‘hashtags’ reveal Aharonov-
Bohm and weak antilocalization effects, indicating a phase-coherent system with strong
spin-orbit coupling. In addition, a proximity-induced hard superconducting gap (with
vanishing sub-gap conductance) is demonstrated in these hybrid superconductor-
semiconductor nanowires, highlighting the successful materials development necessary
for a first braiding experiment. Our approach opens up new avenues for the realization
of epitaxial three-dimensional quantum architectures which have the potential to be-
come key components of various quantum devices.

This chapter has been published in Nature 548, 434–438 (2017).
*These authors contributed equally to this work.
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4.1. INTRODUCTION
Majorana zero modes are predicted to emerge once a superconductor is coupled to a
semiconductor nanowire with a strong spin-orbit interaction in an external magnetic
field [1, 2]. InSb nanowires are a prime choice for this application owing to the large
Landé g -factor (about 50) and strong Rashba spin-orbit interaction [9], crucial for the
realization of Majorana zero modes. In addition, InSb nanowires generally show high
mobility and ballistic transport [10–12]. Indeed, signatures of Majorana zero modes
have been detected in hybrid superconductor-semiconductor InSb and InAs nanowire
systems [11, 13–15]. Multiple schemes for topological quantum computing based on
braiding of Majorana zero modes have been reported, all employing hybrid nanowire
networks [3–8].

Top-down fabrication of InSb nanowire networks is an attractive route towards scalabil-
ity [16]; however, the large lattice mismatch between InSb and insulating growth sub-
strates limits the quality of the crystal. An alternative approach is bottom-up synthesis
of out-of-plane nanowire networks which, owing to their large surface-to-volume ra-
tio, effectively relieve strain on their sidewalls, enabling the growth of monocrystalline
nanowires on highly lattice-mismatched substrates [17–19]. Recently, different schemes
have been reported for merging nanowires into networks [20–22]. Unfortunately, these
structures are either not monocrystalline, owing to a mismatch of the crystal structure
of the wires with that of the substrate (that is, hexagonal nanowires on a cubic sub-
strate) [22], or the yield is low owing to limited control over the multiple accessible growth
directions (the yield decreases with the number of junctions in the network) [23].

Here, we develop a technique for bottom-up synthesis of monocrystalline InSb nanowire
networks with an unprecedented yield of crossed junctions. Accurate control over the
nanowire position and growth direction enables us to grow complicated networks of up
to four crossed junctions, such as closed loops of four interconnected nanowires (re-
ferred to as ‘hashtags’). Furthermore, this platform allows in situ growth of a predefined
number of separated superconducting islands on the nanowires. This eliminates the
need for metal etching during device fabrication. Therefore, the integration of semi-
conductors with metals (for example, niobium) is possible without an additional etch-
ing process. This guarantees that the pristine atomically flat InSb(110) facets are left
intact, a key element for high device performance. At the same time a clean epitaxial
superconductor-nanowire interface is established, which has recently been proven to be
crucial for the quality of the induced superconducting gap [24, 25].

4.2. SUBSTRATE FABRICATION AND NANOWIRE GROWTH
For the growth of the nanowire networks a substrate with trenches is first fabricated (see
Fig. 4.1a). These structures are defined by electron-beam lithography, a reactive ion
etch and a subsequent wet etch to expose (111)B facets on an InP(100) crystal surface
(Fig. 4.1a). See section 4.6 and Fig. 4.5 for the fabrication of InP substrate with trenches. A
second lithography step is then used to position gold particles, which catalyze nanowire
growth via the vapor-liquid-solid mechanism, on the inclined facets (Figs. 4.6 and 4.7).
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Owing to the geometry of the (111)B facets, the nanowires are forced to grow towards
each other and can fuse into a network.

a b

c d

e f

InSb
InP

Au

network
offset

∆y

(111)B

a c bd

InP(100)

54.7°
e

f

L1 R1 L2 L1 R1

L3 L2 L1 R1 L2 L1 R1 R2

L2 L1 R1 R2

Figure 4.1: Deterministic growth of InSb nanowire networks. a, Schematic illustration of the substrate with
etched trenches. Gold catalysts are lithographically defined on the inclined facets. The offset between the cat-
alyst particles (∆y) is critical for the realization of nanowire networks and shadowed superconducting islands.
The size and the symmetry of the networks are controlled by the dimensions of the trenches indicated in the
schematic: the spacing between the left-left (L1, L2), a, right-right (R1, R2), b, and left-right (L1, R1), trenches,
c, as well as the trench depth, d , width, e, and position of the gold particles on the inclined facets, f . b, A
scanning electron microscopy (SEM) image of InP nanowires which serve as stems for InSb nanowire growth.
c-f, SEM images and schematic illustrations of accomplished nanowire structures having one junction (c), two
junctions (d), three junctions (e) or four junctions (f; hashtag). All SEM images are taken at 30◦ tilt. All scale
bars are 1µm.

The final size and symmetry of the networks are controlled by the dimensions of the
trenches and the spacing between them, that is, the parameters a- f , as indicated in
Fig. 4.1a and Fig. 4.8. The left (right) trenches and wires grown from them are labelled
L1, L2 (R1, R2). The offset (∆y) between the gold particles is an important parameter to
control for two reasons. First, if ∆y < D , where D is the nanowire diameter, nanowires
will merge during growth (specifically, for ∆y ≈ 0 (∆y ≤ D), resulting in the formation
of a T-junction (X-junction) [23]); second, ∆y > D enables shadow growth of the su-
perconducting islands, as discussed later in the text. In Fig. 4.1b we show a uniform
array of InP nanowires that are used as stems to facilitate uniform nucleation of InSb
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nanowires. When InSb nanowires (highlighted in red in Fig. 4.1c-f) are grown on top of
these InP stems, nanowire networks with 1-4 wire-wire junctions are formed, depend-
ing on the trench design (Fig. 4.1c-f). Importantly, this approach is generic and can be
used to synthesize interconnected nanowires of various semiconductor materials which
grow along a 〈111〉B direction. The number of wire-wire junctions can be increased by
allowing for longer nanowire growth times and/or fabricating a larger number of left and
right trenches. The high crystal quality of the InSb nanowire junctions is confirmed by
high-resolution transmission electron microscopy (HRTEM) imaging of a hashtag struc-
ture (see Fig. 4.9).

111

50 nm100 nm

e

200 nm

InSb

Al

c

Al flux

d

b

a

AlOx

Al

InSb

Figure 4.2: Epitaxial growth of Al islands on InSb nanowires. a, A 45◦-tilted SEM image of an array of Al-InSb
nanowires. The green arrow indicates the direction of Al beam flux during deposition. Scale bar is 1µm. Inset,
magnified area indicated by a white rectangle in the main panel. Each InSb nanowire is covered by two Al is-
lands separated by a shadowed region. The number of shadows, n, and hence the number of superconducting
islands, n +1, is determined by the number of wires directly in front of the shadowed wire. b, SEM images of
InSb nanowires with two (left) and four (right) Al islands (pseudo-colored green). Both scale bars are 200 nm.
c, STEM-EDX chemical composition map of an InSb nanowire (red) with Al islands (green) separated by an Al-
free shadowed region. d, EDX chemical composition map of the nanowire cross-section. Al (green) is covering
two out of the six {110} InSb side-facets. The Al-InSb interface is oxygen-free. e, High-resolution transmission
electron microscopy image of an InSb nanowire (red) covered with a thin (about 10 nm), crystalline film of Al
(green) and a layer of AlOx (blue). InSb growth direction 〈111〉 is indicated by a white arrow. The image is taken
along the 〈110〉 zone axis. The scale bar is 10 nm.
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Next, we combine the nanowire-network geometry with the directionality of molecular
beam epitaxy (MBE) to shadow-grow aluminum superconducting islands on the InSb
wires. The aluminum flux is aligned parallel to the trenches (Fig. 4.2a), such that a frontal
wire casts a shadow on a wire in the background (inset of Fig. 4.2a). This causes in-
terruptions in a uniform layer of aluminum as shown in Fig. 4.2b (left). For effective
shadowing, it is important that the frontal wire does not merge with the shadowed wire,
that is, ∆y > D . The number of shadows, n, (and, accordingly, the number of super-
conducting islands, n +1) on any InSb nanowire is determined by the number of wires
directly in front of that nanowire. For example, Fig. 4.2b (right) and Fig. 4.10 depict an
InSb nanowire with three shadows cast by three frontal nanowires. The position and the
width of the shadows are uniform for all wires examined and are set by the relative posi-
tion of the wires and the solid angle of the aluminum effusion cell. The abrupt transition
between the shadowed region of the nanowire and the segment covered with aluminum
is evident from the chemical composition map (Fig. 4.2c) acquired by energy-dispersive
X-ray spectroscopy (EDX) combined with scanning transmission electron microscopy
(STEM). The line-of-sight directionality of MBE growth results in aluminum being de-
posited on two out of six facets of an InSb nanowire, as can be seen from a STEM-EDX
map of a nanowire cross-section (Fig. 4.2d). The partial coverage of a nanowire with
aluminum is essential as it allows tuning of the electron density of the proximitized
nanowire by an external gate electrode, which is necessary for accessing the topologi-
cal phase. The epitaxial interface between the InSb nanowire and a uniform, thin layer
of aluminum is revealed by HRTEM imaging (Fig. 4.2e). In the next section, we assess the
electronic quality of our structures.

4.3. PHASE-COHERENT TRANSPORT IN NANOHASHTAGS
Phase-coherent transport is a basic requirement for certain measurement-based braid-
ing schemes which make use of an interferometric readout [7, 8]. This interferometer re-
quires tuning towards a maximum amplitude of the Aharonov-Bohm oscillations. To in-
vestigate the Aharonov-Bohm effect in our nanowire networks, nanowire hashtags were
transferred onto a SiO2/p-Si substrate and contacted by metal electrodes (Au/Cr, 4.3a left
inset). Figure 4.3a shows the magnetoconductance of a representative device (device A).

Periodic Aharonov-Bohm oscillations can clearly be seen (Fig. 4.3a right inset), as well as
a pronounced weak antilocalization conductance peak at B = 0 T. The weak antilocaliza-
tion conductance peak is present in most of the measured hashtag devices, for both in-
and out-of-plane magnetic field orientations (Fig. 4.11), indicating a strong spin-orbit
coupling in this system. The observed weak antilocalization effect also suggests diffu-
sive transport in our hashtag devices, since the hashtag length is several times longer
than the estimated mean free path, approximately 250 nm for InSb nanowires [10, 26].
The period of the Aharonov-Bohm oscillations is extracted from a discrete Fourier trans-
form of the magnetoconductance. Figure 4.3b shows the averaged fast Fourier transform
(FFT) spectrum of which the peak frequency (60 T−1 with a standard deviation of 2 T−1)
corresponds to a period ∆B of 16.7 mT with a standard deviation of 0.6 mT.
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The effective area (A) calculated from this Aharonov-Bohm period (A =Φ/∆B = 0.25µm2

with a standard deviation of 0.01µm2, where Φ = h/e is the flux quantum) is in agree-
ment with the measured area of a hashtag loop (A ≈ 0.25µm2 with a standard deviation
of 0.02µm2).
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Figure 4.3: Aharonov-Bohm and weak antilocalization effects in nanowire hashtags. a, Magnetoconduc-
tance of a hashtag shows periodic Aharonov-Bohm oscillations and a weak antilocalization peak at B = 0 T.
Inset (left), a pseudo-colored SEM image of the device. An InSb hashtag (red) is in contact with normal
metal electrodes (yellow) and measured in an out-of-plane magnetic field at 300 mK. Scale bar is 500 nm. In-
set (right), magnification of the region indicated by an orange rectangle in the main panel, containing four
Aharonov-Bohm periods. b, FFT spectrum of the magnetoconductance of this device (ensemble averaged),
indicating the Aharonov-Bohm (AB) oscillation frequency. The dashed line indicates the expected frequency
based on the area calculated from the SEM image, dash-dotted lines indicate the expected minimum and max-
imum frequencies due to the finite thickness of the interferometer arms. Inset, plot of the peak frequency, as-
signed from the averaged FFT spectra, as a function of the loop area for four different hashtag devices. The red
line corresponds to the expected frequency of an h/e periodic oscillation for a given loop area. a.u., arbitrary
units. c, Temperature dependence of Aharonov-Bohm oscillations (background subtracted). The Aharonov-
Bohm effect persists up to 1.6 K. Curves are offset vertically for clarity. d, Aharonov-Bohm (AB) amplitude as
a function of temperature. The red line is a fit to the data, showing an exponential decay of the oscillation
amplitude.

We determine the peak frequency for four different devices with different loop areas,
showing good agreement with the expected values (Fig. 4.3b inset). This agreement be-
tween theory and experiment confirms that the observed Aharonov-Bohm oscillations
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are indeed a result of the quantum interference of electron waves emanating from the
two transport channels that constitute the hashtag.

Magnetoconductance traces taken at increasing temperature values are shown in Fig. 4.3c.
Aharonov-Bohm oscillations persist up to about 1.6 K. The amplitude of the Aharonov-
Bohm oscillations decays exponentially with temperature (Fig. 4.3d). This exponential
behaviour, observed in early Aharonov-Bohm experiments with similar loop size [27],
suggests that the phase coherence length is proportional to T −1. Following the method
described in ref. [27], we can estimate a phase coherence length on the basis of the sup-
pression slope in Fig. 4.3d, to be 0.7µm with a standard deviation of 0.1µm at 1 K, which
translates to 2.3µm with a standard deviation of 0.3µm at 300 mK.

4.4. SUPERCONDUCTING GAP IN SHADOWED JUNCTIONS
The last essential requirement for a topological phase is induced superconductivity in
the InSb nanowires. For this study, InSb wires with two superconducting islands were
used to fabricate N-nanowire-S devices by replacing one superconducting island with
a normal metal electrode (see section 4.6 for the device fabrication recipe). The shad-
owed region of the nanowire is situated in between the normal contact and the other
superconducting island, and can be depleted by a bottom gate (inset Fig. 4.4c), to form
a tunnel barrier.

In the tunneling regime, the differential conductance reflects the quasiparticle density-
of-states in the proximitized nanowire segment. Figure 4.4a shows a plot of differen-
tial conductance (dI /dV ) versus bias voltage (V ) and back gate voltage (Vgate) at 20 mK.
Hence, the two high-conductance horizontal lines (at V =± 0.24 mV) in Fig. 4.4a corre-
spond to the superconducting coherence peaks. The shape of the superconducting gap
can be clearly resolved in Fig. 4.4b, which shows a vertical line-cut plotted on both lin-
ear (left) and logarithmic (right) scales, indicating the ratio of the above-gap to sub-gap
conductance GN/GS ≈ 100.

Figure 4.4c maps out the obtained values of GS versus GN (black dots) together with the
Beenakker expression (red line) for an N-quantum point contact (QPC)-S system. This
expression assumes that GS is due to a single-channel Andreev reflection in the shad-
owed region (see Fig. 4.12) [28]. Theory and experiment are in agreement over two or-
ders of magnitude in conductance. This shows that the GS in this system is dominated
by the Andreev process in the absence of quasiparticle transport.

Figure 4.4d shows the differential conductance (dI /dV ) of the same device as a function
of bias voltage (V ) and magnetic field (B) pointing along the nanowire, taken at Vgate

= -5.7 V. From the horizontal line-cut at V = 0 V (lower panel), it can be seen that GS

is pinned to extremely low values of conductance for magnetic field values up to 0.9 T.
The evolution of the induced superconducting gap in the magnetic field is illustrated in
Fig. 4.4e. The black, green and orange line cuts are taken at B = 0 T, 0.5 T and 1 T, respec-
tively. Importantly, the induced hard superconducting gap in Al-InSb nanowires endures
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Figure 4.4: Induced hard superconducting gap in a shadowed Al-InSb nanowire device. a, Differential con-
ductance (dI /dV ) as a function of bias voltage (V ) and back gate voltage (Vgate) in the tunneling regime, re-
solving a hard superconducting gap (at about 20 mK). b, A line cut taken at the position indicated by the black
bar in a (at Vgate = -5.8 V), plotted on linear (left) and logarithmic scale (right). The ratio of above-gap and
sub-gap conductance (GN/GS) reaches about 100. The induced superconducting gap size is ∆ ≈ 0.24 meV. c,
Sub-gap conductance as a function of above-gap conductance. The red line is the theoretical curve calculated
assuming only Andreev processes [28]. Inset, a pseudo-colored SEM image of the similar device. The device is
an N (yellow)-nanowire (gray)-S (green) system. The scale bar is 500 nm. d, Magnetic field dependence of the
superconducting gap (Vgate ≈ -5.7 V) in the device. The magnetic field direction is aligned with the nanowire
axis. The lower panel shows a horizontal line-cut taken at V = 0 V (in the middle of the superconducting gap).
e, Vertical line cuts taken at positions indicated by a black (B = 0 T), green (B = 0.5 T) and orange bar (B = 1 T) in
the upper panel in d, illustrating the evolution of the induced superconducting gap in the increasing magnetic
field.
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up to B ≈ 0.9 T, which surpasses the value of the magnetic field required for achieving a
topological phase transition in InSb (B ≈ 0.2 T) [1, 2, 11]. Figure 4.12 shows data of addi-
tional devices and the corresponding analysis.

4.5. CONCLUSION
The combination of phase-coherent transport in a network of nanowires and a hard su-
perconducting gap in InSb nanowires, induced by local superconductor islands, is a sub-
stantial materials advancement that paves the road for the first Majorana braiding ex-
periments. We emphasize that the platform developed in this work is generic and can be
used for many different superconductor-semiconductor combinations, presenting op-
portunities in new quantum devices. For instance, devices working on the principle of
beam splitting and interference of electrons (that is, Aharonov-Bohm interferometers,
Cooper pair splitters), as well as other, less-investigated quasiparticles, that is, phonons.
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4.6. METHODS AND ADDITIONAL DATA

4.6.1. SUBSTRATE FABRICATION

Fabrication of substrates with trenches is a three-step lithography process: First, electron-
beam lithography (EBL) and metal lift-off are used to deposit alignment markers on a
(100) InP substrate.

Substrate cleaning. InP(100) wafer is cleaned with buffered oxide etch (NH4F:HF = 7:1)
(5 min), rinsed with H2O, IPA (10 min).
Fabrication of markers. Spin resist AR-P 6200.13 at 6000 r.p.m., bake at 150 ◦C for 3 min;
write marker patterns using e-beam lithography (dose 300µC cm−2); developing in AR
600-546 for 1:30 min in ultrasonic agitation; ultrasonic rinse in IPA for 30 s, blow dry;
evaporation of 80 nm Au; lift-off in PRS-3000 at 88 ◦C for 2 h; rinse in warm (>50 ◦C) H2O;
rinse in IPA for 1 min, blow dry.
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Second, the InP(100) wafer is cleaned in buffered oxide etch (NH4F:HF = 7:1) for 5 min
and exposed to O2 microwave plasma to create a thin (about 2 nm) sacrificial layer of na-
tive oxide on the surface before deposition of 50 nm of SiOx by plasma-enhanced chemi-
cal vapor deposition (PECVD). EBL and reactive ion etching (RIE) in CHF3/Ar plasma are
used to define rectangular openings in SiOx , whose long edge is aligned with the [01̄1̄]
direction of the substrate. The alignment of the openings is crucial to achieve trenches
with inclined (111)B facets after the subsequent anisotropic wet etch step (HCl:H3PO4 =
5:1, for 15 s at 1 ◦C) [29].

e-

primer + resist

InP (100)

CHF3 + Ar1.

2.

3.

4.

5.

6.

7.

8.

54.7°

SiOx
InPOx

(111)B

InP (100)

Figure 4.5: Fabrication of InP substrate with trenches. 1-8: Schematic illustration of the processing steps.
1, An out of the box wafer is etched in 7:1 buffered HF; an oxygen plasma step is performed to create a ‘sacri-
ficial’ native oxide layer of 1.9±0.1 nm [30]; a 20 nm SiOx hard mask is deposited followed by another oxygen
plasma treatment. 2, 3, 4, The electron-beam primer and resist layer is spun; rectangular windows of ∼200 nm
are written using EBL and subsequently developed. 5, 6, The hard mask is etched using reactive ion etching
(RIE) with CHF3 and Ar. 7, 8, The wet etch in HCl (37%):H3PO4 (85%) with 5:1 ratio is performed to expose
(111)B facets in InP (100) and the hard mask is removed using 7:1 buffered HF.

Substrate cleaning. InP(100) wafer with markers is cleaned with buffered oxide etch
(NH4F:HF = 7:1) (5 min), rinsed with H2O, IPA (10 min).



4.6. METHODS AND ADDITIONAL DATA

4

47

Hard mask (1 in Fig. 4.5). Sacrificial layer deposition microwave oxygen plasma (10 min,
200 ml min−1, power 100 W, PVA Tepla 300); PECVD 20 nm SiOx deposition (300 ◦C, Ox-
ford Instruments PlasmaLab 80 Plus); oxygen plasma (60 s, power 40 W).
Fabrication of trenches (2-8 in Fig. 4.5). Spin primer (sticking layer) AR 300-80 at 2000 r.p.m.,
bake at 180 ◦C for 2 min; spin resist AR-P 6200.13 at 6000 r.p.m., bake at 150 ◦C for 3 min;
write trench patterns using EBL (dose 350µC cm−2); developing in AR 600-546 for 1:30 min
in ultrasonic agitation; ultrasonic rinse in IPA for 30 s, blow dry; RIE (reactive ion etch)
mask (23 W, 50 standard cubic centimetres (sccm) CHF3, 2 sccm Ar, Leybold Hereaus,
12 min); wet etch in HCl (37%):H3PO4 (85%) ratio 5:1 (15 s, 1 ◦C); strip the resist in PRS-
3000 at 88 ◦C for 20 min; removing hard mask in buffered oxide etch (NH4F:HF = 7:1)
(5 min).
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primer + resist
Au

(111)B

Figure 4.6: Catalyst deposition. 1-8: Schematic illustration of the processing steps. 1, 20 nm SiNx mask is
deposited followed by an oxygen plasma treatment. 2-4, E-beam primer and resist layer is spun (nominal
resist thickness needs to be half of the depth of the trenches); arrays of dots (10-50 nm) are written on inclined
(111)B facets using e-beam lithography and the resist is then developed. 5, Openings in SiNx mask are defined
using short 20:1 buffered HF etch. 6-8, 10 nm of gold is evaporated through the opening in SiNx mask followed
by a lift-off.

Third, SiOx is stripped in BHF (5 min) and 20 nm of PECVD SiNx is deposited on the
substrate to prevent the parasitic InSb thin film growth which competes with nanowire
growth [31]. EBL step followed by a short (40 s) buffered oxide etch (NH4F:HF = 20:1 +
surfactant (Triton)) is used to define openings in the SiNx mask. Metal evaporation (8 nm
of Au) and lift-off are used to position Au catalysts (10-50 nm in size) in the openings in
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the SiNx (Fig. 4.6).
Deposition of the mask (1 in Fig. 4.6). PECVD 20 nm SiNx deposition (300 ◦C, Oxford In-
strumentals PlasmaLab 80 Plus); oxygen plasma (60 s, power 40 W).
Dots formation (2-8 in Fig. 4.6). Spin primer (sticking layer) AR 300-80 at 2000 r.p.m.,
bake at 180 ◦C for 2 min; spin resist AR-P 6200.04 at 4000 r.p.m., bake at 150 ◦C for 3 min;
write dot patterns using e-beam lithography (dose 700-800µC cm−2); developing in AR
600-546 for 1:30 min in ultrasonic agitation; ultrasonic rinse in IPA for 30 s, blow dry;
opening the holes in SiNx mask with buffered oxide etch (NH4F:HF = 20:1) + 5 drops of
surfactant Triton X-100 (40-60 s); rinse with H2O, IPA (10 min); evaporation of 10 nm Au;
lift-off in PRS-3000 at 88 ◦C for 2 h; rinse in warm (>50 ◦C) H2O; rinse in IPA for 1 min,
blow dry.

4.6.2. NANOWIRE GROWTH

To remove organic residues from the wafer caused by the photoresist layer, O2 plasma
(10 min, 55 sccm O2, 300 W plasma power) was used before loading into an horizon-
tal Aixtron 200 metal-organic vapor phase epitaxy (MOVPE) reactor with infrared lamp
heating. InP nanowires, which act as the mediator for InSb nanowire growth, were grown
at 450 ◦C for 19 min using tri-methyl-indium (TMI), phosphine (PH3) and HCl (1%) with
precursor molar fractions Xi (TMI) = 7.6×10−6 and Xi (PH3) = 9×10−3 and Xi (HCl) =
8.3×10−6. HCl was used to suppress unwanted sidewall growth. InSb nanowires were
grown at 495 ◦C using tri-methyl-indium (TMI) and tri-methyl-antimony (TMSb) with
precursor molar fractions Xi (TMI) = 2.8×10−7 and Xi (TMSb) = 5.1×10−5, for 35 min.
For both processes, the reactor pressure was 50 mbar, with a total flow of 6000 sccm and
H2 was used as a carrier gas.

ba

Figure 4.7: Role of the SiNx mask in InSb nanowire growth. a, b, A 30◦-tilted SEM image of InP-InSb nanowires
grown on a substrate without (a) and with (b) SiNx mask. A substantial amount of parasitic thin film growth
is observed in a. Concave edges of the trenches act as a preferential nucleation site for InSb growth. Thin-film
InSb growth is in direct competition with InSb nanowire growth, resulting in short nanowires and a very low
yield of crossed junctions. By covering the substrate with a SiNx mask, the growth is restricted to areas where
the InP substrate is exposed [31]. This, in combination with approximately 100 times lower molar fractions
of TMIn and TMSb used for the growth of wires shown in b, eliminates the unwanted InSb layer growth and
allows for growth of high-aspect-ratio InSb nanowires which merge into networks. Both scale bars are 1µm.
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a b

Figure 4.8: Lithographic control over the trench design layout enables growth of hashtags spanning different
loop areas. a, b, InSb nanowire networks grown on trenches with different spacing between the left-left (L1,
L2) and right-right (R1, R2) trenches, labelled a and b in Fig. 4.1a, respectively. Control over the dimensions of
the trenches allows us to tune the length of the hashtag parallelogram. The scale bars are 1µm.

4.6.3. GROWTH OF SUPERCONDUCTING ALUMINUM ISLANDS

Nanowire networks are transferred ex situ to a molecular beam epitaxy (MBE) chamber
where an atomic hydrogen clean (20 min under continuous rotation, 380 ◦C, 5 × 10−6

torr H2 pressure) is first performed to remove the native oxide from the InSb nanowire
surface [32]. Subsequently, samples were cooled down to about 120 K by active liquid
nitrogen cooling. Careful alignment of nanowires relative to the Al source is important
for well-controlled shadowing of the nanowires. Samples are aligned such that the Al flux
is parallel to the long edge of the trenches, as illustrated in Fig. 4.2a. Al cell temperature
was 1085 ◦C, resulting in a growth rate of around 2 Å min−1. Immediately after growth,
samples were transferred in situ to an MBE chamber equipped with an ultra-high purity
O2 source where they were dosed with approximately 10−5 torr of O2 for 15 min. This step
is important because a so-formed self-terminating oxide layer will ‘freeze-in’ the Al film,
preventing it from diffusing and forming Stranski-Krastanov Al islands, while the sample
is being heated up to room temperature in an ultra-high vacuum, before unloading from
the MBE chamber.

4.6.4. AHARONOV-BOHM DEVICES

Device fabrication recipe.

1. Transfer hashtag nanowires onto a p-doped Si substrate covered by 285 nm SiO2

layer, serving as a back gate dielectric.

2. Spinning bilayer PMMA: first PMMA 495K A6 at 3000 r.p.m. spinning rate, bake at
175 ◦C for 10 min. Then PMMA 950K A2 at 2000 r.p.m., bake at 175 ◦C for 10 min.

3. Write designed contacts and side gates patterns with e-beam.

4. Develop in developer (MIBK:IPA = 1:3) for 1 min, clean in IPA for 1 min, air-gun
blow dry.
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Figure 4.9: Structural analysis of a hashtag taken from the substrate and deposited on a holey carbon film
using a micromanipulator in the SEM. a, High-angle annular dark field (HAADF) scanning TEM image of
the hashtag. The red arrows indicate the positions of the gold catalyst particles. For one wire, the InP stem
is present and recognizable. b, Corresponding bright field (BF) TEM image. c, BFTEM image displaying the
central part of the hashtag as well as the 1.3µm aperture inserted for the selected area electron diffraction
(SAED) pattern displayed in d. The pattern represents a superposition of three twin-related 〈110〉 zone axis
patterns. e, To reveal the orientation of the individual wires of the hashtag, SAED patterns for all the wires
were acquired, using a smaller SAED aperture diameter of 0.25µm. Three different 〈110〉 zone axis patterns
were recorded. The color coding of the apertures in e corresponds to the SAED patterns in f-h. i, Schematic
representation of the formation of the hashtag presented in the TEM images. The blue and purple nanowires
have two different orientations, related by a 180◦ rotation around their long axis. Thus, one of the wires has
the same orientation as the substrate wafer, while the other one is twin related. The two yellow wires have
identical orientations that differ from the orientations of the two other wires. Thus, these yellow wires are also
twin-related to the substrate, though their rotation axis is different from that of the blue and purple wires.
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1 μm

200 nm

a

b
Al flux

Figure 4.10: The number of superconducting islands, n+1, is determined by the number of wires, n, directly
in front of the shadowed nanowire. a, A high-magnification top-down SEM image of the region indicated by
a red rectangle in b. The three nanowires facing the Al flux cast shadows on the wire directly behind them,
resulting in InSb nanowires with four superconducting islands. The shadowing offset is about 200 nm. The
nanowires bend towards each other owing to the e-beam exposure during imaging.

5. Remove scum, oxygen plasma 1 min with power 100 W, pressure 1.95 mbar (with
Faraday cage in to screen the plasma).

6. Sulfur passivation: dip the chip in ammonium sulfide solution (3 ml (NH4)2S mixed
with 290 mg sulfur powder, then diluted with de-ionized water at a volume ratio of
1:200) at 60 ◦C for 30 min. Then, rinse the chip in de-ionized water and transfer to
an evaporator.

7. Helium milling for 30 s with a Kauffman ion source. Then continue to evaporate
10 nm Cr, followed by 200 nm of Au.

8. Lift-off in acetone.

Measurement and analysis. All the four Aharonov-Bohm devices were measured in a He-
3 fridge with base temperature of about 300 mK. During the measurement, the side gates
(gray in Fig. 4.3a left inset) were kept grounded, and the global back gate is used to turn
on the conducting channels in the hashtag arms. The back gate voltage is 13.35 V for the
measurement in Fig. 4.3a.
Ensemble average of FFT. The FFT spectrum shown in Fig. 4.3b is an ensemble average of
the absolute values of 25 individual FFT spectra [33]. The individual FFTs were calculated
from the corresponding magnetoconductance traces (including the one in Fig. 4.3a),
which were measured successively with gate voltage values between 13.3 V and 13.7 V
(resulting in conductance values between 0.7×2e2/h and 0.9×2e2/h). A smooth back-
ground is subtracted from the original magnetoconductance curves before the FFT is
calculated.
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Figure 4.11: Aharonov-Bohm oscillations in four devices with different hashtag surface areas. Device A has
been studied in detail in Fig. 4.3. For all devices, left upper panel shows the pseudo-colored SEM image of
the device, middle panels show the conductance measured in the out-of-plane (top) and in-plane (bottom)
magnetic field and right panel shows the ensemble averaged FFT spectrum. Only the out-of-plane magnetic
field, whose flux penetrates through the hashtag loop, gives Aharonov-Bohm oscillations which indicates that
the Aharonov-Bohm oscillations indeed originate from the coherent interference of electron waves of the two
separated conducting nanowire arms. A magnified view of the Aharonov-Bohm oscillations (a zoom-in on
the region indicated by a red rectangle in the upper middle panel) is shown in the lower left panel, while the
right panel shows the averaged FFT spectrum. Plot of the peak frequency, assigned from the averaged FFT
spectra, as a function of the measured loop area of the four devices is shown in the inset of Fig. 4.3b. Weak
antilocalization peak at B = 0 T is present for both field directions, and in three (A, B, D) out of four devices,
suggesting the strong spin-orbit nature of the InSb nanowire network. The corresponding back gate voltages
of the four devices are: 15 V, 9 V, 12 V and 9 V, respectively. Temperature is 300 mK. The scale bar is 1µm.
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Estimation of hashtag loop area. The estimation is based on the SEM images of the de-
vice. We took the middle of the wire as the loop boundary to estimate the area, while
the error bar of the area is estimated based on the accuracy of the nanowire length we
measured from SEM images.
Estimation of phase coherence length. The amplitude of the Aharonov-Bohm oscillations
is calculated by integrating the obtained Fourier spectrum over the frequency range cor-
responding to the expected h/e peak. This amplitude decays as ∆G ∝ exp(−L/LΦ(T )),
where L is the relevant device length (we took as half of the loop circumference, that is,
L = 1µm). LΦ is the phase coherence length which is a function of temperature. The ex-
ponential suppression of ∆G over temperature suggests that LΦ is proportional to T −1:
LΦ = a/T (ref. [27]). The coefficient a can be extracted from the slope of exponential
suppression in Fig. 4.3d, to be about 0.7µm K. This allows us to estimate phase coher-
ence length at different temperatures.

4.6.5. HARD GAP DEVICES
InSb nanowire with two shadowed aluminum islands is contacted by Au/Cr. Argon plasma
etching was used to remove the aluminum film before evaporation of normal contacts.
One normal contact is deposited right next to the shadowed region to replace one alu-
minum island. The second normal contact is on the other end of the nanowire, suffi-
ciently apart from the shadowed region not to affect the superconducting properties in
its vicinity, serving as a current drain for the superconducting contact.

Device fabrication recipe.

1. Transfer InSb-Al nanowires onto a p-doped Si substrate covered by 285 nm SiO2

layer, serving as a back gate dielectric.

2. Spinning PMMA 950K A6 at 4000 r.p.m., leave the chip in a vacuum chamber pumped
with a turbo for overnight.

3. Write designed electrode contact patterns with e-beam, beam dosage: 2300µC cm−2,
1900µC cm−2 and 1800µC cm−2 for fine, coarse and bonding pads pattern, re-
spectively.

4. Development: (MIBK:IPA = 1:3) for 1 min, IPA for 1 min, blow dry.

5. Ar plasma etch for 4 min (with Ar pressure 3 mTorr, 100 W) to etch away Al, AlOx ,
InSb surface oxide and part of the InSb nanowires. To prevent the PMMA from
burning due to a long plasma etch, one can perform short plasma etch (for exam-
ple, 20 s) for 12 times with 40 s break between each etch to let the chip cool down.

6. Evaporate 10 nm Cr, followed by 100 nm of Au.

7. Lift-off in acetone.
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Measurement and analysis. Devices X (Fig. 4.4), Z (Fig. 4.12d,e), and M (Fig. 4.12f-h)
were measured in a dilution refrigerator with a base temperature of about 20 mK, while
device Y (Fig. 4.12a-c) was measured in a He-3 fridge with a base temperature of about
300 mK.
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Figure 4.12: Ballistic transport, Andreev enhancement and hard gap in additional Al-InSb devices. a, Above-
gap (normal carriers) conductance of device Y as a function of Vgate. A conductance plateau near the quan-

tized value (2e2/h) can clearly be seen, indicating ballistic transport. b, dI /dV versus bias voltage in the open
and tunnelling regime, resolving strong Andreev enhancement (green) and a hard gap (red), respectively, with
Vgate indicated by arrows in panel a. The coherence peaks are smeared out owing to thermal broadening
(temperature of about 300 mK for this device). The Andreev enhancement is due to Andreev reflection: an
incoming electron reflects as a hole at the N-S interface generating a Cooper pair. This process effectively
doubles the transported charge from e to 2e, enhancing the sub-gap conductance. Our enhancement factor
reaches 1.7×2e2/h, indicating the high Al-InSb interface transparency, with transmission larger than 0.96. The
small dip in Andreev enhancement near zero bias is due to mode mixing induced by minimal residual disor-
der [11]. c, Sub-gap versus above-gap conductance of device Y (black dots), and a theoretical fit (red) based
on the Beenakker formula, showing perfect agreement over three orders of magnitude conductance change.
d, dI /dV of device Z as a function of Vgate. e, A line cut from panel d (black bar), plotted in linear (top) and
logarithmic scale (bottom). The above-gap/sub-gap ratio is larger than 300. f, dI /dV of device M as a function
of Vgate. g, A line cut from panel f (black bar), plotted on linear (left) and logarithmic scale (right). h, Sub-gap
versus above-gap conductance of device M (black dots), and the Beenakker theoretical fit (red).
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Sub-gap versus above-gap conductance fitting in Al-InSb devices. We assume there is a
single transmitting channel in the shadow region with transmission T . The above-gap
conductance is conductance of normal carriers: GN = (2e2/h)×T , while sub-gap con-
ductance, based on Beenakker’s formula [28], is: GS = (2e2/h)×2T 2/(2−T )2. Thus GS can
be plotted as a function of GN as shown in Fig. 4.4c (red line). For the experimental data,
at each gate voltage, we get the above-gap conductance by averaging the conductance
at bias (V ) much larger than the gap (∆), while the sub-gap conductance is obtained by
averaging a small bias window at zero bias.
Contact transparency estimation based on Andreev enhancement. In Fig. 4.12b, we ob-
tain Andreev enhancement for sub-gap conductance reaching 1.7 × 2e2/h. Based on
Beenakker’s formula, setting this value equal to GS, we can extract a transparency T ≈
0.96.
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5
AHARONOV-BOHM EFFECT IN SAG

NANOWIRE NETWORKS

In the previous chapter, we have shown that nanohashtags grown by the VLS method
on patterned substrates show phase-coherent transport, one of the requirements for
various braiding schemes. While this realization is innovative in its approach, it is not
straightforward to scale to more complex networks. Therefore, an alternative approach
based on selective area growth (SAG) [1] is developed. In this chapter, we will describe
experiments performed on these networks to demonstrate their phase coherence prop-
erties.
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5.1. GROWTH AND DEVICE FABRICATION
The SAG InSb nanowire networks are grown using MOVPE on an InP (111)B substrate.
To create the mask for selective growth, the substate is first covered by 20 nm of PECVD
SiNx . By locally removing the SiNx , subsequent growth of InSb can be confined to these
regions under the right growth conditions. This makes the platform very flexible, allow-
ing the creation of any shapes that can be patterned in the SiNx mask through electron-
beam lithography followed by reactive ion etching [2]. Because the nanowires are epi-
taxially connected to the substrate, it is important that the lattice mismatch is not too
large to avoid dislocations, as these will be detrimental to the transport properties [3]. In
addition, the bandgaps of the substrate material and the nanowire material should align
such that the nanowire can be galvanically isolated from the substrate at low tempera-
tures. Finally, the nanowires and other structures should be patterned along high sym-
metry directions of the underlying substrate to get the best growth results. For (111)B
substrates, this can achieved by patterning the wires along 〈110〉 or 〈112〉 directions.

500 nm

B

Figure 5.1: Aharonov-Bohm effect in a SAG InSb nanowire network. (a) Magnetoconductance in SAG de-
vice A, showing Aharonov-Bohm oscillations. (b) Scanning electron micrograph of SAG device A. The device is
covered by sputtered SiNx dielectric and a Cr/Au top gate (not shown). The magnetic field is applied perpen-
dicular to the substrate. (c) Fourier transform of the magnetoconductance, averaged over 16 gate voltages. The
black line shows the average value, while the gray shading indicates the spread as measured by the standard
deviation. Up to 5 peaks are visible, indicating the Aharonov-Bohm frequency and its higher harmonics. Inset:
peak frequency as a function of peak number (black circles), matching the values expected based on the loop
size as measured by SEM (red line), with the red shaded region indicating the estimated uncertainty.

Using this method, nanowire hashtags similar to the ones used in chapter 4 have been
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grown [4]. Devices are fabricated by first creating ohmic contacts by Ar plasma etching,
followed by evaporation of 10/140 nm Cr/Au. Afterwards, the devices are covered by
sputtered SiNx dielectric, to galvanically isolate them from the Ti/Au top gate. Because
the InP substrate is brittle, NbTiN/Ti/Au bond pads are fabricated to facilitate the wire-
bonding process. The devices are then cooled down in a dilution refrigerator with a base
temperature of 20 mK.

5.2. MAGNETOCONDUCTANCE OSCILLATIONS IN SAG NETWORKS

The phase coherence properties can be revealed by measuring the conductance through
the hashtag as a function of an out-of-plane applied magnetic field. We measure the
magnetoconductance in SAG device A between 1 and 5 T for 16 top gate voltages in the
range of 0 to 0.15 V, with part of one such trace shown in Fig. 5.1(a). Clear oscillations
are visible, with amplitudes reaching up to 0.2 · 2e2/h. To find the periodicity of these
oscillations, we apply a discrete Fourier transform using a Hann window, and average
the resulting spectrum over the 16 gate voltages (Fig. 5.1(c), black line). Aside from a
peak at low frequencies related to universal conductance fluctuations (UCF) [5, 6], we
find 5 regularly spaced peaks in the spectrum. Based on the size of the hashtag as mea-
sured by SEM (see Fig. 5.1(b)), we estimate the magnetic field period for the h/e periodic
Aharonov-Bohm oscillations [7, 8] to be ∆B = 17 mT. Plotting the peak frequencies as
a function of peak number (inset of Fig. 5.1(c)), we find that they nicely match the ex-
pected frequencies for Aharanov-Bohm oscillations and the related higher harmonics.
The device A hashtag consists of two pairs of parallel wires intersecting at a 30◦ angle,
which means one pair was grown along the 〈110〉 direction while the other was grown
along the 〈112〉 direction.

Figure 5.2: Data processing to extract AB amplitudes. (a) Fourier spectrum of the magnetoconductance in
SAG device A (black line) at 20 mK. The low frequency background due to UCF is fitted with a power law (blue
line), and subtracted from the data (corrected data shown by the red line). (b) Gaussian fits to the first four
peaks (solid gray, red, green, and blue lines, respectively). The integration windows, determined by the width
of the Gaussians, are indicated by the dashed lines.



5

62 5. AHARONOV-BOHM EFFECT IN SAG NANOWIRE NETWORKS

5.3. DATA PROCESSING TO OBTAIN AB AMPLITUDES
We can fit the decay of the Aharonov-Bohm peak amplitude with increasing tempera-
ture to extract the phase coherence length in these SAG networks, similar to the method
described in chapter 4. For each temperature, we measure the magnetoconductance
between -1.4 and -0.4 T, at 6 top gate voltages between 0.130 and 0.135 V. The Fourier
spectra are averaged, resulting in a spectrum such as the one shown by the black line
in Fig. 5.2(a). To remove the influence of the UCF background, we fit the low frequency
(B−1 < 40) part of the spectrum with a power law (blue line), and subtract it from the
data (corrected spectrum shown in red). This procedure is found to give more robust
results for the peak amplitudes than the smooth background subtraction calculated by
moving average used in chapter 4, especially when there is substantial overlap between
the frequency ranges of the UCF and Aharonov-Bohm peaks.

We extract the amplitudes of the different harmonics by numerically integrating the data
over the frequency range associated with each peak. By integrating the data instead of
taking the value at a specific frequency, we avoid fluctuations in the extracted amplitudes
by small shifts in frequency between different measurements [8]. The integration range
is found by taking the data measured at 20 mK and fitting a Gaussian profile to each peak.
The integration ranges are set to [ fn−2σn , fn+2σn], with fn the mean of the Gaussian fit
to the nth harmonic, and σn its standard deviation. In Fig. 5.2(b), we plot the Gaussian
fits (colored solid lines) as well as the integration windows (colored dashed lines). These
windows correspond roughly to the ones expected based on the finite thickness of the
wires making up the hashtag, making it plausible to assign all frequencies within the nth
integration range to the nth harmonic of the Aharonov-Bohm effect.

Once the background has been removed and integration windows have been defined, we
extract the amplitudes of the different harmonics for each gate voltage and temperature
by numerical integration. The amplitude associated with the nth harmonic at tempera-
ture T , G AB ,n(T ), is calculated from the gate voltage averaged spectrum, while the error
is calculated by taking standard deviation of the amplitudes extracted from the individ-
ual traces. To check that our procedure is internally consistent, we also calculate the
average of the individually extracted amplitudes, finding almost no difference with the
amplitude extracted from the averaged spectrum.

5.4. TEMPERATURE DEPENDENCE OF AB OSCILLATIONS
The values of G AB ,n(T ) obtained using the procedure described in the previous section
are plotted in Fig. 5.3. The amplitude of the oscillations decreases with increasing tem-
perature, as expected. Additionally, the decay is more rapid for higher n. Defining the
phase coherence length as Lφ = L

a T −k (see also section 2.5), we can describe the temper-
ature dependence by

G AB ,n(T ) =C t 2(1− t )n−1exp((−na +b)T k ). (5.1)

The amplitude is exponentially suppressed with increasing temperature. The exponent
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k is determined by the transport regime in the ring: in the ballistic case, k = 1 [9], while
k = 1/2 if the ring is diffusive [10]. The factor a (b) describes dephasing mechanisms
which are dependent on (independent of) the amount of times an electron goes around
the loop. The coefficient a allows us to estimate the phase coherence length [11]. The
value of the coefficient b gives us information about the importance of additional de-
phasing mechanisms, such as localization traps [12], energy averaging effects [11], and
other sources of dephasing coming from the set-up [9]. Note that these contributions to
dephasing might have a very different functional dependence on the temperature than
the one assumed here. Therefore, we mainly use a large value of b as a sign that we
are missing something in our description of the temperature dependence of Aharonov-
Bohm conductance oscillations in our device.

Figure 5.3: Temperature dependence of the AB amplitude in device A. Extracted amplitudes for the first four
harmonics (black circles, red squares, green diamonds, and blue triangles, respectively) as a function of tem-
perature. Solid lines indicate fits to equation 5.1. (a) Linear scale, k = 1/2 (diffusive). (b) Linear scale, k = 1
(ballistic). To more clearly demonstrate the exponential decay of the oscillations with temperature, the same
data is plotted in logarithmic scale in (c) (diffusive), and (d) (ballistic).

The relative amplitudes of the different harmonics also depend on the transmission from
the loop to the leads, t . Here, we assume this transmission is the same for both leads,
giving a factor t 2 (to pass from the first lead to the loop and then from the loop to the
second lead), as well as a factor (1− t )n−1 to account for the reflections necessary to ob-
tain higher order oscillations.
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The prefactor C depends on details of the data acquisition and numerical procedures
(the number of collected data points, the magnetic field range, and the integration win-
dow). This prefactor can be calculated by assuming a perfect oscillation amplitude of
2e2/h at T = 0, and performing the same data processing as is done to the real data. The
prefactor obtained this way is then fixed during the fitting process for the diffusive fit
(Fig. 5.3(a,c)). In the ballistic case (Fig. 5.3(b,d)), it was not possible to obtain a good fit
with a fixed prefactor, so it was left as a free fitting parameter instead. To fit the data, we
use a least squares optimization with the data points weighted by their relative error.

Fit to equation 5.1 Ballistic fit (k = 1) Diffusive fit (k = 1/2)

Parameter Unit Value
Standard
deviation

Value
Standard
deviation

t - 0.50 0.04 0.45 0.03

C a.u. 275 36 993.28 -

a K −1 1.92 0.33 1.21 0.13

b K −1 -2.59 0.48 -3.48 0.31

R2
1 - 0.91 - 0.94 -

R2
2 - 0.98 - 0.88 -

R2
3 - 0.97 - 0.91 -

R2
4 - 0.89 - 0.82 -

Lφ (1 K) µm 0.73 0.12 1.16 0.12

Lφ (20 mK) µm 36 6 8.2 0.9

Table 5.1: Parameters corresponding to the fits shown in Fig. 5.3. The parameter R2
n refers to the coefficient

of determination of the fit of the nth harmonic. Phase coherence lengths calculated based on Lφ = L
a T−k , with

L = 1.4µm.

The parameters obtained from the fits shown in Fig. 5.3 are summarized in Table 5.1.
Both models predict an average transmission from the leads to the loop of around 0.5,
which is consistent with the average conductance of about 0.3 − 0.4 · 2e2/h shown in
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Fig. 5.1(a). The ballistic fit describes the higher order data better, while the diffusive
fit is better for the first harmonic. This is due to the fact that the diffusive model bet-
ter captures the behavior at higher temperatures, where only the first harmonic gives
a measurable signal. The ballistic model gives a better fit to the low temperature data.
One caveat is the fact that below 100 mK, it is unknown how close the electron temper-
ature on the chip is to the temperature measured on the mixing chamber plate in the
particular set-up used during these experiments. As was shown in section 3.5, the elec-
tron temperature could deviate from the mixing chamber temperature in this regime.
The diffusive model fits well with the assumption of a 2e2/h oscillation amplitude at
T = 0 K, without the need for an extra fitting parameter. We expect diffusive behavior
due to dislocations at the nanowire-substrate interface. For these reasons, we consider
the diffusive scenario the most likely. Both models give a large value for the parameter
b, suggesting a strong contribution from dephasing mechanisms that do not dependent
on the path travelled along the loop. We speculate that the main contribution to this
type of dephasing comes from the additional sections of InSb nanowire extending from
the corners of the loop. These “dephasing stubs” have been extensively studied in the
context quantum dots, and have been shown to significantly affect the phase coherence
properties of mesoscopic systems [13, 14].

1 μm

B

Figure 5.4: Aharonov-Bohm network without dephasing stubs. (a) Magnetoconductance in SAG device B,
showing Aharonov-Bohm oscillations. (b) Scanning electron micrograph of SAG device B. There are no addi-
tional stubs protruding from the corners of the hashtag, unlike in device A. (c) Fourier transform of the mag-
netoconductance, averaged over 6 gate voltages. The black line shows the average value, while the gray region
indicates the spread as measured by the standard deviation. The frequencies of the two visible peaks are close
to the expected values based on the loop size as measured in SEM (inset).
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5.5. AHARONOV-BOHM LOOP WITHOUT DEPHASING STUBS
To test our hypothesis that the additional dephasing is due to the dephasing stubs pro-
truding from the corners of the Aharonov-Bohm loop, we change the pattern used to
define the SAG nanowire networks to make loops without dephasing stubs. A SEM im-
age of device B is shown in Fig. 5.4(b)). Because the angle between the two parallel wire
pairs constituting the loop is 90◦, we can infer that this hashtag consists of both 〈110〉
and 〈112〉 growth direction, just like device A. We measure the magnetoconductance be-
tween 1.0 and 1.5 T, which is partially plotted in Fig. 5.4(a). In Fig. 5.4(c) we plot the
Fourier transform of the magnetoconductance averaged over 6 gate voltages. The first
peak in the spectrum corresponds to an oscillation period of 2.1 mT, which is close to
the period expected for h/e periodic oscillations in a loop this size. Only two harmonics
are observed in this device, which is likely related to the fact that the loop circumference
is significantly larger than in device A.

Figure 5.5: Temperature dependence of the AB amplitude in device B. Extracted amplitudes for the first two
harmonics (black circles and red squares, respectively) as a function of temperature. Solid lines indicate fits to
equation 5.1. (a) Linear scale, k = 1/2 (diffusive). (b) Linear scale, k = 1 (ballistic). To more clearly demonstrate
the exponential decay of the oscillations with temperature, the same data is plotted in logarithmic scale in (c)
(diffusive), and (d) (ballistic).

In principle two harmonics are sufficient to perform the same analysis as was done on
device A. However, as two is the bare minimum required to separate the dephasing con-
tributions captured by coefficients a and b (as it essentially constitutes a linear fit of two
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points), we should be careful when drawing conclusions. The results of the data analysis
are shown in Fig. 5.5. Both ballistic and diffusive models seem to fit the first harmonic
reasonably well. The amplitude of the second harmonic drops below noise level for tem-
peratures above 250 mK, making it harder to draw conclusions based on those fits.

We summarize the fitting results in Table 5.2. The values obtained for the coefficient b
are similar in magnitude to those obtained in device A, suggesting no improvement by
removing the dephasing stubs. As noted before, however, distinguishing mechanisms
captured by a and b using only two harmonics is challenging, as is also apparent from
the significant standard deviations of these parameters, especially in the ballistic case.
We obtain similar values for the phase coherence length as those reported in device A,
although the diffusive estimate is a bit lower. It’s worth noting that the phase coherence
length determining the oscillation amplitude of the Aharonov-Bohm effect is not uni-
versal, and depends on the size of the loop [10]. A better comparison would therefore
be made by taking loops of the same size, with and without dephasing stubs protruding
from the corners.

Fit to equation 5.1 Ballistic fit (k = 1) Diffusive fit (k = 1/2)

Parameter Unit Value
Standard
deviation

Value
Standard
deviation

t - 0.77 0.05 0.45 0.03

C a.u. 641 81 8349.6 -

a K −1 3.3 1.5 3.80 0.42

b K −1 -3.1 1.6 -2.87 0.52

R2
1 - 0.98 - 0.94 -

R2
2 - 0.94 - 0.49 -

Lφ (1 K) µm 0.89 0.41 0.78 0.09

Lφ (20 mK) µm 45 20 5.5 0.6

Table 5.2: Parameters corresponding to the fits shown in Fig. 5.5. The parameter R2
n refers to the coefficient

of determination of the fit of the nth harmonic. Phase coherence lengths calculated based on Lφ = L
a T−k , with

L = 2.96µm.
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5.6. CONCLUSION
We have investigated the phase coherence in selective area grown InSb nanowire net-
works by studying the temperature dependence of Aharanov-Bohm oscillations. We find
up to 5 harmonics of the Aharonov-Bohm effect in these networks, demonstrating good
phase coherence properties. The temperature dependence of the Aharonov-Bohm os-
cillations allows us to extract a phase coherence length of Lφ (20 mK) = 8.2±0.9µm, as-
suming diffusive transport. We also find an additional contribution to dephasing which
does not depend on the length of the path travelled around the loop, which we speculate
is due to additional dephasing stubs protruding from the corners of the loop. However,
additional experiments on loops without these dephasing stubs show a similar contri-
bution to dephasing, suggesting it is caused by other effects. To draw definitive con-
clusions, loops of the same size without and without dephasing stubs should be studied.
Because the transmission from the leads to the loop plays an important role in determin-
ing the visibility of higher harmonics, additional electrostatic gates should be patterned
such that this transmission can be tuned independently from the transport in the loop.
Furthermore, loops consisting of wires grown along only the 〈110〉 or 〈112〉 directions
should be compared to the heterogeneous loops studied here, to see if reflections at the
wire junctions could be responsible for additional localization and dephasing.

Because the odd harmonics are much more susceptible to energy averaging effects due
to a small asymmetry between the two paths, many experiments have used multiple
loops in series to promote the visibility of Aharonov-Casher [15, 16] oscillations over the
regular Aharonov-Bohm oscillations. While it is highly impractical to grow such struc-
tures using the method described in chapter 4, the SAG method can easily be imple-
mented due to the fact that the growth mask can be lithographically defined. This opens
new avenues to studying the effects of spin-orbit coupling and quasi-1D confinement
on the magnetoconductance of semiconductor nanowire networks.

CONTRIBUTIONS TO THE PROJECT
The selective area grown InSb networks used in this chapter were grown by R. L. M. Op
het Veld under the supervision of E. P. A. M. Bakkers at the Eindhoven University of Tech-
nology. The devices were fabricated and measured at Delft University of Technology. D.
Xu, V. Schaller, K. Vermeulen, Q. Wang, and B. Hesselmann fabricated the devices. The
measurements were performed M. W. A. de Moor, D. Xu, K. Vermeulen, and B. Hessel-
mann. The analysis presented in this chapter was performed by M. W. A. de Moor. The
project was supervised by H. Zhang and L. P. Kouwenhoven.
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ELECTRIC FIELD TUNABLE

SUPERCONDUCTOR-
SEMICONDUCTOR COUPLING IN

MAJORANA NANOWIRES

M. W. A. de Moor*, J. D. S. Bommer*, D. Xu*, G. W. Winkler, A. E. Antipov,
A. Bargerbos, G. Wang, N. van Loo, R. L. M. Op het Veld, S. Gazibegovic,

D. Car, J. A. Logan, M. Pendharkar, J. S. Lee, E. P. A. M. Bakkers, C. J.
Palmstrøm, R. M. Lutchyn, L. P. Kouwenhoven, and H. Zhang.

We study the effect of external electric fields on superconductor-semiconductor cou-
pling by measuring the electron transport in InSb semiconductor nanowires coupled to
an epitaxially grown Al superconductor. We find that the gate voltage induced electric
fields can greatly modify the coupling strength, which has consequences for the prox-
imity induced superconducting gap, effective g -factor, and spin-orbit coupling, which
all play a key role in understanding Majorana physics. We further show that level repul-
sion due to spin-orbit coupling in a finite size system can lead to seemingly stable zero
bias conductance peaks, which mimic the behavior of Majorana zero modes. Our results
improve the understanding of realistic Majorana nanowire systems.

This chapter has been published in New Journal of Physics 20, 103049 (2018).
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6.1. INTRODUCTION

The hybrid superconductor-semiconductor nanowire system is the prime candidate to
realize, control, and manipulate Majorana zero modes (MZMs) for topological quan-
tum information processing [1–3]. Majorana zero modes can be engineered in these
hybrid nanowire systems by combining the one dimensional nature of the nanowire,
strong spin-orbit coupling, superconductivity, and appropriate external electric (to con-
trol the chemical potential) and magnetic fields (to control the Zeeman energy) to drive
the system into a topologically non-trivial phase [4, 5]. To induce superconductivity in
the semiconductor nanowire, it needs to be coupled to a superconductor. The electronic
coupling between the two systems turns the nanowire superconducting [6], known as
the proximity effect. Following this scheme, the first signatures of MZMs were observed
in these hybrid systems, characterized by a zero bias peak (ZBP) in the tunneling con-
ductance spectrum [7–10]. Since then, significant progress has been made in Majorana
experiments [11–14], enabled by more uniform coupling between the superconductor
and semiconductor nanowire. This has been achieved by improved interface engineer-
ing: through careful ex situ processing [15–17], by depositing the superconductor on the
nanowires in situ [18, 19], and a combination of in situ and ex situ techniques [20], finally
leading to the quantization of the Majorana conductance [13].

However, the treatment of the superconductor-semiconductor coupling in the interpre-
tation of experiments is often oversimplified. This coupling has recently been predicted
to depend substantially on the confinement induced by external electric fields [21]. In
this work, we experimentally show that the superconductor-semiconductor coupling, as
parameterized by the induced superconducting gap, is affected by gate induced elec-
tric fields. Due to the change in coupling, the renormalization of material parameters is
altered, as evidenced by a change in the effective g -factor of the hybrid system. Further-
more, the electric field is shown to affect the spin-orbit interaction, revealed by a change
in the level repulsion between Andreev states. Our experimental findings are corrobo-
rated by numerical simulations.

6.2. EXPERIMENTAL SET-UP

We have performed tunneling spectroscopy experiments on four InSb-Al hybrid nanowire
devices, labeled A-D, all showing consistent behaviour. The nanowire growth proce-
dure is described in reference [20]. A scanning electron micrograph (SEM) of device A
is shown in Fig. 6.1(a). Figure 6.1(b) shows a schematic of this device and the measure-
ment set-up. For clarity, the wrap-around tunnel gate, tunnel gate dielectric and con-
tacts have been removed on one side. A normal-superconductor (NS) junction is formed
between the part of the nanowire covered by a thin shell of aluminum (10 nm thick, in-
dicated in green, S), and the Cr/Au contact (yellow, N). The transmission of the junction
is controlled by applying a voltage VTunnel to the tunnel gate (red), galvanically isolated
from the nanowire by 35 nm of sputtered SiNx dielectric. The electric field is induced by
a global back gate voltage VBG, except in the case of device B, where this role is played by
the side gate voltage VSG. Further details on device fabrication and design are included
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Figure 6.1: Device schematics. (a) SEM of device A, with InSb nanowire in gray, superconducting aluminum
shell in green, Cr/Au contacts in yellow, and local tunnel gate in red. Scale bar is 500 nm. (b) Schematic of
experimental set-up. The substrate acts as a global back gate. The magnetic field is applied along the nanowire
direction (x-axis). (c) Geometry used in the numerical simulations. A uniform potential VGate is applied as a
boundary condition at the interface between substrate and dielectric. The superconductor (green) is kept at a
fixed potential, which is set by the work function difference at the superconductor-semiconductor interface.

in section 6.9.1. To obtain information about the density of states in the proximitized
nanowire, we measure the differential conductance dI /dVBias as a function of applied
bias voltage VBias. In the following, we will label this quantity as dI /dV for brevity. A
magnetic field is applied along the nanowire direction (x-axis in Figs. 6.1(b),6.1(c)). All
measurements are performed in a dilution refrigerator with a base temperature of 20 mK.

6.3. THEORETICAL MODEL
The device geometry used in the simulation is shown in Fig. 6.1(c). We consider a nanowire
oriented along the x-direction, with a hexagonal cross-section in the y z-plane. The hy-
brid superconductor-nanowire system is described by the Bogoliubov-de Gennes Hamil-
tonian

H =
[ħ2k2

2m∗ −µ−eφ

]
τz +αy (kzσx −kxσz )τz

+αz (kxσy −kyσx )τz + 1

2
gµBBσx +∆τx .

(6.1)

The first term contains contributions from the kinetic energy and the chemical potential,
as well as the electrostatic potential φ. The second and third terms describe the Rashba
spin-orbit coupling, with the coupling strength αy (αz ) depending on the y-component
(z-component) of the electric field. The Zeeman energy contribution, proportional to
g , the Landé g -factor, is given by the fourth term. Finally, the superconducting pairing
∆ is included as the fifth term. All material parameters are position dependent, taking
different values in the InSb nanowire and the Al superconductor. For additional details
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about the simulation, see sections 6.9.2 and 6.9.3.

If the coupling between the superconductor and semiconductor is small (compared to
the bulk gap of the superconductor ∆, known as weak coupling), superconductivity can
be treated as a constant pairing potential term in the nanowire Hamiltonian, with the
induced superconducting gap being proportional to the coupling strength [22]. How-
ever, if the coupling becomes strong, the wave functions of the two materials hybridize,
and the superconductor and semiconductor have to be considered on equal footing [23].
We achieve this by solving the Schrödinger equation in both materials simultaneously.
When desired, the orbital effect of the magnetic field is added via Peierls substitution [24].
The simulations are performed using the kwant package [25].

The electrostatic potential in the nanowire cross-section is calculated from the Poisson
equation, assuming an infinitely long wire. We use a fixed potential VGate as a boundary
condition at the dielectric-substrate interface. The superconductor enters as the sec-
ond boundary condition, with a fixed potential to account for the work function dif-
ference between superconductor and semiconductor [26]. We approximate the mobile
charges in the nanowire by a 3D electron gas (Thomas-Fermi approximation). It has
been demonstrated that the potentials calculated using this approximation give good
agreement with results obtained by self-consistent Schrödinger-Poisson simulations [27].
The calculated potential for a given VGate is then inserted into the Hamiltonian (6.1).

By solving the Schrödinger equation for a given electrostatic environment, we can see
how the gate potential alters the electronic states in the nanowire, how they are coupled
to the superconductor, and how this coupling affects parameters such as the induced
gap, effective g -factor, and spin-orbit energy.

6.4. GATE VOLTAGE DEPENDENCE OF THE INDUCED SUPERCON-
DUCTING GAP

When the transmission of the NS-junction is sufficiently low (i.e., in the tunneling regime),
the differential conductance dI /dV is a direct measure of the density of states (DOS) in
the proximitized nanowire [28]. In Fig. 6.2(a), we plot dI /dV measured in device A as
a function of applied bias voltage VBias and tunnel gate voltage VTunnel, for VBG = -0.6 V.
In the low transmission regime, we resolve the superconducting gap ∆ around 250 µeV,
indicated by the position of the coherence peaks. The ratio of sub-gap to above-gap con-
ductance (proportional to the normal state transmission of the junction, T ) follows the
behavior expected from BTK theory [29, 30], indicating the sub-gap conductance is dom-
inated by Andreev reflection processes (proportional to T 2). This is generally referred to
as a hard gap. However, for more positive back gate voltages, the sub-gap conductance
is larger and shows more resonances, as is illustrated in Fig. 6.2(b) for VBG = -0.3 V. Fig-
ure 6.2(c) shows line traces taken at a similar transmission (above-gap conductance) for
both cases. The sub-gap conductance for VBG = -0.3 V (black line) exceeds that of the
hard gap case (red line) by an order of magnitude. This is indicative of a surplus of quasi-
particle states inside the gap, referred to as a soft gap.
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Figure 6.2: Gate dependence of the induced superconducting gap. (a,b) Differential conductance dI /dV mea-
sured in device A as a function of VBias and VTunnel for VBG = -0.6 V (a) and VBG = -0.3 V (b). Insets show the
calculated electron density in the wire for VGate = -0.3 V and VGate = 0.3 V, respectively. (c) Line-cuts from (a)
and (b), indicated by the colored bars, in linear (top) and logarithmic (bottom) scale. (d) Calculated DOS for
the density profiles shown in the insets of (a) and (b), shown in red and black, respectively. (e) Induced gap
magnitude ∆ as a function of VBG, showing a decrease for more positive gate voltages. Top right inset: line
traces showing the coherence peak position (indicated by the arrow) for VBG = -0.6 V (solid red line) and VBG
= -0.4 V (dashed black line). Bottom left inset: induced gap from the calculated DOS as a function of VGate,
consistent with the experimental observation.

The gate voltage induced transition from soft to hard gap is generically observed in mul-
tiple devices. To understand this phenomenology, we calculate the electron density in
the nanowire cross-section for different values of VGate. Because the charge neutrality
point in our devices is unknown, there is a difference between the gate voltages used in
the experiment and the values of VGate used in the simulation. By comparing the transi-
tion point between hard and soft gaps in the experiment and the simulation, we estimate
that the experimental gate voltage range -0.6 V < VBG < -0.4 V roughly corresponds to the
simulated gate voltage range -0.4 V < VGate < -0.2 V.

For more negative VGate, the electric field from the gate pushes the electrons towards in-
terface with the superconductor (inset of Fig. 6.2(a)). We solve the Schrödinger equation
for the calculated electrostatic potential and find that this stronger confinement near
the interface leads to a stronger coupling. This results in a hard gap, as illustrated by



6

76 6. ELECTRIC FIELD TUNABLE SUPERCONDUCTOR-SEMICONDUCTOR COUPLING

the calculated energy spectrum (Fig. 6.2(d), red line). However, for more positive volt-
ages, the electrons are attracted to the back gate, creating a high density pocket far away
from the superconductor (inset of Fig. 6.2(b)). These states are weakly coupled to the
superconductor, as demonstrated by a soft gap structure (Fig. 6.2(d), black line, see also
section 6.9.4). We can therefore conclude that the electron tunneling between the semi-
conductor and the superconductor is strongly affected by the gate potential.

The change in superconductor-semiconductor coupling does not just affect the hard-
ness, but also the size of the gap. For each back gate voltage, we fit the BCS-Dynes ex-
pression [31] for the DOS in order to extract the position of the coherence peaks, giving
the gap size ∆. The results are shown in Fig. 6.2(e). Further details on the fitting pro-
cedure are given in section 6.9.5. As VBG becomes more positive, the superconductor-
semiconductor coupling becomes weaker, reducing the size of the gap. From VBG > -0.4 V
onward it becomes difficult to accurately determine the gap, as it tends to become too
soft and the coherence peaks are not always clearly distinguishable. The top right inset
shows the shift of the coherence peak (indicated by the arrows) to lower bias voltage as
VBG is increased. The lower left inset shows the extracted coherence peak position from
the numerical simulations, showing the same trend with gate voltage. However, the the-
oretically calculated induced gap is generally smaller than the experimentally observed
gap. It has been demonstrated that disorder at the outer surface of the superconductor
(e.g., due to oxidation) leads to an increase in the induced gap due to breaking of mo-
mentum conservation, which increases the superconductor-semiconductor hybridiza-
tion [21]. Additionally, the gap decreases more slowly when the gate voltage is more
positive. As this kind of disorder is present in our devices, but was not included in the
simulation, this is a likely cause for the discrepancy between theory and experiment.

6.5. EFFECTIVE g -FACTOR

As the electric field induced by the back gate clearly has an important effect on the hy-
bridization between the nanowire and the superconductor, we now look at the effect this
has on the Zeeman term in the Hamiltonian. This term affects the energy dispersion of
spinful states in a magnetic field. We study the dispersion of the states in the nanowire by
measuring dI /dV in device A as a function of applied bias voltage and magnetic field, as
shown in Fig. 6.3(a) and Fig. 6.3(b). We define the effective g -factor as geff = 2

µB
|∆E
∆B |, with

|∆E
∆B | the absolute value of the average slope of the observed peak in the differential con-

ductance as it disperses in magnetic field. This effective g -factor is different from the
pure spin g -factor gspin, as the dispersion used to estimate geff is generally not purely
linear in magnetic field, and has additional contributions from the spin-orbit coupling,
magnetic field induced changes in chemical potential, and orbital effects [21, 26, 32].
The effective g -factor is the parameter which determines the critical magnetic field re-
quired to drive the system through the topological phase transition [33]. We obtain the
slope ∆E

∆B from a linear fit (shown as black dashed lines in Figs. 6.3(a),(b), see section 6.9.6
for details) of the observed peak position. Figure 6.3(c) shows the extracted geff for de-
vice A, with more positive back gate voltages leading to larger geff (visible as a steeper
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slope). A similar result has recently been reported in hybrid InAs-Al nanowires [34].
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Figure 6.3: Effective g -factor. (a,b) dI /dV measured in device A as a function of applied bias voltage VBias
and magnetic field B for VBG = -0.59 V and VBG = -0.41 V, respectively. The effective g -factor is extracted from a
linear fit of the lowest energy state dispersion (dashed lines). (c) geff as a function of VBG, showing an increase
as the gate voltage becomes more positive. Data from device A. (d,e) Simulated DOS in the nanowire as a
function of magnetic field for VGate = -0.6 V and VGate = -0.3 V, respectively. (f) Extracted geff (based on lowest
energy state in the spectrum, black circles) and gspin (based on the spectrum at k = 0, red squares) from the
simulation.

We use our numerical model to calculate the DOS in the nanowire as a function of ap-
plied magnetic field, shown in Fig. 6.3(d) and Fig. 6.3(e). From the calculated spectrum,
we apply the same procedure used to fit the experimental data to extract geff (white
dashed lines). The results for different values of VGate are given in Fig. 6.3(f) as black
circles. The applied back gate voltage changes the hybridization of the states in the InSb
(|gspin| = 40 [35]) and the Al (|gspin| = 2). As a more positive gate voltage increases the
weight of the wave function in the InSb, we expect the renormalized g -factor to increase
as the gate voltage is increased, consistent with the results of Fig. 6.3(c) and Fig. 6.3(f).

To see how well geff describes the Zeeman term in the Hamiltonian, we turn our attention
to the energy spectrum at k = 0. At this point, the effect of spin-orbit coupling vanishes.
If orbital effects are excluded, we can then define the absolute value of the pure spin g -
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factor as gspin = 2
µB

|∆E(k=0)
∆B |. The resulting values for gspin are shown as red squares in

Fig. 6.3(f). By comparing the results for geff and gspin, we can conclude that when the
lowest energy state has a momentum near k = 0 (as is the case for VGate < -0.2 V), the
effect of spin-orbit coupling is negligible, and geff is a good proxy for the pure spin g -
factor. However, when this is no longer the case, deviations can be observed, as is the
case for VGate ≥ -0.2 V. As we expect the experimental gate voltage range of Fig. 6.3(c) to
be comparable to values of VGate < -0.2 V, we conclude that the experimentally obtained
geff is a reasonable approximation of gspin in this parameter regime. However, we stress
once more that in general, one needs to be careful when interpreting the geff extracted
from experimental data as the g -factor entering the Hamiltonian in the Zeeman term.

The increasing trend of geff does not change when the orbital effect of magnetic field
is considered (see section 6.9.6, Fig. 6.16). However, there is a significant increase in
the predicted values, in agreement with previous findings for InAs nanowires [32]. The
values in Fig. 6.16 are larger than the ones generally observed in our experiment (see
Fig. 6.3(c)), suggesting that the orbital effect is not a dominant mechanism in determin-
ing the effective g -factor in these devices. We note that the data from device A used to
make these plots was taken solely in the hard gap regime, where one expects a strong
confinement near the superconductor. This suppresses the orbital contribution of the
magnetic field. Another possible explanation for the discrepancy between the results
of the simulation and the experimental data is an overestimation of the density in the
nanowire, as higher sub-bands have a stronger contribution from the orbital effect. Min-
imizing the orbital effect is desirable for Majorana physics, as the orbital contributions
of the magnetic field are detrimental to the topological gap [24].

6.6. LEVEL REPULSION DUE TO SPIN-ORBIT COUPLING
The term in the Hamiltonian that remains to be explored describes the Rashba spin-
orbit coupling. The strength of the spin-orbit coupling is determined by the parame-
ter α, which depends on the material (and thus, on the superconductor-semiconductor
coupling), and the electric field [36–38]. Therefore, we expect that this term will be
affected by the gate potential as well. In finite systems, the spin-orbit interaction can
couple states with different orbitals and spins [39]. These states are thus no longer or-
thogonal to each other, and the spin-orbit mediated overlap between them causes en-
ergy splitting, leading to level repulsion [40–42]. This level repulsion, which is generic
in class D systems in the presence of superconductivity, magnetic field and spin-orbit
coupling [43, 44], can be extracted from the low energy nanowire spectrum as measured
by tunneling spectroscopy [45].

In Figs. 6.4(a)-(c), we show the evolution of the level repulsion between the two lowest
energy sub-gap states (labeled L1 and L2, as indicated by the white dashed lines in panel
c) in device B. For these measurements, the global back gate is grounded, with the elec-
tric field being induced by applying a voltage to the side gate (side gate shown in Fig. 6.6).

We parameterize the level repulsion by two quantities: the coupling strength δSO, and
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the splitting A, defined as the maximum deviation of L1 from zero energy after the first
zero crossing. This splitting has previously been linked to the overlap between two MZM
in a finite system [46]. In Fig. 6.4(e), we zoom in on the anticrossing feature in panel
Fig. 6.4(b), showing the minimum energy difference between L1 and L2 (given by 2δSO)
and the splitting A. We extract these parameters by a fit of the anticrossing (solid green
lines, with the uncoupled states shown by the dashed black lines, details of the fitting
procedure are in section 6.9.7).

B (T)
0 0.2 0.4 0.6 0.8 1.0

VSG = 1.98 V

V Bi
as

(μ
V

)

0

100

200

-100

-200

dI/dV (2e2/h)
0 0.2

VSG = 2.325 V

B (T)
0 0.2 0.4 0.6 0.8 1.0

dI/dV (2e2/h)
0 0.2

VSG = 2.70 V

B (T)
0 0.2 0.4 0.6 0.8 1.0

dI/dV (2e2/h)
0 0.5

L1

L2

B (T)
0.4 0.6 0.8

V Bi
as

(μ
V

)

0

50

100

-50

2δSO

2A

10

16

22

δ SO
 (μ

eV
)

VSG (V)
2.0 2.4 2.8

0

25

50

A
 (μ

eV
)

0

0.4

0.8

E/
Δ

EZ/Δ
0.5 1.4

2δ/Δ

0.9

0.20
0

0.3

2δ
/Δ

α (eV Å)

(a) (b) (c)

(d) (e) (f )

Figure 6.4: Spin-orbit coupling induced level repulsion. (a-c) dI /dV as a function of VBias for device B, show-
ing the dispersion of subgap states in magnetic field, for VSG = 1.98 V, 2.325 V, and 2.70 V, respectively. The two
lowest energy states L1, L2, and their particle-hole symmetric partners are indicated by the white dashed lines.
(d) Calculated low energy spectrum of the finite nanowire system as a function of the Zeeman energy EZ for α
= 0 eV Å(dashed black lines) and α = 0.1 eV Å(solid red lines), showing the opening of an energy gap 2δ due to
spin-orbit coupling. Inset: the energy gap 2δ as a function of the Rashba α parameter (solid line), and the esti-
mate 2δ = απ/l (dashed line), with l the nanowire length. All energy scales are in units of the superconducting
gap ∆. (e) Zoom-in of the anticrossing in (b), showing the splitting A and the coupling strength δSO. Green
solid lines indicate a fit of the anticrossing, with the dashed black lines showing the uncoupled energy levels.
(f) Coupling δSO (black circles) and splitting A (red squares) as a function of VSG, showing opposite trends for
these parameters.

Because we expect finite size effects to be relevant, we cannot use our previous theoreti-
cal model, as it is based on an infinitely long nanowire. Therefore, we modify the model
to take into account the finite size of the nanowire system, and calculate the low energy
spectrum for different values of the Rashba spin-orbit strength (see section 6.9.8). In
Fig. 6.4(d), we plot the two lowest energy states in the nanowire as a function of the Zee-
man energy (EZ = 1

2 gµB B), in units of the superconducting gap ∆. If α = 0 (no spin-orbit
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coupling, dashed black lines), there is no coupling between the states, and no level re-
pulsion occurs. However, if spin-orbit coupling is included (e.g., α = 0.1 eV Å, solid red
lines), the levels repel each other, with the magnitude of the anticrossing given by 2δ. The
level repulsion strength scales with α (inset of Fig. 6.4(d)), providing a way to estimate α
based on the low energy spectrum using 2δ∼απ/l , where l is the length of the nanowire.

In Fig. 6.4(f), we plot δSO (black circles) and A (red squares) as a function of the applied
side gate voltage. The two parameters follow opposite trends, with A being maximal
when δSO is minimal. When δSO is larger, the levels repel each other more, leading to
L1 being pushed closer to zero energy, reducing the splitting A. When VSG < 2.0 V, both
parameters become smaller with decreasing VSG. At this point, other states at higher
energies become relevant for the lowest energy dispersion (a situation demonstrated in
Fig. 6.4(a)), and our method to extract these parameters breaks down. We expect this
method to be reliable when the energetically lowest two states can be clearly separated
from the rest.

Because δSO depends not only onα, but also on the details of the confinement potential,
as well as the coupling to the superconductor, a precise estimate goes beyond the cur-
rent approximations in our model. That being said, based on the observed magnitude
of δSO and our simulations of the finite nanowire system, we can estimate the Rashba
parameter α to be around 0.1 eV Å in this gate voltage range. This value is comparable to
the values reported in InSb nanowire based quantum dots [47], and smaller than the val-
ues measured in weak anti-localization experiments [37]. A large value of α is beneficial
for Majorana physics, as it determines the maximum size of the topological gap [48].

6.7. ZERO BIAS PEAK IN EXTENDED MAGNETIC FIELD RANGE
In the previous sections, we have described the effect of the gate induced electric field
on the various terms in the Hamiltonian (6.1). As this Hamiltonian is known to describe
Majorana physics, we now turn our attention to possible signatures of MZMs in this sys-
tem. In particular, when 2δSO becomes comparable to the energy of L2, we find that
L1 can become pinned close to zero bias over an extended range in magnetic field, as
demonstrated in Fig. 6.5(b) (data from device A). Figure 6.5(d) shows that the state stays
pinned to zero energy over a range of over 0.2 T, corresponding to a Zeeman energy of
over 300µeV, which is larger than the induced gap. The stability of the ZBP in terms of
the ratio of Zeeman energy to induced gap is comparable to the most stable ZBPs re-
ported in literature [11, 12]. When we fix the magnetic field to B = 0.26 T and change the
back gate voltage (Fig. 6.5(e)), it appears that there is a stable ZBP over a few mV as well.

We might be tempted to conclude that this stability implies this is a Majorana zero mode.
However, if we change either the gate voltage (Fig. 6.5(a), Fig. 6.5(c)) or the magnetic
field (Fig. 6.5(f)) a little bit, we observe that this stability applies only to very particular
combinations of gate voltage and magnetic field. One should keep in mind that in a
finite system, MZMs are not expected to be stable with respect to local perturbations if
the system size is comparable to the Majorana coherence length, which is likely the case
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in our devices. This further complicates the determination of the origin of the observed
peaks. As we find no extended region of stability, we conclude that it is unlikely that
this state pinned to zero energy is caused by a topological phase transition. Rather, this
seems to be due to a fine-tuned coincidence in which the repulsion between two states
combined with particle-hole symmetry leads to one of the states being pinned to E =
0. We reiterate that simply having a stable zero energy state over an extended range in
magnetic field is not sufficient to make claims about robust Majorana modes [49–51].
Further experimental checks, such as stability of the ZBP in an extended region of the
parameter space spanned by the relevant gate voltages [11], as well as magnetic field, are
required in order to assign a possible Majorana origin.
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Figure 6.5: Zero bias pinning due to strong level repulsion. (a-c) dI /dV as a function of VBias for device A,
showing the dispersion of L1 and L2 as a function of magnetic field for VBG = -0.3845 V, -0.3835 V, and -0.3825 V,
respectively. (d) Line traces at magnetic fields indicated by the colored bars in (b), showing the stable pinning
of L1 to zero bias voltage. (e,f) dI /dV measured as a function of VBG at fixed magnetic field B = 0.26 T and
0.36 T, respectively. Gate voltages from (a), (b), and (c) are indicated by orange square, purple triangle, and
green circle, respectively.

6.8. CONCLUSION & OUTLOOK
We have used InSb nanowires with epitaxial Al superconductor to investigate the effect of
the gate voltage induced electric field on the superconductor-semiconductor coupling.
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This coupling is determined by the distribution of the wave function over the supercon-
ductor and semiconductor, and controls essential parameters of the Majorana Hamilto-
nian: the proximity induced superconducting gap, the effective g -factor, and spin-orbit
coupling. Our observations show that the induced superconductivity, as parameterized
by the hardness and size of the induced gap, is stronger when the electrons are confined
to a region close to the superconductor. The stronger coupling leads to a lower effective
g -factor. We also determine that the gate voltage dependence of the effective g -factor is
dominated by the change in coupling to the superconductor, rather than by orbital ef-
fects of the magnetic field. Finally, we study the effect of level repulsion due to spin-orbit
coupling. Appropriate tuning of the repulsion leads to level pinning to zero energy over
extended parameter ranges, mimicking the behavior expected from MZMs. Our result
deepens the understanding of a more realistic Majorana nanowire system. More impor-
tantly, it is relevant for the design and optimization of future advanced nanowire systems
for topological quantum information applications.
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6.9. METHODS AND ADDITIONAL DATA

6.9.1. FABRICATION AND DEVICE DESIGN
1. Nanowire deposition: a SEM-based nanomanipulator is used to deterministically

place the InSb-Al nanowires unto a degenerately p-doped Si substrate covered by
20 nm of LPCVD Si3N4 (devices A, C, and D) or 285 nm of thermal SiO2 (device B).

2. Mask preparation & lithography: for every fabrication step, we use standard electron-
beam lithography techniques to create the mask. The mask consists of a layer of
PMMA 950KA6 spun at 4000 rpm. After writing, the mask is developed in a so-
lution of MIBK:IPA (1:3 ratio) for 60 s, followed by a IPA rinse for 60 s. After each
deposition step, lift-off is done using acetone.

3. Contact preparation & deposition: before depositing the contact material, the Al
and AlOx are locally removed by Ar plasma etch. The contacts are deposited by
electron-beam evaporation of Cr/Au (10/100-200 nm). For device B, the side gates
are also evaporated in this step.

4. Dielectric deposition: as a top gate dielectric we sputter 35 nm of SiNx (devices A,
C, and D).

5. Top gate deposition: the top gates are deposited by electron-beam evaporation of
Ti/Au (10/200 nm) (devices A, C, and D).
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Figure 6.6: SEM images and schematic cross-sectional views of the devices used as part of this research.
Data from devices A and B is presented in the main text. Additional data from devices C and D is presented
for completeness. Note that the data for device B is obtained by changing the voltage on the side gate (VSG),
shown in blue in the SEM image. Scale bar is 500 nm.

6.9.2. SIMULATION OF ELECTROSTATICS AND NANOWIRE SPECTRUM

For the electrostatics simulations we use the geometry of device A (as shown in Fig. 6.1(c)).
We describe the device as an infinite wire oriented along the x-direction, with a hexago-
nal cross-section in the y z-plane. The electrostatics are described by the Poisson equa-
tion

∇· (εr (r)∇φ(r)
)= ρtot[φ(r)]

ε0
, (6.2)
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Parameter InSb Al

m∗ 0.0139 [52] 1
g -40 [35] 2
∆ 0 meV 0.34 meV [54]
EF 0 eV 10 eV [55]

Table 6.1: Material parameters for InSb and Al.

where ρtot[φ(r)] is a functional of the potential φ(r). We include four contributions to
ρtot,

ρtot = ρe +ρhh +ρlh +ρfixed, (6.3)

where ρe, ρhh and ρlh are the mobile charges of the conduction band, heavy hole band
and light hole band of the InSb nanowire and ρfixed are the fixed charges in the system.
For the mobile electron charges we assume a 3D electron gas density (Thomas-Fermi
approximation)

ρe(φ) =− e

3π2

(
2me|φ|θ(−φ)

ħ2

)3/2

, (6.4)

with θ the Heaviside step function, and for the holes

ρi (φ) = e

3π2

(
2mi |φ−EG|θ(φ−EG)

ħ2

)3/2

, (6.5)

with EG the band gap and i corresponding to the heavy hole (hh) and light hole (lh) band
respectively. For the effective masses, we take the bulk InSb values [52]. We include hole
bands to describe the additional screening when the electrochemical potential is in the
valence band, which can become relevant for very negative gate voltages due to the nar-
row band gap of InSb. To model the influence of the sputtered dielectric on the nanowire
surface, the wire is wrapped in a 1 nm surface layer of 2.5× 1018 cm−3 positive charge
density. In the absence of other charges and gates this charge pins the conduction band
of InSb at about -0.069 eV below the Fermi level at the surface. For the InSb-Al interface
we assume the conduction band of InSb is pinned -0.08 eV below the Fermi level due to
the work function difference between the two materials. A negative band offset of the
semiconductor to the superconductor is required for a hard induced gap in the InAs-Al
system [21], and we assume a similar situation in InSb-Al hybrid devices. While the pre-
cise numbers for the surface accumulation and band-offset at the InSb-Al interface are
unknown, it is known that InSb wires have about a 10 times smaller density than InAs
wires [19, 53], and the parameters were adjusted from the InAs ones accordingly. The Al
layer is assumed to be grounded, and enters as a Dirichlet boundary condition which is
set to +0.08 V. The boundary condition at the substrate-dielectric interface is set to the
applied gate voltage, VGate. On the remaining three boundaries of the system we use
Neumann conditions. For the dielectric constant of InSb, the sputtered SiNx , and the
LPCVD Si3N4 we take take 15.15, 7.5, and 8 respectively.
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After the electrostatic potential has been calculated for a given VGate, we plug it into the
Schrödinger equation and solve it for the cross-section of the device. We use a Rashba
Hamiltonian with a Bogoliubov-de Gennes (BdG) superconducting term [56]

H = ħ2

2m∗(y, z)
(k2

x +k2
y +k2

z )τz − (EF(y, z)+eφ(y, z))τz +αy (y, z)(kzσx −kxσz )τz

+αz (y, z)(kxσy −kyσx )τz + 1

2
g (y, z)µBBσx +∆(y, z)τx ,

(6.6)

where the effective mass m∗, the Fermi level EF, the electrostatic potentialφ, the Rashba
parametersαi , the g -factor and the superconducting pairing∆ are functions of the (y, z)-
coordinates and depend on the material. Since φ is not solved in Al it is correspond-
ingly set to zero there. The material parameters for InSb and Al are summarized in
Tab. 6.1. If desired, the orbital effect is added to Eq. (6.6) by the Peierls substitution
kz → kz − π

φ0
B(y − y0), with φ0 the magnetic flux quantum. y0 is chosen such that the

average vector potential in Al is zero, resulting in a vanishing supercurrent [24]. The
Hamiltonian is discretized on a quadratic mesh and constructed using the kwant pack-
age [25]. To accommodate the small Fermi wavelength of Al a discretization length of
0.1 nm is used.
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Figure 6.7: Gate dependence of Rashba coefficients. (a) Rashba coefficients αy and αz as a function of VGate.
At VGate = 0.08 V, the average electric field in the wire goes to zero due to symmetry, leading to vanishing spin-
orbit coupling. (b) Calculated ESO as a function of VGate.

6.9.3. ELECTRIC FIELD DEPENDENCE OF SPIN-ORBIT COUPLING
The Rashba couplings αy and αz , which are nonzero only in the semiconductor re-
gion, result from the symmetry breaking by the electrostatic potential and are obtained
from [52]

αi = eP 2

3

[
1

E0
− 1

(E0 +∆0)2

]
Ēi , (6.7)
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where the average electric field in direction i is obtained by averaging Ei over the whole
semiconductor region. Parameters for bulk InSb are used [52]: the Kane matrix element
P = 0.9641 eV nm, the bandgap E0 = 0.237 eV, and the spin-orbit gap ∆0 = 0.810 eV. The
resulting Rashba parameters αi are plotted in Fig. 6.7(a).

We define the spin-orbit energy ESO = m∗(α2
y+α2

z )

2ħ2 . The spin-orbit energy is plotted as a
function of VGate in Fig. 6.7(b). The average electric field in the nanowire increases as the
applied gate voltage becomes more negative, leading to an enhancement of the spin-
orbit coupling. At VGate = 0.08 V, the average electric field in the nanowire becomes equal
to 0 due to symmetry, eliminating the influence of spin-orbit coupling on the nanowire
spectrum.
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Figure 6.8: Band structure of the hybrid system calculated at B = 0 T for different values of VGate. The color
indicates the weight of a given state in the semiconducting region. As the gate voltage is increased, the popu-
lation of states with higher WSM leads to a soft gap.
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6.9.4. SIMULATED BAND STRUCTURE
The band structure of the superconductor-semiconductor nanowire system for different
values of VGate is shown in Fig. 6.8. To quantify the coupling of a given state to the su-
perconductor, we calculate the weight of the state in the semiconducting region SM (see
Fig. 6.1(c)) as WSM =Î

SM |Ψ(kF)|2 d y d z.

6.9.5. GAP FITTING & ADDITIONAL DEVICE DATA
To extract the gap, we measure the differential conductance dI /dV as a function of VBias

and tunnel gate voltage VTunnel for different back gate voltages VBG. In the tunneling
limit, dI /dV is approximately proportional to the density of states. To ensure we are
in this limit, we take only the traces where the conductance at high bias (∼ 500µV) is
between 0.03 and 0.08·2e2/h. We use the BCS-Dynes expression for a dissipation broad-
ened superconducting density of states [31] to arrive at the following expression for the
conductance:

dI

dV
=GNRe

{
VBias − iΓ√

(VBias − iΓ)2 −∆2

}
. (6.8)

This equation is fitted to the data (separately for positive and negative bias), as shown
in Fig. 6.9 for VBG = -0.6 V. We take the average of the extracted gap values for different
values of VTunnel, with the errorbar given by the standard deviation (results plotted in
Fig. 6.2(e)).
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Figure 6.9: BCS-Dynes fit. Fit (red line) of equation (6.8) to conductance data from device A (black circles,
squares and triangles) for different values of the tunnel gate voltage.

Device B shows similar behavior to device A: as the side gate voltage is increased, the
observed gap becomes smaller (as illustrated in Fig. 6.10).

In Fig. 6.11, we show differential conductance traces as a function of VBias in device D for
different values of the back gate voltage. The voltage on the tunnel gate is chosen such
that the transmission through the junction (parameterized by GN) is constant.
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Figure 6.10: Extracted gap∆ as a function of VSG for device B.

Although the sub-gap conductance is similar for all three gate voltages, there is a strong
broadening of the coherence peak as the gate voltage becomes more positive. This broad-
ening is associated with dissipation due to an increase in the number of quasiparticles,
caused by pair breaking in the superconductor. We plot the extracted gap ∆ and dissipa-
tion broadening Γ in Fig. 6.12.

Figure 6.11: Device D gap fitting. Fit (red line) of equation 6.8 to conductance data from device D (black circles,
squares and triangles) for different VBG at similar junction transparencies. The dissipation broadening sharply
decreases for more negative gate voltages.

As in the other devices, the gap decreases for more positive gate voltages, although in
this case the effect is minor. The size of the gap is quite stable over an extended range in
gate voltage. We speculate that this is related to the diameter of the wire, which is smaller
than in the other devices. The reduced thickness means the superconductor can screen
the gate voltage more effectively throughout the wire diameter, reducing the effect of the
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gate on the superconductor-semiconductor coupling.
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Figure 6.12: Extracted gap ∆ as a function of VBG for device D. Inset: dissipation broadening Γ as a function
of VBG. A decrease in the gap is accompanied by an increase in broadening, signalling the emergence of a soft
gap.

6.9.6. g -FACTOR FITTING & ADDITIONAL DEVICE DATA
For each back gate voltage, we measure the dI /dV as a function of VBias and the mag-
netic field B . We then identify the lowest energy peak in the spectrum. The position of
this peak at a given field is obtained by a peak finding algorithm, the results of which
are shown as the green circles in Fig. 6.13. The slope |∆E

∆B | is determined by a linear
fit (dashed black line in Fig. 6.13). From the slope, we get geff by using the relation
|∆E | = 1

2 geffµB|∆B | for a spin- 1
2 particle, with µB the Bohr magneton. This procedure

is performed separately for positive and negative bias. The reported geff is then calcu-
lated as a weighted average of the absolute value of the positive and negative bias results
(weights determined by the variance of the fit parameters).

The effective g -factor for device A is reported in Fig. 6.3(c). In Fig. 6.14, we plot the ex-
tracted g -factors of both L1 and L2 in device B. For completeness, data from device C is
shown in Fig. 6.15.

The effective g -factor of L1 (black circles) changes appreciately when the side gate volt-
age is changed, with the effect comparable to the one observed in device A. In contrast,
geff of L2 (red squares) is almost unaffected by the gate and has a lower value. This may
be due to L2 being closely confined near the superconductor, leading to a decreased
g -factor due to stronger hybridization, and a weaker gate response due to enhanced
screening.
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Figure 6.13: g -factor fitting procedure. Differential conductance as a function of VBias and magnetic field. We
apply a linear fit (dashed black lines) to the extracted peak positions (green circles) to obtain the average slope
∆E
∆B .
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Figure 6.14: Effective g -factor in device B. Extracted values of geff as a function of VSG for L1 (black circles)
and L2 (red squares) in device B.

To determine the importance of orbital effects, we calculate the nanowire spectrum as a
function of magnetic field including this effect (Figs. 6.16(a),(b)). The orbital effect leads
to an increase of the extracted values of geff and gspin (Fig. 6.16(c)). Note that the defi-
nition of gspin used in section 6.5 is no longer valid when the orbital effect is included.
Nevertheless, for consistency we apply the same procedure. As we do not observe these
high g -factors in any of our devices, we conclude that the orbital effect does not give a
significant contribution to the observed changes of geff with the gate voltage.
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Figure 6.15: Extracted values of geff for device C.
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Figure 6.16: Simulation of nanowire DOS including orbital effect. (a,b) Simulated nanowire spectrum as a
function of magnetic field including orbital effects. (c) Extracted geff (black circles) and gspin (red squares) as
a function of VGate.

6.9.7. ANTICROSSING FITTING
Near the anticrossing, we approximate the energy of the lowest subgap state L1 as E1 +
1
2 g1µBB +aB 2. The linear term represents the Zeeman contribution to the energy, while
the quadratic term is a correction to account for the curvature at high fields. This is
possibly due to the presence of additional levels interacting with L1 in this field range.
As the dispersion of L2 is mostly linear in the field range of interest, we approximate it
as E2 − 1

2 g2µBB . Adding the coupling parameter δSO, we find the energy levels of the
coupled system from the eigenvalues of the matrix[

E1 + 1
2 g1µBB +aB 2 δSO

δSO E2 − 1
2 g2µBB

]
. (6.9)

By fitting the expression for the eigenvalues to the data (see Fig. 6.17), we extract the
parameters E1,2, g1,2, a, and δSO. To prevent overfitting, we use estimates for the un-
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coupled asymptotes to constrain the fit parameters. From the obtained parameters we
also calculate the splitting A, defined as the maximum deviation from zero energy of the
lowest energy state L1, after the first zero energy crossing has occurred.
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Figure 6.17: Level repulsion fitting procedure. Data from device B, showing the differential conductance
dI /dV as a function of VBias and B for VBG = 2.475 V. Green dots indicate the peak positions found using a
peak finding algorithm. The fit to the data is shown in green, with the uncoupled asymptotes as the black
dashed lines.

6.9.8. SIMULATION OF FINITE SIZE NANOWIRE SYSTEM

To simulate the finite nanowire system, we solve the Hamiltonian (6.1) in a simplified
setup. We consider a rectangular cross-section in the y z-plane similar to the one used
in reference [21], where the top facet of the rectangle is covered by the superconductor,
and a uniform gate voltage VGate is applied to the bottom facet, as illustrated in Fig. 6.18.
First, we assume an infinitely long nanowire oriented in the x-direction, and calculate
the electrostatic potential in the Thomas-Fermi approximation, similar to the procedure
described in section 6.9.2. The fermi level in the nanowire is tuned such that it supports
the same number of transverse modes at VGate = 0 as the hexagonal nanowire studied
previously. We use the same material parameters as in the previous simulation, which
can be found in table 6.1.

We then plug the resulting electrostatic potential into 6.1 and solve the Schrödinger
equation to find the low energy spectrum of the finite nanowire. We take a length of
750 nm, similar to the studied devices. We calculate only the modes in the semiconduc-
tor, assuming a superconducting gap of ∆ = 250µeV. We find that the origin of the level
repulsion between states is indeed spin-orbit coupling, which couples different longi-
tudinal (along the x-direction) states within the same transverse (y- and z-directions)
subband.

The result is illustrated in Fig. 6.19, where we plot the low energy spectrum as a function
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Figure 6.18: Schematic cross-section of the geometry used to simulate the finite nanowire system. A po-
tential VGate is applied to the bottom facet, while the potential at the top facet is fixed by the work function
difference between the two materials. The magnetic field is applied in the x-direction, along length of the
nanowire.

of Zeeman energy EZ for a fixed value of VGate and different values of α. An increase in
the spin-orbit coupling strength leads to an increase in the level repulsion.
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Figure 6.19: Level repulsion of a function of spin-orbit strength. Calculated low energy spectrum of the finite
size nanowire as a function of Zeeman energy for different values of α. Values calculated for VGate = -0.536 V,
which is also used in Fig. 6.4(d). All energy scales are in units of the superconducting gap ∆.

However, even if α is fixed, the magnitude of the level repulsion can be changed by
changing the confinement potential, as demonstrated in Fig. 6.20.

When the gate voltage is changed, it alters the confinement potential. This affects the
energy of the levels coupled by the spin-orbit coupling, and as such directly influences
the magnitude of δ, even though the spin-orbit coupling strength itself is not changed
appreciatively. In Fig. 6.21 we plot the calculated energy gap due to level repulsion, 2δ,
and the maximum splitting from zero energy of the lowest energy state after the first zero
crossing, A, as a function of VGate. The two parameters follow opposite trends, consistent
with the experimental observation in Fig. 6.4(f).
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Figure 6.20: Level repulsion as a function of gate voltage. Calculated low energy spectrum of the finite size
nanowire as a function of Zeeman energy for different values of VGate. Values calculated α = 0.1 eV Å, energy
scales in units of ∆.

However, the trend with gate voltage is opposite: δ increases with more positive gate
voltage, whereas in the experiment it decreases. We note that the geometry used in this
simulation is a simplified version of the one used in the experiment. The dependence of
the confinement energy on gate voltage is strongly dependent on the geometry, which
differs between the simulation and the experiment. It is therefore expected that the trend
of δ with gate voltage is not universal, and requires the details of the systems to be very
similar before comparisons can be made.
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Figure 6.21: Gate voltage dependent coupling. Dependence of the energy gap 2δ and the splitting A, in units
of ∆, on the gate voltage VGate.
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6.9.9. ADDITIONAL ZBP DATA
Figure 6.22(a) shows the differential conductance measured in device A as a function of
VBias and VTunnel, for B = 0.35 T and VBG = -0.37 V. The low energy spectrum in this pa-
rameter regime does not depend on the transmission of the NS-junction. In Fig. 6.22(b),
we show line traces for different values of VTunnel. Even though the transmission of the
junction is changed by a factor of two, the peak position of the low energy states are not
affected. Data from Fig. 6.5 was obtained for VTunnel = -87 mV.
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Figure 6.22: Tunnel gate voltage dependence of low energy spectrum. (a) dI /dV measured in device A as a
function of VBias and VTunnel for B = 0.35 T and VBG = -0.37 V. (b) Line traces at the values of VTunnel indicated
by the colored lines in panel (a).
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Figure 6.23 shows additional data on the evolution of the level repulsion between L1

and L2 in device A (supplementing the data presented in Figs. 6.5(a-c)) as the back gate
voltage is increased. As discussed in section 6.7, we do not find an extended region in
parameter space with a stable zero bias conductance peak.
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Figure 6.23: Low energy spectrum as a function of field. Differential conductance as a function of VBias and
magnetic field. Although the lowest energy state stays near zero over an extended magnetic field range for
some gate voltages, this behavior is not robust.

In Fig. 6.24 we show the low energy spectrum of device A as a function of VBias and VBG

for different magnetic fields (supplementing the data presented in Figs. 6.5(e,f)). For
specific combinations of magnetic field and gate voltage, we can find a zero energy state.
However, as we do not find an extended region in parameter space, it is unlikely that a
topological phase transition is responsible for this observation.
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Figure 6.24: Low energy spectrum as a function of gate voltage. Differential conductance as a function of
VBias and VBG. We find some stable ZBPs for certain ranges in back gate voltage at specific fields, but this is
only true for fine tuned parameters.
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7
NANOCROSSES FOR MAJORANA

CORRELATION EXPERIMENTS

In this chapter, we present experiments on InSb nanocrosses with epitaxial Al as a super-
conductor, with the goal of measuring correlated zero bias conductance peaks at both
ends of the superconducting segment, demonstrating Majorana non-locality. Compared
to the single wire geometry, the nanocross provides an easy way to ground to supercon-
ductor without damaging the active device area, as well as access to an additional tunnel
probe in the bulk of the nanowire, which can be used to simultaneously probe the Majo-
rana zero modes at the ends and the gap closing and reopening in the bulk.
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7.1. INTRODUCTION

Since the prediction of Majorana zero modes in semiconductor-superconductor hybrid
nanowires, a lot of experimental effort has gone into measuring zero bias conductance
peaks in tunneling spectroscopy experiments, and studying their behavior as a function
of various control parameters [1–4]. This has culminated in the detection of quantized
zero bias conductance peaks in InSb-Al nanowires [5]. Although significant progress has
been made, every experiment to date has used a single local probe, leaving open the pos-
sibility that the zero bias conductance peak is generated by local perturbations such as
smooth potential barriers [6–9]. An important property of Majorana zero modes is their
non-local nature, which can be probed by measuring a zero bias conductance peak at
both sides of a grounded 1D topological superconductor [10]. In a finite system, overlap
between the Majorana zero modes creates a state at finite energy, which oscillates as a
function of control parameters such as the magnetic field [11]. If the splittings observed
by the local probes are strongly correlated, this would give further confidence that this
signal is due to a non-local state. Additionally, the appearance of end states at zero en-
ergy should be accompanied by a closing and reopening of the bulk gap, which is difficult
to observe with probes at the ends of the wire as the bulk wave functions have very little
weight there [12]. Thus, an additional probe capable of measuring the bulk gap is desir-
able. The nanocross geometry offers a unique capability to simultaneously probe all of
these features of Majorana zero modes in a single device.

7.2. NANOCROSS DEVICE LAYOUT AND EXPERIMENTAL SETUP

The nanocrosses used in this chapter have been grown using the methods described in
chapter 4. A scanning electron micrograph of device I is shown in figure 7.1(a). The de-
vice consists of an InSb nanocross with an epitaxial Al shell. We create normal-superconductor
(NS) junctions on 3 of the 4 legs by selectively removing the Al shell with a wet chemical
etch (BOE 7:1 for 10 s) and depositing Cr/Au leads. In figure 7.1(b) we show a schematic
side view of such a junction, with a schematic top view of the entire device shown in
figure 7.1(c). Each junction consists of a Cr/Au contact (yellow, N) to the InSb nanowire,
which is partially covered by Al (green, S). The nanocross is covered by 20 nm of sput-
tered SiNx dielectric (light blue) to isolate the leads from the gates (red and purple). The
substrate is degenerately doped Si, which can be used as a back gate. In all experiments
presented in this chapter, the back gate has been grounded.

We apply a voltage VBias to the lead connected directly to the Al shell (labeled D), and
drain currents IA,C via contacts A and C. The local differential conductances are mea-
sured using standard lock-in techniques (see chapter 3), with the differential conduc-
tance through contact A denoted as dIA/dV . The transparency of each junction is con-
trolled by applying a voltage VTA,TC to a narrow tunnel gate (red). Finally, the density in
the device region covered by the superconductor can be tuned by applying a voltage VSG

to a global top gate (purple). Contact B and the accompanying tunnel gate are kept at a
floating potential during all experiments.
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7.3. BALLISTIC NS JUNCTIONS IN NANOCROSS DEVICES
Figure 7.1(d) shows the differential conductance through contact A as a function of ap-
plied bias voltage VBias and the tunnel gate voltage VTA. At high bias voltage, we see a
plateau in conductance, indicative of 1D ballistic transport, with an enhancement of the
conductance for small bias voltages (figure 7.1(e)). This enhancement is due to Andreev
reflection, which occurs when the applied bias voltage is smaller than the superconduct-
ing gap. As shown figure 7.1(f), at low transparencies we resolve the coherence peaks of
the gap at ∼75µV (red line), while at high transparencies we see a conductance enhance-
ment inside the gap (green line). Furthermore, we see additional features resembling co-
herence peaks at a bias voltage of ∼230µV, the expected induced superconducting gap
in these nanowires.

VBias

VTA

VTC

IC

A

IA

A

VSG
A

B

C

D

InSb

Al

Cr/Au contact

Cr/Au gate

SiNxSiOx

p++ Si Cr/Au gate

Figure 7.1: InSb nanocross device for correlation experiments. (a) Scanning electron micrograph of
nanocross device I. Scale bar is 500 nm. (b) Schematic view along the red dashed line in (a). A NS junction
is formed between the Cr/Au contact (N, yellow) and the part of the InSb nanowire covered by the Al shell (S,
green). The transparency of the junction is controlled by the tunnel gate (red). (c) Schematic of the experi-
mental set-up. The nanowire cross is contacted by four leads. A bias voltage is applied to lead D, and current is
drained from leads A and C. Lead B is kept floating during all experiments. The direction of the applied mag-
netic field is collinear with contacts A and C unless otherwise noted. (d) Differential conductance of junction
A dIA/dV as a function of the bias voltage VBias and the tunnel gate voltage VTA for VSG = 1.28 V. (e) Horizontal
line-cuts from (d) (indicated by the black and blue bars). For VBias > ∆, a quantized conductance plateau is
observed (blue line). On the plateau, the conductance at zero bias is enhanced due to Andreev reflection (black
line). (f) Vertical line-cuts from (d), indicated by the red and green bars, showing the conductance enhance-
ment inside the gap for high transparency (green), as well as the conductance suppression and resolution of
the superconducting density of states in the tunneling regime (red).



7

106 7. NANOCROSSES FOR MAJORANA CORRELATION EXPERIMENTS

We can describe the transport through the junction with a two band BTK model [13].
The contribution of each band to the conductance depends on the barrier strength at
the interface to the superconductor Zn , the induced superconducting gap ∆n , and the
transparency of the normal contact T̃n . The conductance through the junction as a func-
tion of energy is then

G(E) = 2e2

h

∑
n=1,2

T̃n[1+ An(E , Zn ,∆n)−Bn(E , Zn ,∆n)], (7.1)

with An and Bn describing the probability of Andreev and normal reflection, respectively.
For energies much larger than both superconducting gaps, the conductance through
junction depends only on the normal state transmission T N

n :

GN
n = 2e2

h
T N

n = 2e2

h

T̃n

1+Z 2
n
= 2e2

h
T̃n T̃n,S . (7.2)

Additionally, the conductance at zero bias can be written as [14]

GS
n = 4e2

h
T̃n

T̃ 2
n,S

(2− T̃n,S )2
. (7.3)

Figure 7.2: Two band BTK fit. (a) Differential conductance dIA/dV for VTA = -830 mV (black circles). Red
line is a fit to equation (7.1) with n = 2. (b) dIA/dV at VBias = 380µV > ∆1,∆2 (black circles). Lines show the
contributions from the first (GN

1 , dashed blue line) and second (GN
2 , dashed green line) subbands, and their

sum (solid red line). (c) Differential conductance at VBias = 0 plotted as a function of VTA. Red line shows the
expected conductance for the first subband, calculated using equation (7.3).

In Fig. 7.2(a), we plot the differential conductance through contact A as a function of
bias voltage VBias (black circles), along with a fit to equation 7.1 (red line). The two sets
of coherence peaks are related to two different modes with different transmissions and
coupling to the superconductor. By fitting the conductance for different values of tunnel
gate voltage VTA, we see that for gate voltages below -900 mV only one mode contributes
to the transport (Fig. 7.2(b)), with a gap of 75µeV. For more positive gate voltages, a sec-
ond mode starts to contribute to the transport, with a gap of 230µeV. The transmission
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remains small, however, and as such this mode does not significantly contribute to the
Andreev enhancement, as can be seen in Fig. 7.2(c).

The fact that the strongest contribution to the Andreev enhancement comes from a
mode with a gap that is much smaller than the expected superconducting gap indicates
that we are in the long junction regime, where the Thouless energy in the junction is
smaller than the superconducting gap ∆ [15]. As has been described in chapter 3, wet
chemical etching of the Al shell using buffered oxide etch is difficult to control, and it is
not always obvious where the Al has actually been removed. We speculate that the dis-
tance between contact A and the superconductor is much larger than designed. This is
also consistent with the fact that the central top gate has a strong influence on the local
conductance through lead A. Interestingly, the transport still appears to be ballistic over
this distance, demonstrating the high quality of the nanocrosses.

Figure 7.3: Hard gap on both sides of the superconductor. (a) Differential conductance of junction A dIA/dV
as a function of the bias voltage VBias and VTA. Several subgap states are visible. (b) Differential conductance
of junction C dIC/dV as a function of the bias voltage VBias and VTC. (c) Linecuts from (a) taken at the tunnel
gate voltages indicated by the colored bars, showing a hard superconducting gap of 180µeV. (d) Linecuts from
(b) taken at the tunnel gate voltages indicated by the colored bars. A hard gap is measured in both junctions
simultaneously.
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7.4. ZERO BIAS CONDUCTANCE PEAKS IN NANOCROSS DEVICES
In order to measure correlated zero bias conductance peaks, we require a hard gap to be
present in both the A and C junctions. Figure 7.3(a) shows the differential conductance
through contact A as a function of bias voltage and the voltage on tunnel gate A at B = 0 T.
Looking at the linetraces at the gate voltages marked by the colored bars, we see a hard
gap of 180µeV (Fig. 7.3(c)). Additionally, subgap states are visible, including one that
crosses zero energy. We simultaneously measure the local conductance through contact
C, which is shown in Fig. 7.3(b). This junction also shows a hard gap (Fig. 7.3(d)), with a
similar size to the gap measured in junction A. It is also apparent that while subgap states
are visible in both junctions, these subgap states appear to be local to each junction.

Figure 7.4: Zero bias conductance peak in nanocross device. (a) Differential conductance of junction A
dIA/dV as a function of the bias voltage VBias and magnetic field, showing a stable zero bias conductance
peak in field. (b) Linecuts from (a) taken at the field values indicated by the colored bars. The zero bias peak
appears to be present even at 0 T.

In Fig. 7.4(a) we show the differential conductance of junction A as a function of bias
voltage and magnetic field, for VTA = -1193.2 mV. For this measurement, all other junc-
tions are completely pinched off. At B = 0 T, we see coherence peaks at 180µV, as well
a second set of coherence peaks around 100µV, indicating we are in the long junction
regime discussed in the previous section. The gap closes around 150 mT, with a robust
zero bias conductance peak visible over a range of 80 mT. Taking a closer look at the line-
traces (Fig. 7.4(b)), however, we see that this zero bias peak is actually already present
at zero magnetic field, with the visibility changing as the magnetic field is increased. Al-
though it is unclear what the origin of this state is, its presence at zero magnetic field
precludes it being a Majorana zero mode. It was not possible to find a regime where
both the A and C junctions showed good behavior simultaneously at finite field in this
device. Although sometimes clean transport signatures could be obtained (as shown in
section 7.3 and Fig. 7.3), this behavior was not consistent and could be dramatically al-
tered by charge switches. We therefore decided to pursue other devices at this point in
the experiment.
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Results from a different device on the same chip are shown in Fig. 7.5. We plot the dif-
ferential conductance in junctions A (Fig. 7.5(a)) and C (Fig. 7.5(b)) as a function of bias
voltage and magnetic field. Junction A shows a featureless hard gap with a critical field
of 0.7 T. In contrast, in junction C there is a local subgap state which crosses zero energy
at 0.2 T with a g -factor of 23, similar to the values found in InSb-Al nanowires. It’s also
apparent that junction C is affected by charge switches. In general, we were unable to
find a regime where both junctions were suitable for in-depth exploration of their sub-
gap spectrum. Because the parameter space is large, the decision to continue exploring
a device or to fabricate a new one is difficult to make, as it is difficult to ascertain whether
the device intrinsically has problems or if the tuning is just off.

Figure 7.5: Zero bias conductance peak in nanocross device II. (a) Differential conductance of junction A
dIA/dV as a function of the bias voltage VBias and magnetic field, showing a hard gap up to 0.7 T. (b) Differential
conductance of junction C dIA/dV as a function of the bias voltage VBias and magnetic field, showing a subgap
state crossing zero energy at 0.2 T. (c) Linecuts from (a) taken at the field values indicated by the colored bars.
(c) Linecuts from (b) taken at the field values indicated by the colored bars.

7.5. DISCUSSION AND EXPERIMENTAL OUTLOOK
Although initial results seem promising, there are several important issues that limit the
feasibility of performing a correlation experiment in InSb nanocrosses grown using the
VLS mechanism. The yield of good individual junctions has proven to be too low to ef-
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fectively make devices with three working NS-junctions. In some devices, such as device
A, two junctions could sometimes be measured simultaneously with reasonably good
results. However, often only a single junction was worth studying. We attribute this to
the fact that the wet chemical etch to selectively remove the Al is far from optimized.
Because the yield of a good etch on a single junction is low, the yield for a nanocross de-
vice with three good junctions is too small to achieve a fully functional device by chance
alone.

Figure 7.6: Nanocrosses broken during fabrication. (a) Nanocross lifted from the device substrate due to the
stress in the NbTiN film deposited on it. (b) Fractured nanocross due to the stress in a 125 nm thick film of Al.
(c) Fracture in a nanocross after contact deposition, compromising device operation. Scale bar in each panel
is 400 nm.

Aside from the issues with selectively removing the Al to create the device functional-
ity, as reported in chapter 3, the three dimensional nature of the nanocrosses signifi-
cantly complicates the fabrication process. This is inherent to the method used to grow
the crosses, as they will not grow into a cross if they are in a single two dimensional
plane [16]. This means part of the device will be suspended over the device substrate,
making it vulnerable to breaking or sudden stresses. This is illustrated in Fig. 7.6. It
frequently occurs that one of the legs of the nanocross breaks off during fabrication
(Fig. 7.6(c)), or that the junction between the two wires making up the cross fractures
due to the stress applied during thin film deposition (Fig. 7.6(b)). Even when the cross
does not break apart, these stresses can lift the cross from the substrate because the van
der Waals forces are not sufficient to keep it flat (Fig. 7.6(a)).

An alternative approach is to use the selective area growth based platform discussed in
chapter 5, which is planar by nature, simplifying the fabrication process. Additionally,
because it is a priori known where each wire will be on the substrate, creating a shadow
mask to selective deposit Al should be possible, circumventing the need for chemical
etching. Because the network can be designed using lithography, multiple probes can
be created along the length of the wire, possibly allowing the determination of the Majo-
rana coherence length. This will be discussed in more detail in chapter 9.
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CONTRIBUTIONS TO THE PROJECT
The nanocrosses used in this chapter were grown by S. Gazibegovic under the supervi-
sion of E. P. A. M. Bakkers at the Eindhoven University of Technology. The epitaxial Al
shell was grown in the group of C. Palmstrøm at the University of California Santa Bar-
bara. The nanocrosses were transfered to the device substrate by R. L. M. Op het Veld.
The devices were fabricated and measured at Delft University of Technology. M. W. A. de
Moor, D. Xu, and J. D. S. Bommer fabricated the devices. The measurements were per-
formed M. W. A. de Moor, D. Xu, and J. D. S. Bommer, with supervision from H. Zhang.
The analysis presented in this chapter was performed by M. W. A. de Moor. The project
was supervised by H. Zhang and L. P. Kouwenhoven.
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BOUND STATES IN 1D MAJORANA

NANOWIRES

Als ik wilde dat je het begreep, had ik het wel beter uitgelegd.

Johan Cruijff

Recently, there has been a flurry of activity focussed on understanding the theoretical
consequences of spatially non-uniform parameters in Majorana nanowires. The pur-
pose of this chapter is to give an overview of recent advances reported in the literature
describing how a spatial dependence of parameters such as the chemical potential and
the spin-orbit coupling near the end of a superconducting nanowire can introduce end
states with features that are similar to those of Majorana zero modes. This is supple-
mented by numerical simulations of the low energy nanowire spectrum.
All simulations in this chapter have been performed using code provided by A. Vuik.
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8.1. INTRODUCTION
In section 2.4, we described the 1D Majorana nanowire model introduced by Lutchyn
et al. [1] and Oreg et al. [2], which combines a semiconductor nanowire with spin-orbit
coupling, superconductivity, and a magnetic field to create Majorana zero modes. These
zero modes appear as bound states localized at the ends of the superconducting nanowire,
which can be detected via tunneling spectroscopy [3] (see also section 2.3). In the case
of a clean, uniform system, the only way to generate robust zero modes is to go through
a topological phase transition. It has previously been noted that subgap states can arise
due to disorder [4] or isolated impurities [5]. Even without introducing disorder, it turns
out that if some parameter (e.g. the chemical potential, spin-orbit coupling, or the su-
perconducting gap) varies slowly in space, these spatial inhomogeneities can generate
bound states with energies exponentially close to zero for an extended range of parame-
ter values [6–9]. These smooth spatial fluctuations can be caused by an external electro-
static potential, or by the local modification of the band structure due to strain [10], to
name a few examples. In this chapter, we will focus on an electrostatic potential variation
near one end of the superconductor nanowire. This represents the common experimen-
tal situation of an electrostatic barrier being used to probe the nanowire spectrum using
tunneling spectroscopy.

8.2. EXPERIMENTAL CONTEXT AND THEORETICAL MODEL

500 nm

I
A

VTunnel VDepletion

VBias
φ(x,V)

Figure 8.1: Experimental context. (a) False colored scanning electron micrograph of a typical N-NW-S device
used in tunneling spectroscopy experiments. Electrostatic gates are shown in red (tunnel gates) and purple
(depletion gate). (b) Schematic sideview of the device. Voltages are applied to the different gates, resulting in
an electrostatic potential variation along the length of the nanowire, e.g. the one indicated by the black line.

The typical device used in experiments (see SEM image in Fig. 8.1(a)) consists of a semi-
conductor nanowire (shown in gray) partially covered by a superconducting material
(shown in green), which is connected to normal metal (shown in yellow) via a NS-junction.
This is schematically depicted in Fig, 8.1(b). A gate voltage VTunnel is used to change the
potential in the junction region, such that a tunnel barrier is formed. This tunnel barrier
then allows the spectroscopic study of the nanowire spectrum underneath the super-
conductor. Additional gates are used to tune device parameters, for example changing
the density in the superconducting nanowire by changing VDepletion. The combination of
the various gate voltages creates an electrostatic potential profileϕ(x,V ) along the junc-
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tion.

We use the 1D Majorana nanowire model introduced in refs. [1, 2]. The nanowire is ori-
ented in the x-direction, with a spatially varying potential along the wire. In the Nambu
basis, the Hamiltonian for the superconducting part of the wire reads

H = (
p2

x

2m∗ −µ+V (x))τz − α

ħ pxσyτz +∆τx +EZσx . (8.1)

We have the familiar terms representing the kinetic energy
p2

x
2m∗ , chemical potential µ,

spin-orbit coupling α, superconducting pairing ∆, and the Zeeman energy EZ, gener-
ated by a magnetic field along the x-direction. An important difference with the Hamil-
tonian introduced in section 2.4 is the inclusion of the potential V (x), representing the
barrier introduced at the NS-junction. In the following, we consider 3 different barriers,
schematically depicted in Fig. 8.2. The NS-junction is located at x0. For all studied cases,
the superconducting pairing ∆ is constant in the S region (i.e. for x ≥ x0), and equal to 0
elsewhere.

Figure 8.2: Schematic overview of potential barriers at the NS-interface. (a) Hard wall barrier at the inter-
face between the normal (N, shown in gray, representing the semiconductor nanowire) and superconducting
(S, shown in green, representing the superconductor) regions. The barrier potential V (x) (black line) is given
by equation 8.2. The superconducting pairing potential ∆(x) (red line) is constant in the S region, and 0 else-
where. (b) Smooth barrier. Instead of a step at the NS-interface, V (x) is characterized by a smooth decay into
the superconducting region, parameterized by equation 8.3. (c) Armchair potential. In between the N and S
regions a N’ region of length LN′ is formed, characterized by a smoothly varying V (x) and a potential well of
depth VD (equation 8.4).

In the first case (Fig. 8.2(a)), the potential introduces a steep barrier at the NS-interface.
This is represented by a step function,

V (x) =
{

V0 x < x0

0 x ≥ x0
, (8.2)

where V0 À µ. We will call this the hard wall scenario. This is equivalent to the case of a
finite wire (or at least, semi-infinite) without any additional potentials added. The spec-
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trum of these wires has been studied extensively (see e.g. refs. [1, 2, 11–15]). This sce-
nario is mostly added here as contrast to the other cases. Another possibility is depicted
in Fig. 8.2(b). This is the smooth barrier scenario, where the potential smoothly decays
into the superconducting region over a length parameterized by σ. We use a Gaussian
decay to describe this type of potential:

V (x) =
{

V0 x < x0

V0e−
(x−x0)2

2σ2 x ≥ x0

. (8.3)

The potential gradient has important consequences for the nanowire spectrum (see refs. [6,
16]). Finally, we allow for the formation of a normal region between the potential barrier
and the superconductor, labelled N’ in Fig. 8.2(c). Additionally, a potential well can be
created in this region, which localizes low energy excitations near the barrier. This can
be seen as a type of quantum dot (albeit without charging energy), with a length LN′ , and
a well depth VD. This is the armchair scenario, which we parameterize with the potential

V (x) =


V0 x < (x0 −LN′ )
V0−VD

2 + V0+VD
2 cos(πk̃(x −x0 +LN′ )) (x0 −LN ′ ) ≤ x < x0

0 x ≥ x0

, (8.4)

with k̃ = 1
πLN′

(
2π−arccos

(
VD−V0
VD+V0

))
. An interesting feature of this type of potential is the

possibility of subgap states even at EZ = 0 (see also refs. [7, 8, 17]).

The superconducting part of the wire has a length LSC. In each case, the wire is termi-
nated at the other end (located at x0 +LSC), effectively created an infinitely high barrier
on that side. We discretize the Hamiltonian using the Kwant [18] package, and diagonal-
ize it to obtain the nanowire spectrum. Additional details on the numerical procedures
can be found in ref. [16]. In the following sections we will show how the potential barrier
affects the nanowire spectrum, and how it alters the states in the wire, particularly near
the NS-junction.

8.3. HARD WALL BARRIER
In Fig. 8.3(a) we schematically show the hard wall potential considered in our simula-
tion, along with the simulation parameters. The spectrum of the nanowire system as a
function of the Zeeman energy is plotted in Fig. 8.3(b) for µ= 0. The lowest energy state
(highlighted in purple) starts at the gap edge, with its energy linearly decreasing until
the gap closes at EZ,crit =

√
∆2 +µ2 = |∆|. After the reopening of the gap, a Majorana zero

mode is present in the system, signaling the topological phase transition.

Just as fermionic creation and annihilation operators can be written as linear combina-
tions of Majorana operators [19], we can decompose the lowest energy state ψ+(E) and
its particle hole symmetric partner ψ−(−E) into two Majorana components, ψ1,2. Rear-
ranging the terms gives

ψ1 = e iφψ++e−iφψ−, (8.5)

ψ2 = i e iφψ+− i e−iφψ−. (8.6)
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Figure 8.3: Bound states with hard wall confinement. (a) Schematic representation of the hard wall potential
V (x) (red line) used in the simulation. Other relevant simulation parameters are listed on the right. (b,c)
Spectrum for µ = 0 and µ = 0.9 meV, respectively. The lowest energy state is highlighted in purple, while the
next lowest energy state is highlighted in green. (d) Wave functions of the two lowest energy states in (b) for
EZ/EZ,crit = 0.5 (indicated by a dashed line in (b)), with the lowest energy state wave function decomposed
into two Majorana components (red and blue), and the second lowest energy state wave function in green. (e)
Wave functions of the two lowest energy states in (c) for EZ/EZ,crit = 0.5. The lowest energy state is a degenerate
bound state localized near the end of the wire, with its partner localized at the opposite wire end. (f,g) Wave
functions of the two lowest energy states in the topological regime (EZ/EZ,crit = 1.2, indicated by a dashed line
in (b)) in panels (b) and (c), respectively. The lowest energy state consists of two Majorana components each
localized to one end of the wire (red and blue). The next lowest energy state (green) has most of its weight at
the center of wire. The wave function amplitude of the bulk state has been multiplied by 10 for clarity.
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The phaseφ is chosen such that 〈ψ1|σx |ψ2〉 is minimized, resulting in Majorana compo-
nents with opposite spin character. When we look at the Majorana components of the
lowest energy state (red and blue), we find that they are mainly localized in the bulk of
the nanowire when the system is in the trivial phase (Fig. 8.3(d)), while in the topolog-
ical phase, the two Majoranas are localized at opposite ends of the wire (Fig. 8.3(f)). In
either case, the second lowest energy state (shown in green) is mainly located in the bulk.

For finite chemical potential, the dispersion of the lowest energy state is no longer lin-
ear in EZ due to the spin-orbit coupling, as shown in Fig. 8.3(c). The transition to the
topological phase still occurs at EZ,crit =

√
∆2 +µ2. The wave functions of the two lowest

energy states in the topological regime (Fig. 8.3(f)) are similar to those for µ= 0: the low-
est energy state consists of two Majorana states localized at opposite wire ends, and the
second lowest energy state is located in the bulk. However, the two lowest energy states
in the trivial phase are now two degenerate bound states localized at opposite ends of
the wire1 (Fig. 8.3(e)). This type of bound state is generically present at finite chemical
potential and Zeeman energy in finite (or semi-infinite) wires described by the model of
refs. [1, 2], disappearing when the system enters the helical regime [15]. At µ = 0, even
an infinitesimally small Zeeman energy induces the helical state, explaining the absence
of the bound state in that case. Because these states are localized near the end of the
wire, they contribute strongly to the conductance, showing up as bright gap closing fea-
tures in experiments (see e.g. Fig. 6.3). This is in contrast to the bulk gap closing, which is
expected to be very faint due to the wave function vanishing near the end of the wire [20].

8.4. SMOOTH BARRIER CONFINEMENT
Instead of a hard wall barrier at x0, we now add a spatially dependent potential given
by equation 8.3. The gradient of the potential is determined by the parameter σ, with
larger σ giving a smoother potential profile. We schematically show the potential in Fig-
ure 8.3(a), along with a list of the parameters used in the simulation. The resulting spec-
trum for σ = 50 nm is plotted in Fig. 8.4(b). The asymmetry between the two wire ends
lifts the degeneracy of the bound states localized at opposite sides (Fig. 8.4(d)). The state
localized near the barrier (highlighted in purple in Fig. 8.4(b)) has a lower energy, which
is still significant on the scale of the superconducting gap. In the topological regime
(Fig. 8.4(f), the lowest energy state is again composed of two Majorana states localized
at opposite wire ends, similar to the hard wall scenario.

The question now is what happens if we make σ larger, decreasing the gradient of the
potential. Figure 8.4(c) shows the nanowire spectrum for σ = 250 nm. Qualitatively the
spectrum is similar to the one shown in (b): there are two states separated from the con-
tinuum, which are similar to the two bound states from the hard wall scenario. As shown

1A small degree of asymmetry between the two ends is required to separate the bound states. If the system is
mirror symmetric with respect to the x-axis, both bound state wave functions will be localized at both ends
of the wire simultaneously. This symmetry is broken by applying a finite potential V0 > µ at the left end of
the wire, while the right end is simply terminated, which is equivalent to an infinitely sharp, infinitely high
barrier.
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Figure 8.4: Smooth barrier at the NS-junction. (a) Schematic representation of the smooth barrier potential
V (x) (red line) used in the simulation. Other relevant simulation parameters are listed on the right. (b,c)
Spectrum for σ = 50 nm and σ = 250 nm, respectively. The lowest energy state is highlighted in purple, while
the next lowest energy state is highlighted in green. (d) Wave functions of the two lowest energy states in (b) for
EZ/EZ,crit = 0.7, decomposed into their Majorana components (red and blue for the lowest energy state, light
green and dark green for the next lowest energy state). (e) Wave functions of the two lowest energy states in (c)
for EZ/EZ,crit = 0.7. The lowest energy state is a bound state localized at the smooth barrier, while the second
lowest energy state is localized at the opposite end. (f) Wave functions of the two lowest energy states in (b) in
the topological regime. (g) Wave functions of the two lowest energy states in (c) in the topological regime. The
wave function amplitude of the bulk states has been multiplied by 5 for clarity.
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in Fig. 8.4(e), these two states are localized at opposite ends of the nanowire, and both
consist of two Majorana components. An important difference is the fact that now there
is a significant range in Zeeman energy where the lowest energy in the system is expo-
nentially close to 0, without having the system go through a topological phase transition.
We also observe that the main peaks of the two Majorana components in Fig. 8.4(e) are
now separated in space [21]. Once the system enters the topological phase, we recover
the familiar situation of two Majorana modes localized at opposite wire ends (Fig. 8.4(g)).

Figure 8.5: Bound state spin structure. (a) Close-up of the Majorana components (red and blue) of the near
zero energy bound state in Fig. 8.4(e). The locations of the two main lobes are highlighted by the blue and red
dashed lines. They have widths w1,2, and are separated by a distance LPeak. The black dashed lines indicate the
boundaries between regions with different number of spin channels. (b) Schematic representation of the spin-
split barrier due to finite Zeeman energy, creating regions with 0 (barrier), 1 (local topological superconductor),
and 2 (trivial superconductor) occupied spin bands. (c) Spin densities of the two Majorana components in
(a), showing the spatially separated Majorana components have opposite spin. (d) Spin densities of the two
Majorana components from Fig. 8.4(g), showing they originate from the same spin channel.

In Fig. 8.5)(a) we show a close-up of the Majorana components plotted in Fig. 8.4(e).
The main peaks of the two components are separated over a distance LPeak. As the Zee-
man energy is increased, LPeak increases as well, with the growth rate becoming larger
when the slope of V (x) is smaller. We can understand this spatial separation by examin-
ing the spin structure of the nanowire states. Calculating the spin densities for the two
Majorana components of Fig. 8.5(a), plotted in Fig. 8.5(c), we see that the components



8.4. SMOOTH BARRIER CONFINEMENT

8

121

originate from different spin bands.

For∆< EZ < EZ,crit, we can view the superconducting nanowire as consisting of two inde-
pendent 1D spinless channels with p-wave superconducting correlations [6]. In the ho-
mogeneous case, both channels have Majoranas zero modes localized at the wire ends,
where they are coupled and split off to finite energy [22], resulting in the bound states
of section 8.3. Once EZ ≥ EZ,crit, one of the channels is fully depleted, and we are left
with a single channel with robust zero modes originating from a single spin channel, as
illustrated in Fig. 8.5(d).

In the case of the smooth barrier, this depletion is no longer uniform. Provided V (x) is
monotonic and V0 >µ, there exists a classical turning point where the effective chemical
potentialµeff =µ−V (x) = 0 (see Fig. 8.5(b)). For EZ <∆, this divides the wire into a region
with two occupied spin bands (µeff > 0, region 2), and a fully depleted region (µeff < 0,

region 0). Once EZ exceeds∆, locally the condition EZ ≥
√
∆2 +µ2

eff can be satisfied. This

introduces a third region with only one occupied spin band (region 1). The spatial sepa-
ration of the two Majorana components is the result of the depletion of the spin up band
in region 1.

Because this region is characterized by a single occupied spin channel with induced
superconductivity, this could be labelled a “local topological phase”, with a Majorana
zero mode localized at the boundary between regions 0 and 1. The other Majorana zero
mode leaks out into region 2, extending to the right end of the wire located at x0 +LSC.
There it couples to the Majorana zero mode from the other spin channel, resulting in
the state highlighted in green in Fig. 8.4(c). The two Majorana components localized at
the boundaries of the local topological phase remain decoupled, however, resulting in
a state with near zero energy, which we will refer to as a local Majorana zero mode. In
general the energy of this local zero mode is determined by α, µ, and ∆ [9], as well as the
smoothness of the barrier as parameterized by σ.

We illustrate this point by plotting the lowest energy in the system as a function of EZ

for different values σ (Fig. 8.6). As σ is increased the range of EZ over which the local
zero mode can be observed increases. We also see that once EZ > EZ,crit (indicated by
the dashed black line), the energy is no longer affected by σ, apart from a change in the
finite size oscillations originating from the fact that a larger σ effectively makes the wire
a little bit shorter. In Fig. 8.6(b) we plot the energy of the local zero mode for different
values of α and ∆. An increase in ∆ increases the bound state energy before the phase
transition (black dashed line), while it decreases the energy of the non-local Majorana
zero modes after the phase transition has occurred. In the case of Majorana modes lo-
calized at opposite ends of the wire, increasing ∆ decreases their overlap because the
coherence length becomes shorter. Similarly, increasingα decreases the energy because
the topological gap is larger. Before the topological phase transition, increasing ∆ or α
actually increases the energy of the local zero mode.

It has been argued that the spatial separation of the two Majorana components is re-
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Figure 8.6: Local Majorana zero mode energy. (a) Local Majorana zero mode energy as a function of EZ for
different values of σ. Increasing σ decreases the energy of the local zero mode, and increases the range in EZ
over which it can be observed. (b) Energy of the local Majorana zero mode for different values of the spin-orbit
strength and superconducting gap. All other parameters are the same as the ones in Fig. 8.4.

sponsible for the near zero energy of the bound state [21, 23, 24]. In this scenario, once
the distance between the peaks LPeak becomes large enough compared to the peak widths
w1,2, set by π/kF for weak (EZ À m∗α2/ħ2) or π/kSO for strong (EZ ¿ m∗α2/ħ2) spin-
orbit interaction [22], the energy of the bound state collapses to 0. The smoothness of
the potential serves only to create the spatial separation [24].

We investigate this claim by calculating the spectrum for a hard wall barrier, but includ-
ing a section near the barrier with a lower chemical potential. This is schematically de-
picted in Fig. 8.7(a). Increasing the Zeeman energy will deplete one spin band in this
section before the entire system goes through the topological phase transition, which
will result in a spatial separation of the two Majorana components making of the lowest
energy state in the system. Indeed, in Fig. 8.7(b) we see that the two Majorana com-
ponents are spatially separated, and originate from different spin bands (Fig. 8.7(d)).
However, from the calculated spectrum it is clear that the energy of the bound state is
always a substantial fraction of the superconducting gap, despite the clear separation of
the component wave functions.

This is because the decoupling of the two Majorana components in the smooth barrier
scenario is not a consequence of the separation in real space, but rather of the separa-
tion in spin and momentum space. Near the barrier, the effect of spin-orbit interaction
vanishes because kF locally goes to zero, in contrast to the hard wall case, where the
spin-orbit interaction remains finite in the entire system [6]. If in addition EZ > ∆, the
Majorana components originating from the two spin bands become almost orthogonal
near the barrier. Residual coupling is provided by the superconducting and spin-orbit
terms in the Hamiltonian, which is why increasing ∆ or α increases the energy of the
local zero mode. The Majorana components composing this local zero mode originate
from bands that not only have different spin, but also very different Fermi momenta. At
a sharp barrier, these different momenta can be coupled effectively, because the Fourier
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transform of a sharp barrier in real space has an algebraic dependence on momentum.
In contrast, the Fourier transform of the Gaussian barrier used in this section is another
Gaussian, which becomes narrower in momentum space as the smoothness parameter
σ is increased. Thus, it is the smoothness of the barrier which is essential to decouple the
two bands near the end and create a near zero energy state. This is further demonstrated
by the analytical results of ref. [6]. For very highµ, the spatial separation is negligible, but
a bound state with an exponentially suppressed energy can still be generated as long as
the spin-orbit coupling smoothly vanishes. The spatial separation is merely a by-product
of the smooth barrier, not the driving mechanism for the creation of a near zero energy
state.

Figure 8.7: Local bound state energy for sharp chemical potential step. (a) Schematic representation of the
set-up used in the simulation. A hard wall potential V (x) (red line) is combined with a step in the chemical
potential given by µ(x) (blue line). Relevant simulation parameters are listed on the top. (b) Majorana compo-
nents of the lowest energy state for EZ/EZ,crit = 0.6, showing a clear spatial separation. (c) Spectrum calculated
for the set-up in (a), with the lowest energy state highlighted in purple. Before the topological phase transition,
the bound state energy is always significant on the scale of the gap. (d) Spin densities of the two Majorana
components in (b), showing they indeed originate from different spin bands.

8.5. COUPLING TO LEAD THROUGH THE BARRIER
A feature of the topological Majorana zero mode is the fact that the conductance through
the bound state is quantized at 2e2/h at T = 0 [25, 26]. One might expect that as there is
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no particular reason for the conductance through a local zero mode to be quantized, this
distinction could be used to discriminate between the two types of zero energy bound
states. However, it has been demonstrated that also for local zero modes due to smooth
confinement, conductance plateaus quantized at 2e2/h can be realized [16, 27].

The quantization is the result of a sign change in the reflection block of the scattering
matrix [28], allowing only perfect Andreev reflection at zero bias when the superconduct-
ing nanowire is in the topological regime. It has been demonstrated, however, that the
topology of the scattering matrix connecting the system to a reservoir can be non-trivial
even if the system itself remains trivial [29, 30]. Coupling to system to a lead makes the
Hamiltonian non-Hermitian, and can generate exceptional points where the real part of
the eigenenergy (the energy level in the system) goes to zero while the imaginary part
(the coupling to the reservoir) goes through a bifurcation [31]. This bifurcation results in
strongly asymmetric couplings of the two Majorana components to the lead [32]. It has
been proposed that this asymmetry can be utilized to probe the non-locality of the Ma-
jorana zero mode through a local measurement by coupling it to a quantum dot [33, 34].

Figure 8.8: Coupling to the lead through a smooth barrier. (a) Schematic representation of the coupling of the
two Majorana components of the lowest energy state through the effective barrier (black line) to a lead. The
lead modes are represented by the shaded gray area. The two Majorana components (in blue and red) couple
to the leads with coupling strengths Γ1,2. (b) Couplings Γ1,2 of the two Majorana components (blue and red
lines) as a function of Zeeman energy, plotted together with the energy of the lowest energy state EM (black
line). (c) Plot of the locality parameter γ as a function of EZ for a steep (σ= 50 nm) and smooth (σ= 250 nm)
barrier. (d) Calculated conductance at V = 0. At T = 0, the conductance is either 0 or shows a sharp spike to a
value between 0 and 4e2/h. For T = 20 mK, the conductance shows a plateau near 2e2/h before EZ = EZ,crit.
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We couple the system to a lead, as schematically depicted in Fig. 8.8(a). The parameters
of the superconducting nanowire system are the same as those used in Fig. 8.4(c). In or-
der to create a good tunnel probe, we add a sharp, high barrier to mediate the coupling
to the modes in the lead, with parameters VBarrier = 12 meV and µL = 7 meV. This ensures
that both spin channels will be weakly coupled to the lead for the whole Zeeman energy
range of interest.

The coupling of the local zero mode Majorana components to the modes in the lead is
calculated using the Mahaux-Weidenmüller formula, following the approach of ref. [16].
The resulting couplings Γ1,2 are plotted in Fig. 8.8(b). For EZ = 0, the couplings are equal.
As the Zeeman energy increases, the couplings become asymmetric, with Γ1 more than
four orders of magnitude larger than Γ2 when the bound state energy EM reaches zero.
We also note that the asymmetry is larger for the local zero mode than in the topolog-
ical regime. Introducing the coupling asymmetry parameter γ = (Γ1 −Γ2)/(Γ1 +Γ2), we
see that for the smooth potential γ reaches 1 well before the topological phase transi-
tion (Fig. 8.8(c), black line), while for a steep potential it remains smaller than 1 until the
transition (Fig. 8.8(c), red line). While it has been argued that γ = 1 is a hallmark of the
spatial non-locality of the Majorana zero modes [33, 34], we find that γ can also reach 1
when spatial separation is not a requirement. This suggests one can not use the coupling
asymmetry as a proxy for spatial non-locality.

We also calculate the conductance at zero bias G0. At T = 0 K, it has been found that de-
pending on the relative scales of Γ1, Γ2, and EM, the conductance can show a sharp dip
to 0, or a peak to 4e2/h, or something in between [7, 8, 16]. The width of this feature is set
by Γ2, which we have shown is exponentially suppressed in the case of smooth barrier
induced local zero modes. Therefore, it is likely impossible to detect in experiments. To
illustrate this, we plot G0 as a function of EZ in Fig. 8.8(d). For T = 0 (red line), we find
that G0 is highly erratic. However, when we include broadening due to finite temperature
with a temperature of 20 mK, we find a quantized plateau at a value very close to 2e2/h
(black line) for a large range of Zeeman energy. We therefore conclude that a local con-
ductance measurement can not be used to distinguish between local zero modes and
non-local Majorana zero modes. To truely distinguish the two, different experiments,
such as those including non-local conductance signals, must be performed.

8.6. ARMCHAIR BARRIER
In the case of the armchair potential with a short normal region N’ between the barrier
and the superconducting nanowire, it is possible to generate subgap states even with-
out a magnetic field, something which is commonly observed in experiments (see e.g.
Fig. 6.5). Figure 8.9(a) schematically shows the potential landscape. The normal region
has an additional potential well of depth VD, which can localize bound states in the N’
region under the right resonance conditions. In Fig. 8.9(b) we show the spectrum of the
nanowire as a function of Zeeman energy for a short normal section (LN′ = 200 nm). The
lowest energy bound state is localized in the N’ region (see Fig. 8.9(d)), while the next
lowest energy state is a bound state at the opposite end of the wire, similar to Fig. 8.4(d).
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Figure 8.9: Armchair potential with a normal section before the barrier. (a) Schematic representation of the
armchair potential V (x) (red line) used in the simulation. Other relevant simulation parameters are listed on
the right. (b) Nanowire spectrum as a function of EZ for LN′ = 200 nm and VD = 2 meV. (c) Nanowire spectrum
as a function of EZ for LN′ = 800 nm and VD = 2 meV. As EZ is increased, the energy of the subgap state comes
closer to 0. (d) Wave functions of the two lowest energy states in (b) for EZ/EZ,crit = 0.7, decomposed into
their Majorana components (red and blue for the lowest energy state, light green and dark green for the next
lowest energy state). The dashed line indicates the extent of the N’ region. (e) Wave functions of the two
lowest energy states in (c) for EZ/EZ,crit = 0.7. The lowest energy state is localized in the normal region, with its
Majorana components localized at opposite ends of N′. (f) Wave functions of the two lowest energy states in
(a) in the topological regime. (g) Wave functions of the two lowest energy states in (c) in the topological regime.
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Once the system goes through the phase transition, the familiar situation of the topolog-
ical regime is recovered (Fig. 8.9(f)), albeit with additional resonances entirely localized
in the N’ region.

For longer N’ regions, the energy of the subgap state at EZ = 0 is further decreased (Fig. 8.9(c)).
At sufficiently large Zeeman energy, the bound state energy nears 0. In Fig. 8.9(e) it is
demonstrated that the two Majorana components of this bound state are localized at
opposite ends of the N’ region. Again, in the topological regime we recover the same sit-
uation as for the short N’ region (Fig. 8.9(g)).

Figure 8.10: Resonance condition in normal region. (a) Close-up of the Majorana components (red and blue)
of the near zero energy bound state in Fig. 8.9(e). (b) Spectrum of the nanowire as a function of well potential
depth VD. The energy of the lowest energy state (purple) oscillates with the well depth, while the energy of
the bound state at the opposite end (green) is completely unaffected. (c) Spin densities of the two Majorana
components in (a). In contrast to the smooth barrier case, there is no spatial separation between Majorana
components from different spin channels. (d) Energy of the lowest energy state as a function of LN′ , showing
oscillations with a period that depends on the spin-orbit strength.

One might expect that resonances in the N’ region would sensitively depend on the re-
gion size N’ or the well potential VD, enabling one to distinguish them in experiments by
changing the gate voltage VTunnel. However, this is not always the case, as we demonstate
in Fig. 8.10. The Majorana components of the lowest energy bound state are localized
in the N’ region, but in this case both spin bands are present (Fig. 8.10(c)). While the
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energy of the bound state does oscillate with VD, the amplitude of the oscillation is rela-
tively small. As such, for the right parameters, the energy of the bound state can become
almost insensitive to the well potential [8]. The oscillation amplitude and period can be
changed by changing the length LN′ , or the spin-orbit strength α (Fig. 8.10(d)). This is
further corroborated by an analytical model of a normal wire section proximity coupled
to a superconductor, where it was found that the energy of the bound state goes to zero
at finely tuned resonances depending only on LN′ and α, with an amplitude that is ex-
ponentially suppressed in the Zeeman energy [17]2. As the armchair scenario involves
precise resonance conditions rather than exponential decoupling, it is distinct from the
smooth barrier case. Additionally, it can be relatively easily identified in experimental
data by the presence of subgap states at zero magnetic field.

8.7. CONCLUSION
In this chapter, we have investigated the effect of spatially non-uniform potentials on
the spectrum of superconducting nanowires with Rashba spin-orbit coupling. While
the only way to have a zero energy bound state in superconducting nanowires with uni-
form parameters is to drive the system through a topological phase transition, we have
demonstrated that both in the case of smooth potential barriers or armchair potentials,
near zero energy bound states can be found in the trivial phase, which are impossible to
distinguish from topological Majorana zero modes using only local probes.

The model used in this chapter is a single band, strictly 1D model. It is not clear whether
all of the conclusions drawn based on this model can be easily generalized to more re-
alistic models, including multiband physics [35], orbital effects of magnetic field [36],
self-consistent potentials based on Schrödinger-Poisson simulations [37–39], or the ef-
fect of a magnetic field on the bulk superconducting gap. In particular, interband trans-
verse spin-orbit coupling is expected to be an effective way to couple two local Majo-
rana states, as is the orbital effect of magnetic field. It has also been demonstrated that
self-consistently calculated potentials have a non-trivial dependence on magnetic field,
rather than the simple linear spin splitting found in this chapter [40].

The parameters values used in this chapter are derived from InSb nanowires with epitax-
ial Al as a superconductor. The typical nanowire length is 1µm (see also chapter 6), while
the simulations in this chapter have been performed using wires of 4µm. Additionally,
the typical junction length in experiments is 50-100 nm, while the smooth barriers in this
chapter generally extend for several hundred nanometers. It is important to realize that
these length scales depend on the effective mass, which has been taken to be the bulk
InSb effective mass of 0.015me. As has been demonstrated in chapter 6, the effective
parameters in the semiconductor nanowire are strongly renormalized by the presence
of the superconductor. If the effective mass is increased by a factor of 4, the parameters
used in this chapter’s simulations would be much closer to those of the experiment.

2This case is similar to the spin-orbit induced level repulsion described in section 6.6.
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As the schemes for measurement-based topological quantum computation rely on lo-
cally coupling to a single Majorana zero mode [41, 42], the local zero modes studied in
this chapter could be used in the same way [16]. There are two important differences
when comparing the situation with topological Majorana zero modes to the one with
only local zero modes. The first one is the fact that the energy of the bound state has a
different dependence on the various control parameters, changing the susceptibility to
environmental noise [43]. Because the states are local in space, there is also no way to
increase noise resilience by increasing the system size. The second important difference
is the fact that there are now guaranteed to be additional Majorana zero modes on the
qubit island which can capture or release quasi-particles during operation. As long as
the global parity of the island remains fixed and the dark zero modes do not couple to
the zero modes used in operations, it seems like this should not be a problem. However,
additional research is needed before this question can be definitively answered.
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CONCLUSION AND OUTLOOK

The future will be better tomorrow.

Dan Quayle

In this chapter, we first briefly summarize the conclusions of each chapter in this thesis.
Based on the results obtained during the completion of this work, we highlight possible
improvements and new directions for experiments. Finally, we comment on the realiza-
tion of proposed topological qubits based on semiconductor nanowire networks.

133
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9.1. CONCLUSIONS

In chapter 4, we have reported on the transport properties of InSb semiconductor nanowire
networks grown by the vapor-liquid-solid (VLS) method. We have demonstrated phase-
coherent transport in these networks by measuring the Aharonov-Bohm effect in the
magnetoconductance, and have extracted the phase coherence length by fitting the ex-
ponential decay of the Aharonov-Bohm oscillation amplitude with increasing tempera-
ture. Additionally, superconductivity has been induced by growing a thin layer of Al onto
the InSb nanowire, resulting in a hard superconducting gap in magnetic fields up to 1 T.

While the networks studied in chapter 4 have promising properties for Majorana exper-
iments, the connectivity required to create qubits is difficult to achieve using the VLS
method. In Chapter 5 we have described measurements of the magnetoconductance in
InSb semiconductor nanowire networks grown by selective area growth (SAG). Because
the nanowire network is defined lithographically, different shapes and connectivities can
be implemented in a straightforward fashion. We have described in detail the analysis
of the Aharonov-Bohm effect in these networks, as well as how the temperature depen-
dence can be exploited to study dephasing mechanisms.

In chapter 6, we have investigated the effects of the electrostatic environment on various
parameters of the effective theory used to describe Majorana zero modes in semicon-
ductor nanowires. We have demonstrated that the coupling between the InSb semicon-
ductor nanowire and the Al superconductor can be altered by applying an electric field,
which in turn changes the induced superconducting gap, the effective g -factor, and the
spin-orbit coupling strength.

Chapter 7 describes initial experiments on InSb nanocrosses with a thin aluminum shell
aimed at demonstrating Majorana correlations. We have demonstrated ballistic trans-
port in NS-junctions obtained by locally removing the aluminum shell by wet chemical
etching. Although a zero bias conductance peak has been found, its origin is most likely
not a Majorana zero mode. Further investigations have been hampered by the low yield
of the wet chemical etch, combined with difficulties in fabrication stemming from the
three dimensional nature of the nanowire crosses.

We have conducted tight binding simulations to investigate the effect of spatial inhomo-
geneity in the 1D Majorana nanowire model in Chapter 8. We have found that smooth
potential profiles, such as those generated by an electrostatic gate, can give rise to bound
states with near zero energy. These bound states, termed local zero modes, cannot
be easily distinguished from Majorana zero modes by local conductance experiments.
Additionally, we have shown that the Majorana components constituting the local zero
mode are separated in spin-momentum space rather than in real space.
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9.2. MATERIALS AND FABRICATION IMPROVEMENTS
In this section, we discuss possible improvements to the devices used in the experiments
described in this thesis. These improvements can broadly be categorized in two direc-
tions: improved fabrication and handling techniques to preserve a pristine superconductor-
semiconductor interface in InSb nanowires with epitaxial Al, and improvements in growth
methods to create nanowire networks with high quality.

Al tends to diffuse into InSb over time, as discussed in chapter 3, which leads to a degra-
dation of the induced superconductivity. Since this process is thermally activated, it is
crucial to keep the temperature as low as possible during device processing. This means
that several processes that could be useful to improve device quality, e.g. atomic layer
deposition (ALD) to create high quality gate dielectrics, cannot be used after the InSb-Al
nanowires have been deposited onto the chip. A better understanding of the diffusion
process would help us determine which processes and processing temperatures are ac-
ceptable for device fabrication using these nanowires. For example, by in situ monitor-
ing of the Al-InSb interface in a TEM while the nanowire is being heated, we can study
how quickly the Al atoms diffuse into the wire at a given temperature.

The lack of suitably selective chemical etchants to locally remove the Al shell from the
nanowire also acts as a handicap during device fabrication. While a workaround using
additional nanowires to act as a deposition mask has been demonstrated in chapter 4,
this method is not scalable to more complex networks. The BOE recipe described in sec-
tion 3.3 occassionally creates high quality junctions, but the yield and precision are too
low to be used when multiple junctions are required (chapter 7). One approach to im-
proving the etching quality is to use an etchant which is selective for AlOx rather than
for Al itself, such as 40% HF. By repeatedly removing the native oxide locally and then
reoxidizing the Al film, the film thickness can gradually be reduced in steps of 2-3 nm at
a time. As the Al film thickness is generally on the order of 10 nm, this procedure only
requires 4-5 repetitions to remove the whole film. A remaining question is whether this
etching method will result in the required precision and yield.

Alternatively, the SAG platform can be exploited in combination with an external shadow
mask. Because the positions of the nanowires on the chip are predetermined, another
chip with predefined holes can be used to shadow the nanowire chip during Al deposi-
tion. The alignment between the two chips would have to be extremely precise, however,
especially for the more complex structures required by qubit proposals. An alternative
is to use additional semiconductor structures close to target nanowire network to selec-
tively block the Al flux when the Al is deposited under the right angle, similar to how the
VLS wires block the flux to a small part of the wire behind them. It is unclear at this point
if this can be achieved without interfering with the growth, however.

An important issue with the growth of InSb SAG is the lack of closely lattice matched sub-
strates. Unlike nanowires grown via the VLS mechanism, where the nanowires are able
to relax strain because they are free standing in space, the SAG nanowires are epitaxi-
ally connected to the substrate along their entire length. When growing on InP (111)B
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substrates, this leads to a dislocation rich layer between the InSb nanowire and the un-
derlying substrate [1]. It is possible that this layer is responsible for the diffusive nature
of the transport reported in chapter 5.

It should be possible to overcome the lattice mismatch problem by including a buffer
material, which slowly interpolates between the lattice constant of the substrate and the
nanowire crystal to allow for elastic strain relaxation (i.e., without dislocations). This
has been shown to be an effective way to improve the device performance of InAs SAG
nanowires [2]. For InSb, a possible buffer material is In1−x Alx Sb (x around 0.08), which
has already been used as a buffer layer for dislocation free InSb quantum wells [3, 4]. This
buffer can also be used to incorporate a highly doped layer which can act as a global back
gate, which allows better control over the coupling between the nanowire and the super-
conductor on top of it.

9.3. MAJORANA EXPERIMENTS IN NANOWIRE NETWORKS

Most Majorana signatures reported to date have been based on local conductance mea-
surements of the tunneling density of states. While these experiments give valuable in-
formation, we have seen in chapter 8 that it is unlikely that local tunneling measure-
ments will resolve the debate as to whether zero bias peaks can be considered sufficient
evidence of the presence of a topological phase. Extensions of this approach have been
proposed as ways to discriminate between Majorana zero modes and other local zero en-
ergy excitiations, for example by using spin resolved measurements [5]. It has also been
suggested that the non-local character of the Majorana wave function can be probed
by coupling the superconducting nanowire to a quantum dot at one of its ends [6–8].
Similar behavior is expected for local zero modes, however [9], making it questionable
whether such an experiment can be used to distinguish between local and non-local
states.

As the non-local nature of the Majorana state is crucial to its appeal as a building block
for a topological quantum computer, it is imperative that this property is demonstrated
in an experiment. One way to do so would be to measure the correlations between the
two Majorana zero modes which should exist at opposite ends of the superconductor. In
Fig. 9.1(a) we schematically draw a nanowire device designed for this purpose. We ignore
the leads (yellow) labeled A, B, and C for now, and focus on a three terminal geometry
consisting of leads L and R, and the grounded superconductor (green). The transparen-
cies of the left and right junctions are controlled by the voltages VTL and VTR applied to
the tunnel gates (red), respectively. For non-local Majorana zero modes, a conductance
peak at zero bias should appear in the local conductances dIL

dVL
and dIR

dVR
at the same values

of the magnetic field B and back gate voltage [10]. If the length of the superconductor
is not too large compared to the decay length of the Majorana wave function, finite size
induced splitting of the zero bias peaks is expected [11]. For correlated Majorana modes,
the splitting as a function of control parameters such as the magnetic field should be the
same in both local conductances. Additionally, in the regime of a relatively short super-
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conductor the closing and reopening of the bulk gap should be visible in the non-local
conductances dIR

dVL
and dIL

dVR
[12].

A B C
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VR
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A IL
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Figure 9.1: Majorana experiments in nanowire networks. (a) Nanowire based device to measure Majorana
correlations. Two leads (L and R) are used to probe Majorana zero modes at the ends of a grounded super-
conductor (shown in green), which is brought into a topological phase by applying a magnetic field along the
nanowire and an appropriate back gate voltage (back gate not shown). Local tunnel probes along the super-
conductor (A, B, and C) are used to measure the decay length of the Majoranas. (b) Nanowire network based
interferometer consisting of a superconducting island (in green) capacitively coupled to ground, and a refer-
ence arm. Various tunnel gates (red) are used to control the device, as well as a global back gate (not shown).
When the island is in the topological phase, the conductance as a function of the magnetic field through the
loop B⊥ can be used to detect the parity of the Majorana bound state.

While this experiment can be performed using a single nanowire, using a nanowire net-
work has several advantages. As described in chapter 7, the nanowire network can be
used to ground the superconductor without the need for invasive fabrication procedure
which can damage the active region of the device. Additionally, using a nanowire net-
work allows one to connect additional tunnel probes along the length of the supercon-
ducting nanowire, which can be used to measure the local density of states (leads la-
beled A, B, and C in Fig. 9.1(a)). This way, the closing and reopening of the bulk gap
can be resolved, as well as the coherence length of the Majorana zero modes. Such an
experiment has already been reported [13]. However, the tunnel probes used in this im-
plementation are likely too invasive, generating additional subgap states near the probe
itself, obscuring the Majorana physics [14]. This is also a concern for the additional junc-
tions introduced by branching the network. If the confinement in the radial direction of
the nanowire changes significantly at the junction, this can lead to low energy subgap
states [15]. As we have seen in chapter 6, however, using a suitable back gate voltage
should ensure that the confinement in the radial direction is determined by the electro-
static potential along the entire length of the wire, with minimal variation in the junction
area.

An alternative approach uses interferometry experiments similar to those performed
in chapters 4 and 5, which leverage the nanowire network platform to do experiments
which cannot be performed in single wire geometries. Figure 9.1(b) shows a schematic
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of a nanowire network based interferometer consisting of two arms. A superconducting
island (green) is embedded in one of the arms. It is capacitively coupled to ground with a
capacitance CG, which sets the charging energy EC. The transmission through the island
is controlled using tunnel gates (red). The other arm of the interferometer is used as a
reference, with its transmission controlled by the gate voltage VRef. A magnetic field B//

is applied along the direction of the island to create Majorana zero modes at its ends.
The conductance dI

dVBias
is then measured as a function of the perpendicular magnetic

field B⊥.

As long as the charging energy is smaller than the superconducting gap, and the length
of the superconductor is significantly longer than the coherence length (typically a few
hundred nm for thin Al films), single electron tunneling through the island is greatly sup-
pressed in the trivial phase, and there is no interference between the paths through the
reference arm and the island [16]. When Majorana zero modes are present, however, an
electron can tunnel through the island via a teleportation process [17, 18]. This leads to
an Aharanov-Bohm effect, modulating the conductance with a period of h/e. Moreover,
the phase of this oscillation depends on the parity of the island through the occupation
of the Majorana zero mode, visible as a π phase shift in the conductance when the occu-
pation of the Majorana zero mode changes from even to odd.

It should be noted that this effect is also present if a normal quantum dot is embedded
in such an interferometer [19]. This is an example of a common problem in propos-
als which purport to have found an experiment which demonstrates the presence of
Majorana zero modes: while it is the case that if the island has a hard superconduct-
ing gap and no trivial subgap states, the only way to achieve an h/e periodic conduc-
tance signal, which shifts by π when the parity of the island changes, is by the pres-
ence of Majorana zero modes, the reverse logic does not hold. That is, if we have an
h/e periodic conductance signal in such an experiment which shifts by π when the par-
ity of the island is changed, there are multiple plausible ways in which this signal could
arise in our experiment, only one of which involves Majorana zero modes. Although one
might be able to tell these scenarios apart by careful quantitative investigation [16], this
is also not straightforward because one invariably needs to rely on numerical calcula-
tions, which have many parameters that are not known from the experiment. For this
reason, while interferometric experiments appear better suited to leverage the capabil-
ities of nanowire networks directly, the proposed experiments seem less likely to settle
the debate on whether Majorana zero modes can be detected than the correlation based
experiments.

A final remark on the most suitable material platform is in order. Using the VLS growth
technique, it is non-trivial to grow the type of networks depicted in Fig. 9.1. The resulting
networks are also suboptimal for other reasons, described in chapter 7. The SAG growth
platform seems the ideal choice to grow such networks, because of its design flexibility.
This is contingent on the improvement of the underlying material quality.
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9.4. PERSPECTIVE ON QUBIT PROPOSALS
The ultimate goal for creating and characterizing nanowire networks is to use them as
the basis for topological qubits. We have seen that the VLS growth technique, although
it has achieved remarkable results in terms of nanowire quality, is likely insufficient to
achieve the required connectivity in networks. Nanowire networks based on selective
area growth are naturally scalable to the proposed qubit architectures [20–23]. In such
proposals several general assumptions are made which should be discussed to assess
their feasibility. First of all, it is generally assumed that the overlap between non-local
Majorana zero modes can be made arbitrarily small by increasing the system size rela-
tive to the coherence length. Second, it is assumed that the parity of the superconducting
island hosting the Majorana zero modes can be controlled by giving the superconduct-
ing island a finite charging energy. Finally, it is assumed that there are no low energy
single particle states on the island apart from the Majorana states.

These assumptions can lead to conflicting practical requirements. To decrease the over-
lap between Majorana modes, it is convenient to increase the length of the supercon-
ducting island. This will naturally increase the capacitance of the island as well, de-
creases the charging energy. With standard gate designs, the charging energy for 2µm
long island will already be below 20 mK [24]. This demonstrates that the qubit design
will have to carefully consider electrostatics beyond its effects on the topological phase
diagram discussed in chapter 6. For a superconducting island, the even-odd free energy
difference determining the minimum energy of an unpaired quasiparticle on the island
decreases with temperature and magnetic field [25, 26]. When it is reduced to zero, there
is essentially no energy gap for single particle excitations anymore. At this point, un-
paired quasiparticles are no longer restricted to states involving Majorana zero modes,
spoiling any qubit operations we might want to perform. For larger islands, this will
happen at lower temperatures and magnetic fields. As a finite magnetic field is required
to reach the topological phase transition, and a finite temperature is unavoidable, mak-
ing the island larger makes us more susceptible to this problem. Fortunately, the critical
temperature scales logarithmically with island volume, but the combination with a finite
magnetic field could still limit the island length to a few microns at best if Al is used as the
superconductor. Most theoretical estimates show significant finite size overlap between
the Majorana zero modes for islands this size. An alternative to increasing the size of the
island is to increase the topological gap, decreasing the Majorana coherence length. This
can be achieved for example by increasing the spin-orbit coupling strength, or by using
a superconductor with a larger gap. Because this requires changing the material system,
this option is not appealing as it would involve starting the optimization cycle from the
beginning.

Assuming these design issues can be overcome, we now turn to the question of how qubit
operation is affected in case local zero modes are present in the system. We will focus
on the Majorana box qubit proposed in ref. [22], but the discussion is general to qubit
proposals which rely on locally coupling to a single Majorana zero mode [9]. Figure 9.2
shows a schematic of a Majorana box qubit [22]. It consists of two superconducting
nanowires (dark green) connected by a superconducting bridge (light green). Together,
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they form a superconducting island with a finite charging energy. The superconducting
bridge allows Cooper pairs to flow freely between the two wires, quenching the mutual
charging energy while preventing quasiparticles from moving across. The island is cou-
pled to quantum dots (purple) via tunnel barriers (white) at each wire end. The quantum
dots are also connected to each other in pairs through a reference arm (gray).

γ1

γ2

γ5

γ6

γ3γ7

γ4γ8

NW SC SC bridge QD Barrier Local
zero mode

1

2

3

4

Figure 9.2: Majorana box qubit with local zero modes. Schematic representation of a Majorana box qubit.
While in ref. [22] Majorana zero modes are present at the ends of the superconducting wires (green) which
can be coupled to the quantum dots (purple), here we consider the case where the wires are still in the trivial
regime, and feature local zero modes (blue and red circles) near the junctions with the dots.

In the original proposal, both nanowires are in the topologically non-trivial regime, host-
ing pairs of Majorana zero modes, labelled γ1 through γ4 (blue circles). The supercon-
ducting island is assumed to be long enough to avoid significant overlap of the Majorana
wave functions. The parity of the island ground state can then be written as

P =−
4∏

i=1
γi =±1. (9.1)

We assume the total parity of the island is even (P = +1), with the charging energy pre-
venting any additional quasiparticles from tunneling into the island. In this case, the
four Majorana zero modes form a two level system, which can be manipulated by the
Pauli operators

x̂ = iγ1γ3 = iγ2γ4

ŷ =−iγ2γ3 =−iγ1γ4

ẑ = iγ1γ2 = iγ3γ4.

(9.2)

The parity of the Majorana pair consisting of γ1 and γ2 can be read out using the follow-
ing procedure. The quantum dots 1 and 2 are initialized in a well-known charge state,
sharing a single electron between them, e.g. one electron on dot 1, and zero on dot 2.
When the energy levels of the dots are brought on resonance with each other, the elec-
tron will tunnel between the dots with a rate that depends on the tunnel coupling in the
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reference arm and the coupling through the superconducting island1. After some time,
the dot energy levels are detuned from each other, and the charge on dot 1 is read out
using a charge sensor. Because the coupling through the superconducting island de-
pends on the parity of γ1 and γ2, the charge readout projects the Majorana qubit into an
eigenstate of the ẑ operator. Similarly, the qubit state can be projected along different
axes by coupling different quantum dots via the reference arm and cotunneling process
corresponding to the desired operator, e.g. quantums dots 1 and 3 to measure x̂.

We now examine the situation where both wires are in the trivial regime, but have a local
zero mode at each end of both superconducting wires. The additional Majorana modes
constituting these zero modes are labeled γ5 through γ8 (red circles). As discussed in
chapter 8, the red Majoranas couple to neither the blue Majoranas nor the quantum
dots. In this sense, the operation of the box qubit is unchanged. However, an important
distinction between the original proposal and the one shown here is the fact that the
ground state degeneracy of the island is higher. We can write the different states of the
island as |n1n2n3n4〉, with ni = 1

2 (1+ iγ2i−1γ2i ) = 0,1 the occupation number of a Ma-
jorana pair. We divide the states into a “bright” sector |n1n2〉, consisting of Majoranas 1
through 4 which can interact with the outside, and a “dark” sector |n3n4〉, consisting of
Majoranas 5 through 8, which do not.

Because we can only interact with the Majoranas in the bright sector, we are under
the impression that the total parity constraint restricts us to the computational states
|n1n2〉 = |00〉, |11〉. However, the existence of the dark sector means that other states,
such as |01〉⊗ |01〉, have the same total parity. What is problematic is the fact that if we
now measure the parity of γ1 and γ2, we no longer necessarily project γ3 and γ4 into the
same parity, moving us out of our computational space. In principle the bright and dark
sectors should be completely decoupled, and since the dark sector does not take part in
any interactions with the quantum dots, we can assume that it stays in a fixed state such
as |n3n4〉 = |00〉, restoring our ability to operate the qubit in the bright sector.

While at first glance it seems we can still operate the qubit as if we have non-local Majo-
rana zero modes even if the zero modes are in fact local, there are some error processes
to consider. A possible error process is a Cooper pair getting split into two quasiparti-
cles, which each occupy a previously unoccupied pair of Majorana modes. If only the
bright sector exists on the island, this corresponds to a bit-flip error, which can be de-
tected. If one of the quasiparticles occupies a pair of Majorana modes in the dark sector,
however, this process moves us outside our computational space, even though the total
parity of the island has not changed. This can be a problem because we have no way to
change the occupancy in the dark sector from the outside. This process is exponentially
suppressed by the superconducting gap, and should therefore be rare if the gap is large
enough.

We might try to avoid this situation altogether by creating a sufficiently large overlap be-

1As the total parity of the island should remain fixed, this coupling should be achieved through a virtual co-
tunneling process.
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tween γ5 and γ7 such that they split to finite energy, eliminating the dark sector from the
ground state subspace. If this is possible we essentially recover the situation of a single
topological phase with non-local Majorana zero modes. It seems unlikely we will be able
to do so without also creating substantial overlap between γ1 and γ3, which should be
avoided as much as possible as it leads to dephasing [27]. It is also worth noting that
while the Majoranas comprising a local zero mode are exponentially decoupled, their
coupling is still finite, and depends only on local parameters. This means we cannot rely
on increasing the system size to reduce the effect of this coupling. On top of that, there
are now more such residual couplings as the total number of Majoranas has doubled.
Compared to the case of non-local Majoranas, it is thus expected that a qubit based on
local zero modes will be less robust to noise.

The basic building blocks for creating topological qubits based on semiconductor nanowire
networks are falling into place, but it remains to be seen if they can fit together in a way
that creates qubits with a significant advantage over currently more advanced platforms.
In any case, even if the quest to build a topological qubit is ultimately unsuccesful, there
is a lot of physics left to be discovered in hybrid superconductor-semiconductor sys-
tems. To quote the motivational speaker Jim Rohn: “Whatever good things we build end
up building us.”.
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