Hybrid Glass Blocks

Load-bearing glass blocks with thermal properties

Graduation presentation | Twinkle Nathani | 5069041

Mentor Team

Dr. ir. Faidra Oikonomopoulou | Structural Design and Mechanics Dr. ir. Martin Tenpierik | Building Physics

Desirable Optical Properties

Desirable Optical Properties

Durability

Falconnier hollow glass blocks

Insulux - Owens-Illinois,

Hollow Glass Blocks

Translucent
Curtain Wall system supported by a metal frame
Because of the air-cavity, it is thermally and acoustically sound

Hollow Glass Blocks

Translucent
Curtain Wall system supported by a metal frame
Because of the air-cavity, it is thermally and acoustically sound

Solid Glass Bricks

Clear Load-bearing wall. Acts as a single glass pane

Maison Hermes - Renzo Piano

Evident gap between solid glass brick's stability and the hollow block's efficiency.

Hybrid Glass Blocks

- Exhibits good load bearing strengthExhibits good thermal properties.

RESEARCH METHODOLOGY

SUB-RESEARCH QUESTIONS

SUB-RESEARCH QUESTIONS

Which are the main factors influencing the thermal performance of the system? What methods can be employed to increase the efficiency and what are the advantages and limitations of these methods?

SUB-RESEARCH QUESTION

What are the main engineering criteria and challenges involved in the development of a Hybrid block?

SUB-RESEARCH QUESTION

Which are the main factors affecting the manufacturing process of these blocks? What methods can be employed and what are the advantages and limitations of these methods?

SUB-RESEARCH QUESTION

What are the main factors affecting the build-ability of Hybrid blocks in a structure?

Load bearing

Poor thermal performance

No standardized process

- 1. With a metal substructure 2. Adhesive based
- 3. Interlocking

No standardized Process

Borosilicate

Softening Point: 780°C Annealing Point: 525°C Density: 2230 kg/m²

It has lower thermal coefficient value and exceptional performance at high temperatures.

Float Glass

Extruded Glass

3D print

Cast Glass

Glass Types

Production Method

Glass Connectio

Float Glass

3D print

Extruded Glass

Cast Glass

Optical characteristics

Smooth, Transparent

Glass type applied

Soda-lime, Borosilicate, Lead

Standard size upto 20,000 kgs

Notes

Provides greatest freedom in the volume and size of the resulting glass object with good optical quality.

Compressive Strength

Thermal Performance

Ease of Manufacturing Recyclability

Optical quality

U-value < 2.2 W/m2K

Dutch Building Code < 1.65 W/m2K Eurocode <2.2 W/m2K Local code <2.5 W/m2K (Chinese National Building Codes)

Literature Study Design Guidelines Thermal Investigation Structural Investigation Design of Prototypes Conclusion

CONCEPTS TO IMPROVE THERMAL PERFORMANCE

Concept 1a: Altering Cavity sizes

Concept 1b: Adding inert gas

Concept 1c: Applying coatings

CONCEPTS TO IMPROVE STRUCTURAL PERFORMANCE

Concept 2a:
Altering the cross-section thickness

Concept 2b:
Providing
coated glass
in middle

Concept 2c: Merging hollow with solid

Concept 2d: Honeycomb Structure

DIFFERENT SIZES OF BLOCK

METHODOLOGY

STAGE 1 Analysis with air cavity and no coatings.

CONCEPT 3: Merging

hollow block with solid

Solid part

Hollow part

CONCEPT 2: Providing coated glass in middle

DIFFERENT SIZES OF BLOCK

METHODOLOGY

Analysis with air cavity and no coatings.

STAGE 1

CONCEPT 4:

Honeycomb structure

CONCEPT 3: Merging

hollow block with solid

Glass

Low-e coating

Argon Cavity

Air Cavity

Design Option 1

CONCEPT 3: Merging

hollow block with solid

Literature Study	_iterature Study Design Guidelines		Thermal Investigation		Case Study Cons	structability Conclusions	
	Design Option 1	Design Option 2	Design Option 3	Design Option 4	FINAL DES	GN OPTIONS	
111	++++	++++	++++	++++	20mm cavity	5mm thick low-e coated	
≈ 3	1.83 W/m2K	1.62 W/m2K	1.73 W/m2K	1.65 W/m2K	200 mm	glass 20mm cavity	
	++	++	++++	+++	Design Option 1	Design Option 2	
	++++	+	++	++++	20mm cavity 2.5 mm thick low-e coated glass	20mm cavity	
*	+++	+++	++++	++	Design Option 3	Design Option 4	

Literature Study	rature Study Design Guidelines		Thermal Investigation		Case Study	Consti	ructability	Conclusions
	Design Option 1	Design Option 2	Design Option 3	Design Option 4	FII	NAL DESI	GN OPTIONS	
	++++	++++	++++	++++		20mm cavity		5mm thick low-e coated
≈ 3	1.83 W/m2K	1.62 W/m2K	1.73 W/m2K	1.65 W/m2K	20	DO mm		glass 20mm cavity
	++	++	++++	+++	Design Optior	n 1	Ε	Design Option 2
	++++	+	++	++++		20mm cavity 2.5 mm thick low-e coated glass		20mm cavity
*	+++	+++	++++	++	Design Option	50 mm		Design Option 4

Design Option 3

FUSION BLOCK

Design Option 4

LATTICE BLOCK

DETAIL DESIGN

CONNECTION SYSTEM

MANUFACTURING

ASSEMBLY

DETAIL DESIGN

CONNECTION SYSTEM

MANUFACTURING

ASSEMBLY

DETAIL DESIGN

CONNECTION SYSTEM

MANUFACTURING

ASSEMBLY

DETAIL DESIGN

CONNECTION SYSTEM

MANUFACTURING

ASSEMBLY

DETAIL DESIGN

CONNECTION SYSTEM

MANUFACTURING

ASSEMBLY

Literature Study Design Guidelines Thermal Investigation Case Study Constructability Conclusions

Fusion Block

DETAIL DESIGN

CONNECTION SYSTEM

MANUFACTURING

ASSEMBLY

DETAIL DESIGN

CONNECTION SYSTEM

MANUFACTURING

ASSEMBLY

DETAIL DESIGN

CONNECTION SYSTEM

MANUFACTURING

ASSEMBLY

Option 1
Connection X: Glued
Connection Y: Interlocking

DETAIL DESIGN

CONNECTION SYSTEM

MANUFACTURING

ASSEMBLY

Option 2
Connection X: Bolted
Connection Y: Interlocking

DETAIL DESIGN

CONNECTION SYSTEM

MANUFACTURING

ASSEMBLY

Option 2
Connection X: Bolted
Connection Y: Interlocking

Option 3
Connection X: Clamped
Connection Y: Interlocking

DETAIL DESIGN

CONNECTION SYSTEM

MANUFACTURING

ASSEMBLY

Option 2
Connection X: Bolted
Connection Y: Interlocking

Option 3
Connection X: Clamped
Connection Y: Interlocking

	Connection Type		Unobstructed view	Reversibility	Ease of assembly	Load Distribution	Overall
	Fusion Block	Glued + Interlock	++++	++	+++	+++	+++
		Clamped + Interlock	++	++++	+++	++	+++
		Embeded Connection	+++	++++	++++	++++	++++

DETAIL DESIGN

CONNECTION SYSTEM

MANUFACTURING

ASSEMBLY

- 1. Glass Block
- 2. Tungsten embed
- Rubber to separate direct contact of glass and metal
- 4. Thermal Break Neoprene
- 5. Glass block to float glass connector piece: 40mm x 18mm x 10mm
- 6. Cavity 20mm
- 7. Bolts
- 8. Float glass piece

DETAIL DESIGN

CONNECTION SYSTEM

MANUFACTURING

ASSEMBLY

- 1. Glass Block
- 2. Tungsten embed
- Rubber to separate direct contact of glass and metal
- 4. Thermal Break Neoprene
- 5. Glass block to float glass connector piece: 40mm x 18mm x 10mm
- 6. Cavity 20mm
- 7. Bolts
- 8. Float glass piece

DETAIL DESIGN

CONNECTION SYSTEM

MANUFACTURING

ASSEMBLY

- 1. Glass Block
- 2. Tungsten embed
- Rubber to separate direct contact of glass and metal
- 4. Thermal Break Neoprene
- 5. Glass block to float glass connector piece: 40mm x 18mm x 10mm
- 6. Cavity 20mm
- 7. Bolts
- 8. Float glass piece

DETAIL DESIGN

CONNECTION SYSTEM

MANUFACTURING

ASSEMBLY

- 1. Glass Block
- 2. Tungsten embed
- Rubber to separate direct contact of glass and metal
- 4. Thermal Break Neoprene
- 5. Glass block to float glass connector piece: 40mm x 18mm x 10mm
- 6. Cavity 20mm
- 7. Bolts
- 8. Float glass piece

DETAIL DESIGN

CONNECTION SYSTEM

MANUFACTURING

ASSEMBLY

- 1. Glass Block
- 2. Tungsten embed
- 3. Rubber to separate direct contact of glass and metal
- 4. Thermal Break Neoprene
- 5. Glass block to float glass connector piece: 40mm x 18mm x 10mm
- 6. Cavity 20mm
- 7. Bolts
- 8. Float glass piece

DETAIL DESIGN

CONNECTION SYSTEM

MANUFACTURING

ASSEMBLY

- 1. Glass Block
- 2. Tungsten embed
- Rubber to separate direct contact of glass and metal
- 4. Thermal Break Neoprene
- 5. Glass block to float glass connector piece: 40mm x 18mm x 10mm
- 6. Cavity 20mm
- 7. Bolts
- 8. Float glass piece

DETAIL DESIGN

CONNECTION SYSTEM

MANUFACTURING

ASSEMBLY

THERMAL PERFORMANCE

Embed connection

Type 1

Full Brick

Half Brick

Custom L-Shape

Total number of blocks: 1168 Full Brick: 1106 Half Brick: 40 L-Shape: 22

Literature Study Design Guidelines Thermal Investigation Case Study Constructability Conclusions

Fusion Block

DETAIL DESIGN

CONNECTION SYSTEM

MANUFACTURING

ASSEMBLY

DETAIL DESIGN

CONNECTION SYSTEM

MANUFACTURING

ASSEMBLY

PORTS 1961, SHANGHAI

Design Aspects for Assembly:

- 1. Straight façade
- 2. L-Junction
- 3. Corbel Junction
- 4. Corbel Window

BOTTOM CONNECTION

Fusion Block

DETAIL DESIGN

CONNECTION SYSTEM

MANUFACTURING

ASSEMBLY

- 1. Glass Block
- 2. Tungsten embed
- 3. Rubber to separate direct contact of glass and metal
- 4. Tungsten rectangular block
- 5. Insulation with wall finish
 - Concrete base

INTERMEDIATE FLOOR CONNECTION

Fusion Block

DETAIL DESIGN

CONNECTION SYSTEM

MANUFACTURING

ASSEMBLY

- 1. Glass Block
- 2. Floor slab
- 3. Steel angle-section
- 4. Tungsten rectangular block
- 5. Tungsten embedded connection

DETAIL DESIGN

CONNECTION SYSTEM

MANUFACTURING

ASSEMBLY

THERMAL PERFORMANCE

TOP CONNECTION

- 1. I-beam
- 2. Insulation with wall finish
- 3. Steel plate with tungsten coating
- 4. Rubber to separate direct contact of glass and metal
- 5. Tungsten embedded connection
- 6. Glass Block

DETAIL DESIGN

CONNECTION SYSTEM

MANUFACTURING

ASSEMBLY

THERMAL PERFORMANCE

L-JUNCTION

DETAIL DESIGN

CONNECTION SYSTEM

MANUFACTURING

ASSEMBLY

DETAIL DESIGN

CONNECTION SYSTEM

MANUFACTURING

ASSEMBLY

- . Glass Block
- Tungsten rectangular block

DETAIL DESIGN

CONNECTION SYSTEM

MANUFACTURING

ASSEMBLY

THERMAL PERFORMANCE

CORBEL WINDOW OPTIONS

Glass Block

Tungsten rectangular block

- 2. Tungsten rectangular block 40mm
- . Tungsten rectangular block 20mm

Fusion Block

DETAIL DESIGN

CONNECTION SYSTEM

MANUFACTURING

ASSEMBLY

THERMAL PERFORMANCE

The total thermal transmittance of the facade with these block can be calculated as following:

$$U_{fac} = \frac{U_{full}S_{full} + U_{half}S_{half}}{S_{total}}$$

here,
U_{fac}
W/m²K
Thermal transmittance
of facade

U_m U_m²K
Thermal transmittance

U_{full.} U_{half} W/m²K Thermal transmittance of full and half bricks

 $S_{\text{full.}}S_{\text{half}} \qquad \text{m}^{\text{2}} \qquad \text{Surface of full and half} \\ \text{bricks}$

S_{total} m² Total surface area

The total thermal transmittance of the facade is:

$$U_{fac} = \frac{2.0 \times 101.52 + 2.2 \times 1.8}{103.32} = 2.0 \text{ W/m}^2\text{K}$$

Fusion Block

DETAIL DESIGN

CONNECTION SYSTEM

MANUFACTURING

ASSEMBLY

THERMAL PERFORMANCE

U-value: 1.65 W/m2K Block width: 150mm Cavity width: 20mm

DETAIL DESIGN

CONNECTION SYSTEM

MANUFACTURING

ASSEMBLY

THERMAL PERFORMANCE

U-value: 1.65 W/m2K Block width: 150mm Cavity width: 20mm U-value: 1.8 W/m2K Block width: 150mm Cavity width: 20mm

DETAIL DESIGN

CONNECTION SYSTEM

MANUFACTURING

ASSEMBLY

DETAIL DESIGN

CONNECTION SYSTEM

MANUFACTURING

ASSEMBLY

DETAIL DESIGN

CONNECTION SYSTEM

MANUFACTURING

ASSEMBLY

Option 1
Connection Y: King-Queen
Interlocking

DETAIL DESIGN

CONNECTION SYSTEM

MANUFACTURING

ASSEMBLY

DETAIL DESIGN

CONNECTION SYSTEM

MANUFACTURING

ASSEMBLY

DETAIL DESIGN

CONNECTION SYSTEM

MANUFACTURING

ASSEMBLY

	Connection Type		Unobstructed view	Reversibility	Ease of assembly	Load Distribution	Overall
	Lattice Block	King-Queen Block interlock	++++	++++	++	++	+++
		Hemispherical Interlock	++++	++++	++++	++++	++++
		Lego type Interlock	+++	++++	++++	+++	+++

DETAIL DESIGN

CONNECTION SYSTEM

MANUFACTURING

ASSEMBLY

THERMAL PERFORMANCE

DETAIL DESIGN

CONNECTION SYSTEM

MANUFACTURING

ASSEMBLY

THERMAL PERFORMANCE

DETAIL DESIGN

CONNECTION SYSTEM

MANUFACTURING

ASSEMBLY

THERMAL PERFORMANCE

DETAIL DESIGN

CONNECTION SYSTEM

MANUFACTURING

ASSEMBLY

THERMAL PERFORMANCE

DETAIL DESIGN

CONNECTION SYSTEM

MANUFACTURING

ASSEMBLY

- . Glass Block
- 2. Neoprene Interlayer

DETAIL DESIGN

CONNECTION SYSTEM

MANUFACTURING

ASSEMBLY

THERMAL PERFORMANCE

Full Brick

Half Brick

Total number of blocks: 1266 Full Brick: 1246 Half Brick: 20

CONNECTION SYSTEM

MANUFACTURING

MANUFACTURING PROCESS OF FULL AND HALF BRICK - OP 1

Lattice Block

DETAIL DESIGN

CONNECTION SYSTEM

MANUFACTURING

ASSEMBLY

THERMAL PERFORMANCE

High Precision Steel Mould

Borosilicate Glass

Case Study

Design Aspects for Assembly:

- 1. Straight façade
- 2. L-Junction
- 3. Corbel Junction
- 4. Corbel Window

BOTTOM CONNECTION

Lattice Block

DETAIL DESIGN

CONNECTION SYSTEM

MANUFACTURING

ASSEMBLY

- 1. Glass Block
- 2. Neoprene interlayer
- 3. Steel plate
- 4. Insulation with wall finish
- 5. Concrete base

INTERMEDIATE FLOOR CONNECTION

Lattice Block

DETAIL DESIGN

CONNECTION SYSTEM

MANUFACTURING

ASSEMBLY

- 1. Glass Block
- 2. Floor slab
- 3. Steel angle-section
- 4. Steel plate
- 5. Insulation with wall finish

DETAIL DESIGN

CONNECTION SYSTEM

MANUFACTURING

ASSEMBLY

THERMAL PERFORMANCE

TOP CONNECTION

- 1. I-beam
- 2. Insulation with wall finish
- 3. Steel plate
- 4. Neoprene interlayer
- 5. Glass Block

DETAIL DESIGN

CONNECTION SYSTEM

MANUFACTURING

ASSEMBLY

THERMAL PERFORMANCE

L-JUNCTION

CORBEL JUNCTION

Lattice Block

DETAIL DESIGN

CONNECTION SYSTEM

MANUFACTURING

ASSEMBLY

CORBEL WINDOW

Lattice Block

DETAIL DESIGN

CONNECTION SYSTEM

MANUFACTURING

ASSEMBLY

- 1. Glass Block oriented 90 degrees to the original placement
- 2. Original placement of glass block

DETAIL DESIGN

CONNECTION SYSTEM

MANUFACTURING

ASSEMBLY

THERMAL PERFORMANCE

The total thermal transmittance of the facade with these block can be calculated as following:

$$U_{fac} = U_{full}S_{full} + U_{half}S_{half} + U_{corbel}S_{corbel}$$

The total thermal transmittance of the facade is

 $U_{fac} = \frac{1.93 \times 93.78 + 2.3 \times 0.9 + 1.7 \times 9.16}{103.32} = 1.92 \text{ W/m}^2\text{K}$

U-value: 1.7 W/m2K

Full Brick_connection: U-value: 2.3 W/m2K

Half Brick: U-value: Full Brick_corbel:

2.3 W/m2K

Half Brick: U-value:

1.9 W/m2K

COMPARATIVE ANALYSIS – Thermal Performance

Existing building façade – hollow block

Proposed building façade – Fusion block

Proposed building façade – Lattice block

U-value: 2.6 W/m2K

U-value: 2.0 W/m2K

U-value: 1.9 W/m2K

COMPARATIVE ANALYSIS - Structural System

Proposed building façade – Fusion block

Proposed building façade – Lattice block

Substructure Required

No-substructure required

No substructure required

COMPARATIVE ANALYSIS – Fabrication

Existing building façade – hollow block

Proposed building façade – Fusion block

Proposed building façade – Lattice block

Block weight: 3- 5kgs

Block weight: 16kgs

Block weight: 16kgs

COMPARATIVE ANALYSIS - Assembly

Existing building façade – hollow block

Metal substructure with mortar Non-reversible

Proposed building façade – Fusion block

Load-bearing with embedded steel connection Dry-stack and Reversible

Proposed building façade – Lattice block

Load-bearing with interlocking connection

Dry stack and Reversible

COMPARATIVE ANALYSIS – Aesthetical qualities

Existing building façade – hollow block

Non-transparent Heavy with thick mortar lines

Proposed building façade – Fusion block

Transparent Fluid

Proposed building façade – Lattice block

Transparent Fluid

COMPARATIVE ANALYSIS – Optical Quality

Proposed building façade – Fusion block

Proposed building façade – Lattice block

Non-transparent

Transparent

Transparent

The present research concludes in two concepts that are then detailed to be applied in an existing scenario. The blocks exhibit good thermal properties (2 W/m2K) as well as a stable assembly system.

FACTORS AFFECTING THERMAL PERFORMANCE

Size and Geometry

Number of Cavities

Material Properties

Thermal bridges

Size of cavities

Path length of heat flows

FACTORS AFFECTING FABRICATION

FACTORS AFFECTING BUILDABILITY

FURTHER RECOMMENDATIONS

A cavity wall between solid cast glass bricks and float glass

A more standardized size of block

Effect of different colors and textures of glass on dispersion of light and varying degrees of transparency.

Literature Study Design Guidelines Thermal Investigation Case Study Constructability Conclusions

FURTHER RECOMMENDATIONS

Life cycle assessment of the two blocks

Validation with experiments

6

Investigation of fire safety and acoustics

Thank You!

<u>Student</u> Twinkle Nathani | Building Technology 5069041 Literature Study Design Guidelines Thermal Investigation Case Study Constructability Conclusions

Comparison

Glass Block Type	Hollow Block	Solid Block							
	Seves (HTI WAVE) & Pittsburgh Corning (Thickset 90 VUE)	Seves (VISTABRICK) & Pittsburgh Corning (VISTABRICK)							
Properties Properties Properties									
U-Value	1.8 - 2.5 W/m2K	4.1 - 4.9 W/M2k							
Compressive Strength	3 - 6 MPa	82 - 400 MPa							
Light Transmission	70 - 76 %	60 - 90 %							
SHGC	0.32 - 0.68	0.52 - 0.78							
Sound	43 - 50 STC	43 - 50 STC							
Manufacturing									
		Crystal House	Atocha Memorial	Optical House					
Process	Casting, Fusing and Annealing	Casting							
Glass Type	Soda-lime	Soda Lime	Borosilicate	Borosilicate					
Mould Used	Pressed Steel Mould	Open Steel Mould	Pressed Steel Mould	Pressed Steel Mould					
Annealing time	unknown	8 - 38 h (size dependant)	20 h	unknown					
Installation									
System	Metal substructure with mortar	Adhesive bonded bricks	Adhesive bonded bricks	Metal substructure					

Similar properties

Naming Criteria

Table with thermal conductivity values

Standard Dutch values for a _i and a _e									
	lpha conduction	α convection	α radiation	α total	r				
inside	o W/m²K	2.3 W/m2K	5.5 W/m2K	7.8 W/m2K	0.13 W/m2K				
outside	o W/m2K	19.5 W/m2K	5.5 W/m2K	25 W/m2K	0.04 W/m2K				
Temperature									
inside	20 °C								
outside	0 ℃								
Glass properties									
Glass Type	conductivity	emissivity							
		with coating		without coating					
Borosilicate	1.0 W/mK	0.9		0.	0.02				

Table with design inputs on TRISCO

2.18 W/m2K

2.17 W/m2K

2.17 W/m2K

2.13 W/m2K

200C1_1-25_10

2.13 W/m2K

200C1_1-30_10

2.23 W/m2K

200C1_1-10_00

2.18 W/m2K

1.68 W/m2K

200C1_1-30_11

1.79 W/m2K

200C1_1-25_01

1.83 W/m2K

1.82 W/m2K

1.82 W/m2K

1.77 W/m2K

1.76 W/m2K

1.84 W/m2K

1.91 W/m2K

1.29 W/m2K

200C1_2-20_11

1.39 W/m2K

200C1_2-20_01

Concept 2: Coated Glass in middle

Concept 3: Merging Hollow and Solid - Block 50mm

STAGE 2

STAGE 3

Concept 3: Merging Hollow and Solid - Block 150mm

Concept 4: Honeycomb Block

COMPARISON OF DIFFERENT CONCEPTS

Note: All dimensions are in mm. All U-Values are in W/m2K.

CONCEPT 3

Hollow part

Case Study – Ports 1961, Shanghai – UUFIE

Two types of Satin finished Glass block:

- Standard square block of 300mm x 300mm
- Custom mitered block of 300mm x 300mm

This custom block is used in the corners to create a corbelled façade.

Façade detail in Plan (Castro, 2015)

Case Study

The blocks are placed over shot blasted stainless steel plates of the same dimension, extending to a steel frame. These metal strips divide the glass blocks into groups of 64.

Risk Analysis

Maintenance

Maintenance

