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Abstract

Respiratory sinus arrhythmia (RSA) is one of the forms
of cardiorespiratory coupling. It has been suggested as
a potential biomarker for diverse illnesses and condi-
tions. In general, methods for non-invasive quantification
of the RSA combine information from heart rate variabi-
lity (HRV) and respiratory signals. Abnormal beats, which
commonly occur in different populations, alter the relia-
bility of the HRV and thus hinder the quantification of the
RSA. To overcome this problem, several methods for detec-
tion and correction of irregular beats have been reported
in literature. However, the effect of each of these methods
on the quantification of the RSA is not well understood yet.
For this reason, an approach that avoids this step might be
useful. This paper presents an alternative based on robust
regression models. For comparison purposes, an algorithm
to detect and correct for irregular beats, in combination
with a state-of-the-art RSA estimate, are tested. A similar
performance is achieved with both approaches. These re-
sults show that the proposed robust methodology is able to
capture the strength of the RSA, even when irregular beats
are present, avoiding the irregularities correction step.

1. Introduction

The development of methods for respiratory sinus
arrhythmia (RSA) quantification is an active research to-
pic. Reasons for this include the fact that this form of car-
diorespiratory interaction has been shown to be a good bio-
marker for the diagnosis and follow-up of certain condi-
tions and diseases.

The quantification of the RSA is based on the amount
of information shared between the heart rate variability
(HRV) signal, derived from the ECG, and the respira-
tory signal. In general, the methods for RSA quantifica-
tion work well when ECG signals without abnormalities
are used. However, their application and interpretation in
signals recorded during cardiac abnormalities is still cha-
llenging. One of the reasons is that, in these cases, ecto-
pic beats are often present in the HRV signal, which lead
to an unreliable estimation of the RSA. This paper pro-
poses and testes a new approach to characterize the RSA
in the presence of irregular beats. The method is based on
robust regression models built with least squares support
vector machines (LS-SVM). Furthermore, the robustness
of a state-of-the-art RSA estimator is tested with and wit-
hout a phase of irregular heartbeat correction.

2. Methods

2.1. Dataset and preprocessing

The data used in this paper was taken from 110 Poly-
somnography (PSG) recordings of patients with different
obstructive sleep apnea (OSA) severities and OSA asso-
ciated comorbidities. The ECG and thoracic respiratory in-
ductive plethysmograph signals were acquired with a sam-
pling frequency of 500 Hz. The sleep apneas were anno-
tated according to the AASM 2012 scoring rules [1]. The
R-peaks in the ECG were detected using the approach des-
cribed in [2]. Afterwards, these were used to calculate the
RR intervals, which were then interpolated to a sampling
frequency of 2 Hz, and used as the HRV signal. The res-
piratory signals were downsampled to 2 Hz after applying
an antialiasing filter. Afterwards, both HRV and respira-
tion were filtered to preserve only frequency components
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between 0.03 and 1 Hz with a 4th order butterworth filter.
This filter was applied in forward and backward directions
to have a zero-phase distortion. Next, The respiratory sig-
nals and HRV were segmented into 5-minutes epochs and
those containing apneas were discarded.

2.2. RSA estimates

The RSA was quantified using the robust and the non-
robust approaches described below.

2.2.1. Non-robust RSA estimation

The non robust RSA estimate approach is a state-of-the-
art method based on orthogonal subspace projections [3].
Let’s denote xxx and yyy two vectors containing the samples of
the HRV and respiration, respectively. This approach de-
composes yyy into two components: one linearly related to xxx
and another with residual information. To this end, a subs-
pace QQQ is built as a time-delay embedding of xxx. QQQ is then
used to calculate a projection matrix PPP , given by,

PPP = QQQ(QQQTQQQ)−1QQQT , (1)

which in turn is used to derive the information in the HRV,
linearly correlated with the respiration as,

yyyr = PPPyyy. (2)

With this, the relative power of the linear respiratory in-
fluences on the HRV, is calculated as,

Px = (yyyr
Tyyyr)/(yyy

Tyyy). (3)

2.2.2. Robust RSA estimation

An alternative robust approach is proposed. It is based
on measuring the quality of a robust autoregressive model
built with LS-SVM [4]. To this end, a training data set of
M = N −L+ 1 points, {x̂̂x̂xk; yk}Mk=1 is defined. Here, the
input data x̂̂x̂xk ∈ IRL are vectors of L consecutive samples
of the respiratory signal built as an embedding, where L is
the embedding dimension. The output data point yk ∈ IR
corresponds to the kth sample of the HRV signal. These
are used to formulate the following optimization problem,

min
w∗,b∗,e∗

JP (www∗, eee∗) = 1
2www
∗Twww∗ + γ

1

2

M∑
k=1

vke
∗2
k ,

s.t. yk = www∗Tϕ(x̂̂x̂xk) + b∗ + e∗k, k = 1, ...,M.

(4)

Here, ϕ(x̂̂x̂xk) is a function that maps the vector x̂̂x̂xk onto a
higher dimensional space, www∗ is a vector of weights, e∗k is

an error variable, b∗ is a bias term, and γ is a term deter-
mining the importance of the error. The weights vk are a
variable to correct for outliers, given by,

vk =


1 if | ek/ŝ |≤ c1
c2− | ek/ŝ |
c2 − c1

if c1 <| ek/ŝ |≤ c2
10−4 otherwise

, (5)

where the error terms, ek, are estimated by first solving
the non-robust LS-SVM problem, i.e not considering the
weighting factor, vk. IQR(eee) stands for the interquartile
range of the errors, and ŝ = IQR(eee)/(2 × 0,6745) is a
robust estimation of the standard deviation of the errors.
The solution to this problem becomes,[

0 111Tv
111v ΩΩΩ + VVV γ

] [
b∗

ααα∗

]
=

[
0
yyy

]
, (6)

whereααα∗ are the Lagrange multipliers, ΩΩΩ is the Kernel ma-
trix, and the diagonal matrix VVV γ is defined as,

VVV γ = diag

([
1

γv1
; ...;

1

γvM

])
. (7)

The system in 6 is solved for ααα∗ and b∗. The HRV, y, can
then be predicted as,

y(xxx) =

M∑
k=1

α∗kK(xxx, x̂̂x̂xk) + b∗. (8)

More details of the methodology to build the regression
model can be found in [4].
The residuals of the prediction, eee∗, are calculated. Finally,
a parameter called η is derived, using the samples in yyy and
eee∗ as,

η = 1− IQR(eee∗)/IQR(yyy). (9)

2.3. Segment extraction

The cardiorespiratory coupling was estimated using Px
in the segments described in section 2.1. The epochs were
then grouped by their Px level in 9 bins of 0.1, ranging
from 0 to 0.9. Finally, 50 randomly selected epochs per
bin were visually chosen ensuring that they did not con-
tain artifacts, irregular beats, or respiratory signals with an
irregular pattern.

2.4. Simulation of irregular beats

The R-peak locations in the 5-minutes epochs were ar-
tificially contaminated with irregularities. As explained in
[5], the occurrence of ectopic beats can be simulated chan-
ging the length of the original RR intervals according to:

RR′n = βRRn−1, (10)
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RR′n+1 = RRn+1 −RR′n. (11)

Here, β is a random value in the interval [0.3 0.8]. RR′

are the simulated irregularities in the RR intervals. The
available segments were contaminated 25 times with an
increasing number of simulated ectopic beats each time.
An example of an HRV before and after contamination is
shown in Figure 1.

Figure 1. HRV contaminated with synthetic ectopic beats

2.5. HRV representation and irregular beats
correction

After introducing the synthetic irregularities, HRV re-
presentations were built in three scenarios. First, a spline
interpolation was applied to theRR intervals before conta-
mination, to generate a clean HRV with an even sampling
frequency (RRc). The second scenario consisted of the ap-
plication of a spline interpolation to the contaminated RR
interval time series (RRe). In the third one, the simulated
ectopic beats were detected and corrected using the inte-
gral pulse frequency modulation model (IPFM) and then
used to estimate the heart timing signal (m), which was
used as an HRV representation [6]. These three HRV re-
presentations were sampled at 2 Hz.

2.6. Testing the RSA estimates

In order to perform the comparison of the RSA estima-
tes, the values of Px and η, calculated using RRc, were
first derived and used as the reference for the coupling le-
vel of the HRV and respiration. Afterwards, the two para-
meters were also calculated with RRc and m. Differences
between the RSA estimated with each HRV representation,
for each Px level and with the non-robust and robust met-
hodologies, were evaluated using the Kruskal-Wallis tests,
with a significance level of 5 % (p ≤ 0,05) and with Bon-
ferroni correction.
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Figure 2. RSA estimates allowing up to 8 irregularities

3. Results and discussion

Figure 2 shows the results of the calculation of the car-
diorespiratory coupling with the robust and the non-robust
approaches in the 5-minutes epochs when up to 8 irregu-
larities are included. Significant differences are observed
between the contaminated/corrected case and the clean ca-
se. The top plot shows the results with the non-robust es-
timator (i.e., Px) using the three HRV representations. It
is observed that Px is significantly affected when RRe is
used, up to the point that the increasing trends with a stron-
ger coupling are lost. This occurs because the calculation
of this parameter is very sensitive to outliers, which in this
case correspond to irregular beats. In addition, the figure
shows that a method that takes into account the irregula-
rities to build the HRV, such as the IPFM model, has a
positive effect in the quantification of the RSA. Despite
that the differences with the clean case are significant, the
trends towards a higher Px value with a stronger coupling
are recovered after correction. The bottom plot shows the
proposed robust parameter, η, using either RRc or RRe.
Despite that the quantifications are significantly different
using either HRV representation, it is observed that the
trends towards higher η values with a stronger coupling
are preserved when irregularities are allowed.
Figure 3 shows the results when a different number of irre-
gularities are included. The Figure depicts the results for
two coupling levels, i.e. 0 ≤Px≤ 0,1 and 0,8 ≤Px≤ 0,9.
It is observed that all the RSA quantifications are more
sensitive to outliers when the RSA is stronger. In this case,
the estimates are trustworthy up to 10 irregular beats. With
more than 10 irregularities, the computations of η and Px
with either m or RRe are very different to the clean ca-
se. Similarly to the previous figure, the use of the HRV
representation generated with the IPFM model had the sa-
me beneficial effect on the RSA estimation than using the
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Figure 3. Estimates in function of the number of irregularities. Weak (left) and strong (right) RSA, quantified using Px.

robust approach. Here, it is important to mention that the
computational cost of calculating η is significantly higher
because a regression model needs to be built. To apply the
correction of irregularities and calculate Px, only matrix
multiplications and operations with vectors are required.

4. Conclusions

A robust approach for RSA estimation was tested when
irregularities are simulated in the HRV representations. It
was shown that this method is able to capture the cardio-
respiratory coupling when irregular beats occur. It was also
shown that the use of a non-robust RSA estimate, in com-
bination with a technique for irregular beats corrections,
achieved a similar performance. These results suggest that
the proposed robust method can be used avoiding a step
of irregular beats correction, which is not always straight
forward. As future work, a surrogate analysis will be in-
cluded. In addition, the proposed approach will be tested
in real data with real irregular beats and will be compared
with the computations using different strategies to correct
for irregularities in the HRV.
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