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Abstract
Errors during truck loading at dock doors lead to unwanted wrong deliveries in logistics. Due to the
falling price of RFID tags, RFID dock door discrimination is now being used for product registration.
The problems that arise with the current system for RFID Dock Door Discrimination are cross-reads
and miss-reads. The purpose of this research is to increase the accuracy of product registration by the
proposed Dock Door Discrimination method with Naive Bayes Classifier (NBC). A hardware design,
including 4 RFID antennas at three adjacent dock doors and 1 added antenna at the staging area, and
software design, including the implementation of the NBC, are proposed to improve the RFIDDock Door
Discrimination. The Experimental Setup and Plan were used to gather data to compare the current
RFID transition system with the new proposed NBC system in six scenarios, three with and without
noise at other gates. For each individual scenario, the accuracy improved most with NBC with one
input feature. The accuracy for all scenarios combined for the collected data improved from 82.1±0.8%
(current) to 93.6±0.5% (NBC).These results mean that there is a solid improvement in implementing
the Naive Bayes Classifier over the current RFID transition system for Dock Door Discrimination.
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Chapter 1

Introduction
Logistics can be found in many places around the world. In particular, many logistics processes take
place at large warehouses and distribution centres. One of these logistic processes is the loading of
goods on trucks at the so-called dock doors, shown in figure 1.1. It is important to keep a good under-
standing of where products are and where the products should go, something called stock registration.
Errors in the loading of trucks at the dock doors can lead to incorrect deliveries. As a result, cus-
tomers may claim damages because the delivery is wrong or late, which is not desirable. It is therefore
important to register the products in order to have proof of which product went into which truck.

Figure 1.1: Dock door system (loading bay) (Lyzs, 2022)

The hands-free automatic registration solution for identifying these products is Radio Frequency IDen-
tification (RFID) technology. The operation of such an RFID technology relies on Ultra-High Frequency
(UHF) radio waves to identify the RFID tags, which are attached to all products. Due to the falling price
of RFID tags (Chawla and Ha, 2007), RFID technology is increasingly being used for stock registration
when loading different kinds of products on trucks. With the help of an RFID technology at the dock
doors, it will be registered which products or crates have been identified and in which trucks they are
stashed. Before the implementation of RFID in this logistics process, manual checks by warehouse
operators were still used. Since the RFID solution is hands-free, the registration of the products is no
longer labour-intensive and the information about the location of the products is stored in the cloud.

1
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1.1. Problem
The problem that arises when installing an RFID system in a multiple dock door environment, is in the
proximity of the dock doors. These dock doors are placed with as little space between them as possible
at warehouses, because that leads to the (un-)loading processes being most profitable, since you can
stack more dock door lanes in the least amount of work floor space. Figure 1.2 shows schematically
from a top view how the installation of an RFID system is carried out at three contiguous dock doors.
In this figure, the RFID antennas with their reading field are shown in red, the static products stored in
the staging areas between the loading lines in yellow and the products in motion through the blue dock
doors towards the truck by means of the arrow.

Figure 1.2: Problem of cross-reading (red: RFID antennas and reading range, yellow: static RFID tags, blue: dock doors, green
arrow: possible direction loading of RFID tags

At each dock door, the RFID tags on products passing by are registered by the RFID antennas, com-
municating via Ultra High Frequency radio waves. Besides these moving products through the different
dock doors, many other products with RFID tags are stored between the supply lines in the designated
staging areas, these products are not moving and therefore called the static products. However, this
form of communication through radio waves is not limited to just the dock door area where the anten-
nas are installed. So not only the moving products with RFID tags at the respective dock door are
registered, also the moving products at adjacent dock doors. In addition, nearby static products in the
staging areas are also registered. This means that the RFID system not only registered the correct
moving products with RFID tags as being loaded in the truck, but also the wrong moving and static
products. In the case of the shown figure, this would mean that dock door 2 registers the products
that are routed through dock door 2, as well as products moving though dock doors 1 and 3 and static
products in proximate staging areas. This causes problems with the registration of the products, as the
products are registered by multiple dock doors as being loaded into the truck, which makes it impos-
sible to distinguish through which dock door the RFID tags went. These RFID tag reads that are not
distinguishable are called cross-reads.

Besides the crossreads there is another phenomenon that is unwanted during the registration of RFID
tags at dock doors. When the dock doors are installed with an RFID system, it might also happen that
some products with RFID tags are not read by an RFID antenna while being loaded into a truck. In
this way it is not registered that the product concerned has gone into the truck. When this happens,
a product is missing, which in turn takes time and money to find back, which is not desirable. These
RFID tag reads that are missed are called miss-reads.
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1.2. Research gap

Dock Door Discrimination (DDD) methods are used as a solution for the problems of cross-reads and
miss-reads in a multiple dock door environment, a warehouse for example. Such a DDD method aims
at improving the discrimination of the RFID tags at the dock doors, which means the products can
be better distinguished from each other. This means that the DDD method also contributes to the
registration and give better insight in the location of the goods, i.e. if and where products are loaded
on the trucks.

Various methods for RFID Dock Door Discrimination exist, such as the Satellite portal method (Keller
et al., 2012), Zone Discrimination (Mojix, 2016) and Metal shielding (Ahson and Ilyas, 2017,Yuan and
Yu, 2011). But because these are expensive alternatives (Krishna and Husak, 2007), the logistics
industry is looking for cheaper alternatives. A preliminary literature study revealed that a DDD method
based on Bayes’ probability theory has the most potential to make a positive impact as a solution to
cross-reads and miss-reads in a multiple dock door environment. Other studies focused on movement
discrimination at a single dock door using various DDD methods, which leaves a gap for using DDD
methods in a multiple dock door environment. In this study, a DDD method using Bayes theory is
proposed to ensure that there is cooperation and fusion between the readings at multiple dock doors to
achieve an accurate determination of location by implementing the Naive Bayes Classifier. In practice,
a DDD method based on the Bayes theorem has been shown to work. However, what is lacking is a
scientific foundation on which the method is based. This study will do that by providing the scientific
background, a proposed design and the data gathered during experiments to measure the impact of
the Naive Bayes Classifier as a DDD method in an RFID multiple dock door environment.

1.3. Research objective

The objective of this study is therefor to increase the accuracy of RFID Dock Door Discrimination with
the Naive Bayes Classifier in a multiple dock door environment.

1.4. Research scope

Items that are inside the scope of this study:

• Outbound process flow
The purpose of this study is to avoid wrong deliveries in the outbound flow of goods. The ware-
house itself is only responsible for the outbound process flow, since this is the only flow of goods
that the warehouse itself can influence. The inbound flow of goods depends on the shipment, so
the responsibility of wrong delivery does not lie with the warehouse, and therefore will be left out
of the scope during this study.

• Radio Frequency IDentification (RFID)
In this study, RFID technology is used for product registration of goods in a warehouse. Other
forms of product registration, for example barcode scanning, are excluded from the scope of this
study.

• Dock Door Discrimination
This study is concerned with distinguishing which dock door the products (with RFID tags) move
through, Dock Door Discrimination. Other processes within the outbound process flow in a ware-
house, such as order picking, are excluded from the scope of this study.

• Data gathering using experiments
The comparison between the current RFID system for Dock Door Discrimination and the newly
proposed method with the Naive Bayes Classifier shows whether the accuracy is improved. To
compare the methods, a data set is needed for the application. This data set is gathered during
this study with an Experimental Setup and Plan. Only this data set is used for comparison.
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• Naive Bayes Classifier
The new method for Dock Door Discrimination is based on the Naive Bayes Classifier. The
conclusion from a previous literature review with comparison between different methods found
that it is the most promising. Therefore, the other methods are excluded from the scope of this
study.

Items that are outside the scope of this study:

• Inbound process flow
Correct inbound process flow is not the responsibility of the receiving warehouse. The sender of
the goods has this responsibility as it has influence in what goods leave in which trucks. Therefore,
inbound process flow is kept out of scope.

• Environment
The environment around the RFID Dock Door Discrimination system is not included in the scope
of this study. Due to the complexity of environmental influences, this is kept out of scope.

• Topology setup variation
The topology setup for the Dock Door Discrimination is a standard configuration typically used for
implementing an RFID system, according to experts at Mieloo & Alexander. The topology setup
is the configuration and orientation of the RFID antennas. Since this is already a standard, the
topology setup variation is kept out of scope.

• Reader settings alteration
The reader setting alteration are can affect the detectability of the RFID tags by the RFID system.
Transit power, reading talking time, channel switching and session alternation are examples of
setting of the RFID reader. Since this is too complex for the time available for this study, this is
also kept out of scope.

1.5. Research questions

The main research question that is posed to support the goal of the research assignment is: What
impact has implementing the Naive Bayes Classifier on RFID Dock Door Discrimination?

Sub-questions that support this main research question are:

1. What is the current RFID system used for RFID Dock Door Discrimination?

2. What is RFID technology and how does it relate to the Bayes theorem?

3. What design is proposed for RFID Dock Door Discrimination with Naive Bayes Classifier?

4. What experimental setup and plan are used for gathering data on Dock Door Discrimination?

5. What is the performance of the Naive Bayes Classifier compared to current RFID system?

1.6. Approach

Steps in the process of this study.

1. Process performance analysis of current RFID dock door system

2. Literature study on RFID technology and relation to Bayes theorem

3. Design of RFID Dock Door Discrimination method with Naive Bayes Classifier

4. Experiment scaled design to collect data on RFID Dock Door Discrimination

5. Comparing the performance of RFID Dock Door Discrimination with current RFID dock door sys-
tem and Naive Bayes Classifier
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6. Conclusion on impact of the Naive Bayes Classifier on RFID Dock Door Discrimination and Future
works

In chapter 2 the current RFID system of registering products by being loaded on trucks is analysed.
First, the whole process of the outbound flow of products at a warehouse is mapped, together with the
current RFID Dock Door Discrimination system at the dock doors. Subsequently, the Key Performance
Indicators are given, in order to be able to compare the current system performance with the new Naive
Bayes Classifier system later on in this study. In doing so, it also explains which data sets are used to
make this comparison between the systems.

In chapter 3 there is a deepening into the literary background of RFID technology. First of all, the
functioning of RFID technology is discussed. Then it looks at related works where RFID in combination
with Bayes theorem is used for other applications in the world of RFID technology. At last, it discussed
why Bayes method has been chosen to solve the problem of dock door discrimination. The further
continuation of this study is then based on this method.

Chapter 4 is used to explain the design of the proposed RFID system for Dock Door Discrimination with
the Naive Bayes Classifier. Here a distinction is made between two aspects belonging to the design of
an RFID DDD method. First, the hardware design is discussed, followed by the software design based
on the Naive Bayes Classifier.

Chapter 5 explains the experimental setup and plan to collect data for comparing the DDD methods. It
also explains how this data set is transformed before it is used for the Naive Bayes Classifier.

Chapter 6 compares the results in performance of the current RFID DDD system with the Naive Bayes
Classifier method for Dock Door Discrimination. A conclusion can then be drawn about the impact of
the Naive Bayes Classifier.

Chapter 7 provides the conclusion of this study, answering the main and sub-questions. Recommen-
dations are also made for future work within the topic of this study.



Chapter 2

Analysis
This chapter answers the sub-question: What is the current RFID system used for RFID Dock Door
Discrimination? In order to strengthen the reason for this research, the current system of product
registration in logistics is analysed. First, the two related processes affected by this study are discussed
in section 2.1. The first is the outbound process flow in a warehouse, where the introduction of RFID is
explained, and later zooms in more on how the current RFID system for Dock Door Discrimination works
when loading products in a multiple dock door environment. Then, the Key Performance Indicators
are determined in section 2.2, which should quantify the performance of the current system and the
proposed system in this study. Besides the KPIs, the way data is collected to compare the current
and the new Dock Door Discrimination system is also determined. Later in section 2.3, the way to
determine the accuracy of the current RFID system for Dock Door Discrimination is discussed. The
margin of error involved in determining accuracy is also discussed in section 2.4.

2.1. Process

In this study, RFID technology is used to make an impact on two related processes. The first is the
outbound process flow in a warehouse, and is followed by the second process, being the current RFID
system for Dock Door Discrimination. The layout of such a warehouse is shown in Figure 2.1. There
are a number of components that appear in all warehouse layouts. The Inbound and Outbound Docks
is the loading bay, where trucks are loaded and unloaded through the outbound and inbound docks
respectively. The Staging and Shipping areas are where the products that have just arrived or are
about to leave are stored. In many warehouses, the two areas together are called the staging area.
The Storage and Packaging Areas are where products are stored and packaged for the long term.
Often no Packaging Area occurs in a warehouse, so this is referred to as the Storage Area.

Figure 2.1: Warehouse layout (Sunol, 2022)

6



2.1. Process 7

2.1.1. Outbound process flow warehouse

The outbound process flow is the outgoing goods flow in a warehouse, and can be seen in figure
2.2. This can occur after inbound products are initially unloaded from their truck and stored in the
warehouse’s storage area. After the customer orders are processed, warehouse operators receive a
checklist of crates to be picked and moved to the staging area. The staging area is an area that has
been specially designated for pre-processing all the products that have to end up in the designated
truck. Since this process is carried out by human operators without extra checks, human errors may
occur. This can result in the wrong products ending up in the truck. Also, sometimes the staging area is
too small for all the products, so some pallets are placed next to it, making it difficult for the next operator
to determine which staging area the pallets belong to. This is very susceptible to errors occurring in
the process. As mentioned before, the products/pallets in the staging area are loaded into the truck by
another operator. This operator simply ensures that all products in the staging area are neatly placed in
the truck. But if an error is made at the start of the outbound process, this will count all the way through
to the delivery, as there is no warning of an incorrect pallet in the meantime.

Figure 2.2: Outbound process flow (Johnson, 2022)

The impact that the use of RFID technology at the dock doors can have is to ensure that products are
better registered. In this way, a dock door can be set to only accept the correct product tags. When
loading the wrong product, a warning in the form of an alarm will ensure that only the right products
are loaded. It also improves the speed of the process, as there is no need to keep comparing a paper
checklist with the product tag in order to get the right pallets.

2.1.2. Current RFID system for Dock Door Discrimination

Zooming in on the moving of products between staging and shipping area, the current RFID transition
system is reached. In the case where an RFID system is installed in a multiple dock door environment
such as a warehouse, the default for Dock Door Discrimination is an RFID transition system. The layout
of this RFID transition system is shown in figure 2.3. Four RFID antennas are installed per dock door,
which are responsible to register the moving products provided with RFID tags (green arrow).

To determine a transition, a distinction is made between the first two antennas (light green) and the
back two antennas (red). In this way, a distinction can be made between the number of reads ”at the
front” of the dock door and ”at the back” of the dock door. Two factors play a major role here, the time
window and the number of reads.
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Figure 2.3: Current RFID transition system

The time window is the time used for the transition through the dock door from inside the warehouse to
the truck. Here a time window of 𝑥 seconds is used, this may differ according to the application of the
current RFID transition system. This time window determines how long the antennas on one side of
the dock door are ”on”. This means that the antennas on the front side of the dock door are ”on” for the
first 2/3rds of the time window [0 𝑠 ∶ 23𝑥 𝑠] and the back side for the second 2/3rds of the time window
[13𝑥 𝑠 ∶ 𝑥 𝑠]. This makes the middle 1/3rd of the time window the transition area, where the RFID tags
are registered by both sets of antennas.

The number of reads detected at the dock door in this time window is decisive for Dock Door Discrim-
ination. Because cross-reads occur between dock doors, the RFID is not only observed at one dock
door. Practice did show that an RFID tag is most likely to have passed through a dock door where the
number of reads at the front and back of the dock door is greatest. The number of reads is thus used
as a filter for cross-reads. On the other hand, this does make the system susceptible to miss-reads, as
the RFID tag is not considered to have moved through the dock door if there are insufficient reads on
both sides of the dock door.
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2.2. Performance (KPI)

In order to make the impact of the later proposed method compared to the current RFID transition
system for Dock Door Discrimination quantifiable, a Key Performance Indicator (KPI) is proposed. The
KPI is the accuracy of the method to assign RFID tag movements through the correct dock door and is
compared by using the same data set for both Dock Door Discrimination methods. By looking at these
values, it can be determined whether the implementation of the proposed DDD method is worthwhile.

Accuracy
The accuracy can be determined with the help of performance classifications. This entails that after
classifying the data sets with their extracted features in different tag movement directions, a number of
performance indicators are used to evaluate the results. First of all, the results are evaluated in four
groups:

• True Positives (𝑡𝑝𝑖) - Correctly classified to be into a specific classification 𝐶𝑖
• False Positives (𝑓𝑝𝑖) - Incorrectly classified to be into a specific classification 𝐶𝑖
• True Negatives (𝑡𝑛𝑖) - Correctly classified to be out of a specific classification 𝐶𝑖
• False Negatives (𝑓𝑛𝑖) - Incorrectly classified to be out of a specific classification 𝐶𝑖

After the results have been divided into the four groups, the test is evaluated in terms of accuracy.
This makes it possible to find out which method is the best based on the same quantity. These key
performance indicator for accuracy is determined as follows (Alfian et al., 2020):

Accuracy

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
∑𝑙𝑖=𝑙

𝑡𝑝𝑖+𝑡𝑛𝑖
𝑡𝑝𝑖+𝑓𝑛𝑖+𝑓𝑝𝑖+𝑡𝑛𝑖

𝑙 (2.1)

Data
To compare the accuracy of the current RFID transition system for Dock Door Discrimination with the
method with Naive Bayes Classifier proposed in this study, Data of transitions of products (RFID tags)
through dock doors is needed. The Data will be collected through an experimental setup and plan,
which is discussed in detail in Chapter 5. The results of both DDD methods are then discussed and
compared in Chapter 6 to determine the impact of the Naive Bayes Classifier.

2.3. Determining Accuracy for current RFID DDD method

This section explains how to determine the accuracy of the current RFID transition system for Dock
Door Discrimination. As mentioned in section 2.1.2, the current RFID system distinguishes between
the sum of the number of reads of the RFID tag on the front and back side of each dock door. When
the two front RFID antennas of the dock door read the RFID tag, the reading is assigned to the ”Front”
group. When the two rear RFID antennas of the dock door read the RFID tag, the reading is assigned
to the ”Back” group. These reads are summed to the ”n” number of read counts in the ”Front” group
and the ”n” number of read counts in the ”Back” group. In case there are three adjacent dock doors
(Gates), this is done for both Gate 1, Gate 2 and Gate 3.

The sum of the number of reads ”n” is then recorded in six columns, one ”Front” and one ”Back” per
Gate. To perform Dock Door Discrimination, a threshold value for the minimum number of reads is
applied. When the number of reads ”n” meets this threshold value, i.e. when the number of reads is
equal to or greater, the presence of the corresponding RFID tag is confirmed. When the ”Front” group
and the ”Back” group of a Gate satisfy this, the name of the Gate (Gate 1, Gate 2 or Gate 3) is added
to a new column ”total score”.

It may happen that the name of two or three Gates are added to this column. This means that the
current RFID system thinks that the RFID tag has passed through several dock doors at the same
time, in which case ”cross-reads” occur. On the other hand, it can also happen that none of the Gates
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meets enough reads to meet the threshold value. This means that the current RFID system thinks that
the RFID tag has not passed through any Gate, in which case ”miss-reads” occur. In both cases, there
is a failed Dock Door Discrimination. Examples of cross-reads, good Dock Door Discrimination and
miss-reads are given in tables 2.1, 2.2 and 2.3 respectively.

Class gate1_f gate1_b gate2_f gate2_b gate3_f gate3_b col1 col2 col3 total_score Successful
Gate1 7 6 3 6 8 3 Gate1 Gate2 Gate3 Gate1Gate2Gate3 No
Gate1 12 6 2 4 8 2 Gate1 Gate2 Gate3 Gate1Gate2Gate3 No
Gate1 9 8 7 2 2 5 Gate1 Gate2 Gate3 Gate1Gate2Gate3 No
Gate1 14 7 4 0 4 2 Gate1 Gate3 Gate1Gate3 No
Gate1 9 10 2 2 0 0 Gate1 Gate2 Gate1Gate2 No

Table 2.1: Current RFID system for Dock Door Discrimination with n=1 (cross-reads)

Class gate1_f gate1_b gate2_f gate2_b gate3_f gate3_b col1 col2 col3 total_score Successful
Gate1 7 6 3 6 8 3 Gate1 Gate1 Yes
Gate1 12 6 2 4 8 2 Gate1 Gate1 Yes
Gate1 9 8 7 2 2 5 Gate1 Gate1 Yes
Gate1 14 7 4 0 4 2 Gate1 Gate1 Yes
Gate1 9 10 2 2 0 0 Gate1 Gate1 Yes

Table 2.2: Current RFID system for Dock Door Discrimination with n=6 (good dock door discrimination)

Class gate1_f gate1_b gate2_f gate2_b gate3_f gate3_b col1 col2 col3 total_score Successful
Gate1 7 6 3 6 8 3 No
Gate1 12 6 2 4 8 2 No
Gate1 9 8 7 2 2 5 No
Gate1 14 7 4 0 4 2 No
Gate1 9 10 2 2 0 0 No

Table 2.3: Current RFID system for Dock Door Discrimination with n=11 (miss-reads)

To find out the accuracy of the current RFID system for the moving tags, the column with the names
of the Gates is compared with the Class. The Class is the Gate through which the RFID tag actually
passed. When these two values match, there is correct Dock Door Discrimination. To indicate the cor-
rect Dock Door Discrimination, ”Yes” is then added to the column ”Successful”. In addition to the Dock
Door Discrimination at the three dock doors, the static tags at Gates 1, 2 and 3 are also discriminated.
Because the antennas are only pointed towards the static tags, it is easy for the current system to
distinguish between moving and static tags, leading to 100% accuracy for static tags. The proportion
of static tags to moving tags is 𝑠 to 𝑚 tags. The total accuracy for the Dock Door Discrimination with
the current RFID system is then determined using the equation 2.2 below.

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = (
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 ”𝑌𝑒𝑠” 𝑣𝑎𝑙𝑢𝑒𝑠
𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑣𝑎𝑙𝑢𝑒𝑠

𝑚 + 1𝑠 ) ∗ 𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑎𝑔𝑠 ∗ 100% (2.2)

2.4. Margin of Error

A data set reflects a subset of all situations that can occur in reality. Therefore, some inaccuracy in the
results must always be taken into account. To clarify this, this section first discusses the Confidence
Interval. It then shows how the inaccuracy is calculated using the Margin of Error.

2.4.1. Confidence Interval

A confidence interval is the mean of the estimate plus or minus its variance. Within a certain confidence
level, this is the range of values in which you expect your estimate to fall when you redo the test. Another
term for probability is reliability. In this study a confidence interval is assumed with a 95% confidence
level, this indicates that 95 percent of the estimates are convinced to fall within the upper and lower
bounds of the confidence interval (Scharwächter, 2022), as shown in figure 2.4.
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Figure 2.4: 95 % Confidence Interval (Prak, 2020)

2.4.2. Margin of Error

The inaccuracy is determined from the confidence interval using the Margin of Error. The formula for
calculating the Margin of Error using accuracy proportions is given in equation 2.3 (Qualtrics, 2022).
𝑧𝛾 is the critical value from the Z-table (Gerstman, 2021) belonging to the selected Confidence Level,
in this study it is the critical value 1.96 for a Confidence Level of 95%. 𝑝 is sample proportion, in this
case also called accuracy, which indicates what percentage of the measurements belong to the correct
group. 𝑛 is the sample size used to determine accuracy for the sample proportion.

𝑀𝑎𝑟𝑔𝑖𝑛 𝑜𝑓 𝐸𝑟𝑟𝑜𝑟 = 𝑧𝛾 ∗ √
𝑝(1 − 𝑝)

𝑛 (2.3)

2.5. Conclusion

In this chapter the following sub question will be answered: What is the current RFID system used
for RFID Dock Door Discrimination?. There are two related processes considered. The first is the
outbound process flow in a warehouse, this is the process of storing the products that via picking end
up in the staging areas and then loaded onto the truck. The second process, when zooming in on truck
loading between staging and shipping, is the current RFID system for Dock Door Discrimination. To
recognise a transition, a distinction is made between the two antennas at the front of the dock door
and at the back of the dock door. A time window per antenna set can be used to determine whether
the product (RFID tag) has actually transitioned through the dock door. The number of reads observed
at the front and back of the dock door applies as a way to prevent the cross-reads, but undesirably
creates more miss-reads.

The Key Performance Indicator makes the methods quantifiable for comparison. Accuracy is used as
a KPI in this study to compare the newly proposed method with the current method for Dock Door
Discrimination. To do this, Data is collected throughout this study through an experimental setup and
plan.

The current RFID system determines Dock Door Discrimination by setting a threshold value for the
number of reads ”n”. When there are equal or more than ”n” readings at the front and back, the tag is
considered to have passed through that dock door. The accuracy of the current RFID transition system
for Dock Door Discrimination is determined by the number of clear transitions of a RFID tag out of the
total number of RFID tags.

To determine the inaccuracy of the results, a Margin of Error is used. In this study a confidence interval
is assumed with a 95% confidence level, this indicates that 95 percent of the estimates are convinced
to fall within the upper and lower bounds of the confidence interval. With this information the Margin of
Error can be determined.



Chapter 3

Literature
The aim of this chapter is to answer the following question: What is RFID and how does it relate
to the Bayes theorem? This is to ensure that readers can read the information in this study and the
current state of RFID technology without prior knowledge. To first understand how RFID works, the
working principle, the tags and the frequency bands of RFID technology are discussed in section 3.1.
Then the low-level read data that emerges when using RFID and what can be done with it is discussed
in section 3.2. After that, several methods from related works are revealed in which RFID technology in
combination with the Bayes theorem has been used for applications in section 3.3. Finally, the principle
of the Bayes method used for Dock Door Discrimination is explained in section 3.4, on which this study
will build further.

3.1. RFID

This section contains the background information about RadioFrequency IDentification to give more
insight to the reader about the working principle, RFID Tags and frequency bands used in RFID tech-
nology.

3.1.1. Working principle

As the name suggests, RFID is based on radio waves. In figure 3.1, such an RFID system is shown.
An RFID system consists of a number of components that are in contact with each other. A reader or
transceiver, a tag or transponder and an antenna (Want, 2006). In addition, the reader is in contact
with a host computer.

Figure 3.1: Overview RFID

The antennas are connected to the tags or the reader. In the case of the tag, the antenna is physically
integrated. In addition, a tag also has an integrated circuit to provide the tag with its own identification
and logic. In turn, the reader is either integrated with the antennas or is connected separately to the
reader via cables. The antennas of the readers give energy to the tags via radio waves, this is called
the downlink. The other way round, where the tag sends its energy together with its identification to
the reader, is called uplink. The information that reaches the reader is often passed on to a connected
computer. This computer is part of a communication network that makes it possible to process the data
coming from the RFID system.

12
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3.1.2. Tags

RFID tags come in three different types; active, semi-passive and passive. These different types are
shown in figure 3.2 below.

Figure 3.2: Types of RFID tags (Dobkin, 2012)

Passive tags
The passive tag does not have its own power supply or radio transmitter (Dobkin, 2012). Furthermore,
it consists of a microchip for memory and logic and an antenna. The operating principle of a passive tag
is based on amplitude modulation, which is discussed further in the next section. The main advantage
over the active tag is the cost for a single tag, being €0.08-0.15 compared to €30 for an active tag (“How
much does an RFID tag cost”, n.d. This is of course due to the fact that it does not have its own power
supply, and according to (Chawla and Ha, 2007) they will only get cheaper in the immediate future.

Semi-passive tags
The semi-passive tag has its own power supply, just like the active tag. The difference is that this power
supply is only used for the auxililiary electronics circuit, being sensors or user-interface (Khan et al.,
2009). But just like with the passive tags, the signal is reflected to the reader via the backscattering
method.

Active tags
As shown in the figure, the active tag has its own energy source in the form of a battery (Weinstein,
2005). Besides this power supply, the active tag has control ciruitry and a transmitter to receive and
send it (Khan et al., 2009). By using a local oscillator, the active tag can send a stronger signal to the
readers and can therefore be detected from further away. This can be done in the following four ways:
(Dobkin, 2012)

• Amplitude shift keying (ASK)

• Phase shift keying (PSK)

• Frequency shift keying (FSK)

• Quadrature amplitude modulation (QAM)

In addition, the energy is also used for other energy-consuming electrical components of the tag,
such as sensors or user interface.
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3.1.3. Frequency bands

RFID transmits radio waves with a large difference in frequency, depending on the application. The
whole spectrum that can be reached with an RFID system is from 100 kHz to more than 5 GHz (Chunli
and Donghui, 2012). Different applications require different frequency bands. The frequency bands
that are most known for an RFID system are the low-frequency (LF), high-frequency (HF), ultra-high-
frequency (UHF) and microwaves. The corresponding frequency bands are respectively 125/134 kHz
(LF), 13.56 MHz (HF), 860-960 MHz (UHF) and 2.4 GHz (microwave). The working principle can be
divided into two parts. First, the near-field RFID is discussed and then the far-field RFID.

Near-field
The operation of near-field RFID is based on the principle of magnetic induction, as shown in figure
3.3. An alternating current runs through the coil of the reader, creating an alternating magnetic field
near the reader (Kaur et al., 2011). When a tag is held close to the reader, it captures the magnetic
field through the coil of the tag. This magnetic field is converted into power for the tag through the coil
and capacitor of the tag. In turn the tag generates a smaller magnetic field opposite to the magnetic
field of the reader. The reader captures a slightly larger magnetic field, causing the coil of the reader
to detect a larger alternating current. This difference is equal to the charge that is transferred to the
tag, which is why this principle is called load modulation. Via load modulation different encodings can
be passed on depending on the number of ID bits, data transfer rate and redundancy bits to remove
errors from the code.

Figure 3.3: Near-field (Want, 2006)

The operating frequencies that belong to the group of near-field RFID and therefore use magnetic in-
duction are up to 100 MHz (Kaur et al., 2011). This means that the RFID categories LF and HF fall
within the near-field RFID group. This is because the range of magnetic induction depends on equation
3.1. This means that the operational distance of near-field RFID becomes smaller and smaller as the
frequency increases. In addition, the energy that is extracted from the magnetic field of the reader is
reduced by equation 3.2, where r is the distance between the reader and the tag. At higher frequencies,
those of UHF and Microwaves, another operating principle must be used.

𝑐/2 ∗ 𝜋 ∗ 𝑓 (3.1) 1/𝑟3 (3.2)
Far-field
In contrast to near-field RFID, far-field RFID relies on electromagnetism, as shown in figure 3.4. Here,
the dipole antenna of the reader propagates electromagnetic waves that are received by the smaller
dipole antenna of the tag. In the tag, the alternating potential difference is converted via the capacitor
back into energy for the tag. A small fraction of this energy is then reflected back to the reader, this is
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called back-scattering. To be able to reflect that signal, a so-called impedance mismatch occurs, where
the frequency of the reader is not absorbed but reflected. With the help of a sensitive radio receiver,
this energy is captured by the reader. By adjusting the impedance of the tag antenna, the tag ID can
be encoded.

Figure 3.4: Far-field (Want, 2006)

There is a far-field RFID systemwhen the operating frequency is more than 100MHz (Kaur et al., 2011).
This means that UHF and microwaves fall under this group of RFID systems. Because the energy first
has to go from the reader to the tag and then is reflected back to the reader, a lot of energy is lost.
Therefore the remaining energy is subject to equation 3.3. But since the power a tag needs and the
radio receivers of the readers are getting better and better, these systems are getting better over time.

1/𝑟4 (3.3)

Applications
The different types of RFID, their coupling type and their applications in the real world are shown in
table 3.1 (Duroc and Tedjini, 2018).

Frequency range Read range Coupling type Applications

LF 125 kHz
134 kHz ∼0.1 m Magnetic

Near field Smart card, ticketing, access, animal tagging, laundry...

HF 13.56 MHz ∼1 m Magnetic
Near field Small item management, supply chain, anti-theft, library...

UHF 860-960 MHz ∼2-20 m Electromagnetic
Far field Transportation vehicle ID, access, security, supply chain, large item management...

Microwaves 2.4 GHz ∼10 m Electromagnetic
Far field Transportation vehicle ID, road toll, access, security, supply chain, large item management...

Table 3.1: RFID Characteristics and applications (Duroc and Tedjini, 2018)

3.2. Low-level read data
RFID reads, where RFID tags are read by the RFID antennas, involve low-level read data. First, the
information contained in this data is explained. Then how this is used to determine the direction of the
RFID tag. Finally, the low-level read data is used to find out extracted features, which are needed for
further research with Dock Door Discrimination.



3.2. Low-level read data 16

3.2.1. Low-level read data

During a tag read, the reader’s antenna receives information that depends on a variety of factors. These
factors consist of both the underlying information that belongs to a tag read and the environmental fac-
tors that can influence it. The figure shows an example of such a tag read.

EPC Timestamp Antenna RSSI Phase angle
3032...7D 1,453,989,765.31 15 -59.0 3.50
3032...D1 1,453,989,765.31 15 -56.0 2.91
3032...7D 1,453,989,765.34 4 -69.0 2.72
3032...7D 1,453,989,765.34 17 -56.0 3.07

Table 3.2: Example of lower-level features from tag read (Hauser et al., 2019)

EPC
The Electronic Product Code (EPC) indicates the identity of the corresponding tag (Keller et al., 2010).
This code is divided into four parts to provide each tag with its own identity; Header, EPC Manager,
Object Class and Serial Number. The header indicates the type of EPC format used by the tag. The
second part of the number is the EPC Manager, which indicates the manufacturer’s company. Then
there is the Object Class, which indicates the product class to which the tag belongs. Finally, there is
a Serial Number, which is unique for each tag.

RSSI
The Received Signal Strenth Indication (RSSI) is a measure of the strength of the signal received from
the tag by the antenna of the reader (Keller et al., 2014). This value is expressed in dBm and the closer
the tag gets to the reader, the stronger the signal and therefore the higher the RSSI.

Timestamp
The value of Timestamp is determined by the time the tag is read (Hauser et al., 2019), this can be
used to determine the difference in RSSI of a tag over a certain period of time. This value is sometimes
indicated with SinceStart in order to make the results more comprehensible for the reader, this means
the time from the start of the gathering cycle.

Antenna
A reader is connected to one or more antennas, depending on the application. To get a better idea of
the position of the tag in relation to the antennas, it is indicated by which antenna the tag is read. By
combining this information with for example the timestamp, one gets a better idea of the tag’s completed
path.

Phase angle
In addition to the strength of the signal, the phase angle of the tag read is also retrieved when it is
detected (Hauser et al., 2019). This means the current phase angle of the backscattered sinusoidal
wave. This value is often used in combination with RSSI to get an accurate determination of the tag’s
location (Buffi et al., 2019).

3.2.2. Tag Direction

A distinction is made between the tags based on their direction. In (Alfian, Syafrudin, Yoon, et al.,
2019) a distinction is made between tag movements through the gate, near the gate and static tags.
On this basis, in (Alfian, Syafrudin, Lee, et al., 2019) on further distinction in movements through the
gate, namely outward (towards the truck) and inward (towards the warehouse). (Alfian et al., 2020)
is the most recent study on tag movement direction. In this study, an additional movement pattern is
added, namely turning around halfway through the gate, as shown in figure 3.5a.
The test set-up, shown in figure 3.5b, consists of a reader with two antennas next to each other, through
which a stack of crates and tags are led. The reader antennas then transmit a UHF radio wave and
receive a back-scattered signal back from the tags. This signal is then decomposed into all kinds of
low-level features, previously indicated in the previous section.
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(a) Schematic (b) Test setup

Figure 3.5: Tag movement detection (Alfian et al., 2020)

3.2.3. Extracted features

Based on the low-level features of a tag read, discussed in section 3.2.1, certain relations can be
determined, so-called extracted features (Ma et al., 2018). In table 3.3 lists these features and their
description.

Features Description

Max RSS The maximum of the received signal strength during a gathering session. When the moved tags move through the
portal, they tend to have a larger RSS because the distance to the antenna is closer than the static tags.

Mean RSS
The average of the received signal strength during a gathering session. When the tags move through the portal, they
tend to have a larger mean RSS because the distance to the antenna is closer than the static tags during most of the
gathering session.

RSS variance Because the distance of the moved tags to the antenna changes continuously when the moved tags pass through the
portal, they tend to have a larger variance.

RSS range The difference between maximum received signal strength and minimum Received signal strength collected during a
gathering session.

RSS Skewness Represents asymmetry of the RSS’s histogram with respect to its mean value. Static tags tend to have a symmetrical
RSS distribution.

RSS Kurtosis Measure of whether the data are heavy-tailed or light-tailed relative to a normal distribution. Moved tags tend to have
a heavy-tailed RSS distribution.

Phase variance Because the distance of the moved tags to the antenna changes continuously, they tend to have a larger variance.
Phase range The difference between the maximum and minimum measured phase values during a gathering session

Phase Skewness Asymmetry of the phase’s histogram with respect to its mean value. Static tags tend to have a symmetrical phase
distribution.

Phase Kurtosis Measure of whether the data are heavy-tailed or light-tailed relative to a normal distribution. Moved tags tend to have
a heavy-tailed phase distribution.

Count The total number of interrogation times during a gathering session. Moved tags tend to have a higher number of reads
because they pass through the portal and are closer to the antenna.

Table 3.3: Extracted features (Ma et al., 2018)

When looking at a tag that is moving passed two separate antennas, the ideal RSSI distribution would
be as given in figure 3.6.
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Figure 3.6: RSSI detection (Jie et al., 2018)

There are two extracted features which are not based on the distribution of the RSS or phase, the
skewness and kurtosis, which are calculated as follows:

𝑘𝑢𝑟𝑡𝑜𝑠𝑖𝑠 =
1
𝑛 ∑

𝑛
𝑖=1(𝑥𝑖 − �̄�)4

( 1𝑛 ∑
𝑛
𝑖=1(𝑥𝑖 − �̄�)2)2

(3.4)

𝑠𝑘𝑒𝑤𝑛𝑒𝑠𝑠 =
1
𝑛 ∑

𝑛
𝑖=1(𝑥𝑖 − �̄�)3

(√ 1
𝑛 ∑

𝑛
𝑖=1(𝑥𝑖 − �̄�)2)3

(3.5)

In figure 3.7 an example is given for the RSS and phase distribution and histograms of RFID reads
from moved and static tags. It can be seen in figure 3.7a that the value for Max RSS, Mean RSS, RSS
variance and RSS range will be the highest for the moved tags. This can be explained by the fact that
the RSS value of the tag increases as it gets closer to the reader and decreases as it moves away from
the reader. In figure 3.7b a clear distinction can be made between the moving and static tags, since
the phase values change with the changing distance between tag and antenna. Because of this, the
phase variance and range will also be larger for the moving tags than for the static tags. Figures 3.7d
and 3.7f furthermore show to be less symmetrical and heavy-tailed distribution compared to the static
tags of figure 3.7c and 3.7e, because there is a larger distribution in different tag read values.
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Figure 3.7: Example of extracted features (a) RSS distribution (b) Phase distribution (c) RSS histogram static tag (d) RSS moved
tag histogram (e) Phase histogram static tag (f) Phase moved tag (Ma et al., 2018)

3.3. Related works on RFID with Bayes theorem and probability

This section discusses how methods based on the Bayes theorem (section 3.3.1 and 3.3.3) and other
probabilistics (3.3.2 and 3.3.4) are applied in RFID technology. It discusses the different purposes
that RFID has and how the Bayes theorem or other probabilistics ensures that the RFID system works
properly. This can be divided into process models, tracking, localization and inference.

3.3.1. Process model localization

A first model applying Bayes theorem to an RFID application has been proposed by (Goller, 2013) and
(Goller and Brandner, 2012). Here the location where the RFID tags are read is combined with the
business process model of the supply chain dynamics. Using the Coninuous Time Morkov Chain as
probabilistic framework (or Hidden Markov model in (Goller and Brandner, 2011)), first the probability of
transition between business-process states is determined. For this purpose the temporal behaviour in
terms of a dwell time parameter for every state is considered. It is then assumed that the dwell time in
a given state is exponentially distributed with a mean. This gives an insight into the flow of all business
processes. The probability that a read event 𝑧𝑗 has subsequently led to a correct state transition is
computed by Bayes law in the following way:

𝑃(𝑡; 𝐷𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛|𝑧𝑗) =
𝑃(𝑧𝑗|𝑡; 𝐷𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛)𝑥𝑃(𝐷𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛)

𝑃(𝑧𝑗)
(3.6)

Thus, the model can estimate the location of a product in the supply chain at a given point in time.

3.3.2. Tracking

The tracking of RFID tags is not only done on the basis of the probability that a tag is correctly read
at the current moment. (Kelepouris et al., 2011) propose a model that can accurately determine the
future location of the tags based on past and present locations. Given a location probability distribution
(based on Hidden Markov Model), the future location distribution can be predicted in the following way:

𝑃(𝑋𝑡+1) = ∑
𝑥𝑡/𝑖𝑛𝑆

𝑃(𝑋𝑡+1)𝑝(𝑥𝑡) (3.7)
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3.3.3. Indoor localization

Another application of the Bayes theorem in RFID is an indoor positioning method proposed by (Xu
et al., 2017). Here the location, together with the accuracy of this location determination, is determined
by a Gaussian filter for abnormal RSSI values and Bayes probability in combination with a k-Nearest
Neighbor algorithm. This results in a good improvement in the accuracy of the indoor positioning of the
RFID tags. The experimental setup for the determination of the tag locations is shown in figure 3.8.

Figure 3.8: Indoor localization (Xu et al., 2017)

With 𝑍𝑘 representing the sets of all measured tags 𝑘 coordinates and 𝑋𝑘 being the unknown tag position,
the posteriori probability of 𝑋𝑘 being under the known set 𝑍𝑘 is given by 𝑝(𝑋𝑘|𝑍𝑘−1) and the prior
probability of the position estimation of the unknown tag in the unknown set by 𝑝(𝑋𝑘|𝑍𝑘−1). These
are used for determining the probability distribution of 𝑝(𝑋𝑘|𝑍𝑘) by means of a Bayesian positioning
algorithm (Xu et al., 2017):

𝑝(𝑋𝑘|𝑍𝑘) ∝ 𝑝(𝑍𝑘|𝑋𝑘) × 𝑝(𝑋𝑘|𝑍𝑘−1) (3.8)

1. Determine prior probability: 𝑝(𝑋𝑘|𝑍𝑘−1)

𝑝(𝑋𝑘|𝑍𝑘−1) =
1

𝜎1√2𝜋
exp− 𝐷

2
1

2𝜎21
(3.9)

2. Determine posteriori probability: 𝑝(𝑋𝑘|𝑍𝑘−1)

𝑝(𝑋𝑘|𝑍𝑘−1) =
1

𝜎2√2𝜋
exp−(𝐷2 − 𝑄)

2

2𝜎22
(3.10)

3. Calculate probability distribution function 𝑝(𝑋𝑘|𝑍𝑘) of unknown tag’s position.

𝑝(𝑥, 𝑦) =
4

∏
𝑖=1

𝑝𝑖(𝑋𝑘|𝑍𝑘) = 𝐶(
1

𝜎1𝜎2√2𝜋)4 exp 𝑓(𝑥, 𝑦)
(3.11)

where,

𝑓(𝑥, 𝑦) = Σ4𝑖=1𝑓𝑖(𝑥, 𝑦) = −
1
2Σ

4
𝑖=1{

1
𝜎21
[(𝑥 − 𝑥𝑘−1)2 + (𝑦 − 𝑦𝑘−1)2] +

1
𝜎22
(√(𝑥 − 𝑎𝑖)2 + (𝑦 − 𝑏𝑖)2 − 𝑞𝑖)2}

(3.12)
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3.3.4. Inference

Another application of the probabilistics in RFID is proposed by (Tran et al., 2009) to determine reader
mobility, object dynamics and noisy readings. This mainly concerns a probabilistic data generation
model. In this research, a distinction is made between evidence variables, which are observed from
the collected data, and hidden variables, which reflect the actual locations of the reader and the objects.
These are represented by the shaded and unshaded nodes respectively in figure 3.9. The aim of the
proposed model is to predict the locations of the various objects using the conditional distribution of p.

Figure 3.9: Bayesian network model

In order to make a good prediction, it is necessary to divide it into smaller models. Thereby, the reader
motion model and reader location sensing model are used to make a good prediction for the evidence
value R. In addition, the RFID sensor model in combination with the object location model is used to
find out the evidence values for O. The working principle with the different models is summed up as
follows:

1. Generate new reader location 𝑅𝑡 by sampling the previous location 𝑅𝑡−1 with the reader motion
model 𝑝(𝑅𝑡|𝑅𝑡−1).

2. Generate noisy reader location observation 𝑅𝑡 from reader location sensing model 𝑝(�̂�𝑡|𝑅𝑡).

3. Generate new object locations 𝑂𝑡 from the object location model 𝑝(𝑂𝑡𝑖|𝑂𝑡−1,𝑖).

4. Determining if object 𝑖 is observed using the sensormodel, each object with a probability 𝑝(�̂�𝑡𝑖|𝑅𝑡 , 𝑂𝑡𝑖).

5. Determining if tag is observed using the sensor model, each tag 𝑖 with a probability 𝑝(�̂�𝑡𝑖|𝑅𝑡 , 𝑆𝑡)

When all probabilities of the different models are combined, one arrives at the following equation for
the local probability distribution:

𝑃(𝑅, �̂�, 𝑂, �̂�|𝑆) = 𝑝(𝑅1, 𝑂1)∏
𝑡
𝑝(𝑅𝑡|𝑅𝑡−1)𝑝(�̂�𝑡|𝑅𝑡) ×∏

𝑖∈𝑂
𝑝(𝑂𝑡𝑖|𝑂𝑡−1,𝑖)𝑝(�̂�𝑡𝑖|𝑅𝑡 , 𝑂𝑡𝑖)∏

𝑖∈𝑆
𝑝(�̂�𝑡𝑖|𝑅𝑡 , 𝑆𝑡)

(3.13)

3.4. Bayes theorem for RFID dock door discrimination

The application of the Bayes theorem for dock door discrimination in RFID technology is identified as
promising from prior literature research. The method is briefly explained in this one from a white paper,
which unfortunately lacks the scientific background.
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3.4.1. Bayes method

The Bayes method (Reva, 2006) revolves around the concept of filtering the crossreading with their
Location Virtualization (LV) logic. The logic bases its findings on, among other things, the spatial rela-
tionships between antennas and locations, which are based on antenna placement and orientation. In
addition, the read rates and tag observations of the antennas are also used. It is also possible to use
external sensors for the direction of the tags and tag association information to verify the pallets. The
location determination of the tags by the LV logic is based on Bayes likelihood theorem (Joyce, 2003)
as follows:

𝑃(𝐿𝑜𝑐 < 𝑇, 𝑥, 𝑡 > |𝑂𝑏𝑠 < 𝑇, 𝑅, 𝑡 >) = 𝑃(𝑂𝑏𝑠 < 𝑇, 𝑅, 𝑡 > |𝐿𝑜𝑐 < 𝑇, 𝑥, 𝑡 >)𝑥𝑃(𝑇 ∈ 𝑥)
𝑃 < 𝑇, 𝑅, 𝑡 > (3.14)

where,

• (𝑂𝑏𝑠 < 𝑇, 𝑅, 𝑡 >) : Tag T observed by reader R at time t

• (𝐿𝑜𝑐 < 𝑇, 𝑥, 𝑡 >) : Tag T in location x at time t

• (𝑇 ∈ 𝑥) : Tag T in location x

• 𝑃(𝑇 ∈ 𝑥) : Prior likelihood estimate of the tag T in location x

• 𝑃(𝑂𝑏𝑠 < 𝑇, 𝑅, 𝑡 > |𝐿𝑜𝑐 < 𝑇, 𝑥, 𝑡 >) : Likelihood of the tag T being observed by reader R when the
tag is in location x at time t. This information is computed based on the RF link settings used by
the reader during that read cycle.

• 𝑃 < 𝑇, 𝑅, 𝑡 > : The probability that the reader R observed the tag T at time t.

The probability that a tag is in a specific location is calculated by the observations of the multiple read-
ers together. For this, the reader uses both the spatial and temporal observations of the tag.

Example
An example of a practical application is shown in figure 3.10. It can clearly be seen that there are three
dock doors in a row, close to each other, so cross reading can occur here. At the dock doors, two pairs
of antennas are directed towards each other per doorway. Per dock door, the antennas are connected
to a single reader. There are also photo sensors on both sides of the doors. In addition, there are also
four antennas directed towards the passageway locations to register the products that are put away.

Figure 3.10: Bayes method (Reva, 2006)
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The intention is that the tag pallets that are moved through a dock are also categorised as such by
the algorithm. Thus, a distinction must be made between the movement directions, either loading or
unloading of the truck. During this loading and unloading process, the algorithm uses probability theory
to filter out crossreads. The system worked while also mimicking external influences. These include
tag activity at another dock through portals, tag activity in the passage way and tags still in the truck.

3.5. Conclusion
This chapter answers the question posed in the intro: What is RFID and how does it relate to the
Bayes theorem? RFID systems consist of a reader, tag, antenna and host computer. The reader
gives energy to the tag (if passive) by radio waves (downlink), the tag gives energy back together with
its identification (uplink). A distinction is then made between three types of tag: active, passive and
semi-passive. The active tag has its own power supply, the passive none and the semi-passive only
for the auxiliary electronics circuit. The coupling method depends on the frequency of the operation.
Low frequency and high frequency fall under near-field RFID, which is based on magnetic induction.
Ultra-high frequency and microwaves, on the other hand, fall under far-field RFID, where the working
principle is based on electromagnetism.

Low-level read data is retrieved at a tag read, this is subdivided into EPC, RSSI, Timestamp, Antenna
and Phase angle per tag read. When the tags are detected, the direction of movement of the tags
needs to be determined. Also, based on the low-level read data, extracted features are determined in
order to be able to recognise the patterns and distinguish between different tag reads.

Related works methods based on Bayes theorem and other probablistics are applied with RFID tech-
nology. Four methods are described. First the Process model localization method, which can estimate
the location of a product in the supply chain at a given point in time. Then the Tracking method, which
can accurately determine future location of the tags based on past and present locations. The in-
door localization method determines the location of the target tags by the use of reference tags and
by a Gaussian filter for abnormal RSS values and Bayes probability in combination with a k-Nearest
Neighbor algorithm. The method of Inference combines multiple models in order to discribe the local
probability distribution for the RFID tags.

The Bayes method is the foundation of this research because it has the most potential for a Dock Door
Discrimination method. Using Bayes’ theorem, it is then determined at which location or through which
door the RFID tags have passed. The probability that a tag is in a specific location is calculated by the
observations of the multiple readers together. For this, the reader uses both the spatial and temporal
observations of the tag. Using this practical example as a starting point, this study examines the further
optimization of the detection and discrimination of RFID tags at the dock doors in the following chapters.



Chapter 4

Design
This chapter answers the sub-question: What design is proposed for RFID Dock Door Discrimi-
nation with Naive Bayes Classifier? To answer this question, the proposed design for Dock Door
Discrimination with the Naive Bayes Classifier (NBC) is determined step by step. After the problem def-
inition and analysis of the current RFID system are determined in Chapter 1 and Chapter 2 respectively,
the first section 4.1 determines the requirements for the design, both functional and non-functional.
Then, in the system design sections, the design of the Dock Door Discrimination method is explained.
First the hardware design in section 4.2 and later in section 4.3 the software design, which is based on
the Naive Bayes Classifier. Then, in section 4.4, the configuration to collect data and transformation of
the collected data are discussed. The last section 4.5 of this Chapter describes how the performance
of the design will be evaluated, which is based on the KPI accuracy given in Chapter 2.
The goal of the design is to increase the accuracy of the current RFID transition system for Dock Door
Discrimination. The new Hardware and Software design have to make this possible, without the use of
extra non-RFID hardware.

4.1. Requirements

To find out whether the Naive Bayes Classifier design of the Dock Door Discrimination method meets
expectations, this section provides requirements that the design should meet. The functional require-
ments are set out first, followed by the non-functional requirements.

4.1.1. Functional requirements

The functional requirements of the design should ensure that the design ultimately gets the features
that reflect the intended functionality. For this design, the main functionalities have been converted into
six requirements (between brackets for changed/additional requirements for scaled design):

• Standard dimensions (scaled)
The dimensions used in this study to simulate the dock doors are the standard dimensions. The
standard dimensions are 2.44 x 2.74 m (8 x 9 ft) and the distance between the center lines of the
dock doors is at least 3.70 m (12 ft) (Stertil, 2022), otherwise multiple trucks cannot be loaded at
once. (The dimensions used in this study to simulate the dock doors are the standard dimensions
on a scale of 1:2. The standard dimensions are then 1.22 x 1.37 m and the distance between the
center lines of the dock doors is at least 1.85 m, which means the space between adjacent dock
doors is 0.63 m.)

• Standard antenna configuration (scaled)
The antenna configuration was determined in consultation with experts from Mieloo & Alexander
as it is applied in reality, to avoid too much complexity. This involves a standardised antenna
configuration at the following points:

– Positioning (4 antennas at dock door, 1 at staging area)
– Orientation (All antennas are under a 45 degree angle)
– Number of antennas (Per dock door 5 antennas, which comes to 15 antennas in total)

• Dock door discrimination by software
The principle of dock door discrimination should eventually be achieved via software, specifically
a Bayes classifier to distinguish the RFID tags from each other.

24
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• No extra hardware
Additional hardware is not required for the design of the dock door discrimination method based
which is based on Bayes theorem.

• Moving to static
Besides distinguishing which dock door the RFID tags move through, the design should also be
able to distinguish moving tags from static tags.

• Better performance than current RFID system
The design should ultimately ensure that the performance of dock door discrimination using this
method improves in performance of the currently used RFID system for DDD.

4.1.2. Non-functional requirements

Non-functional requirements ensure that functional requirements are enabled. In this case, these are
the requirements to enable the design. A distinction is made here between the following non-functional
requirements (between brackets for changed/additional requirements for scaled design):

Non-functional requirements (scaled) Description (scaled)
Zebra FX9600 readers Type of RFID reader used in the design.
Mojix UHF RFID antennas Type of RFID antennas used in the design.
Antenna cables Cables used to connect the RFID antennas to the RFID reader.
RFID tags RFID tags to identify the products.
Internet connection Internet connection required for the design to function.
Node-RED Application used to convert the Tag Data Events into a CSV file.
Python Application to append the Bayes theorem for dock door discrimination

to the data in the CSV file.
Pallets (boxes) Pallets for transporting goods. (Boxes for transporting RFID tags)
Forklift (carriers) Forklift for transporting pallets. (Carriers for transporting boxes)
(ISB-profiles) (ISB-profiles are used to make the structure from which the RFID antennas

are hung to simulate the correct dimensions.

Table 4.1: Non-functional requirements (Non-functional requirements for scaled design)

4.2. System Design - Hardware

The System Design - Hardware section looks at the overall entity to be designed. Therefore the location
and layout of the design are discussed in this section. First on an overall design level and later on a
detailed level.

4.2.1. Overall design

A Dock Door Discrimination method starts with the hardware design of the RFID system. This RFID
system must then be integrated into the layout of the warehouse. An example of a warehouse design
is shown in figure 4.1. Here, the multiple adjacent dock door can be seen, this is where the trucks
are loaded. Furthermore the staging areas and the picking area are shown, along with people moving
around with forklifts and manual stackers to transfer the products to the designated area.

The main objective of the hardware system design is to detect as many RFID tags as possible, so that
no inconveniences are caused at a later stage. Besides detecting the tags, the design must also take
into account that large warehouses have multiple consecutive dock doors, which makes it harder to
discriminate the tags. The fact that the staging areas of the products to be loaded into the truck are
close to the dock doors also makes it necessary to devise a way to discriminate between moving tags
and static tags in the proposed hardware system design.

The layout of the design to avoid the above phenomena is shown below in Figure 4.2 and is inspired
on the method in section 3.4 based on Bayes’ theorem. This figure shows the proposed hardware
system design of a dock door loading area. It shows the loading area has 15 consecutive dock doors,
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Figure 4.1: Warehouse dock doors (Mecalux, 2018)

which makes it required to have a good software system design for dock door discrimination, which is
discussed in the next section of this Chapter. The trucks are shown so that they connect directly to the
dock doors and can be loaded with products.

At the dock doors, indicated by the cross-shaped symbol, there are four RFID antennas per dock door,
shown with red squares. These four antennas are used to distinguish the passing RFID tags in different
directions of movement. Different than the current RFID transition system, also one antenna per dock
door is added per dock door, on the other side of the passage way, facing the staging area, indicated
by yellow. This antenna registers the static tags in the staging areas. This allows better differentiation
between the moving RFID tags through the dock doors and the static RFID tags in the staging area,
which ensures that now only a Dock Door Discrimination method is needed for the adjacent dock doors.
The larger storage, which counts as the picking area for the staging area, is shown in orange.

Figure 4.2: Warehouse layout design (red: RFID antennas, yellow: staging area, orange: picking area)
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4.2.2. Detailed design

When zooming in more on the overall version of the hardware system design to the detailed design,
only three dock doors are considered. This is done because further in this study in Chapter 5 data is
collected from a dock door system of three consecutive dock doors to compare the current and the
proposed Dock Door Discrimination method. Through this detailed design, any possible situation at a
dock door can be simulated. These are the situations where there is another dock door on the left, right
or both sides of the dock door.

For the detailed system design, shown in figure 4.3, the standard sizes are considered. This means the
dimensions for a dock door are 2.44 m in height and 2.74 m in width, according to (Stertil, 2022). The
distance between the centre lines of adjacent dock doors is at least equal to 3.70 m, which means the
standard dimension for the space in between two adjacent dock doors is 1.26 m. The figure shows the
front view of the three adjacent dock doors in the detailed system design, with the antennas indicated
in red and the incoming and outgoing products with RFID tags indicated by the purple cross and dot
symbol. By default, the antennas are at a 45-degree angle, as this is the conventional way that RFID
systems are implemented in the real world, according to RFID experts at Mieloo & Alexander.

Figure 4.3: Basic configuration and dimensions, front view

Figure 4.4 shows the top view of the detailed system design. Again the dimensions are shown, dis-
playing a width of 2.44 m and the distance between the dock doors 1.26 m. Furthermore, the direction
detection of the products (RFID tags), again shown in purple, is done by means of four antennas, to
create a high accuracy. For this a margin of 2.5 m (Armo, 2018) between antennas 1-3 and 2-4 are
given at the dock doors, which is the standard dimensions for the dock leveller in order to load the
products into the truck. Then there is the one antenna installed as an improvement compared to the
current RFID transition system towards the staging area, where the static products (RFID tags) are
stored. The storage of the static products is shown by means of the yellow lining. These are positioned
at 4.57 m from the dock door RFID system to provide enough space for vehicles such as forklifts to
move through the passage way and straight into the dock doors to load the trucks (Nova, 2022), which
is represented by the green arrows.



4.3. System design - Software 28

Figure 4.4: Basic configuration and dimensions, top view

4.3. System design - Software

Besides the hardware design, a software design is also needed in the proposed Dock Door Discrimi-
nation method. For the software design in this section, first the working principle of the Naive Bayes
Classifier (NBC), the foundation of software design, is discussed. Later the implementation of the NBC
in the software design is given.

4.3.1. Working Principle Naive Bayes Classifier

The Naive Bayes Classifier is a form of machine learning that uses the Bayes theory in order to predict
to which class the data points in a data set belong. The classes in this study entail the dock doors
through which the RFID tags move. The advantages of Naive Bayes are that it is easy to use and the
Classifier only needs one training data set to generate the class probability (Farid et al., 2014).

The assumptions to be made with the Naive Bayes Classifier is that the Classes are independent and
equal. This means that there is no dependency between the different features used in the NBC. This
is quite possible in the case of Dock Door Discrimination since the features for Read Counts, RSSI
and Phase of the reads are independent of each other. All features also contribute equally to the final
outcome since no features are considered irrelevant.

Bayes theory underlies the Naive Bayes Classifier. When there is a dataset 𝐷 = {𝑋1, 𝑋2, ..., 𝑋𝑛} contain-
ing features 𝑋𝑖 with classes 𝐶𝑖 = {𝐶1, 𝐶2, ..., 𝐶𝑚}, the Bayes theorem applies according to equation 4.1.
In this case, the probability that 𝑋 belongs to a particular class 𝐶𝑖 is calculated. For the classes, the
different dock doors the tags passed through are used. X is the feature implemented to base the Dock
Door Discrimination on.

𝑃(𝐶𝑖|𝑋) =
𝑃(𝑋|𝐶𝑖)𝑃(𝐶𝑖)

𝑃(𝑋) (4.1)

where 𝑃(𝐶𝑖|𝑋) is the Maximum posteriori hypothesis, 𝑃(𝑋|𝐶𝑖) is the likelihood and 𝑃(𝐶𝑖) and 𝑃(𝑋)
are the probabilities of the class and the feature respectively. Since the assumptions are there of
independent and equal features for the Naive Bayes Classifier, makes that the likelihood 𝑃(𝑋|𝐶𝑖) of the
feature 𝑋 in a given Class 𝐶𝑖 can be computed with equations 4.2 and 4.3.
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𝑃(𝑋|𝐶𝑖) =
𝑛

∏
𝑘=1

𝑃(𝑥𝑘|𝐶𝑖) (4.2)

𝑃(𝑋|𝐶𝑖) = 𝑃(𝑥1|𝐶1) × 𝑃(𝑥2|𝐶2) × ... × 𝑃(𝑥𝑛|𝐶𝑛) (4.3)

Since the features contain continuous-valued attributes, the data set is assumed to have a Gaussian
distribution with a mean 𝜇 and standard deviation 𝜎, defined respectively by the following two equations:

𝑃(𝑋|𝐶𝑖) = 𝑔(𝑥𝑘 , 𝜇𝐶𝑖 , 𝜎𝐶𝑖) (4.4)

𝑔(𝑥, 𝜇, 𝜎) = 1
√2𝜋𝜎

𝑒−
(𝑥−𝑝)2
2𝜎2 (4.5)

In equation 4.4, 𝜇𝐶𝑖 is the mean and 𝜎𝐶𝑖 is the standard deviation of the values of the features for all
training instances in the class 𝐶𝑖. To predict the class label of instance 𝑋, 𝑃(𝑋|𝐶𝑖)𝑃(𝐶𝑖) is evaluated for
each class 𝐶𝑖 ∈ 𝐷. The Naive Bayes classifier predicts that the class label of instance 𝑋 is the class 𝐶𝑖,
if and only if

𝑃(𝑋|𝐶𝑖)𝑃(𝐶𝑖) > 𝑃(𝑋|𝐶𝑗)𝑃(𝐶𝑗) (4.6)

In Equation 4.6, 1 ≤ 𝑗 ≤ 𝑚 and 𝑗 ≠ 𝑖. That is the predicted class label is the class 𝐶𝑖 for which
𝑃(𝑋|𝐶𝑖)𝑃(𝐶𝑖) is the maximum probability.

An example of classification using the Gaussian Naive Bayes Classifier is shown in figure 4.5. At each
data point in this case, a z-score is given for each Class that is available. This z-score is based on the
distance between that data point and the class-mean divided by the standard deviation of the class.

Figure 4.5: Gaussian Naive Bayes Classifier (Majumder, 2020)
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4.3.2. Implementation Naive Bayes Classifier

To apply the Naive Bayes Classifier proposed in Chapter 4 to the data, an algorithm is written in Python.
A summary of the functions needed to implement the Naive Bayes Classifier is as follows(Phrasant,
2020):

1. Import Libraries
Libraries in Python contains the functions for various analytical functionalities, which are used
in the code. In this case, there are 3 libraries that are installed in the code. 1 - Numpy library
for linear algebra analytics, 2 - Pandas library for data processing, 3 - Matplotlib.pyplot for data
visualisation.

2. Import Dataset
The Dataset obtained after the data transformation is used for the application of the Naive Bayes
Classifier. This data set is called with the command; pd.read_csv().

3. Exploratory Data Analysis
During Exploratory Data Analysis, the data set is checked for compliance and missing values are
checked and filled. The data set is analysed in two steps. 1 - Categorical variables, these are the
variables of type object, which means that a text is used as value, this is the case for the Class
column in this data set. 2 - Numerical variables, these are variables of type int64, which means
that the values in these columns are numeric, examples of these columns are ”Gate1, Gate2,
Gate3, Static”.

4. Declare feature vector and target variable
The data set is split into 2 parts, X and y. X is the feature vector, the data set that is used to
recognise patterns that ensure to which y the row of data belongs. y is the target variable, this
is the column that should eventually be predicted by the model, in this case the ”Class” to which
the particular feature vector belongs.

5. Split data into separate training and test set
Now both the feature vector X and target variable y are split into a training and a test set, in this
case under a 75%-25% distribution. The training set is used to train the model and the test set is
used to validate the model.

6. Encode categorical variables
To prepare the categorical variables for the NBC, the variables are encoded. This assigns a value
”1” to cells where the value matches the encoder and ”0” if the value of the cell does not match
the encoder.

7. Feature Scaling
The numeric variables are scaled times feature scaling. The values for the NBCmust be between
0 and |1|, so the values in the cells are scaled to the maximum value in that column.

8. Model training
The Naive Bayes Classifier is now trained from the data. The training set of feature vector X and
target variable y are put into the model to recognise patterns in the data. The model is run on the
Gaussian Naive Bayes algorithm.

9. Predict the results
The NBCmodel is used to predict the expected results. Based on the test set of the feature vector
X, the values of the target variable y are predicted.

10. Check accuracy score
The accuracy of the NBC model is then determined. In it, the prediction of the target variable
y is compared with the test set of the target variable y. The degree to which the results match
indicates how accurate the model is.
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4.4. Configuration and Transformation

The RFID reader needs to be configured before the RFID antennas can read the tags and collect data.
The data obtained is then transformed into a set usable for the application of the Naive Bayes Classifier.

4.4.1. Reader configuration

The reader configuration ensures that the RFID antennas will transmit and capture the radio waves.
The antennas are connected to the reader via antenna cables and can thus transmit the information.
To get the RFID reads required in a design, attention must be paid to setting up the RFID reader. To
carefully set up a reader, the following points must be carefully determined:

• Endpoint configuration
The endpoint configuration determines where the information of the RFID reads from the antennas
ends up. These Tag Data Events are then forwarded to a port in the network, which can then be
read in Node-RED.

• Mode configuration
The mode configuration deals with the settings of the reader. This involves reading ’mode’, the
filter of Tag IDs, the antenna configuration and the Data configuration, which determines what
information the Tag Data Events include.

• Node-RED to data set
Using Node-RED, the Tag Data Events extracted from the endpoint configuration are converted
via a flow configuration to the desired type of data set. In this case, the Tag Data Events are
converted to a CSV file, after which the dock door discrimination method can be applied to the
data set using python, the full conversion from RFID reader to python is shown in figure 4.6.

Figure 4.6: Conversion to programming tool

4.4.2. Data-set transformation

From the reader configuration comes a data set that is loaded into a CSV file, but before the dock door
discrimination method can be applied, a first transformation has to be done, which is discussed in this
section.

The information coming out of the CSV file has to do with the information sent via the Tag Data Events
sent by the reader. These Tag Data Events are determined in the mode configuration of the RFID
reader, as discussed in the previous section. The information about the reads consists of the Tag Data
shown in table 4.2 below:
But before the data set is usable for the Dock Door Discrimination method, it is already further pro-
cessed. The data of a test is divided into the number of runs the test has gone through. The obser-
vations are then divided into the gates where they are located, being Gate 1, Gate 2, Gate 3 or Static
for static tags. Next, the variable applicable at that time is examined. For this, the options are; read
counts, RSSI and phase of the observations. For the RSSI and Phase values of the observations,
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Tag Data Description
Timestamp Time of Tag reading
Antenna Antenna number of Tag reading
EPC Identification code of the Tag reading
RSSI Signal strength of Tag reading
Phase Phase angle of Tag reading
Seen count Count of Tag reading
Reader Reader identification of tag reading
Endpoint Tag Data Event endpoint

Table 4.2: Tag data

different background features can be accessed to obtain inputs with the highest accuracy for the NBC.
The values for these are added together in a new DataFrame. This DataFrame is then used in evalua-
tion to find out the accuracy of the RFID system, which will later be shown in section 5.4. It will contain
the following values:

Data Description
EPC Identification code of RFID Tag
Class The Gate through which the RFID tag actually passed.
Gate 1 The value of the variable read by antennas from Gate 1.
Gate 2 The value of the variable read by antennas from Gate 2.
Gate 3 The value of the variable read by antennas from Gate 3.
Static The value of the variable read by static tags directed to staging area.

Table 4.3: Data set information

4.5. Performance Evaluation

After obtaining the wanted data set after the transformation, the set is divided into train data and test
data. This division is equivalent to 75% training and 25% test data. The rows chosen for train and test
data are completely random. After the Naive Bayes classifier learns from the train data, the test data
is then used to determine accuracy.

To maximise the accuracy of the Naive Bayes Classifier, the different background features are used
to determine the impact. These background features are shown below in table 4.4. When there is a
substantial difference between the values in the data set information of a background features, it is
included to obtain the highest accuracy.

Variable/Background feature Sum Max Min Mean Median Std dev. Variance Mean Absolute Deviation
Read Count X
RSSI X X X
Phase X X X

Table 4.4: Data evaluation

As can be seen in the table, only the sum of the read counts has an impact, since the value of a read
count is always 1, the other background features are of no use here. RSSI reflects the proximity of
the RFID tag to the RFID antenna, so only the Max, Mean and Median may have an influence. As a
result, the other background features that give the minimum value or the difference between the values
are also difficult to distinguish between the different dock doors and are not used for NBC accuracy.
For Phase, it is all about the relative angle to the RFID tag with respect to the antenna and therefore
the difference is precisely of great influence, as shown by the Standard deviation, Variance and Mean
Absolute Deviation. Usually, the tag that passed through the relevant Gate indicates the highest values
for these background features.
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4.5.1. Determining Accuracy

Several background features can have an affect in determining the accuracy of the Naive Bayes Clas-
sifier with respect to the data set for Dock Door Discrimination. Table 4.5 shows once again which
features can possibly influence the accuracy of the NBC.

Variable Read Count RSSI Phase
Feature Sum Max, Mean, Median Standard Deviation, Variance, Mean Absolute Deviation

Table 4.5: Features for Naive Bayes Classifer

For each background feature, a 5-column matrix is created, as shown in table 4.6. The first column
contains information about the Class, i.e. which Gate the tag actually passed through. This section
distinguishes between 4 classes, which can occur. These are the classes Gate 1, Gate 2, Gate 3 and
Static. Gate 1, Gate 2 and Gate 3 are the dock doors 1, 2 and 3 respectively, as was used to gather
the data. Static is the designation for the static tags, which are thus read by the RFID antenna that is
not at the dock door, but is directed towards the staging area.

Class gate1 gate2 gate3 static
Gate1 18 8 13 0
Gate1 17 13 9 7
Gate1 21 6 12 1
Gate1 19 5 0 0
Gate1 25 2 2 0

Table 4.6: Matrix Sum Read Counts for scenario Dock Door 1 w/o noise

The accuracy of the Naive Bayes Classifier depends on input variable, the background feature, which is
used for Dock Door Discrimination. Through data analysis of the highest accuracies per input variable,
the best configuration for the Naive Bayes Classifier in the case of this data set is determined. After
this is figured out for a single input feature, combinations of two or three input features are also created.
This is to see if the Naive Bayes Classifier for Dock Door Discrimination becomes even more accurate
in that case.

Based on the designated input feature, the Naive Bayes Classifier predicts a class at the corresponding
tag, i.e. Gate 1, 2, 3 or Static. Afterwards, the prediction is compared with the real class, which is known
beforehand. An example of this is shown in the confusion matrix set up per scenario. Obviously, when
the tag is assigned to the right class, there is good Dock Door Discrimination. When a wrong class
is assigned, there is wrong Dock Door Discrimination. The accuracy of the Dock Door Discrimination
method with Naive Bayes Classifier is then determined by dividing the number of good predictions by
the total number of predictions, as shown in equation 4.7 below.

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠
𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠 ∗ 100% (4.7)

4.5.2. Margin of Error

Paired with the determination of accuracy, the Margin of Error is calculated, similar to section 2.4. The
formula for calculating the Margin of Error using accuracy proportions is shown as repition in equation
4.8. 𝑧𝛾 is the critical value from the Z-table (Gerstman, 2021) belonging to the selected Confidence
Level, in this study it is the critical value 1.96 for a Confidence Level of 95%. 𝑝 is sample proportion,
in this case also called accuracy, which indicates what percentage of the measurements belong to the
correct group. 𝑛 is the sample size used to determine accuracy for the sample proportion.

𝑀𝑎𝑟𝑔𝑖𝑛 𝑜𝑓 𝐸𝑟𝑟𝑜𝑟 = 𝑧𝛾 ∗ √
𝑝(1 − 𝑝)

𝑛 (4.8)
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4.6. Conclusion

This chapter has answered the sub-question: What design is proposed for RFIDDockDoor Discrim-
ination with Naive Bayes Classifier? To design a Dock By Discrimination method, the requirements
are first defined. The most important are the functional requirements, which can be listed as follows:

• Standard dimensions

• Standard antenna configuration

• Dock door discrimination by software

• No extra hardware

• Moving to static

• Better performance than current RFID system

The non-functional requirements must contribute to achieving the functional requirements. Then the
overall hardware design is started in an overall entity, being a warehouse. 15 consecutive dock doors
are fitted with 4 antennas at the dock door to register the moving tags and the 5th antenna is added
compared to the current RFID transition system, to register the products (RFID tags) in the staging
area, otherwise known as the static tags. The detailed design is limited to three consecutive dock
doors according to industry standard sizes. In this way, three different situations can be simulated; a
dock door adjacent to the left, right and both sides of the respective dock door.

For the software design the Naive Bayes Classifier is implemented. This classifier is entirely based on
the Bayes theorem and compares the probability of a given tag being at a dock door with the probability
of the tag being somewhere else and then assigns the value with the highest probability to it. Later,
the reader is configured by endpoint and mode, and Node-RED ensures that the reads are converted
to a CSV file. This CSV file is then transformed into a data set that is usable to apply the Naive Bayes
Classifier to. Once the train data has first been used by the model to train, the test data allows the
accuracy of the NBC to be determined.

The accuracy of Dock Door Discrimination using the Naive Bayes Classifier is approximated per back-
ground feature. For this, the data set is first split into 75% train data and 25% test data. The NBC learns
from the train data and is tested for accuracy using the test data. Through data analysis of the highest
accuracies per input variable, the best configuration for the Naive Bayes Classifier in the case of this
data set is determined. In order to determine this the good predictions are divided by the total number
of prediction done by the Naive Bayes Classifier. Based on the Confidence level, sample proportion
(accuracy) and sample size the Margin of Error is determined.



Chapter 5

Experimental Setup and Plan
To compare the performance of both Dock Door Discrimination methods, data needs to be gathered.
Both designs are put to the test with an experimental setup and plan in this Chapter. This answers
the sub-question: What experimental setup and plan are used for gathering data on Dock Door
Discrimination? To collect the data, an experimental setup is first designed in section 5.1. This
experimental setup is a scaled-down version of the hardware design from the previous chapter. Next,
the test plan is created in section 5.2, in which different situations are simulated to generate a diverse
data set. But before running these tests, the sample size of these tests is determined in section 5.3.
Then, reader configuration and data transformation are discussed in section 5.4, this time applied to
the proposed tests to collect data.

5.1. Experimental setup

The experimental setup used during data collection is scaled at 1:2 of the hardware design and thus
reality. This makes the dimensions of the test setup twice as small as in the hardware design. The
scaled design is as shown in both figure 5.1 and 5.2. In figure 5.1, three dock doors are shown side by
side from a front view, the yellow, blue and green zone indicate a specific dock door being gate 1,2 and
3 respectively. This setup of three adjacent dock doors allow for all possible situations of cross-reads
to occur at the dock doors. These situations are considered to be with an adjacent dock door to the
left, right or on either side of the respective dock door.

Figure 5.1: Experimental setup, front view

At each dock door, four RFID antennas are placed in the top corners of the dock door, having a 45
degree angle. These are then spaced 1.22 m apart, the width of the scaled dock door. Between
adjacent dock doors there is a 0.63 m space. The height at which the antennas are attached also
corresponds to the height of the dock door, which is 1.37 m in the scaled design. The blue and green
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square depict the RFID readers, which are used to drive up to eight associated antennas. The RFID
antennas are numbered up to six and belong to the RFID reader of the same colour. This means the
following for the experimental setup; Gate 1 is blue antennas 1-2-4-5, Gate 2 is antennas 3-6 of both
colours and Gate 3 is green antennas 1-2-4-5.

In figure 5.2 the top view of the experimental setup is given. Here, it can be seen that the distance
between the front and back two RFID antennas of a dock door is 1.25 m (for instance for Gate 1
between antennas 1-2 and 4-5). At 2.30 m from the dock doors in the negative y direction are the
RFID antennas which are meant to be reading the static tags, which are in the staging area. This fifth
antenna is placed there to properly distinguish between the moving and static RFID tags. The antenna
with blue number 8 belongs to Gate 1, while the antennas with the green numbers 7 and 8 belong to
Gate 2 and 3 respectively.

Figure 5.2: Experimental setup, top view

5.1.1. Experimental setup in reality

The experimental setup is implemented in reality. The result of the setup to simulate the three dock
doors is shown in figures 5.3a,b and 5.4a,b. The skeleton of the setup are the ISB profiles that guar-
antee the height and width of the antennas relative to each other, just like in the experimental setup in
figures 5.1 and 5.2.

In total 15 UHF RFID antennas from Mojix are used to register the RFID tags at the dock doors. These
antennas are connected via antenna cables to the RFID reader, Zebra’s model FX9600. The configu-
ration of these readers is discussed in the next section. One more antenna is placed per dock door at
2.30 m using a tripod in order to distinguish the static RFID tags. The boxes with the tags are walked
through the dock doors using manual carriers. This is to create as straight a walkway as possible.
A slight deviation in walkway is also not so there, as forklifts in reality do not go through the Gates
perfectly straight either.
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(a) Diagonal view on setup (b) Diagonal view on setup including boxes

Figure 5.3: Test setup

(a) Diagonal view on setup from behind (b) Side view on setup

Figure 5.4: Test setup

5.2. Experimental Plan

The experimental plan to collect the data to compare the new and old design for Dock Door Discrimi-
nation is discussed in this section. This will first explain how the testing plan works, then what different
test/situations will be simulated and finally what that looks like in reality.

5.2.1. Testing plan

An initial test plan failed because there was an incorrect route for the RFID tags through the gates. This
caused a lot of unwanted interference between the RFID tags and Gate 1. To correct the faulty setup
of the initial test, a new experimental plan was used to gather data for the Dock Door Discrimination
methods. The front view of this new experimental setup is shown in figure 5.5. Here, it is shown that
there are three possible routes, through Gate 1, Gate 2 and Gate 3 respectively.
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Figure 5.5: Experimental plan, Front view

To get a better idea of the actual route taken, the testing plan is also shown from a top view in figure
5.6. The start area is in front of the gates, but behind the antennas of the staging area. To start the test,
a mobile User Interface was used. The stopping area is behind the gates, after the tags have moved
through the gates. Stopping the test is also done via the mobile User Interface to ensure the route
stayed strictly focused on the testing plan. With this User Interface the RFID readers are turned on
and off whenever a button is pushed. When the reader turns on the RFID antennas switch on and start
reading the RFID tags passing through the gates. These antennas also include the antennas aimed at
the staging areas, shown as the orange boxes numbered 1,2 and 3. These antennas read the RFID
tags in these boxes and make it easier to separate the moving and static tags.

Figure 5.6: Experimental plan, Top view
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5.2.2. Types of tests

To generate various data, several test scenarios are carried out, all of which simulate different situations
at the dock doors. First, the RFID tags are distributed across boxes and are then moved through the
dock doors in different ways to create different scenarios.

Boxes
Boxes are used in conducting the test scenarios. A number of RFID tags are stuck on these boxes to
mimic a pallet of products. In total, there are 6 boxes, 3 of which are boxes for the moving RFID tags
and 3 for the static tags. The moving boxes are provided with 12 RFID tags per box, 4 on the left, 4 in
the middle and 4 on the right. These boxes are referred to as boxes 1, 2 and 3. The static boxes are
provided with 4, 4 and 5 tags at boxes S1, S2 and S3 respectively. One tag left and right and 2 or 3
tags in the middle.

Scenarios
Different scenarios are tested to obtain a diverse data set and to properly compare the Dock Door
Discrimination methods. So for this purpose, different combinations of possible scenarios that could
happen in reality are simulated. An overview of these can be found in table 5.1. During the first three
tests, boxes 1,2 and 3 all go through Gate 1, Gate 2 or Gate 3 at the same time. This builds up a data
set of three situations without noise at other dock doors.

Scenario Dock Door 1 Dock Door 2 Dock Door 3 Staging Area
Gate 1 w/o noise Box 1, 2, 3 - - Box S1, S2, S3
Gate 2 w/o noise - Box 1, 2, 3 - Box S1, S2, S3
Gate 3 w/o noise - - Box 1, 2, 3 Box S1, S2, S3
Gate 1 w/ noise Box 1 (moving) Box 2 (static) Box 3 (static) Box S1, S2, S3
Gate 2 w/ noise Box 1 (static) Box 2 (moving) Box 3 (static) Box S1, S2, S3
Gate 3 w/ noise Box 1 (static) Box 2 (static) Box 3 (moving) Box S1, S2, S3

Table 5.1: Test scenarios

Next, three tests are done where each time only one box moves through the equally numbered Gate
and the other boxes are static in the Gate to create noise. This ensures that it will be more difficult
to perform Dock Door Discrimination as the tags are read more frequently and more strongly. But
ultimately, the data set is meant to reflect these more difficult situations as well. In all the different tests,
static boxes S1, S2 and S3 are at the antennas. This allows the Dock Door Discrimination method to
also be tested to distinguish between moving and static tags.

5.3. Determining sample size

Before the different scenarios of testing can be carried out, the sample size has to be determined. This
sample size 𝑛 is the minimum number of times one test must be run, otherwise the test is not sufficient.

To determine the sample size of the number of tests that need to be carried out per scenario, the
following function is used(Dekking et al., 2005):

𝑛 ≥ (
2𝑧𝑎/2𝜎
𝑤 )2 (5.1)

In this equation the minimal sample size is dependent on; the confidence interval 𝛼, the standard
deviation 𝜎, the z-score 𝑧𝛼/2, which is determined by the confidence interval, and the confidence level
𝑤. A confidence interval is a percentage of the chance that a sample falls in the confidence level, being
𝑤 = 1 − 𝛼. The standard deviation 𝜎 is the square root of the variance, being the mean deviation of
the data points. The z-score 𝑧 has a constant value depending on the confidence interval.
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Calibration experiment
An experiment was conducted at an earlier stage to find out the sample size of the tests. For this,
one dock door was used separately with the antennas facing each other, as shown in figure 5.7a. The
aim of the experiment is to read as many RFID tags as possible moving through the dock door. These
RFID tags were driven through the dock door on two boxes on a cart, shown in figure 5.7b. After each
measurement, it is recorded how many RFID tags out of the total 49 RFID tags are read by the readers.
This test was conducted 30 times to generate results.

(a) Dock door (b) Box with 49 RFID tags

Figure 5.7: Sample size test setup

Results and sample size
The results that follow from the 30 tests are shown in table 5.2 below.

Test number RFID tags read
1 45
2 41
3 42
4 47
5 38
6 44
7 35
8 45
9 42
10 45

Test number RFID tags read
11 36
12 47
13 37
14 45
15 37
16 49
17 41
18 48
19 46
20 46

Test number RFID tags read
21 44
22 40
23 38
24 42
25 41
26 49
27 44
28 45
29 45
30 47

Table 5.2: Results sample size test

To determine the minimum number of tests, the formula is filled. For a confidence interval 𝛼 of 95%, it
means that the confidence level 𝑤 = 1 − 0.95 = 0.05 and the 𝑧-score is 1.96. The standard deviation
𝜎 depends on the mean deviation, and then the root of that again, which comes out to 6.73% and thus
𝜎 = 0.0673.

𝑛 ≥ (2 ⋅ 1.96 ⋅ 0.06730.05 )2 = 26.4 (5.2)

It follows that the sample size 𝑛 ≥ 26.4 must be adhered to. To be on the safe side, sample size 30 will
be used for running the different scenarios of the testing plan.

5.4. Configuration and Transformation

The reader configuration ensures that the antennas will read the RFID tags, so they must be set cor-
rectly. When finally the data is received from the readers, it has to be transformed before the Naive
Bayes Classifier can be applied.



5.4. Configuration and Transformation 41

5.4.1. Reader configuration

To extract data from the tests, the reader must be configured. Those settings can be used to ensure
that the RFID reads are converted to data points in a CSV file, making it usable for computer modeling
(FX SERIES RFID READER INTEGRATION GUIDE, 2022).

Endpoint configuration

First, an endpoint must be given to the RFID tag reads. The reads are sent to an MQTT broker, which
can transport data between different devices. This is important since the reads are eventually sent
to a CSV file. First, the connection is configured in figure 5.8a. Here it is shown that the endpoint
type is indeed MQTT, the description is chosen according to protocol of Zebra but is arbitrary. The
server indicates the IP address to which the reads are sent, which is the same as the PC/laptop that
is connected. Port 1883 is connected to the Node-RED, where the reads are finally loaded. Client ID
indicates the corresponding reader, during this study FX9600FCB9A9 and FX9600FCB1EA are used.

(a) Connection (b) Topic

Figure 5.8: Configuration

In figure 5.8b it is shown how the reads are passed. Here a distinction is made between Management
Events, Tag Data Events, Management and Control. The one used in this study are the Tag Data
events, this is where the data in background features of the RFID reads is transmitted.

(a) Endpoint (b) Connection status

Figure 5.9: Configuration

In figure 5.9a is then shown that the endpoint is configured and in figure 5.9b is shown whether the
endpoint is connected to the MQTT broker, which is now the case.
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Mode configuration

Next, the FX9600 Zebra reader is configured, which is shown in figure 5.10. First, the mode ”Inventory”
with a reporting interval 0 s ensures that each tag read is included in the data set, so it remains pure raw
data and nothing is lost. Indeed, if the reporting interval were larger, a summary would be made about
the tag reads in that interval. The configuration also adds a filter so that only the tags that belong to this
study are recorded. The tag Metadata indicates what background features are passed, for this study
RSSI, Phase, tag seen count and antenna are of interest. In the antenna configuration, the transmit
power of the antennas can be set, which is the power at which the tags can be read. The highest
power would be 29.2 dBm, but because this study is done at 1:2 scale, 3 dBm is subtracted. In fact, a
deduction of 3 dBm causes the transmit power to be halved. This means the readers’ transmit power
is now on 26 dBm.

Figure 5.10: Mode configuration

Node-RED to CSV file

Figure 5.11: Node-RED configuration

As mentioned earlier, the reader is sent to network address 10.0.2.13/1883. Using Node-RED, see
figure 5.11, the tag reads can be converted into usable data for this study. In fact, the Tag Data events
from both RFID readers are converted into a CSV file here. The tag reads come out in Node-RED as
shown in figure 5.12a and the CSV file is shown in figure 5.12b. The data that eventually all comes out
of the Tag Data Events is as follows:
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timestamp antenna epc rssi phase reads readername reader
2022-11-10T15:33:48.403+0000 1.0 0012 -69.0 78.27997589111328 1.0 Reader77 /FX9600FCB1EA_ssl/tevents
2022-11-10T15:33:48.405+0000 1.0 0019 -63.0 -4.394665241241455 1.0 Reader46 /FX9600F445D8_ssl/tevents
2022-11-10T15:33:48.487+0000 4.0 005b -74.0 -146.78732299804688 1.0 Reader77 /FX9600FCB1EA_ssl/tevents
2022-11-10T15:33:48.492+0000 4.0 001c -73.0 -47.6656379699707 1.0 Reader77 /FX9600FCB1EA_ssl/tevents
2022-11-10T15:33:48.584+0000 7.0 0057 -48.0 76.1265869140625 1.0 Reader77 /FX9600FCB1EA_ssl/tevents
2022-11-10T15:33:48.570+0000 8.0 0010 -70.0 99.38536071777344 1.0 Reader46 /FX9600F445D8_ssl/tevents
2022-11-10T15:33:48.710+0000 3.0 001a -72.0 -63.17331314086914 1.0 Reader46 /FX9600F445D8_ssl/tevents

Table 5.3: Tag Data Events

(a) Node-RED (b) CSV file

Figure 5.12: Data results

5.4.2. Data transformation

The Tag Data Events in table 5.3 are transformed to the specific value that can affect the Dock Door
Discrimination method. An example of this is shown in table 5.4. Here, the first 5 observations are
listed, where the sum of the read counts is the background feature. The Class indicates that the tag
passed through Gate 1. Based on the values in the other columns, the Naive Bayes Classifier tries to
find patterns to distinguish between the different Gates. Another example is shown in table 5.5. Here,
the same has been done, but for the RSSI max. Combinations of background features can also be
made. In that case, all columns except Class are concatenated into a new input data set.

Class gate1 gate2 gate3 gate0
Gate1 13.0 11.0 17.0 2.0
Gate1 18.0 8.0 13.0 X
Gate1 17.0 13.0 9.0 7.0
Gate1 21.0 6.0 12.0 1.0
Gate1 19.0 5.0 X X

Table 5.4: Data Read Counts

ClassRSSImax Gate1RSSImax Gate2RSSImax Gate3RSSImax Gate0RSSImax
Gate1 -50.0 -64.0 -63.0 -65.0
Gate1 -49.0 -58.0 -66.0 X
Gate1 -49.0 -56.0 -60.0 -61.0
Gate1 -51.0 -61.0 -63.0 -78.0
Gate1 -55.0 -61.0 X X

Table 5.5: Data RSSI max
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5.5. Conclusion

This chapter has answered the sub-question: What experimental setup and plan are used for gath-
ering data on Dock Door Discrimination? The experimental setup is derived from the detailed design
of the previous chapter, but scaled by a factor of 1:2. Four antennas at the dock door keep track of
the moving tags, while the fifth antenna, supported by a tripod record the static tags in the so-called
staging area. The experimental plan is to move the moving tags through the dock doors from start to
stop. The RFID readers can be switched on and off using a mobile User Interface. Six different test
scenarios will then be carried out to make the data set diverse. First, three tests without noise at other
dock doors, then with noise.

Before the tests are done, the sample size is first determined using a calibration test. This shows that
the sample size per test is 26.4, but to be on the safe side, 30 samples are done per scenario. To
finally get a usable data set, the RFID readers have to be configured so that the RFID readings of the
antennas are displayed in the data set. This data is converted via Node-RED to a CSV file, which in
turn needs to be further transformed to be used for the Naive Bayes Classifier. This transformation
means that a data set can be created per background feature with values per Gate, which the NBC
then needs to start recognising patterns for Dock Door Discrimination.



Chapter 6

Results and Discussion
The purpose of this chapter is to answer the following sub-question: What is the performance of the
Naive Bayes Classifier compared to current RFID system? To answer this question, a better idea
behind the data collected during the tests is first generated by scatter plotting the data without Dock
Door Discrimination method and with the current RFID transition system for Dock Door Discrimination
in section 6.1, to give a better idea of how it works. Then, the accuracy of this current RFID system for
Dock Door Discrimination is determined in section 6.2, per scenario and for all scenarios combined.
Later in section 6.3, the accuracy of Dock Door Discrimination with Naive Bayes Classifier is also
determined, again per scenario and for all scenarios combined. Then, a comparison between the
accuracy of the current and new system for Dock Door Discrimination is made in section 6.4 to see
which system perform better. Last, a sensitivity analysis is conducted on the Margin of Error the find
out the robustness of the results in section 6.5.

6.1. Data plots without Dock Door Discrimination method

This section shows the scatter plots for the data without using a Dock Door Discrimination method and
compares them with the scatter plats for the data using the current Dock Door Discrimination method.
A distinction is made between Gate 1, 2 and 3 in the number of reads of an RFID tags over the period of
one second. In the case of the current RFID system an extra distinction is made, splitting the RFID tag
reads at the front- and backside of the dock door. Figures are shown and discussed for each scenario
individually.

6.1.1. Gate 1 without noise

The first test simulates the scenario where boxes 1,2 and 3 (total 36 RFID tags with 12 per box) pass
through Gate 1 simultaneously. In addition, there is no movement of RFID tags through Gate 2 and 3.
Through a scatter plot of the RFID read points per EPC code (RFID tag), a better understanding of the
trajectory of such an RFID tag is obtained, as shown in figure 6.1a.

(a) Tag EPC 0019 during run 1 through Gate 1 without noise (b) Tag ending 0019 during run 1 through Gate 1 without noise

45
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The figure shows howmany times the RFID tag with EPC code 0019 is read per second by the antennas
of Gate 1, 2 and 3. At all times, the sum of the number of reads is greatest at Gate 1. This can be
explained by the fact that the RFID tag is closest to the antennas of this gate when the tag passes
through Gate 1. The increasing number of reads per second is explained by the RFID tag being closer
to the antennas during the first half of the run. Similarly, the number of reads per second also decreases
again during the second half of the run.

Figure 6.1b shows what the current RFID system captures for Dock Door Discrimination. The two
readings for Gate 3 are dropped as they are done by the rear two antennas of Gate 3. These are
filtered out using the timewindow. Furthermore, it is clear that the tag went through Gate 1, since both
Gate 1 Front and Back have the most reads. It is also noticeable that these readings also increase to
a peak and then decrease again. This is because the tag first passes close to the Front and then the
Back RFID antennas.

6.1.2. Gate 2 without noise

The second test simulates the scenario where boxes 1,2 and 3 (total 36 RFID tags with 12 per box)
pass through Gate 2 at the same time. In addition, there is no movement of RFID tags through Gate
1 and 3. By means of a scatter plot of the RFID read points per EPC code (RFID tag), insight is given
into the trajectory of such an RFID tag, as shown in figure 6.2a.

(a) Tag ending 001b during run 1 through Gate 2 without noise (b) Tag ending 001d during run 1 through Gate 2 without noise

The figure shows the sum of the number of read counts per second of an RFID tag with EPC code
001b read by the RFID antennas of Gate 1, Gate 2 and Gate 3. It is clearly visible that in this case it is
more difficult to distinguish that this RFID tag actually passed through Gate 2. With such trajectories, a
Dock Door Discrimination method therefore has more difficulty in determining which Gate the tag has
passed through. This is because the tag is also often read by the other Gates, this is because both
gates are now on both sides of Gate 2.

Figure 6.2b shows what the current RFID system captures for Dock Door Discrimination. In this case,
it is difficult for the current RFID system to perform proper Dock Door Discrimination. This is because
the tag is read frequently at both Gate 1 and Gate 2. This is an example of cross-reading, two Gates
assume the tag has passed.

6.1.3. Gate 3 without noise

The third test simulates the scenario where boxes 1,2 and 3 (total 36 RFID tags with 12 per box) pass
through Gate 3 simultaneously. In addition, there is no movement of RFID tags through Gate 1 and 2.
By means of a scatter plot of the RFID read points per EPC code (RFID tag), insight is given into the
trajectory of such an RFID tag, as shown in figure 6.3a.
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(a) Tag ending 001b during run 1 through Gate 3 without noise (b) Tag ending 001d during run 1 through Gate 3 without noise

The figure shows the sum of the number of read counts per second of an RFID tag with EPC code
001b read by the RFID antennas of Gate 1, Gate 2 and Gate 3. Visually, it is clearly visible in this case
that the RFID tag has passed through Gate 3. In fact, the tag is most often read in the middle section,
when the tag passes close to the antennas. The sum of reads at Gate 3 is lower at the beginning and
end of the path as that tag is then further away from the antennas. The tag is also often, but less than
at Gate 3, read at Gate 2. This is because Gate 2 is located right next to Gate 3. To a lesser extent,
the tag is read at Gate 1, since it is furthest away from Gate 3.

Figure 6.3b shows what the current RFID system captures for Dock Door Discrimination. Initially, it is
difficult to discriminate the tag from Gate because the tag is often read by the front of Gate 2 and Gate
3. Then, when the number of reads at the back of the Gate are also considered, it becomes clear that
the tag has passed through Gate 3. Because the tag is read more frequently at the back, the current
RFID system in this case has no problem with Dock Door Discrimination.

6.1.4. Gate 1 with noise

The first test with noise simulates the scenario where box 1 (total 12 RFID tags) passes through Gate
1. Further, boxes 2 and 3 are in Gate 2 and 3 respectively, to cause noise when reading the RFID tags.
In this way, the impact of noise at other Gates on Dock Door Discrimination is found out. By means of
a scatter plot of the RFID read points per EPC code (RFID tag), insight is given into the trajectory of
the RFID tag, as shown in figure 6.4a.

(a) Tag ending 005c during run 1 through Gate 1 with noise (b) Tag ending 005c during run 1 through Gate 1 with noise
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The figure shows the sum of the number of read counts per second of an RFID tag with EPC code 005c
(placed on box 1) read by the RFID antennas of Gate 1, Gate 2 and Gate 3. The figure clearly shows
that the tag passed through Gate 1, as that is where the tag is read most often. What is also noticeable
is that the sum of the number of reads first increases and then decreases again, clearly showing that
Gate 1 has seen the tag first approach and then leave and thus has passed. The tag was also read at
Gates 2 and 3, but not enough to question the actual direction.

Figure 6.4b shows what the current RFID system captures for Dock Door Discrimination. The figure
clearly shows that the tag has moved through Gate 1, as there is a rising and falling line recorded at
the front and back of the Gate. The large difference in number of reads with the other gates makes for
good Dock Door Discrimination.

6.1.5. Gate 2 with noise

The second test with noise simulates the scenario where box 2 (total of 12 RFID tags) passes through
Gate 2. Furthermore, boxes 1 and 3 (also containing 12 RFID tags) are in Gate 1 and 3 respectively, to
cause noise when reading the RFID tags. In this way, the impact of noise at other Gates on Dock Door
Discrimination is found out. By means of a scatter plot of the RFID read points per EPC code (RFID
tag), insight is given into the trajectory of the RFID tag, as shown in figure 6.5a.

(a) Tag ending 0010 during run 1 through Gate 2 with noise (b) Tag ending 0010 during run 1 through Gate 2 with noise

The figure shows the sum of the number of read counts per second of an RFID tag with EPC code
0010 (placed on box 2) read by the RFID antennas of Gate 1, Gate 2 and Gate 3. It is clearly visible
that in this case it is more difficult to distinguish that this RFID tag actually passed through Gate 2. A
Dock Door Discrimination method can therefore have more difficulty with such trajectories to determine
which Gate the tag has passed through. In this case, the tag is more often read by Gate 3 in the first
half and more often read by Gate 1 in the second half of the trajectory. This is because both gates are
now on both sides of Gate (2).

Figure 6.5b shows what the current RFID system captures for Dock Door Discrimination. In this case,
it is again more difficult to properly discern the tag direction. Initially, the tag appears to pass through
Gate 1, since the tag is often read at the front. When the number of reads at the back are also taken
into account, it becomes already more clear that the tag goes through Gate 2, since this is where the
tag is read most often. It does remain difficult for this current RFID system to perform proper Dock Door
Discrimination in this case.
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6.1.6. Gate 3 with noise

The third test with noise simulates the scenario where box 3 (total of 12 RFID tags) passes through
Gate 3. Furthermore, boxes 1 and 2 (also containing 12 RFID tags) are in Gate 1 and 2 respectively, to
cause noise when reading the RFID tags. In this way, the impact of noise at other Gates on Dock Door
Discrimination is found out. By means of a scatter plot of the RFID read points per EPC code (RFID
tag), insight is given into the trajectory of the RFID tag, as shown in figure 6.6a.

(a) Tag ending 0020 during run 1 through Gate 3 with noise (b) Tag ending 0020 during run 1 through Gate 3 with noise

The figure shows the sum of the number of read counts per second of an RFID tag with EPC code 0020
(placed on box 3) read by the RFID antennas of Gate 1, Gate 2 and Gate 3. The figure clearly shows
that the tag passed through Gate 3, as that is where the tag is read most often. What is also noticeable
is that the sum of the number of reads first increases and then decreases again, clearly showing that
Gate 1 has seen the tag first approach and then leave and thus has passed. The tag was also read at
Gates 1 and 2, but not enough to question the actual direction.

Figure 6.6b shows what the current RFID system captures for Dock Door Discrimination. The figure
clearly shows that the tag has moved through Gate 3, as there is a rising and falling line recorded at
the front and back of the Gate. The large difference in number of reads with the other gates makes for
good Dock Door Discrimination.
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6.2. Current RFID system for Dock Door Discrimination: Accuracy

In this section, the accuracy of the current RFID system for Dock Door Discrimination is discussed for
the generated data set. First, the accuracy for each individual scenario is considered and then the
accuracy when the system is subjected to all scenarios combined.

6.2.1. Accuracy individual scenarios

The results for accuracy of the current RFID transition system for Dock Door Discrimination per indi-
vidual scenario are divided into six column values in this section. The first three accuracies are the
scenarios without noise and the second three accuracies of scenarios with noise. The accuracies are
determined per threshold value for the number of reads ”n”, as shown in table 6.1.

n = ... Gate 1 w/o Gate 2 w/o Gate 3 w/o Gate 1 w/ Gate 2 w/ Gate 3 w/
1 35.4±1.7 27.7±0.6 41.6±2.1 38.2±1.9 31.6±1.3 32.6±1.4
2 48.4±2.3 32.2±1.4 52.1±2.4 46.7±2.3 38.0±1.9 41.4±2.1
3 61.5±2.6 39.2±1.9 61.7±2.6 57.5±2.5 45.6±2.2 47.8±2.2
4 71.2±2.5 46.1±2.3 70.8±2.5 67.5±2.5 53.7±2.5 54.0±2.5
5 79.9±2.3 50.7±2.4 78.2±2.3 75.4±2.4 61.8±2.6 60.8±2.6
6 86.7±2.0 55.1±2.5 84.3±2.1 80.9±2.2 71.5±2.5 66.7±2.6
7 91.0±1.7 60.0±2.6 89.3±1.8 83.2±2.2 76.9±2.4 71.0±2.5
8 94.4±1.4 63.5±2.6 93.3±1.5 82.4±2.2 80.1±2.3 73.5±2.5
9 95.3±1.3 68.2±2.5 94.6±1.3 79.7±2.3 80.5±2.3 74.1±2.4
10 94.4±1.4 67.5±2.5 95.0±1.3 76.1±2.4 77.0±2.4 72.9±2.5
11 92.0±1.6 61.7±2.6 92.2±1.6 71.1±2.5 71.6±2.5 71.8±2.5
12 87.8±1.9 55.1±2.5 86.4±2.0 66.1±2.6 66.3±2.6 68.8±2.5
13 83.3±2.1 47.8±2.3 78.1±2.3 62.5±2.6 61.9±2.6 65.3±2.6
14 78.6±2.3 39.9±2.0 68.9±2.5 58.4±2.5 57.2±2.5 62.6±2.6
15 72.9±2.5 34.4±1.6 58.4±2.5 55.1±2.5 53.7±2.5 59.7±2.5

Table 6.1: Accuracy current RFID transition system per scenario

Gate 1 without noise
The accuracy of the current RFID transition system for Dock Door Discrimination for testing at Gate 1
without noise at Gate 2 and Gate 3 has the highest value when the threshold value 𝑛 = 9 is applied.
This means that a successful Dock Door Discrimination happens when the tag is read at least 9 times
at the front and back of Gate 1. At the same time, the tag must not be read 9 times or more at Gate
2 or Gate 3. The accuracy of Dock Door Discrimination for this scenario is 95.3±1.3%. It is noticeable
that the accuracy decreases as the threshold increases or decreases. At a lower threshold, the other
Gates seem to confirm that the tag has passed through Gate 2 or Gate 3, causing cross-reading. At a
higher threshold, fewer transitions are confirmed by the Gates, particularly Gate 1, as the tag has not
been read often enough at the front and back of the dock door, causing miss-reading.

Gate 2 without noise
The accuracy of the current RFID transition system for Dock Door Discrimination for testing at Gate 2
without noise at Gate 1 and Gate 3 has the highest value when the threshold value 𝑛 = 9 is applied.
This means that a successful Dock Door Discrimination happens when the tag is read at least 9 times
at the front and back of Gate 2. At the same time, the tag must not be read 9 times or more at Gate
1 or Gate 3. The accuracy of Dock Door Discrimination for this scenario is 68.2±2.5%. It is noticeable
that the accuracy for this test is much lower than the same tests at Gate 1 and Gate 3. The reason for
this is that Gate 2 is between Gate 1 and Gate 3. This means that RFID tags passing through Gate
2 are also often read by both Gate 1 and Gate 3. In the other tests (Gate 1 and 3), there is only one
connecting dock door each time, Gate 2. The significant reduction in accuracy shows that the current
RFID system is struggling with two-way cross-reading.
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Gate 3 without noise
The accuracy of the current RFID transition system for Dock Door Discrimination for testing at Gate 3
without noise at Gate 1 and Gate 2 has the highest value when the threshold value 𝑛 = 10 is applied.
This means that a successful Dock Door Discrimination happens when the tag is read at least 10 times
at the front and back of Gate 1. At the same time, the tag must not be read 10 times or more at Gate
1 or Gate 2. The accuracy of Dock Door Discrimination for this scenario is 95.0±1.3%. It is noticeable
that the accuracy decreases as the threshold increases or decreases. At a lower threshold, the other
Gates seem to confirm that the tag has passed through Gate 1 or Gate 2, causing cross-reading. At a
higher threshold, fewer transitions are confirmed by the Gates, particularly Gate 3, as the tag has not
been read often enough at the front and back of the dock door, causing miss-reading.

Gate 1 with noise
The accuracy of the current RFID transition system for Dock Door Discrimination for testing at Gate 1
with noise at Gate 2 and Gate 3 has the highest value when the threshold value 𝑛 = 7 is applied. This
means that a successful Dock Door Discrimination happens when the tag is read at least 7 times at
the front and back of Gate 1. At the same time, the tag must not be read 7 times or more at Gate 2
or Gate 3. The accuracy of Dock Door Discrimination for this scenario is 83.2±2.2%. It is noticeable
that the accuracy for this test is lower than the test by Gate 1 without noise. Thus, the fact that there
is noise at the other Gates has caused the current RFID system to perform less well for this scenario.
This may be because the number of tag reads done per Gate are averaged out. The reason is that
Gate 1’s antennas pick up more signals from the noise at other Gates. This makes the different tag
readings less distinguishable.

Gate 2 with noise
The accuracy of the current RFID transition system for Dock Door Discrimination for testing at Gate 2
with noise at Gate 1 and Gate 3 has the highest value when the threshold value 𝑛 = 9 is applied. This
means that a successful Dock Door Discrimination happens when the tag is read at least 9 times at
the front and back of Gate 2. At the same time, the tag must not be read 9 times or more at Gate 1 or
Gate 3. The accuracy of Dock Door Discrimination for this scenario is 80.5±2.3%. It is noticeable that
the accuracy for this test is higher than the test by Gate 2 without noise. Thus, the fact that there is
noise at the other Gates has made the current RFID system work better for this scenario. This may be
because the number of tag reads done per Gate are averaged out. The reason is that the antennas of
Gate 1 and Gate 3 pick up more signals from the noise and therefore are less likely to read the tags
going through Gate 2. This makes the different readings of the tags more distinguishable.

Gate 3 with noise
The accuracy of the current RFID transition system for Dock Door Discrimination for testing at Gate 3
with noise at Gate 1 and Gate 2 has the highest value when the threshold value 𝑛 = 9 is applied. This
means that a successful Dock Door Discrimination happens when the tag is read at least 9 times at
the front and back of Gate 1. At the same time, the tag must not be read 9 times or more at Gate 1
or Gate 2. The accuracy of Dock Door Discrimination for this scenario is 74.1±2.4%. It is noticeable
that the accuracy for this test is lower than the test by Gate 3 without noise. Thus, the fact that there
is noise at the other Gates has caused the current RFID system to perform less well for this scenario.
This may be because the number of tag reads done per Gate are averaged out. The reason is that
Gate 3’s antennas pick up more signals from the noise at other Gates. This makes the different tag
readings less distinguishable.

6.2.2. Accuracy all scenarios combined

The results for accuracy of the current RFID transition system for Dock Door Discrimination for all
scenarios combined are given in this section. This means that the full data set of the six scenarios
combined is used for determining the accuracy. The accuracy is determined per threshold value for the
number of reads ”n”, as shown in table 6.2.
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n = ... Accuracy
1 34.5±1.0
2 43.1±1.0
3 52.2±1.0
4 60.5±1.0
5 67.8±1.0
6 74.2±0.9
7 78.6±0.9
8 81.2±0.8
9 82.1±0.8
10 80.5±0.8
11 76.7±0.9
12 71.8±0.9
13 66.5±1.0
14 60.9±1.0
15 55.7±1.0

Table 6.2: Accuracy current RFID transition system all scenarios combined

The accuracy of the current RFID system for Dock Door Discrimination for all scenarios combined has
the highest value when the threshold value n=9 is applied. This means that a successful Dock Door
Discrimination happens when the tag is read at least 9 times at the front and back of the Gate, where
the tag passes. At the same time, the tag must not be read 9 times or more at the other Gates where
the tag does not pass. The accuracy of the current RFID transition system for Dock Door Discrimination
for all scenarios combined then becomes 82.1±0.8%.

6.3. Dock Door Discrimination with Naive Bayes Classifier

In this section, it is discussed what the accuracy of Dock Door Discrimination with the Naive Bayes
Classifier is for the same generated data set. As indicated in section 4.5, the Dock Door Discrimination
with the Naive Bayes Classifier uses 75% of this data set for training and 25% for testing. This section
first looks at the accuracy per individual scenario and then at the accuracy for all scenarios combined.

6.3.1. Accuracy single input features

The accuracy of the Naive Bayes Classifier for Dock Door Discrimination with a single input feature is
given in this section, first by individual scenario, then for all scenarios combined.

Individual scenarios
The accuracy of the NBC at input for a single feature is determined per individual scenario, as shown
in the table 6.3 below. The results are given per feature, as shown in the left column, and per tested
scenario, as shown in the top row.

Feature Gate 1 w/o Gate 2 w/o Gate 3 w/o Gate 1 w/ Gate 2 w/ Gate 3 w/
Read counts 100 100 100 89.0±1.6 97.1±0.9 91.1±1.5
RSSI max 99.7±0.3 99.2±0.5 100 69.3±2.4 91.9±1.4 81.4±2.0
RSSI mean 99.7±0.3 99.2±0.5 100 70.1±2.3 85.3±1.8 82.9±1.9
RSSI median 99.7±0.3 99.2±0.5 100 70.6±2.3 82.2±2.0 83.5±1.9
Phase std 100 99.7±0.3 99.2±0.5 65.1±2.4 72.2±2.3 71.9±2.3
Phase var 99.5±0.4 99.7±0.3 98.7±0.6 60.6±2.5 70.6±2.3 68.2±2.4
Phase mad 100 99.7±0.3 99.2±0.5 63.8±2.5 69.6±2.4 71.7±2.3

Table 6.3: Accuracy single input per individual scenario
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The table indicates that the Naive Bayes Classifier for the individual scenarios achieves the highest
accuracy for the input feature Read Counts. The three scenarios without noise the NBC runs through
flawlessly in that particular case (100%). The three scenarios with noise have lower accuracy, but still
considerably higher than for the other input features. These other input features also have little trouble
with Dock Door Discrimination during the scenarios without noise, but are never error-free in all cases
there. For the scenarios with noise, the accuracy goes down rapidly, noting that only the input feature
RSSI max by itself can amass a score higher than 90% (Gate 2 with noise).

All scenarios combined
The accuracy of the NBC for Dock Door Discrimination when inputting a single feature for all scenarios
combined is given in Table 6.4. The left column gives the input feature and the right column gives the
corresponding accuracy.

Feature Accuracy (%)
Read counts 92.6±0.5
RSSI mean 88.0±0.7
RSSI median 86.3±0.7
RSSI max 87.1±0.7
Phase std 71.1±0.9
Phase var 68.4±1.0
Phase mad 71.7±0.9

Table 6.4: Accuracy single input feature for all scenarios combined

The table shows that for all scenarios combined, the Naive Bayes Classifier achieves the highest overall
accuracy for the input feature Read Counts (92.6±0.5%). The accuracy for the RSSI inputs is higher
than for the Phase input features. This is because the RSSI values are absolute versus Phase’s relative
features, which ensures that the Dock Door Discrimination is better. To see whether a combination of
two input features can have an impact on accuracy, the next section combines Read Counts and other
input features.

6.3.2. Accuracy double input features

The accuracy of the Naive Bayes Classifier for Dock Door Discrimination with two input features (dou-
ble) is given in this section, first by individual scenario, then for all scenarios combined. The first feature
is Read Counts and then any other input feature is used as a combination to obtain higher accuracy
for Dock Door Discrimination with NBC.

Individual scenarios
The accuracy of the NBC when inputting for two features is given per individual scenario, as shown in
the table 6.5 below. The results are given per feature (+ Read counts), as shown in the left column,
and per tested scenario, as shown in the top row. Each time, one input feature is added to the Read
Counts to determine the accuracy.

Feature (Read counts + ...) Gate 1 w/o Gate 2 w/o Gate 3 w/o Gate 1 w/ Gate 2 w/ Gate 3 w/
RSSI max 100 100 100 82.2±2.0 95.8±1.0 87.4±1.7
RSSI mean 100 100 100 83.2±1.9 96.1±1.0 88.2±1.6
RSSI median 100 100 100 82.9±1.9 95.8±1.0 87.9±1.7
Phase std 100 100 100 83.7±1.9 82.9±1.9 79.8±2.1
Phase var 100 100 100 86.9±1.6 82.9±1.9 78.7±2.1
Phase mad 100 100 100 84.3±1.9 82.9±1.9 80.1±2.0

Table 6.5: Accuracy double input per individual scenario

The table indicates that the Naive Bayes Classifier works perfectly (100%) for any combination of Read
Counts and another input feature at the scenarios without noise. For convenience, from now on this
test will be disregarded for determining the best configuration, as there is no difference between con-
figurations here. What is noticeable next is that the Phase Variance input feature has the highest
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accuracy (86.9±1.6%) for Gate 1 with noise. In addition, RSSI mean has the highest accuracy for Gate
2 (96.1±1.0%) and Gate 3 (88.2±1.6%) with noise. The accuracy of RSSI input features combined with
Read Counts is generally higher than for Phase input features. This may be because the accuracy with
RSSI instead of Phase as a single input feature also gives higher accuracy.

All scenarios combined
The accuracy of the NBC for Dock Door Discrimination when inputting a two features for all scenarios
combined is given in Table 6.6. The left column gives the input feature (+ Read counts) and the right
column gives the corresponding accuracy.

Feature (Read counts + ...) Accuracy (%)
RSSI max 93.6±0.5
RSSI mean 93.0±0.5
RSSI median 92.6±0.5
Phase std 92.0±0.6
Phase var 92.3±0.6
Phase mad 92.1±0.6

Table 6.6: Accuracy double input feature for all scenarios combined

The table shows that for all scenarios combined, the Naive Bayes Classifier achieves the highest overall
accuracy for the input feature Read Counts + RSSI max (93.6±0.5%). The accuracy for the RSSI inputs
is higher than for the Phase input features, but the difference is much smaller than for a single input
feature. This is because the combination with Read Counts overall provides higher accuracy and thus
better Dock Door Discrimination. To see whether a combination of three input features can have an
impact on accuracy, the next section combines Read Counts + RSSI max and other input features.

6.3.3. Accuracy triple input features

The accuracy of the Naive Bayes Classifier for Dock Door Discrimination with three input features
(triple) are given in this section, first by individual scenario, then for all scenarios combined.

Individual scenarios
The accuracy of the NBC when inputting for three features is given per individual scenario, as shown
in the tables 6.7, 6.8 and 6.9 below. The results are given per feature (+ Read counts), as shown in the
left column, and the top row of the table. Each time, two input features are added to the Read Counts
to determine the accuracy. The accuracy is given only for the three scenarios with noise at other Gates,
as the other scenarios all have 100% accuracy.

Feature (Read counts + ...) RSSI mean RSSI median Phase std Phase var Phase mad
RSSI max 77.1±2.1 77.4±2.1 78.7±2.1 81.1±2.0 79.0±2.1
RSSI mean 76.9±2.2 78.7±2.1 80.8±2.0 78.7±2.1
RSSI median 78.7±2.1 81.9±2.0 78.5±2.1
Phase std 82.9±1.9 77.7±2.1
Phase var 82.9±1.9

Table 6.7: Accuracy triple input test Gate 1 with noise

Feature (Read counts + ...) RSSI mean RSSI median Phase std Phase var Phase mad
RSSI max 94.8±1.1 94.8±1.1 88.7±1.6 86.9±1.7 88.2±1.6
RSSI mean 92.9±1.3 88.7±1.6 86.1±1.8 88.2±1.6
RSSI median 88.5±1.6 84.8±1.8 87.9±1.7
Phase std 82.9±1.9 82.9±1.9
Phase var 82.9±1.9

Table 6.8: Accuracy triple input test Gate 2 with noise
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Feature (Read counts + ...) RSSI mean RSSI median Phase std Phase var Phase mad
RSSI max 86.4±1.8 86.9±1.7 85.0±1.8 85.6±1.8 85.0±1.8
RSSI mean 87.4±1.7 85.6±1.8 85.6±1.8 85.6±1.8
RSSI median 84.5±1.9 85.0±1.8 84.5±1.9
Phase std 78.0±2.1 76.9±2.2
Phase var 76.9±2.2

Table 6.9: Accuracy triple input test Gate 3 with noise

What is noticeable in the tables above is that the accuracy of the individual scenarios goes down
compared to a dual input feature. For instance, in table 6.7, the maximum accuracy of three input
features goes up to 82.9±1.9%, while the maximum accuracy for two input features is 86.9±1.6%.
In table 6.8, the same thing happens as the maximum accuracy is now only 94.8±1.1% instead of
96.1±1.0%. In table 6.9 ditto, as the accuracy has dropped from 88.2±1.6% to 86.9±1.7%. This is
caused by the ”overkill” now taking place. There are too many input features for the Naive Bayes
Classifier to generate higher accuracy at the Dock Door Discrimination.

All scenarios combined
The accuracy of the NBC for Dock Door Discrimination when inputting a three features for all scenarios
combined is given in Table 6.10. The left column gives the input feature (+ Read counts + RSSI max)
and the right column gives the corresponding accuracy. The features Read Counts and RSSI max are
already fixed, as they obtained the highest overall accuracy among the double input features.

Feature (Read counts + RSSI max + ...) Accuracy (%)
RSSI mean 92.2±0.6
RSSI median 92.1±0.6
Phase std 93.3±0.5
Phase var 93.4±0.5
Phase mad 93.0±0.5

Table 6.10: Accuracy triple input feature for all scenarios combined

The table shows that for all scenarios combined, the Naive Bayes Classifier achieves the highest overall
accuracy for the input feature Read Counts + RSSI max + Phase variance (93.4±0.5%). The overall ac-
curacy for the Phase inputs is higher than for the RSSI input features. This is because the combination
with Read Counts and RSSI max has no inputs of Phase yet. What is noticeable is that all accuracies
for triple inputs are lower than the highest accuracy for double inputs (93.6%). This is because it gets
too much input, causing the NBC to recognise patterns that were not there in the first place. This leads
to a reduction in Dock Door Discrimination.
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6.4. Comparison between current RFID system and Naive Bayes
Classifier for DDD

The comparison between the accuracies of the current RFID system and Naive Bayes Classifier as a
Dock Door Discrimination method shows the improvement. The comparison first considers the accu-
racy at individual scenarios, then for all scenarios combined of the DDD method. This comparison is
shown in table 6.11 below.

Method Current NBC1 NBC2 NBC3
Gate 1 w/o 95.3±1.3 100 100 100
Gate 2 w/o 68.2±2.5 100 100 100
Gate 3 w/o 95.0±1.3 100 100 100
Gate 1 w/ 83.2±2.2 89.0±1.6 86.9±1.6 82.9±1.9
Gate 2 w/ 80.5±2.3 97.1±0.9 96.1±1.0 94.8±1.1
Gate 3 w/ 74.1±2.4 91.1±1.5 88.2±1.6 87.4±1.7
All scenarios 82.1±0.8 92.6±0.5 93.6±0.5 93.4±0.5

Table 6.11: Comparison accuracy Dock Door Discrimination methods

The table shows the comparison with each scenario shown in the left column and themethod used in the
top row. In this, Current is the current system and NBC1, NBC 2 and NBC3 are the DDD method using
the Naive Bayes Classifier with 1,2 and 3 input features respectively. After the six different scenarios,
the overall accuracy of the DDD method is also given.
For the first three scenarios, the current system gives a lower accuracy than DDDmethods with a Naive
Bayes Classifier. From the high accuracy for the NBC (100%), it can be seen that the Dock Door Dis-
crimination is very efficient in a simple transition, with no noise at other Gates. This is an improvement
increasing to 5% for a Gate with one adjacent Gate, and increasing to 32% for two adjacent Gates.
The difference in accuracy between the Gate 1 and Gate 3 scenarios with noise is notable. Both
accuracies are expected to be roughly equal, as both scenarios have one adjacent dock door, but
mirrored. In the case of the current RFID transition system, there is a big difference, this may be due to
a deviation when performing the tests. Only, these deviations also occur in reality, when forklifts do not
drive ideally through the dock doors. This means it does represent situations that may occur in reality.
The accuracy of both scenarios improves when the Naive Bayes Classifier is applied, especially with
one or two input features. It is concluded from this that the Naive Bayes Classifier can better deal with
the deviations in the data set and thus is better suited for different situations in Dock Door Discrimination.
Also, the scenario of Gate 2 with noise has higher accuracy than Gate 1 and Gate 3 with noise in the
Naive Bayes Classifier, respectively. This means that the Naive Bayes Classifier can perform Dock
Door Discrimination better with two adjacent Gates than with one adjacent Gate. This should ensure
that the accuracy of the Naive Bayes Classifier for all scenarios combined becomes even higher the
more dock doors are adjacent.
The accuracy for all scenarios combined improves in all cases of the different NBC methods compared
to the current RFID system for Dock Door Discrimination. The accuracy is highest with the Naive
Bayes Classifier with two input features, being Read Counts and RSSI max. The accuracy improves
by 11.5% from the current RFID system and 1% compared to the Naive Bayes Classifier with one input
feature. This is because with the input feature RSSI max, the proximity of the RFID tag also affects the
Dock Door Discrimination, which is especially an advantage when tags need to pass at multiple doors
simultaneously.
Remarkably, the NBC with one input feature works better for individual scenarios, but the NBC with two
input features works better for overall accuracy. This is because the NBC1 is exposed to only one type
of data set, where the same scenario is played each time. This ensures that there are fewer variations in
the data set and therefore higher accuracy can be achieved. In the accuracy for all scenarios combined,
the data from all scenarios is aggregated and thus the Dock Door Discrimination method should achieve
high accuracy. This is found to be highest for two input features, which ensures that the overall accuracy
over the current RFID transition system is improved from 82.1±0.8% to 93.6±0.5%.
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6.5. Sensitivity Analysis

To find out the robustness of the results, a sensitivity analysis is performed on the Margin of Error. In
such a sensitivity analysis, the degree of influence of the input factors on the output factor is determined.
In sections 6.2 and 6.3 the Margin of Error is determined along with the accuracy, according to the
input values and assumptions used in this study. In this section these input values and assumptions
are changed to see what happens to the outcome of the output factor. The common output factor for
the different methods is the Margin of Error on the accuracy of Dock Door Discrimination. The common
input factors in this case are the accuracy of Dock Door Discrimination, the sample size of the collected
data and the confidence interval assumption. All input factors affect the Margin of Error of the results.

6.5.1. Accuracy

The sensitivity analysis of the Margin of Error by the accuracy of Dock Door Discrimination indicates
the extent to which accuracy affects the Margin of Error, as shown in figure 6.7. Here it is assumed that
the Sample size of individual scenarios 1.470 and the Sample size of all scenarios combined is 8.820,
according to equations 6.1 and 6.2 respectively.

𝑆𝑎𝑚𝑝𝑙𝑒 𝑠𝑖𝑧𝑒 𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙 𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜𝑠 = 30 𝑟𝑢𝑛𝑠 ∗ 49 𝑅𝐹𝐼𝐷 𝑡𝑎𝑔𝑠 = 1.470 (6.1)

𝑆𝑎𝑚𝑝𝑙𝑒 𝑠𝑖𝑧𝑒 𝑎𝑙𝑙 𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜𝑠 𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑 = 30 𝑟𝑢𝑛𝑠 ∗ 49 𝑅𝐹𝐼𝐷 𝑡𝑎𝑔𝑠 ∗ 6 𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜𝑠 = 8.820 (6.2)

Also, it is assumed the Confidence Level is 95%. Because the Sample size of all scenarios is larger
than the individual scenarios, the Margin of Error of all scenarios is smaller. Because of the proportion
of 𝑝(1 − 𝑝) in the formula of Margin of Error (equation 6.3), a large difference in accuracy between
what falls inside and outside the Confidence Interval gives a smaller Margin of Error. As a result, for an
accuracy of 50%, the Margin of Error is largest and becomes smaller as the accuracy moves toward
0% or 100%. This can be seen in the fact that the Naive Bayes Classifier has a lower Margin of Error
than the current RFID transition system in section 6.4, as the accuracy is higher.

𝑀𝑎𝑟𝑔𝑖𝑛 𝑜𝑓 𝐸𝑟𝑟𝑜𝑟 = 𝑧𝛾 ∗ √
𝑝(1 − 𝑝)

𝑛 (6.3)

Figure 6.7: Sensitivity Analysis on Margin of Error for input Accuracy
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6.5.2. Sample Size

The sensitivity analysis of the Margin of Error by the Sample Size of the collected data indicates the
extent to which the Sample Size affects the Margin of Error, as shown in figure 6.8. Here it is assumed
that the Sample Size of the individual scenarios is 1.470 at 100% and the Sample Size of all scenarios
is 8.820 at 100%. For the accuracy of Dock Door Discrimination, 90% is assumed with a Confidence
Level of 95%. Because the Sample Size of all scenarios at 100% is larger than at a Sample Size of
100% for the individual scenarios, the Margin of Error of all scenarios is smaller. Due to the proportion
of 𝑛 in the denominator of the formula for the Margin of Error (equation 6.3), the Sample Size has much
influence at the smaller Sample Size of the individual scenarios compared to all scenarios. As the
Sample Size becomes much larger, the influence on the Margin of Error becomes smaller and smaller.
This can be seen in the fact that the Margin of Error for the Dock Door Discrimination methods is higher
for all scenarios combined than per individual scenario, as the Sample Size is larger.

Figure 6.8: Sensitivity Analysis on Margin of Error for input Sample Size

6.5.3. Confidence Level

The sensitivity analysis of the Margin of Error by the Confidence Level of the true value of accuracy
indicates the extent to which the Confidence Level affects the Margin of Error, as shown in figure 6.9.
Here it is assumed that the Sample Size of the individual scenarios is 1.470 and the Sample Size of all
scenarios is 8.820. For the accuracy of Dock Door Discrimination, 90% is again assumed. Because the
Sample Size of all scenarios is larger than the Sample Size at the individual scenarios, the Margin of
Error of all scenarios is smaller. The Confidence Level affects the critical z-score in the formula for the
Margin of Error (equation 6.3). As a higher Confidence Level is required, the Margin of Error increases
to ensure that more values lie in the Confidence Interval, which includes the true values of accuracy.
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Figure 6.9: Sensitivity Analysis on Margin of Error for input Confidence Interval

6.6. Conclusion

This chapter has answered the sub-question: What is the performance of the Naive Bayes Classifier
compared to current RFID system? Without Dock Door Discrimination method, the data points are
plotted and it is possible to visually record what happens during the scenarios. If a tag is frequently
read by a Gate and there is an increasing and decreasing trend in the number of reads, then the tag
has been transitioned through that particular Gate. The current RFID transition system distinguishes
the tags by looking at the number of reads on the front and back of the dock door. This is done only
during a designated time window for the ”Front” and ”Back” antennas to determine the transition. A
clear transition can be seen when the number of reads first increases and decreases at the front two
antennas, then at the back two antennas.

The accuracy of the current RFID transition system is highest in scenarios where there is one adjacent
Gate. Therefore, the system has a lot of difficulty with Dock Door Discrimination when the Gate in
question is in the midst of two adjacent Gates. The accuracy for all scenarios combined is highest
when the threshold value is set to 𝑛 = 9 for this data set, being 82.1±0.8%.

The accuracy of Dock Door Discrimination using the Naive Bayes Classifier is approximated per back-
ground feature. The Naive Bayes Classifier is configured with either 1, 2 or 3 input features to determine
the accuracy for Dock Door Discrimination. The accuracy per scenario is highest with the input feature
Read Counts. The accuracy for all scenarios combined is highest with the combination of input features
Read Counts + RSSI max, being 93.6±0.5%.

The comparison between the current RFID system for Dock Door Discrimination and the new system
with the Naive Bayes Classifier, showed that it is an improvement. For individual scenarios, the Naive
Bayes Classifier with one input feature (Read Counts) performs best. Also, it is concluded that the Naive
Bayes Classifier can better deal with the deviations in the data set and thus is better suited for different
situations in Dock Door Discrimination. Notable as well is that the Naive Bayes Classifier can perform
Dock Door Discrimination better with two adjacent Gates than with one adjacent Gate. Accuracy for all
scenarios combined is highest with the Naive Bayes Classifier with two input features (Read Counts
+ RSSI max). The final improvement of Dock Door Discrimination for all scenarios combined is from
82.1±0.8% to 93.6±0.5%.

A sensitivity analysis proved the robustness of the results. With the Margin of Error as the output
factor whose influence of three input factors was investigated. The first is accuracy; for an accuracy of
50%, the Margin of Error is largest and becomes smaller as the accuracy moves toward 0% or 100%.
Second is Sample Size; as the Sample Size becomes much larger, the influence on the Margin of Error
becomes smaller and smaller. Third is the Confidence Level, as a higher Confidence Level is required,
the Margin of Error increases to ensure that more values lie in the Confidence Interval.



Chapter 7

Conclusion and Future Work

7.1. Conclusion
The main research question answered during this study is: What impact has implementing the Naive
Bayes Classifier on RFID Dock Door Discrimination? The purpose of RFID Dock Door Discrimina-
tion is to properly distinguish the RFID tags passing through the dock doors from location so that no
errors are made in the delivery of products. One problem that arises here are cross-reads, when the
tag is considered to have passed through multiple dock doors at the same time is considered to have
passed through the wrong door or multiple doors at the same time. Another problem that arises are
miss-reads, when the tag is not considered passed by any of the dock doors.

The current RFID transition system for Dock Door Discrimination uses the number of RFID reads to
determine a transition at a dock door. To recognise a transition, a distinction is made between the two
antennas at the front of the dock door and at the back of the dock door. A time window per antenna
set can be used to determine whether the product (RFID tag) has actually transitioned through the
dock door. The number of reads observed at the front and back of the dock door applies as a way to
prevent the cross-reads, but undesirably creates more miss-reads. To compare the accuracy of the
current RFID system with the new RFID system for Dock Door Discrimination, the KPI for accuracy
is introduced. The current RFID system determines Dock Door Discrimination by setting a threshold
value for the number of reads ”n”. When there are equal or more than ”n” readings at the front and
back, the tag is considered to have passed through that dock door. The accuracy of the current RFID
transition system for Dock Door Discrimination is determined by the number of clear transitions of a
RFID tag out of the total number of RFID tags. The Margin of Error is used to determine the confidence
interval of the results

In RFID technology, an RFID reader controls the RFID antennas. Through Ultra High Frequency radio
waves, the RFID antennas communicate with the RFID tags to register the identity of the products.
Low-level read data, recorded along with the identity of the RFID tag, is used to find out the direction of
movement of the tag. As a Dock Door Discrimination method, the Bayes method has the most potential
to determine at which location or through which door the RFID tags have passed. The probability that
a tag is in a specific location is calculated by the observations of the multiple readers together. For this,
the reader uses both the spatial and temporal observations of the tag.

The new design proposed for Dock Door Discrimination is divided into hardware and software design.
For the hardware design, there is a detailed design for three consecutive dock doors according to the
industry standard sizes. In this way, three different situations can be simulated; a dock door adjacent
to the left, right and both sides of the respective dock door. The dock doors are fitted with 4 antennas
at the dock door to register the moving tags and the 5th antenna, that is added compared to the current
RFID transition system, registers the staging area, otherwise known as the static tags. For the soft-
ware design the Naive Bayes Classifier is implemented. This classifier is entirely based on the Bayes
theorem and compares the probability of a given tag being at a dock door with the probability of the
tag being somewhere else and then assigns the value with the highest probability to it. With the RFID
reader configuration and data transformation, data can be collected that is useful for the RFID Dock
Door Discrimination with Naive Bayes Classifier. The accuracy of Dock Door Discrimination using the
Naive Bayes Classifier is approximated per background feature. For this, the data set is first split into
75% train data and 25% test data. In order to determine the accuracy the good predictions are divided
by the total number of prediction done by the Naive Bayes Classifier. Based on the Confidence level,
sample proportion (accuracy ) and sample size the Margin of Error is determined.
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To compare the two RFID Dock Door Discrimination methods, data is collected with an Experimental
Setup and Plan. The Experimental Setup is a 1:2 scaled version of the detailed design. The Experi-
mental Plan is to transition through the three different dock doors, each time in a different configuration.
Three scenarios without and with noise at other dock doors to gather a diverse data set. The sample
size for performing the six different tests is set at 30 runs. With the RFID reader configuration and data
transformation, a data set can be created per background feature with values per Gate, which the NBC
then needs to start recognising patterns in for Dock Door Discrimination.

The accuracy of the current RFID system for Dock Door Discrimination is determined for the individual
scenarios as well as all scenarios combined. Individually, the current RFID transition system struggles
a lot with Dock Door Discrimination from the collected data set. Only at Gate 1 and Gate 3 without noise
at other Gates gives reasonable accuracy at 95.3±1.3% and 95.0±1.3% respectively. The accuracy for
all scenarios combined for the full data set of all six scenarios is 82.1±0.8%. The accuracy for the
Naive Bayes Classifier is highest with Read Counts as the input feature for the individual scenarios. In
each scenario, higher accuracy was obtained than with the current RFID transition system. Also, it is
concluded that the Naive Bayes Classifier can better deal with the deviations in the data set and thus
is better suited for different situations in Dock Door Discrimination. Notable as well is that the Naive
Bayes Classifier can perform Dock Door Discrimination better with two adjacent Gates than with one
adjacent Gate. The accuracy for all scenarios combined is remarkably highest for the Naive Bayes
Classifier with Read Counts + RSSI max as input feature for the accumulated data set. This accuracy
is 93.6±0.5% and thus an improvement of 11.5% with the current RFID transition system.

7.2. Future work

There are a few for future work to further improve RFID Dock Door Discrimination. The study found that
the Naive Bayes Classifier achieves higher accuracy with two adjacent Gates than with one adjacent
Gate. This means that higher accuracy can be achieved when there are several dock doors lined up
in a row, because then there are more Gates with two adjacent Gates. A subsequent study could test
whether this is actually true by testing the Dock Door Discrimination with the Naive Bayes Classifier on
a larger scale with multiple adjacent dock doors.

Interesting for a next study could also be to actively test the Dock Door Discrimination method, i.e.
not with an amassed data set but live during truck loading. This active Dock Door Discrimination will
ensure live feedback whether products and pallets are loaded on the right trucks. This will make sure
the errors are actively detected an can be handled accordingly.
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Increasing accuracy RFID Dock Door
Discrimination with Naive Bayes Classifier

B.W. Berenschot

Abstract—Errors during truck loading at dock doors lead to
unwanted wrong deliveries in logistics. Due to the falling price
of RFID tags, RFID dock door discrimination is now being
used for product registration. The problems that arise with the
current system for RFID Dock Door Discrimination are cross-
reads and miss-reads. The purpose of this research is to increase
the accuracy of product registration by the proposed Dock Door
Discrimination method with Naive Bayes Classifier (NBC). A
hardware design, including 4 RFID antennas at three adjacent
dock doors and 1 added antenna at the staging area, and software
design, including the implementation of the NBC, are proposed to
improve the RFID Dock Door Discrimination. The Experimental
Setup and Plan were used to gather data to compare the current
RFID transition system with the new proposed NBC system in six
scenarios, three with and without noise at other gates. For each
individual scenario, the accuracy improved most with NBC with
one input feature. The accuracy for all scenarios combined for the
collected data improved from 82.1±0.8% (current) to 93.6±0.5%
(NBC).These results mean that there is a solid improvement in
implementing the Naive Bayes Classifier over the current RFID
transition system for Dock Door Discrimination.

I. INTRODUCTION

A. Background
Logistics can be found in many places around the world.
In particular, many logistics processes take place at large
warehouses and distribution centres. One of these logistic
processes is the loading of goods on trucks at the so-called
dock doors. It is important to keep a good understanding
of where products are and where the products should go,
something called stock registration. Errors in the loading of
trucks at the dock doors can lead to incorrect deliveries. As a
result, customers may claim damages because the delivery is
wrong or late, which is not desirable. It is therefore important
to register the products in order to have proof of which product
went into which truck. The hands-free automatic registration
solution for identifying these products is Radio Frequency
IDentification (RFID) technology. The operation of such an
RFID technology relies on Ultra-High Frequency (UHF) radio
waves to identify the RFID tags, which are attached to all
products. Due to the falling price of RFID tags ([1]), RFID
technology is increasingly being used for stock registration
when loading different kinds of products on trucks. With the
help of an RFID technology at the dock doors, it will be
registered which products or crates have been identified and
where they are stashed.

B. Problem
The problem that arises when installing an RFID system in
a multiple dock door environment, is in the proximity of the
dock doors. Figure 1 shows schematically how the installation
of an RFID system is carried out at three contiguous dock

doors. In this figure, the RFID antennas with their reading
field are shown in red, the static products stored in the staging
areas between the loading lines in yellow and the products in
motion towards the truck by means of the arrow.

Fig. 1. Problem

As shown in the figure, the reading fields are not limited to
just the dock door; RFID tags at other dock doors and staging
areas are also read. This phenomenon is called cross-reads
and makes dock door discrimination difficult. When the tag is
not read, it is called miss-reads.

C. Goal
Other methods for RFID Dock Door Discrimination exist, such
as the Satellite portal method [2], Zone Discrimination [3]
and Metal shielding [4][5]. But because these are expensive
alternatives [6], the logistics industry is looking for cheaper
alternatives. A preliminary literature study revealed that a
DDD method based on Bayes’ probability theory has the most
potential to make a positive impact as a solution to cross-
readings and miss-readings in a multiple dock door environ-
ment. The objective of this study is therefor to increase the
accuracy of RFID Dock Door Discrimination with the Naive
Bayes Classifier. The main research question is: What impact
has implementing the Naive Bayes Classifier on RFID Dock
Door Discrimination? To answer the question, first a Process
performance analysis of current RFID dock door system is
carried out. Then a literature study on RFID technology
and the relation to Bayes theorem is done. Subsequently, the
proposed Design of RFID Dock Door Discrimination method
with Naive Bayes Classifier is discussed. Data is then collected
to be able to compare the Dock Door Discrimination methods
with a Experimental Setup and Plan. Later, the results for the
performance of the Naive Bayes Classifier is compared with
the current RFID dock door system. At last, it is concluded
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what the impact of the Naive Bayes Classifier is on RFID
Dock Door Discrimination, as well as recommendations for
Future Works.

II. ANALYSIS

A. Process
The outbound process flow in a warehouse, this is the process
of storing the products that via picking end up in the staging
areas and then loaded onto the truck. When zooming in on
truck loading between staging and shipping, the current RFID
system for Dock Door Discrimination is used. The current
RFID system for one dock door is shown in figure 2. To
determine a transition, a distinction is made between the first
two antennas (light green) and the back two antennas (red).
In this way, a distinction can be made between the number of
reads "at the front" of the dock door and "at the back" of the
dock door. Two factors play a major role here, the time window
and the number of reads. The number of reads observed at the
front and back of the dock door applies as a way to prevent the
cross-readings, but undesirably creates more miss-readings.

Fig. 2. Current RFID transition system for Dock Door Discrimination

The time window is the time used for the transition through
the dock door from inside the warehouse to the truck. Here a
time window of x seconds is used, this may differ according
to the application of the RFID transition system. This time
window determines how long the antennas on one side of the
dock door are "on". This means that the antennas on the front
side of the dock door are "on" for the first 2/3rds of the time
window [0 s : 2

3x s] and the back side for the second 2/3rds
of the time window [ 13x s : x s]. This makes the middle 1/3rd
of the time window the transition area, where the RFID tags
are registered by both sets of antennas.

B. Performance
The Key Performance Indicator (KPI) Accuracy is used to
make the methods quantifiable for comparison. The accuracy
is determined using performance classifications. The results
of the different tag movements are evaluated in four groups as
follows:

• True Positives (tpi)
• False Positives (fpi)
• True Negatives (tni)
• False Negatives (fni)

After the results have been divided into the four groups, the
test is evaluated in terms of accuracy. This key performance
indicator for accuracy is determined as follows ([7]):

Average accuracy =

∑l
i=l

tpi+tni

tpi+fni+fpi+tni

l
(1)

The data used to compare the newly proposed method with
the current method for Dock Door Discrimination is gathered
using the Experimental Setup and Plan, which is mention in
section V.
B. Accuracy and Margin of Error
The current RFID system determines Dock Door Discrimina-
tion by setting a threshold value for the number of reads "n".
When there are equal or more than "n" readings at the front
and back, the tag is considered to have passed through that
dock door. The accuracy of the current RFID transition system
for Dock Door Discrimination is determined by the number of
clear transitions of a RFID tag out of the total number of RFID
tags, as given in equation 2 with the proportion of static tags
to moving tags is s to m tags.

Accuracy = (

Number of ”Y es” values
Total number of values

m
+
1

s
)∗Totaltags∗100%

(2)

Fig. 3. 95 % Confidence Interval ([8])

To determine the inaccuracy of the results, a Margin of Error
is used. In this study a confidence interval is assumed with
a 95% confidence level, this indicates that 95 percent of the
estimates are convinced to fall within the upper and lower
bounds of the confidence interval, as shown in figure 3. With
this information the Margin of Error can be determined using
equation 3.

Margin of Error = zγ ∗
√

p(1− p)

n
(3)

III. LITERATURE REVIEW

A. Radio Frequency IDentification Technology
An RFID system consists of a number of components that
are in contact with each other, being a reader, a tag, antennas
and a host computer [9], shown in figure 4. The antennas
are connected to the tags or the reader. In the case of the
tag, the antenna is physically integrated. In addition, a tag
also has an integrated circuit to provide the tag with its own
identification and logic. In turn, the reader is either integrated
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with the antennas or is connected separately to the reader via
cables. The antennas of the readers give energy to the tags via
radio waves, this is called the downlink. The other way round,
where the tag sends its energy together with its identification
to the reader, is called uplink. The information that reaches
the reader is often passed on to a connected computer. This
computer is part of a communication network that makes it
possible to process the data coming from the RFID system.
A distinction is then made between three types of tag: active,
passive and semi-passive. The active tag has its own power
supply [10], the passive none [11] and the semi-passive only
for the auxiliary electronics circuit [12]. The coupling method
depends on the frequency of the operation. Low frequency
and high frequency fall under near-field RFID, which is
based on magnetic induction [13]. Ultra-high frequency and
microwaves, on the other hand, fall under far-field RFID,
where the working principle is based on electromagnetism
[13].

Fig. 4. RFID working principle

B. Low-level read data
In table I it is shown what low-level read data is retrieved
during a tag read. This are subdivided into EPC, RSSI,
Timestamp, Antenna and Phase angle per tag read. When
the tags are detected, the direction of movement of the tags
needs to be determined. Also, based on the low-level read
data, extracted features are determined in order to be able to
recognise the patterns and distinguish between different tag
reads.

EPC Timestamp Antenna RSSI Phase angle
3032...7D 1,453,989,765.31 15 -59.0 3.50
3032...D1 1,453,989,765.31 15 -56.0 2.91
3032...7D 1,453,989,765.34 4 -69.0 2.72
3032...7D 1,453,989,765.34 17 -56.0 3.07

Tab. I
EXAMPLE OF LOWER-LEVEL FEATURES FROM TAG READ ([14])

C. Related works
In related works are discussed how methods based on Bayes
theorem and other probabilistic methods are applied with
RFID technology. The Process model localization method can
estimate the location of a product in the supply chain at a
given point in time [15]. he Tracking method can accurately
determine future location of the tags based on past and present
locations [16]. The indoor localization method determines the
location of the target tags by the use of reference tags and by a
Gaussian filter for abnormal RSSI values and Bayes probabil-
ity in combination with a k-Nearest Neighbor algorithm [17].
The method of Inference combines multiple models in order

to describe the local probability distribution for the RFID tags
[18].

D. Bayes theorem for Dock Door Discrimination
The Bayes theorem can be used for Dock Door Discrimination,
according to a white paper [19]. This white paper is the
foundation of this study because it has the most potential for
a Dock Door Discrimination method. Using Bayes’ theorem,
it is then determined at which location or through which door
the RFID tags have passed. The probability that a tag is in
a specific location is calculated by the observations of the
multiple readers together using equation 4. For this, the reader
uses both the spatial and temporal observations of the tag.

P (Loc < T, x, t > |Obs < T,R, t >) =
P (Obs < T,R, t > |Loc < T, x, t >)xP (T ∈ x)

P < T,R, t >
(4)

IV. DESIGN

A. Requirements
The requirements to be met by the design are shown in Table
II, both functional and non-functional.

Functional requirements Non-functional requirements
Standard dock door dimensions Zebra FX9600 readers
Standard antenna configuration Mojix UHF RFID antennas
Dock Door Discrimination by software Antenna cables
No extra hardware RFID tags
Distinguishing moving to static Internet connection
Better performance than current RFID system Node-RED

Python
Pallets (boxes)
Forklift (carriers)
(ISB-profiles)

Tab. II
REQUIREMENTS (FUNCTIONAL AND NON-FUNCTIONAL)

B. System Design - Hardware
the overall hardware design is started in an overall entity such
as a warehouse as shown in figure 5. 15 consecutive dock
doors (crosses) are fitted with 4 antennas at the dock door to
register the moving tags and the 5th antenna is added compared
to the current RFID transition system, to register the products
(RFID tags) in the staging area, otherwise known as the static
tags.

Fig. 5. Warehouse layout design

For the detailed system design, shown in figure 6, the standard
sizes are considered. This means the dimensions for a dock
door are 2.44 m in height and 2.74 m in width [20]. The
distance between the centre lines of adjacent dock doors is at
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least equal to 3.70 m, and the space in between two adjacent
dock doors is 1.26 m. The figure shows the front view of
the three adjacent dock doors in the detailed system design,
with the antennas indicated in red and the incoming and
outgoing products with RFID tags indicated by the purple
cross and dot symbol. By default, the antennas are at a 45-
degree angle, as this is the conventional way that RFID systems
are implemented in the real world, according to RFID experts
at Mieloo & Alexander.

Fig. 6. Basic configuration and dimensions, front view

Figure 7 shows the top view of the detailed system design.
The direction detection of the products (RFID tags), again
shown in purple, is done by means of four antennas, to create
a high accuracy. For this a margin of 2.5 m ([21]) between
antennas 1-3 and 2-4 are given at the dock doors, which is
the standard dimensions for the dock leveller in order to load
the products into the truck. Then there is one antenna towards
the staging area, where the static products (tags) are stored.
The storage of the static products is shown by means of the
yellow lining. These are positioned at 4.57 m from the dock
door RFID system to provide enough space for vehicles such
as forklifts to move through the passage way and straight into
the dock doors to load the trucks ([22]), which is represented
by the green arrows.

Fig. 7. Basic configuration and dimensions, top view

C. System Design - Software

The Naive Bayes Classifier is a form of machine learning that
uses the Bayes theory in order to predict to which class the
data points in a data set belong. The classes in this study
entail the dock doors through which the RFID tags move. The
advantages of Naive Bayes are that it is easy to use and the
Classifier only needs one training data set to generate the class

probability ([23]). The assumptions to be made with the Naive
Bayes Classifier is that the Classes are independent and equal.
This means that there is no dependency between the different
features used in the NBC. This is quite possible in the case of
Dock Door Discrimination since the features for Read Counts,
RSSI and Phase of the reads are independent of each other. All
features also contribute equally to the final outcome since no
features are considered irrelevant. The Naive Bayes classifier
predicts that the class label of instance X is the class Ci, if
and only if

P (X|Ci)P (Ci) > P (X|Cj)P (Cj) (5)

In Equation 5, 1 ≤ j ≤ m and j ̸= i. That is the predicted
class label is the class Ci for which P (X|Ci)P (Ci) is the
maximum probability. An example of classification using the
Gaussian Naive Bayes Classifier is shown in figure 8. At each
data point in this case, a z-score is given for each Class that is
available. This z-score is based on the distance between that
data point and the class-mean divided by the standard deviation
of the class.

Fig. 8. Gaussian Naive Bayes Classifier ([24])

To implement the Naive Bayes Classifer in Python, the follow-
ing steps of Phrasant are followed:

1) Import Libraries
2) Import Dataset
3) Exploratory Data Analysis
4) Declare feature vector and target variable
5) Split dat into separate training and data set
6) Encode categorical variables
7) Feature scaling
8) Model training
9) Predict the results

10) Check accuracy score

D. Configuration and Transformation
The reader configuration should ensure that the RFID antennas
will transmit and capture the radio waves. The antennas are
connected to the reader via antenna cabels and can thus
transmit the information. To get the RFID reads required in a
design, attention must be paid to setting up the RFID reader. To
carefully set up a reader, the following points must be carefully
determined:
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• Endpoint configuration
• Mode configuration
• Node-RED to Data set configuration

Before the Dock Door Discrimination method with NBC can
be applied, data transition has to be carried out. The data
set coming from the reader configuration shows the Tag Data
Events, shown in table I. The data of a test is divided into the
number of runs the test has gone through. The observations are
then divided into the gates where they are located, being Gate
1, Gate 2, Gate 3 or Static for static tags, shown in table III.
The variable applicable at that time is examined. For this, the
options are; read counts, RSSI and phase of the observations.
For the RSSI and Phase values of the observations, different
background features can be accessed to obtain inputs with the
highest accuracy for the NBC.

Data Description
EPC Identification code of RFID Tag
Class The Gate through which the RFID tag actually passed.
Gate 1 The value of the variable read by antennas from Gate 1.
Gate 2 The value of the variable read by antennas from Gate 2.
Gate 3 The value of the variable read by antennas from Gate 3.
Static The value of the variable read by static antennas.

Tab. III
DATA SET INFORMATION

E. Performance Evaluation
After obtaining the wanted data set after the transformation,
the set is divided into train data and test data. This division
is equivalent to 75% training and 25% test data. The rows
chosen for train and test data are completely random. To
maximise the accuracy of the Naive Bayes Classifier, the
different background features are used to determine the impact.
These background features are shown below in table IV.

Variable Background feature
Read Count Sum
RSSI Max, Mean, Median
Phase Std dev., Variance, Mean Abs. Dev.

Tab. IV
DATA EVALUATION

The accuracy of the Naive Bayes Classifier depends on input
variable, the background feature, which is used for Dock Door
Discrimination. Through data analysis of the highest accura-
cies per input variable, the best configuration for the Naive
Bayes Classifier in the case of this data set is determined.
After this is figured out for a single input feature, combinations
of two or three input features are also created. This is to see
if the Naive Bayes Classifier for Dock Door Discrimination
becomes even more accurate in that case. Based on the
designated input feature, the Naive Bayes Classifier predicts
a class at the corresponding tag, i.e. Gate 1, 2, 3 or Static.
Afterwards, the prediction is compared with the real class,
which is known beforehand. An example of this is shown in
the confusion matrix set up per scenario. Obviously, when
the tag is assigned to the right class, there is good Dock
Door Discrimination. When a wrong class is assigned, there is
wrong Dock Door Discrimination. The accuracy of the Dock
Door Discrimination method with Naive Bayes Classifier is

then determined by following equation 6. Margin of error is
determined using equation 3 again.

Accuracy =
Number of correct predictions

Total number of predictions
∗ 100% (6)

V. EXPERIMENTAL SETUP AND PLAN

A. Experimental Setup
The experimental setup used during data collection is scaled
at 1:2 of the hardware design. In figure 9, three adjacent dock
doors are shown from a front view, the yellow, blue and green
zone are gates 1,2 and 3 respectively. each dock door has four
RFID antennas in the top corners, under a 45 degree angle.
These are then spaced 1.22 m apart, and the dock doors are
spaced 0.63 m. The height of antennas is 1.37 m in the scaled
design. The blue and green square depict the RFID readers and
can drive up to eight associated antennas. In this experimental
setup; Gate 1 is blue antennas 1-2-4-5, Gate 2 is antennas 3-6
of both colours and Gate 3 is green antennas 1-2-4-5.

Fig. 9. Experimental Setup and Plan, Front view

In figure 10 the top view of the experimental setup is given.
The distance between the front and back two RFID antennas
of a dock door is 1.25 m (for instance for Gate 1 between
antennas 1-2 and 4-5). At 2.30 m from the dock doors in the
negative y direction are the RFID antennas which are meant
to be reading the static tags. This fifth antenna is placed to
distinguish between the moving and static RFID tags. The
antenna with blue number 8 belongs to Gate 1, while the
antennas with the green numbers 7 and 8 belong to Gate 2
and 3 respectively.

Fig. 10. Experimental Setup and Plan, Top view
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B. Experimental Plan
To generate various data, several tests are carried out, all of
which simulate different situations at the dock doors, going
from the start to the stop area in figure 10 Boxes are used
in conducting the tests. A number of RFID tags are stuck
on these boxes to mimic a pallet of products. In total, there
are 6 boxes, 3 of which are boxes for the moving RFID tags
and 3 for the static tags. The moving boxes are provided with
12 RFID tags per box, 4 on the left, 4 in the middle and
4 on the right. These boxes are referred to as boxes 1, 2
and 3. The static boxes are provided with 4, 4 and 5 tags
at boxes S1, S2 and S3 respectively. One tag left and right
and 2 or 3 tags in the middle. Different scenarios are tested
to obtain a diverse data set and to properly compare the Dock
Door Discrimination methods. So for this purpose, different
combinations of possible scenarios that could happen in reality
are simulated. An overview of these can be found in table V.

Test Dock Door 1 Dock Door 2 Dock Door 3 Staging Area
Gate 1 w/o Box 1, 2, 3 - - 13 RFID Tags
Gate 2 w/o - Box 1, 2, 3 - 13 RFID Tags
Gate 3 w/o - - Box 1, 2, 3 13 RFID Tags
Gate 1 w/ Box 1 (moving) Box 2 (static) Box 3 (static) Box S1, S2, S3
Gate 2 w/ Box 1 (static) Box 2 (moving) Box 3 (static) Box S1, S2, S3
Gate 3 w/ Box 1 (static) Box 2 (static) Box 3 (moving) Box S1, S2, S3

Tab. V
TEST SCENARIOS

In reality, the experimental setup and plan have been imple-
mented. The result of the setup to simulate the three dock
doors is shown in figure 11. The skeleton of the setup are
the ISB profiles that guarantee the height and width of the
antennas relative to each other. In total 15 UHF RFID antennas
from Mojix are used to register the RFID tags at the dock
doors. These antennas are connected via antenna cables to
the RFID reader, Zebra’s model FX9600. The configuration
of these readers is discussed in the next section. One more
antenna is placed per dock door at 2.30 m using a tripod in
order to distinguish the static RFID tags. The boxes with the
tags are walked through the dock doors using manual carriers.

Fig. 11. Real setup

C. Sample size
Before the different scenarios of testing can be carried out,
the sample size has to be determined with equation 7. This

sample size n is the minimum number of times one test must
be run, otherwise the test is not sufficient.

n ≥ (
2za/2σ

w
)2 (7)

In this equation the minimal sample size is dependent on;
the confidence interval α, σ the standard deviation, zα/2 is
a the z-score determined by the confidence interval and w is
the confidence level. A confidence interval is a percentage of
the chance that a sample falls in the confidence level, being
w = 1 − α. The standard deviation σ is the square root of
the variance, being the mean deviation of the data points. The
z-score z has a constant value depending on the confidence
interval.

The detectability of the RFID tags through the dock door is
tested in 30 runs for the standard deviation to determine the
sample size. In this process, a total of 49 RFID tags are tested
for detectability. With the results, the formula is finally filled
in. To determine the minimum number of tests, the formula is
filled. For a confidence interval α of 95%, it means that the
confidence level w = 1−0.95 = 0.05 and the z-score is 1.96.
The standard deviation σ depends on the mean deviation, and
then the root of that again, which comes out to 6.73% and thus
σ = 0.0673. It follows that the sample size n ≥ 26.4 must be
adhered to. To be on the safe side, sample size 30 will be used
for running the different scenarios of the testing plan.

D. Configuration and Transformation
To extract data from the tests, the reader must be configured.
Those settings can be used to ensure that the RFID reads
are converted to data points in a CSV file, making it usable
for computer modeling ([25]). For the endpoint configuration,
the reads are sent to an MQTT broker, which can transport
data between different devices. For the mode configuration,
the mode "Inventory" with a reporting interval 0 s ensures
that each tag read is included in the data set. For the Node-
RED to CSV file configuration, a structure was created that
converts the data from the reads into a usable CSV data set,
for programming with Python.

Fig. 12. Tag Data Events

The Tag Data Events, example given in figure 12, are trans-
formed to the specific value that can affect the Dock Door
Discrimination method. An example of this is shown in table
VI. Here, the first 5 observations are listed, where the sum of
the read counts is the background feature. The Class indicates
that the tag passed through Gate 1. Based on the values in the
other columns, the Naive Bayes Classifier tries to find patterns
to distinguish between the different Gates. Combinations of
background features can also be made. In that case, all columns
except Class are concatenated into a new input data set.
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Class gate1 gate2 gate3 Static
Gate1 18.0 8.0 13.0
Gate1 17.0 13.0 9.0 7.0
Gate1 21.0 6.0 12.0 1.0
Gate1 19.0 5.0
Gate1 25.0 2.0 2.0

Tab. VI
MATRIX SUM READ COUNTS FOR SCENARIO DOCK DOOR 1 W/O NOISE

VI. RESULTS

A. Scatter Data Plots
Without a Dock Door Discrimination method, the scatter plot
of the reads is shown in figure 13. A distinction is made
between Gate 1,2 and 3 in the number of reads of an RFID
tags over the period of one second. The figure clearly shows
that the tag passed through Gate 1, as that is where the tag
is read most often. What is also noticeable is that the sum of
the number of reads first increases and then decreases again,
clearly showing that Gate 1 has seen the tag first approach and
then leave and thus has passed. The tag was also read at Gates
2 and 3, but not enough to question the actual direction.

Fig. 13. Tag ending 005c during run 1 through Gate 1 with noise

The current system distinguishes the tags by looking at the
number of reads on the front and back of the dock door.
This is done only during a designated time window for the
"Front" and "Back" antennas to determine the transition. A
clear transition can be seen when the number of reads first
increases and decreases at the front two antennas, then at the
back two antennas, as shown in figure 14.
B. Accuracy Current RFID system
The accuracy of the current RFID transition system is highest
in scenarios where there is one adjacent Gate. Therefore, the
system has a lot of difficulty with Dock Door Discrimination
when the Gate in question is in the midst of two adjacent
Gates. The accuracy for all scenarios combined is highest
when the threshold value is set to n = 9 for this data set,
being 82.1±0.8%.

C. Accuracy Naive Bayes Classifier
The accuracy of Dock Door Discrimination using the Naive
Bayes Classifier is approximated per background feature. The
Naive Bayes Classifier is configured with either 1, 2 or
3 input features to determine the accuracy for Dock Door

Fig. 14. Tag ending 005c during run 1 through Gate 1 with noise

Discrimination. The accuracy per scenario is highest with the
input feature Read Counts. The accuracy for all scenarios
combined is highest with the combination of input features
Read Counts + RSSI max, being 93.6±0.5%.

D. Comparison
Table VII shows the comparison with each scenario shown in
the left column and the method used in the top row. In this,
Current is the current system and NBC1, NBC 2 and NBC3
are the DDD method using the Naive Bayes Classifier with
1,2 and 3 input features respectively. After the six different
scenarios, the accuracy for all scenarios combined of the DDD
method is also given.

Method Current NBC1 NBC2 NBC3
Gate 1 w/o 95.3±1.3 100 100 100
Gate 2 w/o 68.2±2.5 100 100 100
Gate 3 w/o 95.0±1.3 100 100 100
Gate 1 w/ 83.2±2.2 89.0±1.6 86.9±1.6 82.9±1.9
Gate 2 w/ 80.5±2.3 97.1±0.9 96.1±1.0 94.8±1.1
Gate 3 w/ 74.1±2.4 91.1±1.5 88.2±1.6 87.4±1.7
All scenarios 82.1±0.8 92.6±0.5 93.6±0.5 93.4±0.5

Tab. VII
COMPARISON ACCURACY DOCK DOOR DISCRIMINATION METHODS

The comparison between the current RFID system for Dock
Door Discrimination and the new system with the Naive Bayes
Classifier, showed that it is an improvement. For individual
scenarios, the Naive Bayes Classifier with one input feature
(Read Counts) performs best. Also, it is concluded that the
Naive Bayes Classifier can better deal with the deviations in
the data set and thus is better suited for different situations in
Dock Door Discrimination. Notable as well is that the Naive
Bayes Classifier can perform Dock Door Discrimination better
with two adjacent Gates than with one adjacent Gate. Accuracy
for all scenarios combined is highest with the Naive Bayes
Classifier with two input features (Read Counts + RSSI max).
The final improvement of Dock Door Discrimination for all
scenarios combined is from 82.1±0.8% to 93.6±0.5%.

E. Sensitivity Analysis
A sensitivity analysis proved the robustness of the results. With
the Margin of Error as the output factor whose influence of
three input factors was investigated, which equation is given
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in 3. The first is accuracy; for an accuracy of 50%, the Margin
of Error is largest and becomes smaller as the accuracy moves
toward 0% or 100%. Second is Sample Size; as the Sample
Size becomes much larger, the influence on the Margin of
Error becomes smaller and smaller. Third is the Confidence
Level, as a higher Confidence Level is required, the Margin of
Error increases to ensure that more values lie in the Confidence
Interval.

VII. CONCLUSION AND FUTURE WORK

A. Conclusion
The accuracy of the current RFID system for Dock Door
Discrimination both per individual scenario and overall deter-
mined. Individually, the current RFID transition system strug-
gles a lot with Dock Door Discrimination from the collected
data set. Only at Gate 1 and Gate 3 without noise at other
Gates gives reasonable accuracy at 95.3±1.3% and 95.0±1.3%
respectively. The accuracy for all scenarios combined for the
full data set of all six scenarios is 82.1±0.8%. The accuracy
for the Naive Bayes Classifier is highest with Read Counts
as the input feature for the individual scenarios. In each
scenario, higher accuracy was obtained than with the current
RFID transition system. Also, it is concluded that the Naive
Bayes Classifier can better deal with the deviations in the
data set and thus is better suited for different situations in
Dock Door Discrimination. Notable as well is that the Naive
Bayes Classifier can perform Dock Door Discrimination better
with two adjacent Gates than with one adjacent Gate. The
accuracy for all scenarios combined is remarkably highest for
the Naive Bayes Classifier with Read Counts + RSSI max
as input feature for the accumulated data set. This accuracy
is 93.6±0.5% and thus an improvement of 11.5% with the
current RFID transition system.

B. Future Work
There are a few for future work to further improve RFID Dock
Door Discrimination. The study found that the Naive Bayes
Classifier achieves higher accuracy with two adjacent Gates
than with one adjacent Gate. This means that higher accuracy
can be achieved when there are several dock doors lined up in
a row, because then there are more Gates with two adjacent
Gates. A subsequent study could test whether this is actually
true by testing the Dock Door Discrimination with the Naive
Bayes Classifier on a larger scale with multiple adjacent dock
doors. Interesting for a next study could also be to actively
test the Dock Door Discrimination method, i.e. not with an
amassed data set but live during truck loading. This active
Dock Door Discrimination will ensure live feedback whether
products and pallets are loaded on the right trucks. This will
make sure the errors are actively detected an can be handled
accordingly.
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Chapter B

Plots

B.1. Without Dock Door Discrimination

B.1.1. Gate 1 without noise

(a) Tag ending 005d during run 1 through Gate 1 without noise (b) Tag ending 0019 during run 1 through Gate 1 without noise

(c) Tag ending 001d during run 1 through Gate 1 without noise

Figure B.1: Plots for test: Gate 1 without noise
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B.1.2. Gate 2 without noise

(a) Tag ending 005d during run 1 through Gate 2 without noise (b) Tag ending 0019 during run 1 through Gate 2 without noise

(c) Tag ending 001d during run 1 through Gate 2 without noise

Figure B.2: Plots for test: Gate 2 without noise
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B.1.3. Gate 3 without noise

(a) Tag ending 005d during run 1 through Gate 3 without noise (b) Tag ending 0019 during run 1 through Gate 3 without noise

(c) Tag ending 001d during run 1 through Gate 3 without noise

Figure B.3: Plots for test: Gate 3 without noise
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B.1.4. Gate 1 with noise

(a) Tag ending 005b during run 1 through Gate 1 with noise (b) Tag ending 005c during run 1 through Gate 1 with noise

(c) Tag ending 005d during run 1 through Gate 1 with noise

Figure B.4: Plots for test: Gate 1 with noise
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B.1.5. Gate 2 with noise

(a) Tag ending 0010 during run 1 through Gate 2 with noise (b) Tag ending 0011 during run 1 through Gate 2 with noise

(c) Tag ending 0012 during run 1 through Gate 2 with noise

Figure B.5: Plots for test: Gate 2 with noise
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B.1.6. Gate 3 with noise

(a) Tag ending 001f during run 1 through Gate 3 with noise (b) Tag ending 0020 during run 1 through Gate 3 with noise

(c) Tag ending 0021 during run 1 through Gate 3 with noise

Figure B.6: Plots for test: Gate 3 with noise
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B.2. Current RFID system for Dock Door Discrimination

B.2.1. Gate 1 without noise

(a) Tag ending 005d during run 1 through Gate 1 without noise (b) Tag ending 0019 during run 1 through Gate 1 without noise

(c) Tag ending 001d during run 1 through Gate 1 without noise

Figure B.7: Plots for test: Gate 1 without noise
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B.2.2. Gate 2 without noise

(a) Tag ending 005d during run 1 through Gate 2 without noise (b) Tag ending 0019 during run 1 through Gate 2 without noise

(c) Tag ending 001d during run 1 through Gate 2 without noise

Figure B.8: Plots for test: Gate 2 without noise



B.2. Current RFID system for Dock Door Discrimination 73

B.2.3. Gate 3 without noise

(a) Tag ending 005d during run 1 through Gate 3 without noise (b) Tag ending 0019 during run 1 through Gate 3 without noise

(c) Tag ending 001d during run 1 through Gate 3 without noise

Figure B.9: Plots for test: Gate 3 without noise
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B.2.4. Gate 1 with noise

(a) Tag ending 005b during run 1 through Gate 1 with noise (b) Tag ending 005c during run 1 through Gate 1 with noise

(c) Tag ending 005d during run 1 through Gate 1 with noise

Figure B.10: Plots for test: Gate 1 with noise
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B.2.5. Gate 2 with noise

(a) Tag ending 0010 during run 1 through Gate 2 with noise (b) Tag ending 0011 during run 1 through Gate 2 with noise

(c) Tag ending 0012 during run 1 through Gate 2 with noise

Figure B.11: Plots for test: Gate 2 with noise
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B.2.6. Gate 3 with noise

(a) Tag ending 001f during run 1 through Gate 3 with noise (b) Tag ending 0020 during run 1 through Gate 3 with noise

(c) Tag ending 0021 during run 1 through Gate 3 with noise

Figure B.12: Plots for test: Gate 3 with noise
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