Rotterdam Werkt!

A
L.
H
D
R
C

Lottergam
Verkt!

Improving interorganizational mobility through
centralizing vacancies and resumes

To obtain the degree of Bachelor of Science at the Delft University of Technology, to be presented and
defended publicly on Friday January 29, 2021 at 14:30 AM.

Authors: L.E. van Hal
H.A.B. Janse
D.R. den Ouden
R.H. Piepenbrink

C.S. Willekens

Project duration: November 9, 2020 — January 29, 2021

Guiding Committee: H. Bolk Rotterdam Werkt!, Client
R. Rotmans, Rotterdam Werkt!, Client
Dr. C. Hauff, TU Delft, Coach

Ir. T.A.R. Overklift Vaupel Klein TU Delft, Bachelor Project Coordinator

An electronic version of this thesis is available at http://repository.tudelft.nl/.

]
TUDelft

http://repository.tudelft.nl/

Preface

This report denotes the end of the bachelor in Computer Science and Engineering at the Delft University
of Technology. The report demonstrates all the skills we have learned during the bachelor courses in
order to be a successful computer scientist or engineer. It will discuss the product we created over
the past 10 weeks and will touch upon the skills and knowledge used in order to create it. Our client,
Rotterdam Werkt!, is a network of companies located in Rotterdam who are aiming to increase mobility
between their organizations. The goal of this report is to inform the reader about the complete work,
different phases of this projects and future recommendations for our client.

Summary

Rotterdam Werkt! is a network of fourteen organizations in the Rotterdam area in the Netherlands. Their
goal is to increase labor mobility between these organizations through sharing vacancies, exchanging
employees and partaking in joint projects. Rotterdam Werkt! has tasked us with creating a central
platform on which all vacancies are automatically combined from the websites of all the organizations
in the network.

The two main challenges of the project were to gather the vacancies from all the organizations
affiliated with Rotterdam Werkt! and allow their recruiters to search and filter through them. This meant
that a significant amount of research needed to be done in order to find a suitable scraping tool as well
as a suitable search engine. Whilst gathering the vacancies, we ran into the problem that each website
was significantly different in the way it is rendered. Furthermore, we also needed to categorize the data
correctly such that it becomes searchable in the search engine. Lastly, the retrieval function needed to
be optimized such that the most relevant vacancies would be returned for a given query.

In order to assess whether recruiters could use the search engine effectively in practice, an eval-
uation of the effectiveness of the search engine was done. Three retrieval functions were compared
based on a significance test of several effectiveness measures that indicate to what extent a retrieval
function is able to retrieve relevant documents, or in this case, vacancies. Out of the three, the retrieval
function that scored the highest was chosen to be used in the platform, so that recruiters will have a
bigger chance to find the vacancies they will be looking for.

In the end, we consider our project to be a success. We managed to scrape all vacancies from all
the websites of the organizations in Rotterdam Werkt! and to combine these on a centralized platform.
Furthermore, the search engine evaluation allowed us to select the best vacancy retrieval function out
of the three evaluated retrieval functions. However, more work can still be put into evaluating the search
engine in the future by testing more retrieval functions based on more vacancy data, so that the search
functionality can be further improved.

Acknowledgements

Before laying out the technical aspects of the final product, we would like to thank the people who have
made this project possible. First of all, we would like to thank Rotterdam Werkt! for the opportunity to
work on this project and provide us with the experience of working with real clients. We want to express
our gratitude to Renée Rotmans, Henk Bolk and the recruiters for taking the time to meet with us to
discuss the project and the direction we should be taking. Moreover, we would like to thank Claudia
Hauff from the research group ‘Web Information Systems’ at the TU Delft for her guidance and insights
into challenging concepts.

List of tables

2.1 Overview selected scraping libraries and frameworks 7
2.2 Feature comparison selected scraping frameworks and libraries 8
2.3 Overview of programming languages 9
2.4 Feature comparison search engine frameworks 11
2.5 Search engine frameworks requirements Lo 12
2.6 Search engine frameworks scoreso 12
2.7 Most popular server frameworkson GitHubo oo 13
2.8 Multi criteria analysis chosen frameworks 13
29 Jobsearchwebsitefeatures 14
210 Requirements evaluation 17
211 Preliminary schedule 20
3.1 List of fields extracted from the vacancy web pages by the scraper 22
5.1 Requirements evaluation 35
5.2 Retrieval functions and theirweights L. 40
5.3 Retrieval function precisionmetrics 41
5.4 Retrieval function significancetests. o oL 42
F.1 Search topics with searchqueries 63

2.1
2.2
2.3

3.1
3.2

4.1
4.2
4.3

5.1
5.2
5.3
54
5.5

List of figures

Vacancy listings website STC Group 4
Vacancy listings website Evides L 5
Search page features existingwebsites o L 16
Overall componentdiagram 22
Database diagram 23
High-level UML of REST-server 28
Kibana display error e 30
Query logging statistics 31
Screenshots of the final product 37
SIG generalanalysis e 43
SIG duplication refactor candidates Lo L 43
SIG unit size refactor candidates o 44
SIG unit complexity refactor candidates L. 45

Vi

2.1

2.2
23
E.1
E.2
G.1
G.2
G.3
G.4
G.5

List of code snippets

HTML source STC Group o v v e e e e e e e e e e e e e e e 4
HTML source Evides Chrome DevTools 5
HTML source Evides e 6
Elasticsearch vacancy mapping 57
Elasticsearchresume mapping L 59
Query logging: Query 1 e 64
Query logging: QUEry 2 L 65
Query logging: Query 3 e 67
Query logging: Query 4 69
Query logging: Query 5 70

Vi

Preface

Contents

Summary

Acknowledgements

List of tables

List of figures

List of code snippets

1 Introduction

2 Research

2.1
2.2

2.3

24

2.5
2.6
2.7
2.8

2.9

Overview e
Problem definition and analysis
221 Problemanalysis. e
222 Problemstatement.
2.2.3 Researchtopics e
Web scraping. e e e e
2.3.1 Staticvacancy pages.o e e e e e
2.3.2 DynamicvacanCy PagesS v v v i i e e e e e e e e
2.3.3 Overview of frameworks and libraries
2.3.4 Comparative analysis of frameworks and libraries
2.3.5 Overview of programming languages oo
2.3.6 Conclusion e
Searchengine e
241 Searchengineselection
Website frameworks and libraries L
Relatedwork e
Final requirements L
Designgoals e
2.8.1 Securityandprivacy
2.8.2 Maintainability
2.8.3 Easeofdeployment
Approach e
2.9.1 Development methodology.
2.9.2 Documentation
293 Versioncontrol L
2.9.4 Staticcodeanalysis e
295 Riskanalysis
2.9.6 Planning. e e

3 Design

3.1
3.2
3.3
3.4
3.5
3.6

Overview e e e
Architecture. L e
Scraper
Database design L
REST-server e e e e e
Front-end design e
3.6.1 Interaction with resumes and vacancies.
3.6.2 Searching forresumes and vacancies oo

viii

Contents

4 Implementation
4.1 Overview

4.2 Scraperimplementation

4.2.1 Static pages

422 DynamiCpages.o e
4.2.3 Spiderautomation
4.3 REST-serverimplementation
431 APlandserializers
432 Datastorage
4.4 Front-end implementation L
441 Formimplementation. L
442 Searchimplementation.

45 Logging.

451 Back-endlogging.
452 Querylogging. e
4.6 Dockerimplementation.
4.6.1 REST-server e

4.6.2 Front-end .
4.6.3 Scraper . .
4.6.4 Security . .
4.7 Testing

471 Scrapertesting
472 REST-servertesting e
473 Frontendtesting

5 Product evaluation
5.1 Overview
5.2 Product evaluation

53 Designgoalevaluation. L
5.3.1 Securityandprivacy
5.3.2 Maintainability
5.3.3 Easeofdeployment

5.4 Search engine evaluation

5.4.1 Approach .

54.2 Costevaluation. e
5.4.3 Effectiveness evaluation

5.4.4 Limitations

5.5 Software Improvement Group
5.5.1 Firstsubmission

5.6 Ethical implications

6 Process evaluation

7 Conclusion and future work

7.1 Conclusion

7.2 Future work and recommendations o
7.2.1 Searchengineevaluation L o
7.22 Querylogging.

7.2.3 Scrapers .
Appendices

A Original problem statement

A.1 Project description

26
26
26
26
26
27
27
27
27
29
29
29
29
29
30
31
31
31
32
32
32
32
33
33

34
34
34
34
34
34
36
37
37
38
38
42
42
42
45

46

47
47
47
47
48
48

49
51

X Contents
B Info sheet 52
C Rotterdam Werkt! organizations 54
D Rotterdam Werkt! information sheet 55
E Elasticsearch mappings 57

E.1 Vacancy. e 57

E:2 Resume. 59
F Search topics 61
G Logged queries 64

Introduction

Rotterdam Werkt!" is a network of fourteen organizations in the Rotterdam area, designed to increase
labor mobility between the organizations through sharing vacancies, exchanging employees and par-
taking in joint projects. Currently, Rotterdam Werkt! has no platform to conveniently bundle each con-
nected organization’s vacancies. Consequently, the recruiters of Rotterdam Werkt! need to resort to
exchanging vacancies via email whenever a new possibility for interorganizational labor mobility arises
within the Rotterdam Werkt! network. In other words, there is no central hub that the organizations can
use to view each other’s vacancies, leading to a lack of overview and, potentially, to the exchange of
outdated information. To maximize the benefits of a labor mobility network like Rotterdam Werkt!, quick
and direct access to all connected organizations’ vacancies is essential.

Currently, the organizations in Rotterdam Werkt! post their vacancies on their own websites. The
task at hand is to develop a central platform that gathers all organizations’ vacancies, to combine and
display the gathered vacancies on a single web page, and to make the gathered vacancies accessible
to all the organizations. As the final product we expect to deliver a solution to the problem defined in
section 2.2. This will lead to the following deliverables:

1. A scraping tool which is able to run on regular intervals and collect all the vacancies which are
open on the associated companies’ websites.

2. A front-end and back-end containing a search engine which will allow the users, that is, the re-
cruiters of Rotterdam Werkt!, to find vacancies which may be of interest to them.

3. A thesis report which will outline the approach taken to solve the problem stated in section 2.2.

The remainder of this report is divided into six chapters. In chapter 2 the background of the problem
will be discussed, and research will be done into related work and into potential tools that can be used.
Afterwards, in chapter 3, the design of the final product will be discussed together with the architecture
of the different components, including their interaction. Chapter 4 describes the implementation of the
product and provides a technical descriptions and solutions to the problems faced. Next, in chapter 5,
the final product will be evaluated with regards to the requirements, design goals and effectiveness of
the search engine. In chapter 6, an evaluation of the process with the lessons learned will be discussed.
Finally, in chapter 7 the report will conclude with a reflection, conclusion and future work.

1See appendix D for more information.

Research

2.1. Overview

The first two weeks of the project were dedicated to doing research. In this chapter, all aspects of the
research phase have been compiled. We started by analyzing the problem at hand in section 2.2. After
that, an investigation into related work was done where the features of related platforms are identified.
We then specified two areas in which we need to gain more knowledge: scraping and search engines.
In section 2.2.3 we have therefore derived two research topics in which we need to strengthen our
knowledge to create a successful final product, these will be further discussed in sections 2.3 and 2.4
respectively. In section 2.5, options will be discussed regarding the possible framework to be used in
order to connect these two components. Section 2.6 provides an overview of related work regarding
vacancy platforms. The final requirements are listed in section 2.7, and the design goals are presented
in section 2.8. Lastly, the approach is discussed in section 2.9.

2.2. Problem definition and analysis

2.2.1. Problem analysis

Currently, Rotterdam Werkt! shares vacancies between HR-managers and recruiters via email and
the company websites of all the fourteen affiliated organizations, which has become increasingly time-
consuming. Therefore, Rotterdam Werkt! is looking for a new tool in order to facilitate this process.
This tool must automatically collect vacancies of the websites of their current organizations as well
as provide the means to search through these vacancies. The full list of organizations which will be
supported can be found in appendix C.

2.2.2. Problem statement
The challenge presented by Rotterdam Werkt! consists of two parts:

1. Automatically collecting all open vacancies of the participating companies
The challenge here is to create a tool which will gather the vacancies of the Rotterdam Werkt!
organizations. This tool must be able to obtain data from, and adapt to, the varying vacancy data
sources of each member of the network, without modifying or adding components to the data
sources. These gathered vacancies need to be updated on a regular basis in order to find new
ones and remove the ones which are no longer available.

2. Allow recruiters of the participating companies to search for relevant vacancies
The challenge here is to create a search tool for the HR-managers and recruiters which is opti-
mized for their application and type of data. In other words, to optimize the retrieval function in
such a way that the best fitting vacancies are returned.

2.2.3. Research topics
From the challenges presented in section 2.2, two research topics can be identified in which we need
to strengthen our knowledge:

2.3. Web scraping 3

1. What is the most suitable tool or software for collecting vacancies?
2. What is the most suitable search engine framework for this project?

These topics will be further explored in this chapter. Section 2.3 and 2.4 will investigate the first and
second research topics, respectively. Lastly, section 2.5 will look into the web framework for connecting
these two components of this project.

2.3. Web scraping

In order to create the vacancy search engine, the vacancies of the Rotterdam Werkt! member com-
panies need to be obtained and categorized. Currently, all members have their own websites where
they list their vacancies. In this section, we investigate which method we will be using to acquire the
vacancies.

One option would be to create a central platform with a single database and have all organizations
upload their vacancies to that platform. This would involve having people at the Rotterdam Werkt!
organizations manually copy-and-pasting the information and categorizing it. Alternatively, if one had
(API) access to the database of each organization, the data could be obtained already labeled, provided
that all the members label their vacancy data instead of combining all information into a blob of text.
This would be beneficial for filtering the vacancies, see section 2.5. Unfortunately, neither of the options
are viable for Rotterdam Werkt!. The first option would require Rotterdam Werkt! members to upload
their vacancies to two platforms — their own platform and a new central platform — as members still need
to use their own website to attract applicants outside of the network. Managing two platforms in this
manner could easily introduce consistency issues. Another possibility for this first option would be to
have the members upload their vacancies only to the central platform and then embed the Rotterdam
Werkt! platform on their websites. However, since all companies have different wishes for what data
is displayed and in what way, it is unrealistic to expect to be able to make a platform all fourteen
organizations can agree on within ten weeks. The second option is also unrealistic, since we believe it
would be infeasible for each of the fourteen members to be able to provide access to their databases
within the given time frame.

Given these limitations, their websites themselves are therefore the most reliable sources of infor-
mation available. The Rotterdam Werkt! vacancy websites, like most websites, use a markup language
named Hyper Text Markup Language (HTML). It defines the main data and structure of a page. HTML
can be used to define a web page by itself, but most pages also use JavaScript and CSS within HTML.
JavaScript is used to make a page interactive and CSS is used to define the style of the different el-
ements of the page. In order to retrieve the relevant vacancy information, it must be extracted from
the HTML source. Fetching a web page, parsing its contents and extracting data from it is called web
scraping [1]. The web pages of the Rotterdam Werkt! organizations can be divided into two categories:
static and dynamic. For both, an example of their layout, underlying HTML source and challenges they
present will be given in section 2.3.1 and section 2.3.2, respectively.

2.3.1. Static vacancy pages

An example of a static vacancy page is the overview page of STC Group', shown in figure 2.1. The
general layout is representative of many vacancy overview pages within the Rotterdam Werkt! network.
The vacancies are often presented in blocks, with one vacancy per block, or in a table. For the websites
with a block-layout, such as the example of STC Group, the blocks often contain the title of the vacancy,
a short description, and important job attributes, such as the hours, location or department. Most
importantly, there is always some text or button with a hyperlink to the vacancy detail page. These
hyperlinks must be extracted by the scraper and followed so the details of each vacancies can be
scraped as well.

Code snippet 2.1 shows part of the source HTML for this web page. For example, one can see that
the div elements with the class name col-x1-12 are the source of the blocks with the vacancies.
Within this div, there is relevant vacancy data to extract, such as the h2 element that contains the
title of the vacancy: “Technisch docent Zeevaart (HWTK)”. Most importantly, the anchor element, <a>,
contains the location of the vacancy detail page we are looking for. In order to extract information such

Ihttps://werkenbijstc.nl/vacatures/

https://werkenbijstc.nl/vacatures/

4 2. Research

as the vacancy title and hyperlinks, we therefore need a library that can parse HTML and extract the
relevant data.

\acature overzicht @

Technisch docent Zeevaart (HWTK)

Heb jij zelf gevaren en weet jij alles van de technische kant van schepen? Gaat jouw hart sneller kloppen van motoren, voorstuwing, onderhoud en

hulpmotoren en weet je jouw passie met enthousiasme over te brengen op onze mbo studenten? Lees dan snel verder!

®© 32-40uur © Zwolle Bekijk vacature =

Docent Scheeps- en Jachtbouw

Figure 2.1: Vacancy listings on the STC Group website. Screenshot taken on 20 Jan. 2021.

<!DOCTYPE html>
<html lang="nl”">
<body>
<section class="stc-vacancy--overview”>
<div class="container”>
<div class="row”>
<div class="col-xl1l-12">
<div class="stc-vacancy--box featured”>
<div class="stc-vacancy--head”>
<h2 class="stc-vacancy--title”>Technisch docent Zeevaart (HWTK)</h2>
0Onderwijs
</div>
<div class="stc-vacancy--content”>
<p>
Heb jij zelf gevaren en weet jij alles van de technische kant van schepen? Gaat jouw
hart sneller kloppen van motoren, voorstuwing, onderhoud en hulpmotoren en weet je jouw
passie met enthousiasme over te brengen op onze mbo studenten? Lees dan snel verder!
</p>
</div>
<div class="stc-vacancy--footer”>
<div class="stc-vacancy--info”>
32-40 uur
Zwolle
</div>
<div class="stc-vacancy--more”>
<a class="btn arrow-text-btn btn-secondary”
href="https://werkenbijstc.nl/vacatures/technisch-docent-zeevaart-hwtk/”>
Bekijk vacature

</div>
</div>
</div>
<div class="col-x1-12">
</div>
</div>
</div>
</section>
</body>
</html>

Code snippet 2.1: Partial HTML source of the vacancy listings on the STC Group website. Only the elements that make
up the first vacancy have been completely expanded. Source downloaded using wget on 20 Jan. 2021.

2.3. Web scraping 5

2.3.2. Dynamic vacancy pages

In addition to static vacancy pages, there are also dynamic ones. A dynamic web page, more specif-
ically in this case a client-side dynamic web page, is a page that uses client-side scripting, such as
JavaScript, to alter the Document Object Model (DOM) of a web page during or after it has loaded.
In figure 2.2, the vacancy overview page of Evides? is shown. Looking at the layout, the site seems
similar to the STC Group static example. This overview page uses a table instead of blocks, but the
important information such as the title and location is still there. The hyperlinks seem missing, but are
actually hidden within the rows of the table. Hovering over a row with a cursor will turn that row blue to
indicate to a user that it is a clickable link leading to more information.

Looking at the HTML via a browser’s developer tools, shown in code snippet 2.2, seems to confirm
that the Evides and STC Group websites are also similar HTML-wise. This is not true, however. Using a
tool such as wget? to download the original HTML source shows that the a elements with the dataRow
class are not present. The vacancy data is instead hidden within the JavaScript defined inside the
<script> elements, as shown in code snippet 2.3. The table will only appear after a browser has
executed the JavaScript code. In order to extract this data, one must either use a JavaScript engine,
such as browsers do, and then extract the data from the HTML the same way as for the static vacancy
pages, or parse the JavaScript code itself.

Vacatures

Denk jij dat je bij ons snel komt bovendrijven vanwege je kennis, ervaring en persoonlijkheid?
Wil jij samen met vakkundige collega's bijdragen aan het creéren van waardevol water?

Dan geeft Evides jou alle mogelijkheden om een goede carriérestart te maken of een volgende stap in je carriére te zetten.

Scrum Master Kralingen, Rotterdam
Projectleider A - Operationele Ondersteuning Kralingen, Rotterdam
Projectleider bouwkunde Kralingen, Rotterdam en Middelburg, Zeeland

Figure 2.2: Vacancy listings on the Evides website. Screenshot taken on 20 Jan. 2021.

<!DOCTYPE html ”-//W3C//DTD XHTML 1.0 Strict//EN” ”“http://www.w3.org/TR/xhtmll/DTD/xhtmll-strict.dtd”>
<html id="P html” xmlns="http://www.w3.0rg/1999/xhtml” class="responsive” lang="nl” xml:lang="nl”">

<body id="P _body” class="sitebackground desktop” style="overflow: auto scroll; visibility: visible;”>

<div class="body”>

<div class="dataColumn verticalCenter” style="width: 512px;”>
<div class="text” data-row-id="6595754c-f018481ab50d”>Accountmanager Techniek</div>
</div>
<div class="dataColumn verticalCenter” style="width: 686px;”>
<div class="text” data-row-id="6595754c-£018481ab50d”>Kralingen, Rotterdam</div>
</div>

</div>
</body>
</html>

Code snippet 2.2: Partial HTML of the vacancy listings on the Evides website as shown in Chrome DevTools. Only the
elements that make up the first vacancy have been completely expanded. Downloaded with Chrome on 20 Jan. 2021.

2https://www.werkenbijevides.nl/
Shttps://www.gnu.org/software/wget/

https://www.werkenbijevides.nl/
https://www.gnu.org/software/wget/

6 2. Research

<!DOCTYPE html ”-//W3C//DTD XHTML 1.0 Strict//EN” ”http://www.w3.org/TR/xhtmll/DTD/xhtmll-strict.dtd”>

—

<html id="P html” xmlns="http://www.w3.0rg/1999/xhtml” class="responsive” lang="nl” xml:lang="nl”">
<body id="P_body” class="sitebackground” style="overflow-y:scroll;overflow-x:auto;visibility:hidden;"”>
<script type="text/javascript”>
function AntaRequireBootstrapCompleted (AntaRequire) {
AntaRequire(...) {
script.AddInitScript (function () {

webview.RegisterWebView (“P_C W B2782DF749637890AA5FD88EFDABAOY0”, {

"data”: [{
“uniqueId”: ”60cl11015-b416-4901-9947-16e329c6bb6ad”,
”"rowNumber”: 1,
”1link”: ”vacaturebeschrijving-2020/accountmanager-klant”,
“columns”: |
”U005": |
”value”: ”"Accountmanager Techniek”
I
7U004”: |
”value”: ”“Kralingen, Rotterdam”

by
"EKnWCITitl”: {

”value”: ”Accountmanager Klant”
by
"KnWPgPuId”: {

"value”: "605CD65342D26ACAD141D6A36DF36C3A"
I
"KnWCIDs”: {

”value”: "Accountmanager Klant”
by
"KnWCIPuDa”: {

”value”: ”2020-11-05T13:39:06"”
}

}

}i
</script>
</body>
</html>

Code snippet 2.3: Partial HTML/JavaScript source of the vacancy listings on the Evides website. Only the elements that
make up the first vacancy have been completely expanded. Source downloaded using wget on 20 Jan. 2021.

2.3.3. Overview of frameworks and libraries

A selection of four distinct scraping libraries and frameworks has been made based on the following
three criteria:

* Gratuitous (libre)
* Open-source

» Popularity

Given the lack of funds, the framework or library of choice must be free-to-use, as will be further
explained in section 2.7. As our product is to be used in a commercial setting, it must not be restricted
by licenses or patents, so the selected software of choice must be open-source. Finally, the software
must be used widely, because we believe that this increases the likelihood of having comprehensive
documentation, fewer bugs and better support. The popularity of the frameworks and libraries has been
determined by number of contributors, latest release date and the ranking in Google search results. An
overview of the four candidates is shown in table 2.1.

2.3. Web scraping 7

[[Beautiful Soup [Scrapy [Cheerio [libxml2]
Information
Source repository Launchpad GitHub GitHub GitLab
Latest release 8 Oct 2020 17 Nov 2020 21 Dec 2020 30 Oct 2019
Number of contributors 20 397 115 99
. Provided by de- | Provided by de- | Provided by de- | Provided by de-
Documentation
veloper veloper veloper veloper
Language
C (also bind-
. . . ings for C++,
Written in Python Python JavaScript Ruby, Python,
PHP, etc.)

Table 2.1: Overview of the selected scraping libraries and frameworks [2]-[5].

Beautiful Soup

Beautiful Soup is a Python library that can extract data from HTML and XML documents. Given an
HTML or XML document, it creates a parse tree from which relevant information can be extricated
[2]. It can also process structurally incorrect HTML documents, such as those with malformed tags or
improper nesting. The processing speed and tolerance for malformations depends on the parser used.
Beautiful Soup supports Python’s built-in html .parser, but also third-party parsers such as 1xml
and htm151ib [6]-[8].

Scrapy

Scrapy is a scraping and web crawling framework written in Python. It is based around modules called
spiders. These spiders are essentially web crawlers that follow the instructions given by the program-
mer in Python. They also serve to separate the web crawling aspect from the actual data extraction,
which allows for easier maintainability [3].

Cheerio

Cheerio describes itself as a “Fast, flexible, and lean implementation of core jQuery designed specif-
ically for the server” [9]. This JavaScript package can be used for web scraping purposes such as
parsing and manipulating data from the HTML DOM, which can be obtained using an external request
library.

libxml2

Another library that is considered is libxml2. This library can be used to parse and navigate XML or
HTML [5]. Despite the fact that this library is written in C, libxml2 can be used in other environments
as well, thanks to its available bindings [5].

2.3.4. Comparative analysis of frameworks and libraries

In order to make a justified decision on which framework or library to use for this project, the candidates
ought to be compared and contrasted. This has been done based on a set of criteria we deem to be
important for the development of the web scraper within the given time frame of ten weeks for this
project. An overview of the supported features per scraping framework or library can be found in
table 2.2.

First of all, web responses must be parsed to be able to extract data from them. Given that websites
are written in HTML, a parser for that language is needed. Likewise, some of the client’s websites, such
as Evides’ vacancy website, rely on JavaScript to dynamically load their content. This means that a
JavaScript parser, or a similar feature, would be needed. If a website makes use of a JSON API, the
data can be obtained directly from that API, rather than obtaining it from the actual user interface. A
JSON parser is needed to get the data from the API response.

Secondly, data must be extracted from the parsed input. This can be done in various ways, for
instance with CSS selectors, XPath expressions or RegEx.

Thirdly, for quality assurance, the scraper should be tested and debugging options would be ben-
eficial for the development process. Hence, logging and automated testing features are taken into
consideration.

Finally, miscellaneous features are also considered. Invalid scheme parsing and automatic request
retry on error are included in this comparative analysis, as a situation could arise in which the scheme

https://code.launchpad.net/beautifulsoup/
https://github.com/scrapy/scrapy
https://github.com/cheeriojs/cheerio
https://gitlab.gnome.org/GNOME/libxml2

8 2. Research

is incomplete, for instance due to an invalid or missing HTML tag, or the connection to website could
fail. Data sanitization and data export are also included, because the data needs to be exported to the
server and said data must be clean; for instance, the data must not contain unreadable characters,
like tabs or newlines. Asynchronous crawling is considered as this could prove to be useful in case
scraping all websites sequentially might take a long time. Running the scraper asynchronously would
allow it to scrape multiple websites at the same time, improving the run time of the scraper. Additionally,
it allows the data to be processed while waiting for the other requests.

[| Beautiful Soup [Scrapy | Cheerio | Tibxml2 |

Parsing
HTML [) [) [[J
XML [[([] [
JavaScript @) m] O O
JSON (2 O © ©
Data extraction
CSS selectors) O
XPath [) [) [[
RegEx [) @] O O
Scraper debugging and testing
Logging [] [] @) O
Aut ted i
. utomate regression | © o o
ests
Miscellaneous features
Invalid scheme parsing ® o [] []
Data sanitization @) @) @) O
Data export O [O O
Aut ti t ret

utomatic request retry | ® o o
on error
Asynchronous crawling @) [©) o
@— Supported; 0= Not supported; 0= Available through extensions; 0= Similar feature available

Table 2.2: Feature comparison of the selected scraping frameworks and libraries [2]-[5].

Based on the overview of the selected scraping libraries and frameworks in table 2.1 and feature
comparison in table 2.2, several key aspects become clear.

Firstly, there is a distinction between frameworks and libraries. More specifically, this distinction is
related to the inversion of control [10]. When using a library, developers control the flow of the program.
When needed, they can call a library function which will execute its task and return control back to the
developer, which allows for a higher degree of customizability. When using a framework, the framework
decides when and what actions take place. This system allows for modularity and extensibility, but
makes frameworks less customizable. Scrapy is the only framework in this comparison. It controls
the flow of execution, only allowing developers to define callbacks. In exchange, Scrapy has many
built-in features and allows for extensibility by means of middlewares*. Given the time constraint of
this project, the provided features outweigh the lesser degree of control, as time can be saved by not
having to implement the features Scrapy already has.

Secondly, data parsing seems to be supported by all candidates, though JavaScript seems to require
additional attention. While Scrapy has a similar feature to support JavaScript by means of Scrapy
Selenium?®, the other candidates do not. This means that more time is needed for the implementation
for the other candidates.

Thirdly, data extraction does not pose an issue, as all candidates support XPath expressions. Even
though additional data extraction methods would provide more programming flexibility, XPath expres-
sions would suffice.

Fourthly, regarding debugging and testing features, Scrapy seems to be the superior choice, fol-
lowed by Beautiful Soup. Scrapy has comprehensive logging features® and Beautiful Soup provides
an on-parse debug feature”. If any of the other two candidates were chosen, extra time has to be spent
on integrating testing and debugging features tailored to web scraping.

4https://docs.scrapy.org/en/latest/topics/spider-middleware.html
Shttps://github.com/clemfromspace/scrapy-selenium
bhttps://docs.scrapy.org/en/latest/topics/logging.html
"https://beautiful-soup-4.readthedocs.io/en/latest/#troubleshooting

https://docs.scrapy.org/en/latest/topics/spider-middleware.html
https://github.com/clemfromspace/scrapy-selenium
https://docs.scrapy.org/en/latest/topics/logging.html
https://beautiful-soup-4.readthedocs.io/en/latest/#troubleshooting

2.4. Search engine 9

Finally, the miscellaneous features. Most time can be saved by using Scrapy, as it has built-in data
export features, supports asynchronous crawling and automatically retries a request when a request
error occurs, while the others do not. None of the candidates has built-in data sanitization, which means
that we have to implement this ourselves or through the use of external libraries.

2.3.5. Overview of programming languages

Table 2.3 lists the programming languages that are used by the libraries and framework discussed in
section 2.3.4. When choosing a library or framework, the associated programming language should
also be considered as experience with and development time using a given language may differ greatly.

Python (Scrapy and

Beautiful Soup) JavaScript (Cheerio) | C (libxml2)

Language type interpreted high-level | interpreted high-level | compiled low-level
Team’s experience High Medium Low

Table 2.3: Overview of programming languages [11]-[13].

Both Python and JavaScript are interpreted high-level languages [11], [13]. Unlike low-level lan-
guages, such as C, high-level languages support numerous features that we believe to greatly improve
ease of development, such as memory management and garbage collection [14]. However, such lan-
guages are not recommended if maximum performance is required, due to the abstraction penalty of
using a high-level language [14]. Given that run time is of little concern for this project and development
time is limited, a high-level language is preferred. With the team’s experience in mind, it becomes clear
that Python is preferred over JavaScript. While the former can be used efficiently immediately, the
latter requires more familiarization, and thus more time. As mentioned earlier, time is rather limited, so
the main focus should be on just learning how to use a library or framework rather than a language as
well.

2.3.6. Conclusion

In conclusion, while Beautiful Soup, Cheerio and libxml2 can be useful in a certain context, Scrapy
seems to be the clear winner. Not only does Scrapy allow for the best basis for meeting the require-
ments, it also eases the development thanks to its scraping and supportive features. The fact that
Scrapy is written in Python is also an asset, since the development time in Python is relatively short
and numerous tools for post processing are available.

2.4. Search engine

After having retrieved all the vacancies (see section 2.3), a search engine is needed in order to be able
to search and filter through the vacancies. This is necessary to meet the final product’s requirement
of giving users the ability to search for specific vacancies according to search queries. In this section,
several existing search engines will be analyzed and their features will be compared. We will first
indicate how search engines were selected for analysis, followed by an overview of each of the search
engines’ features. We conclude this section by arguing whether one of the selected search engines
will be used for realizing the final product, or if we need to implement a custom search engine.

2.4.1. Search engine selection

There are several criteria that a search engine framework needs to adhere to for it to be considered in
the creation of the final product. One is that the framework should (be able to) possess all the required
features as presented in section 2.6. Furthermore, the framework should be reliable enough to be of
any practical use. Lastly, budgetary constraints force us to use a low-cost and preferably free-to-use
framework, which is why only open-source frameworks will be considered. Like in section 2.3.3, we
select four frameworks for further review based on popularity, which we derive from a combination of
Google search result ranking and user popularity on GitHub, and based on whether they are open-
source. The frameworks that will be compared are Elasticsearch, Solr, Manticore Search and Xapian.

10 2. Research

Feature comparison and analysis

For each of the selected search engine frameworks, major features were extracted from their main
websites® . Table 2.4 shows an overview of the features of each of the frameworks. Comparing each
framework’s features, the following characteristics can be examined.

Documentation, actuality and popularity Each of the frameworks provides extensive documentation
which explains the inner working of each framework and which instructs on how to use each framework
practically. All frameworks have also had their newest release in June 2020 at the earliest, which
indicates that they are all relatively up-to-date. However, if we assume popularity among users can
be measured in terms of GitHub stars and forks, Elasticsearch is clearly the most popular of the four,
followed by Solr, Xapian and Manticore Search, respectively.

Programming language compatibility All shown frameworks support a wide range of programming
languages. Elasticsearch and Solr make use of RESTful interfaces® which are supported by many
major development programming languages, including but not limited to Python, JavaScript and C++,
which were already mentioned in section 2.3.5. Manticore Search provides the same support through
MySQL connectors'?. Xapian supports many programming languages as well through C++ bindings,
but Xapian’s Java API is still experimental [16].

Language features in search queries Elasticsearch and Manticore Search provide out-of-the-box word
synonym searching and extensive Natural Language Processing (NLP) support, with features such as
word tokenization and stemming, for the Dutch language. Xapian supports searching for synonyms
as well, but only provides word stemming as a Dutch NLP-feature. Solr also has support for NLP and
synonym search, but this requires the addition of certain extensions. All engines feature a form of spell
correction for terms in search queries, based on words in the engines’ databases, words from a corpus
or a combination thereof.

Additional search features Apart from simply searching for terms in their databases, all frameworks
provide additional operators that can be used to narrow down searches. For instance, all frameworks
support boolean operators and wildcards in queries. Manticore Search provides the most out-of-the-
box additional search features and filters, followed in order by Elasticsearch, Solr and Xapian.

Final selection criteria
The selection of a search engine framework for use in the creation of the final product depends on
several factors. In section 2.4.1, we already selected frameworks for further analysis based on their
presumed reliability, the expectation that they have the features that are requested for the final product,
and their availability as an open-source framework. There are several more factors that need to be
taken into consideration for the selection of a framework to be used in the creation of the final product.
Firstly, there is a time constraint of ten weeks to complete the product. We deem it to be impractical
to develop our own search engine framework that can compare to the frameworks that were analyzed
in section 2.4.1 in this time frame, and we will therefore be using one of the presented frameworks. Fur-
thermore, considering this time frame, it is important that the selected framework has a relatively small
learning curve, which depends on our expertise, and that there is extensive documentation, including
any reference guides and tutorials that the framework developers publish, but also user contributions
posted online elsewhere. In assessing to what extent the latter is likely to be present for each frame-
work, we look at each framework’s stars'! and forks'? on their GitHub repositories, which is a direct
indicator of the size of the community of users that are in some way connected to a framework.

8Elasticsearch: https://www.elastic.co/; Solr: https://lucene.apache.org/solr/; Manticore Search: https:
//manticoresearch.com/; Xapian: https://xapian.org/.

9REST is an architectural style that defines certain constraints for interfaces, designed to make the web more standard.
As such, RESTful interfaces are interfaces that adhere to these constraints [15].

10For more information on MySQL connectors, see https://dev.mysql.com/doc/connectors/en/.

' Number of times somebody followed this project. Usually indicates how interested people are in the project.

12Number of times the repository is copied, usually with the intent of making a change or addition to the code base.
Usually indicates how actively updated the repository is.

https://www.elastic.co/
https://lucene.apache.org/solr/
https://manticoresearch.com/
https://manticoresearch.com/
https://xapian.org/
https://dev.mysql.com/doc/connectors/en/

2.4. Search engine 11
Feature Elasticsearch Solr Manticore Xapian
Search
Information
GitHub repository 52.2k . stars, | 3.9k stars, 2.6k | 497 stars, 68 E_)’Ol stars, 264
18.2k forks forks forks forks
Latest release 01 June 20 02 Nov 20 01 Oct 20 21 Aug 20
. Provided by de- | Provided by de- | Provided by de- | Provided by de-
Documentation
veloper veloper veloper veloper
Language
Written in Java Java C++ CH-+
RESTful Bindings for
HTTP/J- REST- A 1 Python, Java,
Supported program- | SON API, Java | interface- ny anguage Perl, PHP, Tcl,
ming languages JavaScript, compatible with .M.y.SQL— C+#, Ruby, Lua,
Perl, PHP, | languages compatibility Erlang, Node.js,
Python, Ruby R
Built-in; input
JSON, XML, | SQL or JSON; s
Database type NoSQL CSV or binary; | SQL queries or Built-in; - based
query with | HTTP requests on CSV
HTTP GET
Extensive NLP support Word stemming
for Dutch language ¢ © ¢ onl,
guag y
Spell correction))) []
Synonym support) ()) ()
Search features
Ranked search [[o [
Faceted search))) [)
Proximity search))) [)
Fuzzy search) ® o O
Range search [) [(] [J
Attribute search () ® ([[
Auto-fill or term sugges-
tions & o o o o
Search operators
Boolean [() (] [
Wildcards [) o [J [J
Quorum matching @) O o O
Strict order [(D) [O
Field-start/-end @] O o O
Sentfence— /paragraph- o o ° o
specific
l @— Supported; O= Not supported; €= Available through extensions; 0= Similar feature available]

Table 2.4: Search engine frameworks and a comparison of their features as listed on their main websites. [17]-[20]

It should also be taken into account that the final product is required to include several features as
presented in section 2.7. Table 2.5 shows an overview of the required features and shows for each
analyzed framework whether it supports the feature, based on the findings in table 2.4.

Summarizing, the criteria that will be used for selecting a search engine framework are the amount
of documentation published by the developer; user popularity; learning curve; and support for required
features.

Selection of a Search Engine Framework

In order to select the framework that will be used in the final product, we assess to what extent each
framework meets the criteria described in section 2.4.1. This is measured based on the findings in ta-
ble 2.4 and table 2.5. Learning curve was assessed based on our individual expertise of used database
engines and connection and query methods, as well as perceived quality and user-friendliness of pro-
vided documentation. Table 2.6 shows an overview of each framework’s scores per criterion.

As Xapian does not directly and fully provide support for all required features, Xapian is taken
out of consideration. Furthermore, even though Solr has a relatively high user popularity, it has a
higher learning curve than the other frameworks and it requires extensions for the essential features
to be covered, which may prove impractical given the time frame in which the final product must be
completed, and so Solr will also not be selected.

https://github.com/elastic/Elasticsearch
https://github.com/elastic/Elasticsearch
https://github.com/apache/lucene-solr
https://github.com/apache/lucene-solr
https://github.com/manticoresoftware/manticoresearch
https://github.com/manticoresoftware/manticoresearch
https://github.com/xapian/xapian
https://github.com/xapian/xapian

12 2. Research

Feature Elasticsearch Solr Manticore Xapian
Search
Features for employees
Search by keywords o [) [[
Search by function [) [[] [
Search by location [[o [
Search by company name [)))
Filter categories [(D) [([
Show similar vacancies [0 (] m]
Features for recruiters
Search for CV’s [[[() [) [a
Non-functional features
Easily maintainable and extendable O; Java API still
[[[.
code experimental
l ®— Supported; O= Not supported; €= Available, but not out-of-the-box; 0= Similar feature available or partly supported
Table 2.5: Overview of search engine frameworks with required features in the final product
Criterion Elasticsearch Solr Manticore Xapian
Search
. Provided by de- | Provided by de- | Provided by de- | Provided by de-
Documentation
veloper veloper veloper veloper
User popularity based on S L .
GitHub stars and forks Highest Second-highest Lowest Second-lowest
Lea.rmng curve (bas.ed O X Low Higher Lowest Low
perience and expertise)
Out-of-the-box support for re-
quired features 8/8 5/8 8/8 5/8
Support for required features
with extensions 8/8 8/8 8/8 5/8

Table 2.6: Scores of search engine frameworks based on requirement criteria

In general, it is believed that Elasticsearch has a higher learning curve compared to Manticore
Search, however there is a large gap in user popularity in favor of Elasticsearch [21]. This shows that
Elasticsearch has a more active user base, and therefore more user-provided documentation com-
pared to Manticore Search. This is also visible when we compare the amount of questions posted on
Stack Overflow!? that relate to Elasticsearch and those that relate to Manticore Search. To find such
questions, we filter based on tags'?. In total, 47445 questions are returned for Elasticsearch, versus
5 questions for Manticore Search (or, 39 if widening the search to any question containing "Manticore
Search”), indeed indicating a much higher interest in Elasticsearch than in Manticore Search on Stack
Overflow. Considering the large user base of Stack Overflow, we believe this to be at least somewhat
representative of the true interest in the frameworks, and also of the available user-made documenta-
tion on the frameworks.

All factors considered, we therefore believe Elasticsearch will be the best framework in the appli-
cation of the final product. Additionally, Elasticsearch is part of the ELK stack!®, which also contains a
logging module, Logstash, and a data visualizer, Kibana. This means that we do not need to implement
these features ourselves, thus save precious time.

2.5. Website frameworks and libraries

To run our application we will need a server framework and a front-end library. Several frameworks were
chosen for evaluation based on their popularity on GitHub. Table 2.7 contains the server frameworks
that were found. We are looking for a relatively simple framework that will allow us to easily implement
our required features. Considering our vacancies will be stored in a database, we need a (RESTful)

13Stack Overflow is an online platform operating since 2008, on which 100 million people ask questions and share knowledge
about coding problems monthly as of November 2020. See https://stackoverflow.com/. Accessed 12 November
2020.

M Users can connect descriptive tags to questions on Stack Overflow so that their questions can be easily found by anyone
interested. We used the tag Elasticsearch to find questions about Elasticsearch, and manticore, manticoresearch and
manticore-search to find questions about Manticore Search.

Bhttps://www.elastic.co/what-is/elk-stack

https://stackoverflow.com/
https://www.elastic.co/what-is/elk-stack

2.6. Related work 13

API which exposes methods such as POST, PUT, GET and DELETE in order to access and mutate the
data in the database [22].

[Feature [Spring [Django [Ruby on Rails [Laravel
Information
GitHub repository 40.1k _ stars, | 53.5k _ stars, | 46.9k _ stars, | 62.5k ' stars,
27.6k forks 23.1k forks 18.8k forks 19.8k forks
Latest release 01 Jun 20 02 Nov 20 01 Oct 20 21 Aug 20
. Provided by de- | Provided by de- | Provided by de- | Provided by de-
Documentation
veloper veloper veloper veloper
Properties
Language used Java [Python [Ruby PHP

Table 2.7: Current most popular server frameworks on GitHub on 15 Nov. 2020

[Criterion [Spring [Django [Ruby on Rails [Laravel
g?flflubp(s)f;lsagz}(li fol;ized °% | Fourth Second Third First
Learning curve (based on past Lo Lo Hich Hich
experience) W W & &
Language experience High High Low Low

Table 2.8: Multi criteria analysis for the chosen frameworks

As shown in table 2.8, the highest scoring frameworks are Django, Spring and Laravel. Because
most web scrapers are in Python, and we are most comfortable with Python, we will choose Django as
our server-side framework.

For the front-end, we chose to use React because of the vast number of libraries available for it,
including Search-UI'%. Search-Ul provides us with a component which makes interfacing with Elastic-
search easier. This significantly reduces the complexity and the need for manually creating a search
box, a results page, implement paging and filters. Therefore, the choice for React was made on the
basis that this library will significantly reduce the development time which is essential given the short
duration of this project.

2.6. Related work

In order to better understand the possibilities of the already existing job sites, and because the client
wishes to create ‘Something like Indeed but private’, a comparison matrix was created containing all
the features popular vacancy websites have. The matrix contains vacancy websites which showed up
at the top of a Google web search. This allows us to select the most popular ones. A table with these
features can be found in table 2.9.

Features which are used by three or more companies are believed to be worth investigating further.
Therefore those features have been marked with an asterisk (x) in table 2.9. These features will be
presented to the client, which will be used together with their feedback to create the final requirements in
section 2.7. In order to further clarify the features described in table 2.9, figure 2.3 contains screenshots
from vacancy websites which include these features.

6nttps://github.com/elastic/search-ui

https://github.com/spring-projects/spring-framework
https://github.com/spring-projects/spring-framework
https://github.com/django/django
https://github.com/django/django
https://github.com/rails/rails
https://github.com/rails/rails
https://github.com/laravel/laravel
https://github.com/laravel/laravel
https://github.com/elastic/search-ui

14 2. Research

nationale-vacaturebank | werk.nl | Young-Capital | Werkzoeken | Indeed | Job-bird | Monster-board | LinkedIn

Keywords *

Function *

Location *

NNNN
NNNN
NNNN
NNNYN

Company Name *

Save Queries

Favorites *

NNNNYNYNYN

Filter Catagories *

NN
\
NN

Recommend Catagories *

Related Queries *

Number of results *

ANEN

Compare Salary

Similar Vacancies x

Notifications *

S RNANERENERENENENERANENENEN

Apply Immediately *

Online resume *

CV Search *

ANANANANERAN
ANAN

NN

NN

Add Vacancy *

Matching

Company Review *

Sort Candidates

NOINNYN

Message Platform v

‘Im ready to work’ tag *

NN

Email to potential matches

DRNANANEN RN AN NANANANANANEE A A A A A AANAN

Social Platform

AN RNANANANANERANANANANANA A YANANANANER R NANANAN

Save queries * v

Table 2.9: Features found on job search websites

2.6. Related work

15

Employers / Post job

‘indeed Findjobs Company Reviews
What ‘Where
it a

|

Search for keywork, function
location, company name

[Advanced Job Search

Tip: Enter your city or zip code in the "where” box to show results in your
area.

DatePosted - Employer/Recruiter ~ Remote » JobType » Location +

Filter Catagories

Company + Job Language ~

Post your CV - It only takes a few seconds

ictjobs Number of results.

Page 1 of {553 jobs @

Sort by: relevance - date

Get new Jobs for this search by emall

Email address Notifications

ICT Manager
Federale Politie 3.0 %
Antwerp

([P ——

[Activate

By creating a job alert, you agree to our Terms. You

© 54009 N 20 05. can change your consent sttings at any time by
o 7483 - Csd Ant - Middelen - Informatica. unsubscribing or as detalledin our terms
o Houder zijn van een diploma of getuigschrift dat ten minste evenwaardig Is met
die welke In aanmerking...
12 days ago My recent searches save queres
Jobstudent
Trainingship/Stage H » clear searches
Proximus SpearIT
Diest

o Chez Proximus SpearIT, nous mettons tout en ceuvre pour permettre aux
entreprises de travalller de maniére plus Intelligente, plus siire et plus rapide.

14daysago - More..

Message platform

| $&) Messages |

(a) Search, number of results, filters, notifications and save queries

Froximus spearti
Diest

Chez Proximus SpearIT, nous mettons tout en ceuvre pour permettre aux
entreprises de travalller de maniére plus intelligente, plus sdre et plus rapide.

14daysago -+ More..

ICT medewerker servicedesk i
INA 40%

Antwerp

Ben Je een professional met een passie voor je vak?
o Is Klantvriendelijkheld voor jou vanzelfsprekend?

o Jobtime: 100% (38 uur/ week).

o Je bent stipt en ordeljk.

30+ days ago

ZNA

IS reuze

Ontdek onze reuzeleuke jobs

ZNA Kk dk 37 reviews Company reviews

ICT medewerker servicedesk

Apply On Company Site

Apply Immediately

Add to favorites

Ben je een professional met een passie voor je vak?

Is jkheid voor jou

at a a a

Related queries/
Reccomended categories

Q systeembeheerder Q Itsupport Q systemengineer Q. Itmanager

Q administratief medewerker Q. Informatica

Browse Jobs - Indeed Events - About - Help Centre

©2021 Indeed - Accessibility at Indeed - Privacy Centre - Cookies - Privacy - Terms

Contract: onbepaalde duur
Jobtime: 100% (38 uur/ week)

Locati

ZNA Stuivenberg, maar je werkt ZNA-overkoepelend
Afdeling/ Bedrijfseenheid: ICT support

Vacaturenummer: 6864

Jouw uitdaging:

De ICT Servicedesk medewerker staat in voor het verwerken van informatica aanvragen, het oplossen van
informatica problemen en de administratieve opvolging ervan. Tevens zal hij/zi instaan voor het beantwoorden van +

Let Employers Find You

Online resume.

Upload Your cv

(b) Company reviews, apply immediately, add to favorites, related queries, recommended categories and online CV

16

2. Research

Indeed for employers

Let's get started

Company name for this job *

© @ O 598 - 50 comments

TeamViewer

é Like) Comment — Share < Send
35,673 Folloy

#Industryd0 will help transcend conventional limitations with increased
connectivity which will allow For increased data visibility and better control of the
" entire supply chain httpy//bit.ly/3nE1lpz #lloT @MakeUseOF

Job title *

How Will the Fourth Industrial Revolution Change Your World?

Location *

O @ © 201 comment

y or postal code

~
)

Country: Belgium #*

Job posting will be displayed in: English #*

~ Y . Y L e
(_ Veryuseful...)i Thanks for posting.. [Inmy opinien.. |(Dayol >

O Like & comment () Share < Send

Can this job be performed remotely. meaning primarily from home? If so, we'll add

a "Remote” tag to your post

job update

No

) Temporarily due to COVID-19

‘ Incoming Business Analyst Intem at Altman Solon

mo

Yes

How many hires? *
This helps us match you with the right amount of
Gnidates.

(c) Adding vacancies

Congratulate Daniele for starting a new position as Business Analyst Intern at
Altman Selon

© @ O 20 5comments

T W ™ o
(. Congrats Daniele pIs Wow! pIN Well deserved! pIs How are you likin »

&Y Like & Comment

Add a comment...

(d) Social media platform

Help Centre

Search CValers

‘indeed
cv

(e) Searching CV’s

Subscription management

what

Job tte, skils, or company

IcT Q

;

Limit search to: @ Jobtise (] Skifs (| Companies [] Fiedof study Advanced search

(@ Search for your next candidate
Readytocontat & candidate? Purchase & subscrion todey!

© Recent Searches clear

icT

Figure 2.3: Features labeled on search page

2.7. Final requirements

2.7. Final requirements

With the above investigation in related work in section 2.6 in mind, we have presented a list of require-
ments to our client and discussed these with them. They responded with some additional requirements,
such as the functionality to search and add resumes, which we have added to our final requirements
list below. It was decided to rank them according to the MoSCoW model in order to have a clear priori-
tization and prioritize them by the categories defined below. The final list of requirements can be found

in table 2.10.

@ Must have

[] Should have

m Could have
[l Won'thave
’ Importance \ Requirement

Vacancies
0 Recruiters can search for vacancies
= Recruiters can filter on categories
| Recruiters have access to the tool via a web interface

Vacancies must be retrieved from all current associated companies’ web-

= site
0 Vacancies must be retrieved at a regular interval
| Companies are able to upload vacancies straight to the web interface
] Scraped vacancies can be edited through the interface
H Show number of results when filtering
| Recruiters can save favorite vacancies
| Recruiters can see similar vacancies
[| Recruiters can save vacancy queries
[| Recruiters can compare salaries
[New companies will be automatically add to the scraping process
| Employees will be automatically matched to a vacancy
[| Recruiters can upload blog posts

Resumes
0 Allow recruiters to search for resume
| Recruiters can upload an employees resume
H Allow recruiters to send messages about resumes
H Allow recruiters to see which employees are looking for a job
0 Allow recruiters to save their queries for resumes

Interface
| Users can login
] Users cannot register themselves but should be invited
H Users can view the companies associated to Rotteram Werkt

Non-functional requirements

The web scraping tool must be tested on all websites of the participating

= companies

0 Code must be easily extensible to support more vacancy websites
D All frameworks and programming resources must be free of charge
] The final product must be able to run on a VPS running Linux

[| Use frameworks that have a subscription fee

Table 2.10: Requirements evaluation

18 2. Research

2.8. Design goals

Based on the requirements, a number of design goals have been created. These goals will be used at
the end of the project to evaluate the quality of the final product.

2.8.1. Security and privacy

Given that the system will contain personal data, it is important that the chance of leaking data is mini-
mized. Therefore, it is important that the data stored cannot be accessed by third-parties. Furthermore,
due to GDPR regulations it is important that no personal data will be logged in order to make sure that
the ‘right to be forgotten’ can be enforced.

2.8.2. Maintainability

The system should be easy to maintain. Given the volatility of the scrapers due to the possibility of
companies changing their website significantly, having to update a scraper should require minimal
effort. Furthermore, as Rotterdam Werkt! may expand in the future, it should also be possible to easily
add new scrapers to the system. The client also suggested that the system might be maintained by
future students. Therefore it is crucial that the code is documented properly and that it is maintainable.

2.8.3. Ease of deployment

Since the client mentioned they will most likely hire students to maintain this system in the future. It
should be reasonably easy for them to deploy the system. This means that the deployment method
cannot be overly complex and must be clearly described in the documentation.

2.9. Approach

In order to implement the requirements listed in section 2.7, decisions needed to be made on the specific
approaches to be taken. This section will discuss the approaches that were taken in sections 2.9.1
to 2.9.4 together with some of the risks involved in section 2.9.5. Finally, the section will end with a
preliminary planning for the implementation and reporting stages in section 2.9.6.

2.9.1. Development methodology
The usage of the correct development methodology will help us to divide the project into smaller pieces
as well as being able to finish within the scheduled time.

The first methodology worth considering is Scrum [23]. This is an agile methodology, which means
that a working version of the project is reviewed early and often. The requirements could thus be
changed throughout the project, every time a working version is delivered. This allows the product
owner to finely tailor the final product to their needs, even in later stages of the software project. Scrum
works in iterations of a specified length, usually weekly or bi-weekly, called sprints. At the start of a
sprint, the team will come together and divide the tasks that need to be completed during the sprint.
At the end of the sprint, a working version is delivered and evaluated. Any necessary changes will be
noted for the next sprint such that the team can adapt and continue working on the project [24].

A second methodology is the Waterfall approach [23]. This is a relatively simple approach where
all requirements are defined at the beginning of the project. After this, the project runs in predefined
phases which need to be well documented in order for the approach to work. The Waterfall approach
is rather rigid as it is costly, both with regards to resources as well as time, to alter the requirements.
More concretely, if a requirement is to be changed in a given phase, all previous stages have to be
executed again with the altered requirement in order to get the desired outcome [25].

For our project the Scrum approach will be taken. This approach allows us to create a final product
which is tailored very closely to the clients’ wishes, compared to the waterfall approach which causes a
great technical deficit when requirements are changed. Furthermore, the iterations allows us to better
split up the tasks gradually as we progress through the project in order to prioritize certain tasks.

2.9.2. Documentation

The code will have method- and class-based documentation. This documentation will make it easier
for future developers to better understand the code and thus make it easier to maintain the platform in
the future. Furthermore, a deploy guide will be added in the README . md file of both the website and

2.9. Approach 19

the scraper. This guide will contain a detailed explanation of how this project should be deployed. This
should make it easier for future maintainers of the project to integrate new features.

2.9.3. Version control

As a version control system we have the choice between GitLab!'” and GitHub'®, since these are
the ones we have the most experience with and we have limited resources, thus payed options are
not viable. We have decided to use GitLab as this gives us access to more pull-based development
features such as running unlimited pipelines for free. We will be using pull-based development, this
means that for every task during the week, an issue will be created. The developer will then ‘branch
off’ from the main branch in order to complete the new task. Once the task is finished, the developer
will submit a merge request. At least one other member of the team will inspect the merge request and
judge it on code quality, style and structure, as well as checking the documentation for clarity. Within
the merge request, all tests and code quality tools will be run by the CI pipeline to ensure new features
do not break existing ones. Once everything passes and the reviewer is satisfied, the new code can
be merged into the main branch. This ensures that we always have a fully working version of the final
product and that new code adheres to the standards set by us.

2.9.4. Static code analysis

As a static code analysis tool for the python code, Flake8'? will be used. Given that the tool is designed
specifically for Python and it is still being maintained, this will give a reasonable idea of the code quality.
Flake8 also does linting and will therefore also make sure that the code is formatted correctly [26].
Furthermore, Flake8 can also be run in our GitLab pipelines and will fail the pipeline if the code is of
insufficient standard.

For React, the standard code analysis tool provided by ‘react-create-app’, ESLint, is used. ESLint
analyzes the code in order to find problems and it is fully customizable [27]. It was decided to use the
default configuration as this sufficiently met our needs.

2.9.5. Risk analysis
The usage of the final system may present certain risks. In this section these risks will be assessed
and discussed.

Changes in the company websites

Each scraper for each website will be designed for the current layout of the website. This means that
if a website changes drastically in terms of layout, URL and/or architecture, either during the project,
or after the project, the scraper will not work any more. If this happens during the project this problem
can be solved by us, even though this will create a delay in the planning. When this happens after the
project, the client will need to hire new software engineers in order to fix the scraper such that it can
scrape the specific website again.

Addition of new companies

When a new company joins Rotterdam Werkt!, the vacancy website for this company will need to be
added to the scraper. This means that a new spider will need to be created for this company. In order
to do this, a new software engineer will need to be hired in order to do this. This might result in the
project being discontinued as it will need a relatively high level of maintenance.

2.9.6. Planning

In order to be able to plan the stages of this project, we have created a preliminary schedule in table 2.11.
We have added all known deadlines for the research report, SIG evaluation, thesis report and final
presentation. Furthermore, we have also divided the implementation phase into our 3 main components
and added deadlines for each component. This means that we can dedicate the period after Christmas
to connecting these components and fixing any last bugs that may arise from this.

"https://gitlab.ewi.tudelft.nl
18nttps://github.com
Ynttps://flake8.pycqa.org/en/latest/

https://gitlab.ewi.tudelft.nl
https://github.com
https://flake8.pycqa.org/en/latest/

20 2. Research

Week # 46 47 48 49 50 53 1 2 3 4
Monday 9-11-2020 | 16-11-2020 | 23-11-2020 | 30-11-2020 | 7-12-2020 | 14-12-2020 | 21-12-2020 | 28-12-2020 | 4-1-2021 | 11-1-2021 | 18-1-2021 | 25-1-2021
Friday 13-11-2020 | 20-11-2020 | 27-11-2020 | 4-12-2020 | 11-12-2020 | 18-12-2020 | 28-12-2020 | 1-1-2021 | 8-1-2021 | 15-1-2021 | 22-1-2021 | 29-1-2021

Orientation and Design phase
Delivery research report
Research Similar projects
Requirements engineering
Research Framework
Design Methodology
Design the system

Implementation Phase

Implement requirements
Setup toolkit
Tmplement scraper
Testing Scraper
Implement website
Implement search engine
Connect website to Search engine and scraper
Integration testing and final bug fixes
Midterm assessment
SIG upload 1
SIG upload 2

Documentation

Delivery thesis draft
Delivery thesis report
Final Presentation

Table 2.11: Preliminary schedule

Design

3.1. Overview

In this chapter the design of the software will be considered. The chapter will start with a discussion on
the general architecture of the product in section 3.2. Afterwards, each component will be discussed
individually in sections 3.3 to 3.6.

3.2. Architecture

This section discusses the architecture design of the system. Figure 3.1 shows the final architecture.
Users can interact with the application through the user interface. This is connected to the back-end
via a reverse proxy. This proxy will redirect requests made to the back-end and forward them to either
the REST-server or Elasticsearch. The REST-server will store received vacancies from either the user
interface or the scraper in Elasticsearch and the database. Lastly, the REST-server and Elasticsearch
will produce logs, which will be processed by Logstash and stored back in Elasticsearch. Then, Kibana
is able to access these through their respective indexes and analyze them.

Given all the different services used within the application, it could be considered as a microservice
architecture [28]. This has the advantage that each service can run autonomously. Another advantage
is robustness. Thatis, if one service were to be taken out or fail, the other services would still continue to
function. Because each service functions independently, they can be switched out at any point in time
for a similar compatible service without needing to redeploy or redesign the whole stack. Furthermore,
it is also easier to build and maintain a microservice architecture. Each service will have a smaller code
base, especially compared to a monolithic approach where there is one big code base, meaning that
maintainability will increase [28].

21

22

3. Design

HTTP-Requests

" .

<<component>> a
User Interface

Proxy-Server

<<component>> @
Back-End <<component>> E
I Vacacies Scraper
<<component=> Vacancies & Resumes
- REST-Server
HTTP-Reguest
Logs
<<component>3 -
ELK-Stack « g' (—
<<component>> E
LogStash
Logs T l Log entries
.| <<component>> N
“| ElasticSearch "‘

llndexes

<<component>>]
Kibana

Figure 3.1: Overall component diagram

3.3. Scraper

The scraper will crawl the vacancy web pages of the Rotterdam Werkt! organizations and extract rele-
vant data. For each organization, it includes a spider that will scrape a specific website.

It starts at the vacancy overview page and will collect the URLs of the vacancy detail pages. These
detail pages will then be scraped for relevant information, such as the title, hours, contact information
and department. A complete list of collected data fields can be found in table 3.1. If necessary, data is
sanitized. Finally, all extracted information is sent to the REST-server, described in section 3.5.

Field name

|

Description ‘

COMPANY TITLE

Identifier of the scraped company

CONTACT_EMAIL

Email address of recruiter associated with vacancy

CONTACT _NAME

Name of recruiter associated with vacancy

CONTACT PHONE

Phone number of recruiter associated with vacancy

DEPARTMENT Company department to which vacancy belongs
EDUCATION LEVEL Education level required to apply

END DATE Vacancy end date

FULL_TEXT All plain text in vacancy without formatting and without

HTML tags

HOURS_PER_WEEK MAXIMUM

Max. number of work hours per week according to va-
cancy

HOURS PER_WEEK MINIMUM

Min. number of work hours per week according to va-
cancy

True if vacancy was scraped, False if recruiter uploaded

IS SCRAPED
- vacancy
JOB_LEVEL Job level (e.g. internship, junior, medior, senior, ...)
JOB_LOCATION Main physical location of job
JOB_TYPE Type of employment (part time, full time, ...)

SALARY CURRENCY

Currency the salary is given in (e.g. euros, dollars, ...)

SALARY MAXIMUM

Upper bound on salary provided by job

SALARY MINIMUM

Lower bound on salary provided by job

SPIDER_NAME

Identifier of the spider that has been run

TITLE

Vacancy title

URL

Vacancy URL

Table 3.1: List of fields extracted from the vacancy web pages by the scraper

3.4. Database design 23

3.4. Database design

The final database schema is depicted in figure 3.2. Given that we are using objects in the REST-
server, the final database schema is created for an object-relational database. The database schema
mainly revolves around three object types: vacancy, resume, and recruiter. Each of these object types
will be discussed in more depth below.

Vacancy

The vacancy object type contains all the information which can be scraped from the websites. Vacancy
has a one-to-many relationship with company. This allows us to keep track of the companies, and
by extend the recruiters, who are associated with a vacancy. Furthermore, vacancies have a many-
to-many relationship with certificates. This allows for easy retrieval of all the vacancies which are
associated with a specific certificate and thus allows Elasticsearch to easily filter on them. Moreover,
this also allows users to add already existing certificates to their vacancies without needing to duplicate
them. In future work, this relationship could also be applied to other elements in order to make them
filterable.

Resume

The resume object contains the information needed to form a full resume. The model is inspired by
the LinkedIn resume functionality. The parent object contains the basic personal information. Resume
also has child objects in the form of a one-to-many relationship with education, skills and experiences.
This means that a user can have several of these objects in their resume without having to duplicate
the resume itself.

Recruiter

A recruiter can also be seen as a user in this system. The recruiter is linked to a company. This
authorizes the recruiter to edit only the vacancies which are linked to this company. Furthermore, a
recruiter is also associated to a Password Request object, which allows the recruiter to change their
password. The recruiter will receive a unique id from this Password Request which they can use to
change their password.

company_conpany resunes_resune
hid tege iiid

i title §7 first_name
27 location 17 last_name
17 first_address_line

= second_address_line va

17 description v
1% company_url

Slogo_url varchar(20¢ i7 email_address

f f . 17 phone_number
M % extra_info

vacancy_vacancy .
e resump id:id
17id ntege

i title archar(40c resunes_experience
Sid teger
iAtitle

compafy._id:id

resumes_education
£7 contact_email

17 contact_name

i5id
university resumes_skills

1% degree

17 Field_of_study 2

17 description 17 description varc

o7 start_date date +iresume_id nteger

7 contact_phone

7 department

: ion_level

7 end_date

17 Full_text
hours_per_week_|
hours_per_week_minimul

. 1is_scraped

1% job_level

17 job_location

7 employment_typ.
7 company

47 start_date

7 end_date

7 headline

recruiter_recruiter
$iid
17 password
last_login timesta
5 email

id

+% name

o 1% end_date date
17 description

IFresume_id

JE first_name Iiresume_id teger

17 last_name
17is_active olea

is_admin olea

company_id teget

17 job_type
I is_staff olea Job_tvp

17 salary_currency
salary_maximum do
salary_minimum do

1 url

i% Is_superuser olea

certificates_idiid

years_of_experience ntege
recruitpr id-id company_id ntege

.7 spider_name archa
vaLmtT\d

vacancy_vacancy_required_certificates

recruiter_passwordreguests
Fid teger
!Fuuip 3
+Z creation_date timestamp wit

i7id teger

1% vacancy_id teger
17 certificates_id teger

recruiter_id teger

Figure 3.2: Database diagram

24 3. Design

3.5. REST-server

The REST-API provides a set of requests that can be made by the client to the REST-server. It was
decided to use REST as standard for the API since this is a popular standardized method for commu-
nication between web services [29]. The API has functionality to GET, POST, PATCH and DELETE

objects via requests. Below is a list of API calls which should be implemented.

VacancylList

Requests Parameter Returns
GET - List of all vacancies
POST - -
VacancyDetail
Requests Parameter Returns
GET Primary Key More detailed information about vacancy
PATCH Primary Key -
DELETE Primary Key -
CompanyList
Requests Parameter Returns
GET - List of all companies
POST - Adds a company
CompanyDetail
Requests Parameter Returns
GET Primary Key More detailed information about Company
PATCH Primary Key Edits a company
DELETE Primary Key Deletes a company
ResumelList
Requests Parameter Returns
GET - Returns a list of all resumes
POST - Adds a resume
ResumeDetail
Requests Parameter Returns
GET Primary Key More detailed information about Resume
PATCH Primary Key Edits a resume
DELETE Primary Key Deletes a resume

ResumeEducationListView

Requests Parameter Returns

GET Resume Primary Key Returns all educations from a resume

POST Resume Primary Key Adds an education to a resume
ResumeSkillsListView

Requests Parameter Returns

GET Resume Primary Key Returns all skills from a resume

POST Resume Primary Key Adds a skill to a resume

ResumeExperienceListView
Requests Parameter Returns
GET Resume Primary Key Returns all experiences from a resume
POST Resume Primary Key Adds an experience to a resume

3.6. Front-end design 25

3.6. Front-end design

In this section, we will explain the design of the front-end. The front-end will have two distinct purposes.
Firstly, it should allow users to interact with the vacancies and resumes. In other words, create, edit and
delete vacancies and resumes. Secondly, it should allow users to search for vacancies and resumes.

3.6.1. Interaction with resumes and vacancies

For users to be able to interact with resumes and vacancies, screens are needed in order to display
forms. These forms allow the user to create new resumes and vacancies, as well as edit already
existing ones. Since a resume object can have several child objects for education, experience and
skills, separate forms will be created for these objects such that each child object can be updated
independently without causing all child objects to be updated.

3.6.2. Searching for resumes and vacancies

Given that users should be able to search for resumes and vacancies, there are a number of elements
available to them. This includes a search field, facets (also known as filters), specifying the number of
elements to be displayed and a paging element in case a search returns a large result set. Furthermore,
the users will be able see the basic initial data displayed on the search page itself, but will also have
the option to view the whole resume or vacancy by clicking on the search result.

Implementation

4.1. Overview

This chapter will discuss the implementation details of each component in the system. Section 4.2
discusses the implementation of the scraper. In section 4.3 the implementation of the back-end will be
discussed together with the data and authentication flow, followed by the implementation of the front-
end in section 4.4. Afterwards, section 4.5 will describe the logging which was implemented and its
purpose. Section 4.6 will describe how all the components will be connected together in production
through containerization. Lastly, section 4.7 will discuss the testing approach taken for this project.

4.2. Scraper implementation

The scraper has been written in Python using a web-crawling framework called Scrapy. lts architec-
ture is based on self-contained ‘spiders’, which can crawl websites for data. For each member of the
Rotterdam Werkt! organization, a spider was written to crawl the web page(s) on which their vacancies
are listed. If their content was loaded dynamically, an additional framework, Selenium, was also used.

4.2.1. Static pages

For each spider, Scrapy will make initial requests to the URLs provided in the start urls list and
call the parse method when the response is returned by the server. The start urls list most often
consists of a single URL pointing to the overview page that lists the first x vacancies for a given organi-
zation. In the parse method, hyperlinks to the detail pages of listed vacancies are extracted from the
HTML body using Scrapy’s built-in XPath and CSS selectors. These links are then added to Scrapy’s
request queue with a callback to a parse vacancy method that will extract the relevant vacancy data.
Additionally, for organizations with their vacancies listed on multiple pages, the link to the next page is
extracted and added to the queue. The parse vacancy method typically also uses XPath and CSS
selectors to extract vacancy data such as the title, department, salary, hours, required education level
and contact information.

4.2.2. Dynamic pages

Several organizations did not have their vacancies contained within the original HTML page, but ren-
dered later using JavaScript, which Scrapy cannot extract out of the box. In these cases, Selenium
was used as a time-saving measure, as programmatically recreating the requests made by JavaScript
and extracting the relevant data within may prove rather time-consuming. This decision was motivated
by the Scrapy documentation which reads: “You can reproduce any request with Scrapy. However,
some times reproducing all necessary requests may not seem efficient in developer time” [30].

Some websites had their vacancy data enclosed within the JavaScript itself, such as the example
in section 2.3.2, and others had them loaded in dynamically using AJAX and a JSON API. Where
possible and robots.txt ‘allowed’ us, data was obtained from a JSON API directly. For all other
dynamic websites, a headless Firefox browser was used, controlled by Selenium WebDriver. By using
an actual browser combined with Selenium, the content of the vacancy pages is rendered exactly as

26

4.3. REST-server implementation 27

intended by the web designers, while making the data accessible with XPath and CSS selectors. Using
Selenium now also has the added benefit of making it easy to add another dynamic vacancy page as
it can just be treated as if it was a static page.

4.2.3. Spider automation

The Scrapy framework provides a command-line interface to run and debug spiders. With scrapy
crawl spider name -O output.json, the named spider will be executed and the scraped data
will be exported to a file in JSON format. This method was used to test individual spiders. Whenever
a spider is run, all scraped items retrieved by the spider are automatically passed utilizing an HTTP
POST request to the REST-server discussed in section 4.3 using a Scrapy item pipeline’.

When deployed with the rest of the system, all spiders can be run automatically by calling a sin-
gle Python file: rotterdam werkt scraper.py. This method was chosen in order to enable easy
scheduling with tools such as cron or Windows Task Scheduler. By default, this Python script will run
all spiders sequentially, but it is also possible to run them in parallel by adding them to the paral-
lel spiders list. Initially, it was intended for all spiders to run in parallel, but unfortunately, timeout
issues and various other bugs made this unworkable. Therefore, the decision was made to run all
spiders sequentially by default to avoid any issues.

4.3. REST-server implementation

The REST-server has been implemented using Django, a server framework written in Python. Django
also provides the database we will be using. This REST-server exposes an API for external services to
connect to in order to perform REST operations on the data. The APl works together with the database
using serializers. They are responsible for converting the objects in the database to an object which
can be send using an HTTP request. In this case, JSON is used to transfer the data between the client
and the server. When a new or updated object is received by the REST-server, it will commit this to the
database, as well as update the Elasticsearch index with this object. A high-level UML can be seen in
4.1.

4.3.1. APl and serializers

For the API we have used the “Django Rest Framework” library, which provided us with REST API end-
points and object serialization functionality. For every database model the API can access, a serializer
must be provided. The serializer provides a way to check the validity of the JSON object sent to the
REST API endpoint. The API provides two options for data retrieval, either a single object or a list of
all the objects. Therefore, two types of endpoints have been created for the models: the Detailview
and the Listview. Detailviews takes one argument: the entry ID. This ID can be used to select a
certain entry and delete it with a DELETE request or update it with a PATCH request, given the user has
the appropriate permissions. ListViews are used to retrieve a list of multiple entries of the database
and to add a new entry.

4.3.2. Data storage

As a database option we considered PostgreSQL and MySQL given that we have the most experience
with these two. Ultimately, it was chosen to use PostgreSQL? as a database. The choice for Postgres
compared to MySQL? is driven by the fact that Postrgres is an object-relational database, whilst MySQL
is a purely relational database. PostgreSQL is therefore more suited to work with an object oriented
database schema. Furthermore, Postgres is also better at handling concurrency which is an advantage
when the scraper is running and posting several vacancies in a short time span [31], [32].

The Postgres database will store all the persistent data such as users, vacancies and resumes.
This allows for data redundancy and data consistency as well as easy retrieval for specific objects by
an identifier.

The REST-server will also index the object in Elasticsearch, after committing to the database, such
that users are able to query for it. The mappings for vacancies and resumes can be found in appen-
dices E.1 and E.2 respectively.

Ihttps://docs.scrapy.org/en/latest/topics/item-pipeline.html
2https://www.postgresql.org/
Shttps://www.mysql.com/

https://docs.scrapy.org/en/latest/topics/item-pipeline.html
https://www.postgresql.org/
https://www.mysql.com/

28

4. Implementation

AbstractListView

-serializer
-model

+get{request)
+post{request)

Django_rest framework: APIView|

o

e

API
pYAVAY
- ~
i -
= -
- -~
s ™
- -
rd -
- -~
- -~
e e -
- .
& .
- ™
-
~
-
\h“-.
~
AbstractDetailView
-serializer
-model
-model_object
Model +get(request)
—————— > €———————" +patch(request)
+delete(request)
/T\
|
|
-
-
- | e
~ | -
~a I -7
S | - -
S | -
S -
. | -
. -
-~ | -
~ | -7
~) | -7
Serializer
-fields
-model
|
|
|
|
|
|
AV

Django_rest framework: Model Seralzier

e

+is_valid()
+save()

Figure 4.1: High-level UML of REST-server

4.4. Front-end implementation 29

4.4. Front-end implementation

The two main parts of implementing the front-end are creating forms for users to add and update
the data, and creating the search interface to allow users to search for vacancies and resumes. In
section 4.4.1 the approach to creating forms will be discussed. Afterwards, in section 4.4.2, the search
implementation will be discussed.

4.4.1. Form implementation

In order to create forms with validation, a React library called Formik was used. Formik provides a
state for forms. In other words, it keeps track of the values, errors and visited fields in a form [33].
Furthermore, it can also validate the input using a validation schema before the input is passed on to
a submit method.

For the validation schema Yup was used. Yup is a library which provides a schema builder for value
parsing and validation [34]. It allows Formik to do form validation before submitting. This ensures a
better defensive programming style to be adopted since no wrongly formatted data can be sent to the
REST-server from the front-end.

In the submit method defined in Formik object, the interaction with the API is performed. It will
create a POST request to the API using the Axios* library. This request returns a Promise object which
is resolved during the submit. If the API responds with 200 0K, the user will be redirected to the
correct following page, usually to view their added or edited data. The server may also return a 401
Unauthorized error. In this case, the user does not have permission to add or edit the data, meaning
they will be redirected to an error page. In the unlikely case that the object sent to the API is not valid,
the server will respond with 400 Bad Request. In this case, a general error message will be displayed
at the bottom of the page to notify the user of this problem.

4.4.2. Search implementation

For the search implementation, the Search-Ul library was used. This is a library provided and main-
tained by Elasticsearch. It provides a way to keep track of the state of the search functionality, as well
as some basic components such as facets, results page and paging. However, due to the complex
nature of some of the objects we are using, such as nested objects, the built-in query building function-
ality provided by Search-Ul and Enterprise Search® could not be used as this does not support nested
objects. Luckily, the library provides a way of overriding this. This means that full control can be taken
over the creation of the search query performed by the search engine. A number of example queries
are listed in appendix G.

4.5. Logging

In order to facilitate the future development of this project, logging has been added. With logging, it
is possible to do bug tracking, such that frequent errors can be detected. Furthermore, data can also
be collected in order to further optimize the search engine. Therefore, the performed queries can be
logged to create aggregated statistics on the frequency of certain queries. In section 4.5.1 the approach
to error logging is described, afterwards in section 4.5.2 the query logging approach is illustrated.

4.5.1. Back-end logging

In order to be able to identify certain recurring errors in the application, logging has been added to the
back-end in case the API returns an error. To efficiently do logging, the 1ogging package, provided
by Django, has been used. This package allows for several levels of logs: ‘info’, ‘debug’, ‘warn’ and
‘error’. Whenever the API returns a 4xx error to the client, it will log the errors generated by the
serializer or API.

These logs are converted to the following format: $date$ $level$-S$message$. They are then
stored in a file accessible to Logstash®. These will be read by Logstash and parsed into documents that
will be stored in Elasticsearch. This allows Kibana to query Elasticsearch for these logs. Afterwards,
the administrator will be able to group and evaluate these logs in order to identify often recurring errors
and which in that case may indicate a bug.

4https://github.com/axios/axios
Shttps://www.elastic.co/enterprise-search
bhttps://www.elastic.co/logstash

https://github.com/axios/axios
https://www.elastic.co/enterprise-search
https://www.elastic.co/logstash

30 4. Implementation

Figure 4.2 shows a use-case example of displaying logs in Kibana. The pie-chart shows the log
levels detected in the logs in the inner level, and the error tag per log level on the outside. This pie-chart
was generated after the first time the scraper was run in combination with the back-end. Thanks to this
pie-chart, it was possible to identify a problem and also gave some indicators to where this might lie.

INFO
ERROR
WARNING

dateparsefailure

33.41%
ERROR
33.41%
INFO 62.03%
r'd
@f:. s
&

e
WARNING 4.56% —

Figure 4.2: Kibana display error

4.5.2. Query logging

Due to certain limitations described in section 5.4 regarding our search engine evaluation, we strongly
recommend that this is further investigated in the future. In order to do this efficiently, it is important to
have an idea of the queries which are executed in the search engine. It was therefore decided to log
all the queries which are performed.

These logs, unlike the back-end logs, are more complex in format with the pattern
[sdates] [&loglevels] [&-25cl.&] [&node name&] &mé&, where sms refers to the query infor-
mation with the total amount of time taken for running the query, which fields were queried and what
the query was. Being able to access this information gives the administrator of the application the pos-
sibility to collect more data for future search engine evaluations as well as identify potential problems
with the system. For instance in case of sudden spikes in query execution time.

Figure 4.3 shows an example of the statistics created with these query logs in Kibana. Each bar
represents a query and the length of the bar represents the number of times this query is performed.
When hovering over the the bars, the full query will become visible. See appendix G for the actual
queries related to this chart.

4.6. Docker implementation 31

Number of times a query is executed

350

314

300

250
Wi
c
2
3

g 200
=
1]
—-—
o

@ 150
]
E
=
=z

100

54
46
50
0 -
B Query 1l B Query 2 B Query 3 Query 4 B Query 5

Figure 4.3: Query logging statistics, see appendix G for query details

4.6. Docker implementation

In order to provide a way to do manual integration testing as well as rapid and easy deployment, we
decided to containerize our application using Docker”. We have created a container for each service
that we have implemented: REST-server, front-end and scraper. We have used the dockers provided
by Elasticsearch in order to gain access to Elasticsearch, Kibana and Logstash without needing to
install them locally. These have been configured using the docker-compose® functionality provided
by Docker. This provides the developers with easy access to the code base in order to implement
new features without needing to go through an extensive setup processes. Below, we will describe the
images we have used in order to run our different services.

4.6.1. REST-server

The REST-server image is created through the Dockerfile.backend. python3.8.3-alpine is
used as a base image, this provides us with an instance of Python version 3.8.3 installed in Linux Alpine.
Alpine was used as this provides us with a security oriented and lightweight OS and thus also a secure
and lightweight container [35]. This, however, meant that we needed to install gcc, postgresgl-dev,
python3-dev and mus1-dev ourselves as these are necessary dependencies to run our code which
are not provided by pip.

4.6.2. Front-end

The front-end image is created through a two stage docker file described in Dockerfile. frontend.
During the build stage we use the node:13.12.0-alpine image. This provides the necessary node
dependencies in order to build the React project. Once the build is complete, these files are copied to
a nginx:stable-alpine image. This allows us to use NginX® in order to serve our previously
generated files to a client. In the NginX config we have specified from where to serve our React
application as well as the needed proxies to the back-end and Elasticsearch. This means that we

"https://www.docker.com/
8https://docs.docker.com/compose/
9nttps://www.nginx.com/

https://www.docker.com/
https://docs.docker.com/compose/
https://www.nginx.com/

32 4. Implementation

have full control over the exposure of our Docker’s endpoints and we can thus decide which endpoints
should or should not be exposed.

4.6.3. Scraper

The scraper image is, similar to the back-end, based on the python3.8.3-alpineimage. During the
creation of the image, we schedule the Python script to be run every day at 2:30 AM using Crontab!®. A
command can be given to this container which will be run once, this will allow the maintainers to make
an initial run of the scraper to populate the database if needed.

4.6.4. Security

Other than ease of deployment, the use of Docker also provides a certain level of security. This is
considered very important due to the personal nature of the data which is being stored. In literature
it is argued that Docker containers are fairly secure at their default configuration, nonetheless care
should be taken through the use of only trusted images and limit their operating level to ‘non-privileged'.
Furthermore, tools such as AppArmor or SELinux can be used as hardening solutions in order to further
secure the application [36]. The usage of these hardening solutions for the Linux kernel is something
which should be investigated further, but fell outside the scope of this project.

4.7. Testing

Knowing that the scraper could become a fragile tool for the application, it became clear that we needed
an extensive testing method in order to make sure the system was as failure-proof as possible. Sec-
tion 4.7.1 discusses the approach taken in order to achieve this. Furthermore, in order to achieve
correct functionality in the back-end and the front-end, a testing framework was also setup for these.
These frameworks are discussed in section 4.7.2 and 4.7.3 respectively. The search engine will not
be tested in a way similar to the scraper, the front-end and the back-end, but will be evaluated in sec-
tion 5.4. To be able to distinguish whether our software has been sufficiently tested, and thus meet the
requirement regarding testing in table 2.10, the quality of our test suites should be gauged. This has
been done using a coverage tool called Jest!! for the REST-API and Coverage.py'? for the scraper.

4.7.1. Scraper testing

The tests for the scraper predominantly comprise unit tests, which can be subdivided into two main
categories: auto-generated unit tests and manually written unit tests. The former has been used for
the parse methods in each spider that heavily relies on the Scrapy framework, whereas the latter has
been used for testing helper methods and utility functions and classes. Each category is discussed in
their respective subsection. Besides unit tests, manual testing has also been applied to situations in
which unit tests could not suffice.

Auto-generated unit tests

One of the reasons for choosing Scrapy over other alternatives is a package called scrapy-autounit!?
for automated testing, which proves to be especially useful for most parse methods in each spider.
While enabled, test fixtures and test cases are automatically generated when a spider is run. In other
words, the moment the spider is run while automated test generation is enabled, Autounit captures the
output of the spider and the responses to the requests the spider makes. Then, when the tests are
run, the output of the spider at that time is compared to the saved output, using the emulated internet
connection.

However, Autounit is not a cure-all method of test generation. For instance, some spiders require
the use of a headless browser to support vacancy websites that use JavaScript to dynamically load
their content. Even though Scrapy is compatible with this, Autounit unfortunately is not. To solve the
issue, parse methods that rely on such a browser have been tested by manually inspecting the output
JSON data. Moreover, it must be noted that these are regression tests and do not account for changes
in the web pages or URLs. They only test if changes made to the spider changes its output.

Onttps://crontab.guru/

Upttps://jestis.io/
2nttps://coverage.readthedocs.io/en/coverage-5.3.1/
Bhttps://github.com/scrapinghub/scrapy-autounit

https://crontab.guru/
https://jestjs.io/
https://coverage.readthedocs.io/en/coverage-5.3.1/
https://github.com/scrapinghub/scrapy-autounit

4.7. Testing 33

Unit tests

Besides using auto-generated tests, unit tests have also been written manually to cover the spiders’
helper methods as well as the utility classes and functions. Most tests have been parameterized, as
parameterized tests reduce code duplication and improve readability.

4.7.2. REST-server testing

To test the REST-server, we have decided to use the Django REST Framework API’s standard test
classes. The Django model also provided us with a request_factory which made simulating re-
quests simple. Using these tools we have tested every APl endpoint.

4.7.3. Front-end testing

For the testing of the front-end, it was decided to use the React Testing Library. This testing library
comes installed automatically through the ‘react-create-app’ functionality provided by React. It allows
for the creation of unit tests for each component and hook of the application. The React Testing Library
allows these components to be rendered and interact with them during a unit test. In order to verify
the correct interaction, Jest'* can be used. Jest allows for assertions on the state of components to be
made using their Matcher system, as well as mock certain methods in order to verify behaviour, such
as making requests to the API.

Myttps://jestis.io/

https://jestjs.io/

Product evaluation

5.1. Overview

In this chapter, the final product will be evaluated. Section 5.2 provides an evaluation of the require-
ments. For each requirement, it will be decided whether it has been met or not. Afterwards, also the
design goals will be evaluated in section 5.3 in order to make sure we have met them. In section 5.4
the evaluation of the search engine will take place. Section 5.5 will discuss the evaluation of our soft-
ware quality by the Software Improvement Group (SIG). Lastly, ethical implications will be discussed
in section 5.6.

5.2. Product evaluation

The final product will be evaluated based on the requirements created at the start of the project, see sec-
tion 2.7. An evaluation of these requirements can be found in table 5.1. From the evaluation it becomes
clear that all must-have and some Should-have requirements have been completed. This means that
the final product can be considered as a ‘minimal-viable-product’ which still leaves improvements to be
made in the future. Screenshots of the final product can be seen in figure 5.1

5.3. Design goal evaluation
In this section the design goals that have been set in section 2.8 will be evaluated to make sure they
have been met.

5.3.1. Security and privacy

In order to reduce the chance of data leaking and unwanted access to the services, Docker images are
used given that literature suggests that they are fairly secure [36]. Furthermore, extra caution has been
taken not to log any personal data when query and error logging is done. This ensures that ‘the right to
be forgotten’ can be enforced. We therefore believe that we have met this design goal. Nonetheless,
security considerations are not only important during the design and implementation phase, but should
also be taken into consideration during deployment. For example, during deployment extra care should
be taken that the website is only accessible through HTTPS and and users should be made aware that
they are responsible for using sufficiently strong passwords for their accounts.

5.3.2. Maintainability

We believe that the system is easy to maintain, as the scrapers have been designed in a way that
new scrapers can be added with minimal effort. Maintainers will need basic Python skills and the
maintenance process requires time, which may entail monetary investments.

Furthermore, extra effort has been put in to make sure that there is sufficient documentation and
the code is comprehensible. This is reflected in the favorable maintainability score we received from
the Software Improvement Group (SIG), as discussed in section 5.5.1. Furthermore, SIG’s suggestions
have also been processed in order to further improve the maintainability and thus make sure this design
goal is met.

34

5.3. Design goal evaluation 35
. Done/
Requirement Not done Comment
Vacancies
Recruiters can search for va-
o . Done
cancies
Recruiters can filter on cate- Done Recruiters can filter based on: salaries, certifi-
| gories cates and companies
Recruiters have access to the Done
= tool via a web interface
Vacancies must be retrieved at
[. Done
a regular interval
Vacancies must be retrieved The websites of KOTUG and Ahoy are not con-
[| from all current associated | Done sidered here since they had no vacancies on their
companies’ website websites and therefore could not be scraped.
ies 1 1 . . .
Compa.meb are able to upload Can be done by recruiters associated with the
[| vacancies straight to the web | Done
. company.
interface
Scraped vacancies can be Done This is done, however when the vacancy is
O edited through the interface scraped it might override the changes.
Show number of results when
] . Done
filtering
it f; it -
o Recr.u 1S can save Javortte Va- | Not done | Insufficient time to finish requirement.
cancies
iters simil -
o Recr.u iters can see similar va Not done | Insufficient time to finish requirement.
cancies
Resumes
Allow recruiters to search for
| Done
resume
. Recruiters can create resumes for their employ-
Recruiters can upload an em- .. .
| Done ees. Here they can add basic information, edu-
ployees resume
cations, previous experience and skills.
Allow recruiters to send mes-
O Not done
sages about resumes
] Allow recruiters t(.) See Wh.l ch Not done | Insufficient time to finish requirement.
employees are looking for a job
All iters t thei
o oW recruiters 1o save TACl | Not done | Insufficient time to finish requirement.
queries for resumes
Interface
[| Users can login Done
. New users should be added by an admin account,
Users cannot register them-
o .. Done they will then receive an email to complete their
selves but should be invited
account and create a password.
Users can view the companies Done The admin can add companies to the platform
| associated to Rotteram Werkt with basic information.
Non-functional requirements
The web scraping tool must be The websites of KOTUG and Ahoy are not con-
I | tested on all websites of the | Done sidered here since they had no vacancies on their
participating companies websites and therefore could not be tested.
d t b il tensibl . . .
S)Osj ml;:t nfosjsxlfzi,c;zcen::ebe Done New spiders can easily be added and they will
= O Supp Y then automatically be run.
sites
All frameworks and program-
[| ming resources must be free of | Done
charge
The final product must be able The final product is able to run in Docker which
] . . Done . . o
to run on a VPS running Linux will run on most popular Linux distributions.
Table 5.1: Requirements evaluation

36 5. Product evaluation

5.3.3. Ease of deployment

Given that the client mentioned that they will hire students to maintain the system in the future, a simple
and easy way of deploying the application is needed. In order to meet this goal two actions have been
taken. First of all, the deployment is done using docker-compose. This gives the developer the
option to, with a single command, restart a single service or the whole stack, when components of the
software have been update. Secondly, there is an extensive deployment guide in the README . md file
which explains in details how the system should be configured. Certain team members did not have
any Docker experience when starting the project, and when they followed this guide, they were able to
setup and run the project without any trouble.

specialist Brandveiligheid

Compsny: T Delft

More inform,
obld=10368j

Department: support staff (clerical, sdminitrative, Facilicy)
Max. hours per week: 40

e week: 30

ion level: Higher professional sducation

wvacancy clasing date: 20210117
s salary: 4402

Educations 2

Min. salary: 1750

Des.
hightech-labz en hore

Bachelor Computer Science

University: TU Delft

gebauw

wet-en regelgeving. J Start date: 2016-03-01

st = op Graduatian date: 2021-01-23
een tactvolle manier besareck ing heeft in het oebe

i een Enals het
opleveren. Hek management van Beheer en Drderhoud n medewerkers van andere sfdelingen binnen de

adviseer je o Denk aan in de wet- en regelgeving. Met
b
Experiences 2
i ol schriieti Developer Rotterdam Werkt
iicht op een vast ciensiverband. .

penzivenregeling via het ABF. De mogelijkheid camer
zorgrerzekeraars. Flexibele werkweek. Jearlijks 232 verlofuren (bij 38 uur). Via het indnidueel keurebudpet kun je bovendien verlofuren

werkopen of biikagen. volos i apleidingen, traini tewalgen,

Aandacht voar gezon ek werken met h

Universiteit Delft hee erk Furdament. Als bor

een dic wevenschap,

wan wereddkissse om Litdagingen op het gebied van energie, klimaat, mabiliteit, gezandheid en digitale mastschap,
teziinin

diversiteit en strewen we ernaar zo inclusief magelik te Z9n (zie onze pedragscode |. Samen bedenken en ontwikkelen we oplass

basiieve invioed hebben ap wereldwiide schaal. Challenge. Change. impsctt s

lewert energie en verzorgt het parkmenagement. Campus and Real Extate is anderverdeeld in de sfdelingen Strategisch Campus
Mansgement, Qncwikkeling Campus, Ontwikkeling scisnce Fark, Projecten, Beheer & Ondsrhoud en Bedriffsburesu. Ssamen werken dere

(a) Example vacancy as displayed in the final product

Vopak

Location: Rotterdam

Campuz and Resl Exzate De directie Campus
and Rest enreal werzorgt het beheer en onderhoud van gebauwen en terreinen,

10 0p een levendige campus, zodat de TU Belft haor positie

Headline: Senior Develeper

Campany: Aat! ekt
Emplayment Eype: intzmshin

Start date: 2020-11-05.

End date: 2021-01-2%

skills

No information to be displayed

(b) Example resume as displayed in the final product

Description: Our strategic terminal locations and state-of-the-art technologies are important assets, but it is our people who make the

true difference.

Company website: https://www.vopak.com/

(c) Example company as displayed in the final product

5.4. Search engine evaluation

37

Rotterdam Werkt! e

Search for vacancies.

Filter salary_maximum
O 0-1000

O 1000- 2000

O 2000- 3000

O 3000- 4000

O 4000 - 5000

Fiter company
O encie

O cai

O Tuei

O vopak

O Trgion

+More

Filter hours_per_week_ma
Oo-10
O 10-20
O 20-30
O 30-40

O aor

(d) Vacancy search screen

Rotterdam Werkt! H

- Companies

Showing 1.- 20 out of 753
show | 20

Signout Change language =

Projectontwikkelaar Duurzame Energie, Bunnik

Company: ENGIE
Department: Project development

Location: Bunnik

More information

Security Risk Analyst - Space unit

Company: CGI

Department: Cyber Security Consulting

Location: Rotterdam, Zuid-Holland, Nederland

More information

Sign out

Change language ~

Companies associated with the Rotterdam Werkt network!

=4
Vopak

Vopak

More information

3
TUDelf

TU Delft

More information

><
/
Rotterdam The Hague
Alirport
Rotterdam The Hague Airport

More information

(e) Page containing all the related companies

Figure 5.1: Screenshots of the final product

=4

Van Oord

More information

SIIC croue

LEADING IN LEARNING

STC Group

More information

2
4

Port of Rotterdam

Port of
Rotterdam

More information

COMPARTIJN
Compartijn

More information

A a e

yr/ /=~

VoY 2=
T T T
Rijnmond Air Services BV
(RAS)

More information

deuisman

More information

5.4. Search engine evaluation

The effectiveness of the search engine is fundamental to the success of the final product, a platform
recruiters will use to find vacancies and resumes. As discussed in section 2.4, the search engine is
used to filter and retrieve data scraped from websites or inserted by users of the platform, making direct
or indirect use of features such as those listed in table 2.4.

In this section, the search engine is evaluated. By evaluating the search engine, it can be measured
to what extent the built platform solves the problems defined in section 2.2 from the perspective of
the users who will be using the search engine. First, our approach to evaluating the search engine is
explicated in section 5.4.1. The search engine’s cost and effectiveness are then respectively evaluated
in section 5.4.2 and section 5.4.3. Finally, limitations of this evaluation are discussed in section 5.4.4.

5.4.1. Approach

When evaluating a search engine, a distinction is made between effectiveness, representing the en-
gine’s ability to retrieve relevant documents, efficiency, an indication of the speed of the search engine

38 5. Product evaluation

and of its space requirements, and cost, the investments needed to implement and run the search en-
gine. Croft et al. [37] argue that in deciding on the importance and the targets of two of these factors,
the third factor is automatically determined. For instance, if effectiveness and cost are deemed most
important, and targets are subsequently set for these factors, efficiency is determined by them.

In the context of this research, the importance of these factors is decided by the client. The list
of product requirements in table 2.10, derived in cooperation with the client, shows a preference for
low development cost and high effectiveness, which may have implications on efficiency. However,
considering the client’s preference for low cost and high effectiveness over high efficiency, as well as
the time constraint of this project, the efficiency of the search engine is not evaluated.

In order to evaluate the costs, we discuss the investments that are required to facilitate the search
engine, which are made up of framework, data storage, and maintenance costs. The evaluation of
the search engine’s effectiveness is based on a comparison of two retrieval functions with a baseline
retrieval function and their ability to retrieve relevant documents, after which we explain which retrieval
function is used in the platform and why.

5.4.2. Cost evaluation

A requirement of the final product is that all frameworks and programming resources must be free
of charge. This requirement was an important factor in the selection of the frameworks and libraries
that are used in the final product, as discussed in chapter 2. No frameworks or other programming
resources that require purchasing were used in the creation of the platform, and so the framework
behind the search engine is free of charge as well, which means the only costs regarding the search
engine may come from its maintenance and data storage.

Regarding data storage, the only data that is maintained by the search engine and that takes up an
amount of storage of any significance consists of the indices that are used to find data that is stored
in a separate database. At the time of writing, the indices concerning scraped vacancy data, with less
than 800 vacancies in total, cost less than 11 MB of storage. This can be considered negligible even if
the number of vacancies increases by multiple orders of magnitude, which is unlikely as the platform
will be used by a mostly constant network of organizations that operate near Rotterdam. Similarly, the
logs stored in Logstash, as discussed in section 4.5.2, take up little storage: the approximately 35,000
logs accumulated during the development process require around 3 MB of storage. Even considering
the number of logs will likely grow more quickly than the amount of vacancies, as logs are generated
continuously and are potentially stored for a longer time, the required storage for the logs, too, is
negligible. It is therefore not expected that space requirements of the search engine will bring any high
costs in the near future.

The cost of maintenance of the search engine is dependent on the future wishes of the client once
the platform is transferred to Rotterdam Werkt!; any future modifications to the search engine may bring
about additional costs. However, if itis only desired that the search engine is kept running without further
modifications, we believe this will require minimal effort and thus few costs. We therefore conclude that
the search engine is indeed low-cost, which meets the requirements.

5.4.3. Effectiveness evaluation

The effectiveness of a search engine depends on the search engine’s ability to retrieve relevant doc-
uments. In this research, the retrieved documents are vacancies and resumes. However, we only
evaluate the search engine’s ability to find relevant vacancies, and not resumes, for two reasons. The
first is that resumes require manual input into the platform and are not scraped. Consequently, dur-
ing the research, we have had access to 677 vacancies posted on the websites of the companies in
Rotterdam Werkt!, but not to any resumes posted by actual job candidates, that would be used in a
practical scenario; there would be no resumes to retrieve and therefore no resume retrieval to evaluate.
Secondly, as a part of the problem statement in section 2.2, vacancy retrieval is more fundamental to
the platform than resume retrieval in the context of this research.

To be able to measure a vacancy’s relevance, we first define what it means for a vacancy to be
relevant. We then describe the process of labeling vacancies’ relevance through relevance judgments,
and what role search topics and pooling play in this. Lastly, we compare two retrieval functions with a
baseline retrieval function and indicate which one looks to be most able to retrieve relevant vacancies.

5.4. Search engine evaluation 39

Definition of relevance

When the platform produced in this research is being used by recruiters, the recruiters’ goal is to find
vacancies that may suit a certain candidate based on the candidate’s resume and future job wishes, and
to ultimately propose such vacancies to the candidate so the candidate may find a job they are looking
for. As such, a vacancy may be relevant if its demands match a candidate’s experience and certificates,
and if its topic matches a candidate’s wish to be employed in some field. However, although a vacancy’s
demands may be easily checked against a candidate’s background to filter relevant vacancies, they do
not necessarily form a rigid bound to the set of relevant vacancies. For instance, a candidate with an
education level that is lower than the stated requirement for a given vacancy may still be accepted if
they are willing to attend additional schooling to meet the educational requirements later. Similarly, a
candidate’s wishes to work in some field do not necessarily exclude vacancies in other fields.

This implies that a vacancy’s relevance is not as much related to topical relevance as it is to situa-
tional or practical relevance: the recruiter is interested in any vacancy that may be of practical use to
a candidate [38]. Determining whether a vacancy is relevant is thus a subjective process and ideally
determined by the future users of the platform (the recruiters looking for relevant vacancies for their
candidates). Unfortunately, due to a lack of responses from the recruiters in the network of Rotterdam
Werkt! to an inquiry about what they find to be relevant vacancies, we had to determine relevance on
our own. The implications hereof on the evaluation of the search engine are discussed in section 5.4.4.

Search topics

When users have some information need which they wish to have answered through a search function,
they use search queries as a means to retrieve documents that are expected to be relevant to this
information need. It therefore makes sense to judge the relevance of retrieved documents relative to
this information need. To concretize recruiters’ information needs with regard to finding vacancies that
match candidates’ experience and wishes, we compiled a set of 42 search topics that reflect situations
in which recruiters have such information needs. Five of these topics were written by recruiters; the
remaining 37 were based on postings by recruiters of the network of Rotterdam Werkt! on Linkedin.
Examples of such topics are as follows!:

“I am looking for a vacancy for an administrative employee with an MBO-level financial
background.”

“T am looking for a vacancy for an interim business controller for a retail organization.”

“I am looking for a vacancy for a tax accounting specialist with experience in international
structures.”

To find vacancies that are expected to be relevant to the search topics, each topic is accompanied
by a search query that is to be entered into the search function. The search topics along with their
respective search queries are listed in appendix F.

Pooling

Now that we have a set of search topics that reflect recruiters’ information needs and a set of retrievable
documents consisting of 677 vacancies, the relevance of the vacancies with respect to the search topics
can be determined. However, judging for each search topic whether each vacancy is relevant or not
would mean performing a relevance judgment over 28,000 times? — an infeasible amount given the
time constraint of this research and the limited size of the research group. Instead, we make use of
pooling, where the union is taken of the top-n vacancy results of each retrieval function for each search
topic [37]. Choosing n = 10 would result in at most 30 relevance judgments per search topic when
comparing three retrieval functions; all vacancies outside the pools are assumed to be non-relevant
with respect to a search topic [39]. We indeed applied pooling with n = 10 for the results returned by
three retrieval functions for each of the 42 search topics.

Retrieval functions and baseline
As stated in section 2.4, Elasticsearch is the search engine used in the platform. Elasticsearch’s default
document scoring mechanism uses BM25? [41], which is also the mechanism that is used in the three

ITranslated from Dutch.
20One judgment per vacancy per search topic, which is 677 * 42 = 28434.
3For more information on BM25, see for instance [40].

40 5. Product evaluation

evaluated retrieval functions. The evaluated retrieval functions differ in the weights they assign to
specific vacancy fields (see figure 3.2). Table 5.2 shows the weights used in the three retrieval functions
(RFs).

’ RF \ title \ department \ education level \ full text \ job_type ‘
Baseline RF | 1 1 1 1 1

RF1 2 2 2 1 2

RF2 5 3 4 0.3 2

’ RF \ job level \ job location | certificate name \ company name
Baseline RF | 1 1 1 1
RF1 2 1 2 1
RF2 3 3 2 1

Table 5.2: Retrieval functions and their weights assigned to vacancy fields

The baseline retrieval function serves as a neutral retrieval function against which the other retrieval
functions can be compared. All its weights are equal, which means all fields contribute equally to the
ranking of vacancies®*.

RF1 and RF2 have different weights, with a higher weight meaning that the field contributes more
to a vacancy’s ranking in search results. These weights are based on our expectations, backed by
correspondence with recruiters in the network of Rotterdam Werkt!, of which fields may be more im-
portant to recruiters than others in the context of inputting words in a search query to find particular
vacancies. For instance, for both RF1 and RF2, the assumption is made that a vacancy’s text descrip-
tion (full text) generally contains more words that are unrelated to the job itself that the vacancy
is describing, compared to the other fields, as the full text description may not only contain information
about a job, but also about matters such as the company atmosphere or the job’s reachability via public
transport; and that this vouches for a lower weight for the full text field in the ranking of vacancies.

Relevance judgments and judgment reliability
After pooling, we judged the retrieved vacancies per search topic. Again, it would have been ideal if this
was done by recruiters since they would know which vacancies would be relevant to their candidates
better than we do, but as was indicated earlier, due to a lack of response to inquiries, we had to judge
vacancy relevance ourselves. To make sure we would judge relevance in approximately the same way,
we held a calibration session in which we individually judged all vacancies retrieved for a single search
topic and then discussed each of these vacancies until we reached a consensus about their judgments.
To indicate what the impact on the results may have been of us judging vacancy relevance our-
selves, we distributed the retrieved vacancies of eight search queries to two group members each (for
a total of 115 vacancies, and thus 230 combined relevance judgments), with a different pair of mem-
bers for every two queries, so that an inter-annotator agreement, a measure of the agreement among
judges (in this case, judges of vacancy relevance), could be calculated [42]. The extent to which judges
agree reveals how easy or hard the judgment problem was, which may implicitly indicate the judgments’
reliability. We used Krippendorff’s alpha (a) as a measure for the inter-annotator agreement, as this
measure allows for the assessment of more than two judges, takes into account missing data®, and
has software implementations to efficiently calculate the measure® [42].

41t should be noted, however, that not all companies use the same structure for their vacancy postings, and thus that not
all vacancies have information in all vacancy fields; for instance, if a vacancy is scraped that has no information on the
job level, the job level field will be empty. A vacancy with a filled-in field of which the contents have a match with a
search query will have a higher score compared to an equal vacancy that does not have a value for this field. This means
that vacancies with more filled-in fields that match with a search query will be ranked higher compared to vacancies
with fewer filled-in fields.

5 As stated, each of the distributed vacancies was judged by two group members, meaning that there are missing judgments
for the other three members for each vacancy.

6We used the kripp.alpha function in R’s irr library to calculate Krippendorff’s alpha based on our relevance judgments.
See https://rdrr.io/cran/irr/man/kripp.alpha.html.

https://rdrr.io/cran/irr/man/kripp.alpha.html

5.4. Search engine evaluation 41

The possible values for a range from 0 to 1 (inclusive), where a« = 0 implies total absence of
agreement, and where ¢ = 1 implies complete agreement [43]. Based on our relevance judgments,
we found a value for a of 0.89, indicating that most judgments by different judges were in agreement
with each other. This implies that the fact that the relevance of the vacancies was judged by five different
judges, does not reduce the reliability of the relevance judgments — yet it should still be kept in mind
that the judgments were not performed by future users (recruiters) who have practical experience with
vacancies and matching them to candidates.

The retrieved vacancies of the 34 remaining search queries that were not already distributed, were
divided among the group members such that the retrieved vacancies of each remaining query would
be judged by one group member.

Effectiveness measures of retrieval functions

Having judged the relevance of all retrieved vacancies for each search topic, we calculated effective-
ness measures for each retrieval function in table 5.2. These measures make use of another measure
called the precision, which indicates for a particular search query the proportion of retrieved vacancies
that were judged as relevant [37].

The first calculated measure is the average precision at rank r (p,.), which indicates the proportion of
the top-r retrieved vacancies per search query that are judged as relevant. This is a value between zero
and one (inclusive) where zero indicates that none of the first r top-ranked retrieved documents were
relevant, and where one indicates that all of them were relevant, on average. The second measure
is the Mean Average Precision (MAP), which indicates the average precision for each search result
ranking (from one to ten, in this case) for each search query, combined [37]. Table 5.3 shows the
values’ for the average precision at ranks 5 and 10 and the MAP for each retrieval function.

Retrieval function | Precision p, at rank r MAP
(0<p.-<1) (0 <MAP <1)
r=5 | r=10
Baseline 0.36 0.41 0.49
RF1 0.38 0.41 0.47
RF2 0.37 0.40 0.46

Table 5.3: Retrieval functions and their corresponding values of the precision at rank 10 and MAP measurements, rounded
to two decimals, based on search results of 42 search queries

Comparison of retrieval functions
To be able to decide what the effectiveness measures in table 5.3, and their differences, mean, we
conduct significance tests. These tests show whether RF1 or RF2 — the alfernative hypotheses — may
be more effective than (reject) the baseline (the null hypothesis) [37]. In particular, we will compare
the retrieval functions using a one-tailed paired t-test®, which takes into account all the effectiveness
measures of all queries individually.

The t-test thus produces a t-value for each different effectiveness measure. The t-values have a
corresponding P-value, the probability that the baseline algorithm is capable of producing at least the
same t-value, with 0 < P < 1. The lower the value for P, the higher the chance that the alternative
hypothesis (in this case, RF1 or RF2) is more effective than the baseline; this is typically considered to
hold if P < 0.05 [37]. Table 5.4 shows the results of applying the t-test to the baseline retrieval function
and RF1 and RF2.

"The values were calculated using trec_eval by the American NIST’s Text REtrieval Conference (TREC), downloadable
at https://trec.nist.gov/trec_eval/. For more information, see [44].
8The paired t-test is defined in [37] as

where A represents the baseline retrieval function, B the retrieval function to be compared to the baseline, B — A the
mean of the differences of the effectiveness measures, gg_4 the standard deviation of the differences of the effectiveness
measures, N the number of queries used to evaluate the retrieval functions, which is 42, and t is the t-test value.

https://trec.nist.gov/trec_eval/

42 5. Product evaluation

’ Retrieval function \ Effectiveness measure \ t \ P ‘
RF1 Ds 0.61 | 0.27
RF1 P10 -0.13 | 0.55
RF1 MAP -0.52 | 0.70
RF2 Ds 0.27 | 0.39
RF?2 P10 -0.38 | 0.65
RF2 MAP -0.64 | 0.74

Table 5.4: Values for t and P for each retrieval function and each effectiveness measure shown in table 5.3.

Neither RF1 nor RF2 have a P-value lower than 0.27 for any effectiveness measure, meaning they
are not likely to be more effective than the baseline retrieval function where all weights for the vacancy
fields are set to 1.

Conclusion

Based on the t-test, the baseline retrieval function is not likely to be outperformed by RF1 or RF2, which
means the baseline is probably the most effective for practical use at the moment.

5.4.4. Limitations

There are some limitations to this evaluation of the search engine, which we will discuss here. In
section 7.2, improvements will be suggested for in future work.

The queries and relevance judgments used for the evaluation of the search engine were created by
us. This was done due to a lack of response in to inquiry that was sent out to the recruiters of Rotterdam
Werkt!. Although we attempted to gather search topics and corresponding search queries that would
represent situations that recruiters may encounter in their work, the evaluation would have been more
representative of practical use if there had been more input by recruiters. Furthermore, as we had to
judge relevance for search results ourselves, the evaluation may not be as reliable as it could have
been if recruiters had done the relevance judgments instead.

The retrieval function weights shown in table 5.2 were based on our expectation that some fields
may be more important to recruiters than others, in the context of finding vacancies by inputting search
queries in the search engine. However, weights could be generated more systematically by separating
the vacancy data in a training set and a test set, and where the training set would be used to find out
fitting weights and the test set to validate these weights [37].

Lastly, the effectiveness measures discussed in section 5.4.3 (precision at rank 10 and MAP) may
provide some insight in the effectiveness of the different retrieval functions, but this insight could be
made more complete by providing more different effectiveness measures. Furthermore, the measures
are calculated based on a limited amount of vacancy data and search queries, which may have an
impact on their accuracy.

5.5. Software Improvement Group

As part of the project, the code base was submitted to the Software Improvement Group® (SIG). They
analysed the code base with respect to maintainability and reported on seven metrics, all scored out of
five stars. Their analysis will be discussed in section 5.5.1 together with the improvements that have
been made based on their report.

5.5.1. First submission

Figure 5.2 shows the general analysis performed by SIG. From this analysis it is visible that the system
requires some improvements in the aspects of duplication, unit size and unit complexity. Moreover we
also received feedback regarding unit interfacing and unit complexity, however no improvements will
be made to these as these already have high ratings.

ttps://www.softwareimprovementgroup.com/

https://www.softwareimprovementgroup.com/

5.5. Software Improvement Group 43

System properties

Duplication (3.5)
Unit size . (2.2)
Unit complexity (3.7)
Unit interfacing KK (4.6)
Module coupling k%% (5.0)
Component independence XXX (4.8)
Component entanglement N (4.5)

Figure 5.2: SIG general analysis

Duplication

Figure 5.3 shows a table of refactoring candidates proposed by SIG which suffer from duplication. In
this table, most of the candidates are composed of React classes, in particular the screens and forms.
Further investigation has shown that there is indeed a lot of overlap in the way we use the ‘Formik’!°
library to create forms for users to add and edit data.

In order to overcome this problem, ‘Formik’ provides a hook, useFormik () [33] which allows for
easy abstraction of form creation. This hook returns an object which contains the state of the form and
methods to update the state. This allowed for the form fields to be more generalized into a FormGroup
component which uses this object in order to render an input element on the screen.

This also meant that boiler plate code such as error handling and form submitting could be refactored
away into the abstracted method since this is very similar to all forms.

) yes spescrt 8 open
241ne s yee pescrt & open
yes ypescrit 2 open

yes pescrt & open

yes typescript B open

yes typescript @ open

" yee ypescrt 8 open
0l o yes ypescrnt £ open
! s ypescr & open

2fes: yes typescript B open

192 times in 2 files: Faceting nserivee: yes typescript @ open

yes ypescrnt & open

o 02 times nvews py ¥ yes pyton @ open
2fles yes pescrnt & open

3fes: yes typescpt B open

3s yes typescript @ open

yee ypescrt & open

yes pescrnt 8 open

lnesoccurring 3 times i 3 les: 0001l py, 0001t y, 000t y o o prton £ open

Figure 5.3: SIG duplication refactor candidates

Unit size
Figure 5.4 shows a table of refactoring candidates proposed by SIG which are considered to be too
large. At first sight there seems to be a significant overlap between the unit-size refactoring candidates
and the duplication candidates. This suggests that when we perform our abstraction from section 5.5.1,
many of these unit-size problems will be solved since the duplicate code will be removed.
Nonetheless there are still some units which remain after this refactor, most notably the set-
tings.py and Resume.tsx. For the settings.py file there are limited options, given that this
is the settings file the Django project expects and thus all settings must be placed in here therefore it

Onttps://formik.org/

https://formik.org/

44 5. Product evaluation

[o o o o o o o o S o i o S 0 o S c N o o 0 0}

Figure 5.4: SIG unit size refactor candidates

was decided to not refactor this file. Furthermore, the Resume . t sx file could be a false positive for this
metric. The file consists of several small interfaces, which are used by the TypeScript typing system.
Also for this file it was decided to not refactor it, given that it actually exists out of 10 interfaces (of which
only eight are counted towards the unit size) which are each at most ten lines. The only option would
be to further split these interfaces into different files, however this would also increase the number of
files in the project and thus still make it more complex.

Additionally, from the scraping point of view, the SIG report mentions several spiders as possible
candidates for refactoring. However, the suggested methods and functions were relatively long for valid
reasons. The common characteristic amongst the suggested candidates is the fact that the candidate
methods assigned values to a large number of vacancy fields. That is, the spiders the methods belong
to retrieve a lot of data. The data assignment had to be centralized in a single method to keep the
methods simple, coherent and readable. If more than, or close to, ten fields were retrieved, the method
contains one line per field, sometimes a few lines more. Splitting the method into smaller methods
would therefore have little effect and only needlessly increase complexity and decrease readability,
as each field has to be assigned at some point. Another common factor was nested methods, which
increase the unit length of the outer function or method. Given that nested methods can simply be
unnested, at the cost of sacrificing enclosed scopes, the unit length could be reduced. This has been
done for all suggested candidates in the scraper.

Unit complexity

Figure 5.5 shows a table of refactoring candidates proposed by SIG which are considered to have a
McCabe complexity which is too high. This is a complexity which is based on a graph representation
of a method where statements such as i f and for can cause branching [45]. Keeping the complexity
low has the advantage that the method needs to be tested less extensively, since there are less cases
to test and the code becomes more readable.

This list shows that there is reasonable overlap with the Duplicate code and Unit size. Given that
these files have already been abstracted, many of the i f and for statements have also been ab-
stracted away. This results in having more units, but each unit being less complex.

The SIG report also suggests that a couple of methods used in the scraper could be reduced.
The two main candidates are the generate datetime function and the parse vacancy method
for several spiders. The common factor for these candidates is the fact that the methods make use
of nested methods or functions, which increase code complexity as well as unit size. After careful
consideration, the nested methods and functions have been unnested, since we believe this to improve
readability, decrease complexity while sacrificing the enclosed scope of said methods and functions.

Unit interfacing
The SIG report states that the scraper contains several methods ought to be refactored with regards
to the number of parameters. Though, four out of five candidates are methods of the framework used.

5.6. Ethical implications 45

[0 o o S o o o o)

Figure 5.5: SIG unit complexity refactor candidates

Thus, those candidates need not be adjusted. The fifth candidate, on the other hand, namely full
text sanitizer in sanitizer.py, has not been refactored either, as the str parameter does
is not present in the function and the parameters outer joining stringand inner joining
string have default values, which only need to be specified if the callee wishes to deviate from this
default, this is only needed in very few cases.

Module coupling

According to the SIG report, these two scripts have high coupling: sanitizer.py and value
extraction.py. Though, we were already aware that this would be the case. The two suggested
files contain functions that are crucial for handling and extracting data. As each spider needs data
sanitization and data extraction, the scripts are called often, hence it was decided not to make any
refactors.

5.6. Ethical implications

Considering that data is being logged, ethical implications ought to be taken into account. Besides the
fact that GDPR compliance has become a must in recent years, being able to remove someone’s data
when requested is also an ethical must. Extra caution has therefore been taken such that we are not
logging personal data, or data which can be linked to a person. This means that personal data will only
be stored in a database and Elasticsearch of which both data can easily be removed. The database
can easily remove a single entry linking to a person and Elasticsearch can delete a complete index and
recreate it from the database, after the user was deleted, within minutes.

Process evaluation

During the project, some of the choices made regarding the process turned out to work really well whilst
others did not seem to work or resulted in a different outcome. In this section a short description will be
given of the positive and respectively the negative parts of our process, with ways to improve or avoid
them in future projects.

There were quite a few process choices that positively affected our project. The development
methodology, Scrum, was very helpful in being able to break down the project in smaller pieces and
setting periodic goals for the project. These goals made it possible for everybody in the team to have
clear targets while working on the project. The daily stand-ups allowed the entire team to be continu-
ously up to speed. It encouraged each team member to actively discuss their current tasks and any
potential struggles. Whenever anybody pointed out any difficulties, others were always able to jump in
and help out in order to overcome these hurdles. This significantly sped up the development time as
nobody could spend more than one day stuck on a certain issue.

Nonetheless, there were also some issues in the development process. In our initial planning we
expected that implementing the scraper would be done by week five of the project. Unfortunately,
creating the scraper was more complex in the end and therefore took more time. In the end the scraper
was finished in week eight. This meant less development time was put into the front-end and the back-
end, hence some of the should-have and could-have features have not yet been finished. For future
projects it is very important to take this complexity in mind, and to be very mindful of the impact that a
reduced amount of the development power could have on the final product.

Furthermore, it would have been desirable to have kept the client more involved throughout our
development process. However, this project lasted for roughly ten weeks, of which several weeks were
spent on doing research and writing the report. For an organization that has existed since 2016[46],
ten weeks is relatively insignificant. Given that said organization comprises several companies and
organizations, each with their own desires and priorities, one may consider our main client to actually
be several smaller clients. As a result of these factors, scheduling a meeting was rather difficult. It
often took over a week to plan a meeting, which is a relatively substantial amount of valuable time.

Despite these challenges, we tried to involve the client in the most important phases of this project:
setting the requirements and evaluating the platform. While we were able to successfully involve the
client in the former phase, as we received valuable feedback, the latter phase posed some impactful
issues. In the latter phase, we asked the client to provide feedback for the platform we created, by
providing search topics that we could use for evaluating the search engine. We believe to have given
them sufficient time to do so, namely at most four hours of work spread over roughly ten working days.
However, either the time we provided was insufficient, or the client considered the evaluation to be of
lesser priority. Either way, this meant we had to create search topics and queries ourselves, which cost
significant time and has possibly resulted in a less accurate search engine. One of the most challenging
aspect of this projects was therefore cooperating with more than just one client within such a short time.

46

Conclusion and future work

7.1. Conclusion

At the start of this project, Rotterdam Werkt!'s wish was to have a platform which combines all vacancies
from all the Rotterdam Werkt! organizations. This platform helps their recruiters to find new positions
for their current employees in order to boost internal mobility of the work force. Even though platforms
such as Indeed and LinkedIn already exist, these are all paying services and they wanted a private
non-subscription platform.

At the start of the project a lot of research was done into similar platforms and potential tools that
could be used in order to make this project successful. The two major tools our project depends on
are Scrapy for collecting vacancies from the companies related to Rotterdam Werkt!, and Elasticsearch
which provides a RESTful search engine such that the user can search and filter through the vacancies
which were scraped.

After two weeks of research and seven weeks of implementation, the system was fully designed, im-
plemented and tested. This includes an evaluation of the performance of the search engine. However
limited due to the lack of data, this evaluation provided important insights into the future development
and optimization of the search engine in order to further improve the platform.

To conclude, we believe this project was a success. We have created a tool which will collect all the
vacancies from each website of the organizations in Rotterdam Werkt! and provided a platform which
will allow the recruiters to search for the vacancies and resumes. Furthermore, the tools have been
provided in order to collect more data for a future evaluation and optimization of the search engine
which is strongly advised. Lastly, considering that our system was developed and tested in 7 weeks
proves the power of the usage of modern and suitable frameworks, therefore we believe that our system
is easily extensible in order to allow for future changes in the Rotterdam Werkt! network.

7.2. Future work and recommendations

In the previous sections, some limitations to the current system have been described. Based on these
limitations, some suggestions and future work options will be given. In section 7.2.1 future work for the
search engine is discussed, future work for query logging in section 7.2.2, and in section 7.2.3, future
work for the scraper is discussed.

7.2.1. Search engine evaluation

In section 5.4, the evaluation of the search engine was discussed. This evaluation has some limitations
as mentioned in section 5.4.4. One limitation is that search topics and search queries were mostly
derived by us from posts on LinkedIn by recruiters, and that most were thus not directly provided to us
by recruiters for the sake of the evaluation of the final product. Ideally, the users of the search engine
(the recruiters, in this case) would provide a list of search topics with accompanying search queries
for the evaluation of the search engine, as recruiters have practical experience with finding particular
vacancies and matching vacancies with potential job candidates. Furthermore, although it was shown
in section 5.4.3 that the inter-annotator agreement among the group members performing relevance

47

48 7. Conclusion and future work

judgments was relatively high, the relevance judgments may be more reliable if they would be done
by recruiters themselves, since, again, they have more experience in judging whether some vacancy
suits a job candidate or not.

We therefore recommend to repeat this evaluation with search topics, search queries and relevance
judgments that are provided directly by recruiters. In order to aid this, a query logging system has been
implemented. This will record all the queries performed in the application. Being able to log these
queries helps with gathering queries for a new evaluation. Since these queries are obtained in the
production phase from actual users of the system, it can be expected that they will be more relevant
for the evaluation than the ones which were used in this research. Methods to apply query logging in
the evaluation of a search engine are discussed in [37].

Furthermore, we also suggest to extend this evaluation to the resume search engine. Due to a lack
of resume data and insufficient time to gather more data, it was not possible to conduct a significant
evaluation. By gathering resume data, search topics with accompanying search queries concerning
resume searching, as well as relevance judgments, the resume search engine can be evaluated and
subsequently optimized as well.

Regarding the retrieval functions that were compared in section 5.4.3, the weights could be gener-
ated more systematically. A proposal is to separate vacancy and resume data in training and test sets,
and to use the training sets to find out fitting weights for document attribute fields, and the test sets to
validate these weights [37]. This way, the retrieval functions’ weights can be tailored especially to the
tasks of finding relevant vacancies and resumes.

Lastly, the effectiveness measures calculated in section 5.4.3 are based on a limited amount of
vacancy data and search queries. Their accuracy, and thus that of the final comparison of retrieval
functions, can be improved by evaluating the search engine based on more vacancy data and search
queries.

7.2.2. Query logging

Currently queries are logged at a very verbose level as can be seen in figure 4.3. Only exact queries can
be matched, meaning that the filters, search term and size must match in the retrieval function before
the queries will be identified as equal. In order to better perform query logging it would be valuable to
extract the filter, search term and size. This means that more aggregations can be applied to the data
in order to further identify potential trends. This will furthermore improve the search engine evaluation
described in section 7.2.1 as more constructive data will be available to use.

7.2.3. Scrapers

Even though the scraper is capable of scraping the vacancy websites of all organizations connected
to Rotterdam Werkt! containing vacancies, the scraper can be improved. For instance, the scraper is
tailored to the current vacancy websites. If these websites change significantly, either their layouts,
URLs or architecture, the scraper will fail. Future work thus lies in making the scraper more robust
such that it is able to adapt to such changes to larger extent. Additionally, if more organizations join
Rotterdam Werkt! and if said organizations wish to be included in the centralized vacancy platform,
the scraper should be extended manually. That is, a separate spider should be implemented for that
organization.

Appendices

49

Original problem statement

The content in this appendix is a direct copy of the original BEP proposal published on ProjectForum
(https://projectforum.tudelft.nl/). Although the text remains identical, small changes have been made
to the layout to reflect the visual style of this document.

A.1. Project description

“‘Rotterdam Werkt!” is een netwerk van ongeveer 20 organisaties in de regio Rotterdam. De TUD en
de EUR zijn er lid van. Het netwerk is opgezet om onderlinge mobiliteit van medewerkers te vergroten.
Elke organisatie heeft zijn eigen webpagina’s voor de publicatie van vacatures en tijdelijke projecten.
Het nu voorgestelde project moet er toe leiden dat er een search-tool komt waarmee de mobiliteitsof-
ficers / HR-adviseurs maar ook alle medewerkers van de bij het netwerk aangesloten bedrijven een
actuele listing onder ogen krijgen van alle op de ongeveer 20 sites van de bij het netwerk aangesloten
organisaties gepubliceerde vacatures.

De search-tool moet daartoe de betreffende pagina’s van de aangesloten organisaties dagelijks scan-
nen en de daarop geplaatste vacatures op een logische wijze rubriceren. De mobiliteitsmanagers, HR-
adviseurs en medewerkers moeten gericht naar specifieke vacatures en naar specifieke kenmerken
daarvan kunnen zoeken.

51

https://projectforum.tudelft.nl/

Info sheet

The following page contains the info sheet used to provide a short overview of the client company, the
project and the team members.

The remainder of this page is intentionally left blank.

52

53

Title of the project: Improving interorganizational mobility through centralizing vacancies
Name of the client organization: Rotterdam Werkt!
Date of final presentation: 29th January 2021

Description

Rotterdam Werkt! is a network of 14 companies in the region of Rotterdam. The network was setup in
order to increase employee mobility. Each of these organizations have their own website with vacancies
and temporary projects. Currently the recruiters of each company have to search through each website
individually in order to find a vacancy for one of their current employees inside the network.

The main challenge during this project was to retrieve all the vacancies which belong to companies
associated to the network and allowing these vacancies to be inserted into a search-tool such that
recruiters can easily find vacancies for their employees. Since the websites of the associated com-
panies may change and companies may join the network, the challenge here was to make sure that
this scraper is maintainable. Furthermore, since the network is planning on using other students to
maintain this project, the rest of the code base also needs to be maintainable and easily deployable.

During the research phase the main focus was on finding the best tools in order build the scraper
and the search engine. As a result, it was decided to use Elasticsearch as a search engine and Scrapy
for the scraper.

The final product includes two server-side components, the scraper which will retrieve all the va-
cancies and the API which is responsible for storing vacancies, authentication and authorization. Fur-
thermore, it also includes a front-end which is connected to Elasticsearch and the API in order to allow
users to interact with the data. The final product could be developed further in order to include all the
could-have and should-have features. Also, the search engine could be optimized further as more data
becomes available for this.

Members

L.E. van Hal masprojectl0I0I0l@gmail.com

Interests: Software engineering, (software) languages

Contributions: Scraping implementation, client contact, search engine evaluation

H.A.B. Janse hendrikjanse@live.com

Interests: Software engineering, programming languages, static code analysis

Contributions: Back-end implementation, APIl-implementation, Serializer-implementation, Database
Implementation

D.R. den Ouden nyetvoorspam@outlook.com

Interests: Software engineering, databases, scripting & automation

Contributions: Scraping implementation, Cl pipeline and quality assurance

R.H. Piepenbrink rolfpiep@outlook.com

Interests: Software engineering

Contributions: Scraping implementation and quality assurance

C.S. Willekens cedric.willekens@hotmail.com

Interests: Software engineering, Programming languages, Static code analysis, Software architectures
Contributions: Front-end implementation, Back-end implementation, API implementation, Elk-Stack
setup, Logging setup, Deploy setup

Contact Information

Client H. Bolk bolk@law.eur.nl
R. Rotmans r.rotmans@portofrotterdam.com
Coach Dr. C. Hauff c.hauff@tudelft.nl

The final report for this project can be found on https://repository.tudelft.nl

mailto:masprojectl0l0l0l@gmail.com
mailto:hendrikjanse@live.com
mailto:nyetvoorspam@outlook.com
mailto:rolfpiep@outlook.com
mailto:cedric.willekens@hotmail.com
mailto:bolk@law.eur.nl
mailto:r.rotmans@portofrotterdam.com
mailto:c.hauff@tudelft.nl
https://repository.tudelft.nl

Rotterdam Werkt! organizations

Company name

Vacancies overview page URL

Rotterdam Ahoy

https://www.ahoy.nl/informatie/vacatures

TU Delft

https://www.tudelft.nl/en/about-tu-delft/
working-at-tu-delft/search-jobs/

Rotterdam The | https://www.werkenoprotterdamthehagueairport.nl/vacatures
Hague Airport

KOTUG https://www.kotug.com/about/careers

Vopak https://www.careersatvopak.com/vacancies

Erasmus Univer- | https://www.eur.nl/en/working/vacancies—-academic-staff,
sity of Rotterdam | https://www.eur.nl/en/working/vacancies-support-staff
CGI https://www.cginederland.nl/nl/careers-search?country id=469
Evides https://www.werkenbijevides.nl/

Vanoord https://www.vanoord.com/nl/werken-bij/vacatures

STC Group https://stc—group.nl/vacatures

Port of Rotterdam | https://www.portofrotterdam.com/nl/vacancies/all

Engie https://jobs.engie.com/netherlands/jobs/search/reference
Facilicom Group https://werkenbijfacilicom.nl/vacatureoverzicht/

Huisman https://www.werkenbijhuisman.nl/vacatures

54

https://www.ahoy.nl/informatie/vacatures
https://www.tudelft.nl/en/about-tu-delft/working-at-tu-delft/search-jobs/
https://www.tudelft.nl/en/about-tu-delft/working-at-tu-delft/search-jobs/
https://www.werkenoprotterdamthehagueairport.nl/vacatures
https://www.kotug.com/about/careers
https://www.careersatvopak.com/vacancies
https://www.eur.nl/en/working/vacancies-academic-staff
https://www.eur.nl/en/working/vacancies-support-staff
https://www.cginederland.nl/nl/careers-search?country_id=469
https://www.werkenbijevides.nl/
https://www.vanoord.com/nl/werken-bij/vacatures
https://stc-group.nl/vacatures
https://www.portofrotterdam.com/nl/vacancies/all
https://jobs.engie.com/netherlands/jobs/search/reference
https://werkenbijfacilicom.nl/vacatureoverzicht/
https://www.werkenbijhuisman.nl/vacatures

Roftterdam Werkt! information sheet

The remainder of this page is intentionally left blank.

55

ROTTERDAM

AHOY

&
TUDelft

Rat(etdnm The Hague
\ Airport

KOTUG

Vopak

Erasmus
University
Rotterdam

Al

o
Realiseert vrijwillige arbeidsmobiliteit

ROTTERDAM
WERKT!

Wat is Rotterdam Werkt?
Rotterdam Werkt is een netwerk waarin vrijwillige arbeidsmobiliteit mogelijkheden aan worden geboden

voor getalenteerde en bevlogen mobiele medewerkers tussen aangesloten organisaties in de regio
Rotterdam.

Hoe werkt Rotterdam Werkt?
Het netwerk zoekt naar mogelijkheden en oplossingen om gezamenlijk de arbeidsmobiliteit tussen de

aangesloten organisaties te verbeteren, op een geheel vrijwillige basis en waar partijen geen financiéle
bijdrage hoeven te leveren maar onderling afstemmen over de financién. Arbeidsmobiliteit wordt
bevorderd op de volgende manieren:

o Vacatures — Het delen van vacatures met de aangesloten organisaties

o Detachering — Het “uitlenen” van personeel tussen de aangesloten organisaties

o Uitwisseling — Het uitwisselen van werknemers tussen de aangesloten organisaties
o Hetdelen van kennis over gerelateerde HR vraagstukken

o 0ok kunnen er gezamenlijke projecten opgezet worden (bijv. een traineeship)

Rotterdam Werkt biedt kandidaten zowel tijdelijke als vaste werkervaringsplaatsen voor de gehele
werkende populatie (18-65 jaar). Werknemers krijgen hiermee de kans om binnen andere organisaties
nieuwe werkervaringen op te doen zodat zij zich beter kunnen oriénteren op ander werk. Daarnaast
kunnen werknemers zich door blijven ontwikkelen op de arbeidsmarkt door het leren van nieuwe
vaardigheden en competenties. Ook voor de aangesloten organisaties is het een uitkomst om gebruik
te kunnen maken van kennis en talent van andere organisaties in de regio.

Wat gebeurt er binnen Rotterdam Werkt?
Vier keer per jaar komen de partners binnen het netwerk bijeen in partnerbijeenkomsten. Daarnaast

ziin er vier keer per jaar recruitershijeenkomsten waar business partners en recruiters van de
aangesloten organisaties bijeenkomen. De bijeenkomsten vinden op toerbeurt plaats bij de aangesloten
organisaties.

Elke betrokken organisatie uit het netwerk wordt in deze bijeenkomsten vertegenwoordigd door
tenminste een HR professional. Deze HR professionals fungeren ook als contactpersoon voor het
Rotterdam Werkt netwerk. Naast deze bijeenkomsten, worden openstaande werkervaringsplaatsen
(vacatures) en aanbod van personeel continue met elkaar gedeeld in het netwerk, d.m.v. e-mails of
persoonlijk contact.

Afspraken binnen Rotterdam Werkt
Circulaire economie van mensen creéren

Coallition of the willing

Open en eerlijke communicatie
Betrokkenheid
Resultaatgerichtheid

Gesloten beurzen

o O 0O O O O

Als aangesloten partner bent u onderdeel van het netwerk en zorgt u voor een actieve bijdrage. Dit doet
u door kennis te delen en sterk betrokken te zijn bij het matchen van kandidaten.

Huisman § Facilicom Group

CaGl

éﬁ/ﬁdﬂS

wirterbodrifl

Van Oord

Marine ingenuity

@

STC-GROUP

& p f
M R:::::-dnm

CNGiC

© 00 N O U R W N

W W W W W W W W W NN NN NN NNNN = e e e e
0 N O Uk WN O © 00N U R WN R, O © 00NN O U R W N = O

Elasticsearch mappings

E.1. Vacancy

{

"mappings”: {

7 doc”: |
"properties”: {
“certificate name”: ({
"type”: "text”
}I
"company”: {

"type”: "nested”,
"properties”: {
"title”: {

"type”: "keyword”

}
}I
"company name”: {
"type”: "text”
}I
"department”: {
"type”: "keyword”
}I
"education level”: ({
"type”: "keyword”
s
"end date”: {
"type”: "date”
}I
“full text”: {
"type”: "text”,
"fields”: {
nen”: |
"type”: "text”,
"analyzer”: ”english”

by
/InlII: {
Iltypell: IlteXtII,
"analyzer”: “dutch”
}

57

39
40
41
42
43
44
45
46
47
48
49
50
51

53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84

86
87
88
89
90
91
92

58

}

Yy

"hours per week maximum”:

"type”: "integer”
b

“hours per week minimum”:

"type”: ”"integer”
}I
7id”: |
"type”: "integer”
}I
“job level”: {
"type”: "keyword”
}I
”job_ location”: ({
"type”: "keyword”
}I
”“Jjob_ type”: {
"type”: "keyword”
by
“required certificates
"type”: "nested”,
"properties”: {
"name”: {
"type”: "keyword”

}I
"salary maximum”: {
"type”: ”"integer”
by
“salary minimum”: {
"type”: “integer”
}I
"title”: {
"type”: "text”,
"fields”: {
nen”: |
"type”: "text”,

"analyzer”: ”“english”

by
”nl": {
"type": ”text",

"analyzer”: “dutch”

b
"years of experience”:
“type”: ”“integer”

” .

{

{

{

Code snippet E.1: Elasticsearch vacancy mapping

E. Elasticsearch mappings

E.2. Resume

E.2. Resume

1A

2 "mappings”: {

3 ” doc”: |

4 "properties”: {

5 "educations”: {

6 "type”: "nested”,
7 "properties”: {

8 "degree”: {

9 "type”: “text”
10 bo

11 "description”: {
12 "type”: "text”
13 by

14 "field of study”: {
15 "type”: "text”
16 b

17 "university”: {
18 7type”: "text”
19 }

20 }

21 b

22 "email address”: ({

23 "type”: "text”

24 5

25 "experiences”: {

26 "type”: "nested”,
27 "properties”: {

28 "company”: {

29 "type”: "text”
30 b

31 "description”: {
32 "type”: "text”
33 b

34 "employment type”: {
35 Teiom” 3 Pieese”
36 by

37 "headline”: {

38 "type”: "text”
39 b o

40 "title”: {

41 "type”: "text”
42 }

43 }

44 b o

45 "extra info”: ({

46 7type”: "text”,

47 "fields”: {

48 nl”: |

49 "type”: "text”,
50 "analyzer”: ”dutch”
51 b o

52 "raw”: {

53 "type”: "text”

55
56

58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
7
78
79
80
81
82
83
84

86

60

E. Elasticsearch mappings

}

Yy

"first address line”:

"type”: "text”
}I
“first name”: {
"type”: "text”
}I
7id”: |
"type”: "integer”
}I
”last name”: {
"type”: "text”
}I

"second address line”:

mtype”: "text”
}I
7skills”: |
"type”: "nested”,
"properties”: {
"description”: {
"type”: "text”
}I
"name” : {
7type”: "text”

Code snippet E.2: Elasticsearch resume mapping

Search topic

Search topics

Search query

Ik zoek een vacature voor...

een directiesecretaresse die op C-Level heeft gewerkt.

directiesecretaresse c-level

een inkoper met een technische achtergrond (HBO).

inkoper technisch HBO

een assistent assetmanager met een bouwkundige achter-
grond (MBO +).

assistant assetmanager
bouwkundig

een administratief medewerker met financiele achtergrond
(MBO).

administratief medewerker fi-
nancieel MBO

een communicatieadviseur met kennis van evenementen.

communicatieadviseur evene-
menten

een professionele HR-generalist die op zoek is naar een uitda-
gende baan in een dynamisch offshore-bedrijf.

HR offshore

een tweede stuurman op een hopper, voor minstens zes
weken.

tweede stuurman hopper

een matroos met multicat-ervaring (rond 15-10 opstappen).

matroos multicat 10 opstappen

een basisarts met geldige BIG-registratie die in de Jeugd GGZ
wilt werken.

basisarts BIG jeugd GGZ

een senior HR business partner die wilt werken voor een in-
ternationale opdrachtgever uit de omgeving Rotterdam, met
een focus op MD en organisatieontwikkeling, voor een salaris
rond de 85K.

senior HR organisatieon-
twikkeling MD internationaal

een communicatiemedewerker met interesse in eventman-
agement en notuleren.

communicatiemedewerker
eventmanagement notuleren

een toezichthouder in kabelinstallatie voor offshore-projecten.

offshore kabelinstallatie
toezichthouder

een interim Business Controller met ervaring in het uitwerken
van business cases en het ontwikkelen van dashboards.

business controller dash-
boards business cases interim

een interim business controller voor een retailorganisatie.

business controller retail in-
terim

een tax accounting specialist (RA) met ervaring met interna-
tionale hoofdstructuren.

tax accounting specialist RA
internationaal

een elektromonteur met een afgeronde MBO-opleiding bin-
nen de Elektrotechniek met ervaring binnen de industrie.

elektromonteur elektrotech-
niek industrie

een interim werktuigbouwmonteur met chemische ervaring.

werktuigbouwmonteur chemie
interim

een Lead Application Engineer binnen de industriéle automa-
tisering met ervaring in het ontwerpen en programmeren van
applicatiesoftware voor PLC-, SCADA- en/of DCS-systemen.

lead application engineer in-
dustriéle automatisering PLC
SCADA DCS

61

62

F. Search topics

een werktuigbouwkundig monteur met interesse in beheer en
onderhoud van gebouwgebonden werktuigbouwkundige in-
stallaties.

werktuigbouwmonteur beheer
onderhoud gebouwgebonden

een front-end developer met ervaring met VuedS, Angular,
React, HTML, Javascript, Typescript, CSS, NodedS, NPM en
Git, die wilt werken in een scrumteam.

front-end developer vuejs
angular react html javascript
typescript css nodejs npm git
scrum

een starter in de software development die wilt werken met
nieuwe big data en machine learning technologieén en cloud-
technologieén.

starter software development
big data machine learning
cloud

een Java-ontwikkelaar met veel kennis van Spring en Maven
en ervaring met het werken in een Agile-omgeving en
scrumprojecten.

java spring maven agile scrum

een afgestudeerde HBO’er of WO’er met affiniteit met IT, die
in het bezit is van een Scrummaster-certificaat zoals PSM-I,
en met minimaal 3 jaar ervaring in de afgelopen 5 jaar bij grote
en complexe organisaties.

IT scrummaster 3 jaar ervaring
HBO WO

iemand die deel uit wilt maken van een snelgroeiend SAP
S/4AHANA-team.

SAP-S 4HANA

fulltime Java developer voor een jaar, met afgeronde rel-
evante HBO-opleiding of WO Béta-studie, 5 jaar ervaring
als Java-ontwikkelaar, 4 jaar ervaring met Spring, SQL,
JPA/Hibernate, en Webservices/SOA/WSDL, en 1 jaar ervar-
ing met Wicket.

java developer spring sql jpa
hibernate webservices soa
wsdl wicket ervaring

interim HR SSC/HR Processes en Payroll Transformation
manager met zeer veel ervaring.

HR SSC processes payroll
transformation manager ervar-
ing interim

freelance matchmaker met een afgeronde HBO-opleiding, re-
cente ervaring als intercedent of bij een werkgeversservi-
cepunt, en ervaring met Civision en Sonar/WBS, voor 36 uur
per week.

matchmaker HBO interce-
dent werkgeversservicepunt
civision sonar WBS freelance

werk- of teamcoach met NOBCO-certificering of TTISI- (bij
voorkeur DISC- en/of Driving Forces-)certificering.

werkcoach teamcoach nobco
ttisi disc driving forces

een planner met kennis van geotechnisch en geofysisch ma-
teriaal (offshore)

planning geotechniek geofy-
sisch materiaal

een logistiek magazijnmedewerker die Engels spreekt

logistiek magazijnmedewerker

een controller met een HBO-opleiding en 5 jaar ervaring in
financiéle administratie

controller HBO financién

een junior data analist met een economie- of finance-HBO-
opleiding en ervaring met Qlikview

data-analist economie HBO

een assistent in de recruitment (HR) met vaardigheid in social
media, een afgeronde HBO-opleiding richting HR of commer-
cie, en maximaal 2 jaar werkervaring

HR recruitment assistant so-
cial media HBO commercie 2
jaar werkervaring

een online marketeer, minimaal op HBO-niveau, met 4 jaar er-
varing in Google Ads, Facebook Ads Manager, Bing Ads, Ex-
cel, Google Tag Manager en Google Analytics, en beheersing
van een vreemde taal (Engels/Duits/Frans)

online marketeer HBO 4 jaar
ervaring google ads bing ads
facebook ads manager excel
google tag manager google
analytics vreemde taal

een projectmanager met een WO-titel in engineering met min-
imaal 5 jaar ervaring in industriéle projectmanagement, be-
heersing van de Engelse taal en kennis van Project Manage-
ment Software

projectmanager WO engineer-
ing 5 jaar ervaring industrie En-
gels project management soft-
ware

63

een shipment planner met kennis van Office-programma’s,
SAP by Design en wegtransport, en beheersing van de Ned-
erlandse en Engelse taal

shipment planner Office SAP
by Design wegtransport Ned-
erlands Engels

een technicién op MBO-4-niveau (E/I) met een VCA/VOL-
certificaat en minimaal 2 jaar ervaring in de chemische indus-
trie

technicién MBO-4 VCA VOL 2
jaar ervaring chemische indus-
trie

een visual designer op HBO-niveau met minimaal 2 jaar werk-
ervaring, en kennis van Adobe Photoshop, lllustrator en Inde-
sign (Creative Suite)

visual designer HBO 2 jaar
ervaring adobe photoshop
adobe illustrator adobe inde-
sign creative suite

een CV-monteur met een MBO-opleiding Installatietechniek,
werkervaring binnen de installatietechniek, en een VCA-
certificaat

CV-monteur MBO installati-
etechniek VCA werkervaring

een Teamleider Logistiek met kennis van LEAN en minimaal
3 jaar werkervaring in een leidinggevende rol in de logistiek

teamleider logistiek LEAN 3
jaar ervaring leidinggevende

een maritiem elektromonteur met rijbewijs B, een VCA-
certificaat, en een afgeronde MTS- of MBO-opleiding richting
elektrotechniek of mechatronica

maritiem elektromonteur MTS
MBO VCA elektrotechniek
mechatronica rijbewijs B

een Lead Software Engineer (maritiem) met een afgeronde
technische HBO-opleiding, werkervaing met grote projecten
in industriéle automatisering, en ervaring in het ontwikkelen
van PLC-software en SCADA

lead software engineer mari-
tiem HBO technisch industriéle
automatisering PLC SCADA

Table F.1: All search topics with their corresponding search queries used in the evaluation of the search engine.

© 00 N O U R W N =

e ol e
B oW N = O

15
16
17
18

20
21
22
23
24

26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

Logged queries

"size”:0,
"query”: {
"bool”: {
”should”: [
{
"match all”:{
"boost”:1.0

1y
“adjust pure negative”:true,
"boost”:1.0

}V
"aggregations”: {
"certificates”:{
"nested”: {
"path”:”required certificates”
}I
"aggregations”: {
"names” : {
"terms” : {
“field”:”required certificates.name”,
"size”:2147483647,
“min_doc count”:1,
“shard min doc_count”:0,
”"show term doc count error”:false,
"order”: [
{
” count”:”desc”
}I
{

” ”

_key”:"asc

64

41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

© 00 N O U R W N

NN NN R R R R R R e e e
W N F O © 00 N O Uk W N = O

25
26
27
28

30
31
32
33
34

}I
"highlight”:{
"fragment size”:200,
“number of fragments”:1,
"fields”:{
“title”:{

by

"provider”: {

b
"description”: {

by

"location”:{

}

Code snippet G.1: Query logging: Query 1

"size”:0,
"query”: {
"bool”: {
”should”: [
{
“multi match”:{

"query”:”sustainability”,

"fields”: [
"certificate name”2.0”,
”company name”~1.0”,
"department”2.0”,
“education level”®2.0”,
7full text”1.0”,
”job_level”~2.07,
”job_location”1.0”,
”“job_ typet2.07,
“title”2.0”

]I

"type”:”best fields”,

"operator”:”0OR”,

”slop”:0,

"prefix length”:0,

"max_expansions”:50,

"zero terms query”:”NONE”,

"auto generate synonyms phrase query”

“fuzzy transpositions”:true,

"boost”:1.0

I
“adjust pure negative”:true,
"boost”:1.0

:true,

35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
7
78
79
80
81
82
83
84
85
86
87
88
89
90

66

G. Logged queries

s

"aggregations”: {
"salary maximum”: {

s

"range” : {

"field”:”salary maximum”,
"ranges”: [

{

1,

"key”:”O
"from”:0.0,
”to”:1000.0

"key”:71000

”from”:1000.

"to”:2000.0

"key”:72000

"from”:2000.

"to”:3000.0

"key”:”3000

"from”:3000.

”to”:4000.0

"key”:74000

"from”:4000.

"to”:5000.0

"key”:”5000

"from”:5000.

"to”:6000.0

"key”:”6000

"from”:6000.

"to”:7000.0

10007,

- 20007,
01,

- 30007,
01,

- 40007,
01,

- 50007,
01,

- 60007,
01,

- 70007,
01,

“key”:”7000+",

"from”:7000

"keyed”:false

"highlight”:{
"fragment size”:200,
"number of fragments”:1,

"fields”:{
“title”:{

.01

103

© 00 N O Uk W N =

R W W W W W W W W W W NNN N NN NNNN R e e e e
= O © 0 N O U kB W N~ O © 00 3 O U h W N O © 0w 3 O U b W N ~= O

}y

"provider”: {

by

"description”: {

1
"location”: {

}

Code snippet G.2: Query logging: Query 2

"size”:0,
"query”:{
"bool”:{
”should”: [
{

“multi match”:{
"query”:”solar”,
7fields”: [

"certificate name”2.0”,
”company name”1.0",
"department”2.0”,
“education level”2.0”,
“full text”1.0”,
”job_ level”2.0”,
”job_location”1.0”,
”job_type~2.07,
“title”2.0”
]l
"type”:”best fields”,
"operator”:”0OR”,
"slop”:0,
"prefix length”:0,
“max_expansions”:50,
“zero terms query”:”NONE”,
"auto generate synonyms phrase query
”“fuzzy transpositions”:true,
"boost”:1.0

”

:true,

1y
"adjust pure negative”:true,
"boost”:1.0

}I
"aggregations”: {
"salary maximum”: {
"range” : {
"field”:”salary maximum”,
"ranges”: [

{

42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97

68

G. Logged queries

s

i

Ilkeyll : IIO
"from”:0.0,
"to”:1000.0

"key”:71000

"from”:1000.

"to”:2000.0

"key”:72000

"from”:2000.

"to”:3000.0

"key”:”3000

"from”:3000.

"to”:4000.0

"key”:74000

"from”:4000.

"to”:5000.0

"key”:”5000

"from”:5000.

"to”:6000.0

"key”:”6000

"from”:6000.

“to”:7000.0

10007,

- 20007,
01,

- 30007,
01,

- 40007,
01,

- 50007,
01,

- 60007,
01,

- 70007,
01,

“key”:”7000+",

"from”:7000.

"keyed”:false

"highlight”: {

"fragment size”:200,

“number of fragments”:1,

7fields”: {
"title”: {

Yy

"provider”: {

by

"description”:{

by

01

98
99
100
101
102
103

© 00 N O U R W N =

R R R R R R R R W W W W W W W W W W NN NN NN NN NN E e e e e
0 N O Uk WN O © 00NN U R WN RO © 0N U R WN RO © 0NN OO R W N = O

69

"location”: {

}

Code snippet G.3: Query logging: Query 3

"size”:0,
"query”:{
"bool”: {
”should”: [
{
“multi match”:{

"query”:”electrical”,

"fields”: [
“certificate name”2.0”,
”company name”1.0”,
"department”2.0”,
"education level”2.0”,
7full text”1.0”,
”"job level”2.0”,
”“job location”1.0”,
”job_type~2.0”,
7title”2.0”

]I

“type”:”best fields”,

"operator”:”0OR”,

”slop”:0,

"prefix length”:0,

"max_expansions”:50,

"zero terms query”:”NONE”,

"auto generate synonyms phrase query

“fuzzy transpositions”:true,
"boost”:1.0

Iy
“adjust pure negative”:true,
"boost”:1.0

}I
"aggregations”: {
"certificates”: {
"nested”: {
"path”:”required certificates”
}I
"aggregations”: {
"names” : {
"terms” : {

r”

”"field”:”required certificates.name”,

"size”:2147483647,
“min_doc count”:1,
“shard min doc count”:0,

“show term doc count error”:false,

:true,

49
50

51

© 00 N O U R W N

[I I R e
N R O © 0 N O U ks W N = O

70 G. Logged queries

"order”: [

{
” count”:”desc”
b
{
” keyll.llascll
}

}I
"highlight”:{
"fragment size”:200,
"number of fragments”:1,
"fields”: {
"title”: {

b

"provider”: {

1
"description”: {

by

"location”: {

}

Code snippet G.4: Query logging: Query 4

"size”:0,
"query” :{
"bool”: {
”should”: [
{
“multi match”:{

"query”:”electrical”,

"fields”: [
“certificate name”2.0”,
“company name”~1.0”,
"department”2.0”,
"education level”®2.0”,
7full text”1.0”,
”“job_level”2.0”,
”“job location”1.0”,
“Jjob_ type”2.07,
7title”2.0”

1y

“type”:”best fields”,

"operator”:”0OR"”,

”slop”:0,

23
24

26
27
28
29
30
31
32
33
34
35

37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

53
54
55
56
57
58
59
60
61

63
64
65
66
67
68
69
70
71
72
73
74
75
76
7
78

71

"prefix length”:0

“max expansions”:50,

“zero terms query”:”NONE”,

"auto generate synonyms phrase query”
“fuzzy transpositions”:true,

"boost”:1.0

1,

"adjust pure negative”:true,

"boost”:1.0

b
"aggregations”: {
"certificates”:{
"nested”: {

"path”:”required certificates”

}I
"aggregations”: {
"names” : {

"terms” : {

“field”:”required certificates.name”,

"size”:2147483647
“min_doc count”:1

”“shard min doc count”:0,
"show term doc count error”:false,

"order”: [
{
b
{

”

_key”:"asc

}I
"highlight”: {
"fragment size”:200,
"number of fragments”:1,
"fields”: {
“title”: {

o

"provider”: {

b
"description”: {

by

"location”:{

4

14

4

_count”:”desc”

”

:true,

72 G. Logged queries

79 }
80 }

Code snippet G.5: Query logging: Query 5

i
2]
3]
)
5]
6]
7]
8]
9]
10]
11)

[12]
[13]

[14]

[15]

[16]
[17]

[18]
[19]
[20]

[21]

22]

23]

Bibliography

A. Mehlfiihrer, Web scraping a tool evaluation, 2009. [Online|. Available: https://www.big.
tuwien.ac.at/app/uploads/2016/10/Mehlf%5C%C3%5C%BChrer paper.pdf.

Beautiful Soup developers, Beautiful soup documentation, 2021. [Online|. Available: https :
//www .crummy.com/software/BeautifulSoup/bs4/doc/ (visited on 01/19/2021).

Scrapy developers, Scrapy 2.4 documentation, 2021. [Online]. Available: https://docs.scrapy.
org/en/latest/ (visited on 01/19/2021).

Cheerio developers, Cheerio, 2021. [Online|. Available: https://cheerio. js.org/ (visited
on 01/19/2021).

GNOME project, Reference manual for libxml2, 2020. [Online]. Available: http://www.xmlsoft.
org/html/index.html (visited on 11,/16/2020).

Beautiful Soup developers, Installing a parser, 2020. [Online|. Available: https://www.crummy .
com/software/BeautifulSoup/bs4/doc/#installing-a-parser (visited on 11/13/2020).

Xml and html with python. [Online]. Available: https://1xml.de/.
Overview. [Online|. Available: https://html51ib.readthedocs.io/en/latest/.

Cheerio developers, Cheerio, 2021. [Online|. Available: https://github.com/cheeriojs/
cheerio (visited on 01/21/2021).

M. Fowler, Inversion of control, 2021. [Online|. Available: https://www.martinfowler.com/
bliki/InversionOfControl.html (visited on 01/21,/2021).

G. Van Rossum et al., “Python programming language.,” in USENIX annual technical conference,
vol. 41, 2007, p. 36.

B. W. Kernighan and D. M. Ritchie, The C programming language. 2006.

C. Severance, “Javascript: Designing a language in 10 days,” Computer, vol. 45, no. 2, pp. 7-8,
2012.

D. Frampton, S. M. Blackburn, P. Cheng, R. J. Garner, D. Grove, J. E. B. Moss, and S. I. Sali-
shev, “Demystifying magic: High-level low-level programming,” in Proceedings of the 2009 ACM
SIGPLAN/SIGOPS international conference on Virtual execution environments, 2009, pp. 81-90.

R. T. Fielding, “Architectural styles and the design of network-based software architectures,”
Ph.D. dissertation, University of California, 2000.

Xapian java bindings. [Online|. Available: https://xapian.org/docs/bindings/java/.

Elasticsearch reference. [Online]. Available: https://www.elastic.co/guide/en/elasticsearch/
reference/current/index.html.

Apache solr reference guide: Apache solr reference guide 8.7. [Online]. Available: https : //
lucene.apache.org/solr/guide/8 7/.

Documentation. [Online|. Available: https://manual .manticoresearch.com/Introduction.
Documentation. [Online]. Available: https://xapian.org/docs/.

Elasticsearch vs manticore search: What are the differences? [Online]. Available: https : //
stackshare.io/stackups/elasticsearch-vs-manticore-search.

TechTarget Contributors, What is rest api (restful api)? Sep. 2020. [Online|. Available: https:
//searchapparchitecture.techtarget.com/definition/RESTful-API#:~:text=
AS20RESTful $20API%20is%20an, deleting%$200f%200perations%$20concerning%
20resources..

M. Awad, “A comparison between agile and traditional software development methodologies,”
Ph.D. dissertation, 2005.

73

https://www.big.tuwien.ac.at/app/uploads/2016/10/Mehlf%5C%C3%5C%BChrer_paper.pdf
https://www.big.tuwien.ac.at/app/uploads/2016/10/Mehlf%5C%C3%5C%BChrer_paper.pdf
https://www.crummy.com/software/BeautifulSoup/bs4/doc/
https://www.crummy.com/software/BeautifulSoup/bs4/doc/
https://docs.scrapy.org/en/latest/
https://docs.scrapy.org/en/latest/
https://cheerio.js.org/
http://www.xmlsoft.org/html/index.html
http://www.xmlsoft.org/html/index.html
https://www.crummy.com/software/BeautifulSoup/bs4/doc/#installing-a-parser
https://www.crummy.com/software/BeautifulSoup/bs4/doc/#installing-a-parser
https://lxml.de/
https://html5lib.readthedocs.io/en/latest/
https://github.com/cheeriojs/cheerio
https://github.com/cheeriojs/cheerio
https://www.martinfowler.com/bliki/InversionOfControl.html
https://www.martinfowler.com/bliki/InversionOfControl.html
https://xapian.org/docs/bindings/java/
https://www.elastic.co/guide/en/elasticsearch/reference/current/index.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/index.html
https://lucene.apache.org/solr/guide/8_7/
https://lucene.apache.org/solr/guide/8_7/
https://manual.manticoresearch.com/Introduction
https://xapian.org/docs/
https://stackshare.io/stackups/elasticsearch-vs-manticore-search
https://stackshare.io/stackups/elasticsearch-vs-manticore-search
https://searchapparchitecture.techtarget.com/definition/RESTful-API#:~:text=A%20RESTful%20API%20is%20an,deleting%20of%20operations%20concerning%20resources.
https://searchapparchitecture.techtarget.com/definition/RESTful-API#:~:text=A%20RESTful%20API%20is%20an,deleting%20of%20operations%20concerning%20resources.
https://searchapparchitecture.techtarget.com/definition/RESTful-API#:~:text=A%20RESTful%20API%20is%20an,deleting%20of%20operations%20concerning%20resources.
https://searchapparchitecture.techtarget.com/definition/RESTful-API#:~:text=A%20RESTful%20API%20is%20an,deleting%20of%20operations%20concerning%20resources.

74

Bibliography

[24]

[25]

[26]
[27]
28]

29]

[30]
[31]
32]
[33]

[34]
[35]

[36]
37]

[38]

[39]

[40]

41]

[42]

[43]
[44]

C. Drumond, Scrum - what it is, how it works, and why it’s awesome. [Online]. Available: https:
//www.atlassian.com/agile/scrum.

M. Lotz, Waterfall vs. agile: Which methodology is right for your project? Nov. 2018. [Ouline].
Available: https://www.seguetech.com/waterfall-vs-agile-methodology/ (vis-
ited on 11/12/2020).

Your tool for style guide enforcementii. [Online|. Available: https://flake8.pycga.org/
en/latest/.

Pluggable javascript linter. [Online]. Available: https://eslint.org/.

A. Amanse, Why should you use microservices and containers? [Online]. Available: https: //
developer.ibm.com/depmodels/microservices/articles/why-should-we—-use-
microservices-and-containers/.

P. A. Castillo, P. Garca-Sanchez, M. G. Arenas, A. M. Mora, G. Romero, and J. J. Merelo, “Using
soap and rest web services as communication protocol for distributed evolutionary computation,”
International Journal of Computers & Technology, vol. 10, no. 6, pp. 1752-1770, 2013.

Scrapy developers, Selecting dynamically-loaded content, 2020. [Online|. Available: https: //
docs.scrapy.org/en/latest/topics/dynamic-content.html (visited on 11/16,/2020).

M. Lindsaar, Postgresql vs mysql, Oct. 2018. [Online|. Available: https: //medium . com/
@articles 92466/postgresgl-vs-mysql-£fe9d65887520.

K. Hristozov, Mysql vs postgresgl, Jul. 2019. [Online]. Available: https://developer.okta.
com/blog/2019/07/19/mysql —vs-postgres# : ~: text=Postgres%20is%20an%
20object-relational, more%20closely%20to%205QL%20standards..

Useformik(). [Online]. Available: https://formik.org/docs/api/useFormik.
Jquense, Jquense/yup. [Online|. Available: https://github.com/jquense/yup.

Alpine linux. [Online]. Available: https://distrowatch.com/table.php?distribution=
alpine.

T. Bui, “Analysis of docker security,” arxiv.org, [Online|. Available: https://arxiv.org/
abs/1501.02967.

W. Croft, D. Metzler, and T. Strohman, “Evaluating search engines,” in Search Engines, Infor-
mation Retrieval in Practice. Pearson Education, Inc., 2015, ch. 8.

Y. Xu and Z. Chen, “Relevance judgment: What do information users consider beyond topicality?”
Journal of the American Society for Information Science and Technology, vol. 57, no. 7, pp. 961—
973, 2005.

J. A. Aslam, V. Pavlu, and R. Savell, “A unified model for metasearch, pooling, and system
evaluation,” in Proceedings of the Twelfth International Conference on Information and Knowledge
Management, ser. CIKM ’03, New Orleans, LA, USA: Association for Computing Machinery,
2003, pp. 484-491, ISBN: 1581137230. DOI: 10.1145/956863.956953. [Online|. Available:
https://doi.org/10.1145/956863.956953.

Y. Lv and C. Zhai, “Lower-bounding term frequency normalization,” ser. CIKM ’11, Glasgow,
Scotland, UK: Association for Computing Machinery, 2011, pp. 7-16, ISBN: 9781450307178. DOI:
10.1145/2063576.2063584. [Ouline]. Available: https://doi.org/10.1145/2063576.
2063584.

Similarity module, 2021. [Ouline]. Available: https : / / www . elastic . co/guide/en/
elasticsearch/reference/current /index-modules-similarity.html (visited
on 01/20/2021).

A. Hayes and K. Krippendorff, “Answering the call for a standard reliability measure for coding
data,” Communication Methods and Measures, vol. 1, pp. 77-89, Apr. 2007. DOI: 10.1080/
19312450709336664.

K. Krippendorff, “Computing krippendorft’s alpha-reliability,” Jan. 2011.

C. Van Gysel and M. de Rijke, “Pytrec_eval: An Extremely Fast Python Interface to trec_eval,”
arXiv e-prints, arXiv:1805.01597, May 2018. arXiv: 1805.01597 [cs.IR].

https://www.atlassian.com/agile/scrum
https://www.atlassian.com/agile/scrum
https://www.seguetech.com/waterfall-vs-agile-methodology/
https://flake8.pycqa.org/en/latest/
https://flake8.pycqa.org/en/latest/
https://eslint.org/
https://developer.ibm.com/depmodels/microservices/articles/why-should-we-use-microservices-and-containers/
https://developer.ibm.com/depmodels/microservices/articles/why-should-we-use-microservices-and-containers/
https://developer.ibm.com/depmodels/microservices/articles/why-should-we-use-microservices-and-containers/
https://docs.scrapy.org/en/latest/topics/dynamic-content.html
https://docs.scrapy.org/en/latest/topics/dynamic-content.html
https://medium.com/@articles_92466/postgresql-vs-mysql-fe9d65887520
https://medium.com/@articles_92466/postgresql-vs-mysql-fe9d65887520
https://developer.okta.com/blog/2019/07/19/mysql-vs-postgres#:~:text=Postgres%20is%20an%20object-relational,more%20closely%20to%20SQL%20standards.
https://developer.okta.com/blog/2019/07/19/mysql-vs-postgres#:~:text=Postgres%20is%20an%20object-relational,more%20closely%20to%20SQL%20standards.
https://developer.okta.com/blog/2019/07/19/mysql-vs-postgres#:~:text=Postgres%20is%20an%20object-relational,more%20closely%20to%20SQL%20standards.
https://formik.org/docs/api/useFormik
https://github.com/jquense/yup
https://distrowatch.com/table.php?distribution=alpine
https://distrowatch.com/table.php?distribution=alpine
https://arxiv.org/abs/1501.02967
https://arxiv.org/abs/1501.02967
https://doi.org/10.1145/956863.956953
https://doi.org/10.1145/956863.956953
https://doi.org/10.1145/2063576.2063584
https://doi.org/10.1145/2063576.2063584
https://doi.org/10.1145/2063576.2063584
https://www.elastic.co/guide/en/elasticsearch/reference/current/index-modules-similarity.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/index-modules-similarity.html
https://doi.org/10.1080/19312450709336664
https://doi.org/10.1080/19312450709336664
https://arxiv.org/abs/1805.01597

Bibliography 75

[45] T.J. McCabe and C. W. Butler, “Design complexity measurement and testing,” Commun. ACM,
vol. 32, no. 12, pp. 1415-1425, Dec. 1989, ISSN: 0001-0782. DOI: 10.1145/76380 . 76382.
[Online]. Available: https://doi.org/10.1145/76380.76382.

[46] De Banenmakers, Rotterdam Werkt, 2021. [Online]. Available: https://debanenmakers.nl/
rotterdam-werkt (visited on 01/18,/2021).

https://doi.org/10.1145/76380.76382
https://doi.org/10.1145/76380.76382
https://debanenmakers.nl/rotterdam-werkt
https://debanenmakers.nl/rotterdam-werkt

	Preface
	Summary
	Acknowledgements
	List of tables
	List of figures
	List of code snippets
	Introduction
	Research
	Overview
	Problem definition and analysis
	Problem analysis
	Problem statement
	Research topics

	Web scraping
	Static vacancy pages
	Dynamic vacancy pages
	Overview of frameworks and libraries
	Comparative analysis of frameworks and libraries
	Overview of programming languages
	Conclusion

	Search engine
	Search engine selection

	Website frameworks and libraries
	Related work
	Final requirements
	Design goals
	Security and privacy
	Maintainability
	Ease of deployment

	Approach
	Development methodology
	Documentation
	Version control
	Static code analysis
	Risk analysis
	Planning

	Design
	Overview
	Architecture
	Scraper
	Database design
	REST-server
	Front-end design
	Interaction with resumes and vacancies
	Searching for resumes and vacancies

	Implementation
	Overview
	Scraper implementation
	Static pages
	Dynamic pages
	Spider automation

	REST-server implementation
	API and serializers
	Data storage

	Front-end implementation
	Form implementation
	Search implementation

	Logging
	Back-end logging
	Query logging

	Docker implementation
	REST-server
	Front-end
	Scraper
	Security

	Testing
	Scraper testing
	REST-server testing
	Front-end testing

	Product evaluation
	Overview
	Product evaluation
	Design goal evaluation
	Security and privacy
	Maintainability
	Ease of deployment

	Search engine evaluation
	Approach
	Cost evaluation
	Effectiveness evaluation
	Limitations

	Software Improvement Group
	First submission

	Ethical implications

	Process evaluation
	Conclusion and future work
	Conclusion
	Future work and recommendations
	Search engine evaluation
	Query logging
	Scrapers

	Appendices
	Original problem statement
	Project description

	Info sheet
	Rotterdam Werkt! organizations
	Rotterdam Werkt! information sheet
	Elasticsearch mappings
	Vacancy
	Resume

	Search topics
	Logged queries

