
RotterdamWerkt!
Improving interorganizational
mobility through centralizing
vacancies and resumes

Authors
L.E. van Hal
H.A.B. Janse
D.R. den Ouden
R.H. Piepenbrink
C.S. Willekens

;

Rotterdam
Werkt!

Improving interorganizational mobility through
centralizing vacancies and resumes

To obtain the degree of Bachelor of Science at the Delft University of Technology, to be presented and
defended publicly on Friday January 29, 2021 at 14:30 AM.

Authors: L.E. van Hal
H.A.B. Janse
D.R. den Ouden
R.H. Piepenbrink
C.S. Willekens

Project duration: November 9, 2020 – January 29, 2021
Guiding Committee: H. Bolk Rotterdam Werkt!, Client

R. Rotmans, Rotterdam Werkt!, Client
Dr. C. Hauff, TU Delft, Coach
Ir. T.A.R. Overklift Vaupel Klein TU Delft, Bachelor Project Coordinator

An electronic version of this thesis is available at http://repository.tudelft.nl/.

http://repository.tudelft.nl/

Preface
This report denotes the end of the bachelor in Computer Science and Engineering at the Delft University
of Technology. The report demonstrates all the skills we have learned during the bachelor courses in
order to be a successful computer scientist or engineer. It will discuss the product we created over
the past 10 weeks and will touch upon the skills and knowledge used in order to create it. Our client,
RotterdamWerkt!, is a network of companies located in Rotterdam who are aiming to increase mobility
between their organizations. The goal of this report is to inform the reader about the complete work,
different phases of this projects and future recommendations for our client.

ii

Summary
RotterdamWerkt! is a network of fourteen organizations in the Rotterdam area in the Netherlands. Their
goal is to increase labor mobility between these organizations through sharing vacancies, exchanging
employees and partaking in joint projects. Rotterdam Werkt! has tasked us with creating a central
platform on which all vacancies are automatically combined from the websites of all the organizations
in the network.

The two main challenges of the project were to gather the vacancies from all the organizations
affiliated with RotterdamWerkt! and allow their recruiters to search and filter through them. This meant
that a significant amount of research needed to be done in order to find a suitable scraping tool as well
as a suitable search engine. Whilst gathering the vacancies, we ran into the problem that each website
was significantly different in the way it is rendered. Furthermore, we also needed to categorize the data
correctly such that it becomes searchable in the search engine. Lastly, the retrieval function needed to
be optimized such that the most relevant vacancies would be returned for a given query.

In order to assess whether recruiters could use the search engine effectively in practice, an eval
uation of the effectiveness of the search engine was done. Three retrieval functions were compared
based on a significance test of several effectiveness measures that indicate to what extent a retrieval
function is able to retrieve relevant documents, or in this case, vacancies. Out of the three, the retrieval
function that scored the highest was chosen to be used in the platform, so that recruiters will have a
bigger chance to find the vacancies they will be looking for.

In the end, we consider our project to be a success. We managed to scrape all vacancies from all
the websites of the organizations in Rotterdam Werkt! and to combine these on a centralized platform.
Furthermore, the search engine evaluation allowed us to select the best vacancy retrieval function out
of the three evaluated retrieval functions. However, more work can still be put into evaluating the search
engine in the future by testing more retrieval functions based on more vacancy data, so that the search
functionality can be further improved.

iii

Acknowledgements
Before laying out the technical aspects of the final product, we would like to thank the people who have
made this project possible. First of all, we would like to thank Rotterdam Werkt! for the opportunity to
work on this project and provide us with the experience of working with real clients. We want to express
our gratitude to Renée Rotmans, Henk Bolk and the recruiters for taking the time to meet with us to
discuss the project and the direction we should be taking. Moreover, we would like to thank Claudia
Hauff from the research group ‘Web Information Systems’ at the TU Delft for her guidance and insights
into challenging concepts.

iv

List of tables

2.1 Overview selected scraping libraries and frameworks . 7
2.2 Feature comparison selected scraping frameworks and libraries 8
2.3 Overview of programming languages . 9
2.4 Feature comparison search engine frameworks . 11
2.5 Search engine frameworks requirements . 12
2.6 Search engine frameworks scores . 12
2.7 Most popular server frameworks on GitHub . 13
2.8 Multi criteria analysis chosen frameworks . 13
2.9 Job search website features . 14
2.10 Requirements evaluation . 17
2.11 Preliminary schedule . 20

3.1 List of fields extracted from the vacancy web pages by the scraper 22

5.1 Requirements evaluation . 35
5.2 Retrieval functions and their weights . 40
5.3 Retrieval function precision metrics . 41
5.4 Retrieval function significance tests . 42

F.1 Search topics with search queries . 63

v

List of figures

2.1 Vacancy listings website STC Group . 4
2.2 Vacancy listings website Evides . 5
2.3 Search page features existing websites . 16

3.1 Overall component diagram . 22
3.2 Database diagram . 23

4.1 Highlevel UML of RESTserver . 28
4.2 Kibana display error . 30
4.3 Query logging statistics . 31

5.1 Screenshots of the final product . 37
5.2 SIG general analysis . 43
5.3 SIG duplication refactor candidates . 43
5.4 SIG unit size refactor candidates . 44
5.5 SIG unit complexity refactor candidates . 45

vi

List of code snippets
2.1 HTML source STC Group . 4
2.2 HTML source Evides Chrome DevTools . 5
2.3 HTML source Evides . 6
E.1 Elasticsearch vacancy mapping . 57
E.2 Elasticsearch resume mapping . 59
G.1 Query logging: Query 1 . 64
G.2 Query logging: Query 2 . 65
G.3 Query logging: Query 3 . 67
G.4 Query logging: Query 4 . 69
G.5 Query logging: Query 5 . 70

vii

Contents

Preface ii

Summary iii

Acknowledgements iv

List of tables v

List of figures vi

List of code snippets vii

1 Introduction 1

2 Research 2
2.1 Overview . 2
2.2 Problem definition and analysis . 2

2.2.1 Problem analysis . 2
2.2.2 Problem statement . 2
2.2.3 Research topics . 2

2.3 Web scraping . 3
2.3.1 Static vacancy pages. 3
2.3.2 Dynamic vacancy pages . 5
2.3.3 Overview of frameworks and libraries . 6
2.3.4 Comparative analysis of frameworks and libraries 7
2.3.5 Overview of programming languages . 9
2.3.6 Conclusion . 9

2.4 Search engine . 9
2.4.1 Search engine selection . 9

2.5 Website frameworks and libraries . 12
2.6 Related work . 13
2.7 Final requirements . 17
2.8 Design goals . 18

2.8.1 Security and privacy . 18
2.8.2 Maintainability . 18
2.8.3 Ease of deployment . 18

2.9 Approach . 18
2.9.1 Development methodology. 18
2.9.2 Documentation . 18
2.9.3 Version control . 19
2.9.4 Static code analysis . 19
2.9.5 Risk analysis . 19
2.9.6 Planning. 19

3 Design 21
3.1 Overview . 21
3.2 Architecture . 21
3.3 Scraper . 22
3.4 Database design . 23
3.5 RESTserver . 24
3.6 Frontend design . 25

3.6.1 Interaction with resumes and vacancies. 25
3.6.2 Searching for resumes and vacancies . 25

viii

Contents ix

4 Implementation 26
4.1 Overview . 26
4.2 Scraper implementation . 26

4.2.1 Static pages. 26
4.2.2 Dynamic pages . 26
4.2.3 Spider automation . 27

4.3 RESTserver implementation . 27
4.3.1 API and serializers . 27
4.3.2 Data storage . 27

4.4 Frontend implementation . 29
4.4.1 Form implementation . 29
4.4.2 Search implementation. 29

4.5 Logging . 29
4.5.1 Backend logging . 29
4.5.2 Query logging. 30

4.6 Docker implementation. 31
4.6.1 RESTserver . 31
4.6.2 Frontend . 31
4.6.3 Scraper . 32
4.6.4 Security . 32

4.7 Testing . 32
4.7.1 Scraper testing . 32
4.7.2 RESTserver testing . 33
4.7.3 Frontend testing . 33

5 Product evaluation 34
5.1 Overview . 34
5.2 Product evaluation . 34
5.3 Design goal evaluation . 34

5.3.1 Security and privacy . 34
5.3.2 Maintainability . 34
5.3.3 Ease of deployment . 36

5.4 Search engine evaluation . 37
5.4.1 Approach . 37
5.4.2 Cost evaluation . 38
5.4.3 Effectiveness evaluation . 38
5.4.4 Limitations . 42

5.5 Software Improvement Group . 42
5.5.1 First submission . 42

5.6 Ethical implications . 45

6 Process evaluation 46

7 Conclusion and future work 47
7.1 Conclusion . 47
7.2 Future work and recommendations . 47

7.2.1 Search engine evaluation . 47
7.2.2 Query logging. 48
7.2.3 Scrapers . 48

Appendices 49

A Original problem statement 51
A.1 Project description . 51

x Contents

B Info sheet 52

C Rotterdam Werkt! organizations 54

D Rotterdam Werkt! information sheet 55

E Elasticsearch mappings 57
E.1 Vacancy . 57
E.2 Resume . 59

F Search topics 61

G Logged queries 64

1
Introduction

Rotterdam Werkt!1 is a network of fourteen organizations in the Rotterdam area, designed to increase
labor mobility between the organizations through sharing vacancies, exchanging employees and par
taking in joint projects. Currently, Rotterdam Werkt! has no platform to conveniently bundle each con
nected organization’s vacancies. Consequently, the recruiters of Rotterdam Werkt! need to resort to
exchanging vacancies via email whenever a new possibility for interorganizational labor mobility arises
within the Rotterdam Werkt! network. In other words, there is no central hub that the organizations can
use to view each other’s vacancies, leading to a lack of overview and, potentially, to the exchange of
outdated information. To maximize the benefits of a labor mobility network like RotterdamWerkt!, quick
and direct access to all connected organizations’ vacancies is essential.

Currently, the organizations in Rotterdam Werkt! post their vacancies on their own websites. The
task at hand is to develop a central platform that gathers all organizations’ vacancies, to combine and
display the gathered vacancies on a single web page, and to make the gathered vacancies accessible
to all the organizations. As the final product we expect to deliver a solution to the problem defined in
section 2.2. This will lead to the following deliverables:

1. A scraping tool which is able to run on regular intervals and collect all the vacancies which are
open on the associated companies’ websites.

2. A frontend and backend containing a search engine which will allow the users, that is, the re
cruiters of Rotterdam Werkt!, to find vacancies which may be of interest to them.

3. A thesis report which will outline the approach taken to solve the problem stated in section 2.2.

The remainder of this report is divided into six chapters. In chapter 2 the background of the problem
will be discussed, and research will be done into related work and into potential tools that can be used.
Afterwards, in chapter 3, the design of the final product will be discussed together with the architecture
of the different components, including their interaction. Chapter 4 describes the implementation of the
product and provides a technical descriptions and solutions to the problems faced. Next, in chapter 5,
the final product will be evaluated with regards to the requirements, design goals and effectiveness of
the search engine. In chapter 6, an evaluation of the process with the lessons learned will be discussed.
Finally, in chapter 7 the report will conclude with a reflection, conclusion and future work.

1See appendix D for more information.

1

2
Research

2.1. Overview
The first two weeks of the project were dedicated to doing research. In this chapter, all aspects of the
research phase have been compiled. We started by analyzing the problem at hand in section 2.2. After
that, an investigation into related work was done where the features of related platforms are identified.
We then specified two areas in which we need to gain more knowledge: scraping and search engines.
In section 2.2.3 we have therefore derived two research topics in which we need to strengthen our
knowledge to create a successful final product, these will be further discussed in sections 2.3 and 2.4
respectively. In section 2.5, options will be discussed regarding the possible framework to be used in
order to connect these two components. Section 2.6 provides an overview of related work regarding
vacancy platforms. The final requirements are listed in section 2.7, and the design goals are presented
in section 2.8. Lastly, the approach is discussed in section 2.9.

2.2. Problem definition and analysis
2.2.1. Problem analysis
Currently, Rotterdam Werkt! shares vacancies between HRmanagers and recruiters via email and
the company websites of all the fourteen affiliated organizations, which has become increasingly time
consuming. Therefore, Rotterdam Werkt! is looking for a new tool in order to facilitate this process.
This tool must automatically collect vacancies of the websites of their current organizations as well
as provide the means to search through these vacancies. The full list of organizations which will be
supported can be found in appendix C.

2.2.2. Problem statement
The challenge presented by Rotterdam Werkt! consists of two parts:

1. Automatically collecting all open vacancies of the participating companies
The challenge here is to create a tool which will gather the vacancies of the Rotterdam Werkt!
organizations. This tool must be able to obtain data from, and adapt to, the varying vacancy data
sources of each member of the network, without modifying or adding components to the data
sources. These gathered vacancies need to be updated on a regular basis in order to find new
ones and remove the ones which are no longer available.

2. Allow recruiters of the participating companies to search for relevant vacancies
The challenge here is to create a search tool for the HRmanagers and recruiters which is opti
mized for their application and type of data. In other words, to optimize the retrieval function in
such a way that the best fitting vacancies are returned.

2.2.3. Research topics
From the challenges presented in section 2.2, two research topics can be identified in which we need
to strengthen our knowledge:

2

2.3. Web scraping 3

1. What is the most suitable tool or software for collecting vacancies?

2. What is the most suitable search engine framework for this project?

These topics will be further explored in this chapter. Section 2.3 and 2.4 will investigate the first and
second research topics, respectively. Lastly, section 2.5 will look into the web framework for connecting
these two components of this project.

2.3. Web scraping
In order to create the vacancy search engine, the vacancies of the Rotterdam Werkt! member com
panies need to be obtained and categorized. Currently, all members have their own websites where
they list their vacancies. In this section, we investigate which method we will be using to acquire the
vacancies.

One option would be to create a central platform with a single database and have all organizations
upload their vacancies to that platform. This would involve having people at the Rotterdam Werkt!
organizations manually copyandpasting the information and categorizing it. Alternatively, if one had
(API) access to the database of each organization, the data could be obtained already labeled, provided
that all the members label their vacancy data instead of combining all information into a blob of text.
This would be beneficial for filtering the vacancies, see section 2.5. Unfortunately, neither of the options
are viable for Rotterdam Werkt!. The first option would require Rotterdam Werkt! members to upload
their vacancies to two platforms – their own platform and a new central platform – as members still need
to use their own website to attract applicants outside of the network. Managing two platforms in this
manner could easily introduce consistency issues. Another possibility for this first option would be to
have the members upload their vacancies only to the central platform and then embed the Rotterdam
Werkt! platform on their websites. However, since all companies have different wishes for what data
is displayed and in what way, it is unrealistic to expect to be able to make a platform all fourteen
organizations can agree on within ten weeks. The second option is also unrealistic, since we believe it
would be infeasible for each of the fourteen members to be able to provide access to their databases
within the given time frame.

Given these limitations, their websites themselves are therefore the most reliable sources of infor
mation available. The RotterdamWerkt! vacancy websites, like most websites, use a markup language
named Hyper Text Markup Language (HTML). It defines the main data and structure of a page. HTML
can be used to define a web page by itself, but most pages also use JavaScript and CSS within HTML.
JavaScript is used to make a page interactive and CSS is used to define the style of the different el
ements of the page. In order to retrieve the relevant vacancy information, it must be extracted from
the HTML source. Fetching a web page, parsing its contents and extracting data from it is called web
scraping [1]. The web pages of the RotterdamWerkt! organizations can be divided into two categories:
static and dynamic. For both, an example of their layout, underlying HTML source and challenges they
present will be given in section 2.3.1 and section 2.3.2, respectively.

2.3.1. Static vacancy pages
An example of a static vacancy page is the overview page of STC Group1, shown in figure 2.1. The
general layout is representative of many vacancy overview pages within the RotterdamWerkt! network.
The vacancies are often presented in blocks, with one vacancy per block, or in a table. For the websites
with a blocklayout, such as the example of STC Group, the blocks often contain the title of the vacancy,
a short description, and important job attributes, such as the hours, location or department. Most
importantly, there is always some text or button with a hyperlink to the vacancy detail page. These
hyperlinks must be extracted by the scraper and followed so the details of each vacancies can be
scraped as well.

Code snippet 2.1 shows part of the source HTML for this web page. For example, one can see that
the div elements with the class name colxl12 are the source of the blocks with the vacancies.
Within this div, there is relevant vacancy data to extract, such as the h2 element that contains the
title of the vacancy: “Technisch docent Zeevaart (HWTK)”. Most importantly, the anchor element, <a>,
contains the location of the vacancy detail page we are looking for. In order to extract information such
1https://werkenbijstc.nl/vacatures/

https://werkenbijstc.nl/vacatures/

4 2. Research

as the vacancy title and hyperlinks, we therefore need a library that can parse HTML and extract the
relevant data.

Figure 2.1: Vacancy listings on the STC Group website. Screenshot taken on 20 Jan. 2021.

<!DOCTYPE html>
<html lang=”nl”>
...
<body>

...
<section class=”stcvacancyoverview”>

<div class=”container”>
<div class=”row”>
<div class=”colxl12”>
<div class=”stcvacancybox featured”>

<div class=”stcvacancyhead”>
<h2 class=”stcvacancytitle”>Technisch docent Zeevaart (HWTK)</h2>
Onderwijs

</div>
<div class=”stcvacancycontent”>
<p>

Heb jij zelf gevaren en weet jij alles van de technische kant van schepen? Gaat jouw
hart sneller kloppen van motoren, voorstuwing, onderhoud en hulpmotoren en weet je jouw
passie met enthousiasme over te brengen op onze mbo studenten? Lees dan snel verder!

</p>
</div>
<div class=”stcvacancyfooter”>
<div class=”stcvacancyinfo”>

3240 uur
Zwolle

</div>
<div class=”stcvacancymore”>

<a class=”btn arrowtextbtn btnsecondary”
href=”https://werkenbijstc.nl/vacatures/technischdocentzeevaarthwtk/”>
Bekijk vacature

</div>

</div>
</div>
<div class=”colxl12”>

...
</div>

</div>
</div>

</section>
...

</body>
</html>

Code snippet 2.1: Partial HTML source of the vacancy listings on the STC Group website. Only the elements that make
up the first vacancy have been completely expanded. Source downloaded using wget on 20 Jan. 2021.

2.3. Web scraping 5

2.3.2. Dynamic vacancy pages
In addition to static vacancy pages, there are also dynamic ones. A dynamic web page, more specif
ically in this case a clientside dynamic web page, is a page that uses clientside scripting, such as
JavaScript, to alter the Document Object Model (DOM) of a web page during or after it has loaded.
In figure 2.2, the vacancy overview page of Evides2 is shown. Looking at the layout, the site seems
similar to the STC Group static example. This overview page uses a table instead of blocks, but the
important information such as the title and location is still there. The hyperlinks seem missing, but are
actually hidden within the rows of the table. Hovering over a row with a cursor will turn that row blue to
indicate to a user that it is a clickable link leading to more information.

Looking at the HTML via a browser’s developer tools, shown in code snippet 2.2, seems to confirm
that the Evides and STCGroup websites are also similar HTMLwise. This is not true, however. Using a
tool such as wget3 to download the original HTML source shows that the a elements with the dataRow
class are not present. The vacancy data is instead hidden within the JavaScript defined inside the
<script> elements, as shown in code snippet 2.3. The table will only appear after a browser has
executed the JavaScript code. In order to extract this data, one must either use a JavaScript engine,
such as browsers do, and then extract the data from the HTML the same way as for the static vacancy
pages, or parse the JavaScript code itself.

Figure 2.2: Vacancy listings on the Evides website. Screenshot taken on 20 Jan. 2021.

<!DOCTYPE html ”//W3C//DTD XHTML 1.0 Strict//EN” ”http://www.w3.org/TR/xhtml1/DTD/xhtml1strict.dtd”>
<html id=”P_html” xmlns=”http://www.w3.org/1999/xhtml” class=”responsive” lang=”nl” xml:lang=”nl”>

...
<body id=”P_body” class=”sitebackground desktop” style=”overflow: auto scroll; visibility: visible;”>
...
<div class=”body”>

<div class=”dataColumn verticalCenter” style=”width: 512px;”>
<div class=”text” datarowid=”6595754cf018481ab50d”>Accountmanager Techniek</div>

</div>
<div class=”dataColumn verticalCenter” style=”width: 686px;”>
<div class=”text” datarowid=”6595754cf018481ab50d”>Kralingen, Rotterdam</div>

</div>

...

...
</div>
...

</body>
</html>

Code snippet 2.2: Partial HTML of the vacancy listings on the Evides website as shown in Chrome DevTools. Only the
elements that make up the first vacancy have been completely expanded. Downloaded with Chrome on 20 Jan. 2021.

2https://www.werkenbijevides.nl/
3https://www.gnu.org/software/wget/

https://www.werkenbijevides.nl/
https://www.gnu.org/software/wget/

6 2. Research

<!DOCTYPE html ”//W3C//DTD XHTML 1.0 Strict//EN” ”http://www.w3.org/TR/xhtml1/DTD/xhtml1strict.dtd”>
<html id=”P_html” xmlns=”http://www.w3.org/1999/xhtml” class=”responsive” lang=”nl” xml:lang=”nl”>
...
<body id=”P_body” class=”sitebackground” style=”overflowy:scroll;overflowx:auto;visibility:hidden;”>

...
<script type=”text/javascript”>

function AntaRequireBootstrapCompleted(AntaRequire) {
AntaRequire(...) {

script.AddInitScript(function () {
...
webview.RegisterWebView(”P_C_W_B2782DF749637890AA5FD88EFDA8A090”, {

”data”: [{
”uniqueId”: ”60c11015b4164901994716e329c6b6a4”,
”rowNumber”: 1,
”link”: ”vacaturebeschrijving2020/accountmanagerklant”,
”columns”: {

”U005”: {
”value”: ”Accountmanager Techniek”

},
”U004”: {
”value”: ”Kralingen, Rotterdam”

},
”KnWCITitl”: {
”value”: ”Accountmanager Klant”

},
”KnWPgPuId”: {
”value”: ”605CD65342D26ACAD141D6A36DF36C3A”

},
”KnWCIDs”: {
”value”: ”Accountmanager Klant”

},
”KnWCIPuDa”: {
”value”: ”20201105T13:39:06”

}
}

},
...

});
});

});
};

</script>
...

</body>
</html>

Code snippet 2.3: Partial HTML/JavaScript source of the vacancy listings on the Evides website. Only the elements that
make up the first vacancy have been completely expanded. Source downloaded using wget on 20 Jan. 2021.

2.3.3. Overview of frameworks and libraries
A selection of four distinct scraping libraries and frameworks has been made based on the following
three criteria:

• Gratuitous (libre)

• Opensource

• Popularity

Given the lack of funds, the framework or library of choice must be freetouse, as will be further
explained in section 2.7. As our product is to be used in a commercial setting, it must not be restricted
by licenses or patents, so the selected software of choice must be opensource. Finally, the software
must be used widely, because we believe that this increases the likelihood of having comprehensive
documentation, fewer bugs and better support. The popularity of the frameworks and libraries has been
determined by number of contributors, latest release date and the ranking in Google search results. An
overview of the four candidates is shown in table 2.1.

2.3. Web scraping 7

Beautiful Soup Scrapy Cheerio libxml2
Information
Source repository Launchpad GitHub GitHub GitLab
Latest release 8 Oct 2020 17 Nov 2020 21 Dec 2020 30 Oct 2019
Number of contributors 20 397 115 99

Documentation Provided by de-
veloper

Provided by de-
veloper

Provided by de-
veloper

Provided by de-
veloper

Language

Written in Python Python JavaScript

C (also bind-
ings for C++,
Ruby, Python,
PHP, etc.)

Table 2.1: Overview of the selected scraping libraries and frameworks [2]–[5].

Beautiful Soup
Beautiful Soup is a Python library that can extract data from HTML and XML documents. Given an
HTML or XML document, it creates a parse tree from which relevant information can be extricated
[2]. It can also process structurally incorrect HTML documents, such as those with malformed tags or
improper nesting. The processing speed and tolerance for malformations depends on the parser used.
Beautiful Soup supports Python’s builtin html.parser, but also thirdparty parsers such as lxml
and html5lib [6]–[8].

Scrapy
Scrapy is a scraping and web crawling framework written in Python. It is based around modules called
spiders. These spiders are essentially web crawlers that follow the instructions given by the program
mer in Python. They also serve to separate the web crawling aspect from the actual data extraction,
which allows for easier maintainability [3].

Cheerio
Cheerio describes itself as a “Fast, flexible, and lean implementation of core jQuery designed specif
ically for the server” [9]. This JavaScript package can be used for web scraping purposes such as
parsing and manipulating data from the HTML DOM, which can be obtained using an external request
library.

libxml2
Another library that is considered is libxml2. This library can be used to parse and navigate XML or
HTML [5]. Despite the fact that this library is written in C, libxml2 can be used in other environments
as well, thanks to its available bindings [5].

2.3.4. Comparative analysis of frameworks and libraries
In order to make a justified decision on which framework or library to use for this project, the candidates
ought to be compared and contrasted. This has been done based on a set of criteria we deem to be
important for the development of the web scraper within the given time frame of ten weeks for this
project. An overview of the supported features per scraping framework or library can be found in
table 2.2.

First of all, web responses must be parsed to be able to extract data from them. Given that websites
are written in HTML, a parser for that language is needed. Likewise, some of the client’s websites, such
as Evides’ vacancy website, rely on JavaScript to dynamically load their content. This means that a
JavaScript parser, or a similar feature, would be needed. If a website makes use of a JSON API, the
data can be obtained directly from that API, rather than obtaining it from the actual user interface. A
JSON parser is needed to get the data from the API response.

Secondly, data must be extracted from the parsed input. This can be done in various ways, for
instance with CSS selectors, XPath expressions or RegEx.

Thirdly, for quality assurance, the scraper should be tested and debugging options would be ben
eficial for the development process. Hence, logging and automated testing features are taken into
consideration.

Finally, miscellaneous features are also considered. Invalid scheme parsing and automatic request
retry on error are included in this comparative analysis, as a situation could arise in which the scheme

https://code.launchpad.net/beautifulsoup/
https://github.com/scrapy/scrapy
https://github.com/cheeriojs/cheerio
https://gitlab.gnome.org/GNOME/libxml2

8 2. Research

is incomplete, for instance due to an invalid or missing HTML tag, or the connection to website could
fail. Data sanitization and data export are also included, because the data needs to be exported to the
server and said data must be clean; for instance, the data must not contain unreadable characters,
like tabs or newlines. Asynchronous crawling is considered as this could prove to be useful in case
scraping all websites sequentially might take a long time. Running the scraper asynchronously would
allow it to scrape multiple websites at the same time, improving the run time of the scraper. Additionally,
it allows the data to be processed while waiting for the other requests.

Beautiful Soup Scrapy Cheerio libxml2
Parsing
HTML
XML
JavaScript # 2 # #
JSON G# G# G# G#
Data extraction
CSS selectors #
XPath
RegEx # # #
Scraper debugging and testing
Logging # #
Automated regression
tests # G# # #
Miscellaneous features
Invalid scheme parsing
Data sanitization # # # #
Data export # # #
Automatic request retry
on error # # #
Asynchronous crawling # # #
 = Supported; #= Not supported; G#= Available through extensions; 2= Similar feature available

Table 2.2: Feature comparison of the selected scraping frameworks and libraries [2]–[5].

Based on the overview of the selected scraping libraries and frameworks in table 2.1 and feature
comparison in table 2.2, several key aspects become clear.

Firstly, there is a distinction between frameworks and libraries. More specifically, this distinction is
related to the inversion of control [10]. When using a library, developers control the flow of the program.
When needed, they can call a library function which will execute its task and return control back to the
developer, which allows for a higher degree of customizability. When using a framework, the framework
decides when and what actions take place. This system allows for modularity and extensibility, but
makes frameworks less customizable. Scrapy is the only framework in this comparison. It controls
the flow of execution, only allowing developers to define callbacks. In exchange, Scrapy has many
builtin features and allows for extensibility by means of middlewares4. Given the time constraint of
this project, the provided features outweigh the lesser degree of control, as time can be saved by not
having to implement the features Scrapy already has.

Secondly, data parsing seems to be supported by all candidates, though JavaScript seems to require
additional attention. While Scrapy has a similar feature to support JavaScript by means of Scrapy
Selenium5, the other candidates do not. This means that more time is needed for the implementation
for the other candidates.

Thirdly, data extraction does not pose an issue, as all candidates support XPath expressions. Even
though additional data extraction methods would provide more programming flexibility, XPath expres
sions would suffice.

Fourthly, regarding debugging and testing features, Scrapy seems to be the superior choice, fol
lowed by Beautiful Soup. Scrapy has comprehensive logging features6 and Beautiful Soup provides
an onparse debug feature7. If any of the other two candidates were chosen, extra time has to be spent
on integrating testing and debugging features tailored to web scraping.
4https://docs.scrapy.org/en/latest/topics/spidermiddleware.html
5https://github.com/clemfromspace/scrapyselenium
6https://docs.scrapy.org/en/latest/topics/logging.html
7https://beautifulsoup4.readthedocs.io/en/latest/#troubleshooting

https://docs.scrapy.org/en/latest/topics/spider-middleware.html
https://github.com/clemfromspace/scrapy-selenium
https://docs.scrapy.org/en/latest/topics/logging.html
https://beautiful-soup-4.readthedocs.io/en/latest/#troubleshooting

2.4. Search engine 9

Finally, the miscellaneous features. Most time can be saved by using Scrapy, as it has builtin data
export features, supports asynchronous crawling and automatically retries a request when a request
error occurs, while the others do not. None of the candidates has builtin data sanitization, which means
that we have to implement this ourselves or through the use of external libraries.

2.3.5. Overview of programming languages
Table 2.3 lists the programming languages that are used by the libraries and framework discussed in
section 2.3.4. When choosing a library or framework, the associated programming language should
also be considered as experience with and development time using a given language may differ greatly.

Python (Scrapy and
Beautiful Soup) JavaScript (Cheerio) C (libxml2)

Language type interpreted high-level interpreted high-level compiled low-level
Team’s experience High Medium Low

Table 2.3: Overview of programming languages [11]–[13].

Both Python and JavaScript are interpreted highlevel languages [11], [13]. Unlike lowlevel lan
guages, such as C, highlevel languages support numerous features that we believe to greatly improve
ease of development, such as memory management and garbage collection [14]. However, such lan
guages are not recommended if maximum performance is required, due to the abstraction penalty of
using a highlevel language [14]. Given that run time is of little concern for this project and development
time is limited, a highlevel language is preferred. With the team’s experience in mind, it becomes clear
that Python is preferred over JavaScript. While the former can be used efficiently immediately, the
latter requires more familiarization, and thus more time. As mentioned earlier, time is rather limited, so
the main focus should be on just learning how to use a library or framework rather than a language as
well.

2.3.6. Conclusion
In conclusion, while Beautiful Soup, Cheerio and libxml2 can be useful in a certain context, Scrapy
seems to be the clear winner. Not only does Scrapy allow for the best basis for meeting the require
ments, it also eases the development thanks to its scraping and supportive features. The fact that
Scrapy is written in Python is also an asset, since the development time in Python is relatively short
and numerous tools for post processing are available.

2.4. Search engine
After having retrieved all the vacancies (see section 2.3), a search engine is needed in order to be able
to search and filter through the vacancies. This is necessary to meet the final product’s requirement
of giving users the ability to search for specific vacancies according to search queries. In this section,
several existing search engines will be analyzed and their features will be compared. We will first
indicate how search engines were selected for analysis, followed by an overview of each of the search
engines’ features. We conclude this section by arguing whether one of the selected search engines
will be used for realizing the final product, or if we need to implement a custom search engine.

2.4.1. Search engine selection
There are several criteria that a search engine framework needs to adhere to for it to be considered in
the creation of the final product. One is that the framework should (be able to) possess all the required
features as presented in section 2.6. Furthermore, the framework should be reliable enough to be of
any practical use. Lastly, budgetary constraints force us to use a lowcost and preferably freetouse
framework, which is why only opensource frameworks will be considered. Like in section 2.3.3, we
select four frameworks for further review based on popularity, which we derive from a combination of
Google search result ranking and user popularity on GitHub, and based on whether they are open
source. The frameworks that will be compared are Elasticsearch, Solr, Manticore Search and Xapian.

10 2. Research

Feature comparison and analysis
For each of the selected search engine frameworks, major features were extracted from their main
websites8 . Table 2.4 shows an overview of the features of each of the frameworks. Comparing each
framework’s features, the following characteristics can be examined.

Documentation, actuality and popularity Each of the frameworks provides extensive documentation
which explains the inner working of each framework and which instructs on how to use each framework
practically. All frameworks have also had their newest release in June 2020 at the earliest, which
indicates that they are all relatively uptodate. However, if we assume popularity among users can
be measured in terms of GitHub stars and forks, Elasticsearch is clearly the most popular of the four,
followed by Solr, Xapian and Manticore Search, respectively.

Programming language compatibility All shown frameworks support a wide range of programming
languages. Elasticsearch and Solr make use of RESTful interfaces9 which are supported by many
major development programming languages, including but not limited to Python, JavaScript and C++,
which were already mentioned in section 2.3.5. Manticore Search provides the same support through
MySQL connectors10. Xapian supports many programming languages as well through C++ bindings,
but Xapian’s Java API is still experimental [16].

Language features in search queries Elasticsearch and Manticore Search provide outofthebox word
synonym searching and extensive Natural Language Processing (NLP) support, with features such as
word tokenization and stemming, for the Dutch language. Xapian supports searching for synonyms
as well, but only provides word stemming as a Dutch NLPfeature. Solr also has support for NLP and
synonym search, but this requires the addition of certain extensions. All engines feature a form of spell
correction for terms in search queries, based on words in the engines’ databases, words from a corpus
or a combination thereof.

Additional search features Apart from simply searching for terms in their databases, all frameworks
provide additional operators that can be used to narrow down searches. For instance, all frameworks
support boolean operators and wildcards in queries. Manticore Search provides the most outofthe
box additional search features and filters, followed in order by Elasticsearch, Solr and Xapian.

Final selection criteria
The selection of a search engine framework for use in the creation of the final product depends on
several factors. In section 2.4.1, we already selected frameworks for further analysis based on their
presumed reliability, the expectation that they have the features that are requested for the final product,
and their availability as an opensource framework. There are several more factors that need to be
taken into consideration for the selection of a framework to be used in the creation of the final product.

Firstly, there is a time constraint of ten weeks to complete the product. We deem it to be impractical
to develop our own search engine framework that can compare to the frameworks that were analyzed
in section 2.4.1 in this time frame, and we will therefore be using one of the presented frameworks. Fur
thermore, considering this time frame, it is important that the selected framework has a relatively small
learning curve, which depends on our expertise, and that there is extensive documentation, including
any reference guides and tutorials that the framework developers publish, but also user contributions
posted online elsewhere. In assessing to what extent the latter is likely to be present for each frame
work, we look at each framework’s stars11 and forks12 on their GitHub repositories, which is a direct
indicator of the size of the community of users that are in some way connected to a framework.

8Elasticsearch: https://www.elastic.co/; Solr: https://lucene.apache.org/solr/; Manticore Search: https:
//manticoresearch.com/; Xapian: https://xapian.org/.

9REST is an architectural style that defines certain constraints for interfaces, designed to make the web more standard.
As such, RESTful interfaces are interfaces that adhere to these constraints [15].

10For more information on MySQL connectors, see https://dev.mysql.com/doc/connectors/en/.
11Number of times somebody followed this project. Usually indicates how interested people are in the project.
12Number of times the repository is copied, usually with the intent of making a change or addition to the code base.

Usually indicates how actively updated the repository is.

https://www.elastic.co/
https://lucene.apache.org/solr/
https://manticoresearch.com/
https://manticoresearch.com/
https://xapian.org/
https://dev.mysql.com/doc/connectors/en/

2.4. Search engine 11

Feature Elasticsearch Solr Manticore
Search Xapian

Information

GitHub repository 52.2k stars,
18.2k forks

3.9k stars, 2.6k
forks

497 stars, 68
forks

601 stars, 264
forks

Latest release 01 June 20 02 Nov 20 01 Oct 20 21 Aug 20

Documentation Provided by de-
veloper

Provided by de-
veloper

Provided by de-
veloper

Provided by de-
veloper

Language
Written in Java Java C++ C++

Supported program-
ming languages

RESTful
HTTP/J-
SON API, Java
JavaScript,
Perl, PHP,
Python, Ruby

REST-
interface-
compatible
languages

Any language
with MySQL-
compatibility

Bindings for
Python, Java,
Perl, PHP, Tcl,
C#, Ruby, Lua,
Erlang, Node.js,
R

Database type NoSQL

Built-in; input
JSON, XML,
CSV or binary;
query with
HTTP GET

SQL or JSON;
SQL queries or
HTTP requests

Built-in; based
on CSV

Extensive NLP support
for Dutch language G# Word stemming

only
Spell correction
Synonym support G#
Search features
Ranked search
Faceted search
Proximity search
Fuzzy search 2 #
Range search
Attribute search
Auto-fill or term sugges-
tions 2
Search operators

Boolean
Wildcards
Quorum matching # # #
Strict order G# #
Field-start/-end # # #
Sentence-/paragraph-
specific # # #
 = Supported; #= Not supported; G#= Available through extensions; 2= Similar feature available

Table 2.4: Search engine frameworks and a comparison of their features as listed on their main websites. [17]–[20]

It should also be taken into account that the final product is required to include several features as
presented in section 2.7. Table 2.5 shows an overview of the required features and shows for each
analyzed framework whether it supports the feature, based on the findings in table 2.4.

Summarizing, the criteria that will be used for selecting a search engine framework are the amount
of documentation published by the developer; user popularity; learning curve; and support for required
features.

Selection of a Search Engine Framework
In order to select the framework that will be used in the final product, we assess to what extent each
framework meets the criteria described in section 2.4.1. This is measured based on the findings in ta
ble 2.4 and table 2.5. Learning curve was assessed based on our individual expertise of used database
engines and connection and query methods, as well as perceived quality and userfriendliness of pro
vided documentation. Table 2.6 shows an overview of each framework’s scores per criterion.

As Xapian does not directly and fully provide support for all required features, Xapian is taken
out of consideration. Furthermore, even though Solr has a relatively high user popularity, it has a
higher learning curve than the other frameworks and it requires extensions for the essential features
to be covered, which may prove impractical given the time frame in which the final product must be
completed, and so Solr will also not be selected.

https://github.com/elastic/Elasticsearch
https://github.com/elastic/Elasticsearch
https://github.com/apache/lucene-solr
https://github.com/apache/lucene-solr
https://github.com/manticoresoftware/manticoresearch
https://github.com/manticoresoftware/manticoresearch
https://github.com/xapian/xapian
https://github.com/xapian/xapian

12 2. Research

Feature Elasticsearch Solr Manticore
Search Xapian

Features for employees
Search by keywords
Search by function
Search by location
Search by company name
Filter categories G#
Show similar vacancies G# 2
Features for recruiters
Search for CV’s G# 2
Non-functional features
Easily maintainable and extendable
code 2; Java API still

experimental
 = Supported; #= Not supported; G#= Available, but not out-of-the-box; 2= Similar feature available or partly supported

Table 2.5: Overview of search engine frameworks with required features in the final product

Criterion Elasticsearch Solr Manticore
Search Xapian

Documentation Provided by de-
veloper

Provided by de-
veloper

Provided by de-
veloper

Provided by de-
veloper

User popularity based on
GitHub stars and forks Highest Second-highest Lowest Second-lowest

Learning curve (based on ex-
perience and expertise) Low Higher Lowest Low

Out-of-the-box support for re-
quired features 8/8 5/8 8/8 5/8

Support for required features
with extensions 8/8 8/8 8/8 5/8

Table 2.6: Scores of search engine frameworks based on requirement criteria

In general, it is believed that Elasticsearch has a higher learning curve compared to Manticore
Search, however there is a large gap in user popularity in favor of Elasticsearch [21]. This shows that
Elasticsearch has a more active user base, and therefore more userprovided documentation com
pared to Manticore Search. This is also visible when we compare the amount of questions posted on
Stack Overflow13 that relate to Elasticsearch and those that relate to Manticore Search. To find such
questions, we filter based on tags14. In total, 47445 questions are returned for Elasticsearch, versus
5 questions for Manticore Search (or, 39 if widening the search to any question containing ”Manticore
Search”), indeed indicating a much higher interest in Elasticsearch than in Manticore Search on Stack
Overflow. Considering the large user base of Stack Overflow, we believe this to be at least somewhat
representative of the true interest in the frameworks, and also of the available usermade documenta
tion on the frameworks.

All factors considered, we therefore believe Elasticsearch will be the best framework in the appli
cation of the final product. Additionally, Elasticsearch is part of the ELK stack15, which also contains a
logging module, Logstash, and a data visualizer, Kibana. This means that we do not need to implement
these features ourselves, thus save precious time.

2.5. Website frameworks and libraries
To run our application we will need a server framework and a frontend library. Several frameworks were
chosen for evaluation based on their popularity on GitHub. Table 2.7 contains the server frameworks
that were found. We are looking for a relatively simple framework that will allow us to easily implement
our required features. Considering our vacancies will be stored in a database, we need a (RESTful)
13Stack Overflow is an online platform operating since 2008, on which 100 million people ask questions and share knowledge

about coding problems monthly as of November 2020. See https://stackoverflow.com/. Accessed 12 November
2020.

14Users can connect descriptive tags to questions on Stack Overflow so that their questions can be easily found by anyone
interested. We used the tag Elasticsearch to find questions about Elasticsearch, and manticore, manticoresearch and
manticore-search to find questions about Manticore Search.

15https://www.elastic.co/whatis/elkstack

https://stackoverflow.com/
https://www.elastic.co/what-is/elk-stack

2.6. Related work 13

API which exposes methods such as POST, PUT, GET and DELETE in order to access and mutate the
data in the database [22].

Feature Spring Django Ruby on Rails Laravel
Information

GitHub repository 40.1k stars,
27.6k forks

53.5k stars,
23.1k forks

46.9k stars,
18.8k forks

62.5k stars,
19.8k forks

Latest release 01 Jun 20 02 Nov 20 01 Oct 20 21 Aug 20

Documentation Provided by de-
veloper

Provided by de-
veloper

Provided by de-
veloper

Provided by de-
veloper

Properties
Language used Java Python Ruby PHP

Table 2.7: Current most popular server frameworks on GitHub on 15 Nov. 2020

Criterion Spring Django Ruby on Rails Laravel
User popularity based on
GitHub stars and forks Fourth Second Third First

Learning curve (based on past
experience) Low Low High High

Language experience High High Low Low

Table 2.8: Multi criteria analysis for the chosen frameworks

As shown in table 2.8, the highest scoring frameworks are Django, Spring and Laravel. Because
most web scrapers are in Python, and we are most comfortable with Python, we will choose Django as
our serverside framework.

For the frontend, we chose to use React because of the vast number of libraries available for it,
including SearchUI16. SearchUI provides us with a component which makes interfacing with Elastic
search easier. This significantly reduces the complexity and the need for manually creating a search
box, a results page, implement paging and filters. Therefore, the choice for React was made on the
basis that this library will significantly reduce the development time which is essential given the short
duration of this project.

2.6. Related work
In order to better understand the possibilities of the already existing job sites, and because the client
wishes to create ‘Something like Indeed but private’, a comparison matrix was created containing all
the features popular vacancy websites have. The matrix contains vacancy websites which showed up
at the top of a Google web search. This allows us to select the most popular ones. A table with these
features can be found in table 2.9.

Features which are used by three or more companies are believed to be worth investigating further.
Therefore those features have been marked with an asterisk (⋆) in table 2.9. These features will be
presented to the client, which will be used together with their feedback to create the final requirements in
section 2.7. In order to further clarify the features described in table 2.9, figure 2.3 contains screenshots
from vacancy websites which include these features.

16https://github.com/elastic/searchui

https://github.com/spring-projects/spring-framework
https://github.com/spring-projects/spring-framework
https://github.com/django/django
https://github.com/django/django
https://github.com/rails/rails
https://github.com/rails/rails
https://github.com/laravel/laravel
https://github.com/laravel/laravel
https://github.com/elastic/search-ui

14 2. Research

nationale-vacaturebank werk.nl Young-Capital Werkzoeken Indeed Job-bird Monster-board LinkedIn
Keywords ⋆ ! ! ! ! ! ! ! !

Function ⋆ ! ! ! ! ! ! ! !

Location ⋆ ! ! ! ! ! ! ! !

Company Name ⋆ ! ! ! ! ! ! ! !

Save Queries !

Favorites ⋆ ! ! ! !

Filter Catagories ⋆ ! ! ! ! ! ! !

Recommend Catagories ⋆ ! ! ! ! ! !

Related Queries ⋆ ! ! !

Number of results ⋆ ! ! ! !

Compare Salary ! !

Similar Vacancies ⋆ ! ! ! !

Notifications ⋆ ! ! !

Apply Immediately ⋆ ! ! ! !

Online resume ⋆ ! ! ! !

CV Search ⋆ ! ! ! ! ! !

Add Vacancy ⋆ ! ! ! ! ! ! !

Matching !

Company Review ⋆ ! ! !

Sort Candidates !

Message Platform ⋆ ! ! ! !

‘Im ready to work’ tag ⋆ ! ! ! !

Email to potential matches ! ! !

Social Platform !

Save queries ⋆ ! !

Table 2.9: Features found on job search websites

2.6. Related work 15

(a) Search, number of results, filters, notifications and save queries

(b) Company reviews, apply immediately, add to favorites, related queries, recommended categories and online CV

16 2. Research

(c) Adding vacancies (d) Social media platform

(e) Searching CV’s

Figure 2.3: Features labeled on search page

2.7. Final requirements 17

2.7. Final requirements
With the above investigation in related work in section 2.6 in mind, we have presented a list of require
ments to our client and discussed these with them. They responded with some additional requirements,
such as the functionality to search and add resumes, which we have added to our final requirements
list below. It was decided to rank them according to the MoSCoW model in order to have a clear priori
tization and prioritize them by the categories defined below. The final list of requirements can be found
in table 2.10.

Must have

Should have

Could have

Won’t have

Importance Requirement
Vacancies

Recruiters can search for vacancies
Recruiters can filter on categories
Recruiters have access to the tool via a web interface
Vacancies must be retrieved from all current associated companies’ web-
site
Vacancies must be retrieved at a regular interval
Companies are able to upload vacancies straight to the web interface
Scraped vacancies can be edited through the interface
Show number of results when filtering
Recruiters can save favorite vacancies
Recruiters can see similar vacancies
Recruiters can save vacancy queries
Recruiters can compare salaries
New companies will be automatically add to the scraping process
Employees will be automatically matched to a vacancy
Recruiters can upload blog posts

Resumes
Allow recruiters to search for resume
Recruiters can upload an employees resume
Allow recruiters to send messages about resumes
Allow recruiters to see which employees are looking for a job
Allow recruiters to save their queries for resumes

Interface
Users can login
Users cannot register themselves but should be invited
Users can view the companies associated to Rotteram Werkt

Non-functional requirements
The web scraping tool must be tested on all websites of the participating
companies
Code must be easily extensible to support more vacancy websites
All frameworks and programming resources must be free of charge
The final product must be able to run on a VPS running Linux
Use frameworks that have a subscription fee

Table 2.10: Requirements evaluation

18 2. Research

2.8. Design goals
Based on the requirements, a number of design goals have been created. These goals will be used at
the end of the project to evaluate the quality of the final product.

2.8.1. Security and privacy
Given that the system will contain personal data, it is important that the chance of leaking data is mini
mized. Therefore, it is important that the data stored cannot be accessed by thirdparties. Furthermore,
due to GDPR regulations it is important that no personal data will be logged in order to make sure that
the ‘right to be forgotten’ can be enforced.

2.8.2. Maintainability
The system should be easy to maintain. Given the volatility of the scrapers due to the possibility of
companies changing their website significantly, having to update a scraper should require minimal
effort. Furthermore, as Rotterdam Werkt! may expand in the future, it should also be possible to easily
add new scrapers to the system. The client also suggested that the system might be maintained by
future students. Therefore it is crucial that the code is documented properly and that it is maintainable.

2.8.3. Ease of deployment
Since the client mentioned they will most likely hire students to maintain this system in the future. It
should be reasonably easy for them to deploy the system. This means that the deployment method
cannot be overly complex and must be clearly described in the documentation.

2.9. Approach
In order to implement the requirements listed in section 2.7, decisions needed to bemade on the specific
approaches to be taken. This section will discuss the approaches that were taken in sections 2.9.1
to 2.9.4 together with some of the risks involved in section 2.9.5. Finally, the section will end with a
preliminary planning for the implementation and reporting stages in section 2.9.6.

2.9.1. Development methodology
The usage of the correct development methodology will help us to divide the project into smaller pieces
as well as being able to finish within the scheduled time.

The first methodology worth considering is Scrum [23]. This is an agile methodology, which means
that a working version of the project is reviewed early and often. The requirements could thus be
changed throughout the project, every time a working version is delivered. This allows the product
owner to finely tailor the final product to their needs, even in later stages of the software project. Scrum
works in iterations of a specified length, usually weekly or biweekly, called sprints. At the start of a
sprint, the team will come together and divide the tasks that need to be completed during the sprint.
At the end of the sprint, a working version is delivered and evaluated. Any necessary changes will be
noted for the next sprint such that the team can adapt and continue working on the project [24].

A second methodology is the Waterfall approach [23]. This is a relatively simple approach where
all requirements are defined at the beginning of the project. After this, the project runs in predefined
phases which need to be well documented in order for the approach to work. The Waterfall approach
is rather rigid as it is costly, both with regards to resources as well as time, to alter the requirements.
More concretely, if a requirement is to be changed in a given phase, all previous stages have to be
executed again with the altered requirement in order to get the desired outcome [25].

For our project the Scrum approach will be taken. This approach allows us to create a final product
which is tailored very closely to the clients’ wishes, compared to the waterfall approach which causes a
great technical deficit when requirements are changed. Furthermore, the iterations allows us to better
split up the tasks gradually as we progress through the project in order to prioritize certain tasks.

2.9.2. Documentation
The code will have method and classbased documentation. This documentation will make it easier
for future developers to better understand the code and thus make it easier to maintain the platform in
the future. Furthermore, a deploy guide will be added in the README.md file of both the website and

2.9. Approach 19

the scraper. This guide will contain a detailed explanation of how this project should be deployed. This
should make it easier for future maintainers of the project to integrate new features.

2.9.3. Version control
As a version control system we have the choice between GitLab17 and GitHub18, since these are
the ones we have the most experience with and we have limited resources, thus payed options are
not viable. We have decided to use GitLab as this gives us access to more pullbased development
features such as running unlimited pipelines for free. We will be using pullbased development, this
means that for every task during the week, an issue will be created. The developer will then ‘branch
off’ from the main branch in order to complete the new task. Once the task is finished, the developer
will submit a merge request. At least one other member of the team will inspect the merge request and
judge it on code quality, style and structure, as well as checking the documentation for clarity. Within
the merge request, all tests and code quality tools will be run by the CI pipeline to ensure new features
do not break existing ones. Once everything passes and the reviewer is satisfied, the new code can
be merged into the main branch. This ensures that we always have a fully working version of the final
product and that new code adheres to the standards set by us.

2.9.4. Static code analysis
As a static code analysis tool for the python code, Flake819 will be used. Given that the tool is designed
specifically for Python and it is still being maintained, this will give a reasonable idea of the code quality.
Flake8 also does linting and will therefore also make sure that the code is formatted correctly [26].
Furthermore, Flake8 can also be run in our GitLab pipelines and will fail the pipeline if the code is of
insufficient standard.

For React, the standard code analysis tool provided by ‘reactcreateapp’, ESLint, is used. ESLint
analyzes the code in order to find problems and it is fully customizable [27]. It was decided to use the
default configuration as this sufficiently met our needs.

2.9.5. Risk analysis
The usage of the final system may present certain risks. In this section these risks will be assessed
and discussed.

Changes in the company websites
Each scraper for each website will be designed for the current layout of the website. This means that
if a website changes drastically in terms of layout, URL and/or architecture, either during the project,
or after the project, the scraper will not work any more. If this happens during the project this problem
can be solved by us, even though this will create a delay in the planning. When this happens after the
project, the client will need to hire new software engineers in order to fix the scraper such that it can
scrape the specific website again.

Addition of new companies
When a new company joins Rotterdam Werkt!, the vacancy website for this company will need to be
added to the scraper. This means that a new spider will need to be created for this company. In order
to do this, a new software engineer will need to be hired in order to do this. This might result in the
project being discontinued as it will need a relatively high level of maintenance.

2.9.6. Planning
In order to be able to plan the stages of this project, we have created a preliminary schedule in table 2.11.
We have added all known deadlines for the research report, SIG evaluation, thesis report and final
presentation. Furthermore, we have also divided the implementation phase into our 3main components
and added deadlines for each component. This means that we can dedicate the period after Christmas
to connecting these components and fixing any last bugs that may arise from this.

17https://gitlab.ewi.tudelft.nl
18https://github.com
19https://flake8.pycqa.org/en/latest/

https://gitlab.ewi.tudelft.nl
https://github.com
https://flake8.pycqa.org/en/latest/

20 2. Research

Week # 46 47 48 49 50 51 52 53 1 2 3 4
Monday 9-11-2020 16-11-2020 23-11-2020 30-11-2020 7-12-2020 14-12-2020 21-12-2020 28-12-2020 4-1-2021 11-1-2021 18-1-2021 25-1-2021
Friday 13-11-2020 20-11-2020 27-11-2020 4-12-2020 11-12-2020 18-12-2020 28-12-2020 1-1-2021 8-1-2021 15-1-2021 22-1-2021 29-1-2021
Orientation and Design phase

Delivery research report 20-11-2020
Research Similar projects
Requirements engineering

Research Framework
Design Methodology

Design the system
Implementation Phase

Implement requirements
Setup toolkit

Implement scraper
Testing Scraper

Implement website
Implement search engine

Connect website to Search engine and scraper
Integration testing and final bug fixes

Midterm assessment
SIG upload 1 18-12-2020
SIG upload 2 15-1-2021

Documentation
Delivery thesis draft

Delivery thesis report
Final Presentation

Christmas Holiday

Table 2.11: Preliminary schedule

3
Design

3.1. Overview
In this chapter the design of the software will be considered. The chapter will start with a discussion on
the general architecture of the product in section 3.2. Afterwards, each component will be discussed
individually in sections 3.3 to 3.6.

3.2. Architecture
This section discusses the architecture design of the system. Figure 3.1 shows the final architecture.
Users can interact with the application through the user interface. This is connected to the backend
via a reverse proxy. This proxy will redirect requests made to the backend and forward them to either
the RESTserver or Elasticsearch. The RESTserver will store received vacancies from either the user
interface or the scraper in Elasticsearch and the database. Lastly, the RESTserver and Elasticsearch
will produce logs, which will be processed by Logstash and stored back in Elasticsearch. Then, Kibana
is able to access these through their respective indexes and analyze them.

Given all the different services used within the application, it could be considered as a microservice
architecture [28]. This has the advantage that each service can run autonomously. Another advantage
is robustness. That is, if one service were to be taken out or fail, the other services would still continue to
function. Because each service functions independently, they can be switched out at any point in time
for a similar compatible service without needing to redeploy or redesign the whole stack. Furthermore,
it is also easier to build and maintain a microservice architecture. Each service will have a smaller code
base, especially compared to a monolithic approach where there is one big code base, meaning that
maintainability will increase [28].

21

22 3. Design

Figure 3.1: Overall component diagram

3.3. Scraper
The scraper will crawl the vacancy web pages of the Rotterdam Werkt! organizations and extract rele
vant data. For each organization, it includes a spider that will scrape a specific website.

It starts at the vacancy overview page and will collect the URLs of the vacancy detail pages. These
detail pages will then be scraped for relevant information, such as the title, hours, contact information
and department. A complete list of collected data fields can be found in table 3.1. If necessary, data is
sanitized. Finally, all extracted information is sent to the RESTserver, described in section 3.5.

Field name Description
COMPANY_TITLE Identifier of the scraped company
CONTACT_EMAIL Email address of recruiter associated with vacancy
CONTACT_NAME Name of recruiter associated with vacancy
CONTACT_PHONE Phone number of recruiter associated with vacancy
DEPARTMENT Company department to which vacancy belongs
EDUCATION_LEVEL Education level required to apply
END_DATE Vacancy end date

FULL_TEXT All plain text in vacancy without formatting and without
HTML tags

HOURS_PER_WEEK_MAXIMUM Max. number of work hours per week according to va-
cancy

HOURS_PER_WEEK_MINIMUM Min. number of work hours per week according to va-
cancy

IS_SCRAPED True if vacancy was scraped, False if recruiter uploaded
vacancy

JOB_LEVEL Job level (e.g. internship, junior, medior, senior, ...)
JOB_LOCATION Main physical location of job
JOB_TYPE Type of employment (part time, full time, ...)
SALARY_CURRENCY Currency the salary is given in (e.g. euros, dollars, ...)
SALARY_MAXIMUM Upper bound on salary provided by job
SALARY_MINIMUM Lower bound on salary provided by job
SPIDER_NAME Identifier of the spider that has been run
TITLE Vacancy title
URL Vacancy URL

Table 3.1: List of fields extracted from the vacancy web pages by the scraper

3.4. Database design 23

3.4. Database design
The final database schema is depicted in figure 3.2. Given that we are using objects in the REST
server, the final database schema is created for an objectrelational database. The database schema
mainly revolves around three object types: vacancy, resume, and recruiter. Each of these object types
will be discussed in more depth below.

Vacancy
The vacancy object type contains all the information which can be scraped from the websites. Vacancy
has a onetomany relationship with company. This allows us to keep track of the companies, and
by extend the recruiters, who are associated with a vacancy. Furthermore, vacancies have a many
tomany relationship with certificates. This allows for easy retrieval of all the vacancies which are
associated with a specific certificate and thus allows Elasticsearch to easily filter on them. Moreover,
this also allows users to add already existing certificates to their vacancies without needing to duplicate
them. In future work, this relationship could also be applied to other elements in order to make them
filterable.

Resume
The resume object contains the information needed to form a full resume. The model is inspired by
the LinkedIn resume functionality. The parent object contains the basic personal information. Resume
also has child objects in the form of a onetomany relationship with education, skills and experiences.
This means that a user can have several of these objects in their resume without having to duplicate
the resume itself.

Recruiter
A recruiter can also be seen as a user in this system. The recruiter is linked to a company. This
authorizes the recruiter to edit only the vacancies which are linked to this company. Furthermore, a
recruiter is also associated to a Password Request object, which allows the recruiter to change their
password. The recruiter will receive a unique id from this Password Request which they can use to
change their password.

Figure 3.2: Database diagram

24 3. Design

3.5. RESTserver
The RESTAPI provides a set of requests that can be made by the client to the RESTserver. It was
decided to use REST as standard for the API since this is a popular standardized method for commu
nication between web services [29]. The API has functionality to GET, POST, PATCH and DELETE
objects via requests. Below is a list of API calls which should be implemented.

VacancyList
Requests Parameter Returns
GET List of all vacancies
POST

VacancyDetail
Requests Parameter Returns
GET Primary Key More detailed information about vacancy
PATCH Primary Key
DELETE Primary Key

CompanyList
Requests Parameter Returns
GET List of all companies
POST Adds a company

CompanyDetail
Requests Parameter Returns
GET Primary Key More detailed information about Company
PATCH Primary Key Edits a company
DELETE Primary Key Deletes a company

ResumeList
Requests Parameter Returns
GET Returns a list of all resumes
POST Adds a resume

ResumeDetail
Requests Parameter Returns
GET Primary Key More detailed information about Resume
PATCH Primary Key Edits a resume
DELETE Primary Key Deletes a resume

ResumeEducationListView
Requests Parameter Returns
GET Resume Primary Key Returns all educations from a resume
POST Resume Primary Key Adds an education to a resume

ResumeSkillsListView
Requests Parameter Returns
GET Resume Primary Key Returns all skills from a resume
POST Resume Primary Key Adds a skill to a resume

ResumeExperienceListView
Requests Parameter Returns
GET Resume Primary Key Returns all experiences from a resume
POST Resume Primary Key Adds an experience to a resume

3.6. Frontend design 25

3.6. Frontend design
In this section, we will explain the design of the frontend. The frontend will have two distinct purposes.
Firstly, it should allow users to interact with the vacancies and resumes. In other words, create, edit and
delete vacancies and resumes. Secondly, it should allow users to search for vacancies and resumes.

3.6.1. Interaction with resumes and vacancies
For users to be able to interact with resumes and vacancies, screens are needed in order to display
forms. These forms allow the user to create new resumes and vacancies, as well as edit already
existing ones. Since a resume object can have several child objects for education, experience and
skills, separate forms will be created for these objects such that each child object can be updated
independently without causing all child objects to be updated.

3.6.2. Searching for resumes and vacancies
Given that users should be able to search for resumes and vacancies, there are a number of elements
available to them. This includes a search field, facets (also known as filters), specifying the number of
elements to be displayed and a paging element in case a search returns a large result set. Furthermore,
the users will be able see the basic initial data displayed on the search page itself, but will also have
the option to view the whole resume or vacancy by clicking on the search result.

4
Implementation

4.1. Overview
This chapter will discuss the implementation details of each component in the system. Section 4.2
discusses the implementation of the scraper. In section 4.3 the implementation of the backend will be
discussed together with the data and authentication flow, followed by the implementation of the front
end in section 4.4. Afterwards, section 4.5 will describe the logging which was implemented and its
purpose. Section 4.6 will describe how all the components will be connected together in production
through containerization. Lastly, section 4.7 will discuss the testing approach taken for this project.

4.2. Scraper implementation
The scraper has been written in Python using a webcrawling framework called Scrapy. Its architec
ture is based on selfcontained ‘spiders’, which can crawl websites for data. For each member of the
Rotterdam Werkt! organization, a spider was written to crawl the web page(s) on which their vacancies
are listed. If their content was loaded dynamically, an additional framework, Selenium, was also used.

4.2.1. Static pages
For each spider, Scrapy will make initial requests to the URLs provided in the start_urls list and
call the parse method when the response is returned by the server. The start_urls list most often
consists of a single URL pointing to the overview page that lists the first 𝑥 vacancies for a given organi
zation. In the parse method, hyperlinks to the detail pages of listed vacancies are extracted from the
HTML body using Scrapy’s builtin XPath and CSS selectors. These links are then added to Scrapy’s
request queue with a callback to a parse_vacancymethod that will extract the relevant vacancy data.
Additionally, for organizations with their vacancies listed on multiple pages, the link to the next page is
extracted and added to the queue. The parse_vacancy method typically also uses XPath and CSS
selectors to extract vacancy data such as the title, department, salary, hours, required education level
and contact information.

4.2.2. Dynamic pages
Several organizations did not have their vacancies contained within the original HTML page, but ren
dered later using JavaScript, which Scrapy cannot extract out of the box. In these cases, Selenium
was used as a timesaving measure, as programmatically recreating the requests made by JavaScript
and extracting the relevant data within may prove rather timeconsuming. This decision was motivated
by the Scrapy documentation which reads: “You can reproduce any request with Scrapy. However,
some times reproducing all necessary requests may not seem efficient in developer time” [30].

Some websites had their vacancy data enclosed within the JavaScript itself, such as the example
in section 2.3.2, and others had them loaded in dynamically using AJAX and a JSON API. Where
possible and robots.txt ‘allowed’ us, data was obtained from a JSON API directly. For all other
dynamic websites, a headless Firefox browser was used, controlled by Selenium WebDriver. By using
an actual browser combined with Selenium, the content of the vacancy pages is rendered exactly as

26

4.3. RESTserver implementation 27

intended by the web designers, while making the data accessible with XPath and CSS selectors. Using
Selenium now also has the added benefit of making it easy to add another dynamic vacancy page as
it can just be treated as if it was a static page.

4.2.3. Spider automation
The Scrapy framework provides a commandline interface to run and debug spiders. With scrapy
crawl spider_name O output.json, the named spider will be executed and the scraped data
will be exported to a file in JSON format. This method was used to test individual spiders. Whenever
a spider is run, all scraped items retrieved by the spider are automatically passed utilizing an HTTP
POST request to the RESTserver discussed in section 4.3 using a Scrapy item pipeline1.

When deployed with the rest of the system, all spiders can be run automatically by calling a sin
gle Python file: rotterdam_werkt_scraper.py. This method was chosen in order to enable easy
scheduling with tools such as cron or Windows Task Scheduler. By default, this Python script will run
all spiders sequentially, but it is also possible to run them in parallel by adding them to the paral
lel_spiders list. Initially, it was intended for all spiders to run in parallel, but unfortunately, timeout
issues and various other bugs made this unworkable. Therefore, the decision was made to run all
spiders sequentially by default to avoid any issues.

4.3. RESTserver implementation
The RESTserver has been implemented using Django, a server framework written in Python. Django
also provides the database we will be using. This RESTserver exposes an API for external services to
connect to in order to perform REST operations on the data. The API works together with the database
using serializers. They are responsible for converting the objects in the database to an object which
can be send using an HTTP request. In this case, JSON is used to transfer the data between the client
and the server. When a new or updated object is received by the RESTserver, it will commit this to the
database, as well as update the Elasticsearch index with this object. A highlevel UML can be seen in
4.1.

4.3.1. API and serializers
For the API we have used the “Django Rest Framework” library, which provided us with REST API end
points and object serialization functionality. For every database model the API can access, a serializer
must be provided. The serializer provides a way to check the validity of the JSON object sent to the
REST API endpoint. The API provides two options for data retrieval, either a single object or a list of
all the objects. Therefore, two types of endpoints have been created for the models: the DetailView
and the ListView. Detailviews takes one argument: the entry ID. This ID can be used to select a
certain entry and delete it with a DELETE request or update it with a PATCH request, given the user has
the appropriate permissions. ListViews are used to retrieve a list of multiple entries of the database
and to add a new entry.

4.3.2. Data storage
As a database option we considered PostgreSQL and MySQL given that we have the most experience
with these two. Ultimately, it was chosen to use PostgreSQL2 as a database. The choice for Postgres
compared to MySQL3 is driven by the fact that Postrgres is an objectrelational database, whilst MySQL
is a purely relational database. PostgreSQL is therefore more suited to work with an object oriented
database schema. Furthermore, Postgres is also better at handling concurrency which is an advantage
when the scraper is running and posting several vacancies in a short time span [31], [32].

The Postgres database will store all the persistent data such as users, vacancies and resumes.
This allows for data redundancy and data consistency as well as easy retrieval for specific objects by
an identifier.

The RESTserver will also index the object in Elasticsearch, after committing to the database, such
that users are able to query for it. The mappings for vacancies and resumes can be found in appen
dices E.1 and E.2 respectively.
1https://docs.scrapy.org/en/latest/topics/itempipeline.html
2https://www.postgresql.org/
3https://www.mysql.com/

https://docs.scrapy.org/en/latest/topics/item-pipeline.html
https://www.postgresql.org/
https://www.mysql.com/

28 4. Implementation

Figure 4.1: High-level UML of REST-server

4.4. Frontend implementation 29

4.4. Frontend implementation
The two main parts of implementing the frontend are creating forms for users to add and update
the data, and creating the search interface to allow users to search for vacancies and resumes. In
section 4.4.1 the approach to creating forms will be discussed. Afterwards, in section 4.4.2, the search
implementation will be discussed.

4.4.1. Form implementation
In order to create forms with validation, a React library called Formik was used. Formik provides a
state for forms. In other words, it keeps track of the values, errors and visited fields in a form [33].
Furthermore, it can also validate the input using a validation schema before the input is passed on to
a submit method.

For the validation schema Yup was used. Yup is a library which provides a schema builder for value
parsing and validation [34]. It allows Formik to do form validation before submitting. This ensures a
better defensive programming style to be adopted since no wrongly formatted data can be sent to the
RESTserver from the frontend.

In the submit method defined in Formik object, the interaction with the API is performed. It will
create a POST request to the API using the Axios4 library. This request returns a Promise object which
is resolved during the submit. If the API responds with 200 OK, the user will be redirected to the
correct following page, usually to view their added or edited data. The server may also return a 401
Unauthorized error. In this case, the user does not have permission to add or edit the data, meaning
they will be redirected to an error page. In the unlikely case that the object sent to the API is not valid,
the server will respond with 400 Bad Request. In this case, a general error message will be displayed
at the bottom of the page to notify the user of this problem.

4.4.2. Search implementation
For the search implementation, the SearchUI library was used. This is a library provided and main
tained by Elasticsearch. It provides a way to keep track of the state of the search functionality, as well
as some basic components such as facets, results page and paging. However, due to the complex
nature of some of the objects we are using, such as nested objects, the builtin query building function
ality provided by SearchUI and Enterprise Search5 could not be used as this does not support nested
objects. Luckily, the library provides a way of overriding this. This means that full control can be taken
over the creation of the search query performed by the search engine. A number of example queries
are listed in appendix G.

4.5. Logging
In order to facilitate the future development of this project, logging has been added. With logging, it
is possible to do bug tracking, such that frequent errors can be detected. Furthermore, data can also
be collected in order to further optimize the search engine. Therefore, the performed queries can be
logged to create aggregated statistics on the frequency of certain queries. In section 4.5.1 the approach
to error logging is described, afterwards in section 4.5.2 the query logging approach is illustrated.

4.5.1. Backend logging
In order to be able to identify certain recurring errors in the application, logging has been added to the
backend in case the API returns an error. To efficiently do logging, the logging package, provided
by Django, has been used. This package allows for several levels of logs: ‘info’, ‘debug’, ‘warn’ and
‘error’. Whenever the API returns a 4xx error to the client, it will log the errors generated by the
serializer or API.

These logs are converted to the following format: $date$ $level$$message$. They are then
stored in a file accessible to Logstash6. These will be read by Logstash and parsed into documents that
will be stored in Elasticsearch. This allows Kibana to query Elasticsearch for these logs. Afterwards,
the administrator will be able to group and evaluate these logs in order to identify often recurring errors
and which in that case may indicate a bug.
4https://github.com/axios/axios
5https://www.elastic.co/enterprisesearch
6https://www.elastic.co/logstash

https://github.com/axios/axios
https://www.elastic.co/enterprise-search
https://www.elastic.co/logstash

30 4. Implementation

Figure 4.2 shows a usecase example of displaying logs in Kibana. The piechart shows the log
levels detected in the logs in the inner level, and the error tag per log level on the outside. This piechart
was generated after the first time the scraper was run in combination with the backend. Thanks to this
piechart, it was possible to identify a problem and also gave some indicators to where this might lie.

Figure 4.2: Kibana display error

4.5.2. Query logging
Due to certain limitations described in section 5.4 regarding our search engine evaluation, we strongly
recommend that this is further investigated in the future. In order to do this efficiently, it is important to
have an idea of the queries which are executed in the search engine. It was therefore decided to log
all the queries which are performed.

These logs, unlike the backend logs, are more complex in format with the pattern
[&date&][&loglevel&][&25c1.&] [&node_name&] &m&, where &m& refers to the query infor
mation with the total amount of time taken for running the query, which fields were queried and what
the query was. Being able to access this information gives the administrator of the application the pos
sibility to collect more data for future search engine evaluations as well as identify potential problems
with the system. For instance in case of sudden spikes in query execution time.

Figure 4.3 shows an example of the statistics created with these query logs in Kibana. Each bar
represents a query and the length of the bar represents the number of times this query is performed.
When hovering over the the bars, the full query will become visible. See appendix G for the actual
queries related to this chart.

4.6. Docker implementation 31

Figure 4.3: Query logging statistics, see appendix G for query details

4.6. Docker implementation
In order to provide a way to do manual integration testing as well as rapid and easy deployment, we
decided to containerize our application using Docker7. We have created a container for each service
that we have implemented: RESTserver, frontend and scraper. We have used the dockers provided
by Elasticsearch in order to gain access to Elasticsearch, Kibana and Logstash without needing to
install them locally. These have been configured using the dockercompose8 functionality provided
by Docker. This provides the developers with easy access to the code base in order to implement
new features without needing to go through an extensive setup processes. Below, we will describe the
images we have used in order to run our different services.

4.6.1. RESTserver
The RESTserver image is created through the Dockerfile.backend. python3.8.3alpine is
used as a base image, this provides us with an instance of Python version 3.8.3 installed in Linux Alpine.
Alpine was used as this provides us with a security oriented and lightweight OS and thus also a secure
and lightweight container [35]. This, however, meant that we needed to install gcc, postgresqldev,
python3dev and musldev ourselves as these are necessary dependencies to run our code which
are not provided by pip.

4.6.2. Frontend
The frontend image is created through a two stage docker file described in Dockerfile.frontend.
During the build stage we use the node:13.12.0alpine image. This provides the necessary node
dependencies in order to build the React project. Once the build is complete, these files are copied to
a nginx:stablealpine image. This allows us to use NginX9 in order to serve our previously
generated files to a client. In the NginX config we have specified from where to serve our React
application as well as the needed proxies to the backend and Elasticsearch. This means that we
7https://www.docker.com/
8https://docs.docker.com/compose/
9https://www.nginx.com/

https://www.docker.com/
https://docs.docker.com/compose/
https://www.nginx.com/

32 4. Implementation

have full control over the exposure of our Docker’s endpoints and we can thus decide which endpoints
should or should not be exposed.

4.6.3. Scraper
The scraper image is, similar to the backend, based on the python3.8.3alpine image. During the
creation of the image, we schedule the Python script to be run every day at 2:30 AM using Crontab10. A
command can be given to this container which will be run once, this will allow the maintainers to make
an initial run of the scraper to populate the database if needed.

4.6.4. Security
Other than ease of deployment, the use of Docker also provides a certain level of security. This is
considered very important due to the personal nature of the data which is being stored. In literature
it is argued that Docker containers are fairly secure at their default configuration, nonetheless care
should be taken through the use of only trusted images and limit their operating level to ‘nonprivileged’.
Furthermore, tools such as AppArmor or SELinux can be used as hardening solutions in order to further
secure the application [36]. The usage of these hardening solutions for the Linux kernel is something
which should be investigated further, but fell outside the scope of this project.

4.7. Testing
Knowing that the scraper could become a fragile tool for the application, it became clear that we needed
an extensive testing method in order to make sure the system was as failureproof as possible. Sec
tion 4.7.1 discusses the approach taken in order to achieve this. Furthermore, in order to achieve
correct functionality in the backend and the frontend, a testing framework was also setup for these.
These frameworks are discussed in section 4.7.2 and 4.7.3 respectively. The search engine will not
be tested in a way similar to the scraper, the frontend and the backend, but will be evaluated in sec
tion 5.4. To be able to distinguish whether our software has been sufficiently tested, and thus meet the
requirement regarding testing in table 2.10, the quality of our test suites should be gauged. This has
been done using a coverage tool called Jest11 for the RESTAPI and Coverage.py12 for the scraper.

4.7.1. Scraper testing
The tests for the scraper predominantly comprise unit tests, which can be subdivided into two main
categories: autogenerated unit tests and manually written unit tests. The former has been used for
the parse methods in each spider that heavily relies on the Scrapy framework, whereas the latter has
been used for testing helper methods and utility functions and classes. Each category is discussed in
their respective subsection. Besides unit tests, manual testing has also been applied to situations in
which unit tests could not suffice.

Autogenerated unit tests
One of the reasons for choosing Scrapy over other alternatives is a package called scrapyautounit13

for automated testing, which proves to be especially useful for most parse methods in each spider.
While enabled, test fixtures and test cases are automatically generated when a spider is run. In other
words, the moment the spider is run while automated test generation is enabled, Autounit captures the
output of the spider and the responses to the requests the spider makes. Then, when the tests are
run, the output of the spider at that time is compared to the saved output, using the emulated internet
connection.

However, Autounit is not a cureall method of test generation. For instance, some spiders require
the use of a headless browser to support vacancy websites that use JavaScript to dynamically load
their content. Even though Scrapy is compatible with this, Autounit unfortunately is not. To solve the
issue, parse methods that rely on such a browser have been tested by manually inspecting the output
JSON data. Moreover, it must be noted that these are regression tests and do not account for changes
in the web pages or URLs. They only test if changes made to the spider changes its output.
10https://crontab.guru/
11https://jestjs.io/
12https://coverage.readthedocs.io/en/coverage5.3.1/
13https://github.com/scrapinghub/scrapyautounit

https://crontab.guru/
https://jestjs.io/
https://coverage.readthedocs.io/en/coverage-5.3.1/
https://github.com/scrapinghub/scrapy-autounit

4.7. Testing 33

Unit tests
Besides using autogenerated tests, unit tests have also been written manually to cover the spiders’
helper methods as well as the utility classes and functions. Most tests have been parameterized, as
parameterized tests reduce code duplication and improve readability.

4.7.2. RESTserver testing
To test the RESTserver, we have decided to use the Django REST Framework API’s standard test
classes. The Django model also provided us with a request_factory which made simulating re
quests simple. Using these tools we have tested every API endpoint.

4.7.3. Frontend testing
For the testing of the frontend, it was decided to use the React Testing Library. This testing library
comes installed automatically through the ‘reactcreateapp’ functionality provided by React. It allows
for the creation of unit tests for each component and hook of the application. The React Testing Library
allows these components to be rendered and interact with them during a unit test. In order to verify
the correct interaction, Jest14 can be used. Jest allows for assertions on the state of components to be
made using their Matcher system, as well as mock certain methods in order to verify behaviour, such
as making requests to the API.

14https://jestjs.io/

https://jestjs.io/

5
Product evaluation

5.1. Overview
In this chapter, the final product will be evaluated. Section 5.2 provides an evaluation of the require
ments. For each requirement, it will be decided whether it has been met or not. Afterwards, also the
design goals will be evaluated in section 5.3 in order to make sure we have met them. In section 5.4
the evaluation of the search engine will take place. Section 5.5 will discuss the evaluation of our soft
ware quality by the Software Improvement Group (SIG). Lastly, ethical implications will be discussed
in section 5.6.

5.2. Product evaluation
The final product will be evaluated based on the requirements created at the start of the project, see sec
tion 2.7. An evaluation of these requirements can be found in table 5.1. From the evaluation it becomes
clear that all musthave and some Shouldhave requirements have been completed. This means that
the final product can be considered as a ‘minimalviableproduct’ which still leaves improvements to be
made in the future. Screenshots of the final product can be seen in figure 5.1

5.3. Design goal evaluation
In this section the design goals that have been set in section 2.8 will be evaluated to make sure they
have been met.

5.3.1. Security and privacy
In order to reduce the chance of data leaking and unwanted access to the services, Docker images are
used given that literature suggests that they are fairly secure [36]. Furthermore, extra caution has been
taken not to log any personal data when query and error logging is done. This ensures that ‘the right to
be forgotten’ can be enforced. We therefore believe that we have met this design goal. Nonetheless,
security considerations are not only important during the design and implementation phase, but should
also be taken into consideration during deployment. For example, during deployment extra care should
be taken that the website is only accessible through HTTPS and and users should be made aware that
they are responsible for using sufficiently strong passwords for their accounts.

5.3.2. Maintainability
We believe that the system is easy to maintain, as the scrapers have been designed in a way that
new scrapers can be added with minimal effort. Maintainers will need basic Python skills and the
maintenance process requires time, which may entail monetary investments.

Furthermore, extra effort has been put in to make sure that there is sufficient documentation and
the code is comprehensible. This is reflected in the favorable maintainability score we received from
the Software Improvement Group (SIG), as discussed in section 5.5.1. Furthermore, SIG’s suggestions
have also been processed in order to further improve the maintainability and thus make sure this design
goal is met.

34

5.3. Design goal evaluation 35

Requirement Done/
Not done Comment

Vacancies
Recruiters can search for va-
cancies Done

Recruiters can filter on cate-
gories Done Recruiters can filter based on: salaries, certifi-

cates and companies
Recruiters have access to the
tool via a web interface Done

Vacancies must be retrieved at
a regular interval Done

Vacancies must be retrieved
from all current associated
companies’ website

Done
The websites of KOTUG and Ahoy are not con-
sidered here since they had no vacancies on their
websites and therefore could not be scraped.

Companies are able to upload
vacancies straight to the web
interface

Done Can be done by recruiters associated with the
company.

Scraped vacancies can be
edited through the interface Done This is done, however when the vacancy is

scraped it might override the changes.
Show number of results when
filtering Done

Recruiters can save favorite va-
cancies Not done Insufficient time to finish requirement.

Recruiters can see similar va-
cancies Not done Insufficient time to finish requirement.

Resumes
Allow recruiters to search for
resume Done

Recruiters can upload an em-
ployees resume Done

Recruiters can create resumes for their employ-
ees. Here they can add basic information, edu-
cations, previous experience and skills.

Allow recruiters to send mes-
sages about resumes Not done

Allow recruiters to see which
employees are looking for a job Not done Insufficient time to finish requirement.

Allow recruiters to save their
queries for resumes Not done Insufficient time to finish requirement.

Interface
Users can login Done

Users cannot register them-
selves but should be invited Done

New users should be added by an admin account,
they will then receive an email to complete their
account and create a password.

Users can view the companies
associated to Rotteram Werkt Done The admin can add companies to the platform

with basic information.
Non-functional requirements

The web scraping tool must be
tested on all websites of the
participating companies

Done
The websites of KOTUG and Ahoy are not con-
sidered here since they had no vacancies on their
websites and therefore could not be tested.

Code must be easily extensible
to support more vacancy web-
sites

Done New spiders can easily be added and they will
then automatically be run.

All frameworks and program-
ming resources must be free of
charge

Done

The final product must be able
to run on a VPS running Linux Done The final product is able to run in Docker which

will run on most popular Linux distributions.

Table 5.1: Requirements evaluation

36 5. Product evaluation

5.3.3. Ease of deployment
Given that the client mentioned that they will hire students to maintain the system in the future, a simple
and easy way of deploying the application is needed. In order to meet this goal two actions have been
taken. First of all, the deployment is done using dockercompose. This gives the developer the
option to, with a single command, restart a single service or the whole stack, when components of the
software have been update. Secondly, there is an extensive deployment guide in the README.md file
which explains in details how the system should be configured. Certain team members did not have
any Docker experience when starting the project, and when they followed this guide, they were able to
setup and run the project without any trouble.

(a) Example vacancy as displayed in the final product (b) Example resume as displayed in the final product

(c) Example company as displayed in the final product

5.4. Search engine evaluation 37

(d) Vacancy search screen

(e) Page containing all the related companies

Figure 5.1: Screenshots of the final product

5.4. Search engine evaluation
The effectiveness of the search engine is fundamental to the success of the final product, a platform
recruiters will use to find vacancies and resumes. As discussed in section 2.4, the search engine is
used to filter and retrieve data scraped from websites or inserted by users of the platform, making direct
or indirect use of features such as those listed in table 2.4.

In this section, the search engine is evaluated. By evaluating the search engine, it can be measured
to what extent the built platform solves the problems defined in section 2.2 from the perspective of
the users who will be using the search engine. First, our approach to evaluating the search engine is
explicated in section 5.4.1. The search engine’s cost and effectiveness are then respectively evaluated
in section 5.4.2 and section 5.4.3. Finally, limitations of this evaluation are discussed in section 5.4.4.

5.4.1. Approach
When evaluating a search engine, a distinction is made between effectiveness, representing the en
gine’s ability to retrieve relevant documents, efficiency, an indication of the speed of the search engine

38 5. Product evaluation

and of its space requirements, and cost, the investments needed to implement and run the search en
gine. Croft et al. [37] argue that in deciding on the importance and the targets of two of these factors,
the third factor is automatically determined. For instance, if effectiveness and cost are deemed most
important, and targets are subsequently set for these factors, efficiency is determined by them.

In the context of this research, the importance of these factors is decided by the client. The list
of product requirements in table 2.10, derived in cooperation with the client, shows a preference for
low development cost and high effectiveness, which may have implications on efficiency. However,
considering the client’s preference for low cost and high effectiveness over high efficiency, as well as
the time constraint of this project, the efficiency of the search engine is not evaluated.

In order to evaluate the costs, we discuss the investments that are required to facilitate the search
engine, which are made up of framework, data storage, and maintenance costs. The evaluation of
the search engine’s effectiveness is based on a comparison of two retrieval functions with a baseline
retrieval function and their ability to retrieve relevant documents, after which we explain which retrieval
function is used in the platform and why.

5.4.2. Cost evaluation
A requirement of the final product is that all frameworks and programming resources must be free
of charge. This requirement was an important factor in the selection of the frameworks and libraries
that are used in the final product, as discussed in chapter 2. No frameworks or other programming
resources that require purchasing were used in the creation of the platform, and so the framework
behind the search engine is free of charge as well, which means the only costs regarding the search
engine may come from its maintenance and data storage.

Regarding data storage, the only data that is maintained by the search engine and that takes up an
amount of storage of any significance consists of the indices that are used to find data that is stored
in a separate database. At the time of writing, the indices concerning scraped vacancy data, with less
than 800 vacancies in total, cost less than 11 MB of storage. This can be considered negligible even if
the number of vacancies increases by multiple orders of magnitude, which is unlikely as the platform
will be used by a mostly constant network of organizations that operate near Rotterdam. Similarly, the
logs stored in Logstash, as discussed in section 4.5.2, take up little storage: the approximately 35,000
logs accumulated during the development process require around 3 MB of storage. Even considering
the number of logs will likely grow more quickly than the amount of vacancies, as logs are generated
continuously and are potentially stored for a longer time, the required storage for the logs, too, is
negligible. It is therefore not expected that space requirements of the search engine will bring any high
costs in the near future.

The cost of maintenance of the search engine is dependent on the future wishes of the client once
the platform is transferred toRotterdamWerkt!; any future modifications to the search engine may bring
about additional costs. However, if it is only desired that the search engine is kept running without further
modifications, we believe this will require minimal effort and thus few costs. We therefore conclude that
the search engine is indeed lowcost, which meets the requirements.

5.4.3. Effectiveness evaluation
The effectiveness of a search engine depends on the search engine’s ability to retrieve relevant doc
uments. In this research, the retrieved documents are vacancies and resumes. However, we only
evaluate the search engine’s ability to find relevant vacancies, and not resumes, for two reasons. The
first is that resumes require manual input into the platform and are not scraped. Consequently, dur
ing the research, we have had access to 677 vacancies posted on the websites of the companies in
Rotterdam Werkt!, but not to any resumes posted by actual job candidates, that would be used in a
practical scenario; there would be no resumes to retrieve and therefore no resume retrieval to evaluate.
Secondly, as a part of the problem statement in section 2.2, vacancy retrieval is more fundamental to
the platform than resume retrieval in the context of this research.

To be able to measure a vacancy’s relevance, we first define what it means for a vacancy to be
relevant. We then describe the process of labeling vacancies’ relevance through relevance judgments,
and what role search topics and pooling play in this. Lastly, we compare two retrieval functions with a
baseline retrieval function and indicate which one looks to be most able to retrieve relevant vacancies.

5.4. Search engine evaluation 39

Definition of relevance
When the platform produced in this research is being used by recruiters, the recruiters’ goal is to find
vacancies that may suit a certain candidate based on the candidate’s resume and future job wishes, and
to ultimately propose such vacancies to the candidate so the candidate may find a job they are looking
for. As such, a vacancy may be relevant if its demands match a candidate’s experience and certificates,
and if its topic matches a candidate’s wish to be employed in some field. However, although a vacancy’s
demands may be easily checked against a candidate’s background to filter relevant vacancies, they do
not necessarily form a rigid bound to the set of relevant vacancies. For instance, a candidate with an
education level that is lower than the stated requirement for a given vacancy may still be accepted if
they are willing to attend additional schooling to meet the educational requirements later. Similarly, a
candidate’s wishes to work in some field do not necessarily exclude vacancies in other fields.

This implies that a vacancy’s relevance is not as much related to topical relevance as it is to situa
tional or practical relevance: the recruiter is interested in any vacancy that may be of practical use to
a candidate [38]. Determining whether a vacancy is relevant is thus a subjective process and ideally
determined by the future users of the platform (the recruiters looking for relevant vacancies for their
candidates). Unfortunately, due to a lack of responses from the recruiters in the network of Rotterdam
Werkt! to an inquiry about what they find to be relevant vacancies, we had to determine relevance on
our own. The implications hereof on the evaluation of the search engine are discussed in section 5.4.4.

Search topics
When users have some information need which they wish to have answered through a search function,
they use search queries as a means to retrieve documents that are expected to be relevant to this
information need. It therefore makes sense to judge the relevance of retrieved documents relative to
this information need. To concretize recruiters’ information needs with regard to finding vacancies that
match candidates’ experience and wishes, we compiled a set of 42 search topics that reflect situations
in which recruiters have such information needs. Five of these topics were written by recruiters; the
remaining 37 were based on postings by recruiters of the network of Rotterdam Werkt! on LinkedIn.
Examples of such topics are as follows1:

“I am looking for a vacancy for an administrative employee with an MBOlevel financial
background.”
“I am looking for a vacancy for an interim business controller for a retail organization.”
“I am looking for a vacancy for a tax accounting specialist with experience in international
structures.”

To find vacancies that are expected to be relevant to the search topics, each topic is accompanied
by a search query that is to be entered into the search function. The search topics along with their
respective search queries are listed in appendix F.

Pooling
Now that we have a set of search topics that reflect recruiters’ information needs and a set of retrievable
documents consisting of 677 vacancies, the relevance of the vacancies with respect to the search topics
can be determined. However, judging for each search topic whether each vacancy is relevant or not
would mean performing a relevance judgment over 28,000 times2 – an infeasible amount given the
time constraint of this research and the limited size of the research group. Instead, we make use of
pooling, where the union is taken of the topn vacancy results of each retrieval function for each search
topic [37]. Choosing 𝑛 = 10 would result in at most 30 relevance judgments per search topic when
comparing three retrieval functions; all vacancies outside the pools are assumed to be nonrelevant
with respect to a search topic [39]. We indeed applied pooling with 𝑛 = 10 for the results returned by
three retrieval functions for each of the 42 search topics.

Retrieval functions and baseline
As stated in section 2.4, Elasticsearch is the search engine used in the platform. Elasticsearch’s default
document scoring mechanism uses BM253 [41], which is also the mechanism that is used in the three
1Translated from Dutch.
2One judgment per vacancy per search topic, which is 677 ∗ 42 = 28434.
3For more information on BM25, see for instance [40].

40 5. Product evaluation

evaluated retrieval functions. The evaluated retrieval functions differ in the weights they assign to
specific vacancy fields (see figure 3.2). Table 5.2 shows the weights used in the three retrieval functions
(RFs).

RF title department education_level full_text job_type

Baseline RF 1 1 1 1 1
RF1 2 2 2 1 2
RF2 5 3 4 0.3 2

RF job_level job_location certificate_name company_name

Baseline RF 1 1 1 1
RF1 2 1 2 1
RF2 3 3 2 1

Table 5.2: Retrieval functions and their weights assigned to vacancy fields

The baseline retrieval function serves as a neutral retrieval function against which the other retrieval
functions can be compared. All its weights are equal, which means all fields contribute equally to the
ranking of vacancies4.

RF1 and RF2 have different weights, with a higher weight meaning that the field contributes more
to a vacancy’s ranking in search results. These weights are based on our expectations, backed by
correspondence with recruiters in the network of Rotterdam Werkt!, of which fields may be more im
portant to recruiters than others in the context of inputting words in a search query to find particular
vacancies. For instance, for both RF1 and RF2, the assumption is made that a vacancy’s text descrip
tion (full_text) generally contains more words that are unrelated to the job itself that the vacancy
is describing, compared to the other fields, as the full text description may not only contain information
about a job, but also about matters such as the company atmosphere or the job’s reachability via public
transport; and that this vouches for a lower weight for the full_text field in the ranking of vacancies.

Relevance judgments and judgment reliability
After pooling, we judged the retrieved vacancies per search topic. Again, it would have been ideal if this
was done by recruiters since they would know which vacancies would be relevant to their candidates
better than we do, but as was indicated earlier, due to a lack of response to inquiries, we had to judge
vacancy relevance ourselves. To make sure we would judge relevance in approximately the same way,
we held a calibration session in which we individually judged all vacancies retrieved for a single search
topic and then discussed each of these vacancies until we reached a consensus about their judgments.

To indicate what the impact on the results may have been of us judging vacancy relevance our
selves, we distributed the retrieved vacancies of eight search queries to two group members each (for
a total of 115 vacancies, and thus 230 combined relevance judgments), with a different pair of mem
bers for every two queries, so that an interannotator agreement, a measure of the agreement among
judges (in this case, judges of vacancy relevance), could be calculated [42]. The extent to which judges
agree reveals how easy or hard the judgment problem was, which may implicitly indicate the judgments’
reliability. We used Krippendorff’s alpha (𝛼) as a measure for the interannotator agreement, as this
measure allows for the assessment of more than two judges, takes into account missing data5, and
has software implementations to efficiently calculate the measure6 [42].

4It should be noted, however, that not all companies use the same structure for their vacancy postings, and thus that not
all vacancies have information in all vacancy fields; for instance, if a vacancy is scraped that has no information on the
job level, the job_level field will be empty. A vacancy with a filled-in field of which the contents have a match with a
search query will have a higher score compared to an equal vacancy that does not have a value for this field. This means
that vacancies with more filled-in fields that match with a search query will be ranked higher compared to vacancies
with fewer filled-in fields.

5As stated, each of the distributed vacancies was judged by two group members, meaning that there are missing judgments
for the other three members for each vacancy.

6We used the kripp.alpha function in R’s irr library to calculate Krippendorff’s alpha based on our relevance judgments.
See https://rdrr.io/cran/irr/man/kripp.alpha.html.

https://rdrr.io/cran/irr/man/kripp.alpha.html

5.4. Search engine evaluation 41

The possible values for 𝛼 range from 0 to 1 (inclusive), where 𝛼 = 0 implies total absence of
agreement, and where 𝛼 = 1 implies complete agreement [43]. Based on our relevance judgments,
we found a value for 𝛼 of 0.89, indicating that most judgments by different judges were in agreement
with each other. This implies that the fact that the relevance of the vacancies was judged by five different
judges, does not reduce the reliability of the relevance judgments – yet it should still be kept in mind
that the judgments were not performed by future users (recruiters) who have practical experience with
vacancies and matching them to candidates.

The retrieved vacancies of the 34 remaining search queries that were not already distributed, were
divided among the group members such that the retrieved vacancies of each remaining query would
be judged by one group member.

Effectiveness measures of retrieval functions
Having judged the relevance of all retrieved vacancies for each search topic, we calculated effective
ness measures for each retrieval function in table 5.2. These measures make use of another measure
called the precision, which indicates for a particular search query the proportion of retrieved vacancies
that were judged as relevant [37].

The first calculated measure is the average precision at rank 𝑟 (𝑝𝑟), which indicates the proportion of
the top𝑟 retrieved vacancies per search query that are judged as relevant. This is a value between zero
and one (inclusive) where zero indicates that none of the first 𝑟 topranked retrieved documents were
relevant, and where one indicates that all of them were relevant, on average. The second measure
is the Mean Average Precision (MAP), which indicates the average precision for each search result
ranking (from one to ten, in this case) for each search query, combined [37]. Table 5.3 shows the
values7 for the average precision at ranks 5 and 10 and the MAP for each retrieval function.

Retrieval function Precision 𝑝𝑟 at rank 𝑟 MAP
(0 ≤ 𝑝𝑟 ≤ 1) (0 ≤ 𝑀𝐴𝑃 ≤ 1)

𝑟 = 5 𝑟 = 10
Baseline 0.36 0.41 0.49
RF1 0.38 0.41 0.47
RF2 0.37 0.40 0.46

Table 5.3: Retrieval functions and their corresponding values of the precision at rank 10 and MAP measurements, rounded
to two decimals, based on search results of 42 search queries

Comparison of retrieval functions
To be able to decide what the effectiveness measures in table 5.3, and their differences, mean, we
conduct significance tests. These tests show whether RF1 or RF2 – the alternative hypotheses – may
be more effective than (reject) the baseline (the null hypothesis) [37]. In particular, we will compare
the retrieval functions using a onetailed paired ttest8, which takes into account all the effectiveness
measures of all queries individually.

The ttest thus produces a 𝑡value for each different effectiveness measure. The 𝑡values have a
corresponding 𝑃value, the probability that the baseline algorithm is capable of producing at least the
same 𝑡value, with 0 ≤ 𝑃 ≤ 1. The lower the value for 𝑃, the higher the chance that the alternative
hypothesis (in this case, RF1 or RF2) is more effective than the baseline; this is typically considered to
hold if 𝑃 ≤ 0.05 [37]. Table 5.4 shows the results of applying the ttest to the baseline retrieval function
and RF1 and RF2.
7The values were calculated using trec_eval by the American NIST’s Text REtrieval Conference (TREC), downloadable
at https://trec.nist.gov/trec_eval/. For more information, see [44].

8The paired t-test is defined in [37] as

𝑡 = 𝐵 − 𝐴
𝜎𝐵−𝐴

√𝑁

where 𝐴 represents the baseline retrieval function, 𝐵 the retrieval function to be compared to the baseline, ̄𝐵 − 𝐴 the
mean of the differences of the effectiveness measures, 𝜎𝐵−𝐴 the standard deviation of the differences of the effectiveness
measures, 𝑁 the number of queries used to evaluate the retrieval functions, which is 42, and 𝑡 is the t-test value.

https://trec.nist.gov/trec_eval/

42 5. Product evaluation

Retrieval function Effectiveness measure 𝑡 𝑃
RF1 𝑝5 0.61 0.27
RF1 𝑝10 -0.13 0.55
RF1 MAP -0.52 0.70
RF2 𝑝5 0.27 0.39
RF2 𝑝10 -0.38 0.65
RF2 MAP -0.64 0.74

Table 5.4: Values for 𝑡 and 𝑃 for each retrieval function and each effectiveness measure shown in table 5.3.

Neither RF1 nor RF2 have a 𝑃value lower than 0.27 for any effectiveness measure, meaning they
are not likely to be more effective than the baseline retrieval function where all weights for the vacancy
fields are set to 1.

Conclusion
Based on the ttest, the baseline retrieval function is not likely to be outperformed by RF1 or RF2, which
means the baseline is probably the most effective for practical use at the moment.

5.4.4. Limitations
There are some limitations to this evaluation of the search engine, which we will discuss here. In
section 7.2, improvements will be suggested for in future work.

The queries and relevance judgments used for the evaluation of the search engine were created by
us. This was done due to a lack of response in to inquiry that was sent out to the recruiters of Rotterdam
Werkt!. Although we attempted to gather search topics and corresponding search queries that would
represent situations that recruiters may encounter in their work, the evaluation would have been more
representative of practical use if there had been more input by recruiters. Furthermore, as we had to
judge relevance for search results ourselves, the evaluation may not be as reliable as it could have
been if recruiters had done the relevance judgments instead.

The retrieval function weights shown in table 5.2 were based on our expectation that some fields
may be more important to recruiters than others, in the context of finding vacancies by inputting search
queries in the search engine. However, weights could be generated more systematically by separating
the vacancy data in a training set and a test set, and where the training set would be used to find out
fitting weights and the test set to validate these weights [37].

Lastly, the effectiveness measures discussed in section 5.4.3 (precision at rank 10 and MAP) may
provide some insight in the effectiveness of the different retrieval functions, but this insight could be
made more complete by providing more different effectiveness measures. Furthermore, the measures
are calculated based on a limited amount of vacancy data and search queries, which may have an
impact on their accuracy.

5.5. Software Improvement Group
As part of the project, the code base was submitted to the Software Improvement Group9 (SIG). They
analysed the code base with respect to maintainability and reported on seven metrics, all scored out of
five stars. Their analysis will be discussed in section 5.5.1 together with the improvements that have
been made based on their report.

5.5.1. First submission
Figure 5.2 shows the general analysis performed by SIG. From this analysis it is visible that the system
requires some improvements in the aspects of duplication, unit size and unit complexity. Moreover we
also received feedback regarding unit interfacing and unit complexity, however no improvements will
be made to these as these already have high ratings.

9https://www.softwareimprovementgroup.com/

https://www.softwareimprovementgroup.com/

5.5. Software Improvement Group 43

Figure 5.2: SIG general analysis

Duplication
Figure 5.3 shows a table of refactoring candidates proposed by SIG which suffer from duplication. In
this table, most of the candidates are composed of React classes, in particular the screens and forms.
Further investigation has shown that there is indeed a lot of overlap in the way we use the ‘Formik’10
library to create forms for users to add and edit data.

In order to overcome this problem, ‘Formik’ provides a hook, useFormik()[33] which allows for
easy abstraction of form creation. This hook returns an object which contains the state of the form and
methods to update the state. This allowed for the form fields to be more generalized into a FormGroup
component which uses this object in order to render an input element on the screen.

This alsomeant that boiler plate code such as error handling and form submitting could be refactored
away into the abstracted method since this is very similar to all forms.

Figure 5.3: SIG duplication refactor candidates

Unit size
Figure 5.4 shows a table of refactoring candidates proposed by SIG which are considered to be too
large. At first sight there seems to be a significant overlap between the unitsize refactoring candidates
and the duplication candidates. This suggests that when we perform our abstraction from section 5.5.1,
many of these unitsize problems will be solved since the duplicate code will be removed.

Nonetheless there are still some units which remain after this refactor, most notably the set
tings.py and Resume.tsx. For the settings.py file there are limited options, given that this
is the settings file the Django project expects and thus all settings must be placed in here therefore it
10https://formik.org/

https://formik.org/

44 5. Product evaluation

Figure 5.4: SIG unit size refactor candidates

was decided to not refactor this file. Furthermore, the Resume.tsx file could be a false positive for this
metric. The file consists of several small interfaces, which are used by the TypeScript typing system.
Also for this file it was decided to not refactor it, given that it actually exists out of 10 interfaces (of which
only eight are counted towards the unit size) which are each at most ten lines. The only option would
be to further split these interfaces into different files, however this would also increase the number of
files in the project and thus still make it more complex.

Additionally, from the scraping point of view, the SIG report mentions several spiders as possible
candidates for refactoring. However, the suggested methods and functions were relatively long for valid
reasons. The common characteristic amongst the suggested candidates is the fact that the candidate
methods assigned values to a large number of vacancy fields. That is, the spiders the methods belong
to retrieve a lot of data. The data assignment had to be centralized in a single method to keep the
methods simple, coherent and readable. If more than, or close to, ten fields were retrieved, the method
contains one line per field, sometimes a few lines more. Splitting the method into smaller methods
would therefore have little effect and only needlessly increase complexity and decrease readability,
as each field has to be assigned at some point. Another common factor was nested methods, which
increase the unit length of the outer function or method. Given that nested methods can simply be
unnested, at the cost of sacrificing enclosed scopes, the unit length could be reduced. This has been
done for all suggested candidates in the scraper.

Unit complexity
Figure 5.5 shows a table of refactoring candidates proposed by SIG which are considered to have a
McCabe complexity which is too high. This is a complexity which is based on a graph representation
of a method where statements such as if and for can cause branching [45]. Keeping the complexity
low has the advantage that the method needs to be tested less extensively, since there are less cases
to test and the code becomes more readable.

This list shows that there is reasonable overlap with the Duplicate code and Unit size. Given that
these files have already been abstracted, many of the if and for statements have also been ab
stracted away. This results in having more units, but each unit being less complex.

The SIG report also suggests that a couple of methods used in the scraper could be reduced.
The two main candidates are the generate_datetime function and the parse_vacancy method
for several spiders. The common factor for these candidates is the fact that the methods make use
of nested methods or functions, which increase code complexity as well as unit size. After careful
consideration, the nested methods and functions have been unnested, since we believe this to improve
readability, decrease complexity while sacrificing the enclosed scope of said methods and functions.

Unit interfacing
The SIG report states that the scraper contains several methods ought to be refactored with regards
to the number of parameters. Though, four out of five candidates are methods of the framework used.

5.6. Ethical implications 45

Figure 5.5: SIG unit complexity refactor candidates

Thus, those candidates need not be adjusted. The fifth candidate, on the other hand, namely full_
text_sanitizer in sanitizer.py, has not been refactored either, as the str parameter does
is not present in the function and the parameters outer_joining_string and inner_joining_
string have default values, which only need to be specified if the callee wishes to deviate from this
default, this is only needed in very few cases.

Module coupling
According to the SIG report, these two scripts have high coupling: sanitizer.py and value_
extraction.py. Though, we were already aware that this would be the case. The two suggested
files contain functions that are crucial for handling and extracting data. As each spider needs data
sanitization and data extraction, the scripts are called often, hence it was decided not to make any
refactors.

5.6. Ethical implications
Considering that data is being logged, ethical implications ought to be taken into account. Besides the
fact that GDPR compliance has become a must in recent years, being able to remove someone’s data
when requested is also an ethical must. Extra caution has therefore been taken such that we are not
logging personal data, or data which can be linked to a person. This means that personal data will only
be stored in a database and Elasticsearch of which both data can easily be removed. The database
can easily remove a single entry linking to a person and Elasticsearch can delete a complete index and
recreate it from the database, after the user was deleted, within minutes.

6
Process evaluation

During the project, some of the choices made regarding the process turned out to work really well whilst
others did not seem to work or resulted in a different outcome. In this section a short description will be
given of the positive and respectively the negative parts of our process, with ways to improve or avoid
them in future projects.

There were quite a few process choices that positively affected our project. The development
methodology, Scrum, was very helpful in being able to break down the project in smaller pieces and
setting periodic goals for the project. These goals made it possible for everybody in the team to have
clear targets while working on the project. The daily standups allowed the entire team to be continu
ously up to speed. It encouraged each team member to actively discuss their current tasks and any
potential struggles. Whenever anybody pointed out any difficulties, others were always able to jump in
and help out in order to overcome these hurdles. This significantly sped up the development time as
nobody could spend more than one day stuck on a certain issue.

Nonetheless, there were also some issues in the development process. In our initial planning we
expected that implementing the scraper would be done by week five of the project. Unfortunately,
creating the scraper was more complex in the end and therefore took more time. In the end the scraper
was finished in week eight. This meant less development time was put into the frontend and the back
end, hence some of the shouldhave and couldhave features have not yet been finished. For future
projects it is very important to take this complexity in mind, and to be very mindful of the impact that a
reduced amount of the development power could have on the final product.

Furthermore, it would have been desirable to have kept the client more involved throughout our
development process. However, this project lasted for roughly ten weeks, of which several weeks were
spent on doing research and writing the report. For an organization that has existed since 2016[46],
ten weeks is relatively insignificant. Given that said organization comprises several companies and
organizations, each with their own desires and priorities, one may consider our main client to actually
be several smaller clients. As a result of these factors, scheduling a meeting was rather difficult. It
often took over a week to plan a meeting, which is a relatively substantial amount of valuable time.

Despite these challenges, we tried to involve the client in the most important phases of this project:
setting the requirements and evaluating the platform. While we were able to successfully involve the
client in the former phase, as we received valuable feedback, the latter phase posed some impactful
issues. In the latter phase, we asked the client to provide feedback for the platform we created, by
providing search topics that we could use for evaluating the search engine. We believe to have given
them sufficient time to do so, namely at most four hours of work spread over roughly ten working days.
However, either the time we provided was insufficient, or the client considered the evaluation to be of
lesser priority. Either way, this meant we had to create search topics and queries ourselves, which cost
significant time and has possibly resulted in a less accurate search engine. One of the most challenging
aspect of this projects was therefore cooperating with more than just one client within such a short time.

46

7
Conclusion and future work

7.1. Conclusion
At the start of this project,RotterdamWerkt!’s wish was to have a platformwhich combines all vacancies
from all the Rotterdam Werkt! organizations. This platform helps their recruiters to find new positions
for their current employees in order to boost internal mobility of the work force. Even though platforms
such as Indeed and LinkedIn already exist, these are all paying services and they wanted a private
nonsubscription platform.

At the start of the project a lot of research was done into similar platforms and potential tools that
could be used in order to make this project successful. The two major tools our project depends on
are Scrapy for collecting vacancies from the companies related to RotterdamWerkt!, and Elasticsearch
which provides a RESTful search engine such that the user can search and filter through the vacancies
which were scraped.

After two weeks of research and seven weeks of implementation, the system was fully designed, im
plemented and tested. This includes an evaluation of the performance of the search engine. However
limited due to the lack of data, this evaluation provided important insights into the future development
and optimization of the search engine in order to further improve the platform.

To conclude, we believe this project was a success. We have created a tool which will collect all the
vacancies from each website of the organizations in Rotterdam Werkt! and provided a platform which
will allow the recruiters to search for the vacancies and resumes. Furthermore, the tools have been
provided in order to collect more data for a future evaluation and optimization of the search engine
which is strongly advised. Lastly, considering that our system was developed and tested in 7 weeks
proves the power of the usage of modern and suitable frameworks, therefore we believe that our system
is easily extensible in order to allow for future changes in the Rotterdam Werkt! network.

7.2. Future work and recommendations
In the previous sections, some limitations to the current system have been described. Based on these
limitations, some suggestions and future work options will be given. In section 7.2.1 future work for the
search engine is discussed, future work for query logging in section 7.2.2, and in section 7.2.3, future
work for the scraper is discussed.

7.2.1. Search engine evaluation
In section 5.4, the evaluation of the search engine was discussed. This evaluation has some limitations
as mentioned in section 5.4.4. One limitation is that search topics and search queries were mostly
derived by us from posts on LinkedIn by recruiters, and that most were thus not directly provided to us
by recruiters for the sake of the evaluation of the final product. Ideally, the users of the search engine
(the recruiters, in this case) would provide a list of search topics with accompanying search queries
for the evaluation of the search engine, as recruiters have practical experience with finding particular
vacancies and matching vacancies with potential job candidates. Furthermore, although it was shown
in section 5.4.3 that the interannotator agreement among the group members performing relevance

47

48 7. Conclusion and future work

judgments was relatively high, the relevance judgments may be more reliable if they would be done
by recruiters themselves, since, again, they have more experience in judging whether some vacancy
suits a job candidate or not.

We therefore recommend to repeat this evaluation with search topics, search queries and relevance
judgments that are provided directly by recruiters. In order to aid this, a query logging system has been
implemented. This will record all the queries performed in the application. Being able to log these
queries helps with gathering queries for a new evaluation. Since these queries are obtained in the
production phase from actual users of the system, it can be expected that they will be more relevant
for the evaluation than the ones which were used in this research. Methods to apply query logging in
the evaluation of a search engine are discussed in [37].

Furthermore, we also suggest to extend this evaluation to the resume search engine. Due to a lack
of resume data and insufficient time to gather more data, it was not possible to conduct a significant
evaluation. By gathering resume data, search topics with accompanying search queries concerning
resume searching, as well as relevance judgments, the resume search engine can be evaluated and
subsequently optimized as well.

Regarding the retrieval functions that were compared in section 5.4.3, the weights could be gener
ated more systematically. A proposal is to separate vacancy and resume data in training and test sets,
and to use the training sets to find out fitting weights for document attribute fields, and the test sets to
validate these weights [37]. This way, the retrieval functions’ weights can be tailored especially to the
tasks of finding relevant vacancies and resumes.

Lastly, the effectiveness measures calculated in section 5.4.3 are based on a limited amount of
vacancy data and search queries. Their accuracy, and thus that of the final comparison of retrieval
functions, can be improved by evaluating the search engine based on more vacancy data and search
queries.

7.2.2. Query logging
Currently queries are logged at a very verbose level as can be seen in figure 4.3. Only exact queries can
be matched, meaning that the filters, search term and size must match in the retrieval function before
the queries will be identified as equal. In order to better perform query logging it would be valuable to
extract the filter, search term and size. This means that more aggregations can be applied to the data
in order to further identify potential trends. This will furthermore improve the search engine evaluation
described in section 7.2.1 as more constructive data will be available to use.

7.2.3. Scrapers
Even though the scraper is capable of scraping the vacancy websites of all organizations connected
to Rotterdam Werkt! containing vacancies, the scraper can be improved. For instance, the scraper is
tailored to the current vacancy websites. If these websites change significantly, either their layouts,
URLs or architecture, the scraper will fail. Future work thus lies in making the scraper more robust
such that it is able to adapt to such changes to larger extent. Additionally, if more organizations join
Rotterdam Werkt! and if said organizations wish to be included in the centralized vacancy platform,
the scraper should be extended manually. That is, a separate spider should be implemented for that
organization.

Appendices

49

A
Original problem statement

The content in this appendix is a direct copy of the original BEP proposal published on ProjectForum
(https://projectforum.tudelft.nl/). Although the text remains identical, small changes have been made
to the layout to reflect the visual style of this document.

A.1. Project description
“Rotterdam Werkt!” is een netwerk van ongeveer 20 organisaties in de regio Rotterdam. De TUD en
de EUR zijn er lid van. Het netwerk is opgezet om onderlinge mobiliteit van medewerkers te vergroten.
Elke organisatie heeft zijn eigen webpagina’s voor de publicatie van vacatures en tijdelijke projecten.
Het nu voorgestelde project moet er toe leiden dat er een searchtool komt waarmee de mobiliteitsof
ficers / HRadviseurs maar ook alle medewerkers van de bij het netwerk aangesloten bedrijven een
actuele listing onder ogen krijgen van alle op de ongeveer 20 sites van de bij het netwerk aangesloten
organisaties gepubliceerde vacatures.
De searchtool moet daartoe de betreffende pagina’s van de aangesloten organisaties dagelijks scan
nen en de daarop geplaatste vacatures op een logische wijze rubriceren. De mobiliteitsmanagers, HR
adviseurs en medewerkers moeten gericht naar specifieke vacatures en naar specifieke kenmerken
daarvan kunnen zoeken.

51

https://projectforum.tudelft.nl/

B
Info sheet

The following page contains the info sheet used to provide a short overview of the client company, the
project and the team members.

The remainder of this page is intentionally left blank.

52

53

Title of the project: Improving interorganizational mobility through centralizing vacancies
Name of the client organization: Rotterdam Werkt!
Date of final presentation: 29th January 2021

Description
Rotterdam Werkt! is a network of 14 companies in the region of Rotterdam. The network was setup in
order to increase employeemobility. Each of these organizations have their ownwebsite with vacancies
and temporary projects. Currently the recruiters of each company have to search through each website
individually in order to find a vacancy for one of their current employees inside the network.

The main challenge during this project was to retrieve all the vacancies which belong to companies
associated to the network and allowing these vacancies to be inserted into a searchtool such that
recruiters can easily find vacancies for their employees. Since the websites of the associated com
panies may change and companies may join the network, the challenge here was to make sure that
this scraper is maintainable. Furthermore, since the network is planning on using other students to
maintain this project, the rest of the code base also needs to be maintainable and easily deployable.

During the research phase the main focus was on finding the best tools in order build the scraper
and the search engine. As a result, it was decided to use Elasticsearch as a search engine and Scrapy
for the scraper.

The final product includes two serverside components, the scraper which will retrieve all the va
cancies and the API which is responsible for storing vacancies, authentication and authorization. Fur
thermore, it also includes a frontend which is connected to Elasticsearch and the API in order to allow
users to interact with the data. The final product could be developed further in order to include all the
couldhave and shouldhave features. Also, the search engine could be optimized further as more data
becomes available for this.

Members
L.E. van Hal masprojectl0l0l0l@gmail.com
Interests: Software engineering, (software) languages
Contributions: Scraping implementation, client contact, search engine evaluation
H.A.B. Janse hendrikjanse@live.com
Interests: Software engineering, programming languages, static code analysis
Contributions: Backend implementation, APIimplementation, Serializerimplementation, Database
Implementation
D.R. den Ouden nyetvoorspam@outlook.com
Interests: Software engineering, databases, scripting & automation
Contributions: Scraping implementation, CI pipeline and quality assurance
R.H. Piepenbrink rolfpiep@outlook.com
Interests: Software engineering
Contributions: Scraping implementation and quality assurance
C.S. Willekens cedric.willekens@hotmail.com
Interests: Software engineering, Programming languages, Static code analysis, Software architectures
Contributions: Frontend implementation, Backend implementation, API implementation, ElkStack
setup, Logging setup, Deploy setup

Contact Information

Client H. Bolk bolk@law.eur.nl
R. Rotmans r.rotmans@portofrotterdam.com

Coach Dr. C. Hauff c.hauff@tudelft.nl

The final report for this project can be found on https://repository.tudelft.nl

mailto:masprojectl0l0l0l@gmail.com
mailto:hendrikjanse@live.com
mailto:nyetvoorspam@outlook.com
mailto:rolfpiep@outlook.com
mailto:cedric.willekens@hotmail.com
mailto:bolk@law.eur.nl
mailto:r.rotmans@portofrotterdam.com
mailto:c.hauff@tudelft.nl
https://repository.tudelft.nl

C
Rotterdam Werkt! organizations

Company name Vacancies overview page URL
Rotterdam Ahoy https://www.ahoy.nl/informatie/vacatures
TU Delft https://www.tudelft.nl/en/abouttudelft/

workingattudelft/searchjobs/
Rotterdam The
Hague Airport

https://www.werkenoprotterdamthehagueairport.nl/vacatures

KOTUG https://www.kotug.com/about/careers
Vopak https://www.careersatvopak.com/vacancies
Erasmus Univer-
sity of Rotterdam

https://www.eur.nl/en/working/vacanciesacademicstaff,
https://www.eur.nl/en/working/vacanciessupportstaff

CGI https://www.cginederland.nl/nl/careerssearch?country_id=469
Evides https://www.werkenbijevides.nl/
Vanoord https://www.vanoord.com/nl/werkenbij/vacatures
STC Group https://stcgroup.nl/vacatures
Port of Rotterdam https://www.portofrotterdam.com/nl/vacancies/all
Engie https://jobs.engie.com/netherlands/jobs/search/reference
Facilicom Group https://werkenbijfacilicom.nl/vacatureoverzicht/
Huisman https://www.werkenbijhuisman.nl/vacatures

54

https://www.ahoy.nl/informatie/vacatures
https://www.tudelft.nl/en/about-tu-delft/working-at-tu-delft/search-jobs/
https://www.tudelft.nl/en/about-tu-delft/working-at-tu-delft/search-jobs/
https://www.werkenoprotterdamthehagueairport.nl/vacatures
https://www.kotug.com/about/careers
https://www.careersatvopak.com/vacancies
https://www.eur.nl/en/working/vacancies-academic-staff
https://www.eur.nl/en/working/vacancies-support-staff
https://www.cginederland.nl/nl/careers-search?country_id=469
https://www.werkenbijevides.nl/
https://www.vanoord.com/nl/werken-bij/vacatures
https://stc-group.nl/vacatures
https://www.portofrotterdam.com/nl/vacancies/all
https://jobs.engie.com/netherlands/jobs/search/reference
https://werkenbijfacilicom.nl/vacatureoverzicht/
https://www.werkenbijhuisman.nl/vacatures

D
Rotterdam Werkt! information sheet

The remainder of this page is intentionally left blank.

55

 Realiseert vrijwillige arbeidsmobiliteit

Wat is Rotterdam Werkt?
Rotterdam Werkt is een netwerk waarin vrijwillige arbeidsmobiliteit mogelijkheden aan worden geboden

voor getalenteerde en bevlogen mobiele medewerkers tussen aangesloten organisaties in de regio

Rotterdam.

Hoe werkt Rotterdam Werkt?
Het netwerk zoekt naar mogelijkheden en oplossingen om gezamenlijk de arbeidsmobiliteit tussen de

aangesloten organisaties te verbeteren, op een geheel vrijwillige basis en waar partijen geen financiële

bijdrage hoeven te leveren maar onderling afstemmen over de financiën. Arbeidsmobiliteit wordt

bevorderd op de volgende manieren:

o Vacatures – Het delen van vacatures met de aangesloten organisaties

o Detachering – Het “uitlenen” van personeel tussen de aangesloten organisaties

o Uitwisseling – Het uitwisselen van werknemers tussen de aangesloten organisaties

o Het delen van kennis over gerelateerde HR vraagstukken

o Ook kunnen er gezamenlijke projecten opgezet worden (bijv. een traineeship)

Rotterdam Werkt biedt kandidaten zowel tijdelijke als vaste werkervaringsplaatsen voor de gehele

werkende populatie (18-65 jaar). Werknemers krijgen hiermee de kans om binnen andere organisaties

nieuwe werkervaringen op te doen zodat zij zich beter kunnen oriënteren op ander werk. Daarnaast

kunnen werknemers zich door blijven ontwikkelen op de arbeidsmarkt door het leren van nieuwe

vaardigheden en competenties. Ook voor de aangesloten organisaties is het een uitkomst om gebruik

te kunnen maken van kennis en talent van andere organisaties in de regio.

Wat gebeurt er binnen Rotterdam Werkt?
Vier keer per jaar komen de partners binnen het netwerk bijeen in partnerbijeenkomsten. Daarnaast

zijn er vier keer per jaar recruitersbijeenkomsten waar business partners en recruiters van de

aangesloten organisaties bijeenkomen. De bijeenkomsten vinden op toerbeurt plaats bij de aangesloten

organisaties.

Elke betrokken organisatie uit het netwerk wordt in deze bijeenkomsten vertegenwoordigd door

tenminste een HR professional. Deze HR professionals fungeren ook als contactpersoon voor het

Rotterdam Werkt netwerk. Naast deze bijeenkomsten, worden openstaande werkervaringsplaatsen

(vacatures) en aanbod van personeel continue met elkaar gedeeld in het netwerk, d.m.v. e-mails of

persoonlijk contact.

Afspraken binnen Rotterdam Werkt
o Circulaire economie van mensen creëren

o Coallition of the willing

o Open en eerlijke communicatie

o Betrokkenheid

o Resultaatgerichtheid

o Gesloten beurzen

Als aangesloten partner bent u onderdeel van het netwerk en zorgt u voor een actieve bijdrage. Dit doet

u door kennis te delen en sterk betrokken te zijn bij het matchen van kandidaten.

E
Elasticsearch mappings

E.1. Vacancy
1 {
2 ”mappings”: {
3 ”_doc”: {
4 ”properties”: {
5 ”certificate_name”: {
6 ”type”: ”text”
7 },
8 ”company”: {
9 ”type”: ”nested”,

10 ”properties”: {
11 ”title”: {
12 ”type”: ”keyword”
13 }
14 }
15 },
16 ”company_name”: {
17 ”type”: ”text”
18 },
19 ”department”: {
20 ”type”: ”keyword”
21 },
22 ”education_level”: {
23 ”type”: ”keyword”
24 },
25 ”end_date”: {
26 ”type”: ”date”
27 },
28 ”full_text”: {
29 ”type”: ”text”,
30 ”fields”: {
31 ”en”: {
32 ”type”: ”text”,
33 ”analyzer”: ”english”
34 },
35 ”nl”: {
36 ”type”: ”text”,
37 ”analyzer”: ”dutch”
38 }

57

58 E. Elasticsearch mappings

39 }
40 },
41 ”hours_per_week_maximum”: {
42 ”type”: ”integer”
43 },
44 ”hours_per_week_minimum”: {
45 ”type”: ”integer”
46 },
47 ”id”: {
48 ”type”: ”integer”
49 },
50 ”job_level”: {
51 ”type”: ”keyword”
52 },
53 ”job_location”: {
54 ”type”: ”keyword”
55 },
56 ”job_type”: {
57 ”type”: ”keyword”
58 },
59 ”required_certificates”: {
60 ”type”: ”nested”,
61 ”properties”: {
62 ”name”: {
63 ”type”: ”keyword”
64 }
65 }
66 },
67 ”salary_maximum”: {
68 ”type”: ”integer”
69 },
70 ”salary_minimum”: {
71 ”type”: ”integer”
72 },
73 ”title”: {
74 ”type”: ”text”,
75 ”fields”: {
76 ”en”: {
77 ”type”: ”text”,
78 ”analyzer”: ”english”
79 },
80 ”nl”: {
81 ”type”: ”text”,
82 ”analyzer”: ”dutch”
83 }
84 }
85 },
86 ”years_of_experience”: {
87 ”type”: ”integer”
88 }
89 }
90 }
91 }
92 }

Code snippet E.1: Elasticsearch vacancy mapping

E.2. Resume 59

E.2. Resume

1 {
2 ”mappings”: {
3 ”_doc”: {
4 ”properties”: {
5 ”educations”: {
6 ”type”: ”nested”,
7 ”properties”: {
8 ”degree”: {
9 ”type”: ”text”

10 },
11 ”description”: {
12 ”type”: ”text”
13 },
14 ”field_of_study”: {
15 ”type”: ”text”
16 },
17 ”university”: {
18 ”type”: ”text”
19 }
20 }
21 },
22 ”email_address”: {
23 ”type”: ”text”
24 },
25 ”experiences”: {
26 ”type”: ”nested”,
27 ”properties”: {
28 ”company”: {
29 ”type”: ”text”
30 },
31 ”description”: {
32 ”type”: ”text”
33 },
34 ”employment_type”: {
35 ”type”: ”text”
36 },
37 ”headline”: {
38 ”type”: ”text”
39 },
40 ”title”: {
41 ”type”: ”text”
42 }
43 }
44 },
45 ”extra_info”: {
46 ”type”: ”text”,
47 ”fields”: {
48 ”nl”: {
49 ”type”: ”text”,
50 ”analyzer”: ”dutch”
51 },
52 ”raw”: {
53 ”type”: ”text”
54 }

60 E. Elasticsearch mappings

55 }
56 },
57 ”first_address_line”: {
58 ”type”: ”text”
59 },
60 ”first_name”: {
61 ”type”: ”text”
62 },
63 ”id”: {
64 ”type”: ”integer”
65 },
66 ”last_name”: {
67 ”type”: ”text”
68 },
69 ”second_address_line”: {
70 ”type”: ”text”
71 },
72 ”skills”: {
73 ”type”: ”nested”,
74 ”properties”: {
75 ”description”: {
76 ”type”: ”text”
77 },
78 ”name”: {
79 ”type”: ”text”
80 }
81 }
82 }
83 }
84 }
85 }
86 }

Code snippet E.2: Elasticsearch resume mapping

F
Search topics

Search topic Search query
Ik zoek een vacature voor...
een directiesecretaresse die op CLevel heeft gewerkt. directiesecretaresse clevel
een inkoper met een technische achtergrond (HBO). inkoper technisch HBO
een assistent assetmanager met een bouwkundige achter
grond (MBO +).

assistant assetmanager
bouwkundig

een administratief medewerker met financiele achtergrond
(MBO).

administratief medewerker fi
nancieel MBO

een communicatieadviseur met kennis van evenementen. communicatieadviseur evene
menten

een professionele HRgeneralist die op zoek is naar een uitda
gende baan in een dynamisch offshorebedrijf. HR offshore

een tweede stuurman op een hopper, voor minstens zes
weken. tweede stuurman hopper

een matroos met multicatervaring (rond 1510 opstappen). matroos multicat 10 opstappen
een basisarts met geldige BIGregistratie die in de JeugdGGZ
wilt werken. basisarts BIG jeugd GGZ

een senior HR business partner die wilt werken voor een in
ternationale opdrachtgever uit de omgeving Rotterdam, met
een focus op MD en organisatieontwikkeling, voor een salaris
rond de 85K.

senior HR organisatieon
twikkeling MD internationaal

een communicatiemedewerker met interesse in eventman
agement en notuleren.

communicatiemedewerker
eventmanagement notuleren

een toezichthouder in kabelinstallatie voor offshoreprojecten. offshore kabelinstallatie
toezichthouder

een interim Business Controller met ervaring in het uitwerken
van business cases en het ontwikkelen van dashboards.

business controller dash
boards business cases interim

een interim business controller voor een retailorganisatie. business controller retail in
terim

een tax accounting specialist (RA) met ervaring met interna
tionale hoofdstructuren.

tax accounting specialist RA
internationaal

een elektromonteur met een afgeronde MBOopleiding bin
nen de Elektrotechniek met ervaring binnen de industrie.

elektromonteur elektrotech
niek industrie

een interim werktuigbouwmonteur met chemische ervaring. werktuigbouwmonteur chemie
interim

een Lead Application Engineer binnen de industriële automa
tisering met ervaring in het ontwerpen en programmeren van
applicatiesoftware voor PLC, SCADA en/of DCSsystemen.

lead application engineer in
dustriële automatisering PLC
SCADA DCS

61

62 F. Search topics

een werktuigbouwkundig monteur met interesse in beheer en
onderhoud van gebouwgebonden werktuigbouwkundige in
stallaties.

werktuigbouwmonteur beheer
onderhoud gebouwgebonden

een frontend developer met ervaring met VueJS, Angular,
React, HTML, Javascript, Typescript, CSS, NodeJS, NPM en
Git, die wilt werken in een scrumteam.

frontend developer vuejs
angular react html javascript
typescript css nodejs npm git
scrum

een starter in de software development die wilt werken met
nieuwe big data en machine learning technologieën en cloud
technologieën.

starter software development
big data machine learning
cloud

een Javaontwikkelaar met veel kennis van Spring en Maven
en ervaring met het werken in een Agileomgeving en
scrumprojecten.

java spring maven agile scrum

een afgestudeerde HBO’er of WO’er met affiniteit met IT, die
in het bezit is van een Scrummastercertificaat zoals PSMI,
en met minimaal 3 jaar ervaring in de afgelopen 5 jaar bij grote
en complexe organisaties.

IT scrummaster 3 jaar ervaring
HBO WO

iemand die deel uit wilt maken van een snelgroeiend SAP
S/4HANAteam. SAPS 4HANA

fulltime Java developer voor een jaar, met afgeronde rel
evante HBOopleiding of WO Bètastudie, 5 jaar ervaring
als Javaontwikkelaar, 4 jaar ervaring met Spring, SQL,
JPA/Hibernate, en Webservices/SOA/WSDL, en 1 jaar ervar
ing met Wicket.

java developer spring sql jpa
hibernate webservices soa
wsdl wicket ervaring

interim HR SSC/HR Processes en Payroll Transformation
manager met zeer veel ervaring.

HR SSC processes payroll
transformation manager ervar
ing interim

freelance matchmaker met een afgeronde HBOopleiding, re
cente ervaring als intercedent of bij een werkgeversservi
cepunt, en ervaring met Civision en Sonar/WBS, voor 36 uur
per week.

matchmaker HBO interce
dent werkgeversservicepunt
civision sonar WBS freelance

werk of teamcoach met NOBCOcertificering of TTISI (bij
voorkeur DISC en/of Driving Forces)certificering.

werkcoach teamcoach nobco
ttisi disc driving forces

een planner met kennis van geotechnisch en geofysisch ma
teriaal (offshore)

planning geotechniek geofy
sisch materiaal

een logistiek magazijnmedewerker die Engels spreekt logistiek magazijnmedewerker
een controller met een HBOopleiding en 5 jaar ervaring in
financiële administratie controller HBO financiën

een junior data analist met een economie of financeHBO
opleiding en ervaring met Qlikview dataanalist economie HBO

een assistent in de recruitment (HR) met vaardigheid in social
media, een afgeronde HBOopleiding richting HR of commer
cie, en maximaal 2 jaar werkervaring

HR recruitment assistant so
cial media HBO commercie 2
jaar werkervaring

een online marketeer, minimaal op HBOniveau, met 4 jaar er
varing in Google Ads, Facebook Ads Manager, Bing Ads, Ex
cel, Google Tag Manager en Google Analytics, en beheersing
van een vreemde taal (Engels/Duits/Frans)

online marketeer HBO 4 jaar
ervaring google ads bing ads
facebook ads manager excel
google tag manager google
analytics vreemde taal

een projectmanager met eenWOtitel in engineering met min
imaal 5 jaar ervaring in industriële projectmanagement, be
heersing van de Engelse taal en kennis van Project Manage
ment Software

projectmanager WO engineer
ing 5 jaar ervaring industrie En
gels project management soft
ware

63

een shipment planner met kennis van Officeprogramma’s,
SAP by Design en wegtransport, en beheersing van de Ned
erlandse en Engelse taal

shipment planner Office SAP
by Design wegtransport Ned
erlands Engels

een techniciën op MBO4niveau (E/I) met een VCA/VOL
certificaat en minimaal 2 jaar ervaring in de chemische indus
trie

techniciën MBO4 VCA VOL 2
jaar ervaring chemische indus
trie

een visual designer op HBOniveau met minimaal 2 jaar werk
ervaring, en kennis van Adobe Photoshop, Illustrator en Inde
sign (Creative Suite)

visual designer HBO 2 jaar
ervaring adobe photoshop
adobe illustrator adobe inde
sign creative suite

een CVmonteur met een MBOopleiding Installatietechniek,
werkervaring binnen de installatietechniek, en een VCA
certificaat

CVmonteur MBO installati
etechniek VCA werkervaring

een Teamleider Logistiek met kennis van LEAN en minimaal
3 jaar werkervaring in een leidinggevende rol in de logistiek

teamleider logistiek LEAN 3
jaar ervaring leidinggevende

een maritiem elektromonteur met rijbewijs B, een VCA
certificaat, en een afgeronde MTS of MBOopleiding richting
elektrotechniek of mechatronica

maritiem elektromonteur MTS
MBO VCA elektrotechniek
mechatronica rijbewijs B

een Lead Software Engineer (maritiem) met een afgeronde
technische HBOopleiding, werkervaing met grote projecten
in industriële automatisering, en ervaring in het ontwikkelen
van PLCsoftware en SCADA

lead software engineer mari
tiemHBO technisch industriële
automatisering PLC SCADA

Table F.1: All search topics with their corresponding search queries used in the evaluation of the search engine.

G
Logged queries

1 {
2 ”size”:0,
3 ”query”:{
4 ”bool”:{
5 ”should”:[
6 {
7 ”match_all”:{
8 ”boost”:1.0
9 }

10 }
11],
12 ”adjust_pure_negative”:true,
13 ”boost”:1.0
14 }
15 },
16 ”aggregations”:{
17 ”certificates”:{
18 ”nested”:{
19 ”path”:”required_certificates”
20 },
21 ”aggregations”:{
22 ”names”:{
23 ”terms”:{
24 ”field”:”required_certificates.name”,
25 ”size”:2147483647,
26 ”min_doc_count”:1,
27 ”shard_min_doc_count”:0,
28 ”show_term_doc_count_error”:false,
29 ”order”:[
30 {
31 ”_count”:”desc”
32 },
33 {
34 ”_key”:”asc”
35 }
36]
37 }
38 }
39 }
40 }

64

65

41 },
42 ”highlight”:{
43 ”fragment_size”:200,
44 ”number_of_fragments”:1,
45 ”fields”:{
46 ”title”:{
47

48 },
49 ”provider”:{
50

51 },
52 ”description”:{
53

54 },
55 ”location”:{
56

57 }
58 }
59 }
60 }

Code snippet G.1: Query logging: Query 1

1 {
2 ”size”:0,
3 ”query”:{
4 ”bool”:{
5 ”should”:[
6 {
7 ”multi_match”:{
8 ”query”:”sustainability”,
9 ”fields”:[

10 ”certificate_name^2.0”,
11 ”company_name^1.0”,
12 ”department^2.0”,
13 ”education_level^2.0”,
14 ”full_text^1.0”,
15 ”job_level^2.0”,
16 ”job_location^1.0”,
17 ”job_type^2.0”,
18 ”title^2.0”
19],
20 ”type”:”best_fields”,
21 ”operator”:”OR”,
22 ”slop”:0,
23 ”prefix_length”:0,
24 ”max_expansions”:50,
25 ”zero_terms_query”:”NONE”,
26 ”auto_generate_synonyms_phrase_query”:true,
27 ”fuzzy_transpositions”:true,
28 ”boost”:1.0
29 }
30 }
31],
32 ”adjust_pure_negative”:true,
33 ”boost”:1.0
34 }

66 G. Logged queries

35 },
36 ”aggregations”:{
37 ”salary_maximum”:{
38 ”range”:{
39 ”field”:”salary_maximum”,
40 ”ranges”:[
41 {
42 ”key”:”0 1000”,
43 ”from”:0.0,
44 ”to”:1000.0
45 },
46 {
47 ”key”:”1000 2000”,
48 ”from”:1000.01,
49 ”to”:2000.0
50 },
51 {
52 ”key”:”2000 3000”,
53 ”from”:2000.01,
54 ”to”:3000.0
55 },
56 {
57 ”key”:”3000 4000”,
58 ”from”:3000.01,
59 ”to”:4000.0
60 },
61 {
62 ”key”:”4000 5000”,
63 ”from”:4000.01,
64 ”to”:5000.0
65 },
66 {
67 ”key”:”5000 6000”,
68 ”from”:5000.01,
69 ”to”:6000.0
70 },
71 {
72 ”key”:”6000 7000”,
73 ”from”:6000.01,
74 ”to”:7000.0
75 },
76 {
77 ”key”:”7000+”,
78 ”from”:7000.01
79 }
80],
81 ”keyed”:false
82 }
83 }
84 },
85 ”highlight”:{
86 ”fragment_size”:200,
87 ”number_of_fragments”:1,
88 ”fields”:{
89 ”title”:{
90

67

91 },
92 ”provider”:{
93

94 },
95 ”description”:{
96

97 },
98 ”location”:{
99

100 }
101 }
102 }
103 }

Code snippet G.2: Query logging: Query 2

1 {
2 ”size”:0,
3 ”query”:{
4 ”bool”:{
5 ”should”:[
6 {
7 ”multi_match”:{
8 ”query”:”solar”,
9 ”fields”:[

10 ”certificate_name^2.0”,
11 ”company_name^1.0”,
12 ”department^2.0”,
13 ”education_level^2.0”,
14 ”full_text^1.0”,
15 ”job_level^2.0”,
16 ”job_location^1.0”,
17 ”job_type^2.0”,
18 ”title^2.0”
19],
20 ”type”:”best_fields”,
21 ”operator”:”OR”,
22 ”slop”:0,
23 ”prefix_length”:0,
24 ”max_expansions”:50,
25 ”zero_terms_query”:”NONE”,
26 ”auto_generate_synonyms_phrase_query”:true,
27 ”fuzzy_transpositions”:true,
28 ”boost”:1.0
29 }
30 }
31],
32 ”adjust_pure_negative”:true,
33 ”boost”:1.0
34 }
35 },
36 ”aggregations”:{
37 ”salary_maximum”:{
38 ”range”:{
39 ”field”:”salary_maximum”,
40 ”ranges”:[
41 {

68 G. Logged queries

42 ”key”:”0 1000”,
43 ”from”:0.0,
44 ”to”:1000.0
45 },
46 {
47 ”key”:”1000 2000”,
48 ”from”:1000.01,
49 ”to”:2000.0
50 },
51 {
52 ”key”:”2000 3000”,
53 ”from”:2000.01,
54 ”to”:3000.0
55 },
56 {
57 ”key”:”3000 4000”,
58 ”from”:3000.01,
59 ”to”:4000.0
60 },
61 {
62 ”key”:”4000 5000”,
63 ”from”:4000.01,
64 ”to”:5000.0
65 },
66 {
67 ”key”:”5000 6000”,
68 ”from”:5000.01,
69 ”to”:6000.0
70 },
71 {
72 ”key”:”6000 7000”,
73 ”from”:6000.01,
74 ”to”:7000.0
75 },
76 {
77 ”key”:”7000+”,
78 ”from”:7000.01
79 }
80],
81 ”keyed”:false
82 }
83 }
84 },
85 ”highlight”:{
86 ”fragment_size”:200,
87 ”number_of_fragments”:1,
88 ”fields”:{
89 ”title”:{
90

91 },
92 ”provider”:{
93

94 },
95 ”description”:{
96

97 },

69

98 ”location”:{
99

100 }
101 }
102 }
103 }

Code snippet G.3: Query logging: Query 3

1 {
2 ”size”:0,
3 ”query”:{
4 ”bool”:{
5 ”should”:[
6 {
7 ”multi_match”:{
8 ”query”:”electrical”,
9 ”fields”:[

10 ”certificate_name^2.0”,
11 ”company_name^1.0”,
12 ”department^2.0”,
13 ”education_level^2.0”,
14 ”full_text^1.0”,
15 ”job_level^2.0”,
16 ”job_location^1.0”,
17 ”job_type^2.0”,
18 ”title^2.0”
19],
20 ”type”:”best_fields”,
21 ”operator”:”OR”,
22 ”slop”:0,
23 ”prefix_length”:0,
24 ”max_expansions”:50,
25 ”zero_terms_query”:”NONE”,
26 ”auto_generate_synonyms_phrase_query”:true,
27 ”fuzzy_transpositions”:true,
28 ”boost”:1.0
29 }
30 }
31],
32 ”adjust_pure_negative”:true,
33 ”boost”:1.0
34 }
35 },
36 ”aggregations”:{
37 ”certificates”:{
38 ”nested”:{
39 ”path”:”required_certificates”
40 },
41 ”aggregations”:{
42 ”names”:{
43 ”terms”:{
44 ”field”:”required_certificates.name”,
45 ”size”:2147483647,
46 ”min_doc_count”:1,
47 ”shard_min_doc_count”:0,
48 ”show_term_doc_count_error”:false,

70 G. Logged queries

49 ”order”:[
50 {
51 ”_count”:”desc”
52 },
53 {
54 ”_key”:”asc”
55 }
56]
57 }
58 }
59 }
60 }
61 },
62 ”highlight”:{
63 ”fragment_size”:200,
64 ”number_of_fragments”:1,
65 ”fields”:{
66 ”title”:{
67

68 },
69 ”provider”:{
70

71 },
72 ”description”:{
73

74 },
75 ”location”:{
76

77 }
78 }
79 }
80 }

Code snippet G.4: Query logging: Query 4

1 {
2 ”size”:0,
3 ”query”:{
4 ”bool”:{
5 ”should”:[
6 {
7 ”multi_match”:{
8 ”query”:”electrical”,
9 ”fields”:[

10 ”certificate_name^2.0”,
11 ”company_name^1.0”,
12 ”department^2.0”,
13 ”education_level^2.0”,
14 ”full_text^1.0”,
15 ”job_level^2.0”,
16 ”job_location^1.0”,
17 ”job_type^2.0”,
18 ”title^2.0”
19],
20 ”type”:”best_fields”,
21 ”operator”:”OR”,
22 ”slop”:0,

71

23 ”prefix_length”:0,
24 ”max_expansions”:50,
25 ”zero_terms_query”:”NONE”,
26 ”auto_generate_synonyms_phrase_query”:true,
27 ”fuzzy_transpositions”:true,
28 ”boost”:1.0
29 }
30 }
31],
32 ”adjust_pure_negative”:true,
33 ”boost”:1.0
34 }
35 },
36 ”aggregations”:{
37 ”certificates”:{
38 ”nested”:{
39 ”path”:”required_certificates”
40 },
41 ”aggregations”:{
42 ”names”:{
43 ”terms”:{
44 ”field”:”required_certificates.name”,
45 ”size”:2147483647,
46 ”min_doc_count”:1,
47 ”shard_min_doc_count”:0,
48 ”show_term_doc_count_error”:false,
49 ”order”:[
50 {
51 ”_count”:”desc”
52 },
53 {
54 ”_key”:”asc”
55 }
56]
57 }
58 }
59 }
60 }
61 },
62 ”highlight”:{
63 ”fragment_size”:200,
64 ”number_of_fragments”:1,
65 ”fields”:{
66 ”title”:{
67

68 },
69 ”provider”:{
70

71 },
72 ”description”:{
73

74 },
75 ”location”:{
76

77 }
78 }

72 G. Logged queries

79 }
80 }

Code snippet G.5: Query logging: Query 5

Bibliography
[1] A. Mehlführer, Web scraping a tool evaluation, 2009. [Online]. Available: https://www.big.

tuwien.ac.at/app/uploads/2016/10/Mehlf%5C%C3%5C%BChrer_paper.pdf.
[2] Beautiful Soup developers, Beautiful soup documentation, 2021. [Online]. Available: https:

//www.crummy.com/software/BeautifulSoup/bs4/doc/ (visited on 01/19/2021).
[3] Scrapy developers, Scrapy 2.4 documentation, 2021. [Online]. Available: https://docs.scrapy.

org/en/latest/ (visited on 01/19/2021).
[4] Cheerio developers, Cheerio, 2021. [Online]. Available: https://cheerio.js.org/ (visited

on 01/19/2021).
[5] GNOME project, Reference manual for libxml2, 2020. [Online]. Available: http://www.xmlsoft.

org/html/index.html (visited on 11/16/2020).
[6] Beautiful Soup developers, Installing a parser, 2020. [Online]. Available: https://www.crummy.

com/software/BeautifulSoup/bs4/doc/#installingaparser (visited on 11/13/2020).
[7] Xml and html with python. [Online]. Available: https://lxml.de/.
[8] Overview. [Online]. Available: https://html5lib.readthedocs.io/en/latest/.
[9] Cheerio developers, Cheerio, 2021. [Online]. Available: https://github.com/cheeriojs/

cheerio (visited on 01/21/2021).
[10] M. Fowler, Inversion of control, 2021. [Online]. Available: https://www.martinfowler.com/

bliki/InversionOfControl.html (visited on 01/21/2021).
[11] G. Van Rossum et al., “Python programming language.,” in USENIX annual technical conference,

vol. 41, 2007, p. 36.
[12] B. W. Kernighan and D. M. Ritchie, The C programming language. 2006.
[13] C. Severance, “Javascript: Designing a language in 10 days,” Computer, vol. 45, no. 2, pp. 7–8,

2012.
[14] D. Frampton, S. M. Blackburn, P. Cheng, R. J. Garner, D. Grove, J. E. B. Moss, and S. I. Sali-

shev, “Demystifying magic: High-level low-level programming,” in Proceedings of the 2009 ACM
SIGPLAN/SIGOPS international conference on Virtual execution environments, 2009, pp. 81–90.

[15] R. T. Fielding, “Architectural styles and the design of network-based software architectures,”
Ph.D. dissertation, University of California, 2000.

[16] Xapian java bindings. [Online]. Available: https://xapian.org/docs/bindings/java/.
[17] Elasticsearch reference. [Online]. Available: https://www.elastic.co/guide/en/elasticsearch/

reference/current/index.html.
[18] Apache solr reference guide: Apache solr reference guide 8.7. [Online]. Available: https://

lucene.apache.org/solr/guide/8_7/.
[19] Documentation. [Online]. Available: https://manual.manticoresearch.com/Introduction.
[20] Documentation. [Online]. Available: https://xapian.org/docs/.
[21] Elasticsearch vs manticore search: What are the differences? [Online]. Available: https://

stackshare.io/stackups/elasticsearchvsmanticoresearch.
[22] TechTarget Contributors, What is rest api (restful api)? Sep. 2020. [Online]. Available: https:

//searchapparchitecture.techtarget.com/definition/RESTfulAPI#:~:text=
A%20RESTful%20API%20is%20an,deleting%20of%20operations%20concerning%
20resources..

[23] M. Awad, “A comparison between agile and traditional software development methodologies,”
Ph.D. dissertation, 2005.

73

https://www.big.tuwien.ac.at/app/uploads/2016/10/Mehlf%5C%C3%5C%BChrer_paper.pdf
https://www.big.tuwien.ac.at/app/uploads/2016/10/Mehlf%5C%C3%5C%BChrer_paper.pdf
https://www.crummy.com/software/BeautifulSoup/bs4/doc/
https://www.crummy.com/software/BeautifulSoup/bs4/doc/
https://docs.scrapy.org/en/latest/
https://docs.scrapy.org/en/latest/
https://cheerio.js.org/
http://www.xmlsoft.org/html/index.html
http://www.xmlsoft.org/html/index.html
https://www.crummy.com/software/BeautifulSoup/bs4/doc/#installing-a-parser
https://www.crummy.com/software/BeautifulSoup/bs4/doc/#installing-a-parser
https://lxml.de/
https://html5lib.readthedocs.io/en/latest/
https://github.com/cheeriojs/cheerio
https://github.com/cheeriojs/cheerio
https://www.martinfowler.com/bliki/InversionOfControl.html
https://www.martinfowler.com/bliki/InversionOfControl.html
https://xapian.org/docs/bindings/java/
https://www.elastic.co/guide/en/elasticsearch/reference/current/index.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/index.html
https://lucene.apache.org/solr/guide/8_7/
https://lucene.apache.org/solr/guide/8_7/
https://manual.manticoresearch.com/Introduction
https://xapian.org/docs/
https://stackshare.io/stackups/elasticsearch-vs-manticore-search
https://stackshare.io/stackups/elasticsearch-vs-manticore-search
https://searchapparchitecture.techtarget.com/definition/RESTful-API#:~:text=A%20RESTful%20API%20is%20an,deleting%20of%20operations%20concerning%20resources.
https://searchapparchitecture.techtarget.com/definition/RESTful-API#:~:text=A%20RESTful%20API%20is%20an,deleting%20of%20operations%20concerning%20resources.
https://searchapparchitecture.techtarget.com/definition/RESTful-API#:~:text=A%20RESTful%20API%20is%20an,deleting%20of%20operations%20concerning%20resources.
https://searchapparchitecture.techtarget.com/definition/RESTful-API#:~:text=A%20RESTful%20API%20is%20an,deleting%20of%20operations%20concerning%20resources.

74 Bibliography

[24] C. Drumond, Scrum - what it is, how it works, and why it’s awesome. [Online]. Available: https:
//www.atlassian.com/agile/scrum.

[25] M. Lotz, Waterfall vs. agile: Which methodology is right for your project? Nov. 2018. [Online].
Available: https://www.seguetech.com/waterfallvsagilemethodology/ (vis-
ited on 11/12/2020).

[26] Your tool for style guide enforcementű. [Online]. Available: https://flake8.pycqa.org/
en/latest/.

[27] Pluggable javascript linter. [Online]. Available: https://eslint.org/.

[28] A. Amanse, Why should you use microservices and containers? [Online]. Available: https://
developer.ibm.com/depmodels/microservices/articles/whyshouldweuse
microservicesandcontainers/.

[29] P. A. Castillo, P. Garca-Sánchez, M. G. Arenas, A. M. Mora, G. Romero, and J. J. Merelo, “Using
soap and rest web services as communication protocol for distributed evolutionary computation,”
International Journal of Computers & Technology, vol. 10, no. 6, pp. 1752–1770, 2013.

[30] Scrapy developers, Selecting dynamically-loaded content, 2020. [Online]. Available: https://
docs.scrapy.org/en/latest/topics/dynamiccontent.html (visited on 11/16/2020).

[31] M. Lindsaar, Postgresql vs mysql, Oct. 2018. [Online]. Available: https://medium.com/
@articles_92466/postgresqlvsmysqlfe9d65887520.

[32] K. Hristozov, Mysql vs postgresql, Jul. 2019. [Online]. Available: https://developer.okta.
com/blog/2019/07/19/mysqlvspostgres#:~:text=Postgres%20is%20an%
20objectrelational,more%20closely%20to%20SQL%20standards..

[33] Useformik(). [Online]. Available: https://formik.org/docs/api/useFormik.

[34] Jquense, Jquense/yup. [Online]. Available: https://github.com/jquense/yup.

[35] Alpine linux. [Online]. Available: https://distrowatch.com/table.php?distribution=
alpine.

[36] T. Bui, “Analysis of docker security,” arxiv.org, [Online]. Available: https://arxiv.org/
abs/1501.02967.

[37] W. Croft, D. Metzler, and T. Strohman, “Evaluating search engines,” in Search Engines, Infor-
mation Retrieval in Practice. Pearson Education, Inc., 2015, ch. 8.

[38] Y. Xu and Z. Chen, “Relevance judgment: What do information users consider beyond topicality?”
Journal of the American Society for Information Science and Technology, vol. 57, no. 7, pp. 961–
973, 2005.

[39] J. A. Aslam, V. Pavlu, and R. Savell, “A unified model for metasearch, pooling, and system
evaluation,” in Proceedings of the Twelfth International Conference on Information and Knowledge
Management, ser. CIKM ’03, New Orleans, LA, USA: Association for Computing Machinery,
2003, pp. 484–491, ISBN: 1581137230. DOI: 10.1145/956863.956953. [Online]. Available:
https://doi.org/10.1145/956863.956953.

[40] Y. Lv and C. Zhai, “Lower-bounding term frequency normalization,” ser. CIKM ’11, Glasgow,
Scotland, UK: Association for Computing Machinery, 2011, pp. 7–16, ISBN: 9781450307178. DOI:
10.1145/2063576.2063584. [Online]. Available: https://doi.org/10.1145/2063576.
2063584.

[41] Similarity module, 2021. [Online]. Available: https : / / www . elastic . co / guide / en /
elasticsearch/reference/current/index modules similarity.html (visited
on 01/20/2021).

[42] A. Hayes and K. Krippendorff, “Answering the call for a standard reliability measure for coding
data,” Communication Methods and Measures, vol. 1, pp. 77–89, Apr. 2007. DOI: 10.1080/
19312450709336664.

[43] K. Krippendorff, “Computing krippendorff’s alpha-reliability,” Jan. 2011.

[44] C. Van Gysel and M. de Rijke, “Pytrec_eval: An Extremely Fast Python Interface to trec_eval,”
arXiv e-prints, arXiv:1805.01597, May 2018. arXiv: 1805.01597 [cs.IR].

https://www.atlassian.com/agile/scrum
https://www.atlassian.com/agile/scrum
https://www.seguetech.com/waterfall-vs-agile-methodology/
https://flake8.pycqa.org/en/latest/
https://flake8.pycqa.org/en/latest/
https://eslint.org/
https://developer.ibm.com/depmodels/microservices/articles/why-should-we-use-microservices-and-containers/
https://developer.ibm.com/depmodels/microservices/articles/why-should-we-use-microservices-and-containers/
https://developer.ibm.com/depmodels/microservices/articles/why-should-we-use-microservices-and-containers/
https://docs.scrapy.org/en/latest/topics/dynamic-content.html
https://docs.scrapy.org/en/latest/topics/dynamic-content.html
https://medium.com/@articles_92466/postgresql-vs-mysql-fe9d65887520
https://medium.com/@articles_92466/postgresql-vs-mysql-fe9d65887520
https://developer.okta.com/blog/2019/07/19/mysql-vs-postgres#:~:text=Postgres%20is%20an%20object-relational,more%20closely%20to%20SQL%20standards.
https://developer.okta.com/blog/2019/07/19/mysql-vs-postgres#:~:text=Postgres%20is%20an%20object-relational,more%20closely%20to%20SQL%20standards.
https://developer.okta.com/blog/2019/07/19/mysql-vs-postgres#:~:text=Postgres%20is%20an%20object-relational,more%20closely%20to%20SQL%20standards.
https://formik.org/docs/api/useFormik
https://github.com/jquense/yup
https://distrowatch.com/table.php?distribution=alpine
https://distrowatch.com/table.php?distribution=alpine
https://arxiv.org/abs/1501.02967
https://arxiv.org/abs/1501.02967
https://doi.org/10.1145/956863.956953
https://doi.org/10.1145/956863.956953
https://doi.org/10.1145/2063576.2063584
https://doi.org/10.1145/2063576.2063584
https://doi.org/10.1145/2063576.2063584
https://www.elastic.co/guide/en/elasticsearch/reference/current/index-modules-similarity.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/index-modules-similarity.html
https://doi.org/10.1080/19312450709336664
https://doi.org/10.1080/19312450709336664
https://arxiv.org/abs/1805.01597

Bibliography 75

[45] T. J. McCabe and C. W. Butler, “Design complexity measurement and testing,” Commun. ACM,
vol. 32, no. 12, pp. 1415–1425, Dec. 1989, ISSN: 0001-0782. DOI: 10.1145/76380.76382.
[Online]. Available: https://doi.org/10.1145/76380.76382.

[46] De Banenmakers, Rotterdam Werkt, 2021. [Online]. Available: https://debanenmakers.nl/
rotterdamwerkt (visited on 01/18/2021).

https://doi.org/10.1145/76380.76382
https://doi.org/10.1145/76380.76382
https://debanenmakers.nl/rotterdam-werkt
https://debanenmakers.nl/rotterdam-werkt

	Preface
	Summary
	Acknowledgements
	List of tables
	List of figures
	List of code snippets
	Introduction
	Research
	Overview
	Problem definition and analysis
	Problem analysis
	Problem statement
	Research topics

	Web scraping
	Static vacancy pages
	Dynamic vacancy pages
	Overview of frameworks and libraries
	Comparative analysis of frameworks and libraries
	Overview of programming languages
	Conclusion

	Search engine
	Search engine selection

	Website frameworks and libraries
	Related work
	Final requirements
	Design goals
	Security and privacy
	Maintainability
	Ease of deployment

	Approach
	Development methodology
	Documentation
	Version control
	Static code analysis
	Risk analysis
	Planning

	Design
	Overview
	Architecture
	Scraper
	Database design
	REST-server
	Front-end design
	Interaction with resumes and vacancies
	Searching for resumes and vacancies

	Implementation
	Overview
	Scraper implementation
	Static pages
	Dynamic pages
	Spider automation

	REST-server implementation
	API and serializers
	Data storage

	Front-end implementation
	Form implementation
	Search implementation

	Logging
	Back-end logging
	Query logging

	Docker implementation
	REST-server
	Front-end
	Scraper
	Security

	Testing
	Scraper testing
	REST-server testing
	Front-end testing

	Product evaluation
	Overview
	Product evaluation
	Design goal evaluation
	Security and privacy
	Maintainability
	Ease of deployment

	Search engine evaluation
	Approach
	Cost evaluation
	Effectiveness evaluation
	Limitations

	Software Improvement Group
	First submission

	Ethical implications

	Process evaluation
	Conclusion and future work
	Conclusion
	Future work and recommendations
	Search engine evaluation
	Query logging
	Scrapers

	Appendices
	Original problem statement
	Project description

	Info sheet
	Rotterdam Werkt! organizations
	Rotterdam Werkt! information sheet
	Elasticsearch mappings
	Vacancy
	Resume

	Search topics
	Logged queries

