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Summary
The decarbonization of the energy system is driven by the electrification process and the expansion
of variable renewable energy capacity. Green hydrogen, produced through electrolysis powered with
renewable electricity, represents a major complementary vector that can support this transition. By
enabling long-term storage, it addresses the challenges arising from the unpredictability of a renewable
energy-based electricity system. It represents a backup and increases the reliability of the electricity
system.

However, in an interconnected decarbonized system where energy carriers are interdependent,
new sector-coupling dynamics emerge. Energy-only markets, in theory, yield socially optimal levels of
installed capacity across both sectors assuming rational participants and perfect markets. However,
risk-averse behaviour among market participants might lead to underinvestment in generation capacity,
undermining the efficacy of hydrogen backup.

The main objective of this research is to assess the adequacy of market designs in attracting socially
optimal levels of investment in electrolyzers and storage capacity within a decarbonized and integrated
system with risk-averse agents.

The research is conducted by formulating a stylized stochastic equilibrium model for the integrated
energy system and studying the resulting long-term equilibrium solved by using the Alternating Direction
Method of Multipliers algorithm. In general, agents participate in an energy-only market, a capacity
market for dispatchable electricity generation and a capacity market for hydrogen generation. The
demand for electricity and hydrogen is considered price-elastic. Participants formulate their strategy
based only on market clearing prices, which are influenced by 18 scenarios which differ in terms of
electricity demand, hydrogen demand and variable renewable energy sources availability.

The analysis is conducted by simulating three different market designs (energy-only market, energy
market supported by a capacity market for electricity generators, and energy market supported by ca-
pacity markets for both electricity and hydrogen generators) under different degrees of risk aversion.
The results are compared in terms of investment levels, energy served, average electricity and hydro-
gen prices, and variation in costs and social welfare.

The analysis confirms how risk aversion, by increasing the risk premium required, entails a reduc-
tion in installed capacity with respect to the optimal risk-neutral scenario. This is valid for all the agents
apart from the flexible capital-intense generator, as a result of the independence of its availability and
variable costs from the considered uncertain parameters, reducing the direct impact of risk aversion.
Underinvestment is combined with a general reduction in the served energy and an increase in the
energy prices and in the frequency of periods of high prices. These trends are more considerable in
the hydrogen market, where agents are exposed to risk from the uncertainties in hydrogen demand
and are also strongly influenced by electricity prices, which are uncertain as a consequence of the
availability of vRES generators and electricity demand.

Among the various designs, the energy-only market is more sensitive to the impact of risk aversion
due to the absence of risk trading opportunities. Therefore, the increase in energy prices is the only
solution to recover the risk premium.

Introducing a capacity market for dispatchable electricity generators mitigates the impact of risk
aversion in the electricity sector. However, this enhancement does not extend to the hydrogen sector;
instead, it exacerbates performance issues during scarcity periods by amplifying hydrogen price fluctu-
ations. On the other hand, incorporating a capacity market for hydrogen as well effectively counteracts
the effects of risk aversion on the hydrogen sector. This dual approach not only benefits the hydrogen
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sector but improves the electricity sector’s adequacy and reduces consumer costs.

From this thesis, it can be concluded that risk aversion significantly reduces investment in gener-
ation capacity. In a hydrogen sector powered by a vRES-based electricity backbone, this impact is
amplified due to exposure to risk from electricity prices. Capacity markets are an effective instrument
to hedge risk, but their application in an integrated system has to be consistent and include both elec-
tricity and hydrogen generation capacity. Furthermore, the strong dependence of hydrogen generation
on electricity prices advocates for a direct instrument to mitigate the risk aversion of renewable gen-
erators such as contracts for difference, as an adequate vRES capacity improves the whole system’s
performance by reducing hydrogen prices and increasing its availability.
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1
Introduction

Climate change is one of the biggest challenges that human beings have ever faced, with devastating
effects on the biosphere, and on human beings as part of it. The awareness of human responsibilities
for global warming and the necessity of taking strong initiatives to mitigate its consequences are re-
flected in the progressive iterations of the Intergovernmental Panel of Climate Change reports. Many
countries have adopted the Paris Agreement to accelerate the deployment of low-carbon technologies
to limit the temperature increase to 1.5 degrees Celsius with respect to pre-industrial levels and under-
take the energy transition as one of the pillars to tackle this environmental challenge. At the same time,
decarbonizing the energy system means safeguarding the environment while providing opportunities
for socio-economic development, guaranteeing the possibility for sustainable development (Vanegas
Cantarero, 2020). For these reasons, climate actions are at the top of public agendas, and the decar-
bonization of the energy system with it.

A powerful instrument to reduce emissions from the energy sector is identified in electrification
and the simultaneous expansion of renewable energy sources (RES) generation capacity. Under the
announced ambitions and targets, by 2050 electricity demand is likely to grow by 120% with respect to
the 2021 levels to represent up to 40% of global final energy consumption, and the renewable share
is expected to increase from 28% to 80% (IEA, 2022). However, because of their intermittent and
unpredictable availability, the increasing share of variable renewable energy sources (vRES) in the
electricity mix challenges the picture of the power system, both in operational and market dynamics.

In the short term, vRES intermittency affects the real-time power balance and increases the demand
for flexibility. At the same time, these energy sources are associated with near zero-marginal costs.
These two features of vRES electricity are reflected in the market by increasing volatility and putting
downward pressure on electricity prices, which in turn increase investment risk (Li & Mulder, 2021; Kep-
pler et al., 2022). Looking at a longer time frame, vRES generation presents seasonal patterns and is
subject to extreme events of prolonged cold, dark periods without wind (referred to as dunkelflauten),
which trigger the need for long-term storage (Blanco & Faaij, 2018).

Alongside electricity, hydrogen could represent a major complementary actor in a low-carbon econ-
omy (Staffell et al., 2019). Thanks to its versatility of applications, both in the electricity sector and with
industrial purposes, hydrogen is gaining momentum in the world energy market and, strengthened by
the current energy crisis provoked by the gas security crises, it is expected to reach up to 10% of total
final consumption (IEA, 2022).

Hydrogen long-term storage can improve the energy security of supply and self-sufficiency in a
decarbonized energy system (IEA, 2019; Elberry et al., 2021). When combined with hydrogen-fired
turbines, it would provide a backup solution for extreme events such as dunkelfaluten, namely long
periods of time without wind and sun (Koirala et al., 2021). Unlike battery electricity storage, which is
affected by self-discharge and would require an enormous number of batteries, compressed hydrogen
storage in salt caverns stand out for high energy capacity and, potentially, relatively low capital costs,
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which make it the most economical option for discharge durations beyond a day (IEA, 2019; Alvik &
Onur Özgün et al., 2022). Furthermore, multiple studies prove how electrolysis hydrogen can provide
flexibility to the power system, effectively reducing power curtailment and the amount of energy not
served, which in turn reduces price volatility and benefits generators with additional revenues (Li &
Mulder, 2021; Hesel et al., 2022; Koirala et al., 2021).

Besides the benefits that it would provide to the power system, green hydrogen is a suitable alter-
native to the use of fossil fuels in hard-to-abate sectors, for which decarbonization is quite challenging
as direct electrification is not possible or convenient. It can be used as a reduction agent in the steel
industry, as a key feedstock in many chemical processes, and as a fuel in the shipping and aviation
sectors, contributing to significantly reducing emissions of these sectors (IEA, 2019). It is under investi-
gation if hydrogen could play a role in reducing natural gas demand for heating, both by being injected
into the existing gas network and directly used for district heating (IEA, 2020).

It is important to mention that, if electrolytic hydrogen can mitigate the drawbacks of vRES, the Eu-
ropean Union (EU) proposed strict requirements for electrolytic hydrogen to be defined as renewable
or green. Indeed, it must respect the additionality requirement, which results in dedicated additional
renewable power capacity specifically built for hydrogen production. Moreover, the latter requires a
certain degree of temporal and geographical correlation with the generation of additional renewable-
based electricity (Bruninx et al., 2022).

The hydrogen scale-up faces different barriers, such as high capital costs (Roach & Meeus, 2020;
van Leeuwen & Mulder, 2018), limited enabling infrastructure (Staffell et al., 2019) and large energy
losses from production to consumption (IEA, 2019). However, the political determination of the EU
to develop and use hydrogen is driving the sector’s growth, and reliable long-term demand for low-
emissions hydrogen will be the main driver of investment for scaling up (IEA, 2022). In 2018, hydrogen
made up only 2% of the energy mix in Europe, and 96% of it was produced from fossil-based technolo-
gies or as an industrial by-product (European Commission, 2020). However, given the urgency of the
energy transition and potential technological development, the EU is working towards creating an EU-
wide decarbonized hydrogen backbone with a focus on upscaling hydrogen production. The priority is
on renewable hydrogen obtained from electrolyzers powered by RES, as it aligns with climate neutrality
and systems integration goals (European Commission, 2020). The REPowerEU plan aims to achieve
10 million tonnes of domestic renewable hydrogen production and 10 million tonnes of renewable hy-
drogen imports by 2030, with 40 GW of electrolyzer capacity installed (European Commission, 2022).
By 2050, it is expected that renewable hydrogen technologies will be mature and widely deployed, and
an open and competitive hydrogen market will exist (European Commission, 2022).

This recent policy boost motivated this work, which focuses indeed on investigating the potential
upscaling of a green hydrogen sector and its relation with the electricity sector. The road toward de-
carbonization is based on the integration of different technologies to ensure an efficient, reliable, and
sustainable energy system. The rise of hydrogen as an energy carrier and its inter-dependency to
the electricity sector, from which it can be produced and can serve as a support, trigger new sector-
coupling dynamics. This results in a complex integrated energy system, with challenges both in the
operational layer, where technologies physically interact, and in the market layer, through which the
socially optimal outcome must be ensured. This thesis focuses on the latter, and in particular how
integrated energy market designs can provide the required price signals for adequate investments in
generation and storage capacity across energy vectors.

Investment in generation capacity is in general justified by recovering costs based on expected
returns from the markets. This means that investors are prone to install additional capacity as long
as they are sure that they will be remunerated adequately during the lifetime of the asset. In theory,
energy-only markets (EOM) - which only remunerate the energy sold - can provide adequate price sig-
nals during scarcity periods which allows investors to recover their costs, attracting the optimal level
of investment and technology mix (Joskow, 2008). However, as experienced in electricity markets,
the socially optimal outcome can be distorted in reality, due to different factors which undermine the
essential assumptions of perfect competitive electricity markets. Among others, these factors are the
absence of a price-elastic demand, the presence of price caps, strategic behaving investors, imperfect
information, and, finally, risk-averse investors (Kaminski, 2022). These factors have in common that
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they potentially lead to the so-called ”missing money problem”, for which price signals of EOMs are
not high and frequent enough to incentivize investment in the optimal capacity (Joskow, 2008). The
current increasing share of VRES-electricity constrains the merit order to even lower and more volatile
prices, exacerbating the ”missing money” problem (Newbery et al., 2018; Keppler et al., 2022). The
distortion of the market resulting from the lack of investment ultimately leads to a lack of reliability, with
important consequences on society (Kaminski, 2022).

Among others, risk aversion plays a crucial role in determining investments, due to spot-prices un-
certainty and the capital-intensive nature and long payback periods of generation assets (De Vries,
2007). Imperfect information about future revenues and, in general, market conditions could indeed
lead investors to postpone, lower and even discard a potential investment. Instruments to hedge risk
are various, but uncertainties in terms of regulations, demand, and technology prices combined with
long-term payback periods make the energy market incomplete, i.e. risk can be traded only partially
with financial instruments and market design choices (De Maere d’Aertrycke et al., 2017).

A widely recognized possible solution to mitigate capacity scarcity has been identified as capacity
remuneration mechanisms (De Vries, 2007). These instruments propose to remunerate generators for
the installed capacity on top of the revenues earned on the energymarket. From real-world experiences,
capacity mechanisms have been a successful instrument to ensure power generation adequacy across
the world, and in general, they can efficiently coexist with renewable energy support policies (Kozlova
& Overland, 2022). An overview of the influences of real-world factors and potential market corrections
that influence energy markets’ outcomes is presented in Figure 1.1.

Figure 1.1: Energy markets in theory vs. reality (Kaminski, 2022)

The potential scale-up of the hydrogen sector needs a careful investigation of the experience in
electricity markets, but it must be also based on the new dependencies that are triggered. Indeed, the
cornerstone of the integrated electricity-hydrogen market lies in the sector-coupling agents and in the
circular dependency at its base.

A potential electricity sector fully based on RES electricity and with a long-term hydrogen storage
backup would rely on hydrogen turbines to cover the residual load, therefore requiring a certain degree
of hydrogen availability. However, as electrolysis is expected to become the main form of hydrogen
generation, the availability of electricity generation capacity is crucial and in turn makes hydrogen avail-
ability dependent on volatile vRES. Long-term storage plays therefore a fundamental role in decoupling
the generation and consumption of hydrogen; however, the interdependencies of the two sectors and
the unpredictability of a decarbonized system based on vRES create issues in managing and valuing
long-term storage. The latter must be available to provide backup even during rare, extreme weather
events of cold, prolonged periods without wind and sun, which can happen up to once every 20 years.
These will be the real stress test of future power systems, and with a society increasingly reliant on
electricity, it might want to protect itself against those events (De Vries & Sanchez Jimenez, 2022).
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The increased reliability that the last units provide to the integrated system has a high intrinsic value,
which in EOMs is remunerated accordingly by scarcity prices. In this context, scarcity prices of hydro-
gen could affect the electricity market, with a general transposition of flexibility issues (Vandewalle et
al., 2015). However, considering weather uncertainty and the rarity of events which require the full ca-
pacity and volume of storage combined with capital-intensive investment, it is clear how risk aversion
could play an important role in orienting the market performance. Scarcity periods and the consequent
price signals could not be enough to convince risk-averse investors and the resulting underinvestment
would undermine the effectiveness of long-term storage and the related assets. On the other hand, re-
munerating hydrogen capacity could only partially solve the problem, given the availability is dependent
on other assets, i.e. vRES electricity generators.

To derisk investment in the hydrogen sector and ramp up the hydrogen market, the EU proposed
a funding scheme via the European Hydrogen Bank (European Commission, 2023). Similarly, the
German H2Global Foundation launched the first combination of long-term Hydrogen Purchase Agree-
ments with Hydrogen Sales Agreements to reduce the uncertainty on both the supply and demand
sides and drive the reduction of costs for green hydrogen. However, these market-based solutions
focus on electrolysis and do not address the remuneration for hydrogen storage and hydrogen turbines
for backup.

Sectors coupling interdependencies blend responsibilities for the integrated system availability and
create issues in valuing the different technologies and their operation. The efficient integration of hy-
drogen into the energy system is therefore challenging.

1.1. Research Gap

Integrated hydrogen and electricity systems started to be investigated recently to understand what
could be the long-term equilibrium and what implications this sector-coupling could entail.

Multiple studies affirm how Power-to-Gas (P2G) via electrolysis is correlated with increasing inte-
gration of vRES, in particular wind energy (Green et al. (2011); Lynch et al. (2018); Lux & Pfluger
(2020); Hesel et al. (2022)). In particular, P2G is beneficial in the context of high renewable energy
share thanks to the flexibility it can provide to the power system (Vandewalle et al. (2015); Li & Mulder
(2021); Hesel et al. (2022)). The large demand for electricity coming from the electrolyzers would in-
crease the installed power capacity, and at the same time, it would benefit renewable generators by
reducing zero-price periods (Hesel et al., 2022). However, flexibility comes with a cost and not always
the beneficial effects for the electricity and hydrogen sectors are aligned. Based on the current costs of
electrolyzers, P2G is not yet a competitive technology itself and often comes with a negative economic
value. This conclusion has been reached from the application of both optimization models (Hesel et
al. (2022); Lux & Pfluger (2020)) and equilibrium models (Li & Mulder (2021); Roach & Meeus (2020);
Lynch et al. (2018)). Additionally, Vandewalle et al. (2015) explain how flexibility issues of vRES are
partially transposed to the gas sector and the system increases in complexity.

Due to the recent interest in the integrated hydrogen-electricity market, the results are mainly char-
acterized by a general approach to investigate the effects of such integration rather than considering
possible market distortions led by risk aversion. On the other hand, risk aversion is a concept widely
modelled and analyzed in electricity markets since their liberalization. It has been recognized how the
combination of risk aversion and typical features of the energy market such as the long-term capital-
intensive nature of investments, price volatility and incomplete information can reduce and postpone
investments in new capacity (De Vries, 2004). Among the first who tried to address the resulting under-
investment problem, Neuhoff & De Vries (2004) proposed CRMs as a possible solution to mitigate the
distortions caused by risk aversion. Among the recent studies which debate risk andmarket corrections,
equilibrium models are widely used as they can effectively represent market participants’ behaviour
(Ehrenmann & Smeers (2011); De Maere d’Aertrycke et al. (2017); Höschle et al. (2018); Mays et al.
(2019); Kaminski et al. (2021)), followed by system-dynamics models, which outcomes are driven by
causal relations implemented by using feedback loop adaptation of the strategies (Petitet et al. (2017);
Ousman Abani et al. (2018)). In general, they all agree on how EOMs for electricity are very sensitive
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to risk, and how they are outperformed by capacity markets in terms of ensuring electricity generation
adequacy.

By definition, capacity markets and, more in general, capacity remuneration mechanisms intend
to remunerate generation capacity on top of revenues from the wholesale energy market. However,
their goal to ensure generation adequacy can be additionally supported by different solutions such as
demand flexibility and energy storage (Fraunholz et al., 2021). Focusing on storage, there are different
studies which try to assess the effect of allowing electricity storage participation in CRMs (Askeland et
al., 2019; Schmitz et al., 2013; Fraunholz et al., 2021). Schmitz et al. (2013) affirm that pumped hydro
energy storage (PHES) inclusion in CRMs can be beneficial for the technology mix efficiency. Askeland
et al. (2019) support this conclusion by using a complementary model, highlighting how investments in
PHES and battery energy storage are stimulated by a capacity market and reduce at the same time the
need for conventional thermal power plants. However, Fraunholz et al. (2021) explain how the func-
tioning of CRMs precludes a straightforward inclusion of energy storage technologies. They indicate
the specification of who bears the risk of empty storage and the derating of storage availability as the
main bottlenecks for an efficient inclusion in CRMs, finding reliability options based on a trade-off be-
tween the strike price and the choice of the derating factors an effective solution to support storage and
ensure the security of supply. These works are however focused on electrical storage. Furthermore,
Fraunholz et al. (2021), risk aversion is not explicitly modelled, as Fraunholz et al. (2021) try to repre-
sent risk by the use of different reliability requirements and their connection with derating technologies.

Considering capacity expansion problems for an integrated electricity and hydrogen system, the ef-
fect of risk aversion combined with sector-coupling interdependences triggered by a large deployment
of electrolytic hydrogen is still unexplored in the literature. Indeed, the effect of risk and the consequent
sub-optimal market outcomes have been extensively studied primarily in electricity markets, for which
CRMs have been identified as an efficient solution. The participation of storage in such CRMs is cur-
rently gaining interest, but it is still limited to electrical storage. Therefore, literature about the potential
creation of a hydrogen market lacks considering the market design requirements that may be needed
to ensure socially optimal investments in a risk-averse context.

1.2. Research Questions

From an electricity market perspective, it is clear what is the effect of risk on investment in generation
capacity and what are effective interventions to correct market inefficiencies. However, when it comes
to integrated and decarbonized electricity and hydrogen systems which rely on long-term hydrogen
storage as backup, it is not clear how sector-coupling dynamics effects relate to risk aversion. On one
hand, price signals in energy-only markets could not be enough to attract adequate investments. On
the other hand, the implications and the effectiveness of CRMs for storage in another energy vector
have not been studied yet.

The objectives of the project are therefore to assess the impact of risk aversion on the operation
and investment in electrolyzers and long-term storage capacity within an interconnected electricity and
hydrogen market. In particular, it aims to elucidate what sector-coupling dependencies arise and are
crucial in ensuring a reliable system. Furthermore, this thesis aims to examine the effectiveness of
capacity remuneration mechanisms, such as capacity markets, in mitigating risk and addressing devia-
tions from the socially optimal generation mix. The long-term equilibrium of the system, modelled at a
Dutch scale, introduces uncertainty by considering different weather conditions and electricity demand
across various years and diverse scales of hydrogen demand.

The scope of the thesis can be summarized in the following research question, by means of which
the presented literature gap can be addressed:

Which market design is best suited to trigger socially optimal investments in generation and stor-
age capacity in a decarbonized and integrated electricity and hydrogen systemwith risk-averse agents?
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The following three sub-questions can be formulated to disentangle the various aspects of the main
research question and structure the work.

1. How does risk aversion impact the investment in and the operation of electricity generators, elec-
trolyzers, and hydrogen storage in an EOM for electricity and hydrogen?

2. How can capacity remuneration mechanisms correct the possible suboptimal amount of invest-
ment and generation mix led by risk aversion?

3. What sector-coupling dynamics drive investment in a decarbonized and integrated electricity and
hydrogen system?

To answer the research questions, a stylized long-term equilibrium problem will be formulated to
assess how different market designs - namely EOMs and capacity markets - coordinate investments
and what are the consequences in terms of integrated system adequacy of the resulting capacity mix.
By conducting this research, this thesis contributes to the understanding of (a) the impact of risk aver-
sion on investment in generation capacity for an integrated hydrogen and electricity system reliant on
renewable energy and (b) the requirements of potential capacity markets needed to ensure system
adequacy of such a system.

1.3. Thesis Outline

The thesis is organized as follows. Firstly, Chapter 2 analyses the state-of-art literature about inte-
grated hydrogen and electricity system and explores the modelling of risk aversion and the effect of
possible market corrections. Chapter 3 illustrates the research approach and the conceptualization of
the model by defining the system studied, composed of the markets and the actors who will take part in
it. Chapter 4 introduces the mathematical formalization of the problem and its implementation in Julia,
the selected programming language. This chapter also provides a description of the algorithm used to
solve the problem and the validation of the model. Chapter 5 presents the assumptions used in the
model and the market designs analyzed. The results of the simulations are presented in Chapter 6,
which are then contextualized and discussed in Chapter 7. Lastly, Chapter 8 presents the conclusion
of the thesis, supported by insights for policy-makers and recommendations for future research. Addi-
tionally, a personal reflection on the development of the work is provided in Chapter 9.
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Literature Review

The current developments of hydrogen are reflected also in literature, where the creation of an in-
tegrated hydrogen and electricity system has started to be addressed. In particular, the discussion
focuses on the long-term equilibrium and what implications sector coupling would have in terms of so-
cially optimal investment and technology mix and how these would affect market dynamics.

The use of a modelling approach is particularly suitable to investigate the long-term dynamics of
energy systems as it allows to simulate the evolution of the system given certain assumptions and
conditions. Optimization models are historically widely used for this scope, with different degrees of
complexity and spatial and temporal resolutions, as for example it is done by Haas et al. (2018), Lux
& Pfluger (2020), Koirala et al. (2021), Ball et al. (2007). In general, such models aim to minimize the
total cost of providing energy and result in an investment plan and an operational schedule. However,
the central planning perspective implicitly assumes perfect competition and therefore is not suitable to
model risk aversion, which is a key factor in influencing the investment.

Equilibrium models reverse the central perspective of optimization and allow to express the inter-
action of individual decision-making agents in competition. To do so, each agent is modelled by for-
mulating its own utility function and the related optimization problem. It is demonstrated that under
particular assumptions, the optimization formulation and the equilibrium formulation of a problem are
equivalent (Kaminski, 2022). However, the formulation of equilibrium models allows to deviate from
the perfect market conditions and to introduce individual preferences of market participants (Höschle,
2018; Dagoumas & Koltsaklis, 2019).

The hydrogen sector scale-up is modelled with a risk-neutral approach, focusing on capturing the
effects of coupling the hydrogen and electricity system. Vandewalle et al. (2015) apply an operational
model to investigate the effects of Power-to-Gas (P2G) on coupling the electricity, gas and CO2 sec-
tors, highlighting the additional complexity triggered by sector coupling and how the benefits gained
by renewable energy production partially transpose the capacity and flexibility issues to the gas sec-
tor. However, investments in P2G facilities are considered exogenously. Li & Mulder (2021) confirm
how the flexibility provided by P2G benefits renewable producers by formulating an equilibrium model,
but they show how their economic value is negative at the current electrolyzers’ costs, and it is wors-
ened when considering a competing industrial hydrogen demand. Roach & Meeus (2020) analyzes
potentially misaligned incentives led by P2G between the electricity and gas markets. They study the
long-run market equilibrium and affirm that a limited amount of P2G capacity lowers the prices of both
markets; however, maximizing social welfare often coincides with a loss-making level of investment in
P2G. This conclusion is confirmed by Lynch et al. (2018) in the context of optimal investment portfolios.
By formulating a stochastic equilibrium model, they point out how P2G itself is a loss-making technol-
ogy that becomes attractive with increasing renewable penetration when coupled with investment in
wind generation. This also confirms the previous conclusion of Green et al. (2011), which analyse the
impact of increasing demand for electricity from hydrogen production on the capacity mix by formulating
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a long-term equilibrium model for a perfectly competitive electricity market and highlight how electrolyz-
ers stimulate the integration of large amounts of wind energy.

Different studies focus more on generation expansion planning, endogenously determining the op-
timal hydrogen generation capacity. Ball et al. (2007) investigate the hydrogen infrastructure develop-
ment for the supply of the transport demand and analyze its relationship with the power sector, focusing
on the costs of the resulting technology mix and the impact on emissions reduction. Hesel et al. (2022)
integrate hydrogen in a long-term European electricity market and propose a system dynamics invest-
ment module alongside the optimization dispatchmodel to investigate the profitability of green hydrogen
and its impact on emissions, showing how both are negative in the short term but will benefit the whole
system in the longer period, while by providing flexibility they have a good impact RES profitability and
price volatility. Lux & Pfluger (2020) investigate the production potential for electricity-based hydrogen
in a decarbonized European energy system trying to develop the hydrogen supply curve based on
the willingness to pay for it with an optimization model, highlighting the key role of electrolyzers size,
efficiency, and operational flexibility in making it competitive and the additional renewable capacity re-
quired.

Social optimal perspectives are often good to set targets, but lack representing real-world dynamics.
As discussed, the presence of risk averse-investors is crucial in orienting investments.

Since the electricity market liberalization, questions about risk-averse investors’ strategies arose.
The numerous risk sources in a liberalized electricity market are likely to reduce and postpone invest-
ments in capacity and, as a consequence, reduce the reliability of the system and transfer costs from
generators to consumers (De Vries, 2004). To avoid shortage situations and improve generation ade-
quacy, Capacity Remuneration Mechanisms (CRM) have been implemented by remunerating capacity
providers on top of their revenues from selling electricity in the wholesale market. CRMs have been
proven effective in dampening the influence of risk-averse investors on market developments, even
though selecting the best market design to implement is often challenging (Bublitz et al., 2019).

The concept of risk aversion has therefore been modelled and analyzed in several generation ex-
pansion studies in the electricity sector, which tried to assess the deviation from the optimal mix that it
entails, alongside possible solutions to correct the imperfect outcome. Neuhoff & De Vries (2004) inves-
tigate how risk aversion affects investment in generation capacity. They show how typical features of
electricity markets (e.g. long-term investment horizon, incomplete information of demand and supply,
price volatility) lead risk-averse investors to reduce the volume of generation capacity compared to risk-
neutral agents, while risk-averse consumers would require a higher volume. They also highlight how
the efficacy of long-term contracts suffers from the high competition of the retail market and propose
different CRMs to reduce investment risk.

There are two main categories of models that are widely used in literature to simulate long-term
markets including risk aversion: system dynamics models and (stochastic) equilibrium models.

System dynamics models are focused on modelling the interactions between the agents of a com-
plex system. By using feedback loops to represent these causal relationships, it is possible to determine
the decision rules which drive the system development (Höschle, 2018). In the context of power mar-
kets, system dynamics models are used, e.g., by Petitet et al. (2017) and Ousman Abani et al. (2018).
Petitet et al. (2017) analyze the impact of risk on different market designs in the context of demand
stagnation and an exogenous increase of renewables. They observe how an energy-only market with
a price cap does not ensure an adequate level of security of supply, while an energy-only market with
scarcity pricing is very sensitive to the presence of risk. Ousman Abani et al. (2018) analyze the effect
of risk aversion (accounted through CVAR) on the performance of CRMs in a context with an uncertain
peak load. They study an EOM, a capacity market, and a strategic reserve mechanism. They high-
light the importance of price caps and the maximum amount of strategic reserve as important design
parameters to ensure the efficacy of the CRMs. Both studies confirm that, when a capacity market is
well designed, it can reliably enhance the security of supply without being affected by risk aversion.

On the other hand, equilibrium models express the interaction of the agents by representing the
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individual decision strategies of the participants, allowing them to deviate from the perfect market con-
ditions. Stochastic equilibrium models are widely used as they allow the inclusion of risk aversion in
different agents’ strategies in a competitive market. Ehrenmann & Smeers (2011) study an EOM and
an energy market completed by a capacity market, finding that low price caps deeply affect the per-
formance of an EOM, leading to underinvestment and a deteriorated security of supply, and that a
capacity market can correct this market failure. They observe that ensuring generation adequacy by
the addition of the capacity market results in higher consumer costs and a technological shift towards
less capital-intensive technologies. Also De Maere d’Aertrycke et al. (2017), starting from an EOM
affected by a price cap and risk aversion, formulate the different markets design and liquidity levels
as stochastic equilibrium problems. They conclude that long-term contracts for difference and relia-
bility options are quite effective complements of EOM when the volumes of trading are high enough,
but a lack of liquidity and regulatory limits imposed on physical capacity, respectively, degrade their
efficiency. On the other hand, forward capacity markets can enhance welfare and investment without
trading risk with customers but determining the optimal demand for capacity can be difficult and their
efficacy is heavily dependent on the setting of this target.

Höschle et al. (2018) propose the Alternating Direction Method of Multipliers (ADMM) for large-scale
market equilibrium models with risk-averse generation investments. They apply it to a case study and
find that, in the presence of risk aversion, a capacity market still provides sufficient investment signals
and outperforms an EOM both in terms of total costs and levels of energy not served, even when the
price cap of the EOM is increased. Mays et al. (2019), basing their work on Ehrenmann & Smeers
(2011) and applying the ADMM method, study capacity markets and the effects of risk trading within
incomplete markets. They highlight how achieving an efficient technology mix requires the ability to
share risk and how the design of risk-trading solutions as contracts affects the technology mix and usu-
ally entails a bias toward a particular technology. They also confirm that current capacity markets have
a stronger impact on technologies with higher operating (variable) costs, as they benefit more from the
capacity payments out of the infrequent EOM scarcity prices, and in general shift the technology mix
toward these peak units. Kaminski et al. (2021) confirm that the inclusion of a capacity market performs
better than an EOM against capacity shortages due to risk aversion, enhancing generation adequacy,
resulting however in a shift of the technology mix towards low investment costs technologies. Further-
more, considering short-term demand elasticity, they point out how it amplifies the negative effects of
risk in reducing social welfare. Capacity markets appear more efficient in mitigating this effect and in
dampening the social welfare transfer from consumers to generators.

All these studies, regardless of the method used, investigate the impact of risk on electricity markets
but do not consider how a hydrogen sector interconnected to the electricity backbone could change this
picture, introducing additional complexity and new sector-coupling dynamics.

Recently, with an increasingly important role of storage technologies in the technology mix, their
inclusion in the market support and dynamics started to be analyzed to investigate policy adequacy
and storage impact. Askeland et al. (2019) develop a complementary model of the power system to
assess the potential of pumped hydro energy storage (PHES) and lead-acid batteries under EOM and
energy and capacity market, finding that PHES and batteries are complementary technologies that
can reduce the need of conventional thermal power plants. They notice that investments in storage
assets are more stimulated by the addition of a capacity market because the latter decreases the un-
certainty of cost recovery for storage. Schmitz et al. (2013) show how the inclusion of pumped hydro
storage in the CRM benefits the efficiency of the technology mix and, consequently, improves social
welfare. They qualitatively discuss different market design parameters that influence storage com-
patibility with CRM, highlighting the stable long-term horizon of the contracts and technology-specific
availability measurement as important drivers of inclusion. Fraunholz et al. (2021) provide a theoretical
discussion supported by an agent-based electricity market model to assess how the design of CRMs,
with a transparent specification of who bears the risk of empty storage, and the choice of the storage
derating factor can influence the competitiveness of electricity storage units and the long-term genera-
tion adequacy with respect to an EOM. They highlight that bundling capacity auctions with call options,
in this case, reliability options with a strike price, and a well-calibrated setting of the strike price are key
factors to support investment in electricity storage technologies in the capacity auctions, which however
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must result in a trade-off with storage derating factors to ensure the security of supply.
The work of Fraunholz et al. (2021), which represents a rich and valid study, differs from the ap-

proach of this thesis in different aspects. Firstly, as for the other cited studies, it considers only electri-
cal storage and sets aside long-term hydrogen storage, ignoring the sector-coupling dynamics that this
would trigger. Secondly, it is focused on the influence of storage technologies derating and its relation
with reliability requirements for participating in CRMs, representing, therefore, the impact of bearing risk
with different combinations of these parameters instead of explicitly modelling risk aversion by using a
risk metric.

In summary, literature about the hydrogen sector and its coupling with the power system is focused
on the potential economic effects of a hydrogen market upscaling in relation to the operational benefits
that electrolysis and long-term storage can provide, mainly in terms of flexibility and security of supply.
However, when the discussion moves toward market design, the requirements and the possible biases
that a hydrogen market entails are not considered. The debate on energy markets is more oriented on
the impact of renewable energy on the electricity market design and how electrical short-term storage
can be included in capacity mechanisms, with particular attention to derating factors. Furthermore, also
risk effects are considered mainly from an electricity market perspective, just as the performances of
support mechanisms such as CRMs or long-term agreements in correcting the “missing money prob-
lem”.

The project proposes to link the three fields of literature previously discussed, namely the effects
of hydrogen sector coupling, storage participation in CRMs and risk aversion on investment in gener-
ation capacity, in order to analyze the suitability and requirements of the hydrogen market to provide
an effective backup for a coupled electricity and hydrogen system and enhance the integrated system
adequacy. Indeed, even including capacity expansion problems, literature about the potential integra-
tion of a hydrogen market lacks considering the market design requirements that may be needed to
ensure socially optimal investments in the presence of risk-averse investors. Similarly to experiences
in electricity markets, imperfect conditions and in particular risk aversion could lead to underinvestment
in hydrogen generation and storage capacity, which could require tailored market corrections able to
hedge risk.



3
Approach and Conceptualization

The conceptualization of the problem is fundamental to clearly define the features of the system mod-
elled and the focus of the analysis. This chapter proposes to outline the essential characteristics of the
chosen approach, encompassing the method applied to model the problem and shaping the system
itself, its actors and their interactions. Section 3.1 introduces the selected research method, outlining
its specifics and arguing its suitability and limitations. Section 3.2 presents the conceptualization of the
model, defining the system considered and the dynamics within it.

3.1. Research Method

This thesis aims to formulate a long-term equilibrium to investigate the effect of risk on investment and
what market designs could hedge it in an integrated and decarbonized hydrogen and electricity system,
where hydrogen long-term storage will provide the backup for the power sector. The core emphasis of
the thesis lies in evaluating how investment allocations deviate from the socially optimal levels under
varying degrees of risk aversion and diverse market designs, and how this impacts the integrated sys-
tem adequacy. Given this central focus, it is fundamental that the selected methodology can effectively
capture the interactions of different actors across sectors and include risk in the formulation. To ad-
dress these requirements, the problem will be solved by formulating a stylized equilibrium model. This
allows the individual modelling of each agent strategy and the representation of market dynamics within
the hydrogen-electricity markets in the context of a non-competitive game (Höschle, 2018; Dagoumas
& Koltsaklis, 2019). Furthermore, equilibrium models allow the consideration of uncertainty and risk,
which are at the core of the study.

A long-term equilibrium is defined as an equilibrium that is hypothetically reached after a certain time
if the boundary conditions remain the same. This choice has been made to reduce the computational
burden; however, this does not reduce the validity of the results, as the insights gained will come from
the trend analysis rather than from the absolute numbers.

The temporal scope is therefore limited to one year, with an hourly resolution. As implied from
the definition of long-term equilibrium, the assumption is that this year repeats indefinitely. However,
this one-year timeframe encapsulates the uncertainties introduced by the discrete scenarios of the
stochastic model, which effectively represents 18 different years. The geographical perspective is of a
single country resembling a potential Dutch scale, modelled as one node. The model does not allow for
energy imports or exports. The energy system is built with a greenfield approach, without considering
any pre-existing assets or constraints. At a technological level, all time periods are decoupled and no
intertemporal constraints are applied, neglecting, e.g., ramping limits. An exception is made for storage,
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of which availability and arbitrage are key features and require coherent modelling. Investments are
commissioned in reference technologies and not at a power plant level.

These general assumptions will be followed by specific assumptions in Chapter 5. However, it is
important to remember that models are very sensitive to assumptions and an understanding of these
is crucial for the quantitative analysis and the consequent policy recommendations (Pfenninger et al.,
2014).

Uncertainty is one of themain features of the energy sector, inherently subject to weather-dependent
generation of an increasingly vRES-based power system, future costs of different fuels or technologies,
and the level of energy demand (Scott et al., 2021). These characteristics play an important role in
driving investment in new generation capacity and trigger risk aversion in market players. It is there-
fore fundamental to consider uncertainty in the formulation of the model, which is done by introducing
stochasticity to capture the probabilistic nature of uncertainties. The high computational cost associ-
ated with combining multiple uncertain inputs is outdone by the increased validity of the results (Scott
et al., 2021). In this thesis, stochasticity will be introduced by formulating a set of discrete scenarios,
which allow to consider the imperfect knowledge of the future in the decision-making process and re-
flect in the investment decisions. The main sources of uncertainty are the weather conditions, which
affect the availability of vRES, and the electricity and hydrogen demand.

The stochastic long-term equilibrium model will be formulated to investigate the actors’ strategies
under the effect of uncertainty and risk aversion, and how these influence investments in the hydrogen
sector. The resulting long-term equilibriumwill provide information about the natural development led by
a particular market design and, by comparing investments under different degrees of risk aversion, the
effect of the latter on distorting the market outcome can be effectively analyzed. By explicitly modelling
singular agents, the model will provide the opportunity to conduct further analysis out of the deviation
from the socially optimal capacity mix and identify interdependences of the technologies. Analysis of
the integrated system adequacy can be supported by an investigation of how availability is ensured
and by who in a system driven by sector coupling, and what are possible costs and transfer of social
welfare to ensure reliability.

3.2. Model Conceptualization

The integrated energy system model comprises the electricity and hydrogen sectors, represented by
the supply and demand agents who interact in them. These agents can participate in an electricity
EOM, a hydrogen EOM, an electricity capacity market and a hydrogen capacity market. The system is
assumed decarbonized and therefore it does not consider a carbon market.

The renewable-based electricity backbone comprehends vRES generators based on wind and so-
lar energy, biomass power plants equipped with carbon capture and storage, and hydrogen-fired tur-
bines. Direct electrification is, in general, preferable to the use of hydrogen due to the low conversion
efficiencies of electrolyzers and thermal generators (Bruninx et al., 2022). At the same time, the in-
termittency of wind and sun entails periods with insufficient available capacity, and consequently the
need for dispatchable units. Considering the near-zero marginal costs of vRES technologies and the
high investment costs of biomass power plants, hydrogen-fired turbines could represent a competitive
solution for providing electricity in the decarbonized energy system during periods of vRES shortage.
Hydrogen-fired turbines rely on the hydrogen market for the fuel supply, representing a sector-coupling
technology between the electricity and hydrogen sectors.

To guarantee hydrogen availability and ensure the security of supply, adequate volumes of hydro-
gen must be produced and stored. Hydrogen production occurs through electrolyzers, powered by
the renewable-based electricity backbone. They represent the other sector-coupling technology of the
integrated system, acting in the opposite direction with respect to hydrogen-fired turbines. The hydro-
gen produced can directly fulfil the hard-to-abate sectors’ demand or can be stored in salt caverns and
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reconverted into electricity by hydrogen turbines, providing long-term seasonal storage (Michalski et
al., 2017).

For the sake of simplicity, short-term electricity storage is not considered. This would benefit the
flexibility of the system but would not fundamentally affect the dynamics of long-term storage, which is
the focus of this project.

It is important to highlight how sector-coupling agents and the electricity-hydrogen subsystems’ inter-
dependences that they trigger are critical issues of the integrated system. Indeed, hydrogen availability
is a prerequisite for a reliable electricity sector. However, hydrogen availability is in turn dependent on
electrolyzers and therefore, on the electricity dispatch itself. In this picture, hydrogen long-term storage
in salt caverns can mitigate volatility by decoupling generation and consumption; however, this does not
come without issues in terms of managing the storage supply in an unpredictable context. In particular,
an appropriate valuing of storage and the related assets’ capacity could be fundamental considering
possible inefficiencies of scarcity pricing, as discussed in Chapter 1.

The long-term equilibrium between investment and operational decisions in the electricity market
and in the hydrogen market is formulated as an equilibrium problem, in which each agent pursues
its own strategy by optimizing its objective function. In the context of the non-cooperative game, the
market-clearing constraints are the linkage between the strategies of the agents. They ensure the
market balance and provide the prices on which agents base their investment decisions. As they are
assumed price-taking, agents cannot behave strategically and do not have market power, but only rely
on hydrogen and electricity prices. Also, market participants do not share information about their deci-
sion variables.

In general, the system is represented by a set of agents, each one formulated by its profit function.
It is assumed that each generator company can invest in only one type of technology, as diversifying
the investment portfolio would represent the possibility of internally hedging risk (Kaminski, 2022).

Figure 3.1 presents the full model and the interactions within the markets, where the arrows coming
from the market represent the prices that the agents receive, while the arrows going to the markets
represent the quantities the agents offer or demand. The functioning of the markets is presented in the
following sections.
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Figure 3.1: Representation of the integrated electricity and hydrogen markets and their participants

3.2.1. Energy-Only Markets

The integrated energymarket consists primarily of a wholesale electricity market and a wholesale hydro-
gen market, both cleared hourly. Within the respective market, generator companies offer the amount
of energy that they are willing to generate to the hourly energy market, and consumers adjust their
energy demand based on the market price. Notably, sector-coupling agents and storage function as
demand agents, leading to the emergence of endogenous demand variables as outcomes of market
clearings. Again, importing and exporting energy is not allowed.

Each agent of the supply side represents a distinct technology and decides on the capacity to invest
in and the volume of energy to offer, be it in the form of electricity or hydrogen. Generators recover their
investment costs and operational costs through market revenues, offering their energy in the wholesale
market.

Electricity generators supply the wholesale electricity market based on their availability, differentiat-
ing dispatchable generators which are always available, i.e. hydrogen turbines and biomass generators,
and non-dispatchable generators, which generation depends on weather conditions, i.e. wind and sun.

In the hydrogen market, electrolyzers represent the primary ”hydrogen generators”. Storage op-
erators, on the other hand, ultimately take advantage of arbitrage between periods of low and high
hydrogen prices to determine when to buy or sell hydrogen, thereby maximizing their utility (Gonzato et
al., 2021). Therefore, storage in turn acts as both a demand and supply agent, adapting its role based
on the market conditions (i.e. supply and demand balance and therefore market price). However, also
storage discharge capacity and volume are modelled as market-driven, and investments in hydrogen
storage are a result of the agent strategy.

On the demand side of each sector, consumers are represented aggregately by an inverse demand
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function. Consumers optimize their utility by adapting the amount of energy bought from themarket as a
function of the energy price. Demand agents are considered price-elastic up to a price cap, and served
demand is therefore endogenously determined in the model. The flexibility provided by demand elas-
ticity can help to reduce investment risk in new generation capacity by spreading scarcity rents across
more hours, but it also influences the optimal level of peak-load capacity in the generation mix, thus
impacting the capacity target of a capacity market (Kaminski et al., 2021). While short-term demand
elasticity is likely to increase and, as a flexible resource, to improve the reliability of the system, it may in-
troduce high social costs manifested through prolonged periods of scarcity prices (De Vries & Sanchez
Jimenez, 2022). As sources of flexibility will coexist and have an impact on system adequacy, it is im-
portant to include them in the model to objectively assess the impact of a capacity market for hydrogen.

External demand agents consider their surplus from the energy market as the difference between
their willingness-to-pay (WTP) and the energy price. A representation of the energy demand function is
shown in black in Figure 3.2. The intersection with the supply function (in blue) represents the market-
clearing procedure and determines the price λedt and the volume of energy served eco,dt.

Figure 3.2: Inverse willingness-to-pay and supply functions

The price elastic demand function is made of two sections, the first one characterized by a constant
WTP and the second one represented by a sloped curve. Both sections introduce price elasticity: the
sloped section allows voluntary adjustment of the served demand as a function of the energy price,
while the constant WTP section allows for involuntary curtailment whenever the price cap is reached.

The demand side of the electricity system consists of an aggregated demand agent and electrolyz-
ers, which minimize the cost of procuring electricity to produce and sell green hydrogen.
The demand side of the hydrogen market is completed by an aggregated demand agent that repre-
sents the industrial and heating demand, and by the hydrogen turbines, which buy hydrogen as a fuel
to provide backup electricity to the power system.

3.2.2. Capacity Markets

EOMs can be supported by forward capacity markets, which are here implemented for both the electric-
ity sector and the hydrogen sector. They introduce a yearly remuneration for the firm capacity offered
by generators.
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The electricity capacity market allows the participation of only dispatchable generators. Even if the
approach to derating vRES availability is still under debate (Kozlova & Overland, 2022), in this thesis
vRES generators are excluded from it.

Within the hydrogen capacity market, hydrogen storage offers its discharge capacity alongside the
electrolyzer capacity. These two actors are not in direct competition, as they fulfil different roles within
the system. Electrolyzers represent the primary hydrogen supply, as they are the only process of
hydrogen production in the model. They most likely run during periods of vRES abundance and store
part of the hydrogen produced at advantageous prices. Their participation in the hydrogen capacity
market is justified by the need for an adequate capacity able to fill up the storage to ensure its availability
during peak electricity demand. Despite their dependence on vRES availability, they are not derated,
as the model assumes that storage is responsible for guaranteeing availability during scarcity periods.

Hydrogen storage participates by offering only its discharge capacity, which is expected to con-
tribute to covering the residual hydrogen load. In particular, it should back up the hydrogen turbine
capacity by ensuring hydrogen availability. The hydrogen capacity market does not remunerate for
storage volume or the availability of hydrogen. Discharge capacity, however, is not derated. Its long-
term feature implies a storage volume that is expected to suffice for potential discharge duration needs
for a significant portion of the year. However, this could be stressed in case of prolonged periods with-
out wind and sun, and potential underinvestment would undermine the hydrogen backup.

The exogenous capacity demand is considered inflexible in both the capacity markets, with the
costs of capacity being transposed to the consumers.

For the electricity capacity market, as presented in Figure 3.3(a) this is the only demand term.
On the other hand, in the hydrogen market hydrogen-fired turbines represent a demand agent. As

they are considered dispatchable generators within the power sector but depend on hydrogen availabil-
ity, they have to ensure their availability to participate in the electricity capacity market. To do so, they
explicitly express their demand for hydrogen capacity as presented in Figure 3.3(b). This allows them
to ensure that the generation capacity they are offering in the electricity capacity market is covered by
the hydrogen capacity that they are paying for. In this model, this is in general guaranteed by discharg-
ing storage. However, it must be noticed that storage does not ensure an adequate state of charge,
and the model does not penalize hydrogen turbines or hydrogen storage for the potential unavailability
of hydrogen. A similar reasoning could be applied to the demand for electricity by electrolyzers, which
however do not run during periods of peak electricity demand and can be in principle substituted by
storage discharge. It is therefore assumed that a firm capacity demand term for electrolyzers is not
needed.

(a) Electricity capacity market demand and supply functions - The
capacity demand is exogenous and inelastic

(b) Hydrogen capacity market demand and supply functions - The
exogenous and inelastic capacity demand is completed by the firm
capacity demand required by the hydrogen-fired turbine companies

Figure 3.3: Demand and supply functions of the (a) electricity and (b) hydrogen capacity markets
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3.2.3. Risk Aversion

In order to evaluate the influence of uncertainty on investment decisions, a proper metric to model risk-
averse investors is needed. Among the others, Conditional Value at Risk (CVAR) has gained popularity
in scientific literature thanks to its mathematical properties and suitability for reflecting the true weight
of the worst-case scenarios tail.

CVAR is in principle a coherent risk measure which can be formulated as continuous and convex,
enabling a convenient application in mathematical optimization (Kaminski, 2022). Given a distribution
of scenarios ordered by increasing profit, CVAR can be interpreted as the mean value of the worst-case
tail, namely the set of scenarios with a cumulative probability of β. Therefore, CVAR takes into account
both the magnitude and likelihood of potential losses. β is a parameter which describes the degree
of risk aversion and can assume values from 0 to 1. The smaller is β, the shorter the worst-case tail,
and therefore the higher the degree of risk aversion (Kaminski, 2022). When β is equal to one, the tail
aligns with the entire probability distribution, thereby simplifying the case to the risk-neutral scenario,
and the CVAR formulation becomes equivalent to the expected profit.

CVAR is based upon the concept of Value at Risk (VAR), another widely used risk metric. VAR is
defined as the most positive outcome of the scenarios with a cumulative probability lower or equal to
β:

V ARβ(S) = max{Πs|Fs(Πs) ≤ β} (3.1)

where FS is the cumulative probability of the profit of a scenario Πs. However, VAR is in general
less informative than CVAR, as it does not consider the shape of the tail of the worst scenarios, which
is indeed defined as the set of scenarios with profit lower or equal to the VAR.

Given a set of decision variables χ, a set of scenarios S and the associated probabilities Ps and
profits Πs, the formulation of the CVAR problem is (Rockafellar & Uryasev, 2000):

max
χ CV AR =

1

β

∑
s∈S∗

PsΠs(χ) (3.2)

where S∗ = {s ∈ S|Πs ≤ V ARβ(S)} (3.3)

Rockafellar & Uryasev (2000) also proposes a linear reformulation of CVAR, which simplifies the
complexity of the implementation of the original formulation. The linear reformulation introduces two
auxiliary variables, α and us. It is proven that α coincides with the VAR, while us represents the profit
difference to the VAR of the scenarios of the worst-case tail (Kaminski, 2022). Indeed, when the profit
of a scenario Πs is greater than the VAR, Constraint (3.5) is not binding and us is zero, therefore it
does not affect the objective. On the other hand, when the profit of a scenario Πs is less than the VAR,
Constraint (3.5) becomes binding and us affects the objective function.

max
χ,α,u CV AR = α− 1

β

∑
s

Psus (3.4)

subject to α−Πs ≤ us (δs) ∀s (3.5)
0 ≤ us (3.6)
α ∈ R (3.7)



4
Model Definition and Formalization

The formulation of the problem and its translation in a suitable programming language represents the
core of the methodology, allowing to create the model which represents the conceptualized system.
This chapter leads the transition from the conceptual problem to the implemented one, explaining what
are the expedients used to properly represent the system. Section 4.1 explains the basic features of
the model, while Section 4.2 presents the mathematical formulation of the singular agents’ problems
and the linking constraints. This is followed by Section 4.3, which explains the algorithm used to solve
the problem. The chapter is closed by Section 4.4, which validates the model by testing the formulation
and the solution algorithm performance.

4.1. Implementation

To compute the long-term equilibrium, the model simulates the evolution of the integrated energy mar-
kets by considering one year, assuming the boundary conditions would not change and therefore this
year would repeat itself indefinitely. Uncertainty is introduced in the model by using discrete scenarios,
which differ in the electric load, availability factors dependent on weather conditions, and hydrogen
demand.

To reduce the computational burden, the model uses 8 representative days for each scenario by
using a time series aggregation method. Time series aggregation methods are commonly used to
represent intra-annual temporal variability in an aggregated form (Gonzato et al., 2021). These meth-
ods select representative periods within a time series and assign them a weight based on their ability
to adequately represent demand and vRES generation patterns, and therefore economic and opera-
tional impact. By reducing redundancy in a dataset with these methods, computational time can be
significantly reduced while obtaining a good approximation of the solution. Considering that each day
is divided into hourly timesteps, the full year in terms of demand and availability factors of vRES is
approximated by using a total of 192 timesteps for each scenario.

4.2. Mathematical Formulation

As introduced, in equilibrium problems each agent is represented in the model by the optimization
problem of its utility function. The strategies here formulated refer to the stochastic equilibrium problem
with risk-averse agents and with a capacity market for dispatchable electricity generators and a capacity
market for hydrogen generators in place. The utility function of each agent is composed of a weighted

18
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sum of the expected profit and the Conditional Value at Risk. The latter is formulated as presented in
subsection 3.2.3 and represents an additional risk premium that the decision-maker is willing to pay
for mitigating the potential downside risk associated with the profit. The two terms are weighted by γ,
which can take values from 0 to 1.

During the analysis of the results, the following formulations will be deconstructed to investigate the
risk-neutral case, different degrees of risk aversion and the implications of the absence and presence
of capacity markets.

4.2.1. RES-based Generation Companies

Variable renewable energy generation companies r try to maximize the weighted sum of the expected
profit

∑
y PyΠr,y and the CV ARr by selling electricity while paying investment and operational costs.

For each scenario y, the profit Πr,y is calculated in Equation (4.8) as the sum of the difference between
the electricity price from the EOM λedt,y and the operational costs V Cr multiplied by the electricity sold
er,dt,y at each time step t every selected representative day d weighted by the Wd,y. The investment
costs, obtained by multiplying the installed capacity capr by the capital costs ICr, are subsequently
deducted from this amount. Additionally, renewable generators can offer capacity capr,CM in the elec-
tricity capacity market. This is accounted for by the product of the capacity they offer capr,CM and the
capacity price λeCM , corrected for their dispatchability by the derating factor Φ.

Each renewable energy generation company r, therefore, decides to invest in a certain amount of
capacity capr, offer to the capacity market a certain amount capr,CM of that, and sell in the hourly EOM
a certain amount of electricity er,dt,y by solving the following optimization problem1:

max
χr∈Xr

γ
∑
y

PyΠr,y + (1− γ)CV ARr (4.1)

subject to 0 ≤ er,dt,y ≤ caprAr,dt,y (δer,dt,y, δ
e

r,dt,y) ∀d, t, y (4.2)

0 ≤ capr (δ
c

r) (4.3)

0 ≤ capCM,e
r ≤ Φcapr (δCM

r , δ
CM

r ) (4.4)
αr −Πr,y ≤ ur,y (δCV AR

r,y ) ∀y (4.5)
0 ≤ ur,y ∀y (4.6)
αr ∈ R (4.7)

with Πr,y(χr,y, λ
e
dt,y, λ

e
CM ) =

∑
d

Wd,y

∑
t

(λedt,y − V Cr)er,dt,y

− caprICr

+ΦλeCMcap
CM,e
r (4.8)

CV ARr = αr −
1

β

∑
y

Pyur,y (4.9)

where Constraint (4.2) limits the power the electricity offered to the capacity installed capr corrected
by the availability factor of that time stepAr,dt,y. Furthermore, Constraint (4.4) limits the capacity offered
to the capacity market capCM,e

r to the installed capacity capr, again corrected by the derating factor Φ.
1For the sake of implementation of the solution algorithm, the optimization problem is implemented in the model as the

minimization problem of the opposite of the weighted sum of the expected profit and CVAR



4.2. Mathematical Formulation 20

4.2.2. Hydrogen-fired Turbine Companies

Similarly to RES power generation companies, hydrogen-fired turbine companies maximize their ex-
pected profit

∑
y PyΠf,y and the CV ARf based on installed capacity, the electricity sold and the hy-

drogen bought in the wholesale markets. Additionally, they decide on how much of their capacity they
offer in the electricity CM and how much of firm capacity they are willing to pay for in the hydrogen CM.
For each scenario y, the profit Πf,y is expressed in Equation (4.19). The first row represents the profit
dependent on generation, calculated as the sum of the difference between the electricity price from
the EOM λedt,y and the operational costs V Cf multiplied by the electricity sold ef,dt,y at each time step
t every selected representative day d weighted by the Wd,y. Additionally, they have a variable cost
dependent on the cost of the fuel in the hydrogen market λH2

dt,y multiplied by the amount of hydrogen
bought hf,dt,y. The investment costs obtained by multiplying the installed capacity capf multiplied by
the capital costs ICf are then subtracted in the second row of Equation (4.19). The third row represents
the costs and revenues from the capacity markets: when an electricity capacity market is present, they
receive compensation for the capacity they provide to the capacity market, denoted as capf,CM , equal
to the product of the latter and the capacity price of power generation λeCM . On the other hand, the
costs of the firm capacity explicitly requested to the hydrogen sector capCM,H2

f by the hydrogen-fired
turbine companies are determined by multiplying the latter by the capacity price of hydrogen generation
λCM,H2 and they are subtracted in the profit function.

Each hydrogen-fired turbine company, therefore, decides to invest in a certain amount of capacity
capf and offer a certain amount capf,CM of it to the capacity market and to buy enough hydrogen in the
hourly EOM hydrogen market hf,dt,y to sell in the hourly EOM a certain amount of electricity ef,dt,y by
solving the following optimization problem:

max
χs∈Xs

γ
∑
y

PyΠf,y + (1− γ)CV ARf (4.10)

subject to 0 ≤ ef,dt,y ≤ capf (δef,dt,y, δ
e

f,dt,y) ∀d, t, y (4.11)
ef,dt,y = ηfhf,dt,y ∀d, t, y (4.12)

0 ≤ capf (δ
c

f ) (4.13)

0 ≤ capCM,e
f ≤ capf (δCM,e

f , δ
CM,e

f ) (4.14)
capf
ηf

= capCM,H2

f (δCM,H2

f ) (4.15)

αf −Πf,y ≤ uf,y (δCV AR
f,y ) ∀y (4.16)

0 ≤ uf,y ∀y (4.17)
αf ∈ R (4.18)

with Πf,y(χf,y, λ
e
dt,y, λ

H2

dt,y, λ
CM,e, λCM,H2) =

∑
d

Wd,y

∑
t

[
(λedt,y − V Cf )ef,dt,y − λH2

dt,yhf,dt,y

]
− capfICf

+ λCM,ecapCM,e
f − λCM,H2capCM,H2

f (4.19)

CV ARf = αf − 1

β

∑
y

Pyuf,y (4.20)

Hydrogen-fired turbines are considered dispatchable generators as the hydrogen supply is ulti-
mately dependent on the hydrogen market. Therefore, their capacity is not derated and their electricity
production is constrained in Constraint (4.11) only for the nominal capacity capf . Equation (4.12) links
the amount of electricity produced ef,dt,y to the amount of hydrogen used as fuel hf,dt,y via the turbine
efficiency ηf . Hydrogen volumes are already expressed as energy.
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In the context of capacity markets, the capacity they can offer to the electricity capacity market
capCM,e

f is limited by the total installed capacity capf by Constraint (4.14). Similarly, the demand for
hydrogen supply firm capacity capCM,H2

f is required to be equal to the capacity offered in the electricity
capacity market corrected by the efficiency in Constraint (4.15), in order to express the real demand
for hydrogen which can ensure the reliability of hydrogen turbines in the electricity sector.

4.2.3. Electrolyzer Companies

Electrolyzers are the technology in which hydrogen generation companies invest, trying to maximize
the weighted combination of the expected profit

∑
y PyΠf,y and the CV ARf . Each scenario’s profit

Πez,y is calculated in Equation (4.29). Th first row calculates the profit dependent on the generation as
the sum of the difference between the hydrogen price from the EOM λH2

dt,y and the operational costs
V Cez multiplied by the hydrogen sold hez,dt,y at each time step t every selected representative day
d weighted by the Wd,y. Furthermore, the electricity costs for providing electricity are subtracted, ob-
tained by multiplying the electricity needed to power electrolyzers eez,dt,y by the electricity price λedt,y.
The second row of Equation (4.29) subtracts the investment costs, obtained by multiplying the installed
capacity capez by the capital costs ICez. Finally, the third row sums the revenues from the hydrogen
capacity market, calculated as the product of the capacity price for hydrogen generation λCM,H2 and
the electrolyzers capacity offered capCM,H2

ez .

Summarizing, hydrogen generation companies decide to invest in a certain amount of electrolyzers
capacity capez and to buy enough electricity eez,dt,y from the hourly electricity EOM to produce and sell
hydrogen hez,dt,y in the hourly hydrogen EOM by solving the following optimization problem:

max
χez∈Xez

γ
∑
y

PyΠez,y + (1− γ)CV ARez (4.21)

subject to 0 ≤ eez,dt,y ≤ capez (δeez,dt,y, δ
e

ez,dt,y) ∀d, t, y (4.22)
hez,dt,y = ηezeez,dt,y ∀d, t, y (4.23)

0 ≤ capez (δ
c

ez) (4.24)

0 ≤ capCM,H2
ez ≤ ηezcapez (δCM,H2

ez , δ
CM,H2

ez ) (4.25)
αez −Πez,y ≤ uez,y (δCV AR

ez,y ) ∀y (4.26)
0 ≤ uez,y ∀y (4.27)

αez ∈ R (4.28)

with Πez,y(χez,y, λ
e
dt,y, λ

H2

dt,y, λ
CM,H2) =

∑
d

Wd,y

∑
t

[
(λH2

dt,y − V Cez)hez,dt,y − λedt,yeez,dt,y

]
− capezICez

+ λCM,H2capCM,H2
ez (4.29)

CV ARez = αez −
1

β

∑
y

Pyuez,y (4.30)

Constraint (4.23) links the amount of hydrogen produced hez,dt,y to the electricity consumption
eez,dt,y by the electrolyzer’s efficiency ηez. Additionally, Constraint (4.22) limits hydrogen production
by limiting the electricity input eez,dt to the installed capacity capez. Constraint (4.25) limits the capac-
ity offered to the hydrogen capacity market capCM,H2

ez to the installed capacity capez corrected by the
efficiency ηez.
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4.2.4. Hydrogen Storage Companies

Hydrogen storage companiesmaximize the weighted sumof expected profit
∑

y PyΠez,y and theCV ARs

taking advantage of time arbitrage to buy and sell hydrogen in the hydrogen market whenever it is more
convenient. The scenarios’ profit Πs,y is formulated in Equation (4.43). The first row represents the
costs dependent on hydrogen volumes, calculated as the sum of the difference between the hydrogen
price λH2

dt,y from the EOM and the operational costs V Cs multiplied by the hydrogen extracted and sold
dhdt,y during discharging periods at each time step t every selected representative day d weighted by
theWd,y. From this, the sum of the hydrogen price λH2

dt,y from the EOM and the operational costs V Cs

multiplied by the hydrogen bought chdt,y during charging periods at each time step t every selected
representative day d weighted by the Wd,y is subtracted. Investment costs are expressed by the sum
of the product of the installed capacity P and its capital costs ICP and the product of the volume of the
storage V and its capital costs ICV . They are then subtracted in the second row. Finally, the third row
sums the revenues from the hydrogen capacity market, calculated as the product of the capacity price
for hydrogen generation λCM,H2 and the storage discharge capacity offered capCM,H2

s .

Storage operators companies decide to invest in a certain volume of storage V and a certain capac-
ity P and to sell dhdt and to buy chdt in the hourly hydrogen wholesale market by solving the following
optimization problem:

max
χs∈Xs

γ
∑
y

PyΠs,y + (1− γ)CV ARs (4.31)

subject to 0 ≤ dhdt,y ≤ P (δdh,dt,y, δdh,dt,y) ∀d, t, y (4.32)
0 ≤ chdt,y ≤ P (δch,dt,y, δch,dt,y) ∀d, t, y (4.33)
0 ≤ P (δP ) (4.34)
0 ≤ V (δV ) (4.35)

0 ≤ capCM,H2
s ≤ P (δCM,H2

s , δ
CM,H2

s ) (4.36)
0 ≤ SOCdt,y ≤ V (δSOC,dt,y, δSOC,dt,y) ∀d, t, y (4.37)
0 ≤ SOC0

d,y ≤ V (δSOC0
d,y
, δSOC0

d,y
) ∀d, y (4.38)

SOCdt,y = SOCdt−1,y + ηchchdt,y − dhdt,y/ηdh (βdt,y) ∀d, t, y (4.39)
αs −Πs,y ≤ us,y (δCV AR

s,y ) ∀y (4.40)
0 ≤ us,y ∀y (4.41)
αs ∈ R (4.42)

with Πs,y(χs, λ
H2

dt,y, λ
CM,H2) =

∑
d

Wd,y

[∑
t

(λH2

dt,y − V Cs)dhdt,y −
∑
t

(λH2

dt + V Cs)chdt

]
− P · ICP − V · ICV

+ λCM,H2capCM,H2
s (4.43)

CV ARs = αs −
1

β

∑
y

Pyus,y (4.44)

Constraint (4.32) and Constraint (4.33) limit the amount of hydrogen hourly exchanged to the ca-
pacity of the storage plant. On the other hand, Constraint (4.37) and Constraint (4.38) limit the amount
of hydrogen stored at every moment to the volume of the storage facility. With regards to the capacity
offered in the hydrogen capacity market, Constraint (4.36) limits it to the discharge capacity P .

Constraint (4.39) is an auxiliary constraint that updates the state of charge each timestep summing
the hydrogen charged or subtracting the hydrogen discharged in the previous timestep considering the
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respective process efficiency ηch and ηdh and considering the electricity consumption of the compres-
sors and expanders.

As previously introduced, the model works with representative periods to reduce the computational
cost. Selecting representative periods can complicate modelling inter-period arbitrage, which is a fun-
damental feature of long-term storage operation and represents its main source of revenue. As these
periods are considered independent and a daily scale is not large enough to represent the seasonal
storage dynamics, inter-period arbitrage cannot be taken into account (Kotzur et al., 2018). This means
neglecting inter-period states and devaluing the contribution of mid and long-term energy storage tech-
nologies, which may lead to their exclusion from investors’ interest (Gonzato et al., 2021). Additionally,
ignoring the potentially important contribution of seasonal storage in terms of system efficiency and
security of supply is even more critical with high shares of vRES.

To allow long-term storage participation in an investment setting, the Enhanced Representative
Days (ERD) formulation proposed by Gonzato et al. (2021) is implemented. The ERD method defines
the maximum energy changes (positive and negative) over representative days and extends them to
non-representative days using a linear combination of representative days. This is possible due to the
linearity of the storage agent problem and is not dependent on other problems that contribute to the
equilibrium (Kotzur et al., 2018).

By representing the base state of charge for all days using a linear combination of energy changes
over representative days and using previously derived maximum energy changes, it is possible to
ensure the state of charge remains within storage limits. This approach extends the state of charge
of long-term storage throughout the year and accounts for inter-period arbitrage, providing a more
accurate representation of the value of long-term storage technologies. The functioning of the ERD is
illustrated in Figure 4.1.

Figure 4.1: Storage state of charge representation using ERD for 6 periods, of which 3 are representative periods (Gonzato et
al., 2021) - The top row shows the evolution of the state of charge SOCdt,y of 3 representative periods with respect to their

initial state of charge SOC0
d,y . The bottom row shows the evolution of the state of charge SOCadt,y over the whole year, which

can be computed for non-representative periods as a linear combination of representative ones.

Firstly, an auxiliary variable ∆ that represents the daily energy exchange of the storage of the day
d for each scenario y is introduced:

∆hd,y =
∑
t∈T

(ηchchdt,y − dhdt,y/ηdh) (γ∆,y) ∀d, y (4.45)

It is now possible to define the base state of charge SOC0 for all the days of the year.

SOC0
ad,y = SOC0

ad−1,y +
∑

d∈D
Vad,d,y ·∆hd,y (γSOC0

ad,y
) ∀ad(2 : end), y (4.46)
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where AD represents the set of all days of the year, both representative and non-representative,
while Vad,d,y is the ordering matrix of scenario y that contains the coefficients of the linear combination
of representative days to obtain the set of all days.

It is then possible to define the maximum positive and negative deviations from the base state of
charge for representative periods:

0 ≤ ∆hmax
d,y ≥ SOCdt,y − SOC0

d,y (δmax,dt,y, δmax,dt,y) ∀d, t, y (4.47)
0 ≤ ∆hmin

d,y ≥ SOC0
d,y − SOCdt,y (δmin,dt,y, δmin,dt,y) ∀d, t, y (4.48)

And therefore to extend this definition to all the periods:

∆hmax
ad,y =

∑
d∈D

Vad,d,y∆h
max
d,y (γmax,ad,y) ∀ad, y (4.49)

∆hmin
ad,y =

∑
d∈D

Vad,d,y∆h
min
d,y (γmin,ad,y) ∀ad, y (4.50)

At this point, it is possible to impose the state of charge limits for all days:

SOC0
ad,y +∆hmax

ad,y ≤ V (δmax,ad,y,lim) ∀ad, y (4.51)
SOC0

ad,y −∆hmin
ad,y ≥ 0 (δmin,ad,y,lim) ∀ad, y (4.52)

Finally, a cyclic constraint is added to ensure the final state of charge is greater than the initial one:

SOC0
ad0,y ≤ SOC0

adend,y
+

∑
d∈D

Vadend,d,y ·∆hd,y (δcycle) (4.53)

4.2.5. Electricity Consumers

Electricity consumers are considered from an aggregated perspective. The served demand is decom-
posed into an inelastic part and an elastic part, namely represented by eWTP

co,dt,y and eelaco,dt,y. Similarly to
generation agents, demand agents are formulated as risk-averse. Aggregated electricity consumers
aim to maximize a weighted sum of their expected utility

∑
y PyΠco,e,y and the CV ARco,e. The utility

of each scenario Πco,e,y is the difference between the integrated inverse WTP function and costs for
procuring energy and ensuring capacity as expressed Equation (4.58), of which formulation is inspired
by Kaminski et al. (2021). Revenues are represented by the integrated inverse WTP function, of which
the geometrical interpretation is shown in Figure 3.2 and refers to the terms within the square brackets
in Equation (4.58). Costs are given by the product of the electricity EOM clearing price λedt,y and the
served electricity eco,dt,y. Additionally, the second line of Equation (4.58) expresses how consumers
have to pay for the capacity contracted in the electricity capacity market DCM,e, as a means of insur-
ance for the security of supply, which is however exogenously determined.

The aggregated electricity demand agent decides therefore how much electricity eco,dt,y is con-
sumed by solving the following optimization problem:

max
χco,e∈Xco,e γ

∑
y

PyΠco,e,y + (1− γ)CV ARco,e (4.54)
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where De
ela,dt,y = WTP

m is the maximum quantity of demand that is price elastic, where m is the
slope of the elastic section of the inverse WTP function.

subject to 0 ≤ eWTP
co,dt,y ≤ ψDe

dt,y (µWTP
dt,y

, µWTP
dt,y ) ∀d, t, y (4.55)

0 ≤ eelaco,dt,y ≤ De
ela,dt,y (µela

dt,y
, µela

dt,y) ∀d, t, y (4.56)

with eco,dt,y = eWTP
co,dt,y + eelaco,dt,y (4.57)

Πco,e,y(χco,e,y, λ
e
dt,y) =

∑
d

Wd,y

∑
t

[
(WTP eeco,dt − (eelaco,dt)

2 WTP e

2De
ela,dt

)− λedteco,dt

]
− λCM,eDCM,e (4.58)

CV ARco,e = αco,e −
1

β

∑
y

Pyuco,e,y (4.59)

The demand is modelled as price elastic and therefore curtailment is allowed. Constraint (4.55)
limits the constant WTP section to a certain fraction ψ of the demand De

dt,y. Constraint (4.56) limits
the price-elastic section (of which buildup is explained in Section 5.2), allowing also demand increase,
which is possible only for electricity prices less or equal to zero.

4.2.6. Hydrogen Consumers

The hydrogen consumers are modelled aggregated as an external demand agent, price elastic up to
the WTP. The optimization problem is, again, the maximization of the weighted sum of the expected
utility

∑
y PyΠco,h,y and the CV ARco,h. The definition of the utility is the same as the electricity demand

agent. However, the hydrogen price elasticity DH2

ela is constant and not dependent on the demand.
As in the electricity sector, consumers have to pay for the capacity contracted in the hydrogen

capacity market, as a means of insurance for the security of supply of hydrogen. This is expressed
in the second row of Equation (4.64) as the product of the hydrogen capacity price λCM,H2 and the
exogenous capacity demand DCM,H2 .

Therefore, the aggregated hydrogen demand agent maximizes the expected surplus by deciding
how much hydrogen buy in the hourly hydrogen market hco,dt,y by solving the following optimization
problem:

max
χco,h∈Xco,h γ

∑
y

PyΠco,h,y + (1− γ)CV ARco,h (4.60)

subject to 0 ≤ hWTP
co,dt,y ≤ ψDH2

dt,y (µWTP,H2

dt,y
, µWTP,H2

dt,y ) ∀d, t, y (4.61)

0 ≤ helaco,dt,y ≤ DH2

ela (µela,H2

dt,y
, µela,H2

dt,y ) ∀d, t, y (4.62)

where hco,dt,y = hWTP
co,dt,y + helaco,dt,y (4.63)

Πco,h,y(χco,h,y, λ
H2

dt,y) =
∑
d

Wd,y

∑
t

[
(WTPH2hco,dt,y − (helaco,dt,y)

2WTPH2

2DH2

ela

)− λH2

dt,yhco,dt,y

]
− λCM,H2DCM,H2

(4.64)

CV ARco,h = αco,h − 1

β

∑
y

Pyuco,h,y (4.65)
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In the same way as electricity demand, hydrogen demand formulation allows for curtailment too.
Constraint (4.61) limits the constant WTP section to a certain fraction ψ of the demand DH2

dt,y, while
Constraint (4.62) limits the price-elastic section.

4.2.7. Market Clearing

The electricity and hydrogen markets are the playing field of the agents, which take their decisions
based on the prices provided by the markets and cannot influence them, i.e., agents are price-taking.
In the model, the markets link the generation companies and the demand side by providing the balanc-
ing constraints to which each agent of the respective sector contributes.

In particular, the wholesale electricity market constrains the supply and demand actors who partici-
pate in it to the following market balance:

∑
r

er,dt,y + ef,dt,y − eco,dt,y − eez,dt,y = 0 (λ′dt,y
e) ∀d, t, y (4.66)

Similarly, the wholesale hydrogen market constrains its participant to the following market balance:

hez,dt,y + dhdt,y − chdt,y − hco,dt,y − hf,dt,y = 0 (λ′dt,y
H2) ∀d, t, y (4.67)

The dual variable of the energy balances can be interpreted as the weighted respective market price
(λdt,y = λ′dt,y/Wd,y).

The electricity capacity market has to be balanced too. However, the demand for power generation
capacityDCM,e is exogenous and inflexible. The balancing constraint for the electricity capacity market
is the following:

capCM,e
r + capCM,e

f = DCM,e (4.68)

Finally, the hydrogen capacity market has a balancing constraint in which the exogenous demand
for capacity is completed by the demand for available capacity by the hydrogen-fired turbine generation
companies:

capCM,H2
s + capCM,H2

ez = capCM,H2

f +DCM,H2 (4.69)

4.3. Solution Approach

Equilibrium problems in the energy sector are usually formulated in Mixed-Complementarity Problems
(MCP), which involve primal decision variables, such as investment and dispatch decisions, and dual
decision variables, such as market prices. To solve these problems, various techniques can be used,
such as reformulating MCP with KKT conditions, iterative approaches, or converting MCP to an equiv-
alent optimization problem and solving it using conventional solvers (Kaminski, 2022).

To compute the equilibrium of the non-cooperative game formulated in this thesis, the Alternative
Direction Method of Multipliers (ADMM) proposed by Höschle (2018) will be used. Previous works that
applied this method to the energy sector are Höschle et al. (2018), Kaminski et al. (2021), and Mays et
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al. (2019), which have been inspiring in applying this method to deal with risk aversion.

ADMM is an iterative method that combines the dual decomposition and the augmented Lagrangian
methods (Kaminski, 2022). This algorithm can be applied to optimization problems that are separable
in local optimization subproblems linked by shared equality constraints. This is the case of a non-
cooperative game in which each agent has its own separable strategy, and they are only coupled by
themarket clearing condition. It is important to mention that, if the convergence is in general guaranteed
under certain assumptions, the uniqueness of the equilibrium is not. For details on the performance
and convergence of the ADMM algorithm, the reader is referred to Höschle et al. (2018).

For the considered generation expansion planning, the non-cooperative game is formulated as an
optimal exchange problem where agents’ problems are aggregated and solved as optimization sub-
problems linked by market balance constraints. Equality constraints combine separable decision vari-
ables with their dual variables on the market clearing conditions (Höschle et al., 2018). This setup facil-
itates the iterative search for the prices that equate supply and demand and ensures that the strategies
of the different agents coincide with the long-run equilibrium strategies (Bruninx et al., 2020).

The ADMM algorithm formulation is based on the augmented Lagrangian of the agents. The agents’
strategies are updated iteratively by solving theminimization problem of the augmented Lagrangian and
updating the market prices. The update steps based on the augmented Lagrangian are obtained from
the KKT conditions of the equilibrium problem. In particular, the optimality conditions of minimizing the
unaugmented Lagrangian must coincide with the KKT conditions of the correspondent equilibrium prob-
lem. For example, for a vRES generator, the augmented Lagrangian objective function is formulated
as:

min
χk+1
r ∈Xk+1

r

∑
y

Py

∑
d

Wd,y

∑
t

V Cre
k+1
r,dt,y + capk+1

r ICr

−
∑
y

Py

∑
d

Wd,y

∑
t

λe,k+1
dt,y ek+1

r,dt,y︸ ︷︷ ︸
1st penalty term

+
ρEOM

2

∑
y

∑
d

Wd,y

∑
t

(ek+1
r,dt,y − ekr,dt,y + ekr,dt,y)

2

︸ ︷︷ ︸
2nd penalty term

(4.70)

where ekr,dt,y is the imbalance of supply and demand for the k iteration divided by the number of
participant agents N increased by 1. In general, for an electricity EOM participant, it is expressed as:

ekdt,y =

∑
r e

k
r,dt,y + ekf,dt,y − ekco,dt,y − ekez,dt,y

N + 1
(4.71)

The augmented Lagrangian used as the objective function comprehends two penalty terms. The
first penalty term is associated with the sharing constraint and the correspondent dual variable, while
the second penalty term penalizes the change in the decision and the imbalance of the sharing con-
straint weighted by a penalty factor. As they refer to the market clearing conditions decision variables,
the model presents a penalty term for the traded electricity, a penalty term for the traded hydrogen, and
a penalty term related to the capacity offered for each capacity market. Each agent’s objective function
includes the penalty terms related to the specific market clearing conditions they contribute to.

As introduced, the ADMM-based algorithm tries to find the equilibrium with a price adjustment pro-
cedure. In each iteration, the agents receive the prices and optimize their investment decision based
on these. The decisions define the imbalances between demand and supply of the current iteration,
which in turn affects the update of the market prices.
The price update step is computed as:
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λk+1
dt,y = λkdt,y − ρekdt,y (4.72)

The strategy and price update processes stop when the equilibrium is found or when the limit of
10000 iterations is reached. The equilibrium is computed by considering two stopping criteria, of which
one represents the imbalances of the market clearings, while the other one the changes in the decision
variables. The two stopping criteria are satisfied when simultaneously under a predefined threshold,
which is in general weighted by ρ (convergence), the scale of the system demand, and the number
of time steps. The primal stopping criteria is defined as the normalized by L2-norm sum of the primal
residuals, which are the imbalances of each market clearing condition for each scenario and timestep.
The dual stopping criteria is defined as the normalized by L2-norm sum of dual residuals, which are the
differences of decision variables corrected by the average value of the decision variables of all agents
between two consecutive iterations.

When the algorithm converges and a Nash equilibrium is obtained, i.e. when both stopping criteria
are below the predefined threshold, the imbalances of the market clearing conditions converge to zero
(ekdt,y = 0) and the agents do not have incentives to change their decision anymore (ek+1

r,dt,y − ekr,dt,y =
0). Therefore, at convergence, the second penalty term is eliminated, confirming how the augmented
objective function presented in Equation (4.70) coincides with the objective function of the equilibrium
problem presented in Appendix A.1.

Consequently, it can be affirmed that the solutions of the ADMM algorithm and the equilibrium prob-
lem formulation are identical considering the convergence criteria. Figure 4.2 presents the trend of
residuals for a specific simulation of EOM with risk-averse agents (β = 0.4), and serves as proof of the
validity of the solution method as long as it converges.

(a) Full simulation (b) Focus on the last 750 iterations

Figure 4.2: Convergence trend of residuals for the simulation of the EOM design case with risk-averse agents (β = 0.4)

The implementation of the equilibrium problem and the application of the ADMM algorithm is per-
formed using the programming language Julia and the JuMP library. Agents’ sub-optimization problems
are solved iteratively with the Gurobi optimizer. The model has been built and expanded on a backbone
of the code provided by Dr. Ir. Kenneth Bruninx, which included the set-up of the ADMM algorithm for
a simplified version of the deterministic risk-neutral model with the EOM for renewable generators and
electrolyzers. This has been extended to a stochastic model and reformulated to include risk aversion.
Furthermore, it has been integrated with the remaining technologies presented and developed to in-
clude endogenous demand by formulating price-elastic demand agents. The market set-up has been
integrated with the capacity markets.
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4.4. Model Validation

In order to ensure the accuracy of the algorithm and the correct definition of the equilibrium problem,
the model has to be validated. The validation is performed by formulating and solving the correspond-
ing optimization problem and comparing the results with the equilibrium model solutions obtained with
ADMM. The validation is conducted at an early stage for the deterministic formulation of the model. It
is done before the introduction of risk aversion, as the latter precludes the possibility of formulating the
equivalent optimization problem. On the other hand, the system can be considered complete in terms
of agents’ specifications but before implementing the capacity market.

The first step of the validation involves comparing the KKT (Karush-Kuhn-Tucker) conditions of the
two formulations. By ensuring that the KKT conditions of the equilibrium problem coincide with those
of the equivalent optimization problem, it can be proven that the two problems are equivalent.

The derivation of the unaugmented Lagrangian and the KKT conditions of the two problems can be
found in Appendix A and B and confirm their conformity. There, it is verified that the two formulations
of MCP coincide, except for the coefficient of the market price. This is due to the inclusion in the
equilibrium model derivation of a weight factorWd of the representative days, while it is missing in the
optimization model derivation. Indeed, in the equilibrium model, market prices are explicitly used in
the utility functions of the different agents and they are computed iteratively by the algorithm, while
in the optimization problem, they are implicitly calculated as the dual variables of the market balance
constraints. This, together with the inversion of the sign, is simply due to the market balance equality
constraints, where the sign and the weight factorWd are not influential. The two formulations differ only
for this factor, which does not affect the validity of the model as it is simply a matter of interpretation.
The dual variables can be scaled again with the weight factor to have a coherent comparison across
the two models.

It has to be noted that the formulation presented in Appendix does not include the second penalty
terms as it is implicitly assumed that the ADMM algorithm leads to convergence. As discussed in the
previous section, at convergence, the second penalty terms cancel out and the KKT conditions of the
augmented Lagrangian coincide with the Mixed Complementarity Problem (MCP) formulation of the
equilibrium problem, ensuring the same solution (Höschle, 2018).

Further validation of the equilibrium problem is conducted by analyzing the net profit of the different
agents of the equilibrium problem. These correspond to the value of the objective function of the sin-
gular agents’ optimization problems. It is verified that they are at least 4 orders of magnitude smaller
than the total revenues of the corresponding agent. This is further proof of the correct interpretation of
the prices and proves that the equilibrium problem represents a perfectly competitive market, where
firms earn (close to) zero profits in the long run.

The equivalent optimization problem is formulated in Julia and solved with Gurobi, a mathematical
optimization solver. The analysis is conducted by comparing the optimal solution of the equivalent
optimization problem, which aims to maximize the total social welfare (Appendix B), with the results
obtained by the deterministic equilibrium model solved with ADMM. The tolerances of the hydrogen
and electricity stopping criteria used for this simulation are weighted on 1% of the maximum demand
of the respective sector.

By forcing the ADMMprimal variables solution in the objective function of the equivalent optimization
problem, the total social welfare can be computed based on the results found by ADMM. The relative
difference in the social welfare value between the two formulations is of the order of 10−2%, which can
be ascribed to the different solution methods and the relative numerical inaccuracies.

A further investigation of the primal variables is performed, expecting that the results of the equilib-
rium problem solved with ADMM and the equivalent optimization problem coincide in terms of primal
variables. Comparing the installed capacities for the different technologies of the two formulations, rel-
atively small but relevant differences are found. The average relative difference in installed capacity
is 1.75%, with an absolute difference peak of 0.78 GW . The volumes of energy exchanged between
different actors similarly present small differences, but as they are ultimately dependent on the installed
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capacity, they are less meaningful in terms of deviations across the two models. However, it is impor-
tant to note how energy exchanges are coherent and very similar in terms of trends and proportion.
This cannot be considered a validation step itself but intuitively suggests how the two models are co-
herently formulated.

The differences are not negligible, but can ultimately be attributed to the scale used and the selected
tolerance combined with a potential flat region where the optimal solution is located. Tests have been
conducted on the scale of the problem and the tolerance used, noticing that increasing the scale of
the system by using different units and reducing the latter would allow a more accurate solution, which
however would come at a high computational cost and, in some cases, would undermine convergence.

Recalling that the two theoretical formulations coincide and the resulting total social welfare is the
same, the analysis allows affirming that both solutions are correct. This confirms that the ADMM imple-
mentation is correct and suitable for the analysis.



5
Case Study

The relevance of the outcome of the model lies in the shift of the equilibrium consequent to the introduc-
tion of risk aversion. It is however important to base the model parameters on realistic assumptions,
able to properly describe the agents’ characteristics and their dependencies in order to enlighten rele-
vant trends useful in a practical perspective. Chapter 3 and Chapter 4 presented the long-term equilib-
rium problem of an integrated electricity and hydrogen market within a single-market zone, inspired by
the Dutch energy system.

The chapter is structured as follows. Section 5.1 presents the main assumptions with respect to the
technologies considered, both in terms of costs and technological parameters. Section 5.2 explains
how the data for electricity and hydrogen demand are gathered and manipulated. Section 5.3 presents
a description of the scenarios used to contextualize the introduction of uncertainties in themodel. Lastly,
Section 5.4 presents the three different market designs tested in relation to the formulation presented
in Chapter 4.

5.1. Technology Parameters

Considering the long-term perspective and recognizing the role of hydrogen as a promising long-term
storage solution to effectively address the unpredictability of vRES, the system under consideration is
modelled as fully decarbonized. In order to offer a comprehensive overview of the system, this section
presents a description of the technologies involved. This serves to elucidate the key assumptions and
provide insight into its overall complexity. To ensure a realistic characterization, the parameters and
cost data for these technologies are derived from the open model dataset of PyPSA-Eur (Hörsch et
al., 2023), which offers a robust representation of the European energy system. When other sources
are used to complete the data, they are cited explicitly. The cost assumptions used refer to 2025 data,
therefore RES may be relatively expensive.

Technologies are typically characterized by their overnight investment cost and their operational
cost. The capital cost IC of each asset is obtained from the corresponding overnight cost OC, annu-
alized with the discount rate r over the asset’s lifetime n. A nominal discount rate r of 10% is used in
the calculation. The formula applied to all investment assets in the model is expressed as follows:

IC =
r ·OC

1− 1
(1+r)n

(5.1)
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In this model, renewable generators considered refer to electricity generators based on vRES,
specifically wind and solar power, and biomass generators.

Wind and solar generators are characterized by an availability that is dependent on weather con-
ditions and therefore, as their generation output is uncertain, these generators are considered non-
dispatchable units. The model accounts for this intermittent availability by introducing time sets of
availability factors, which are calculated based on the historical hourly power generation divided by the
installed capacity of the Netherlands, using data retrieved from the European Network of Transmission
System Operators for Electricity (ENTSO-E). The non-dispatchability of vRES technologies sparks a
significant debate regarding their derating in capacity markets, which is a topic of ongoing debate (Ko-
zlova & Overland, 2022). While recognizing the importance of this debate, it is necessary to remind
that the inclusion of vRES in capacity markets falls outside the scope of this thesis, and vRES are
therefore excluded from the capacity market in this model, which is done by setting their derating factor
Φ in Equation (4.8) to 0.

vRES technologies are characterized by relatively high capital costs, equal to 529M€/GW for solar
PV at utility scale and 1118M€/GW for wind turbine generators. At the same time, they presents low,
near-zero operational costs, equal to 2 €/MWh for solar PV and 5 €/MWh for wind.

Biomass power plants are also included in the model and, as inter-temporal constraints are ne-
glected, they serve as flexible decarbonized generators. These power plants exhibit high overnight
costs of 4400 M€/GW , along with significant operational costs. Biomass feedstock is assumed to
be consistently available and operational costs sum to the variable operational costs a fuel cost of 85
€/MWh, of which value is retrieved by the work of Koirala et al. (2021). This assumption allows the
biomass power plants to be dispatchable and with a firm capacity correspondent to the installed capac-
ity, ensuring their reliable operation within the system and allowing them to participate in the electricity
capacity market (Φ is set to 1 in Equation (4.8)).

Hydrogen-fired turbines, namely thermal generators that use hydrogen as fuel, represent the other
flexible units of the system and rely on the hydrogen sector for hydrogen availability. The latter is
however a market result, which should coordinate investment in generation capacity and ensure that
this capacity is efficiently used. In this project, only open-cycle hydrogen turbines are considered.

Hydrogen-fired turbines are comparable to gas-fired turbines for characteristics such as easy acti-
vation, low capital costs and high operational costs and their role as peak or backup units (IEA, 2019).
However, if blending hydrogen with gas and using it to fuel a gas turbine is already possible by adapt-
ing the latter, pure hydrogen-fired turbines are a new concept still in their development phase and their
specifications are less clear (Hernandez & Gençer, 2021). However, as the industry evolves, it is legit-
imate to assume that hydrogen turbines will exhibit a cost structure comparable to that of conventional
natural gas power plants. Lux & Pfluger (2020) provide reasonable assumptions about the future costs
of hydrogen-fired turbines, considering the turbine capital cost and the non-fuel variable cost. As the
fuel cost is endogenously determined by the model, as is the amount of fuel needed, it is not included
in the cost structure but it is explicitly added to the objective function (Equation (4.19)). The different
considerations of fuel cost between biomass and hydrogen could be trivial looking at Table 5.1, but
endogenously determining the hydrogen cost is crucial as it is triggered by sector coupling dynamics,
and at the same time triggers them.

Turbines’ conversion efficiency, namely the ratio between the output and the energy content of the
hydrogen in terms of Lower Heating Value (LHV), is set at 40% (Lux & Pfluger, 2020). It is assumed a
constant efficiency with the power output and that there is no time delay between the purchasing and
the consumption of hydrogen.

An overview of the costs and technological parameters of the power generators is presented in Ta-
ble 5.1.
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Table 5.1: Overview of costs and technical parameters of electricity suppliers

Technology Overnight Costs [M€/GW] Operational Costs [€/MWh] Lifetime [yr] Efficiency [-]

Solar 529 2 35 /

Wind Turbines 1118 5 25 /

Biomass 4400 85 (including fuel) 25 /

H2 Turbines 450 2.7 (excluding fuel) 30 0.40

Similarly to hydrogen-fired turbines, hydrogen supply technologies are surrounded by uncertainty
about their costs.

Electrolysis is a well-known process, which however needs to be intensively studied to reduce the
high capital costs and improve the low efficiency of the technologies in order to become competitive (Lux
& Pfluger, 2020). There are currently three main technologies in water electrolysis: Alkaline Electroly-
sis (AEL), Polymer Electrolyte Membrane Electrolysis (PEMEL) and Solid Oxide Electrolysis (SOEL).
While SOEL is still in its pre-commercial stage, AEL is the most mature in the market at the moment.
However, it is expected that in the long term, PEMEL will achieve similar costs to AEL, with the advan-
tage of having the most flexible operation and, therefore, being the most suitable one to be powered
by fluctuating renewable power (Lux & Pfluger, 2020). The model does not differentiate between elec-
trolyzers technologies, therefore only one agent for electrolyzers is included. Parameters’ values refer
to the AEL technology, which here exhibits overnight costs equal to 500M€/GWe.

Electolyzers’ capacity is expressed in the model in terms of electricity input. Variable costs for main-
tenance and water are neglected, while the electricity cost is explicitly part of the objective function
and it is endogenously determined. The amount of hydrogen production is linked to the electricity in-
put by the electrolyzers’ efficiency, which is optimistically assumed at 68% and is defined as the ratio
between the electricity consumption and the energy content of the hydrogen produced. The efficiency
is assumed constant with the output.

With regard to hydrogen long-term storage assets, salt caverns have been selected as the most
promising solution. Indeed, gas-depleted fields are still surrounded by uncertainty, while liquid hydro-
gen storage in tanks is less suitable for long-term storage purposes (IEA, 2019; Groenenberg et al.,
2020). Salt caverns are associated with a long lifetime; however, their costs are mainly driven by the
auxiliary technologies that allow the transportation and treatment of the gas. Transportation costs are
neglected. According to a recent study by TNO (Groenenberg et al., 2020), underground hydrogen
storage in salt caverns has an overnight investment cost structure composed of costs related to the
cavern itself equal to 150 €/tonH2

, costs for the compressor and dryer equal to 4200000 €/tonH2
/h,

and costs for the expander gas treatment equal to 2520000 €/tonH2
/h. These costs are converted

in M€/GW and €/MWh by using the hydrogen LHV (33 MWh/tonH2 ). Operational costs of the salt
cavern storage plant are neglected.

The modelling of technological constraints is highly simplified. According to Groenenberg et al.
(2020) and Michalski et al. (2017), storage in salt caverns presents high efficiency. In this work, the
charging efficiency represents the efficiency of the compressor and includes its electricity consumption.
Similarly, the discharging efficiency refers to the expander and gas treatment section and accounts for
their electricity consumption. Their electricity consumption is assumed in the order of 1MWhe/tonH2

(Michalski et al., 2017; Groenenberg et al., 2020). To include this loss in their efficiency, the electricity
consumption is converted into the energy content of the hydrogen that could have been produced via
electrolysis with the same amount of electricity. The calculation of the efficiency is then straightforward,
dividing this term by the hydrogen LHV. Charge and discharge efficiencies result to be equal to 95%.

The following table presents the selected parameters of hydrogen sector technologies.
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Table 5.2: Overview of costs and technical parameters of hydrogen suppliers

Technology Overnight Costs Operational Costs [€/MWh] Lifetime [yr] Efficiency [-]

Electrolyzers 500M€/GWe / 25 0.68

Salt Cavern Storage
206M€/GWH2

150M€/TWh

/ 40
charge: 0.95

discharge: 0.95

Most of the energy losses of the hydrogen sector, therefore, lie in the electrolysis step (where only
68% of electricity is converted into hydrogen) and, eventually, in the reconversion to electricity bymeans
of the hydrogen-fired turbines. On the other hand, charge and discharge efficiency, which ultimately
refers to the compressors’ and gas expanders’ capacity, are higher (95%) than electrolysis and hydro-
gen turbines, while transportation losses are neglected, as transportation is not explicitly modelled.

5.2. Demand Characterization

As introduced, external demand agents are considered aggregately and price-elastic up to a price cap.
The price cap is represented by their willingness to pay, which allows quantifying the consumers’ utility
in monetary terms. WTP is set to 1000 €/MWh for both the electricity and hydrogen sectors.

As introduced in Section 3.2 and illustrated in Figure 3.2, the price elastic demand function is made
by two sections, the first one characterized by a constant WTP and the second one represented by
a sloped curve. Both sections introduce price elasticity, but in a different way: the sloped section
allows voluntary adjustment of the served demand as a function of the energy price, while the constant
WTP section allows for involuntary curtailment whenever the price cap is reached. Even if the demand
is endogenously determined, it is necessary to have a demand input to define the consumers’ utility
function. In particular, the demand input characterizes the constant WTP section and the elastic section.

The function is built up as follows. The constantWTP section is defined as up to 80% of the historical
electricity demand (setting ψ as 0.8 in Constraint (4.55)). However, the last section of the function is
defined as price-elastic. The price-elastic section is mathematically represented by a sloped function,
which is obtained for the electricity demand by interpolating the function in two points. One consists of
the limit of the constant WTP section, taken at 80% of the historical demand, and the WTP value. The
second point is obtained by historical electricity demand and price. The slope m is then calculated for
the electricity demand function as:

m =
λe,histt –WTP

De,hist
t –0.8 ·De,hist

t

(5.2)

where λe,histt is the historical hourly electricity price and Dte,hist the historical hourly electricity de-
mand. Historical data for the electricity demand and prices of the Dutch area are retrieved from ENTSO-
E open database for each year between 2017 and 2022.

The width of the elastic section can then be calculated from the price elasticity by dividing the WTP
by the slope coefficientm. The elastic section is what allows to express price elasticity in the consumer
optimization problem. The consumers’ surplus represented in Figure 3.2 is translated into the term
of the consumers’ utility function within the square brackets of Equation (4.58) by applying a simple
geometrical proportion.

For the hydrogen demand, the slope is not calculated from historical data as a green hydrogen
market does not exist yet. Instead, hydrogen price elasticity is assumed to be constant and equal to
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the calculated average price elasticity of the Dutch electricity demand.

It is important to note that the definition of the price elasticity for the hydrogen demand based on
electricity data does not necessarily represent the real conditions of the market, as at the moment of
writing a market for green hydrogen does not exist yet. This does not affect the validity of the results
but entails paying attention when setting the hydrogen demand WTP, as it is not directly correlated with
the exogenously determined (from electricity data) price elasticity. If the WTP is too high, the elastic
section could become very extended, allowing an unrealistic price elasticity. On the other hand, a
too-low WTP could lead to a scenario where the hydrogen theoretical demand would be greater than
the one represented on the curve. This justifies the choice of using the same WTP for electricity and
hydrogen. In order to avoid possible negative prices, the elastic term of the demand eelaco,dt is constrained
to be smaller than the elastic section De

ela,dt, as visualized again in Figure 5.1. Constraint (4.56) and
Constraint (4.62) are here repeated, and ensure the latter concept is applied to all the scenarios:

0 ≤ eelaco,dt,y ≤ De
ela,dt,y (µela

dt,y
, µela

dt,y) ∀d, t, y (5.3)

0 ≤ helaco,dt,y ≤ DH2

ela (µela,H2

dt,y
, µela,H2

dt,y ) ∀d, t, y (5.4)

Figure 5.1: Inverse willingness-to-pay and supply functions

Given the uncertainty surrounding the future demand for green hydrogen, a reference target of
50 Mton of hydrogen per year has been set to meet the decarbonization targets at the European
level. This target is based on the REPowerEU plan (European Commission, 2022), which estimates
20Mton of annual demand by 2030, and is increased by a factor equal to 2.5 to represent an expected
exponential growth in the long term as presented in (Alvik & Onur Özgün et al., 2022). The Dutch
demand for hydrogen is estimated to account for approximately 4% of the total European hydrogen
demand, resulting in an annual demand of 2Mton of hydrogen. The assumption on this share is based
on considering the Dutch electricity demand share in Europe as a fraction of the European electricity
demand.

The external demand agent does not include the demand from hydrogen-fired turbines, which is
calculated endogenously as in turn, they act as a demand agent themselves.

Similarly to what happens to the electric load, demand for hydrogen will likely follow a seasonal
trend, with winter characterized by peak hydrogen and electricity demands. To model this, the constant
hourly demand for hydrogen, obtained by dividing the annual demand by the hours of the year, is
normalized and correlated to the interpolated electric load. This is presented in Figure 5.2 and ensures
that the hydrogen demand has a seasonal trend while the annual demand remains constant. As for
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the electricity load, the hydrogen demand is met on an hourly basis and does not allow for potential
inherent flexibility by, e.g., relaxing the matching on a daily basis.

(a) Electricity demand of the Netherlands (2021) - The hourly demand
(blue dots) is interpolated to obtain the seasonal trend (red dots)

(b) Hydrogen demand - The projected uniform demand is correlated
with the electricity demand seasonal trend to represent the stress

situation for the whole system

Figure 5.2: Representation of the electricity demand (a) and the hydrogen demand (b) for the 2021 weather year

With regard to the demand for capacity cleared by the capacity market, it is widely known how set-
ting the correct target is crucial but at the same time extremely difficult (De Maere d’Aertrycke et al.,
2017). Therefore, the social optimal capacity calculated ex-ante in the risk-neutral simulation for the
EOM design is used for the target capacity demand, following the approach used by Kaminski et al.
(2021). This outcome is indeed the spontaneous optimal reached in case of perfect competition and
should be, in theory, the objective pursued.

Considering the reasoning behind the capacity demand requirement for firm capacity presented in
subsection 3.2.2, the capacity target is set differently for the electricity market and the hydrogen market.

The electricity capacity market considers only an exogenous inelastic demand for capacity, of which
the target is simply the optimal dispatchable installed capacity for the risk-neutral case, as vRES gen-
erators are excluded from the market.

On the other hand, the hydrogen capacity market has in hydrogen-fired turbine generators a de-
mand agent, which requires a certain amount of firm capacity to ensure that the capacity offered to
the electricity sector is always available. The results in terms of electrolyzers and storage discharge
capacity obtained from the risk-neutral setup refer to the total demand for hydrogen, which includes
the external exogenous demand and the fuel demand from hydrogen turbines. As the latter require
a firm capacity which is equal to the amount of electricity capacity offered in the electricity capacity
market corrected by their efficiency, the target demand for hydrogen supply capacity is set at the social
optimal of the risk-neutral case minus the optimal installed hydrogen-fired turbine capacity. By doing
this, capacity costs are spread among agents and not only final consumers, as the hydrogen turbine’s
agent must pay for the additional capacity it is requiring. This allows for a more fair distribution of the
costs.

5.3. Uncertainties within Scenarios

The model introduces uncertainty by incorporating discrete scenarios in the stochastic model. Each
scenario is associated with a probability that influences its weight in the objective function. As they
represent historical years linked with different scales of hydrogen demand, scenario probabilities follow
a uniform distribution, assuming that all scenarios have equal probabilities.

A total of 18 scenarios are considered, which have been developed using a specific approach.
Initially, six weather years for the Netherlands have been selected from ENTSO-E, from 2017 to 2022.
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These years are characterized by the availability of wind and solar generators, as well as the electricity
load.

Each of these six weather years obtained from ENTSO-E has been utilized to generate two ad-
ditional scenarios, introducing uncertainty in the hydrogen market size. Consequently, each weather
year is associated with three scenarios representing different levels of hydrogen demand: the reference
demand, an increased demand by 20%, and a decreased demand by 20%. The reference hydrogen
demand has been computed in Section 5.2.

To summarize, each scenario is distinguished by the electricity load, hydrogen load, and availability
of solar and wind generators.

5.4. Market Designs

The model presented consists of the different generators and demand agents which participate in an
integrated hydrogen and electricity market. This is strictly interdependent due to the interconnection
represented by the sector-coupling technologies, i.e. electrolyzers and hydrogen-fired turbines. The
formulation of the model elaborated in Chapter 4 represents the most complex and complete case;
however, the analysis will be conducted for different market designs which refers to partial versions of
it.

The market designs analysed are the following, presented with an increasing degree of complexity
and summarized in Table 5.3:

• Energy-Only Markets (EOM): this design includes the wholesale markets for electricity and hy-
drogen and does not include any capacity market. This is obtained by adapting the singular
optimization problems of the agents, removing any term related to the offered and demanded
capacity in the objective functions of the agents and neglecting the related constraints. Further-
more, the market clearing constraints for capacity (Equation (4.68) and Equation (4.69)) are not
considered. This market remunerates agents only for the energy offered on an hourly basis to
the market to match energy supply and demand.

• EOMs supported by an electricity capacity market for dispatchable generators (CM E): this
design adds to the wholesale EOMs an electricity capacity market for dispatchable generators,
which remunerates the contracted capacity on a yearly basis. The problem presented in Chapter
4 is therefore adapted by neglecting the capacity terms in the objective functions and the related
constraints for the electrolyzers, hydrogen storage and hydrogen demand agents, and does not
consider the market clearing constraint for hydrogen capacity (Equation 4.69). Additionally, the
hydrogen-fired turbine agent (referring to subsection 4.2.2) is not allowed to express a demand
for hydrogen capacity anymore, but it offers its installed capacity to the electricity capacity market.
The objective is to understand the eventual necessity of firm capacity for the hydrogen sector, as
the capacity offered would be dependent on fuel availability.

• EOMs supported by an electricity capacity market and a hydrogen capacity market (CM
E+H2): this case refers to the integral formulation presented in Chapter 4. Here, the hydrogen
turbine’s agent additionally expresses a demand for firm capacity in the hydrogen capacity market
to ensure the reliability of what they offer in the electricity capacity market. Electrolyzers and
hydrogen storage can offer their capacity to meet the demand without requiring firm capacity in
the hydrogen sector. On the other hand, storage volume and availability are not remunerated by
the capacity market.
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Table 5.3: Setting of the simulations for the different market designs.

Design Markets Target capacity demand Weight mean-risk CVAR interval

EOM electricity EOM, H2 EOM / γ = 0.5 β = [0.2− 1.0]

CM E
electricity EOM, H2 EOM,

electricity CM for dispatchable generators
electricity CM: risk-neutral (β = 1.0) EOM optimum γ = 0.5 β = [0.2− 1.0]

CM E+H2
electricity EOM, H2 EOM,

electricity CM for dispatchable generators, H2 CM

electricity CM: risk-neutral (β = 1.0) EOM optimum

H2 CM: risk-neutral (β = 1.0) EOM optimum
γ = 0.5 β = [0.2− 1.0]



6
Results

The main findings of the simulations are presented in this chapter. To answer the question of the market
design’s suitability to attract adequate investments in hydrogen capacity for an integrated and decar-
bonized hydrogen and electricity system in the presence of risk-averse investors, the impact of risk
aversion on the three proposed market designs (EOM, CM E, CM E+H2) is studied. The metrics used
to evaluate the effects of the level of investment combine the system adequacy perspective and the
cost perspective.

The chapter is structured as follows. Section 6.1 presents the equilibrium reached when risk-neutral
agents are driven by an EOM, with the aim of explaining what the model is able to provide and defining
a benchmark optimal case. After this, in Section 6.2 the effect of risk aversion is compared with the
benchmark to show the functioning of the system. The analysis proceeds in Section 6.3 with a more
general overview of the effect of risk aversion on the performance of the three proposed market designs.
This section focuses on the effect of potential deviation in installed capacity and what this entails in
terms of energy served and market prices. Furthermore, the analysis is completed by analysing costs
of energy, profits and social welfare from the different actors’ perspectives to study possible transfers
of welfare. Lastly, Section 6.4 provides insights on the effect of fixing the vRES capacity to the optimal
level and how this influences energy prices and the strategy of the other agents.

6.1. Model Performance for the EOM

The long-term equilibrium for an EOM driven by risk-neutral agents’ strategies results in a socially opti-
mal capacity mix which serves as a benchmark case for the comparison of performances of the different
market designs. Referring to the problem formulation of Chapter 4, this corresponds to expressing the
agents’ problems for EOM with a β = 1.0 or, alternatively, to set γ = 1.0. In this way, the strategy of
each agent is only based on the expected profit.

Referring to the electricity sector, investments for a total installed capacity of 150.58 GW have
been made. As visualized in Figure 6.1, the electricity capacity mix is primarily composed of variable
renewable energy sources (vRES), which account for 93% of the electricity generation capacity. Among
the vRES, solar PV and wind energy share an almost equal proportion. The remaining 7% of the
capacity is comprised of dispatchable sources, specifically 7.51 GW of biomass capacity and 2.52
GW of hydrogen-fired turbine capacity. These dispatchable sources play a crucial role in fulfilling the
electricity demand during periods when additional power is required to meet the residual load.

Compared to the current total generation capacity in the Netherlands and considering the electricity
demand refers to historical data, the installed capacity could seem excessive. However, there are two

39
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justifications for such a high capacity. Firstly, the high share of vRES requested in the decarbonized
energy system comes along with their uncertain availability, therefore their firm capacity consistently
differs from the installed one. To compensate for this variability, a higher installed capacity is necessary
to ensure a reliable and consistent electricity supply.

Moreover, the demand for hydrogen stimulates investments in electrolyzer capacity, reaching 33.04
GWe. Hydrogen production creates a significant additional electricity demand, which on average is
equal to an additional hourly demand of 14309MWh. This is in the order of the external electricity de-
mand. It is important to recall that hydrogen storage allows the decoupling of hydrogen production and
supply. The additional hydrogen demand for electricity is therefore not constant, and it is concentrated
in those periods of high vRES generation.

Figure 6.1: Electricity capacity mix - Technology shares

Technology Installed Capacity [GW ]

Wind 69.41

Solar PV 71.14

Biomass 7.51

H2 turbine 2.52

Figure 6.2: Electricity installed capacity in absolute
values

As can be seen in Figure 6.3, the hydrogen capacity mix is balanced, with the capacity of electrolyz-
ers exceeding the storage discharge capacity by 8 GW . This is justified by the fact that the former are
the hydrogen producers, and storage is ultimately dependent on electrolysis to stock hydrogen. To en-
sure coherence, the electrolyzer capacity is converted into hydrogen output capacity when compared
to hydrogen storage.

Figure 6.3: Hydrogen capacity mix - Technology shares

Technology Installed Capacity [GW]

Electrolyzer 33.04 GWe - 22.47 GWH2

H2 storage 14.57 GWH2

Figure 6.4: Hydrogen installed capacity in absolute
values

To complement the charge and discharge capacity, investments have been made in a storage vol-
ume of 11.44 TWh. This enables a potential availability of 32 days of discharge at the maximum rate
when storage is fully charged. This is coherent with the role of salt caverns, which are modelled as
long-term storage facilities and have the role of dampening seasonal variations and potential backup
for long periods without vRES availability. The initial SOC of the day is plotted for the whole year and
for each scenario in Figure 6.5, confirming the seasonal behaviour of hydrogen storage deployment.
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Figure 6.5: SOC of hydrogen storage at the beginning of each day for the 18 scenarios

From the figure above it can be concluded that no common seasonal effect regulates the charge
and discharge of hydrogen storage, as the profiles are reversed for some years. This is possible as the
different years are not modelled as consecutive, but represent discrete scenarios whose possibility is
considered and influences the strategy of the agents, therefore there is no constraint between the final
SOC of one year and the initial SOC of the following one. The different profiles, however, are a result
of the vRES availability of particular years. Here, 2019 and 2021 present the SOC peak in the second
half of the year, contrary to the other years which show it during the first half.

As presented in Section 4.2, each agent takes a unique decision on the capacity to invest based on
the optimization by considering the weight of the different scenarios. Hence, wholesale energy prices
are defined for each scenario. To analyze the price duration curves, representative days prices are
extended to the whole year by considering their weight. The average price duration curve is then com-
puted by averaging the hourly price duration curves of all the scenarios.

Figure 6.6 presents the average electricity hourly price duration curve. The first thing that can be
noticed is that, compared to the price duration curve of 2022 for the Netherlands, electricity prices are
lower in the modelled energy system. This is always true apart from the very last few hours of vRES
surplus, which in the real world correspond to negative prices, while the modelling approach of the
demand does not allow them. In general, electricity prices are driven downward by the very high share
of vRES. The latter, however, recover their costs (compare the risk-neutral case in Figure 6.10). The
average electricity price is 122.89 €/MWh, while the median electricity price is 85.12 €/MWh. The
sustained low prices periods visualized on the flat region at the centre of the curve, which account for
more than 80% of the year, come with the downside of having more unexpected price spikes, which
however in this case are limited in magnitude and frequency as agents are considered risk-neutral.
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Figure 6.6: Electricity hourly price duration curve for the risk-neutral case

Even though it presents the vRES-induced flat region, the obtained electricity hourly price duration
curve has a shape similar to the real-world curve of 2022. In particular, despite the very high share of
vRES, prices are remarkably meaningful, avoiding zero prices. This leads to the important conclusion
that, in the modelled decarbonized system reliant on vRES generators, marginal pricing allows to have
a market outcome where generators can recover their cost via the market.

By using the same approach, the hydrogen hourly price duration curve is obtained and presented
in Figure 6.7. Hydrogen price here varies between approximately 3 and 7 €/kg, with an average of
4.14 €/kg. The latter is slightly higher but in line with the average Levelized Cost of Hydrogen (LCOH)
forecasted for 2030 in the EU for grid-connected electrolysis hydrogen, which is expected to settle
around 3.8 €/kg (Alvik & Onur Özgün et al., 2022).

The first thing that stands out is the fluctuating behaviour of the hourly hydrogen price. A first ex-
planation of this behaviour lies in the fact that the system is modelled without the possibility to import
or export energy but the model requires that demand and supply are matched hourly. Furthermore,
combining the limited price elasticity of the external hydrogen demand with the fluctuating electricity
prices that electrolyzers face in the electricity market, the hydrogen market clearing results in fluctu-
ating prices, which evidently cannot be dampened by the - limited - storage, which however presents
generational costs.
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Figure 6.7: Hydrogen hourly price duration curve for the risk-neutral case

As explained, each scenario differs in input and, therefore, in the operational decisions of the actors.
This will lead to differences across scenarios in the volume of energy offered by each actor and in the
clearing prices they are exposed to. Consequently, profits can highly differ across scenarios.

Considering, for example, the electrolyzer technology, the differences across scenarios in terms
of costs, revenues and profits are presented in Figure 6.8(a). They are mainly driven by the variation
of demand that they have to fulfil, electricity prices dependency on power generators’ availability and
periods and rate of deployment of electrolyzers, which in turn can compete with hydrogen storage.

As introduced, risk-neutral agents choose their strategy based on the expected profit, calculated
as the sum of each scenario profit Πy weighted by its probability Py. Figure 6.8(b) focuses on the
differences in terms of profit across scenarios. In this case, the yearly expected profit (Equation (4.21)
with γ = 1) for the electrolyzers’ agent amounts to 0.084 million €, which is 5 orders of magnitude lower
compared to the scenario with revenues (1341.837 million €). As expected, in a perfect market with
risk-neutral agents, investors do not recover any long-term profit.

However, when agents become risk-averse, uncertainty in profits makes them require a risk pre-
mium to invest, which results in expected revenues that exceed expected costs.

(a) Comparison of profits, costs and revenues (b) Focus on profits

Figure 6.8: Profits, costs and revenues of each scenario for the electrolyzer technology when it is assumed risk-neutral - Each
scenario has the same weight in computing the expected profit and orienting investments



6.2. The Effect of Risk Aversion: Insights into the Model's Mechanics 44

6.2. The Effect of Risk Aversion: Insights into the Model's Mechan-
ics

As presented in Section 3.2, modelling risk-averse agents by means of CVAR allows to consider the
worst-case scenarios defined by the parameter β. Agents adapt their strategy by requiring a risk pre-
mium that allows them to recover their cost even if hey experience only the selected worst scenarios,
protecting themselves from this probability. The risk-averse agent’s problem is adapted by setting β to
a value smaller than one (recalling the lower the β, the higher the degree of risk aversion).

In the risk-averse set-up of the model, the resulting expected profit corresponds to the risk premium
required by the risk-averse agents to protect themselves against the worst-case scenarios. This, in
general, increases with the degree of risk aversion.

Figure 6.9 visualizes the objective function result of the risk-averse electrolyzers’ agent in the EOM
case for a β = 0.3. Profits are ordered on the x-axis in increasing order from the worst case to the best
case. The y-axis shows the scenarios’ probabilities, which are all equal to 5.56% as assumed uniformly
distributed.

The expected profit is in this case 1250.41 million € per year and cannot be considered negligible
anymore. The CVAR term is calculated considering the scenarios with a cumulative probability equal
to β, in this case, the 5 worst scenarios 1, and has a value of -1251.73 million €. It is therefore clear how
the CVAR term coincides with a risk premium requested by the agent to overcome possible adverse
scenarios.

Figure 6.9: Decomposition of the objective function results for the risk-averse electrolyzers’ agent - The profit distribution is
presented together with the expected profit, the VAR and the CVAR

1It is important to note that, as the distribution is discrete and the β used does not coincide with the cumulative probability of
the distribution, the computation of CVAR with the linearized reformulation slightly differs from the theoretical definition of CVAR,
as the former computes a linear approximation. This has been studied to validate the CVAR formulation. However, the linear
approximation does not affect the validity of the results, as the effect on the objective function is the same.
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Figure 6.10 shows the expected profit for the different generation technologies under different mar-
ket designs and degrees of risk aversion; by comparing the first two columns it can be seen how all
the agents increase the risk premium required by acting risk-averse in an EOM. Furthermore, looking
at the market designs that include capacity markets (dark blue and red bars), it can be seen how the
required risk premium is reduced, highlighting how these markets allow to mitigate risk.

Figure 6.10: Expected profit (risk premium) of each technology in four different cases: EOM with risk-neutral agents, EOM with
risk-averse agents, an EOM supported by a capacity market for electricity with risk-averse agents, an EOM supported by a

capacity market for electricity and a capacity market for hydrogen with risk-averse agents

Risk aversion makes agents require a risk premium to recover their investment, affecting their strate-
gies. In general, they reduce investment in capacity and require higher electricity and hydrogen prices
to recover the risk premium. Consequently, the amount of served demand decreases (as it will be
extensively discussed later in Section 6.3).

Figure 6.11 presents the installed capacity for each technology under different market designs and
degrees of risk aversion. Comparing the bar for the risk-neutral EOM case (yellow) and the bar for
the risk-averse EOM case (light blue), it can be seen that in an EOM increasing the degree of risk
aversion results in a decreasing installed capacity. Only biomass does not reduce its installed capacity,
as it is only exposed to uncertain electricity prices and therefore less risky. On the contrary, the other
agents are dependent in terms of availability (e.g., vRES) and variable costs (e.g., electrolyzers, hy-
drogen storage, and hydrogen turbines), suffering from a reduction in installed capacity. Even though
the risk premium required from biomass generators is high due to high capital costs, the independence
of biomass availability and variable costs from uncertain parameters leads biomass to replace other
power generators.
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Figure 6.11: Installed capacity of each technology in four different cases: EOM with risk-neutral agents, EOM with risk-averse
agents, an EOM supported by a capacity market for electricity with risk-averse agents, an EOM supported by a capacity market

for electricity and a capacity market for hydrogen with risk-averse agents

The introduction of a capacity market for dispatchable electricity generators (bars in dark blue)
is effective only for them, and just slightly restores electrolyzers and storage capacity. A possible
market correction that could allow agents to hedge risk consists of supporting the EOM with both the
capacity market for electricity dispatchable generators coupled with the capacity market for hydrogen
capacity. By looking now at the red bars of Figure 6.11, it is possible to see how this adaptation promotes
reestablishing the socially optimal capacity mix for the actors of both sectors. The revenues from
the capacity market are independent of the scenarios and therefore represent a reliable income that
encourages to install capacity and dampens risk aversion.

However, as vRES are excluded from the latter, they still reduce the installed capacity and increase
their profit even more. The indirect effect of an increased electrolyzers’ capacity and the consequent
increase in hydrogen demand met make vRES more profitable, confirming Hesel et al. (2022) conclu-
sion that vRES generators benefit from the increase in hydrogen generation capacity. Analysing the
risk premiums for this market design by looking at the dark blue bars of Figure 6.10, it can be noticed
how vRES are the only ones who see them increasing with the addition of capacity markets, while the
others experience a reduction with respect to the EOM case with the same degree of risk aversion.
However, long-term profits are still non-zero, as vRES reduction affects energy prices and, in general,
all the generators benefit from this.

6.3. Trends and Comparative Analysis of Market Designs

After having presented the functioning of the model and what it is able to provide, the focus now is on
the effect of risk aversion on the performance of the three proposed market designs. This evaluation
will be conducted from a broader perspective, emphasizing a comparison based on selected indicators,
rather than focusing on specific individual cases.

The initial focus will be on evaluating the impact of risk on the installed capacity within the proposed
market designs, in order to gain insights on the interdependence of the two sectors.

In terms of generation adequacy, the first indicator used is the average amount of served energy. It
is computed as the percentage of energy served with respect to the nominal demand and expressed
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by a duration curve. The nominal demand corresponds to the exogenous demand used to calibrate the
inverse WTP function of the demand agents. The average amount of energy served can be calculated
as:

∆Ddt =
∑

Py

(eco,dt,y −De
dt,y)

De
dt,y

(6.1)

Flexibility measures such as the implemented price-elastic demand might, however, make the as-
sessment of system adequacy more difficult. The flexible demand avoids shortages to some extent,
as load shedding can happen only when the price goes over the WTP. For lower prices, the demand
reduction does not necessarily represent unmet demand but rather demand not participating in a trade
convenient for its utility function (Brito-Pereira et al., 2022). Instead, signals of lack of adequacy could
manifest themselves with prolonged periods of high prices and, consequently, with excess reduced
demand, more than the social optimal level (De Vries & Sanchez Jimenez (2022); Brito-Pereira et al.
(2022)). This is particularly true in a system largely based on vRES as the one considered in this project.
Therefore, a second analysis to assess system adequacy consists of the comparison of the shape of
price duration curves.

Working with a stochastic model and with representative days requires an adaptation of the initial
results. Price duration curves are obtained by extending the representative days’ prices to the whole
year by accounting for the weight of each day (i.e. it is assumed that the prices of each representative
day will repeat as many times as its weight during the year). The obtained price duration sets are then
averaged across the scenarios.

Considering the costs and benefits of the different market designs, the performances will be ana-
lyzed from a system perspective, where the total social welfare will be compared for the different cases
and degrees of risk aversion. The total social welfare is measured as the sum of the expected profit of
all the agents a:

SW =
∑
a

∑
y

PyΠa,y (6.2)

Furthermore, to investigate potential welfare transfers, a comparison will be conducted between the
profit of consumers and generators. Finally, the cost of energy for consumers and the producers’ cost
recovery are analyzed to explore individual agents’ perspectives.

6.3.1. Impact on Investment

Risk aversion affects the agents’ strategies by giving more importance to those scenarios with lower
profits, discouraging investments in generation capacity as they might not be paid back. In an EOM,
the total electricity capacity drops from 150.57 GW for the risk-neutral case to 137.06 GW for the risk-
averse case where β = 0.2. Figure 6.12 presents the variation in installed capacity for vRES (Figure
6.12(a)) and dispatchable generators (Figure 6.12(b)) calculated as the difference between the installed
capacity in the risk-neutral EOM case and the installed capacity in a particular market as a function of
the degree of risk aversion β. 2

2It is worth mentioning that, for the risk-neutral case, the capacity mix should not depend on the market design, as in principle
there is no need for capacity remuneration. However, it can be noticed that the introduction of the electricity capacity market
entails a slight variation in the vRES capacity, which is 0.4 GW higher in the last case. This is likely to be due to the tolerance of
the EOMs, which is set as 0.1% of the energy demand, combined with the tolerance of the capacity market. As discussed, the
choice of tolerance has been made by accounting for a trade-off between computational effort and the quality of the solution.
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(a) vRES generators (b) Dispatchable generators

Figure 6.12: Impact of risk aversion on electricity installed capacity in an EOM, EOM supported by a CM for electricity (CM E)
and an EOM supported by a CM for electricity and a CM for hydrogen (CM E+H2)

Looking at the solid line in Figure 6.12, most of this decrease is ascribable to vRES installed capacity
reduction, which combining wind and solar generation reduces up to 12.7GW , equal to a 9% reduction.
Clearly, the uncertainty of their availability combined with high capital costs affects their attractiveness.

As expected, the electricity capacity market, in which vRES do not participate, not even derated,
does not correct the strategy of renewable generators, limiting the reduction in installed capacity of at
most 2 GW with respect to the EOM design. On the other hand, the addition of a hydrogen capacity
market indirectly makes vRESmore profitable and dampens vRES capacity reduction, as a higher elec-
trolyzer capacity introduces a higher peak electricity demand from the hydrogen sector. In this case,
the reduction is dampened up to 4GW , but it is still not enough to fully correct the effect of risk aversion.

Looking at the sub-figure above on the right, the dispatchable generation capacity is affected differ-
ently. Hydrogen-fired turbines, which in theory represent low-capital costs units, are deeply affected
by risk aversion and see their installed capacity more than halved, with a decrease of 1.3 GW . On
the other hand, biomass generators’ capacity tends to replace the loss of hydrogen turbines by slightly
increasing.

This conclusion is counter-intuitive when compared to the existing literature (see, e.g., Kaminski et
al. (2021)): low-capital costs hydrogen turbines should benefit from high-risk aversion degrees when
compared to capital-intensive biomass, which should suffer it. However, it must be taken into account
how biomass and hydrogen-fired turbines are affected to different extents by uncertainties. Biomass
generators have a variable cost which, even if it is relatively high compared to vRES, is fixed, and are
exposed to risk only from the uncertainty of activation depending on electricity prices. On the other
hand, hydrogen turbines are exposed to risk from two sectors: their use is strongly dependent on the
volatile vRES generation availability, of which reduction increases electricity prices (Figure 6.18) and,
indirectly, hydrogen prices (Figure 6.19). This indirect effect of risk aversion on hydrogen supply adds
to the uncertain deployment of them, which, in the end, depends on electricity demand and vRES avail-
ability.

As can be seen, looking at the dashed lines, the introduction of a capacity market for dispatchable
electricity generators is able to fix this bias towards biomass only for low degrees of risk aversion (i.e.,
high β), while for β lower than 0.7 only dampen the hydrogen turbine capacity reduction. However,
the addition of the hydrogen capacity market seems effective in reestablishing a mix similar to the
optimal risk-neutral: for any degree of risk aversion, the difference in the capacity of each technology
with respect to the risk-neutral case does not exceed 0.18 GW . This is interesting considering that
the hydrogen turbines’ agent pays the hydrogen capacity price for the firm capacity demanded in the
correspondent market, meaning that a hydrogen capacity market still benefits hydrogen turbines even
if they have to pay for the firm capacity that is ensured. Figure 6.13 presents the costs for ensuring the
firm capacity in the hydrogen capacity market (in orange) and the revenues from the offered capacity
in the electricity capacity market (in blue). It is clear how the electricity market is more profitable, and
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revenues from it overcome the cost of the other, playing an important role in hedging risk and attracting
adequate investment in hydrogen turbine capacity.

Figure 6.13: Comparison of costs for firm capacity in the hydrogen capacity market and revenues for the offered capacity in
the electricity capacity market for the hydrogen turbine agent as a function of the degree risk aversion

The hydrogen capacity market is therefore beneficial for the electricity capacity mix: combined with
an electricity market for dispatchable capacity it is able to partially correct the effect of risk aversion,
reestablishing the dispatchable installed capacity and slightly dampening the reduction of vRES.

Focusing on the hydrogen mix, Figure 6.14 presents the variation in hydrogen generation installed
capacity for (Figure 6.14(a)) and storage volume (Figure 6.14(b)) calculated as the difference between
the risk-neutral value in the EOM case and the value for a particular market design as a function of the
degree of risk aversion β.

(a) (b)

Figure 6.14: Impact of risk aversion on (a) hydrogen installed capacity and (b) storage volume in an EOM, EOM supported by
a CM for electricity (CM E) and an EOM supported by a CM for electricity and a CM for hydrogen (CM E+H2)

As can be seen in the left subplot, both electrolyzers and storage capacities suffer an important
reduction in the EOM case with an increasing risk aversion degree, respectively of 3.74 GWH2

and
3.45GWH2

. These correspond to 17% and 24% with respect to the socially optimal levels. Accordingly,
storage volume reduces from 11.44 TWh up to 9.45 TWh.
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The first introduction of an electricity capacity market is beneficial for both technologies: the in-
crease in hydrogen turbine capacity restores a higher demand for hydrogen from the electricity sector,
stimulating investment in hydrogen capacity. However, the effect on storage volume is negligible.

The addition of the hydrogen capacity market comes with interesting effects. Firstly, the hydrogen
total installed capacity is restored with a capacity mix similar to the socially optimal one. However,
electrolyzers’ capacity is more sensitive to risk preferences, and storage capacity recovers, in general,
more consistently when adding capacity markets. This is likely to be due to two factors. As seen in
Figure 6.12(a), vRES capacity drops with risk aversion even when capacity markets are in place. This
reduces electricity availability and comes with a coherent increase in the electricity price, making elec-
trolyzers less attractive. In turn, storage can still benefit from price arbitrage, meaning that it can decide
to buy cheap hydrogen during periods of vRES surpluses and eventually resell it at a competitive price.
As it is assumed perfect foresight within a scenario, arbitrage opportunities might be similar even if
expected profits are uncertain, reducing risk for the technology.

In general, the effectiveness of the hydrogen capacity market in restoring the original capacity mix is
confirmed. At the same time, this comes with an interesting effect on the storage volume, as visualized
in Figure 6.14(b). Storage volume is not remunerated in the hydrogen capacity market, and introducing
risk aversion causes a drop of 1 TWh going from β = 1.0 to β = 0.9. However, the hydrogen capacity
market makes the storage volume stabilize and no further reductions are observed, making the storage
volume independent of risk. In other terms, after the initial drop, the storage volume is not affected by
the risk as long as the discharge capacity is corrected.

6.3.2. Impact on System Adequacy

The average amount of energy served clarifies the correlation between the installed capacity and the
resulting system adequacy. It measures the amount of demand served with respect to the exogenous
demand. This indicator is preferred to the Energy Not Served as in a context of flexible demand, the
latter is more difficult to define and does not necessarily lead to relevant results. Indeed, a price-elastic
demand depends on the function definition, presenting at times no involuntary curtailment. It is there-
fore preferred to analyze the amount of energy served, as it explicitly presents how the cleared demand
changes with the market conditions.

Figure 6.15 provides an aggregate perspective of the effect of risk aversion in reducing the served
demand. This effect is mainly due to the price-elastic demand, which allows to adapt reduce or increase
the demand when necessary. However, it is clear how, with respect to the optimal risk-neutral case,
risk aversion reduces the served demand, as a consequence of less installed capacity. This is valid for
both the electricity and the hydrogen sector. Focusing on the former (6.15(a)), risk aversion entails a
reduction from 109.675 TWh of electricity served to 108.527 TWh per year. This reduction is effectively
limited to 108.676 TWh when the electricity capacity market is introduced and to 108.889 TWh when
also the hydrogen capacity market is introduced. On the other hand, the hydrogen sector (6.15(b))
experiences a reduction of up to 0.037 Mton in the EOM case. The introduction of the electricity
capacity market does not have a relevant effect in improving the amount of served hydrogen, while the
hydrogen capacity market is able to dampen its reduction. It is important to note that, as expected, the
served demand in the risk-neutral case represented by the blue curves coincides for the three market
designs.
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(a) Annual electricity served (b) Annual hydrogen served

Figure 6.15: Annual energy served in (a) the electricity market and (b) the hydrogen market as a function of risk aversion in an
EOM, EOM supported by a CM for electricity (CM E) and an EOM supported by a CM for electricity and a CM for hydrogen (CM

E+H2)

Focusing on the extended year, Figure 6.16 presents the duration curve of the percentage of elec-
tricity served with respect to the historical electricity demand. The general reduction in the amount of
electricity served when agents are risk-averse is confirmed, going from the blue line to the red line.
While in the risk-neutral case the demand reduction can be handled by the price elasticity of the de-
mand agent, a high degree of risk aversion (β = 0.2) implicates 42 hours of involuntary curtailment in
EOM (the solid red line exceeds the reduction of 20% of the nominal demand, meaning curtailment is
reached).

The introduction of capacity markets is beneficial. The centre of the figure below shows a slight
improvement in the served electricity during baseload hours due to the dampening of vRES capacity
reduction. However, their impact is more beneficial during scarcity periods. Ensuring an adequate
amount of dispatchable capacity clearly improves demand reduction during those periods of extreme
conditions when demand curtailment is more likely to happen. Again, looking at the far right side,
curtailment is avoided on average, and in general extreme demand reduction due to price elasticity
is limited. This effect is more pronounced when both the capacity markets, i.e. for electricity and
hydrogen, are in place, as presented in the zoom of Figure 6.16(b). Indeed, the electricity capacity
market can provide a higher capacity to supply the residual demand, while a hydrogen capacity market
top-up it with available hydrogen for turbines.

(a) Duration curve - Full view (b) Duration curve - Zoom on scarcity periods

Figure 6.16: Percentage of electricity served with respect to the historical demand in an EOM, EOM supported by a CM for
electricity (CM E) and an EOM supported by a CM for electricity and a CM for hydrogen (CM E+H2)

Figure 6.17 presents the duration curve of the percentage of hydrogen served with respect to the
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nominal hydrogen demand. 3

Focusing on the trend, it can be seen how the reduction due to risk aversion is more pronounced
than in the electricity sector. This is again a manifestation of the risk exposition in two sectors: the
reduction in hydrogen generation capacity is amplified by the reduction in the electricity generation
capacity, which ultimately regulates hydrogen production.

The effect of introducing only an electricity capacity market does not improve the situation as it
increases the demand for fuel from hydrogen turbines without ensuring a corresponding adequate
increase in hydrogen generation capacity, as can be seen from the overlapping o the two curves. On
the other hand, introducing the hydrogen capacity market ensures hydrogen availability and tends to
bring the level of hydrogen served back to the risk-neutral case, even if its impact is limited. However,
it is important to notice that the reduction of vRES capacity with respect to the risk-neutral case arises
also here, as the lack of power generation limits the beneficial effect of capacity markets in ensuring
the optimal levels of served hydrogen.

Figure 6.17: Percentage of hydrogen served with respect to the nominal demand in an EOM, EOM supported by a CM for
electricity (CM E) and an EOM supported by a CM for electricity and a CM for hydrogen (CM E+H2)

Moving towards an analysis of market prices, Figure 6.18 presents the average electricity price
duration curves for the three market designs, comparing the risk-neutral cases (in blue) to the case
where agents are risk-averse for a degree of β = 0.2 (in red). Again, the blue curves, which represent
prices under the risk-neutral case, coincide for the three market designs.

3It can be seen that hydrogen is served always in excess with respect to the nominal demand due to the parametrization.
This is a consequence of the modelling of the hydrogen demand function based on the elasticity of the electricity demand, which
does not necessarily refer to the magnitude of the hydrogen demand.
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Figure 6.18: Comparison of electricity price duration curves for the three different market designs for risk-neutral agents and
risk-averse agents

The average electricity price in the risk-neutral case is 122.89 €/MWh, while the median is 85.12
€/MWh. As introduced, the high share of vRES capacity drives prices downward, as can be seen from
the flat section in the centre of the figure of sustained low prices. However, increasing risk aversion
leads to higher prices as a result of a lower generation capacity combined with higher risk premiums.
The average electricity price rises to 163.58 €/MWh in an EOM with risk-averse agents, while the
median increases to 123.89 €/MWh. In addition, periods of high prices are more, as investors require
more periods with scarcity prices to recover their costs. This is evident when looking at the left side of
the graph, where the curve for the risk-neutral case is more gentle and highlights lower prices.

The introduction of the electricity capacity market does not dampen the effect on low-demand price
periods, as vRES capacity is not included and does not benefit from it. However, the increase in
scarcity prices is partially dampened by the availability of dispatchable capacity. This market design
allows reducing the average electricity price in the presence of risk-averse agents to 158.39 €/MWh,
while the median remains 124.10 €/MWh.

On the other hand, a higher impact can be seen with the addition of the hydrogen capacity market.
Indeed, it ensures to have cheaper and available hydrogen for dispatchable turbines, avoiding prices
higher than 812 €/MWh and reducing the number of hours of scarcity prices. Furthermore, it reduces
the number of hours with price spikes. The indirect benefits seen for vRES capacity slightly lower also
baseload electricity prices. The average electricity price reduces to 155.40 €/MWh when risk-averse
agents compete in the presence of also a hydrogen capacity market. At the same time, the recovered
vRES capacity allows reducing the median electricity price to 114.52 €/MWh.

It must be noticed that, as can be seen on the right side of the figure below, the hydrogen capacity
market ensures fewer periods of very low prices. Indeed, a higher hydrogen capacity that, in this case,
is not compensated by a higher vRES capacity entails more periods of inframarginal profits for vRES
generators.

Figure 6.19 presents the average hydrogen price duration curves for the three market designs,
comparing the risk-neutral cases (in blue) to the case where agents are risk-averse for a degree of
β = 0.2 (in red). As for the electricity price duration curve, also the hydrogen price duration curve is
unvaried for the different market designs when agents are risk neutral, with an average hydrogen price
of 4.14 €/MWh. As discussed in Section 6.1, the fluctuating trend is likely to be due to the combination
of the impossibility to import and export and a limited price elasticity.
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Figure 6.19: Comparison of hydrogen price duration curves for the three different market designs for risk-neutral agents and
risk-averse agents

The increase in the degree of risk aversion leads to an important increase in hydrogen prices, mak-
ing the average price rise up to 5.97 €/kg. Also here, the amplified effect due to risk exposition from
both sectors is visible: higher electricity prices combined with the risk premium deriving from higher
degrees of risk aversion affect hydrogen generation and in turn, make it less attractive. This implies a
reduction in hydrogen installed capacity.

The introduction of an electricity capacity market in general does not enhance the hydrogen prices
picture. The average hydrogen price is not practically affected, increasing to 6.04 €/kg, as the central
region of the curve coincides for the two market designs. However, the average price gives limited
information in this case, as the effect of this market design on the hydrogen price lies in scarcity hours
and residual hours. On the left, it can be seen how average price spikes slightly increase in frequency,
but in particular, in magnitude, reaching a maximum of more than 10 €/kg. This is attributable to the
restoration of hydrogen turbine capacity, which introduces an increased hydrogen peak demand during
periods of vRES scarcity. The fact that hydrogen turbine capacity is not however topped up by a dis-
charge storage capacity in the hydrogen sector makes it competing with the hydrogen demand agents.
At the same time, periods of low prices see the hydrogen price increase as well with respect to the
EOM case.

The addition of the hydrogen capacity market evidently reduces the hydrogen prices, leading to
an average price of 5.54 €/kg. This is not the only benefit, as ensuring an adequate capacity in the
hydrogen supply reduces fluctuations and allows to have a stable electricity price. Hydrogen price is
contained between 4.54 and 6.88 €/kg in this market design, which however suffers an increase in
the average price ultimately due to the vRES capacity reduction and the higher electricity prices with
respect to the risk-neutral case that it leads.

6.3.3. Impact on Costs and Social Welfare of the System

The general consequence of risk aversion on the agents’ strategies is represented by the reduction
in investment in generation capacity. This entails consequences on social welfare and its distribution.
Figure 6.20 presents the variation in social welfare with respect to the risk-neutral case for an increasing
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degree of risk aversion, distinguishing the effect on generators’ profit (in green) and on consumers’ wel-
fare (in red). Social welfare is computed by accounting for the contribution of all the markets, therefore
including both welfare from the EOMs and the capacity markets.

Figure 6.20: Variation in social welfare for the proposed three market designs with respect to the risk-neutral case as a
function of the degree of risk aversion

As expected, the total social welfare decreases with risk aversion in the EOM. However, the intro-
duction of capacity markets leads to an increase in it, which can likely be attributed to a combination
of factors. As new markets are introduced, and so are the welfare associated with those markets, the
comparison of social welfare becomes somewhat difficult. This effect of capacity markets, even though
tested on a different model, can be found in the work of Petitet et al. (2017).

Comparing the effect of risk aversion on agents, it is evident how in an EOM this entails an important
welfare transfer from consumers to generators, up to a total of 8025 million € per year. This effect is
a result of the risk premium required by generators, which however leads to a general increase in the
magnitude of prices and the frequency of periods of high prices (see Figure 6.18 and Figure 6.19). This
results in long-term profit for generators at the expense of consumers.

Figure 6.21 present the cost of energy for consumers for the different market designs as a function
of the degree of risk aversion. This indicator is computed as the total costs for consumers divided by
the total energy supplied over all the scenarios.
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Figure 6.21: Cost of energy to consumers for the three different market designs as a function of the degree of risk aversion

As expected, risk aversion has a negative effect on consumers, which experience a higher cost of
energy, and the introduction of capacity markets dampens this effect. Hydrogen consumers are more
affected by risk aversion, as they suffer a higher increase in costs with respect to electricity consumers
partly due to their exposition to risk from two markets. Furthermore, the ineffectiveness of the electricity
capacity market on the hydrogen cost is clear, as the average cost for hydrogen consumers is not prac-
tically affected, while the introduction of the hydrogen capacity market constrains the cost increment.
On the other hand, the reduction trend of the average cost of electricity to consumers is linear, as the
introduction of capacity markets gradually limits the increase of the cost of electricity to consumers,
which however is driven by the high vRES share in the capacity mix.

Figure 6.22 presents the variation of social welfare with risk aversion for the individual agents com-
prehending both generators and demand agents.
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(a) Electricity generators (b) Hydrogen generators

(c) Consumers

Figure 6.22: Variation in social welfare with respect to the risk-neutral case as a function of the degree of risk aversion -
Singular agents

The welfare transfer trend is still recognizable, with an intensity proportional to the amount of in-
stalled capacity. It is however interesting to notice how biomass generators, which present an installed
capacity well below the electrolyzers or storage discharge capacity, increase their profit more than the
latter. This is in principle due to a high risk premium and a lower sensitivity o uncertainty. Indeed, it is
important to remember how electrolysis and, indirectly, hydrogen storage, are demand agents in the
electricity market, and the sub-optimal power generation capacity effects relapse on them as well. On
the contrary, the electricity sector does not depend on hydrogen, apart from hydrogen turbines, which
however account just for a very small share of the total installed capacity and supplied electricity (see
Figure 6.2).

It is confirmed how the introduction of capacity markets in principle dampens the welfare transfer
from consumers to generators. The electricity capacity market benefits electricity consumers, reducing
their welfare loss; however, it is not effective on hydrogen consumers and is sometimes also negative.
Instead, a clear beneficial effect for hydrogen consumers can be noticed when the hydrogen capacity
market is added: the loss in welfare is limited to 3140 million € per year at the most, saving 1074 mil-
lion € per year with respect to the worst case. At the same time, the hydrogen capacity market is also
beneficial for electricity consumers.

Looking at the effect on generators, all of them experience a reduction in long-term profit from the
introduction of capacity markets, as a manifestation of how remunerating capacity reduces the risk pre-
mium they require. However, vRES generators show an opposite trend, increasing even more their
profit. If it is true that they do not participate in capacity markets and they continue to be less keen
to invest in the presence of risk, they are able to take advantage of the increased demand from the
hydrogen sector for both storing hydrogen and ensuring the availability of the fuel for hydrogen turbines,
confirming the insights of Hesel et al. (2022).
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Diving more into the performances of particular agents, Figure 6.23 presents the required average
revenue per MWh as a function of the degree of risk aversion. This is calculated as the total revenues
of each technology divided by the total energy produced over all the scenarios.

As expected, all the technologies increase their specific revenue with risk aversion as their reduction
in installed capacity increases their deployment and corresponds to an increase in electricity prices.

(a) vRES generators (b) Dispatchable electricity generators

(c) Hydrogen generators

Figure 6.23: Average revenue per MWh of (a) dispatchable electricity generators, (b) vRES electricity generators and (c)
hydrogen generators as a function of the degree of risk-aversion

It can be noticed how vRES technologies’ revenues (Figure 6.23(b)) are the least affected by risk
aversion and do not exceed 100 €/MWh, as they are the first generators activated to serve the de-
mand. Similarly, biomass is more sensitive to risk aversion, but the introduction of capacity markets
does not affect noticeably this trend. On the other hand, as can be seen in Figure 6.23(a) the specific
revenues for hydrogen turbines are very sensitive to risk aversion and increase from 355 €/MWh up to
589 €/MWh. When the electricity capacity market supports the increase in hydrogen turbine capacity
without ensuring the firm availability of the hydrogen supply, the specific revenue is just partially af-
fected, but the introduction of also the hydrogen capacity market limits the increase up to 551 €/MWh,
confirming how capacity markets are able to reduce the need for extra profit from the EOM. The specific
revenues for the hydrogen turbine could seem high, but this is in line with high LCOE of the technology
of recent studies (e.g., (Hernandez & Gençer, 2021) and (ETN Young Engineers Committee, 2022))
and it is mainly justified by high costs of hydrogen combined with a small amount of supplied electricity.

Focusing on the hydrogen sector, Figure 6.23(c) presents the specific revenue per MWh of hydro-
gen (again, with respect to its LHV) as a function of the degree of risk aversion. Both electrolysis and
storage are highly affected by risk aversion, as a consequence of their exposition to the effect of risk
in the electricity sector. The electricity capacity market does not have a relevant effect on hydrogen
supply agents’ revenues while adding also a hydrogen capacity market is effective in dampening this
effect for storage, which can take advantage of price arbitrage. On the other hand, total revenues for
electrolysis are not very affected by the introduction of capacity markets.
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The weight of revenues from capacity markets on total revenues is presented in Figure 6.24. The
left subfigure highlights how hydrogen-fired turbines strongly rely on payments for capacity, as in high-
risk aversion cases they earn up to more than 60% of their revenue from this market. This highlights
how this technology is activated just in a very small amount of periods, and to ensure their participation
a capacity market might be necessary. On the other hand, biomass’ revenues are mainly from the
electricity spot market, with capacity payments that account for less than 5% o the total revenues.

Considering the hydrogen capacity market, the subfigure on the right shows how the revenues from
it account for up to 5% of the total revenues of electrolyzers and storage discharge, with a similar
impact.

(a) Electricity capacity market (b) Hydrogen capacity market

Figure 6.24: Percentage of revenues from the capacity market as a function of the degree of risk aversion

6.4. Fixing the Optimal vRES Capacity

This section presents the results of the model obtained from the simulations with a fixed vRES capacity,
set at the risk-neutral socially optimal value. The purpose is to better understand the impact of vRES
availability on the sector-coupling dynamics.

Figure 6.25 shows the impact of risk aversion on investment in dispatchable electricity capacity,
comparing the trend of biomass generators and hydrogen-fired turbines. Figure 6.25(a) recalls the pre-
vious results obtained with an endogenously determined capacity. Figure 6.25(b) presents the results
of the fixed vRES simulations and highlights how an increased vRES availability reduces the risk for
hydrogen deployment. In the fixed vRES capacity case with an EOM, both biomass and hydrogen tur-
bine generators present a similar decreasing trend. This is already opposed to the free vRES capacity
case, in which the vRES reduction implies a hydrogen turbine capacity reduction of double the amount
with respect to the fixed case, partially substituted by an increased biomass capacity.

The introduction of the electricity capacity market gives rise to the shift towards hydrogen turbines,
which present low-capital costs, while worsening capacity reduction of capital-intensive biomass, re-
versing the tendency that arose from the vRES reduction. This phenomenon is strengthened by the
addition of a hydrogen capacity market, which is able to ensure an enhanced hydrogen storage dis-
charge capacity to fulfil turbines’ demand.

Fixing vRES installed capacity, therefore, reverses the trend that risk aversion entails. More vRES
capacity available corresponds to cheaper electricity, which benefits electrolyzers and hydrogen stor-
age with a lower risk profile and, in turn, hydrogen turbines with cheaper hydrogen. This lower risk
entails, in the presence of a market for capacity, a shift towards generators with lower-capital costs,
which substitutes capital-intensive biomass capacity. This confirms previous findings on capacity mar-
kets effects highlighted in literature by, e.g., Kaminski et al. (2021) and Mays et al. (2019).
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(a) Dispatchable capacity - Free vRES capacity case (b) Dispatchable capacity - Fixed vRES capacity case

Figure 6.25: Impact of risk aversion on dispatchable electricity installed capacity when (a) vRES capacity is endogenously
determined and (b) vRES capacity is fixed as in the risk-neutral case

The effect of fixing vRES capacity is visible also on the hydrogen sector. Figure 6.26 presents
the impact of risk aversion on electrolyzer and storage discharge capacity under the different market
designs, comparing the case with free vRES capacity (Figure 6.26(a)) with the one with fixed vRES
capacity (Figure 6.26(b)). Ensuring the optimal vRES capacity allows to halve the reduction of both
technologies in case of an EOM. Also in the hydrogen sector, the opportunity to buy more cheap elec-
tricity benefits hydrogen production by decreasing their risk.

The introduction of a capacity market for electricity in this case not only dampens the reduction but
is able to almost reestablish the optimal capacity.

The further introduction of the hydrogen capacity market leads to levels of investment higher than in
the optimal risk-neutral case. This is a result of the reduced risk of hydrogen supply combined with the
shift towards hydrogen turbine capacity, which entails a higher demand for storage discharge capacity.

(a) Hydrogen capacity - Free vRES capacity case (b) Hydrogen capacity - Fixed vRES capacity case

Figure 6.26: Impact of risk aversion on hydrogen supply installed capacity when (a) vRES capacity is endogenously
determined and (b) vRES capacity is fixed as in the risk-neutral case

The comparison of the trends of hydrogen capacity confirms how ensuring vRES availability plays a
crucial role in decreasing the risk profile of hydrogen market agents. This can be noticed by comparing
electricity prices and hydrogen prices for the free and fixed vRES capacity cases, which highlight a
general decrease for the latter.

Figure 6.29(a) presents the average electricity prices for the three market designs comparing the
free vRES case (in blue) and the fixed vRES case (in red) in the presence of risk-averse agents (β = 0.2).
For the EOM and the electricity capacity market designs the average electricity price decreases by
3.6 €/MWh and 2.2 €/MWh, respectively. On the other hand, the hydrogen and electricity capacity
market design presents an increase in the average electricity price of 1.6 €/MWh. These trends do
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not highlight particular benefits in price decrease; however, recalling Figure 6.18, the high-prices region
on the left might bias the analysis. Indeed, by considering the median of the hourly electricity prices
in Figure 6.29(b), it is possible to see how prices in the central flat region of Figure 6.18 are pushed
down by the increase in vRES capacity. These coincide with the periods of hydrogen generation and
consequent storage, confirming how risk can be dampened by this reduction.

(a) Mean of the hourly electricity prices (b) Median of the hourly electricity prices

Figure 6.27: Comparison of the (a) mean and (b) median of the hourly electricity prices for the risk-averse case of β = 0.2

The benefit of hydrogen generators is confirmed by the reduction of the average hourly hydrogen
price. This is shown in Figure 6.28, comparing the three different market designs in the case of free
and fixed vRES for a degree of risk aversion of β = 0.2. The effect of lower electricity prices in the
flat region is transposed indeed on hydrogen prices. The average hydrogen price goes from 5.97 €/kg
to 5.24 €/kg already in the EOM case. The reduction is however the same for the different market
designs, as capacity markets basically affect peak production, while hydrogen prices are indeed driven
by periods of vRES abundance.

Figure 6.28: Comparison of the mean of the hourly hydrogen prices for the risk-averse case of β = 0.2

Reduced energy prices benefit consumers by reducing the cost of energy they have to face. Figure
compares the different market designs for a degree of risk aversion of β = 0.2 in the case of free vRES
capacity (in blue) and fixed vRES capacity (in red). It can be seen how the fixed vRES capacity case
is more effective for hydrogen consumers.
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(a) Cost of electricity to consumers (b) Cost of hydrogen to consumers

Figure 6.29: Comparison of the (a) cost of electricity and (b) cost of hydrogen to consumers for the risk-averse case of β = 0.2

Finally, the previous effects obtained by having a fixed vRES capacity benefit the consumers by
reducing their welfare transfer to generators. Taking Figure 6.20 as a benchmark, ensuring the optimal
vRES capacity reduces the welfare transfer from consumers to generators in the case of a high degree
of risk-aversion β = 0.2 of 25% for the EOM and the EOM supported by electricity capacity market
designs, going respectively from 8010 to 6011 million € per year and from 8025 to 6055 million € per
year. Adding the hydrogen capacity market limits the reduction of the welfare transfer by 10%, reducing
it from 6542 to 5843 million € per year.



7
Discussion

Understanding the interactions within the integrated electricity and hydrogen system in function of the
degree of risk aversion is crucial for shaping an adequate market design. This chapter proposes to
contextualize the previously presented results to shed light on the necessary features of a decarbonized
and integrated market.

Section 7.1 interprets the results and highlights the effects of risk combined with the tested market
designs. Section 7.2 relates the results to the assumptions used.

7.1. Interpretation of Results

The system presents a capacity mix dominated by vRES, which accounts for 93% of the total electric-
ity installed capacity, representing a potential long-term energy system as described by DNV (2022).
This is in line with the end goal for the EU: a climate-neutral energy system integration with renewable
hydrogen and renewable electricity at its core (European Commission, 2020).

A first important observation lies in the fact that, for the modelled system, marginal pricing allows
vRES generators to recover their cost via the market even when vRES share is very high, in this case,
93% of the total installed electricity capacity. This is important when considering systems which largely
rely on vRES, as their low operational costs might push down electricity prices and undermine cost
recovery. This is confirmed for each market design.

As expected, in an EOM risk aversion entails a general reduction in investment in installed capacity
for both sectors coupled with a general increase in electricity and hydrogen prices, as a result of the
risk premium required by each technology.

From a social welfare perspective, this leads to a reduction of the social welfare derived from the
wholesale energy market. The introduction of capacity markets, and the welfare of these markets,
make the comparison more complex. However, it is evident how consumers experience a welfare de-
crease due to the increasing risk premium required by generators, which ultimately results in a welfare
transfer from consumers to generators. This is clearly related to the increase in the cost of energy to
consumers with risk aversion. This effect is amplified in the hydrogen sector due to its direct exposi-
tion to risk frommultiple sources of uncertainty, making themmore sensitive to the level of risk aversion.

Each technology adapts its strategy by considering how it can recover its costs, which in the pres-
ence of risk depends on the magnitude of the risk premium combined with the dependency of revenues
on uncertain parameters.
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vRES capacity exponentially decreases with the degree of risk aversion. This reduction is driven by
the dual uncertainties associated with vRES availability and fluctuations in electricity demand, including
the demand generated by electrolyzers. On the other hand, biomass capacity tends to substitute hy-
drogen turbine capacity. This shift is attributed to the stability of biomass availability and variable costs,
which remain unaffected by uncertainty, and only depend on electricity prices. However, in the case
of fixed vRES, this trend triggered by risk aversion is inverted: capital-intensive biomass reduces its
installed capacity with risk aversion, and the addition of a capacity market entails a further shift towards
hydrogen turbines. This confirms the importance of an adequate level of vRES capacity in ensuring
competitive hydrogen prices to drive hydrogen turbine deployment.

As introduced, the high vRES share and its uncertain availability amplify the impact of uncertain
electricity generation in shaping the risk characteristics of the different technologies. This not only
impacts investments in electricity generation but also extends to investments in generating and storing
hydrogen.

The impact of risk aversion on electricity prices leads to a general increase in the magnitude of
both prices of the flat vRES-induced section and peak prices. Furthermore, the number of periods of
high prices increase, as generators require more scarcity pricing to recover the risk premium. Since
hydrogen production in this model relies entirely on electrolysis, the effect of risk aversion on the elec-
tricity sector plays a pivotal role, as the increase in electricity prices directly increases hydrogen prices.
This is mainly driven by the vRES capacity reduction and increases the risk premium required by elec-
trolyzers and hydrogen storage. The hydrogen price goes therefore from a reasonable value of 4.14
€/kg (affected by high capital costs for vRES compared to the forecasted reduction by 2040) up to
6.04 €/kg, which makes green hydrogen out of the competition when compared to other hydrogen pro-
duction methods. This entails a reduction in electrolyzer capacity followed by a reduction in storage
discharge capacity and volume.

Another important feature of the hydrogen price duration curves is the fluctuating trend of the price.
As discussed, this could be mainly due to the combination of limited price elasticity and vRES inter-
mittency dependency with the impossibility to import and export in the system modelled. From this
perspective, it can be therefore affirmed how it is important to diversify the hydrogen supply and allows
trading as much as possible, as this could lower the price for green hydrogen and benefit investors
with a more constant price, which would benefit risk profiles with less uncertainties. This is in line with
the creation of a European Hydrogen backbone proposed by the EU (European Commission (2020);
European Commission (2022)).

Hydrogen-fired turbines exhibited a strong reliance on the hydrogen price, which drives the deploy-
ment of the turbines and, consequently, investments in the backup capacity for the electricity sector
when the agent is risk-averse. The fluctuating nature of hydrogen prices combined with an increase of
up to 50% due to risk aversion leads to a reduction in hydrogen turbine capacity, as their deployment
is limited.

Capacity markets proved their effectiveness in restoring the optimal mix and dampening the welfare
reduction of consumers by ensuring lower prices and higher availability with respect to the EOM with
risk-averse agents. From the perspective of generators, capacity markets effectively mitigate risk for
participants in those markets. Nonetheless, while they lower the risk premium needed from these par-
ticipants, capacity markets do not directly impact the risk premium associated with vRES. Therefore,
vRES generators continue to require the risk premium and, as they represent the highest share of in-
stalled capacity, they drive the welfare increase for generators and limit the effect of capacity markets.
This represents a first indicator of how it is fundamental to hedge risk for vRES to ensure better perfor-
mance of the modelled system.

Derisking only dispatchable electricity generators by implementing an electricity capacity market
proved to be not enough to restore the electrolyzers and storage capacity when vRES capacity is also
reduced. In this case, beneficial effects for consumers are limited to the electricity sector. The average
hydrogen price is not reduced, while scarcity prices increase without a congruent increase in the amount
of hydrogen demand served.
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Possible solutions that proved to be complementary to the electricity capacity market and stimu-
late investment in hydrogen capacity are two: remunerating electrolyzers and storage capacity with a
hydrogen capacity market and ensuring an adequate vRES capacity.

7.1.1. The Effects of the Hydrogen Capacity Market

For the entire system to benefit and reduce the shift towards biomass, capacity markets must be im-
plemented in both the electricity and hydrogen sectors. This proved to hedge risk for generators and
to improve the performance of the market by reducing the cost of hydrogen to consumers and further
reducing the cost of electricity to consumers, achieving a more beneficial comprehensive effect. More
specifically, it is beneficial by mitigating periods of high prices.

In the electricity sector, consumers benefit from lower prices and a limited magnitude and duration of
scarcity prices (Figure 6.18). However, this design demonstrated how its efficacy in reducing electricity
prices in the flat region induced by vRES is limited. This region is indeed driven by vRES pricing and,
even though the introduction of both capacity markets partially restores vRES capacity, the absence of
a dedicated de-risking instrument prevents vRES capacity recovery.

However, vRES potential participation in the electricity capacity market, which would have to be de-
rated according to their availability, would not necessarily be successful. As their contribution to peak
demand is not known in principle, and the derating factor with it, the income from the capacity market
could be little and have a weak effect on installed capacity. Therefore, a possible instrument that could
help in hedging risk could be the introduction of Contracts for Difference (CFD), which would ensure a
stable electricity price.

While the introduction of an electricity capacity market does not have any relevant effect on hydrogen
prices, the hydrogen capacity market allows recovering the optimal electrolyzers and storage capacity
and attracts back part of the vRES capacity.

From the hydrogen side, this design ensures both the backup capacity of hydrogen turbines and
supplements this capacity with supply from the hydrogen sector, improving hydrogen availability. In-
deed, the optimal hydrogen capacity mix is reestablished and results in lower energy prices (Figure
6.19) and higher served demand for both electricity and hydrogen compared to a risk-averse EOM
(Figure 6.15). This has proven valid even considering that hydrogen turbines pay for ensuring firm
capacity in the hydrogen capacity market, as their revenue for ensuring electricity capacity exceeds
the cost of ensuring the corresponding hydrogen capacity.

Derisking electrolyzer and discharge capacity via the hydrogen capacity market also results in a
dampened reduction of storage volume, which is not remunerated by the market. This is likely to
be due to the higher potential charge and discharge, highlighting how for the modelled system the
increase in electrolyzer capacity drives a partial increase in storage volume. Therefore, instruments
that remunerate capacity can be considered beneficial also for the volume of hydrogen storage.

Even if the simulations did not highlight the necessity of remunerating storage availability, it is true
that this could be needed considering potential extreme events (dunkelflaute) that must be covered by
long-term hydrogen storage. This originates the need for an instrument such as a long-term energy
contract for hydrogen availability during periods of scarcity that, stipulated by hydrogen turbines, allows
hedging risk and ensures the backup to the electricity sector.

7.1.2. The Effects of Ensuring the Optimal vRES capacity

The critical step of hydrogen availability is closely linked to electricity prices originating from vRES
generation. vRES pricing, indeed, is the driver of the hydrogen price. vRES availability is therefore ul-
timately crucial in stimulating hydrogen storage and improving its availability during periods of scarcity
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in the electricity sector.

By analyzing the effect of fixing the optimal risk-neutral vRES capacity on energy prices and, conse-
quently, in installed capacity, it can be confirmed how de-risking vRES is fundamental for both sectors
in reducing the effects of risk aversion. Ensuring the optimal risk-neutral vRES capacity reduces elec-
tricity prices, which benefits electrolyzers and, in turn, storage agents. This results in a decrease in the
average hydrogen price (Figure 6.28). This ultimately makes hydrogen-fired turbines more profitable
and attracts more investments in them. It can be affirmed that guaranteeing a backup capacity and
avoiding involuntary curtailment requires an adequate vRES capacity, as it drives hydrogen availability
at a reasonable price.

The reduction of green hydrogen production costs is important from the perspective of making green
hydrogen compete with the other forms of hydrogen production and is currently at the centre of Euro-
pean policies. A clear example is the tool proposed by the H2Global Foundation (Bollerhey et al., 2022),
a competition-based bidding procedure that ensures a long-term purchase agreement with the most
favourable supplier could be a convenient instrument to achieve a cost reduction via market competi-
tion.

The correlation between hydrogen availability and the amount of vRES-electricity is further con-
firmed by the proportion of revenue that comes from the electricity capacity market for hydrogen tur-
bines. In scenarios characterized by high risk aversion and vRES agents adapt their strategy by reduc-
ing investment, this revenue constitutes up to 60% of the total. However, when vRES capacity is fixed
at the optimal level, this proportion drops to 35%, showing how the whole hydrogen sector benefits
from a higher level of vRES.

This also indicates that the presence of ample vRES availability diminishes the necessity for capac-
ity markets. In the context of optimal vRES capacity, the electricity capacity market is already enough
to ensure the optimal amount of electrolyzer and discharge capacity. Furthermore, the hydrogen ca-
pacity market results in overinvestment in the hydrogen sector, as hydrogen turbines require more firm
discharge capacity than in the risk-neutral case. Therefore, this case objects to the need for a hydrogen
capacity market, as derisking vRES already benefits hydrogen generators with reduced uncertainty.

7.2. Limitations

The long-term equilibrium computed highlights how an integrated and decarbonized hydrogen and
electricity system in the presence of risk-averse market participants is sensitive to risk aversion, which
in an EOM in general entails underinvestment in generation capacity and worsens the performance in
terms of system adequacy. By testing the integration of a capacity market for electricity and hydrogen,
it is evident how these instruments are efficient in hedging risk and dampening the negative effects
that the latter entails, reducing energy prices and costs for consumers by ensuring the optimal level of
investment for those technologies participating in the capacity remuneration.

This section tries to clarify the effects of assumptions on the interpretation of the results.

The first important consideration lies in the technology data used. Using overnight costs for the
technologies based on 2025 forecasts results in average hydrogen prices that range from 4.14 €/kg
for the risk-neutral case to 6.04 €/kg for the highly risk-averse case. These values are higher than
forecasted prices but are a result of the assumptions used for vRES overnight costs, which drive hy-
drogen production. This affects the utilization of hydrogen-fired turbines, increasing their dependency
on revenues from the capacity market and reducing their deployment and investments, which could be
higher in a system with cheaper vRES.

Another feature of the hydrogen price is its fluctuating behaviour (Figure 6.19). This is a result of the
requirements of the model of clearing the market hourly combined with the impossibility of import and
export. The latter assumption makes the system closed and therefore self-sufficient, requiring higher
generation capacity with respect to the case with the possibility to trade energy with other nodes, which
in general would result in a more efficient capacity mix.
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A limitation of the model consists in considering a limited amount of technologies, which could
oversimplify the picture of the decarbonized energy system. The first important missing technology
concerns the electricity sector and consists of short-term electricity storage with batteries. Battery stor-
age represents a flexibility measure that would increase the generation adequacy of the system by
providing a high-efficiency solution to tackle vRES intermittency. It would represent a competitor of
electrolyzers in the electricity market, but it would help to diversify the technology mix. Furthermore,
the flexibility that short-term electricity storage would provide could affect the need for capacity markets,
as system adequacy could be partially improved by reducing the magnitude and frequency of periods
of high prices.

Considering the hydrogen sector, the model only considers electrolytic hydrogen. However, it is
widely accepted that in the short and medium term, alternative low-carbon hydrogen sources are es-
sential, such as Steam Methane Reforming equipped with Carbon, Capture and Storage (CCS). Green
hydrogen will be still expensive in the short term and alternative sources are particularly crucial for
lowering emissions from current hydrogen production methods and facilitating the concurrent adoption
of renewable hydrogen solutions (European Commission, 2020). The inclusion in the model of SMR
equipped with CCS could reduce the price of hydrogen and limit the sector-coupling effects of the inte-
grated electricity and hydrogen system, improving the overall performance as it would avoid stress on
the electricity system during moments of peak demand. This would of course also reduce the necessity
of hydrogen storage, which however would not be beneficial from the perspective of security of supply.

Considering the demand side, the definition of a price-elastic demand introduces a source of flexi-
bility that allows to correctly assess the need of capacity markets. As they represent a complementary
instrument in ensuring generation adequacy, including flexibility sources allows to avoid the overestima-
tion of the role of capacity markets. This however complicates the study of energy not-served, which is
indeed avoided in this project, as involuntary curtailment could be reduced. Flexibility could hinder the
true performance of a system, as this increased reliability may be counterbalanced by high consumer
costs. It is therefore important to move from generation adequacy to system adequacy to truly analyze
the performance of a system, and the degree of cost recovery and analysis of scarcity prices can be
useful in clarifying the performances from a wider perspective (De Vries & Sanchez Jimenez, 2022).

The introduction of capacity markets in the market design is simplified, as the availability of genera-
tors is not always guaranteed by a firm capacity. In practice, no penalties or derating are accounted for
those technologies which are not able to produce but are cleared in the capacity markets. For example,
for the EOM with the inclusion of a capacity market for dispatchable electricity generators, hydrogen
turbines would need to account for a penalty when they are activated but hydrogen is not available, as it
could happen during a dunkelflaute. This would change their remuneration from the electricity capacity
market, and their risk profile with it.

The introduction of the hydrogen capacity market allows hydrogen turbines to express a demand for
capacity in the hydrogen capacity market to cover the capacity offered in the electricity capacity market.
However, although this ensures an adequate storage discharge capacity, the hydrogen availability to
cover eventual electricity shortages is not guaranteed.

Lastly, as discussed, vRES capacity is not remunerated by any mechanism or subsidy, and the
effect of risk aversion is evident in the increase of electricity prices and the transfer of social welfare
from consumers to generators. Underinvestment in vRES is not corrected by the increasing profitability
guaranteed by the restored hydrogen capacity, as their risk profile is still dependent on uncertain avail-
ability. The sensitivity analysis conducted by fixing vRES capacity to the optimal risk-neutral result is
useful in understanding their role and effect on the system but does not test any possible mechanism
to derisk them.
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Conclusion

The decarbonization of the electricity sector driven by the increase in vRES generation capacity comes
with challenges due to an increasingly intermittent and unpredictable availability. According to the re-
cent document A hydrogen strategy for a climate-neutral Europe, green hydrogen is expected to play a
complementary role as, in addition to decarbonizing hard-to-abate sectors, it has the potential to provide
the electricity system with long-term seasonal storage and increase the security of supply (European
Commission, 2020). To effectively represent a sustainable contribution, hydrogen is expected to be
produced by electrolysis powered by vRES electricity, ultimately depending on the electricity sector
itself. Therefore, long-term storage would play a crucial role in ensuring the availability of green hydro-
gen during low vRES availability periods and increase system reliability (European Commission, 2020).

The resulting integrated electricity and hydrogen system is subject to new sector-coupling dynamics
triggered by the interdependence of the two sectors, which makes the picture of managing and valuing
assets more complex. The availability of the last hydrogen units has a high intrinsic value in a system
highly dependent on uncertain vRES. In an EOM under perfect conditions, an adequate installed ca-
pacity is ensured by scarcity pricing remuneration. However, given the uncertainty of vRES availability
and high investment costs, the presence of risk-averse investors might prevent reaching the adequate
amount of installed capacity.

This thesis aims to analyze the impact of risk aversion on investments and its consequences in a
decarbonized and integrated electricity and hydrogen system, evaluating the performances of EOMs
and the possible beneficial effects of introducing an electricity capacity market for dispatchable gener-
ation and a hydrogen capacity market. To do so, it intends to answer the research question:

Which market design is best suited to trigger socially optimal investments in generation and stor-
age capacity in a decarbonized and integrated electricity and hydrogen systemwith risk-averse agents?

To answer the proposed research question, a stylized stochastic equilibrium model has been de-
veloped to study the long-term equilibrium of a decarbonized integrated system resembling a potential
Dutch scale. Risk aversion has been modelled using the CVAR metric and uncertainty is introduced
with discrete scenarios which differ for electricity demand, vRES availability and hydrogen demand.

As proposed in the European hydrogen strategy (European Commission, 2020), a liquid market with
commodity-based hydrogen trading would facilitate the entry of new producers and would be beneficial
for deeper integration with other energy carriers. It would create viable price signals for investments
and operational decisions. However, this thesis proved how risk aversion hinders the optimal amount
of investment in both the electricity and hydrogen sectors, and instruments to hedge risk are necessary
to create an efficient hydrogen market.
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The introduction of risk aversion proved to reduce the levels of investment in both electricity and hy-
drogen capacity with respect to a risk-neutral situation. The impact on the hydrogen sector is amplified
by its strong dependence on the electricity sector, which is similarly affected by risk. The reduction in
electricity generation capacity as a result of higher risk premiums required and the consequent higher
electricity prices affects the hydrogen sector with lower availability and higher operational costs for
electrolyzers. These effects drive the reduction in electrolyzers and storage discharge capacity and
are transposed on hydrogen turbine capacity, which ideally should ensure the security of supply of the
system. The effect of risk aversion is ultimately transposed on consumers, which experience higher
average prices for both energy vectors and more intense and frequent periods of high prices. They
experience a higher cost of energy, which corresponds to a welfare transfer from consumers to gener-
ators in light of the risk premium required by the latter.

When vRES capacity is reduced due to investors’ risk-averse behaviour, hydrogen turbine capacity
is substituted by flexible capital-intensive biomass capacity, which is not affected by uncertainty in avail-
ability. Contrary to what is found in the literature, capital-intensive generation capacity is here preferred
even in the presence of risk. This results from a different risk profile: even if they require a higher risk
premium, capital-intensive assets in the model are better shielded from risk as they are less dependent
on electricity and hydrogen prices and do not present any availability constraints. On the other hand,
the exposition of hydrogen turbines exposition to risk can hinder a successful deployment even if they
present low capital costs, as the large variation of external hydrogen demand and their strong depen-
dence on electricity prices increase the uncertainty of the fuel supply and, therefore, worsens their risk
profile.

The introduction of a capacity market for dispatchable electricity generators alone proved to not be
enough in providing an adequate generation capacity for the integrated system, as its effects are limited
to the electricity system. Hydrogen consumers experience the same reduction of served hydrogen and
the same increase in the cost of hydrogen, experiencing even higher scarcity hydrogen prices. The
strong dependence of hydrogen turbines on the supply chain requires a more comprehensive approach
to ensure generation adequacy, confirming the need for additional measures to derisk the hydrogen
sector.

The strategy of the EU for the creation of a European hydrogen backbone and the simultaneous
supply from the global hydrogen market proposed in the REPowerEU document (European Commis-
sion, 2022) are aligned with reducing risk for hydrogen consumers (and hydrogen turbines as part of
them), as they entail more competitive prices and reduce fluctuations by allowing cross-border trading
in a wider area.

Furthermore, a direct instrument to derisk the hydrogen market is presented by the H2Global Foun-
dation (Bollerhey et al., 2022), which proposed an innovative market-based mechanism to hedge risk
from the uncertainty in hydrogen prices and demand and ramp up the hydrogen market. This consists
of a combination of a long-term hydrogen purchase agreement for electrolyzers and a short-term hy-
drogen sales agreement with consumers, stipulated after a competition-based bidding procedure to
ensure the most favourable prices. A funding body represents the contractual partner between the
supply and the demand side and compensates differential costs.

Ensuring generation adequacy by the addition of a hydrogen capacity market highlights a positive
impact in improving the performance of the system. The restored hydrogen capacity can take advan-
tage of vRES surplus and reduce the average cost of hydrogen. At the same time, hydrogen turbines
are more efficiently deployed and scarcity periods in the electricity sector are limited. As a result of
the lower prices of both vectors, the welfare reduction of consumers is effectively dampened in both
sectors. However, the market designs do not effectively limit the increase in generators’ profit, as elec-
tricity prices are still influenced by the reduction of vRES capacity.

The lack of an instrument able to derisk vRES generators represents a shortcoming of the pro-
posed designs, as the high share of vRES in the electricity mix drives hydrogen production. European
initiatives, such as the REPowerEU plan and the European Hydrogen Bank (European Commission,
2023), recognise renewable capacity as a central requirement to generate electricity at low cost to
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make renewable hydrogen competitive with its fossil alternatives. This thesis proved that, if the effect
of capacity markets on scarcity electricity prices is beneficial, vRES-driven prices are still increased,
affecting the profitability of hydrogen assets. Furthermore, not derisking vRES limits the effect of the
capacity markets in restoring the optimal distribution of welfare between consumers and generators.

Fixing the vRES capacity to the risk-neutral optimal level results in a decrease in electricity and con-
sequently hydrogen prices, leading to an increase in the availability of hydrogen. This reduces the need
for a hydrogen capacity market, as the optimal hydrogen capacity mix is already reestablished with the
introduction of n electricity capacity market when adequate vRES capacity is ensured. This stresses
the importance of the green hydrogen cost in an effective scale-up of the hydrogen infrastructure, which
ultimately relies on vRES. It is, therefore, crucial to ensure the parallel increase of renewable electricity
generation capacity by derisking investment in wind and solar technologies.

A first possible derisking measure for vRES generators is allowing the participation of derated vRES
generators in the electricity capacity market. However, as vRES contribution to meet peak demand is
not known in principle, and therefore their derating factors, the efficacy is not clear. A direct market-
based support scheme might be more effective in derisking vRES. This could be obtained with the
introduction of CfDs or PPAs for renewable generators, as proposed by the REPowerEU plan (Euro-
pean Commission, 2022). This would allow to ensure a stable and adequate electricity price.

To conclude, stakeholder feedback confirms the need for additional measures to reduce the very
high costs associated with the risks that are not sufficiently addressed by EU financial instruments
(European Commission, 2023). The introduction of capacity markets in both the hydrogen and electric-
ity sector represents a possible viable and effective solution to hedge risk, but dedicated instruments
to support vRES capacity such as CfDS are also needed, as such an integrated and interdependent
system requires a comprehensive approach to ensure adequate investments in key technologies.

8.1. Policy Recommendations

The insights derived from the model provide policymakers with valuable considerations for shaping the
electricity-hydrogen market.

As stressed, it is recommended to implement an electricity capacity market for dispatchable gener-
ators, as it allows to improve the performance of the electricity system during periods of vRES scarcity.
However, this does not directly benefit the hydrogen sector, and further expedients to derisk electrolyz-
ers and storage capacity are needed.

To directly derisk the supply side of the hydrogen sector, a hydrogen capacity market is recom-
mended as, when combined with the electricity capacity market, it is able to ensure a hydrogen capacity
mix and benefit both electricity and hydrogen consumers with a lower cost of energy. Furthermore, it
improves to ensure an adequate capacity to top up hydrogen turbines. It is recommended to ensure
this by allowing hydrogen turbines to express their demand for storage discharge capacity. Making hy-
drogen turbine generators pay for firm capacity could be beneficial in two different ways: by improving
their reliability and by more equally allocating the cost of capacity required by hydrogen turbines, which
would be paid by those who directly use it, instead of by hydrogen consumers.

However, even though the simulation does not advocate for it, dealing with the availability of hydro-
gen might be further considered: being unavailable during moments of scarcity should entail a penalty
for turbines. To address this lack, it is recommended to consider an additional solution to improve the
security of supply against extreme either events such as a dunkelflaute. This could consist of the stip-
ulation of long-term energy contracts between hydrogen turbines and hydrogen storage to ensure the
minimum availability of hydrogen for the backup.

An indirect solution to benefit the hydrogen sector is ensuring an adequate vRES capacity. vRES
play a crucial role in a decarbonized system and derisking them proved to be fundamental in reduc-
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ing hydrogen cost and uncertainty in the hydrogen market, boosting investment in electrolyzers and
hydrogen storage. Furthermore, ensuring an adequate vRES capacity reduces the need for a hydro-
gen capacity market as electrolyzers already benefit from the increase of vRES-electricity availability,
which makes them more profitable. Therefore, as their participation in the capacity market could be
misleading, market-based instruments such as CfDs or PPAs would allow ensuring an adequate and
stable electricity price, which would hedge risk for investment in vRES, and at the same time would
benefit the hydrogen sector.

8.2. Recommendations for Future Research

It is important to understand how this work tried to bring to light possible sector-coupling dynamics of
an integrated market for energy and capacity for electricity and hydrogen, which is a relatively new and
unexplored topic. Therefore, there is room for improvement at multiple layers.

The first layer regards the assumptions. This work used historical data for the electricity demand.
However, as the modelled energy system refers to a possible future scenario which could take place
from 2040 onward, it could be interesting to use a forecasted long-term electricity demand. Further-
more, the introduction of additional technologies would be useful. In particular, the introduction of
hydrogen generation from SMR equipped with CCS technology could be interesting. This would add
a competitive hydrogen generator able, at least in the short-term, to reduce hydrogen prices and the
need for hydrogen storage. However, it is not clear how a potential reduction of hydrogen storage would
affect the system adequacy, in particular for the backup of the electricity system. On the other hand,
short-term electrical storage could be added to investigate the effect of combining a flexibility source
with a capacity market and, given the competition between short-term storage and electrolyzers, the
potential effects on the energy sector.

In terms of market designs, it could be interesting to analyze how vRES could be remunerated out
of the EOM to hedge risk. Possible alternatives are the participation of derated vRES generators in the
electricity capacity market, but also the introduction of PPAs or CFDs.

The latter solution can be interesting also when considered in relation to electrolyzers availability.
In the modelled system, there are no requirements imposed on the availability of hydrogen during peak
demand periods, and electrolyzers’ participation in the hydrogen capacity market without ensuring firm
capacity is justified by their functioning during periods of vRES surplus. However, if the demand from
hydrogen turbines is comparable to the hydrogen supply capacity, electrolysis must ensure a certain
amount of hydrogen generation to fill up storage adequately. This could be indeed provided with Hy-
drogen Purchase Agreements or CfDs for electrolyzers.

Further research could also be conducted on the possibility to remunerate storage for its available
energy in addition to its capacity, with the use of long-term energy contracts for availability. Indeed, if it
has been verified how remunerating storage capacity indirectly benefits investments in storage volume,
the impact of storage volume and its availability on system adequacy can be investigated further.
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Personal Reflection

My experience during the MSc SET delighted me with a deep knowledge of the sustainable energy
world and helped me understand where my passion positions within this world. Even if engineering is
often associated with the creation of technology, I found most interesting the study of the interaction of
different technologies. I understood how energy markets play a fundamental role in ensuring the best
outcome for society in the energy world, and how a deep knowledge of them is crucial to design the
optimal structure where technologies can flourish.

When I approached this master’s thesis, I was thrilled by studying how integrated electricity and
hydrogen markets with hydrogen long-term storage can be designed, as I really believe in the impor-
tance of this topic for the future of energy systems. Reflecting on the challenges of hydrogen from a
market perspective and discussing with Kenneth and Laurens, I identified the impact of risk aversion
on investment in such an integrated system as an important challenge, and this represented a perfect
playground to test possible market corrections. Of course, when I started scoping, my ideas were more
confused than now, as it was my first real approach to modelling energy markets. My initial goal was
to test two different instruments to hedge risk: capacity markets for the hydrogen sector and contracts
for differences for electrolyzers. Three weeks were enough to understand how studying integrated
electricity and hydrogen markets could be a PhD topic.

After having written this thesis, I understood how a work of high quality does not necessarily in-
vestigates every shade of a topic, but most of the times provides a deep understanding of a particular
feature of the bigger picture.

In the end, this thesis focused on the impact of risk aversion on investment in a decarbonized and
integrated electricity and hydrogen system, testing the integration of capacity markets to EOM. The in-
tegration of long-term hydrogen storage, a not-so-studied but important feature for the future of energy
systems, provides additional value.

Risk aversion represents the core of the project and the added value, as it sheds light on an impor-
tant feature of real-world markets which is always present, and for the hydrogen market is particularly
delicate. However, including risk aversion entails more complexity in terms of the modelling effort. The
decision to develop and use a stochastic equilibrium model represented the most reasonable choice for
the scope of the project, as it allows to include risk and see how specific agents react and adapt their
strategy. Using an iterative technique such as ADMM, however, has been challenging. The power
of this algorithm is undoubted, but its implementation, calibration and the (necessary) trial and error
process to make every case converge have been intense. I have to admit that sometimes I felt under
pressure and overpowered when the code was not working properly, but I am also proud of myself
for having been able to master such a complex mathematical tool. Even if it has been challenging,
moments of difficulty contributed to making me enjoy the feeling of getting results.
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Studying the literature out there and applying it within the model allowed me to understand better
the spot pricing theory and how this contributes to defining the energy mix. Furthermore, the inclusion
of risk aversion enhanced my knowledge of market dynamics by making me understand what can be
the impact of such market failure, considering the effects that investors have to face and how these are
transposed to the performance of the energy system and, ultimately, to consumers.

As the flexibility of consumers is becoming an important instrument in improving market perfor-
mance, demand agents have been modelled as price-elastic. This has been challenging in two situ-
ations. Firstly, for the calibration of the demand function for the hydrogen sector. Given the fact that
there are no historical data for a market of green hydrogen, as this does not exist yet, finding a rea-
sonable value required some trial-and-error attempts, and I recognized that sometimes I might have
overthought it. Secondly, the flexible demand made more difficult the interpretation of the results, as
it might hinder and dampen potential effects. However, as this represents an important feature of the
systems of the future, I think this adds credibility to the work.

The development of the thesis proceeded with testing possible market designs and tools that can
ensure adequate investment in generation capacity. This step represented a stimulating and challeng-
ing process that made me reflect on how the hydrogen assets should be remunerated to ensure the
availability of hydrogen to back up the electricity system while providing green hydrogen at a competi-
tive price. A first introduction of the electricity capacity market has been integrated to check the effect
of ensuring backup for electricity without ensuring hydrogen turbine firm capacity. This confirmed the
idea of a low deployment of hydrogen, as hydrogen turbines suffered from the uncertainty that affects
the hydrogen sector when investors are risk-averse, entailing lower availability.

My focus has been on modelling the remuneration of storage discharge capacity to ensure an ade-
quate backup during periods of scarcity alongside the remuneration of electrolyzers capacity to ensure
the possibility to store an adequate amount of hydrogen during periods of vRES surplus. This combina-
tion has been conducted to check the potential supporting role of the two technologies, which complete
themselves and work together rather than in competition. Furthermore, in order to ensure that the
backup of the electricity system offered by hydrogen turbines was topped up by an adequate storage
discharge capacity, hydrogen turbines have been modelled as a demand agent in the hydrogen capac-
ity market.

A possible improvement that, due to time limitations, I had not the possibility to test is the remuner-
ation of storage for ensuring its availability. The integration of long-term energy contracts for storage
availability stipulated with hydrogen turbines would complete the picture of a design that could be bene-
ficial in ensuring backup generation also during dunkelflaute, an essential feature in an energy system
largely based on vRES.

At the end of the project, I am glad to have developed a deep understanding of the energy modelling
world and the complex system it addresses, which is a combination of social, economic and techno-
logical perspectives. More generally, writing this thesis helped me to realize how much is important to
reflect and the work of others, which is a starting point for building scientific knowledge, but also on
your own work, as the final result is part of a process which is more than the sum of singular choices.

Studying the complexity and challenges of energy markets and trying to directly model them have
been very constructive for me, and I am glad that my small contribution might help the scientific world
in the energy transition.
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A
Equilibrium Problem (Validation Step)

This section of the Appendix presents the deterministic equilibrium problem and the formulation of the
respective KKT conditions, which are used as a comparison to the equivalent optimization problem
presented in Appendix B during the validation of the model.

A.1. RES generators optimization problem

Decision variables: χr = (er,dt, capr)

max
χr∈Xr

Πr(χr, λ
e
dt) =

∑
d

Wd

∑
t

(λedt − V Cr)er,dt − caprICr (A.1)

subject to 0 ≤ er,dt ≤ caprAr,dt (δer,dt, δ
e

r,dt) ∀d, t (A.2)

0 ≤ yr (δ
c

r) (A.3)

Rewriting this optimization problem with the KKT conditions:

−Wd(λ
e
dt − V Cr)− δer,dt + δ

e

r,dt = 0 ∀d, t (A.4)

ICr −
∑
d

Wd

∑
t

δ
e

r,dtAr,dt − δ
c

r = 0 (A.5)

− caprAr,dt + er,dt ≤ 0 ∀d, t (A.6)
− er,dt ≤ 0 ∀d, t (A.7)
− yr ≤ 0 (A.8)

δ
e

r,dt ≥ 0 ∀d, t (A.9)
δer,dt ≥ 0 ∀d, t (A.10)

δ
c

r ≥ 0 (A.11)
− er,dt · δer,dt = 0 ∀d, t (A.12)

− (caprAr,dt − er,dt) · δ
e

r,dt = 0 ∀d, t (A.13)

− capr · δ
c

r = 0 (A.14)
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A.2. Hydrogen-fired turbines generators optimization problem

Decision variables: χf = (hf,dt, ef,dt, capf )

max
χf∈Xf Πf (χf , λ

e
dt, λ

H2

dt ) =
∑
d

Wd

∑
t

[(λedt − V Cf )ef,dt − λH2
t hf,dt]− capfICf (A.15)

where ef,dt = ηfhf,dt

subject to 0 ≤ ef,dt ≤ capf (δef,dt, δ
e

f,dt) ∀t (A.16)

0 ≤ capf (δ
c

f ) (A.17)

Rewriting this optimization problem with the KKT conditions:

−Wd(λ
e
dt − V Cf −

λH2

dt

ηf
)− δef,dt + δ

e

f,dt = 0 ∀d, t (A.18)

ICf −
∑
d

Wd

∑
t

δ
e

f,dt − δ
c

f = 0 (A.19)

− capf + ef,dt ≤ 0 ∀d, t (A.20)
− ef,dt ≤ 0 ∀d, t (A.21)
− capf ≤ 0 (A.22)

δ
e

f,dt ≥ 0 ∀d, t (A.23)
δef,dt ≥ 0 ∀d, t (A.24)

δ
c

f ≥ 0 (A.25)
− ef,dt · δef,dt = 0 ∀d, t (A.26)

− (capr − ef,dt) · δ
e

f,dt = 0 ∀d, t (A.27)

− capf · δcf = 0 (A.28)

A.3. Electrolyzers optimization problem

Decision variables: χez = (hez,dt, eez,dt, capez)

max
χez∈Xez

Πez(χez, λ
e
dt, λ

H2

dt ) =
∑
d

Wd

∑
t

[(λH2

dt − V Cez)hez,dt − λedteez,dt]− capezICez (A.29)

where hez,dt = ηezeez,dt
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subject to 0 ≤ eez,dt ≤ capez (δeez,dt, δ
e

ez,dt) ∀d, t (A.30)

0 ≤ capez (δ
c

ez) (A.31)

Rewriting this optimization problem with the KKT conditions:

−Wd[(λ
H2

dt − V Cez)ηez − λedt]− δeez,dt + δ
e

ez,dt = 0 ∀d, t (A.32)

ICez −
∑
d

Wd

∑
t

δ
e

ez,dt − δ
c

ez = 0 (A.33)

− capez + eez,dt ≤ 0 ∀d, t (A.34)
− eez,dt ≤ 0 ∀d, t (A.35)
− capez ≤ 0 (A.36)

δ
e

ez,dt ≥ 0 ∀d, t (A.37)
δeez,dt ≥ 0 ∀d, t (A.38)

δ
c

ez ≥ 0 (A.39)
− eez,dt · δeez,dt = 0 ∀d, t (A.40)

− (capez − eez,dt) · δ
e

ez,dt = 0 ∀d, t (A.41)

− capf · δcez = 0 (A.42)

A.4. Hydrogen storage optimization problem

Decision variables: χs = (dhdt, chdt, P, V, SOCdt)

max
χs∈Xs

Πs(χs, λ
H2

dt ) =
∑
d

Wd

∑
t

(λH2

dt − V Cs)dhdt −
∑
d

Wd

∑
t

(λH2

dt + V Cs)chdt − P · ICP − V · ICV

(A.43)

Let’s define an auxiliary variable ∆ that represents the daily energy exchange of the storage of the
day d:

∆hd =
∑
t∈T

(ηchchdt − dhdt/ηdh) (γ∆) ∀d (A.44)

It is now possible to define the base state of charge SOC0 for all the days of the year.

SOC0
ad = SOC0

ad−1 +
∑

d∈D
Vad,d ·∆hd (γSOC0

ad
) ∀ad(2 : end) (A.45)

where AD represents the set of all days of the year, both representative and non-representative,
while Vad,d is the ordering matrix that contains the coefficients of the linear combination of representa-
tive days to obtain the set of all days.
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It is possible then to define the maximum positive and negative deviations from the base state of
charge for representative periods:

0 ≤ ∆hmax
d ≥ SOCdt − SOC0

d (δmax,dt, δmax,dt) ∀d, t (A.46)
0 ≤ ∆hmin

d ≥ SOC0
d − SOCdt (δmin,dt, δmin,dt) ∀d, t (A.47)

And therefore to extend this definition to all the periods:

∆hmax
ad =

∑
d∈D

Vad,d∆h
max
d (γmax,ad) ∀ad (A.48)

∆hmin
ad =

∑
d∈D

Vad,d∆h
min
d (γmin,ad) ∀ad (A.49)

At this point, it is possible to impose the state of charge limits for all days:

SOC0
ad +∆hmax

ad ≤ V (δmax,ad,lim) ∀ad (A.50)
SOC0

ad −∆hmin
ad ≥ 0 (δmin,ad,lim) ∀ad (A.51)

Finally, a cyclic constraint is added to ensure the final state of charge is greater than the initial one:

SOC0
ad0

≤ SOC0
adend

+
∑

d∈D
Vadend,d ·∆hd (δcycle) (A.52)

The basic constraints for the storage problem are the following:

subject to 0 ≤ dhdt ≤ P (δdh,dt, δdh,dt) ∀d, t (A.53)
0 ≤ chdt ≤ P (δch,dt, δch,dt) ∀d, t (A.54)
0 ≤ P (δP ) (A.55)
0 ≤ V (δV ) (A.56)
0 ≤ SOCdt ≤ V (δSOC,dt, δSOC,dt) ∀d, t (A.57)
0 ≤ SOC0

d ≤ V (δSOC0
d
, δSOC0

d
) ∀d (A.58)

SOCdt = SOCdt−1 + ηchchdt − dhdt/ηdh (βdt) ∀d, t (A.59)

Rewriting this optimization problem with the KKT conditions:
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−Wd(λ
H2

dt − V Cs)− δdh,dt + δdh,dt +
γ∆
ηdh

+
βt
ηdh

= 0 ∀d, t (A.60)

Wd(λ
H2

dt + V Cs)− δch,dt + δch,dt − γ∆ηch − βtηch = 0 ∀d, t (A.61)

ICP −
∑
d

Wd

∑
t

(δdh,dt + δch,dt)− δP = 0 (A.62)

ICV −
∑
d

Wd

∑
t

(δSOC,dt + δSOC0
d
)− δV −

∑
ad

δmax,ad,lim = 0 (A.63)

δmax,dt − δmin,dt − δSOC,dt + δSOC,dt + βdt − βdt−1 = 0 ∀d, t (A.64)
γ∆ − Vad,dγSOC0

ad
− Vad,dδcycle = 0 ∀d (A.65)

δmax,ad,lim − δmin,ad,lim + δcycle = 0 ad = 1 (A.66)
γSOC0

ad
− γSOC0

ad−1
+ δmax,ad,lim − δmin,ad,lim = 0 ∀ad(2 : end− 1) (A.67)

γSOC0
ad

− γSOC0
ad−1

+ δmax,ad,lim − δmin,ad,lim − δcycle = 0 ad = end (A.68)

− δmax,dt − δmax,dt − Vad,dγmax,ad = 0 ∀d, t (A.69)
− δmin,dt − δmin,dt − Vad,dγmin,ad = 0 ∀d, t (A.70)
γmax,ad + δmax,ad,lim = 0 ∀ad (A.71)
γmin,ad + δmin,ad,lim = 0 ∀ad (A.72)
− δmax,dt + δmin,dt − δSOC0

d
+ δSOC0

d
= 0 ∀d, t (A.73)

∆hd −
∑
t∈T

(ηchchdt − dhdt/ηdh) = 0 ∀d (A.74)

SOC0
ad − SOC0

ad−1 −
∑

d∈D
Vad,d ∗∆hd = 0 ∀ad(2 : end) (A.75)

∆hmax
ad −

∑
d∈D

Vad,d∆h
max
d = 0 ∀ad (A.76)

∆hmin
ad −

∑
d∈D

Vad,d∆h
min
d = 0 ∀ad (A.77)

SOCdt − SOCdt−1 − ηchchdt + dhdt/ηdh = 0 ∀d, t (A.78)
−∆hmax

d ≤ 0 ∀d, t (A.79)
δmax,dt ≥ 0 ∀d, t (A.80)
−∆hmax

d · δmax,dt = 0 ∀d, t (A.81)
SOCdt − SOC0

d −∆hmax
d ≤ 0 ∀d, t (A.82)

δmax,dt ≥ 0 ∀d, t (A.83)
(SOCdt − SOC0

d −∆hmax
d ) · δmax,dt = 0 ∀d, t (A.84)

−∆hmin
d ≤ 0 ∀d, t (A.85)

δmin,dt ≥ 0 ∀d, t (A.86)
−∆hmin

d · δmin,dt = 0 ∀d, t (A.87)
SOC0

ad +∆hmax
ad − V ≤ 0 ∀ad (A.88)

δmax,ad,lim ≥ 0 ∀ad (A.89)
(SOC0

ad +∆hmax
ad − V ) · δmax,ad,lim = 0 ∀ad (A.90)

− (SOC0
ad −∆hmin

ad ) ≤ 0 ∀ad (A.91)
δmin,ad,lim ≥ 0 ∀ad (A.92)
− (SOC0

ad −∆hmin
ad ) · δmin,ad,lim = 0 ∀ad (A.93)

SOC0
ad0

− SOC0
adend

−
∑

d∈D
Vadend,d ·∆hd ≤ 0 (A.94)

δcycle ≥ 0 (A.95)
(SOC0

ad0
− SOC0

adend
−

∑
d∈D

Vadend,d ·∆hd) · δcycle = 0 (A.96)
− dhdt ≤ 0 ∀d, t (A.97)
δdh,dt ≥ 0 ∀d, t (A.98)
− dhdt · δdh,dt = 0 ∀d, t (A.99)
dhdt − P ≤ 0 ∀d, t (A.100)
δdh,dt ≥ 0 ∀d, t (A.101)
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(dhdt − P ) · δdh,dt = 0 ∀d, t (A.102)
− chdt ≤ 0 ∀d, t (A.103)
δch,dt ≥ 0 ∀d, t (A.104)
− chdt · δch,dt = 0 ∀d, t (A.105)
chdt − P ≤ 0 ∀d, t (A.106)
δch,dt ≥ 0 ∀d, t (A.107)
(chdt − P ) · δch,dt = 0 ∀d, t (A.108)
− P ≤ 0 (A.109)
δP ≥ 0 (A.110)
− P · δP = 0 (A.111)
− V ≤ 0 (A.112)
δV ≥ 0 (A.113)
− V · δV = 0 (A.114)
− SOCdt ≤ 0 ∀d, t (A.115)
δSOC,dt ≥ 0 ∀d, t (A.116)
− SOCdt · δSOC,dt = 0 ∀d, t (A.117)
SOCdt − V ≤ 0 ∀d, t (A.118)
δSOC,dt ≥ 0 ∀d, t (A.119)
(SOCdt − V ) · δSOC,dt = 0 ∀d, t (A.120)
− SOC0

d ≤ 0 ∀d (A.121)
δSOC0

d
≥ 0 ∀d (A.122)

− SOC0
d · δSOC0

d
= 0 ∀d (A.123)

SOC0
d − V ≤ 0 ∀d (A.124)

δSOC0
d
≥ 0 ∀d (A.125)

(SOC0
d − V ) · δSOC0

d
= 0 ∀d (A.126)

γ∆ free ∀d (A.127)
γSOC0

ad
free ∀ad (A.128)

γmax,ad free ∀ad (A.129)
γmin,ad free ∀ad (A.130)
βdt free ∀d, t (A.131)

A.5. Electricity consumers optimization problem

Specify the definition of the elastic section and the fact that is dependent on the timestep, as it is
computed by hourly data.

χco,e = (eco,dt)

max
χco,e∈Xco,e

∑
d

Wd

∑
t

[(WTP eeco,dt − (eelaco,dt)
2 WTP e

2De
ela,dt

)− λedteco,dt] (A.132)
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where De
ela,dt =

WTP e

m is the maximum quantity of demand that is price elastic.

subject to 0 ≤ eWTP
co,dt ≤ 0.8De

dt (µWTP
dt

, µWTP
dt ) ∀d, t (A.133)

0 ≤ eelaco,dt ≤ De
ela,dt (µela

dt
, µela

dt ) ∀d, t (A.134)
(A.135)

where eco,dt = eWTP
co,dt + eelaco,dt (A.136)

Rewriting this optimization problem with its KKT conditions:

−Wd(WTP e − λedt)− µWTP
dt

+ µWTP
dt = 0 ∀d, t (A.137)

−Wd(WTP e − λedt − 2eelaco,dt

WTP

2De
ela,dt

)− µela
dt

+ µela
dt = 0 ∀d, t (A.138)

eWTP
co,dt − 0.8De

dt ≤ 0 ∀d, t (A.139)
− eWTP

co,dt ≤ 0 ∀d, t (A.140)
eelaco,dt −De

ela,dt ≤ 0 ∀d, t (A.141)
− eelaco,dt ≤ 0 ∀d, t (A.142)
µWTP
dt ≥ 0 ∀d, t (A.143)
µWTP
dt

≥ 0 ∀d, t (A.144)

µela
dt ≥ 0 ∀d, t (A.145)
µela
dt

≥ 0 ∀d, t (A.146)

− (−eWTP
co,dt + 0.8De

dt) · µWTP
dt = 0 ∀d, t (A.147)

− eWTP
co,dt · µWTP

dt
= 0 ∀d, t (A.148)

− (−eelaco,dt +De
ela,dt) · µela

dt = 0 ∀d, t (A.149)
− eelaco,dt · µela

dt
= 0 ∀d, t (A.150)

A.6. Hydrogen consumers optimization problem

Here the elastic section is computed only once, as the slope of the hydrogen demand is computed as
the average slope of the electricity demand.

χco,h = (hco,dt)

max
χco,h∈Xco,h

∑
d

Wd

∑
t

[(WTPH2hco,dt − (helaco,dt)
2WTPH2

2DH2

ela

)− λH2

dt hco,dt] (A.151)

subject to 0 ≤ hWTP
co,dt ≤ 0.8DH2

dt (µWTP,H2

dt
, µWTP,H2

dt ) ∀d, t (A.152)

0 ≤ helaco,dt ≤ DH2

ela (µela,H2

dt
, µela,H2

dt ) ∀d, t (A.153)
(A.154)

where hco,dt = hWTP
co,dt + helaco,dt (A.155)
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Rewriting this optimization problem with its KKT conditions:

−Wd(WTPH2 − λH2

dt )− µWTP,H2

dt
+ µWTP,H2

dt = 0 ∀d, t (A.156)

−Wd(WTPH2 − λH2

dt − 2helaco,dt

WTPH2

2DH2

ela

)− µela,H2

dt
+ µela,H2

dt = 0 ∀d, t (A.157)

hWTP
co,dt − 0.8DH2

dt ≤ 0 ∀d, t (A.158)
− hWTP

co,dt ≤ 0 ∀d, t (A.159)

helaco,dt −DH2

ela,dt ≤ 0 ∀d, t (A.160)

− helaco,dt ≤ 0 ∀d, t (A.161)

µWTP,H2

dt ≥ 0 ∀d, t (A.162)
µWTP,H2

dt
≥ 0 ∀d, t (A.163)

µela,H2

dt ≥ 0 ∀d, t (A.164)
µela,H2

dt
≥ 0 ∀d, t (A.165)

− (−hWTP
co,dt + 0.8DH2

dt ) · µ
WTP,H2

dt = 0 ∀d, t (A.166)
− hWTP

co,dt · µWTP,H2

dt
= 0 ∀d, t (A.167)

− (−helaco,dt +DH2

ela,dt) · µ
ela,H2

dt = 0 ∀d, t (A.168)

− helaco,dt · µela,H2

dt
= 0 ∀d, t (A.169)

A.7. Market clearing constraints

∑
r

er,dt + ef,dt − eco,dt − eez,dt = 0 (λ′dt
e) ∀d, t (A.170)

hez,dt + dhdt − chdt − hco,dt − hf,dt = 0 (λ′dt
H2) ∀d, t (A.171)



B
Equivalent Optimization Problem

Oss: VC (variable costs) do not appear for electrolysis and storage as they are set to zero

max
χ∈X SW (χ) =

∑
d

Wd

∑
t

[WTP eeco,dt − (eelaco,dt)
2 WTP e

2De
ela,dt

]+

+
∑
d

Wd

∑
t

[WTPH2hco,dt − (helaco,dt)
2WTPH2

2DH2

ela

]+

−
∑
r

∑
d

Wd

∑
t

V Crer,dt −
∑
d

Wd

∑
t

V Cfeh,dt+

−
∑
d

Wd

∑
t

V Cezhez,dt −
∑
d

Wd

∑
t

V Cs(ch,dt + dhdt)+

−
∑
r

ICrcapr − ICfcapf − ICezcapez − ICPP − ICV V (B.1)

subject to:

Market balances constraints

∑
r

er,dt + eh,dt − eez,dt − eco,dt = 0 (λedt) ∀d, t (B.2)

hez,dt + dhdt − chdt − hf,dt − hco,dt = 0 (λH2

dt ) ∀d, t (B.3)

Electricity generator constraints

0 ≤ gr,dt ≤ Ar,dtcapr (δer,dt, δ
e

r,dt) ∀r, d, t (B.4)

0 ≤ gf,dt ≤ capf (δef,dt, δ
e

f,dt) ∀d, t (B.5)

0 ≤ capr (δ
c

r) ∀r (B.6)

0 ≤ capc (δ
c

f ) (B.7)
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Demand agents constraints

0 ≤ eWTP
co,dt ≤ 0.8De

dt (µWTP
dt

, µWTP
dt ) ∀d, t (B.8)

0 ≤ eelaco,dt ≤ De
ela,dt (µela

dt
, µela

dt ) ∀d, t (B.9)

0 ≤ hWTP
co,dt ≤ 0.8DH2

dt (µWTP,H2

dt
, µWTP,H2

dt ) ∀d, t (B.10)

0 ≤ helaco,dt ≤ DH2

ela (µela,H2

dt
, µela,H2

dt ) ∀d, t (B.11)

Electrolyzers constraints

0 ≤ eez,dt ≤ capez (δeez,dt, δ
e

ez,dt) ∀d, t (B.12)

0 ≤ capez (δ
c

ez) (B.13)

Hydrogen storage constraints

0 ≤ dhdt ≤ P (δdh,dt, δdh,dt) ∀d, t (B.14)
0 ≤ chdt ≤ P (δch,dt, δch,dt) ∀d, t (B.15)

0 ≤ P (δP ) (B.16)
0 ≤ V (δV ) (B.17)

0 ≤ SOCdt ≤ V (δSOC,dt, δSOC,dt) ∀d, t (B.18)
0 ≤ SOC0

d ≤ V (δSOC0
d
, δSOC0

d
) ∀d (B.19)

SOCdt = SOCdt−1 + ηchchdt − dhdt/ηdh (βdt) ∀d, t (B.20)
∆hd =

∑
t∈T

(ηchchdt − dhdt/ηdh) (γ∆) ∀d (B.21)

SOC0
ad = SOC0

ad−1 +
∑

d∈D
Vad,d ·∆hd (γSOC0

ad
) ∀ad(2 : end) (B.22)

0 ≤ ∆hmax
d ≥ SOCdt − SOC0

d (δmax,dt, δmax,dt) ∀d, t (B.23)
0 ≤ ∆hmin

d ≥ SOC0
d − SOCdt (δmin,dt, δmin,dt) ∀d, t (B.24)

∆hmax
ad =

∑
d∈D

Vad,d∆h
max
d (γmax,ad) ∀ad (B.25)

∆hmin
ad =

∑
d∈D

Vad,d∆h
min
d (γmin,ad) ∀ad (B.26)

SOC0
ad +∆hmax

ad ≤ V (δmax,ad,lim) ∀ad (B.27)
SOC0

ad −∆hmin
ad ≥ 0 (δmin,ad,lim) ∀ad (B.28)

SOC0
ad0

≤ SOC0
adend

+
∑

d∈D
Vadend,d ·∆hd (δcycle) (B.29)

Rewriting this optimization problem with its KKT conditions:
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WdV Cr + λedt − δer,dt + δ
e

r,dt = 0 ∀d, t (B.30)

ICr −
∑
d

Wd

∑
t

δ
e

r,dtAr,dt − δ
c

r = 0 (B.31)

+WdV Cf + λedt −
λH2

dt

ηf
− δef,dt + δ

e

f,dt = 0 ∀d, t (B.32)

ICf −
∑
d

Wd

∑
t

δ
e

f,dt − δ
c

f = 0 (B.33)

WdV Cezηez + ηezλ
H2

dt − λedt − δeez,dt + δ
e

ez,dt = 0 ∀d, t (B.34)

ICez −
∑
d

Wd

∑
t

δ
e

ez,dt − δ
c

ez = 0 (B.35)

λH2

dt +WdV Cs − δdh,dt + δdh,dt +
γ∆
ηdh

+
βt
ηdh

= 0 ∀d, t (B.36)

− λH2

dt +Wd + V Cs − δch,dt + δch,dt − γ∆ηch − βtηch = 0 ∀d, t (B.37)

ICP −
∑
d

Wd

∑
t

(δdh,dt + δch,dt)− δP = 0 (B.38)

ICV −
∑
d

Wd

∑
t

(δSOC,dt + δSOC0
d
)− δV −

∑
ad

δmax,ad,lim = 0 (B.39)

−WdWTP e − λedt − µWTP
dt

+ µWTP
dt = 0 ∀d, t (B.40)

−Wd(WTP e − 2eelaco,dt

WTP

2De
ela,dt

)− λedt − µela
dt

+ µela
dt = 0 ∀d, t (B.41)

−WdWTPH2 − λH2

dt − µWTP,H2

dt
+ µWTP,H2

dt = 0 ∀d, t (B.42)

−Wd(WTPH2 − 2helaco,dt

WTPH2

2DH2

ela

)− λH2

dt − µela,H2

dt
+ µela,H2

dt = 0 ∀d, t (B.43)

− caprAr,dt + er,dt ≤ 0 ∀d, t (B.44)
− er,dt ≤ 0 ∀d, t (B.45)
− capr ≤ 0 (B.46)

δ
e

r,dt ≥ 0 ∀d, t (B.47)
δer,dt ≥ 0 ∀d, t (B.48)

δ
c

r ≥ 0 (B.49)
− er,dt · δer,dt = 0 ∀d, t (B.50)

− (caprAr,dt − er,dt) · δ
e

r,dt = 0 ∀d, t (B.51)

− capr · δ
c

r = 0 (B.52)
− capf + ef,dt ≤ 0 ∀d, t (B.53)
− ef,dt ≤ 0 ∀d, t (B.54)
− capf ≤ 0 (B.55)

δ
e

f,dt ≥ 0 ∀d, t (B.56)
δef,dt ≥ 0 ∀d, t (B.57)

δ
c

f ≥ 0 (B.58)
− ef,dt · δef,dt = 0 ∀d, t (B.59)

− (capr − ef,dt) · δ
e

f,dt = 0 ∀d, t (B.60)

− capf · δcf = 0 (B.61)
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− capez + eez,dt ≤ 0 ∀d, t (B.62)
− eez,dt ≤ 0 ∀d, t (B.63)
− capez ≤ 0 (B.64)

δ
e

ez,dt ≥ 0 ∀d, t (B.65)
δeez,dt ≥ 0 ∀d, t (B.66)

δ
c

ez ≥ 0 (B.67)
− eez,dt · δeez,dt = 0 ∀d, t (B.68)

− (capez − eez,dt) · δ
e

ez,dt = 0 ∀d, t (B.69)

− capf · δcez = 0 (B.70)
δmax,dt − δmin,dt − δSOC,dt + δSOC,dt + βdt − βdt−1 = 0 ∀d, t (B.71)
γ∆ − Vad,dγSOC0

ad
− Vad,dδcycle = 0 ∀d (B.72)

δmax,ad,lim − δmin,ad,lim + δcycle = 0 ad = 1 (B.73)
γSOC0

ad
− γSOC0

ad−1
+ δmax,ad,lim − δmin,ad,lim = 0 ∀ad(2 : end− 1) (B.74)

γSOC0
ad

− γSOC0
ad−1

+ δmax,ad,lim − δmin,ad,lim − δcycle = 0 ad = end (B.75)

− δmax,dt − δmax,dt − Vad,dγmax,ad = 0 ∀d, t (B.76)
− δmin,dt − δmin,dt − Vad,dγmin,ad = 0 ∀d, t (B.77)
γmax,ad + δmax,ad,lim = 0 ∀ad (B.78)
γmin,ad + δmin,ad,lim = 0 ∀ad (B.79)
− δmax,dt + δmin,dt − δSOC0

d
+ δSOC0

d
= 0 ∀d, t (B.80)

∆hd −
∑
t∈T

(ηchchdt − dhdt/ηdh) = 0 ∀d (B.81)

SOC0
ad − SOC0

ad−1 −
∑

d∈D
Vad,d ·∆hd = 0 ∀ad(2 : end) (B.82)

∆hmax
ad −

∑
d∈D

Vad,d∆h
max
d = 0 ∀ad (B.83)

∆hmin
ad −

∑
d∈D

Vad,d∆h
min
d = 0 ∀ad (B.84)

SOCdt − SOCdt−1 − ηchchdt + dhdt/ηdh = 0 ∀d, t (B.85)
−∆hmax

d ≤ 0 ∀d, t (B.86)
δmax,dt ≥ 0 ∀d, t (B.87)
−∆hmax

d · δmax,dt = 0 ∀d, t (B.88)
SOCdt − SOC0

d −∆hmax
d ≤ 0 ∀d, t (B.89)

δmax,dt ≥ 0 ∀d, t (B.90)
(SOCdt − SOC0

d −∆hmax
d ) · δmax,dt = 0 ∀d, t (B.91)

−∆hmin
d ≤ 0 ∀d, t (B.92)

δmin,dt ≥ 0 ∀d, t (B.93)
−∆hmin

d · δmin,dt = 0 ∀d, t (B.94)
SOC0

ad +∆hmax
ad − V ≤ 0 ∀ad (B.95)

δmax,ad,lim ≥ 0 ∀ad (B.96)
(SOC0

ad +∆hmax
ad − V ) · δmax,ad,lim = 0 ∀ad (B.97)

− (SOC0
ad −∆hmin

ad ) ≤ 0 ∀ad (B.98)
δmin,ad,lim ≥ 0 ∀ad (B.99)
− (SOC0

ad −∆hmin
ad ) · δmin,ad,lim = 0 ∀ad (B.100)

SOC0
ad0

− SOC0
adend

−
∑

d∈D
Vadend,d ∗∆hd ≤ 0 (B.101)

δcycle ≥ 0 (B.102)
(SOC0

ad0
− SOC0

adend
−

∑
d∈D

Vadend,d ∗∆hd) · δcycle = 0 (B.103)
− dhdt ≤ 0 ∀d, t (B.104)
δdh,dt ≥ 0 ∀d, t (B.105)
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− dhdt · δdh,dt = 0 ∀d, t (B.106)
dhdt − P ≤ 0 ∀d, t (B.107)
δdh,dt ≥ 0 ∀d, t (B.108)
(dhdt − P ) · δdh,dt = 0 ∀d, t (B.109)
− chdt ≤ 0 ∀d, t (B.110)
δch,dt ≥ 0 ∀d, t (B.111)
− chdt · δch,dt = 0 ∀d, t (B.112)
chdt − P ≤ 0 ∀d, t (B.113)
δch,dt ≥ 0 ∀d, t (B.114)
(chdt − P ) · δch,dt = 0 ∀d, t (B.115)
− P ≤ 0 (B.116)
δP ≥ 0 (B.117)
− P · δP = 0 (B.118)
− V ≤ 0 (B.119)
δV ≥ 0 (B.120)
− V · δV = 0 (B.121)
− SOCdt ≤ 0 ∀d, t (B.122)
δSOC,dt ≥ 0 ∀d, t (B.123)
− SOCdt · δSOC,dt = 0 ∀d, t (B.124)
SOCdt − V ≤ 0 ∀d, t (B.125)
δSOC,dt ≥ 0 ∀d, t (B.126)
(SOCdt − V ) · δSOC,dt = 0 ∀d, t (B.127)
− SOC0

d ≤ 0 ∀d (B.128)
δSOC0

d
≥ 0 ∀d (B.129)

− SOC0
d · δSOC0

d
= 0 ∀d (B.130)

SOC0
d − V ≤ 0 ∀d (B.131)

δSOC0
d
≥ 0 ∀d (B.132)

(SOC0
d − V ) · δSOC0

d
= 0 ∀d (B.133)

γ∆ free ∀d (B.134)
γSOC0

ad
free ∀ad (B.135)

γmax,ad free ∀ad (B.136)
γmin,ad free ∀ad (B.137)
βdt free ∀d, t (B.138)
eWTP
co,dt − 0.8De

dt ≤ 0 ∀d, t (B.139)
− eWTP

co,dt ≤ 0 ∀d, t (B.140)
eelaco,dt −De

ela,dt ≤ 0 ∀d, t (B.141)
− eelaco,dt ≤ 0 ∀d, t (B.142)
µWTP
dt ≥ 0 ∀d, t (B.143)
µWTP
dt

≥ 0 ∀d, t (B.144)

µela
dt ≥ 0 ∀d, t (B.145)
µela
dt

≥ 0 ∀d, t (B.146)

− (−eWTP
co,dt + 0.8De

dt) · µWTP
dt = 0 ∀d, t (B.147)
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− eWTP
co,dt · µWTP

dt
= 0 ∀d, t (B.148)

− (−eelaco,dt +De
ela,dt) · µela

dt = 0 ∀d, t (B.149)
− eelaco,dt · µela

dt
= 0 ∀d, t (B.150)

hWTP
co,dt − 0.8DH2

dt ≤ 0 ∀d, t (B.151)
− hWTP

co,dt ≤ 0 ∀d, t (B.152)

helaco,dt −DH2

ela,dt ≤ 0 ∀d, t (B.153)

− helaco,dt ≤ 0 ∀d, t (B.154)

µWTP,H2

dt ≥ 0 ∀d, t (B.155)
µWTP,H2

dt
≥ 0 ∀d, t (B.156)

µela,H2

dt ≥ 0 ∀d, t (B.157)
µela,H2

dt
≥ 0 ∀d, t (B.158)

− (−hWTP
co,dt + 0.8DH2

dt ) · µ
WTP,H2

dt = 0 ∀d, t (B.159)
− hWTP

co,dt · µWTP,H2

dt
= 0 ∀d, t (B.160)

− (−helaco,dt +DH2

ela,dt) · µ
ela,H2

dt = 0 ∀d, t (B.161)

− helaco,dt · µela,H2

dt
= 0 ∀d, t (B.162)
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