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Abstract
Infrastructure is at risk to climate uncertainty due to a combination of long life spans, complexity of the
systems it is embedded in, and the high investment costs often necessary. Current infrastructure planning
approaches lose efficacy under deep uncertainty, necessitating new approaches that function better under
conditions where the future cannot be predicted. The approaches that attempt to deal with this are also called
Decision Making under Deep Uncertainty (DMDU). Bangladesh, the Netherlands, and New Zealand have all
already adopted the use of these DMDU approaches in their delta protection guidance. One popular DMDU
technique is Robust Decision Making (RDM). RDM can be seen as a computational extension of scenario
planning, where proposed plans are tested against every potential combination of uncertainties.

The Deep South Challenge (DSC), a New Zealand based research institute is looking into using RDM on a
regional scale to discover vulnerabilities and identify robust strategies based on them. One of the test cases
is in Helensville, where a Wastewater Treatment Plant (WTP) serving a small community is located in the
middle of a floodplain. The WTP discharges its effluent into a strongly tidally influenced river, which drains
the entire watershed and flows past large tidal flats into a dynamic estuarine environment.

In order to identify potential vulnerabilities in the system, robust decision making uses a vulnerability analy-
sis. This consists of a scenario discovery and global sensitivity analysis which sample through every combina-
tion of uncertainties to characterize the vulnerabilities of the system. In order to facilitate this, usually simple
conceptual models are used due to the high number of runs necessary. However, these types of models can
oversimplify complex physical processes and topography. These complicating factors are all present at the
current case site selected by the DSC. This research investigates whether the added computational demand of
a complex model is worth it compared to a simple conceptual model. To do this, two models are selected and
forced for the same event. They are then compared on predicted system behavior, identified vulnerabilities,
and potential policy advice.

From a larger selection, the FLORES and SFINCS models were chosen. FLORES uses a simple hydrological
balance to calculate the water level in the subbasins for each timestep. SFINCS is a reduced physics solver
which only uses the Local Inertial Equations (LIE). Both models are forced by a compound rainfall and storm-
tide event for a storm with a 24 hour duration, for which they were calibrated and validated using the results
of previous modeling efforts in the region. After the calibration and validation, a sensitivity analysis and
scenario discovery were run for both models.

The results of the sensitivity analysis show similar model behavior between FLORES and SFINCS. The up-
stream part of the model domain is only sensitive to rainfall, while the downstream part is mostly sensitive
to storm surge and mean sea level, and to a lesser degree to tidal amplitude. This downstream part includes
the wastewater treatment plant. Compared to SFINCS, the outcomes for FLORES on average overestimated
water levels at the WTP. This is most likely due to the lack of flood attenuation taken into account by FLORES
compared to SFINCS.

The scenario discovery showed similar results for each model’s box describing 73% of the outcomes where
failure occurs. Both models had the same three thresholds: storm surge, mean sea level, and tidal amplitude.
The main difference between the boxes was the storm surge threshold being 21 centimeters lower for FLORES
compared to SFINCS, indicating FLORES overestimates the water level at the WTP. The results of the scenario
discovery also showed a linear relationship between these three factors. From this relationship, it is possible
to see that, keeping all else similar, and with the same high tidal amplitude and storm surge, for SFINCS the
plant only starts flooding when a mean sea level of at least 0.4 meters is reached, while for FLORES this is 0.25
meters. Using a RCP4.5 emissions scenario, a mean sea level of 0.25 meters will be reached in 20-30 years,
and a mean sea level of 0.4 meters in 50 years.

The proposed policy options for both SFINCS and FLORES would be to mitigate storm surge as long as pos-
sible, since the water level at the WTP is most sensitive to this factor. Once this is no longer possible, the WTP
should be relocated. The results of SFINCS indicate this relocation is necessary later than for FLORES.

These results show that while the behaviors exhibited by both models is relatively similar, the small differ-
ences in accuracy affect which are most likely due to the lack of flood attenuation taken into account for FLO-
RES lead to a different timing of proposed adaptations. This leads to reason that while a conceptual model
such as FLORES works well to identify important factors within the system, a more accurate model such as
SFINCS can be more helpful once timing of adaptation becomes important. Further recommendations are
to repeat this research for more models, further calibrate and validate the models, and to include scenario
discovery methods that better deal with the found linear relation.
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Chapter 1

Introduction

1.1 Infrastructure planning and modeling complexity in a
changing climate

1.1.1 The effects of climate change on infrastructure
Infrastructure is the backbone of society. It connects people, provides them with services, and keeps them
safe. Current infrastructure is at risk from climate change and its associated effects, however. The Organ-
isation for Economic Co-operation and Development (OECD) has estimated that in order to adapt current
infrastructure to the effects associated to climate change, over 6.3 trillion US dollars should be invested world-
wide per year between 2016 and 2030 (Mullan, 2018). Consequences of climate change will most likely dis-
proportionately affect poor and coastal regions, which will be the first to feel the effects.

The Intergovernmental Panel on Climate Change (IPCC) has predicted that the current risks affecting coastal
regions will increase by at least one order of magnitude by the year 2100 due to climate change (Arias et al.,
2021). This means populations living in coastal areas will most likely have to accept a managed retreat inland
at some point in the future (WMO, 2019). For water infrastructure, the most serious effects of climate change
and global warming are sea level rise, extreme precipitation as well as periods of drought, and increased fre-
quency and intensity of storms. The magnitude and extent of these effects is still largely uncertain.

Infrastructure is especially vulnerable to the uncertainty related to climate change, since it is often embedded
in complex systems. This means it is hard for infrastructure to adapt to changes within the system due to the
lock-in of any choice made, which is caused by its long life-span as well as the different rules and regulations.
These risks are exacerbated by the high up-front investment costs necessary for infrastructure (Stanton &
Roelich, 2021). This raises the need for planning approaches that perform well under uncertain conditions.

1.1.2 Planning approaches for different levels of uncertainty
Different levels of uncertainty warrant different planning approaches. Marchau et al. (2019) has divided the
degree of uncertainty into four different levels, which can be seen in Figure 1.1, limited by complete deter-
minism on one side to total ignorance on the other side. The level of uncertainty encountered is dependent
on the external factors, system model, and system outcomes.

Probabilistic approaches and scenario planning

Probabilistic approaches are the most widely used planning method. These approaches assume that external
factors, the system model, and its outputs can be described in a probabilistic manner. Projections of the fu-
ture are made, after which planning is based on these projections. These approaches work well on a shorter
time scale, when the system is clear, or when external forces on the system are well-defined.

1
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For cases where probabilities cannot be ascribed to the external factors, system model, or to the outcomes,
scenario planning is used. Scenario planning examines a few mutually exclusive plausible scenarios in order
to make "robust" decisions: those that lead to a satisfactory outcome in multiple different futures. By explor-
ing various scenarios, decision-makers can better prepare for uncertainties and make strategic choices that
are adaptable across a range of possible futures. Compared to the probabilistic approaches, choices are not
made based on a prediction of what will likely happen, but rather on what could potentially happen. This
works well when there are only a few plausible scenarios.

Figure 1.1: The progressive levels of uncertainty ranging from complete determinism on the left to total ignorance on the right. Context
encompasses all external forces on the system, and weights denotes the preference of system outcomes by stakeholders. Probabilistic
predictive approaches work well for levels 1 and 2, and scenario planning works well for level 3. Decision making under deep uncertainty
techniques attempt to deal with level 4a and 4b uncertainty (Marchau et al., 2019).

Decision Making under Deep Uncertainty (DMDU)

In cases where uncertainty is even more profound, also sometimes called deep uncertainty, scenario plan-
ning can lose efficacy as well. Decision making under deep uncertainty is the collection name of techniques
that attempt to deal with this level of uncertainty. These techniques recognize that the future is inherently un-
certain, and attempt to make decisions that are not only robust against uncertainty but also flexible enough
to adapt to evolving circumstances.

There are multiple DMDU techniques, each with their own strengths and weaknesses. One popular DMDU
technique that is already widely adopted is Robust Decision Making (RDM) (Haasnoot et al., 2019; Kwakkel
& Haasnoot, 2019; Kwakkel et al., 2016a; Lempert, 2019). RDM can be seen as an extension of scenario plan-
ning. Rather than making a selection of just a few mutually exclusive plausible scenarios as done for scenario
planning, RDM samples through every combination of possible uncertainties. The two main benefits of this
search are the ability to discover the conditions under which the system is vulnerable, as well as the ability to
iteratively develop robust strategies by adapting to these discovered vulnerabilities.

1.1.3 Modeling support for different levels of uncertainty
Probabilistic methods often use complex models to best predict the future. As an example, to deal with cli-
mate change, integrated assessment models are used to attempt to predict carbon emission pathways (Arias
et al., 2021). These models are complex and require a great deal of computational power.

Robust decision making samples through every combination of external uncertainties, meaning a large num-
ber of runs is necessary. In order to keep the analysis computationally feasible, often simple conceptual mod-
els are used that mimic the behavior of more complex models. A problem occurs, however, when reducing
the complexity of a model oversimplifies system behavior. For hydraulic modeling, locations with complex
topography and physical processes such as estuaries, flood plains and tidal rivers are especially vulnerable
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to this oversimplification (Herdman et al., 2018; H. McGrath et al., 2018; Ngo et al., 2020; O’Neill et al., 2017;
Teng et al., 2017).

1.2 Decision making under deep uncertainty in New Zealand

1.2.1 Risks in New Zealand and the Deep South Challenge

New Zealand will be among the first nations to feel the effects of climate change. Currently over 240,000
people here are living within 2 meters of the mean high tide line (level, 2021). Additionally, New Zealand’s
public infrastructure is greatly at risk from rising sea levels and increased storm frequency and intensity. At
0.5 meters sea level rise, more than $2.7 billion is at risk, which balloons to $13.4 billion for a rise of 3.0 meters
(LGNZ, 2019). The area that is the most at risk the quickest is the Auckland region, where $620 million worth
of infrastructure is already at risk with a sea level rise of 0.5 meters (LGNZ, 2019).

In order to help adapt infrastructure, and to help New Zealanders mitigate the most important effects of
climate change, the Deep South Challenge initiative has been set up. The New Zealand government has
already promoted the use of decision making under deep uncertainty concepts in the national guidance for
adapting to coastal hazards and sea level rise (Lawrence et al., 2018; Stephens et al., 2021). One of the main
goals of the Deep South Challenge is to bring these concepts to a more regional scale.

1.2.2 The Helensville wastewater treatment plant: a case study

The Helensville study is one of the adaptation planning case studies part of the Deep South Challenge (Stephens
et al., 2018, 2021). Helensville is a small, low-lying town near Auckland which is expected to increase in pop-
ulation in the coming years. This community is currently being served by a wastewater treatment plant, the
location of which can be seen in Figure 1.2a. Wastewater treatment plants are especially exposed to the effects
of climate change, since they are often placed in low-lying areas near open bodies of water, and are affected
by the effects of droughts and storms (Friedrich & Kretzinger, 2011; Hummel et al., 2018; Woetzel et al., 2020).
The treatment plant in Helensville will also have to adapt to these effects, and most likely retreat inland at
some point in the future if the sea level rises too high.

The Deep South Challenge wants to use robust decision making to identify vulnerabilities for the wastewater
treatment plant, and identify robust policy options in order to keep the plant at the same location for as long
as possible. However, using a simple model to represent the behavior at the case site could be oversimplified.
The compound flooding the plant is at risk to, as well as the failure methods can be found in Figure 1.2b. The
plant in Helensville is located in the middle of a coastal floodplain, with large intertidal flats at the down-
stream end protecting the from storm-tide. The plant discharges its effluent into the small Kaipara river. The
water level in this river varies based on tides and rainfall, since it drains most of the upstream watershed.

(a) Location of the wastewater treatment plant next to Kaipara river in New
Zealand (from google maps)

(b) Diagram of the failure methods and drivers for the wastewater treatment
plant. VLM stands for vertical land movement (Stephens et al., 2021).

Figure 1.2: Helensville wastewater treatment plant location and flooding risks
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1.3 Problem statement/objective/research questions

1.3.1 Problem statement

The deep south challenge is currently doing research into the future adaptation of a wastewater treatment
plant in Helensville, New Zealand. The goal is to use robust decision making to find vulnerabilities for the
Helensville wastewater treatment plant, and to use these found vulnerabilities to identify robust policy op-
tions to keep the plant operational at its current location for as long as possible.

Robust decision making usually uses simple conceptual models rather than more complex models, due to
the large number of runs necessary. The complex topography and compound flooding present at the case
site mean using a simple model could potentially be oversimplified. This could in turn lead to potentially
wrongly identified vulnerabilities and different policy advice.

1.3.2 Objective

The objective of this research is to compare the model behavior, identified vulnerabilities, and derived policy
advice between a simple conceptual and more complex model for the Deep South Challenge’s adaptation
case study in Helensville.

1.3.3 Research Questions

Main question

How does the use of a more complex model rather than a fast simple model as traditionally used for robust
decision making influence predicted system behavior and identified vulnerabilities, and does this have an
effect on potential policy advice?

Subquestions

• How and why does the predicted system behavior differ between the two models?
This subquestion focuses on comparing the two models based on their accuracy at the wastewater
treatment plant, overall inundation depth and extent, and sensitivities throughout the model domain.
This comparison also includes a reflection on where these potential differences come from based on
each respective model’s aspects.

• How do the identified vulnerabilities differ between the two models?
Vulnerabilities for the wastewater treatment plant are identified using a combination of the sensitivity
analysis and the scenario discovery. In general, the sensitivity analysis shows which uncertainties are
most important for the results, while the scenario discovery gives specific thresholds for these uncer-
tainties to define scenarios where failure is likely to occur. This comparison also includes a reflection
on the effects of differences in the two models.

• How does the derived policy advice differ between the two models?
The vulnerabilities identified, supported with knowledge on system behavior for both models can form
the basis of potential policy advice. The question here is if potential differences in predicted system
behavior and identified vulnerabilities lead to different policy advice, and if so, how.

1.3.4 Scope and method

This research will focus on the Helensville wastewater treatment plant. In order to compare the predicted
system behaviors, identified vulnerabilities, and derived policy advice for two models, the first iteration of
robust decision making will be performed for both these models. This mainly consists of running a global
sensitivity analysis and scenario discovery for the current situation without any policy to mitigate the effects
of climate change.
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The two models will be forced by a compound flooding event consisting of rainfall and storm-tide, with failure
being defined as overtopping of the wastewater treatment plant’s pond embankments. The simple model will
be based on a hydrological balance, while the more complex model is based on the Navier-Stokes equations.

1.4 Reader’s guide

Chapter 2: Literature review

The goal of this Chapter is to illustrate the gap in knowledge, place the research in the correct context, and give
the building blocks for the rest of the report. Section ?? gives a background on robust decision making, and
the role the global sensitivity analysis and scenario discovery play in it. Section 2.2 discusses the wastewater
treatment plant and surroundings in further detail, including current forcing, potential failure methods, and
previous hydraulic modeling. Section 2.3 discusses potential hydraulic modeling approaches, split up into
conceptual approaches and those based on the Navier-Stokes equations. Finally, Section 2.4 summarizes
relevant aspects of the chapter.

Chapter 3: Research and modeling set up

The goal of this chapter is to further explain the approach taken, as well as the choices made in the modeling
set up. The chapter starts with Section 3.1, which outlines the general approach taken. Section 3.2 then pro-
vides a framework for the modeling, including a definition of the hydraulic event, the model domain, and the
computational configuration. The two models are chosen in Section 3.3. The configuration of these models
is given in Section 3.4. Section 3.5 outlines their calibration and validation. Lastly, Section 3.6 discusses the
set up of the global sensitivity analysis and the scenario discovery.

Chapter 4: Modeling results and comparison

The goal of this chapter is to present the outcomes of the simulations, and to use these to compare the two
models. The chapter starts with Section 4.1, where some aspects of the outcomes are explored. Next, Section
4.2 discusses the results of the global sensitivity analysis. Section 4.3 discusses the results of the scenario
discovery. Based on the first part of this chapter, Section 4.4 discusses the implications on potential policy
advice. The chapter ends with a comparison on predicted system behavior and accuracy, identified vulnera-
bilities, and policy advice in Section 4.5.

Chapter 5: Reflection

The goal of this chapter is to reflect on important elements of Chapters 3 and 4 to verify results and discuss
limitations. This includes a discussion of modeling choices in Sections 5.1 and 5.2, calibration and validation
in Section 5.3, and the sensitivity analysis and scenario discovery in Section 5.4.

Chapter 6: Conclusion and recommendations

This chapter presents the findings of the research based on the research questions stated in this chapter in
Section 6.1, and recommends avenues for future research based on those findings in Section 6.2.



Chapter 2

Literature review

The goal of this chapter is to lay the foundation for work done in the rest of the report and further illustrate the
gap in knowledge and its relevance. The chapter starts with a primer on robust decision making in Section 2.1.
Section 2.2 then introduces important aspects of the wastewater treatment plant and its surroundings. Sec-
tion 2.3 discusses various hydraulic modeling approaches. Finally, Section 2.4 summarizes relevant aspects
of the chapter.

2.1 Robust decision making

Developed by the RAND corporation, robust decision making can be seen as an extension of scenario plan-
ning (Lempert, 2019). Compared to scenario planning which uses a selection of a few plausible and mutu-
ally exclusive scenarios, robust decision making samples through the entire uncertainty space (every com-
bination of possible uncertainties). The main benefits of sampling through the entire uncertainty space are
twofold: a lower reliance on the selection of specific scenarios, and a more precise description of the condi-
tions under which failure is likely to occur for a system.

The primary outcomes of the robust decision making process are provided by the vulnerability analysis. In
this step the conditions where the system is vulnerable are described. These identified conditions can then
be used to develop robust strategies that better deal with vulnerabilities. This is an iterative process, with a
strong role for discussion on potential options, tradeoffs, and uncertainties. This discussion combined with
computational experiments has been shown to strengthen both processes by continually testing assumptions
and conclusions on both the strategies and the uncertainties taken into account (Groves et al., 2019; Lempert,
2019; Walker et al., 2013).

The straightforward way in which robust decision making identifies a system’s vulnerabilities have also been
proposed to be helpful for other decision making under deep uncertainty techniques, notably the dynamic
adaptive policy pathways approach proposed by Haasnoot et al. (2013). How these two techniques work
together, and a further analytical breakdown can be found in the thesis adjacent to this one. This thesis will
focus mainly on the identification of said vulnerabilities using two models of differing complexity to see how
the results differ and if this significantly influences policy advice.

2.1.1 The robust decision making process

Robust decision making is an iterative process as can be seen in Figure 2.1. Before potential policies are
introduced to the system to stress-test their relative performance, the first iteration is usually done for the
status quo. This is done to better understand the system, find current vulnerabilities, and identify potential
policies. This first iteration is also the scope for this research.

6
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Figure 2.1: A flowchart of the robust decision making process (Lempert, 2019)

Seen in Figure 2.1, the robust decision making process begins by conceptualizing the problem in step 1 uti-
lizing the XLRM framework. This involves identifying important uncertainties (X), levers (L) representing
potential policies, and problem objectives (M) which reflect the relevant outcomes. The relationships (R)
show the links between these uncertainties, policy options, and outcomes (Lempert, 2019). After this con-
ceptualization, in step 2 cases are generated by calculating the outcomes M for different combinations of
uncertainties and policies. To do this, various sampling techniques can be employed to sample through all
potential combinations of uncertainties. Literature has suggested that using adaptive sampling here could
lead to increased efficiency, but most of these techniques are still actively being developed (Groves et al.,
2019; Lempert, 2019).

After a database of outcomes for different combinations of uncertainties and policy options is created, a
vulnerability analysis is conducted in step 3 to characterize the conditions where the objectives are not met.
The results of the vulnerability analysis are used in step 5 in two main ways: to help identify policy options
to protect against the identified vulnerabilities, or to re-conceptualize the problem when necessary. In later
iterations of the process when there are multiple policy options, the results can be used to visualize tradeoffs
between these policies for different vulnerabilities in step 4.

2.1.2 Vulnerability analysis: scenario discovery and sensitivity analysis
The vulnerability analysis is the analytical heart of the robust decision making, where the outcomes are in-
terpreted to identify vulnerabilities in the system and potential policies. Traditionally this consists only of
scenario discovery, but using an additional global sensitivity analysis has been suggested by literature to help
in two main ways: to gain a more complete picture of the vulnerabilities, and to help reduce the amount of
factors taken into account in later iterations (Herman et al., 2014; Kwakkel & Haasnoot, 2019).

Scenario discovery

As part of the vulnerability analysis, scenario discovery is performed on the database of cases sampled from
the entire uncertainty space. The goal is to find statistically significant clusters of cases where the objectives
are not met. Although other methods can also be used dependent on the expected characteristics of the
results, usually the Patient Rule Induction Method (PRIM) algorithm is initially employed since it is the most
robust, easy to interpret, and includes non-linear effects (Bryant & Lempert, 2010; Friedman & Fisher, 1999;
Kwakkel, 2017; Kwakkel et al., 2016a; Lempert, 2019).

PRIM defines the clusters of relevant cases using thresholds for each relevant uncertainty, which can be seen
in Figure 2.2. This is often defined as a multi-dimensional box (Bryant & Lempert, 2010; Kwakkel et al., 2016a;
Ramm et al., 2018).
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The quality of a box is usually described through the coverage and density, which is also explained in Figure
2.2. The coverage is defined as the percentage of all cases where the objectives are not met that fall within
the thresholds of the selected box, and the density as the percentage of cases that fall within the thresholds of
the selected box where the objectives are not met. Ideally, both the coverage and density should be as high as
possible, but there is always a tradeoff to be made between the two. If the coverage is high and the density is
low, the box includes almost all cases, making the findings a lot less specific. On the other hand if the density
is high, but coverage is low, the box’s thresholds only describe a few of the cases where the objectives are not
reached making the set thresholds less reliable.

Next to coverage and density, a quasi-p value is calculated to estimate the probability that an input value is
selected by chance, and whether it is statistically significant. A high quasi-p value can indicate very noisy
data, or an insufficient sample size (Bryant & Lempert, 2010; Kwakkel et al., 2016a).

Figure 2.2: Visualization of the results of scenario discovery using the PRIM algorithm. Each point in the graph on the left is a case from
the sampled database. A black point is a point where the objectives are not met, whereas a white point is a point where the objectives
are met. The box or candidate scenario shows 2 dimensions with thresholds Y1 and Y2, and X1 and X2. These thresholds are also written
out on the bottom right (Ramm et al., 2018).

Sensitivity analysis

Literature suggests a few benefits of using an additional global sensitivity analysis, such as factor prioriti-
zation and a better understanding of the model system and outcomes. Factor prioritization is suggested in
literature to save computational expense by removing uncertainties in later iterations since they have a neg-
ligible influence on the outcomes (Herman et al., 2014; Kwakkel & Haasnoot, 2019). The precise effects of
this are questionable, however, since each introduction of a new policy could change the sensitivities of a
system. Factor prioritization can help in the identification of policy options, however, by indicating which
uncertainties most influence the outcomes.

Using a global sensitivity analysis is also in line with standard practice for hydraulic models (Hall et al., 2009).
Compared to local sensitivity methods, global methods offer a broader insight into model behavior, and can
also show interaction effects between variables. Two prominent global sensitivity methods are SOBOL and
Morris. SOBOL has been shown to be more robust and accurate, and is thus preferred when computationally
feasible (Hall et al., 2009; Tang et al., 2006). Morris is usually only employed when many uncertain factors (up
to 100) are taken into account, or the runtime of the model is very large (10 minutes or so).

A SOBOL analysis uses a quasi-random sampling scheme, which means that points are strategically chosen
to ensure a more uniform and thorough exploration of the uncertainty space compared to a fully random
sampling scheme (Saltelli et al., 2010; Sobol, 2001). The results of the analysis include both first and second
order effects. First order effects refer to the direct impact on the output of varying one input factor, while
second order effects reflect the impact on the output by the interactions between two input factors. The total
of these effects should add up to 1 if the results have converged (Saltelli et al., 2010).
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2.1.3 Impacts robust decision making on model complexity

Both scenario discovery and sensitivity analysis need many simulations, meaning a high model runtime can
be problematic. For a normal sensitivity analysis, this problem is often solved by reducing the complexity
of the sensitivity analysis. As mentioned in the previous section, there are different options with differing
accuracies for this based on the model and problem at hand. For scenario discovery, however, this is not
an option. Instead, to decrease runtime often simplified models are used. The goal of these fast simple or
meta-models is to mimic system behavior relatively well while decreasing computational cost (Haasnoot et
al., 2014, 2019; Klosterman, 2012; Lempert, 2019; Marchau et al., 2019).

However, the usefulness of these models can decline quickly in cases where a complex system is harder to
simplify. In these cases simplifications can impact the behavior of the system and with it, the validity of the
results. Notable cases with regards to hydraulic modeling prone to oversimplification are when bathymetry
and topography influence flow, or when compound flooding processes are potentially relevant (Alkema, 2007;
Eilander, 2022; Herdman et al., 2018; Hoitink & Jay, 2016; O’Neill et al., 2017; Santiago-Collazo et al., 2019;
Teng et al., 2017).

There are also reasons other than runtime why these simplified models are traditionally used for robust deci-
sion making. They often require fewer parameters, can be more transparent and interpretable for users, and
be more robust to small changes in model parameters (Bhave et al., 2016; Groves et al., 2019; Kwakkel et al.,
2016a; Lempert, 2019; Molina-Perez, 2016). It is important to recognize the need for models that strike a bal-
ance between being complex enough to accurately capture the behavior of a system, while still maintaining
interpretability and robustness.

2.2 Helensville case
One of the Deep South Challenge’s adaptation cases is the Helensville wastewater treatment plant, which
services a small community of less than 4,000 people. This small plant has a two-stage oxidation pond, and
discharges its effluent into the small Kaipara river based on gravity (Beca et al., 2020; Ho et al., 2009). More
data and the precise operation of the treatment plant can be found in Appendix A.

Like many other wastewater treatment plants, the plant in Helensville is at risk of rising sea levels, increased
instensity and frequency of storms, and changing system behavior (Beca et al., 2020; Cao et al., 2020). A
managed retreat will most likely be necessary at some point in the future, although the goal is to keep the
plant at the same location for as long as possible if it saves costs (Stephens et al., 2021; Watercare Services
Limited, 2015).

The goal of this section is to describe relevant aspects of the wastewater treatment plant, explore the sur-
rounding area and system and its effects on forcing, and discuss some of the previous hydraulic modeling
undertaken int this area and its relevancy to this research.

2.2.1 The Helensville wastewater treatment plant

Current state of the wastewater treatment plant

From a recent report by Watercare Services Limited (2015) it is clear the wastewater treatment plant is already
facing some of the expected effects of climate change. This can be seen in high groundwater levels, increas-
ingly high tides and storm surge, and the increased extent and intensity of precipitation events. Pictures of
some of these effects can be found in Appendix A.

High groundwater levels have already led to the placing of a lining combined with a 200 mm thick layer of wa-
ter to prevent potential seepage. Increasingly high tides and storm surges have led to erosion of the approach
road to the wastewater treatment plant, and near overtopping of the plant’s embankments in various cases.
Lastly, heavy rainfall has caused the plant to exceed its effluent limits numerous times in the past (Stephens
et al., 2021).
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Main hazards affecting the wastewater treatment plant

The Helensville plant has previously been conceptualized by the Deep South Challenge, which can be seen
in Figure 2.3 (Stephens et al., 2021). The main hazards affecting the plant can be split up into two main
categories: the treatment ponds overflowing, or external stresses affecting pond functionality. The first is
caused by an excess influent due to a combination of pluvial flooding, infiltration, and planned inflow. The
second involves stresses due to a combination of sea level rise, increased river flow, storm surge, rainfall, and
tidal amplitude. These stresses can lead to slumping or overtopping of the plant’s pond embankments, the
erosion of the access road, or an increase in the groundwater table.

Figure 2.3: Conceptual model of the wastewater treatment plant. The plant is on the left, and the Kaipara river is schematized on the
right. The figure also shows various failure mechanisms such as slumping, overflow, and erosion. The hazards facing plant functioning
can be placed into two main categories: the treatment ponds overflowing, or external stresses affecting pond functionality (Stephens
et al., 2021)

Previous research on the wastewater treatment plant has mostly looked at the first category of hazards: over-
flowing of the treatment ponds. Even a moderate increase in the projected influent could lead to an increased
risk of discharge quality failure by 500% (DSC, personal communication, January 8, 2023) This previous re-
search only included the effects of real sea level rise. The conclusion was that real sea level rise had little
effect on the potential functioning of the plant until at least 2060. Only looking at sea level rise rather than
including other forcing could be an oversimplification, however.

There is currently no research on the second category of hazards affecting the plant. This is echoed in emails
from the Deep South Challenge which mention the lack of knowledge of, and interest in, the effects of com-
pound flooding on the wastewater treatment plant. This compound flooding and its effects on water levels
around the wastewater treatment plant will be the focus of this research.

2.2.2 Wastewater treatment plant’s surroundings
This subsection dives deeper into the surroundings of the wastewater treatment plant to better understand
system behavior and the risks affecting the plant. It discusses, in order, the Kaipara harbor, Kaipara river
catchment and the Kaipara river which flows past the plant.

Kaipara harbor

The Kaipara harbor, visible in Figure 2.4, is located on New Zealand’s North Island, just north of Auckland.
The harbor is quite broad and shallow with clearly defined drainage channels, which can be seen in Figure
2.4b. Almost 43% of the estuary is intertidal, with a surface area of around 947 km2 at high spring tide and
538 km2 at low spring tide (Haggitt et al., 2008; Heath, 1975). A large reason for this is the high sedimentation
in the harbor, which is also the reason the harbor has become increasingly ebb-dominated (Bosboom & Stive,
2021; Haggitt et al., 2008; Reeve et al., 2009). The high sedimentation rate also leads to the locations of the
channels and sandbanks constantly shifting, although there is a general lack of knowledge on the exact speed
of these movements (Haggitt et al., 2008; Hume et al., 2003; Reeve et al., 2009).
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The important takeaway is that the harbor is a dynamic place, where due to sedimentation intertidal flats and
channels are constantly shifting. Over a few decades, this can affect the propagation of storm surge and the
tidal amplitude, both of which are important factors for the water level at the wastewater treatment plant.

(a) Location of the wastewater treatment plant in the Kaipara harbor (from google maps)
(b) Bathymetry of the Kaipara Harbor in meters

(Haggitt et al., 2008)

Figure 2.4: Topography and bathymetry of the Kaipara harbor. The estuary is around 60 kilometers long from North to South (Reeve
et al., 2009).

Kaipara river catchment

The Kaipara river catchment, where the wastewater treatment plant is located can be seen in Figure 2.5. The
topography of the catchment varies significantly. At the downstream end mangrove forests and intertidal
flats separate the catchment from the Kaipara harbor, whereas in the upstream areas of the catchment large
mountain ranges separate the catchment from both the Auckland harbor and the open coast. This difference
in topography leads to slopes up to 17 degrees, with an average around 3.5 (Auckland Council & (LINZ), 2020).

Land use in the catchment is mostly rural. Almost 64% of the catchment is used as pasture for cattle and
sheep, while urban use only accounts for about 2.5%. Surface water takes up less than 0.5 percent. (Bibby
& Webster-Brown, 2005; Green & Daigneault, 2018; Landcare Research, 2021; Reeve et al., 2009). This has
several effects on potential compound flooding of the wastewater treatment plant. First, the main use of the
catchment is pasture or small crops, which in general have a low hydraulic roughness compared to cases
where more vegetation is present (Chow, 2009; Schneider, Arcement Jr, et al., 1984). This could mean poten-
tial storm surge spreads further. Second, the low surface water percentage indicates any rainfall, in general,
is not retained upstream but runs off. This quick runoff could be exacerbated by the large slopes in the catch-
ment.

Soil characteristics also vary throughout the catchment, and with depth. In general the shallow soil layers
consist mostly of silt and clay in the lower reaches of the catchment, and sand elsewhere (Haggitt et al., 2008;
Reeve et al., 2009). Deeper soil layers in the catchment consist mostly of coarser, permeable sands. The small
particle size in the lower reaches leads to significant sediment transport, 13.7 tons per year in 2014 (Green &
Daigneault, 2018). At those current transport rates, the downstream intertidal flats are growing by 7 mm/year.
This growth rate is almost double any of the other intertidal flats found throughout the Kaipara estuary (Green
& Daigneault, 2018). The changing bathymetry introduces uncertainty about the propagation of storm surge
and tidal amplitude, similarly to the behavior of Kaipara harbor mentioned earlier.
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(a) The Kaipara river catchment including the different rivers and
streams. The black arrow demarcates the location of the

wastewater treatment plant. The Kaipara river flows past the
treatment plant. The catchment is 26km long and 6km wide

(Auckland Regional Council, 2001).

(b) Elevation map for the Kaipara river catchment. The height
goes up to 256.8 meters, but is maxed at 200 meters for better

visibility (Auckland Council & (LINZ), 2020)

Figure 2.5: Location and elevation of the Kaipara river catchment

Kaipara river

The Kaipara river is the main river that functions as drainage for the entire catchment, and where the wastew-
ater treatment plant discharges its effluent. It also has a strong tidal influence (Dejeans et al., 2022; S. B.
Mitchell et al., 2017; Stephens et al., 2016). At the upstream part it is filled by various small streams, after
which it flows past Helensville and the wastewater treatment plant as can be seen in Figure 2.5a. River flows
are mostly due to drainage, as the streams in the upper part of the catchment are intermittent. These flow can
differ greatly. A 50 year ARI event has a peak flow of around 305 m3/s, while low flows can be down to 0.1653
m3/s for a 7-day Mean Annual Low Flow (MALF) (Auckland Regional Council, 2001; Ingley, 2021; Stephens et
al., 2016). This indicates that flows in the river are most likely only due to either tides or precipitation events.

2.2.3 Hydraulic forcing of the Kaipara river catchment
In this section three main aspects of the current forcing of the Kaipara river catchment will be discussed:
precipitation, wave climate and storm surge, and the tides.

Precipitation

The Kaipara river catchment is quite wet. From the Helensville raingauge dataset, which holds records be-
tween 2014 and 2019, the rainfall frequency is found to be around 55%. The catchment is also quite warm.
Many surrounding measuring stations have not even recorded any temperatures under 0°C. This means that
precipitation consists almost exclusively of rainfall (Bell et al., 2018). The amount of rainfall varies somewhat
throughout the catchment. In the mountainous areas it is higher, with annual median rainfall levels of 1600
mm, while at the intertidal flats this drops to 1300 mm (Bell et al., 2018).

The current day extreme rainfall for the area can be seen in Figure 2.6. Increases in temperature have been
shown to further increase the frequency and intensity of extreme rainfall events. The increase in rainfall depth
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can be anywhere between 7% and 9% per extra degree of warming for a 24 hour storm, which is an additional
source of uncertainty (Bell et al., 2018).

Figure 2.6: Total rainfall for 24 hour storms of differing return periods in the Auckland region. The scale of the rainfall depth is
logarithmic (Bell et al., 2018).

Waves and storm surge

Waves are most likely not relevant at the wastewater treatment plant. The waves that are present are wind-
driven and created within the estuary. As mentioned before, the Kaipara harbour is around 60 kilometers long
(North to South). The wind only comes from this direction less than 5% of the time (Stephens et al., 2016).
Looking at a sustained 11 km/hr wind, which happens less than 0.5% from this direction, the significant wave
height would be around 20 cm when it reaches the first intertidal flats at the downstream end of the Kaipara
river catchment. This wave height most likely damps out on these flats and vegetation before it reaches the
wastewater treatment plant, which is 3.5 km upstream.

Using the tidal gauge at Helensville a skew surge analysis was conducted by Stephens et al. (2016) to calculate
the difference between the maximum recorded sea-level during a tidal cycle, and the predicted maximum
astronomical tidal level (Batstone et al., 2013). Based on this dataset, a generalized pareto distribution was
used to calculate extreme values. The 95% confidence range which indicates the interval of values wherein
the real value is likely to fall is quite broad as can be seen in Figure 2.7, indicating predictions of the storm
surge are not very precise.
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Figure 2.7: Storm surges for differing return periods. Note that the 95% confidence intervals are very broad, especially for more extreme
events (Stephens et al., 2016)

Tides

Tides have a large influence on the water level in the Kaipara harbor. Due to the large number of intertidal
flats throughout the estuary, tides are amplified (Stephens et al., 2016). The wastewater treatment plant uses
this high tidal range to discharge its effluent. Data from the tidal gauge at Helensville can be seen in Figure
2.8.

Figure 2.8: High tide exceedance curve and tidal components for the Helensville tidal gauge (Stephens et al., 2016)

2.2.4 Previous hydraulic modeling
Previous hydraulic modeling of the Kaipara river catchment took place in 2013 and 2016, and might give
insight into the use of models of differing complexity (Stephens et al., 2016).

Initially in 2013, a static bathtub model was used to calculate potential inundation for the Helensville area for
storm-tides of different return periods (Stephens et al., 2016). This was done by interpolating the results of
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a hydrodynamic model for the Auckland coastline, and intersecting this with an elevation map to calculate
inundation levels. However, this approach was deemed unsatisfactory due to the large floodplain storage
volumes and complex processes in the kaipara river catchment, leading to the commissioning of a full hy-
drodynamic model of the area. This was done in 2016 with a full-physics flexible mesh 2D MIKE21 model
(Stephens et al., 2016).

Comparison between the two approaches showed that the planar method used initially used in 2013 was
indeed inaccurate. While for the downstream reaches of the catchment results were similar, results quickly
diverge for the upstream reaches where topography becomes more important. Figure 2.9 shows an over-
estimation of inundation depth by up to 2 meters in these upstream reaches. Next to inundation depths,
inundation extent was also overestimated by the planar method.

These results show that a conceptual model is a lot less accurate upstream. The water level at the wastewater
treatment plant was also overestimated by more than 0.5 meters, as can be seen in Figure 2.9, indicating the
possibility that a conceptual model oversimplifies system behavior at the location of the plant. This makes
this case interesting for comparing two hydraulic models of differing complexities for robust decision making
(Stephens et al., 2016).

Figure 2.9: Comparison between static planar inundation method from 2013 and the full-physics 2D MIKE21 model from 2016. Only
locations where both models gave results are considered. The wastewater treatment plant is located in the 0.51-1 meters difference band,
and is shown with a black arrow (Stephens et al., 2016).

2.3 Hydraulic modeling approaches

The goal of this section is to introduce the two main groups of hydraulic modeling approaches which could
be used to model water levels at and around the case site. Within these two groups there are various modeling
approaches of differing complexities and with different application domains. It is also important to mention
that the discernment made between different approaches here is, for a large part, theoretical. In practice,
approaches are often combined and many different subgroups thus exist. This is outside the scope of this
research, however. The first subsection will discuss the most important conceptual methods, and the second
subsection will discuss those based on the Navier-Stokes equations.
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2.3.1 0-term/conceptual methods
0-term or conceptual models are often used in situations where computational power is a limiting factor,
notably for large study areas (>1000 km2) or cases where many runs are necessary. Additionally, conceptual
models have a high level of interpretability and robustness when dealing with potentially unreliable data
compared to more complex methods (Groves et al., 2019; Lempert, 2019; Ramm et al., 2018; Teng et al., 2017;
van Berchum et al., 2018).

The main three families of conceptual models are planar or bathtub methods, Rapid Flood Spreading Models
(RFSM), and Cellular Automata (CA). In reality, these approaches are not mutually exclusive. CA and RFSM,
for example, have developed to be quite similar and are often combined (Jamali et al., 2019; Menendez et al.,
2019; Torres et al., 2022; Wijaya & Yang, 2021). For cases where gravity is the dominant driver or when dy-
namic effects are insignificant, conceptual models such as these can all reach reasonable accuracies for both
inundation depth and extent compared to the more complex methods based on the Navier-Stokes equations
(Leijnse et al., 2021; Lhomme et al., 2008; H. McGrath et al., 2018).

Planar methods

Planar or bathtub methods assume the water level uniformly rises across the floodplain, and calculate inun-
dation depth and extent by intersecting a calculated water level with the elevation map of the region (Teng
et al., 2015). This works best in cases where the river and floodplain storage are clear. The bathtub method is
very quick, but can also be inaccurate due to the lack of inclusion of dynamic processes such as precipitation
and flood attenuation (Didier et al., 2019; Leijnse et al., 2021; Menendez et al., 2019; Neumann & Ahrendt,
2013).

An example of a planar method can be seen in the previous modeling done at the case site in 2013 discussed
in Section 2.2.4. Here, the water level at the downstream end of the Kaipara river was calculated, which was
then intersected with a map of the area’s elevation to calculate inundation depths and extent. This led to a
significant overestimation of the water level in the upstream part of the watershed where dynamic processes
are more important (Johnson et al., 2019; H. McGrath et al., 2018; Scriven et al., 2021; Stephens et al., 2016).

Rapid Flood Spreading Method (RFSM)

Developed by Gouldby et al. (2009), Krupka et al. (2007), and Lhomme et al. (2008), RFSM’s subdivide the area
of interest into "impact zones". For each of these impact zones the volumetric curve is calculated, which is
defined as the area for each contour of the impact zone. This is done for each impact zone, and each border’s
location and elevation is also calculated in order to calculate flow between impact zones. This type of model
is robust, computationally efficient, and only needs the elevation for each impact zone and basic forcing data
to get started, which is why it is often used for data-sparce urban regions (Menendez et al., 2019; Shen et al.,
2016; Teng et al., 2017).

A major benefit of RFSM’s compared to planar methods is the ability to include more dynamic processes
such as rainfall runoff and infiltration. When using a high resolution elevation map, the results of RFSM’s are
generally relatively accurate for low-lying regions where dynamic effects are less important (Lhomme et al.,
2008; Menendez et al., 2019; Néelz, Pender, et al., 2010; Shen et al., 2016).

Cellular Automata (CA)

Developed by Wolfram (1984), CA based models have already been used in many other fields. The method is
based on describing the area of interest in terms of the world (an elevation map), with agents (the water), and
transition rules. The elevation map is split up into a grid with each grid cell defining a state such as flooded
or dry for the agent. Flooding is then calculated based on simplified transition rules between a grid cell and
its neighbors. These transition rules use simplified physics, sometimes loosely based on the Navier-Stokes
equations.

A benefit of this method compared to other conceptual methods is that less pre-processing of the elevation
map is necessary, which can save time. Additionally, CA methods can be more accurate when the transition
rules and the data inputted is of sufficient quality. On the other hand, the algorithms used as transition rules



2.3. Hydraulic modeling approaches 17

can be complex to define, and make the model quite complex and less transparent to build compared to the
other conceptual methods (Jamali et al., 2019; Menendez et al., 2019; Teng et al., 2017; Torres et al., 2022;
Wijaya & Yang, 2021).

2.3.2 Models based on the Navier-Stokes equations

Models based on the Navier-Stokes equations are formulated in 1, 2, and 3 dimensions. In general, 3D model-
ing requires the most detailed data and computational power and 1D modelling the least. There are however
many intermediate methods. A summary of some of these can be found in Appendix ??. In the next para-
graphs the application domains of the 3D, 2D, and 1D methods will be explained. Special interest is given to
2D models, as these are most often used to calculate flood extent and depth.

When selecting between 1D, 2D, or 3D modeling methods, the most important factors are the time and length
scales of the processes at hand. When taking these into account, most uncertainties and inaccuracies are usu-
ally less a result of model selection, and more due to variations in input data (Dimitriadis et al., 2016).

3D modeling

3D models are typically used for cases where vertical flow can be significant. Examples are the local impacts
of catastrophic floods, such as dam breaks, tsunamis or other breaches, where the scale of vertical flow is
relevant compared to the other two dimensions (Teng et al., 2017). When vertical flow is less important, such
as for shallow flow over broad floodplains, 3D models are most often seen as unnecessary. These models take
into account the full Navier-Stokes equations in three dimensions, at the cost of increased computational
expense. This increased computational cost leaves 3D models out of reach for most purposes where many
runs are necessary, such as for this research. Additionally, the data type and quality required to set up and
validate a 3D model make its construction even more difficult (Alcrudo, 2004; Teng et al., 2017).

2D modeling

2D models are the approach used most often to model flood extent and estimate risk (Neélz & Pender, 2009;
Teng et al., 2017). 2D methods use the depth averaged Navier-Stokes equations, also called the shallow water
equations. These equations assume that the water depth is shallow compared to the other two dimensions.
There is a high number of differing approaches that are all 2D, and various studies to benchmark these dif-
ferent approaches (Hunter et al., 2008; Néelz & Pender, 2013; Néelz, Pender, et al., 2010). Teng et al. (2017)
states that while 2D models are able to accurately model inundation duration and timing, most full-physics
2D approaches are unviable for very large areas (>1000 km2), high resolution (<10m), or probabilistic risk
assessments where many runs are necessary. This is most likely also the case for this research.

When full-physics 2D approaches are unviable, the shallow water equations can also be simplified when
appropriate in order to increase computational speed while still retaining accuracy. Two simplifications that
are often used are the Simplified Shallow Water Equations (SSWE) and the Local Inertial Equations (LIE). The
SSWE leave out atmospheric forcing, Coriolis and viscosity terms. This is appropriate in most cases, as these
effects work on very large temporal and spatial scales. The LIE further simplify these SSWE by neglecting the
advection term, which is appropriate when wave dynamics are most likely not relevant (De Almeida & Bates,
2013; Leijnse et al., 2021; Neal et al., 2012).

The LIE can be further simplified when dealing with slowly-varying flow. The diffusive wave equations are
used when the flow varies slowly in time, neglecting both local and advective acceleration. When the flow
only varies marginally in space as well, quasi-uniform conditions are assumed, and the depth gradient or
pressure term is neglected as well to define the kinematic wave equations. These equation only keep the
bed slope and local depth. Models based on the diffusive and kinematic wave equations can reasonably
accurately model flow when dealing with small variations in time and space. One problem with regards to
this research is their lack of accuracy when using a tidal boundary, since this requires the acceleration terms
(Hunter et al., 2007; Neal et al., 2012; Néelz & Pender, 2013; Teng et al., 2017).
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1D modeling

1D models simplify the Navier-Stokes equations compared to 2D models by assuming the flow is uni-directional.
This can be a fair assumption if the length of a channel is much longer than the width of its floodplain. A rule
of thumb for this is a length-to-width ratio of 3:1 (Neélz & Pender, 2009). 1D models are useful when the chan-
nels are well defined, flows are not expected to spread significantly (uni-directional), or when there is a lack of
detailed data. While 1D models are less computationally expensive than their 2D counterparts, in most cases
2D models are preferred over 1D models for coastal flooding and other situations with complex topography
where there are no well-defined drainage channels, which is the case for part of the model domain around
the wastewater treatment plant (Neélz & Pender, 2009; Teng et al., 2017).

1D models can also be coupled with 2D models. In these cases a 2D approximation is used for the flood-
plain, while the 1D model describes the drainage channel. This approach is most often used when both
the drainage streams and floodplains are clearly defined. Both accuracy and computational cost are, in this
case, usually comparable to the 2D approach used for the modeling of the floodplain (Dimitriadis et al., 2016;
Kalimisetty et al., 2021).

2.4 Conclusion of the literature review
Exploration of the case site shows that the wastewater treatment plant is at risk to compound flooding, and
that there is significant uncertainty present. The amount of rainfall will vary based on future temperature
changes, the intertidal flats that influence tidal amplitudes and storm surge propagation are dynamic due to
high levels of sedimentation, and there is a large uncertainty in the projected storm surge. This makes this
case interesting for the use of robust decision making in order to make effective policy in the face of these
uncertainties.

The main process behind robust decision making consists of the vulnerability analysis, which consists of a
scenario discovery and a global sensitivity analysis. These both many simulations, necessitating a model with
a shorter run time in order to thoroughly search through the uncertainty space. For this, simplified models
are often used. This can become problematic when a complex system is harder to simplify, in which case the
simplifications impact system behavior and the validity of the results.

Looking into previous hydraulic modeling at the case site from 2013 and 2016 shows that a conceptual bath-
tub model is a lot less accurate upstream in the model domain. This indicates the possibility that a conceptual
model also oversimplifies system behavior at the location of the wastewater treatment plant (Stephens et al.,
2016).

Looking at the various hydraulic modeling options available show that on the conceptual side the most logical
options are a rapid flood spreading model, or a cellular automata model. These two options take into account
more processes compared to a model using the bathtub approach such as the 2013 study done previously
at the case site. For the more complex model based on the shallow water equations, a 3D model and full-
physics 2D model have high computational demands making them unfeasible. Additionally, a 1D model is a
less obvious selection for coastal flooding or when drainage channels are largely undefined. This leaves the
options of a simplified 2D model, or a 1D-2D coupled model. Both these options have similar computational
demands and accuracy.

While on the one hand a conceptual model might oversimplify the behavior, the computational expense of
running a full-physics 2D model is not viable for exploratory modeling. The question is then twofold: is the
use of a simplified 2D model feasible for the vulnerability analysis? If so, what are the impacts of the increased
model complexity on system behavior, identified vulnerabilities, and policy advice?



Chapter 3

Research and modeling set up

The goal of this chapter is to further explain the approach taken in this research, as well as explain the choices
made in the modeling. Section 3.1 outlines the general approach taken. Section 3.2 presents a schematization
of the system. This includes a conceptual diagram of the system’s scope, a definition of the hydraulic event
and failure mechanism, and the model domain.

After these initial two sections that broadly explain the approach taken and some of the choices made, the
rest of the chapter goes into more detail. The two models of differing complexity are chosen in Section 3.3.
The configuration of these models is given in Section 3.4. Section 3.5 explains their calibration and validation.
Lastly, Section 3.6 discusses the configuration of the global sensitivity analysis and the scenario discovery.

3.1 General research set up
The goal of this research is to find whether using a more complex model is worth the added computational
demand compared to the simple conceptual models usually used for robust decision making. The approach
taken to reach this objective can be seen in Figure 3.1 and is further explained below.

Figure 3.1: General approach taken to reach the objective of this research

First the system will be schematized. This involves introducing the scope of the system, the model domain,
the forcing taken into account, and the failure mechanisms. This schematization forms the basis for the rest
of the choices made in this chapter.

After the system is schematized, two models are selected. These two models are configured, calibrated, and
validated for both an extreme storm-tide and rainfall event. This is followed by the configuration of the vul-
nerability analysis, consisting of a global sensitivity analysis and scenario discovery. The main uncertainties
taken into account and their chosen ranges are also explained here.

After the configurations of the models and the vulnerability analysis done in this chapter, the global sensitivity
analysis and scenario discovery are run and their results are explained in the next chapter. This explanation
is followed by a comparison of both models. This comparison is based on predicted system behavior at the
wastewater treatment plant, the identified vulnerabilities, and the implications for policy making of these
results.

19
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3.2 System schematization
From the case exploration in Section 2.2, it was found the most interesting risk facing the wastewater treat-
ment plant was the effects of compound flooding on the wastewater treatment plant. A diagram of the com-
pound flooding can be found in Figure 3.2. The storm-tide boundary found in this diagram can also be seen
in Figure 3.3.

This section provides more detail on the scope of the system, the way the models will be forced, and what
constitutes failure. This includes several simplifications. These simplifications help to focus on the big picture
of model comparison while keeping computational demands lower. In future work, based on the results of
this research, some of the questions regarding forcing and failure methods can be investigated in more detail.

Figure 3.2: Conceptual diagram of compound flooding for the wastewater treatment plant. Diagram is based on a picture by M. McGrath
(2019).

Figure 3.3: Breakdown of the storm-tide boundary used in Figure 3.2 (van Berchum et al., 2020)

3.2.1 Model domain
The model domain will encompass the entire Kaipara river watershed, bound by the intertidal flats at the
downstream end, and the mountain ranges upstream. Taking the entire watershed within the model domain
ensures the inclusion of all rainfall within the system. Setting the lower boundary at the intertidal flats also
enhances the representation of flood attenuation in the models.

The Kaipara river basin is quite steep, meaning rainfall runoff will be quick. This is why the storm event taken
as a basis will have a duration of 24 hours. This has also been used in previous work in the region (Council,
1999). An added benefit of using a 24 hour storm duration is that computational demands are kept lower.

3.2.2 Forcing
The compound flooding is due to a combination of precipitation and storm-tide. From the flow data of the
Kaipara river, also given in Section 2.2, it can be concluded that nearly all the flow in the Kaipara river is due
to drainage. This is why it was chosen not to include a river flow in the system.
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Precipitation

The rainfall is assumed to be both spatially and temporally uniform for the duration of the storm in this re-
search, which should be sufficient for the comparison of the two models. Spatially and temporally varying
the rainfall would introduce additional uncertainties and complexity with regards to their proposed distribu-
tion, significantly increasing computational time needed. Using a uniformly distributed rainfall most likely
underestimates the runoff as the drainage is constant, although this is also dependent on various additional
factors including catchment size, timescale, catchment slope, infiltration, and the height of the peak (Zhou
et al., 2021).

Storm-tide

The storm-tide is modeled as a water level boundary where the maximum tide reaches a peak at the same time
as the storm surge, which can be seen in Figure 3.3. This is similar to previous work (Stephens et al., 2016;
van Berchum, 2019), and should give a good insight into the effects of peak storm-tides. For the vulnerability
analysis the storm surge and tidal amplitude will be split up to assess their individual effects.

3.2.3 Failure mechanism: overtopping
The high water levels around the wastewater treatment plant due to compound flooding place external stress
on the functioning of the wastewater treatment plant. Potential failure mechanisms include slumping or
overtopping of the plant’s pond embankments, the erosion of the access road, or an increase in the ground-
water table. With the exception of erosion, which is less crucial to the functioning of the plant, the failure
mechanisms are all based on a combination of high water levels and geotechnical information.

Since the goal of this research is to compare the two models of differing complexity, this research will fo-
cus on the overtopping of the pond embankments. This failure mechanism is on the same timescale as the
compound flooding event chosen, gives good insight into which factors lead to high water levels, and doesn’t
require additional geotechnical information.

The lowest point of the embankment is 3.38 meters NZVD2016, while the highest is 3.8 meters. This can
all be seen in the last PDF in Appendix A. Overtopping is assumed to happen when the average maximum
water level around the wastewater treatment plant reaches 3.60 meters. 33 of the 70 spot heights around
the embankment are below this threshold. The duration of the water level exceeding this threshold is not
considered in this research. Again, the key focus is on understanding the main processes and comparing
both models, and the specific number chosen for the water level serves as a practical threshold for analysis.

3.3 Model selection
Based on the system schematization and case exploration, as well as the known restrictions for the global
sensitivity analysis and scenario discovery, requirements can be defined for the models to be selected. The
models selected should be able to be forced by compound flooding. Potential models should be able to
represent rainfall runoff, and the effects of the intertidal flats on flood attenuation. It is also necessary that
the model has a low enough runtime to be able to simulate a large number of experiments.

3.3.1 Conceptual model
The planar approach is less successful in replicating flooding behavior in the area, which was discussed in
Section 2.2.4. A rapid flood spreading model or cellular automata model would be a better fit for this pur-
pose, since they take into account more processes, as mentioned in Section 2.3. While there are multiple fast
options for such models, most of these are focused only on fluvial flooding (Jamali et al., 2018, 2019; Teng et
al., 2017; Wijaya & Yang, 2021). The addition of storm-tide and pluvial flooding to simulate compound flood-
ing is less prominent. Models that do include these processes usually focus on urban flooding due to higher
economic risks and more complex drainage patterns. FLORES is one such model that has already previously
been used for scenario discovery (van Berchum, 2019).
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Rapid flood spreading model (RFSM): FLORES

FLORES is a model based on the rapid flood spreading model. It is, in part, a continuation of previous work
by Shen et al. (2016), which will be used as the basis for the conceptual model used in this research. It has
already been used and validated for scenario discovery in the past. Additionally, it includes rainfall run-off
and the effects of flow over the intertidal flats. This method is computationally cheap and relatively straight
forward to implement, even in data-scarce environments (van Berchum et al., 2020).

In previous work modeling inundation depth and extent for a combined storm-tide and rainfall event, it
had an error of around 20% while saving minutes in runtime compared to a full-physics 2D hydraulic model.
While this is a lot less accurate, it showed similar behavior to the more complex model (van Berchum, 2019;
van Berchum et al., 2018).

3.3.2 Complex model

The second model should take into account more of the relevant physical processes. For this, most 2D and
3D methods are out of reach due to their computational demand as was discussed in section 2.3. This in-
cludes the MIKE-21 model used previously as described in Section 2.2.4. Additionally, there are simplified 2D
versions of the shallow water equations such as models based on the diffusive and kinematic wave equations.
The main problem with these models is their lack of accuracy when using a tidal boundary, since this requires
the acceleration terms (Neal et al., 2012; Néelz & Pender, 2013; Teng et al., 2017).

This leaves three main options: a model based on the simplified shallow water equations, local inertial equa-
tions, or a 1D-2D coupled model. The choice here was made for the SFINCS model using the local inertial
equations, called SFINCS-LIE (Leijnse et al., 2021). The main reasons for the selection of SFINCS-LIE are
twofold. The simplified shallow water equations are most likely not necessary, since the case exploration
found waves would damp out before reaching the wastewater treatment plant. Second, a 1D-2D coupled
model is most likely less effective due to a lack of definition of the drainage streams, while the computational
costs and accuracy are oftentimes relatively similar to those of full-physics 2D methods (Dimitriadis et al.,
2016).

2D reduced physics model: SFINCS

Developed in 2020 by Leijnse et al. (2021), SFINCS (Super-Fast INundation of CoastS) is a reduced-physics
solver which uses simplified versions of the shallow water equations. The main goal for its development
was to lower computational costs while keeping its accuracy similar to a model using the full shallow water
equations such as Delft-3D. The model is meant to model compound flooding in coastal areas, and thus takes
into account various flooding drivers, including fluvial, pluvial, tidal processes (Eilander, Couasnon, Leijnse,
et al., 2022a; Eilander, Couasnon, Leijnse, et al., 2022b; Eilander, Couasnon, Sperna Weiland, et al., 2022;
Leijnse et al., 2021).

SFINCS has two main benefits for the purpose of this research. First off, it fits the proposed case in New
Zealand well. It covers compound flooding for coasts, and due to SFINCS’s open-source, open-access nature
it can be used in potential further research in the area. Second, its runtime is a lot quicker than full-process
solvers. To give an indication of its runtime, for another case modeling a compound storm-tide and rainfall
event, it had a reduction of a factor of 100 compared to the structured full-physics Delft3D model while main-
taining similar accuracy (Eilander, Couasnon, Leijnse, et al., 2022a; Eilander, Leijnse, & Winsemius, 2022;
Leijnse et al., 2021).

3.4 Model configuration
This section builds on the previous sections by explaining the configurations for both models. This starts with
a description of the computational specifications and the data used for each model. After this, both models
are explored based on the schematizations of the model domain, model boundaries and forcing, water level
calculations, and outputs.
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3.4.1 Computational specifications and data use
Both models were run from a home laptop, which is an Acer Swift 5 Pro SF514-55T-77BX. This laptop has an
Intel Core i7 processor with 4 cores and 16 GB of RAM. The models themselves were built using Python using
the same (global) data when possible, although SFINCS includes more data sources. More information on
the way the datasets were used can be found in Sections 3.4.2 and 3.4.3 respectively as well as in Appendix C
for FLORES and Appendix D for SFINCS.

FLORES

QGIS 3.22.11 is a gis program used to pre-process and post-process some of the data for FLORES. The main
functions were to define the watershed and subbasins, calculate their volumetric curves, and define bor-
der heights. The collection of python packages can be found at https://github.com/xan-source/FLORES_
Helensville.git.

Data necessary for FLORES was the elevation map from Auckland Council and (LINZ) (2020) and, to a lesser
extent, the land use data from Landcare Research (2021). The land use data was not used directly, but rather
to estimate values such as water retention.

SFINCS

The SFINCS model was built in Python using the Hydromt-SFINCS plugin developed by Eilander, Couasnon,
Leijnse, et al. (2022a). The exact version of this and its dependent python packages can be found in the re-
quirements.txt in the github linked to this project. To run the model itself, an executable for SFINCS was also
needed for which the Blockhaus executable (v2.0.2) was used. No pre- or post-processing was necessary for
the data used for the SFINCS model. The collection of python packages used to set up the virtual environment
can be found at https://github.com/xan-source/SFINCS_helensville.git.

Although similarly to FLORES, SFINCS can be run using only an elevation map of the region, this can be
supplemented using global datasets for more detailed information. SFINCS uses a digital elevation model
of the region from Auckland Council and (LINZ) (2020), bathymetry data from J. Mitchell et al. (2012), and a
rivers shapefile from Lin et al. (2019) to schematize the region. Next to this, infiltration data from Jaafar and
Ahmad (2019) is used. The land cover dataset from Landcare Research (2021) is also used, although only to
differentiate between land and sea for different locations.

3.4.2 Configuration of Flood Risk Reduction Evaluation and Screening
model (FLORES)

Model domain

The model domain for FLORES is schematized as subbasins with borders between them. These are input into
the Python model using .csv files. These files are created using pre-processing in QGIS of the elevation map
from Auckland Council and (LINZ) (2020). Following the pre-processing steps below, which are also outlined
by van Berchum (2019), lead to the schematization of the model domain as found in Figure 3.4.

Figure 3.4: Subbasin schematization for the Kaipara river basin. Flow outside the model domain is schematized as basin 0.

https://github.com/xan-source/FLORES_Helensville.git
https://github.com/xan-source/FLORES_Helensville.git
https://github.com/xan-source/SFINCS_helensville.git
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The pre-processing steps involve three key steps. First, the model domain, in this case the Kaipara river basin,
is divided up into subbasins based on a minimum size threshold. Second, these subbasins are all divided up
into contours. Using the total area of each contour, volume-depth curves can be constructed as can be seen in
Figure 3.5. Third, additional information is added for each basin. This includes the elevations of the borders,
surface water retention, and infiltration.

Figure 3.5: Steps from left to right in creating volumetric curves for each of the subbasins in the FLORES model (van Berchum et al.,
2020)

This additional information was derived as follows. For the original FLORES model, where the model domain
was relatively flat, the border elevation was defined as the mean of the lowest 25% of the border between
two basins. For this research, due to the much larger elevation differences this was redefined to the lowest
10%. The surface water retention, similarly to the original FLORES model, is defined as the amount of surface
water on the land use map from Landcare Research (2021) for each subbasin. Infiltration is assumed to be
constant throughout the model domain, also similar to the original FLORES model.

Model boundaries and forcing

FLORES is forced by rainfall and storm-tide. The rainfall is modeled as an individual inflow for each subbasin
per timestep. The storm-tide is modeled as a time series of water levels, which flow into basin 1 based on the
equations for the lines of defense. From basin 1, the storm-tide then flows further to other basins based on
the hydrological balance.

The lines of defense used in the FLORES model dampen the effects of the storm-tide. Similar effects are also
present when the water level within the model domain is higher than the outside water level. If no lines of
defense are present such as for the Helensville case, there are two main ways used to calculate inflow into the
model domain, which are kept the same as the original FLORES model and can also be seen in Figure 3.6.
In the case of flow over land, the coast is modeled as a broad weir. In the case of flow through a river, open
channel flow is assumed. Further explanation on the formulas used for this can be found in Appendix C.
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Figure 3.6: Lines of defense from van Berchum (2019)

Water level calculation

FLORES uses a simple hydrological balance to calculate the water levels at each timestep for each basin for
the storm’s duration. As mentioned before, the storm duration is 24 hours. The timestep chosen was 0.1
hours, or 6 minute increments. While very simplified compared to 2D models, processes like infiltration,
drainage, retention, and flood attenuation due to a line of defense are still taken into account. The different
variables that can be found here are explained based on van Berchum et al. (2020).

Hydrological balance
Vi =Vi−1 + (Qr,i +Qs,i +Q f i ,i +Qdi ,i −Qi n,i −Qr t ,i −Qdo,i −Q f o,i )∗ t

General:

• Vi : water volume in a basin for time step i

• Qr t : the retention of the basin due to surface water. If the capacity for a basin is reached, the basin
starts to flood.

• t : the length of the time step

Inflows:

• Qr : Inflow due to the total rainfall in the basin

• Qs : Inflow due to storm surge passing the lines of defense for the basin

• Q f i : Inflow from neighboring basins due to filling and spilling in the last timestep

• Qdi : Inflow due to drainage from upstream basins in the last timestep

Outflows:

• Qi n : Outflow due to infiltration for the basin
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• Qdo : Outflow due to drainage for the basin. This becomes inflow for the basins it drains to in the next
timestep

• Q f o : Outflow of surface flow towards neighboring basins due to filling and spilling. This becomes in-
flow for those basins in the next timestep

Filling and spilling
The process behind Q f i and Q f o is filling and spilling, which is the main way water flows between different
subbasins. Filling happens when the inflows exceed the outflows for a basin, which means the basin slowly
fills up. Spilling occurs when the water level in a basin reaches the boundary level of an adjacent basin and
the extra water starts spilling into this adjacent basin (Lhomme et al., 2008; Shen et al., 2016; Teng et al., 2017;
van Berchum, 2019). The FLORES model conceptualizes a basin as seen in figure 3.7b, and follows the steps
in figure 3.7a to model the redistribution of water between all basins where the water spills.

(a) Steps in filling and spilling process (Lhomme et al., 2008)
(b) The filling conceptualization for a basin in the NSRIM (Shen et al.,

2016)

Figure 3.7: Filling and spilling conceptualization for a rapid flood spreading model such as FLORES. Subfigure 3.7a shows the process
behind the transfer of water volumes betweens basins, and subfigure 3.7b shows the way a basin is conceptualized to fill up.

Outputs

FLORES calculates the value of each variable in the hydrological balance for the entire storm duration. Both
the global sensitivity analysis and scenario discovery use integers rather than time-series, so the outputs will
represent the peak inundation. The outputs of the model will be the maximum absolute water levels reached
for each subbasin.

3.4.3 Super-Fast INundation of CoastS (SFINCS)

Model domain

SFINCS schematizes the model domain using an equidistant rectilinear grid in UTM coordinates. After defin-
ing this model grid, a maskfile is created to define the purpose of each gridcell within it. This can be seen
in Figure 3.8b. Active maskcells are calculated, inactive maskcells are not. Boundary maskcells are those
where the boundary conditions are implemented. Lastly, the outflow maskcells show where outflows from
the model grid are possible (Eilander, Leijnse, & Winsemius, 2022).

The model domain for SFINCS can be seen in Figure 3.9. While the grid is rectangular, the model domain for
SFINCS also encompasses the entire Kaipara river basin, similarly to FLORES. For this research, this grid is
800 by 400 cells with a resolution of 50 meters in both directions. The mask is given by -2 meters NZVD2016.
This means that all points within the model grid above this elevation are defined as active cells.

The roughness of the model domain is split up into three parts. The first is ’sea’, which is set at a manning
number of 0.04 when the elevation of a grid point is below the mean sea level. The second is ’land’, which
is set at 0.02 when the elevation of a grid point is above mean sea level. Lastly, ’river’ is set at 0.03 at points
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above mean sea level where said river is burned into the model domain using a shapefile of the river line with
a certain width.

(a) How to define a model grid (Leijnse, 2023). dx and dy are both 50
meters for this research.

(b) Definitions of the mask file and boundary conditions used to
defince every grid cell (Leijnse, 2023)

Figure 3.8: Region layout in SFINCS. First a model grid is defined as seen in subfigure a, then a mask file is used to define the role of
every grid cell as seen in subfigure b

Figure 3.9: Map of the SFINCS set up, including waterlevel boundaries, active cells, inactive cells, and outflow boundaries. The map is
set up using the steps in Figure 3.8

Model boundaries and forcing

Rainfall is forced for each active gridcell per timestep for the entire model domain, and is set up using a
time-series.

The storm-tide is forced at the boundary ’bnd’ point marked as 1 in Figure 3.9, similarly to the ’bnd 01’, ’bnd
02’, and ’bnd 03’ points in Figure 3.8b. The location of this ’bnd’ point was taken to be at a similar location to
that of the FLORES model.
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This forcing point is interpolated to the waterlevel boundary (mask cell 2). This boundary is given at -1.5
meters NZVD2016, making sure only active mask cells are used. SFINCS uses a weakly reflecting water level
boundary. Water levels at the boundary cells, which are the red cells found in figure 3.9 are slowly varying,
which is the case for tides.

Water level calculations

As mentioned before, the water level calculations are done using the local inertial equations. The numerical
discretization for this can be found in Appendix D. To calculate the fluxes, water levels, and water depths for
each gridcell SFINCS uses the Arakawa C-grid which can be seen in Figure D.1. This scheme has a history of
being used in coastal modeling, being used in about 85% of shallow water models, including Delft-3D as well
(De Goede, 2020; Gibson et al., 2002).

Forcing is implemented as a timeseries for the 24 hour storm with increments of 0.1 hours or six minutes,
similar to FLORES. The timestep for which SFINCS calculates the water levels is determined dynamically
within SFINCS to adhere to the CFL-condition, however (Leijnse et al., 2021).

Outputs

The output of SFINCS is a map or animation of the flooding extent and depth. This can be done for both
water level and water depth. SFINCS has an additional option to include observation points (’obs’ in Figure
3.9). These points calculate the evolution of the water level through time. Similarly to FLORES, the maximum
absolute water levels reached for each observation point were calculated.

3.5 Calibration and validation
This section describes the calibration and validation of SFINCS and FLORES. This is done in three parts. First,
both models are calibrated. Second, both models are validated based on the calculated inundation depth and
extent for a storm-tide event, and for the addition of a rainfall event. The last part concludes the calibration
and validation to discuss whether the models are useful for their intended goal.

3.5.1 Calibration

It was not feasible to calibrate FLORES and SFINCS using the same events that were used to calibrate the
previous models discussed in Section 2.2.4. This had different reasons. The 2013 study using the bathtub
method calibrated the model for extreme water levels measured at Pouto point, which is at the mouth of the
Kaipara harbour and far outside the model domain in this case. The 2016 study using the MIKE21 model
calibrated the model using the extreme water levels at the Helensville tidal gauge. This required building a
second model that did not take into account any of the floodplains (Stephens et al., 2016). Creating a second
model is not feasible within the timescale of this project however.

Even though both these previous models were calibrated for different events and show very different inunda-
tion depth and extent in the upstream part of the basin, the behavior in the lower part of the basin is similar
as can be seen in Figure 2.9. This is why it was chosen to calibrate the FLORES and SFINCS for a maximum
storm-tide of 3.0 meters at the most downstream part of the basin, which is the same for both the 2013 and
2016 studies. A storm-tide of 3.0 meters aligns with a 1%AEP flood as calculated by Stephens et al. (2016).

The storm-tide boundary was split into three parts for FLORES and SFINCS, as can also be seen in Figure 3.3:
the tidal amplitude, the mean sea level, and the storm surge. The calibration was done for both FLORES and
SFINCS using an offset of -0.13 mean sea level to account for the NZVD-16 vertical datum, a rainfall intensity
of 0, and a tidal amplitude of 1.9 meters, which is the MHWPS tide at the helensville gauge. The estimated
storm surge for a 100 year ARI was very uncertain as mentioned earlier, with a 95% confidence range, between
0.66 and 2.7 meters (Stephens et al., 2020; Stephens et al., 2016). Using these values and varying the storm
surge, for both FLORES and SFINCS a storm surge of 1.3 meters, which is well within the confidence bounds,
was necessary to get a water level of 3.0 meters.
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(a) Inundation level and extent for a 1%AEP storm-tide for the 2013
study using the bathtub method

(b) Inundation level and extent for a 1%AEP storm-tide for the 2016
study using the MIKE21 model

Figure 3.10: Inundation level and extent from 2013 and 2016 studies described earlier in Section 2.2.4. Arrows indicate the location of
the wastewater treatment plant, and the MIKE21 plot on the right also shows Parkhurst road. Note that length scales are not the same
for these two plots (Stephens et al., 2016).

3.5.2 Validation storm-tide

After calibration, both SFINCS and FLORES were validated for a storm-tide event by comparing them against
the inundation extent and depth of each other, and of the MIKE21 model study done previously. Both SFINCS
and FLORES were forced by a -0.13 meters mean sea level, a tidal amplitude of 1.9 meters, and a storm surge
of 1.3 meters.
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(a) FLORES inundation level and extent for 1%AEP storm-tide (b) SFINCS inundation level and extent for 1%AEP storm-tide

Figure 3.11: Inundation levels and extent for a 1%AEP storm-tide for both the SFINCS and FLORES models. The arrow demarcates the
location of the wastewater treatment plant. SFINCS has a value of 2.8 meters here, while FLORES has a value of 2.98 meters.

SFINCS

At the downstream part of the model domain, inundation levels are similar between SFINCS, MIKE21, and
FLORES. This can be expected due to the calibration being for a similar storm-tide here. For the upstream
part inundation depths are most similar to the MIKE21 model, since SFINCS also accounts for the attenuation
of the flood wave across the floodplain, something not seen in either the bathtub model or FLORES which can
be seen in Figures 3.10a and 3.11a. SFINCS gives a maximum water level at the wastewater treatment plant
of 2.8 meters.

Differences of inundation extent between MIKE21 and SFINCS are most likely due to the inclusion of stop-
banks for the MIKE21 model, as explained in Section 3.5.1. These stopbanks lead to the flooding being more
contained to areas adjoining the river. Compared to the MIKE21 model, SFINCS overestimates the flooding
extent. This is most likely due to the absence of local features like Parkhurst road, which influence flow dy-
namics. Parkhurst road strems the flow in the MIKE21 model, which is not the case for the other models. The
absence of this road can be explained by the grid used. The MIKE21 model was very detailed, and used a flex-
ible mesh. Compared to this, the SFINCS model is less detailed in order to facilitate a quick enough runtime,
using a rectangular grid of 50x50 meters.

FLORES

The results of FLORES were post-processed in a similar manner to the bathtub method. For each subbasin,
the maximum water level was calculated in Python, and an elevation map for each subbasin was intersected
with this water level in QGIS. The map with these results was plotted in Python using the same format as for
SFINCS, resulting in Figure 3.11. The similar post-processing leads the inundation extent for FLORES to look
similar to that of the bathtub method found in Figure 3.10a. Comparable to the the 2013 study, FLORES over-
estimates inundation depth and extent in the upstream part of the basin, since attenuation of the flooding is
not explicitly taken into account. This is in contrast to MIKE21 and SFINCS, which do show this.

FLORES reasonably estimates flooding extent and depth compared to SFINCS in the rest of the model domain
as can be seen in Figure 3.12. Differences in the downstream part of the domain are due to the smaller model
domain for FLORES compared to SFINCS. This smaller model domain does not seem to affect flooding extent
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or depth in the rest of the basin, however. Inundation depth at the location of the wastewater treatment plant
is similar for SFINCS, MIKE21 and FLORES.

Figure 3.12: SFINCS inundation extent overlayed on the FLORES inundation map. This is reasonably similar at the downstream end,
but varies significantly in the upstream end.

3.5.3 Validation rainfall

While no events exist to validate the compound flooding due to storm-tide and pluvial flooding, the MIKE21
model was run with a combination of a 50 year ARI storm-tide and 50 year ARI river flow, which can be
seen in Figure 3.13. As discussed in Section 3.2, it is assumed that river flows are mostly due to drainage of
rainfall falling in the Kaipara river basin. For the location of the wastewater treatment plant, the effect of this
was around an additional 20 centimeters of inundation depth. The effect of this added river flow was more
pronounced upstream, however, showing that including the effects of rainfall could potentially be significant.

Comparing the results of both FLORES and SFINCS for the same boundary conditions can also give some
insight. The difference in water level from a combination of a 100 year ARI rainfall event combined with a
100 year ARI storm-tide can be seen in Figure 3.14. Compared to the water level from just the storm-tide, as
shown in Figure 3.11, the effect of the added rainfall only has a small influence. The max water levels in the
basins for FLORES are increased by a couple of centimeters, and for SFINCS inundation extent and depth is
changed slightly. Notably, the distribution of the differences in water level are similar between FLORES and
SFINCS.

There does seem to be a significant difference between the effects of a 100 year ARI precipitation as used in
this research and the 50 year ARI river flow as used for the MIKE21 model, especially in the upstream part of
the model domain. This could be due to a number of things. Most importantly, forcing a river flow assumes a
constant discharge, while for rainfall the river discharge varies based on the upstream area assuming spatially
and temporally uniform rainfall. This leads to more pronounced effects in the upstream part of the domain
where the river flow is overstated, which is less the case when using rainfall. Second, the 50 year ARI river flow
was combined with a 50 year ARI storm-tide. Due to the lower value for the storm-tide for MIKE21 compared
to FLORES and SFINCS, the added effect of the river flow could be more pronounced. Third, the rainfall for
this research was assumed to be spatially and temporally uniform. Using a rainfall peak while keeping the
total average 24 hour rainfall the same might lead to a larger inundation extent and depth. Last, there could
be other sources of flow in the river.
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Figure 3.13: Water level difference when adding a 50 year ARI river flow to a 50 year ARI storm-tide for the MIKE21 study. At the location
of the wastewater treatment plant, this difference is around 20 centimeters (Stephens et al., 2016)

(a) Water level difference for FLORES when adding a 100 year ARI
24 hour rainfall event to a 100 year ARI storm-tide

(b) Water level difference for SFINCS when adding a 100 year ARI
24 hour rainfall event to a 100 year ARI storm-tide

Figure 3.14: Maps of the water level difference when adding a 1%AEP rainfall event to a 1%AEP storm-tide for FLORES and SFINCS.
The black arrows denote the location of the wastewater treatment plant. Both figures show the same general distribution of water level
differences due to rainfall.

3.5.4 Conclusion of calibration and validation
FLORES and SFINCS will both be forced for combination of extreme storm-tides and rainfall. To facilitate this,
both models were validated against previous studies exploring flooding due to extreme storm-tides. Com-
pared to the MIKE21 model, SFINCS gave similar water levels, at around 2.75-3 meters with an average of
2.80 meters at the wastewater treatment plant. FLORES slightly overestimated the water level, at around 2.98
meters for subbasin 4. The bathtub model further overestimated this water level, giving 3.25-3.5 meters.

The main differences between FLORES and SFINCS seem to be driven by the flood attenuation included for
SFINCS. While flooding extent and depth are similar downstream, the lack of this process leads to overesti-
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mation of the water level at the wastewater treatment plant and an overestimation of inundation extent and
depth further upstream as can be seen in Figures 3.11 and 3.12.

Both FLORES and SFINCS also show similar effects when adding rainfall. While there is a significant differ-
ence between the inclusion of a river flow and that of a rainfall, the effects of the additional rainfall seem to
be similar for FLORES and SFINCS, allowing for their comparison.

Overall, both models show relatively similar magnitudes of flooding extent and depth for both a storm-tide
event and a rainfall event. While FLORES slightly overestimates inundation level and extent for a storm-tide
event, the behavior overall is generally similar. Additionally, the encountered differences can be explained.
This leads to reason that both models are reasonably able to model the behavior of the system and water
levels at the wastewater treatment plant, and comparison between the two models is possible.

3.6 Vulnerability analysis configuration

This section will describe the configuration of the vulnerability analysis, which consists of the scenario dis-
covery and the global sensitivity analysis. Both of these will be run using the same uncertainties described in
the following sections. The global sensitivity analysis will be run for points throughout the model domain in
order to compare behavior of the models as well. The scenario discovery will be run using just the water level
at the wastewater treatment plant.

While the vulnerability analysis done through robust decision making is an iterative process, for this research
only the first iteration will be done. Finding the vulnerabilities for the status quo is also the first step under-
taken for robust decision making, and should give insight into the way both models differ in their results.

3.6.1 Outputs taken into account

As mentioned before in Sections 3.4.2 and 3.4.3, the calculated outputs are the maximum water levels for the
storm duration. In order to compare behavior between SFINCS and FLORES, observation points were added
for SFINCS in similar locations to the FLORES subbasins. These observation points can be seen in Figure
3.16.

The scenario discovery is run for the maximum water level at the wastewater treatment plant. This is subbasin
4 in the case of FLORES, and for the avgWTP as defined in Figure 3.15 in the case of SFINCS.

Figure 3.15: The way the observation points are placed around the wastewater treatment plant embankments. These observation points
lead to two outputs: avgWTP and maxWTP. AvgWTP is the average of the maximum water level observed by the points, while maxWTP is
the maximum of their maximum water levels.

The global sensitivity analysis is run using the maximum water level for each basin in the case of FLORES, and
for observation points 0 through 4, as well as for the avgWTP as defined in the case of SFINCS. These points
can be seen in Figure 3.16.
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Figure 3.16: Locations of observation points for SFINCS compared to FLORES. On the left are the subbasins for the FLORES model, and
on the right are the observation points for SFINCS with an overlay of the FLORES subbasins.

3.6.2 Uncertainties taken into account
When conducting a sensitivity analysis it is important the ranges of the chosen uncertainties are relatively
representative, as otherwise the results can be skewed. This is less of a factor for the scenario discovery,
since the focus is on identifying specific scenarios that lead to particular outcomes, so the emphasis is on
exploring the uncertainty space rather than quantifying the overall sensitivity to uncertainties. Next to the
forcing uncertainties, there are also uncertainties in the modeling choices. These model uncertainties are
explained further in the coming subsections.

The ranges chosen for each uncertainty can be found in Table 3.1 with an explanation as to why these values
were chosen. For the forcings, a timescale of around 100 years was chosen. More in depth explanations on
these can mostly be found in previous sections, including Section 2.2.

FLORES model uncertainties

Two modeling choices that present additional uncertainty are the infiltration rate chosen, and the boundary
heights, which will be explained in the next paragraphs. Some other model choices were not looked at, as it
would mean altering the model in a significant way in order to test their sensitivity which was not possible
due to time constraints. The three biggest include the number of basins chosen, the formulas that were used
for the lines of defense, and the shape of the rainfall (i.e. using a rainfall peak while keeping the average rain
intensity over 24 hours the same).

From the geological inspection done earlier in Section 2.2 and supplemented by Appendix B, it can be seen
the soil distribution for the Kaipara river watershed is mostly loamy clay and sandy loam, with smaller sec-
tions that have larger or smaller sediment sizes. Finding the right infiltration rate can be especially challeng-
ing as the aquifers that run below the top layers of soil have a high transmissivity, and the layer above them
consists of smaller deposits with very low transmissivity. Infiltration rates taken into account were between
clay loam (5 mm/hour) and sandy loam (20 mm/hour).

The way boundaries between basins were schematized for the original FLORES model was by using the lowest
25% of border heights. However, Beira, where this initial model was tested, is a lot more level than Helensville,
where the height differences within the model domain are upwards of 200 meters. This is why the lowest
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Uncertainty Range Explanation

Storm surge 0 - 1.3 m
Both FLORES and the SFINCS model have been calibrated for
1.3 meters for a 100 ARI storm-tide event

Tidal amplitude 1.5 - 2.3 m

The Kaipara harbour is a dynamic place, with lots of tidal flats and
deep channels. This means the tidal amplitude could potentially
change in the future. The amplitude at Pouto point, at the mouth of the
Kaipara harbour, for the highest astronomical tide is around 1.5 meters,
and for the Helensville tidal gauge this is 2.3 meters.

Mean sea level -0.13 - 1.05 m
Currently, the mean sea level is currently at -0.13 meters
NZVD2016. Taking into account current sea level projections for
New Zealand, this could rise to 1.05 by 2100 (Tonkin+Taylor, 2021).

Rain intensity 0 - 8.6 mm/hour
The rain intensity is in mm/hour. A 100 year ARI rainfall event is
8.6 mm/hour for a 24 hour event in the Auckland region.

Infiltration rate (FLORES) 5 - 20 mm/hour

From geological inspection in Appendix B, it can be seen the
soil distribution for the Kaipara river watershed is mostly loamy
clay and sandy loam, with smaller parts that have potentially
larger or smaller sediment sizes.

Border heights (FLORES) 10% or 25%

To calculate the border heights, the average of the lowest 10% of the
border was calculated since the topography of the basin is steep.
In the original research by van Berchum (2019), however, the average
of the lowest 25% was used.

Roughness river (SFINCS) 0.02 - 0.04
The manning’s values selected were based on those suggested in the
SFINCS manual, combined with extra info from Chow (2009).

Roughness sea (SFINCS) 0.01 - 0.03
The manning’s values selected were based on those suggested in the
SFINCS manual, combined with extra info from Chow (2009).

Roughness land (SFINCS) 0.03 - 0.05
The manning’s values selected were based on those suggested in the
SFINCS manual, combined with extra info from Chow (2009).

Table 3.1: Inputs for the global sensitivity analysis and the scenario discovery.

10% of the border heights was used for this research. Experiments for both border heights using the same
uncertainty ranges were done, to investigate the effect of this choice.

SFINCS model sensitivities

One potentially important process also mentioned by Stephens et al. (2016) is the effect on roughnesses due
to increases in MSL. This process is also included in SFINCS. If MSL increases, more of the model domain is
labeled as "sea", which has a lower roughness which in turn leads to less flood attenuation. A similar process
happens when the Kaipara river becomes larger. This is why the main model sensitivities taken into account
were the influence of the various roughnesses on the calculated water levels. The manning’s values taken
were based on the suggested values in the SFINCS manual combined with extra info from Chow (2009).

Some extra model uncertainties that could be looked at for SFINCS are the location of the forcing bound-
ary, the effects of the chosen grid size, the width of the river, and the quality of the provided elevation and
bathymetry data set. These likely have at least some effect, but due to time constraints they could not be
investigated further.

3.6.3 Python implementation
The EMA workbench will be used to run the scenario discovery and global sensitivity analysis in addition
to the computational specifications as outlined in Section 3.4.1. The EMA workbench is a Python package
that facilitates scenario discovery by sampling through the uncertainty space, analyzing, and visualizing the
results. Multiple sampling techniques such as Latin hypercube, Monte Carlo, factorial, and partial factorial
sampling, as well as FAST, SOBOL, and MORRIS are all supported for this using the SALib library (Kwakkel,
2017; Usher et al., 2021). The results can then also be easily visualized, through links with seaborn and mat-
plotlib.
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In order to save time, both the sensitivity analysis and the scenario discovery were run in one go. This is done
by using the SOBOL sampling method to calculate values for both the sensitivity analysis and the scenario
discovery. SOBOL uses a quasi-random sampling scheme. Quasi-random sampling improves the distribution
of sampled points compared to random sampling by using sequences that achieve a more uniform coverage
of the uncertainty space, as also mentioned in Section 2.1.2 (Saltelli et al., 2010).



Chapter 4

Modeling results and comparison

The goal of this chapter is to present the outcomes of the simulations, and to use these to compare FLORES
and SFINCS. The chapter starts with Section 4.1, where the correlations and distributions of the outcomes are
discussed. Next, Section 4.2 discusses the results of the global sensitivity analysis. Section 4.3 discusses the
results of the scenario discovery. Based on this first part of the chapter, Section 4.4 discusses the implications
on potential policy advice. The chapter ends with a comparison on predicted system behavior and accuracy,
identified vulnerabilities, and policy advice in Section 4.5.

4.1 Outcomes

Outcomes are generated by simulating the experiments as described in Section 3.6 outcomes. SFINCS has
4096 outcomes for each output, while FLORES has 6144 outcomes for each output. This section uses these
outcomes to describe the correlations between different model outputs, and to describe the distribution of
outcomes at the wastewater treatment plant.

4.1.1 Correlations between outputs

Output correlations FLORES

As mentioned before, the outputs for FLORES consist of the maximum water level calculated in each sub-
basin for the storm duration. The correlations between the maximum water level in the different basins can
be seen in Figure 4.1. The x and y axis give the water level in meters for these subbasins. This water level is
quite high for subbasins 3 and 5, due to the way the subbasins are schematized. Since the border height is
higher than the lowest part of the subbasin, some water accumulates. For the very steep upper basins, this
effect is more pronounced leading to high water levels. As mentioned before, the FLORES model is run with
two different border heights to test the sensitivity to this model uncertainty. This doesn’t seem to influence
correlations, however

Certain subbasins for the FLORES model are perfectly correlated with each other, while being totally un-
correlated with other subbasins. This behavior can be seen in figure 4.1. This is most likely due to two main
reasons. The first is the filling and spilling mechanism spreading the water between basins that have low
boundaries, which is the case for basins 1, 2, and 4. The water levels in these subbasins are thus very similar.
The second is similar behavior due to similar forcing, which is the case for basins 3 and 5. As mentioned in
the previous paragraph, These two basins are both at the most upstream part of the catchment, and are both
almost exclusively influenced by rainfall, leading to strong correlation.

37
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(a) Correlations between the outputs per subbasin when using the
lowest 10% of border heights

(b) Correlations between the outputs per subbasin when using the
lowest 25% of border heights

Figure 4.1: Correlations between the maximum water levels for different subbasins for the FLORES model. The x and y axis show the
water levels in meters.

Output correlations SFINCS

The outputs for SFINCS consist of the maximum water level calculated at various observation points for the
duration of the storm. There are also two additional outputs at the wastewater treatment plant: avgWTP and
maxWTP. The observation points were placed in similar places to the FLORES subbasins. ’obs0’ is placed in
subbasin 1, ’obs1’ in subbasin 2, ’obs2’ in subbasin 4, ’obs3’ in subbasin 5, and ’obs4’ in subbasin 3. This can
also be seen in Figure 3.16. The correlations between these outputs can be found in Figure 4.2.

The correlations in Figure 4.2 for observation points 0 (basin 1), 1 (basin 2), and 2 (basin 4) show a strong
correlation to each other, but only after a certain height. This height is the bed level, and correlation only
starts once the water level reaches the bed level or higher. These results show points 1 and 2 flood at pretty
much the same time, while point 2 only floods when the water level at point 0 reaches 3 meters.

Two interesting points are observation points 3 and 4, which are related to FLORES subbasins 5 and 3 re-
spectively. For these two observation points there are very few outcomes, and they are not correlated with
any other observation points. In Figure 4.2, an offset of around 16.6 meters can be seen to account for them
being very far upstream. Flooding depths are also extremely small, with the largest being 0.001 meters. These
small floodings are most likely due to small calculation errors, where a high rainfall has not yet drained from
a grid cell. This can also be seen in the self-correlation plot, where for observation points 3 and 4 almost no
points exist. From these results, it can be assumed these two observation points never flood for the forcing
described in the previous chapter.

The avgWTP and maxWTP are also correlated with each other. MaxWTP is systematically higher than avgWTP,
with correlation only starting at 2.96 meters, which is apparently the highest bed level around the embank-
ments as calculated by SFINCS. AvgWTP is only equal to the maxWTP once the water level reaches above this
bed level.
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Figure 4.2: Correlations for all different SFINCS outputs. The locations of the observation points can be found in Section 3.6 in Figure
3.16. A vertical line can be seen in the correlation matrix when the water level that floods the observation point on the y axis does not yet
flood the observation point on the x axis.

Comparison correlations FLORES and SFINCS

The difference in model structures between FLORES and SFINCS is reflected in the results of the correlations.
The biggest reason for this are the differences in schematization of the model domain. FLORES schematizes
each subbasin using a volumetric curve where the basin is allowed to fill with water, and only spills to adjacent
basins once a certain level is reached. SFINCS uses a numerical grid to model the domain.

For the downstream basins 1, 2, and 4 (observation points 0, 1, and 2 respectively), this shows in an immedi-
ate correlation in the case of FLORES since rainfall immediately starts filling up each basins and correlation
occurs when the relatively low border heights between basins 1, 2, and 4 are reached. This can also be seen
in Subfigure 4.1b, where the border heights are slightly higher and two lines can be seen for the correlation
between max1 and max2, for example. When the output is forced by rainfall it is correlated, and when it is
not, the line is not (in these cases the line is horizontal or vertical). For the case of SFINCS, rainfall falling in
the model domain drains straight away, leading to no correlation until the total water level reaches the bed
level of the observation point.

This difference in domains also shows in the upstream basins 3 (observation point 4) and 5 (observation point
3). FLORES shows that these basins can flood, albeit only due to rainfall, while SFINCS shows the observation
points linked to these basins never flood.

4.1.2 Outcome distribution at the wastewater treatment plant
Below the calculated water levels at the location of the wastewater treatment plant are discussed. For the
FLORES model this corresponds with the maximum water level calculated in basin 4. For SFINCS, there are
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two potential outputs called avgWTP and maxWTP.

FLORES

The left boxplot in Figure 4.3 shows the maximum water level outcomes at the wastewater treatment plant
have a minimum value of 1.5 meters and a maximum of around 4.5 meters. This is distributed normally,
with the middle of the boxplot being almost perfectly in the middle of the graph. The water level where the
treatment plant is overtopped, which was set at 3.6 meters in Section 3.2 is reached around 25% of the time.
There is almost no discernible difference between the outcomes at the wastewater treatment plant between
the two different border heights.

Figure 4.3: Distribution of the calculated water levels for FLORES at the wastewater treatment plant. The left subfigure shows the basin 4
water levels using the average of the lowest 10% of the border heights, the right shows basin 4 water levels using the average of the lowest
25%.

SFINCS

The boxplots in Figure 4.4 show the avgWTP and maxWTP outcomes. As mentioned before, these consist
of the mean and the maximum of the maximum water levels found at the observation points around the
wastewater treatment plant embankments, which is also explained in Section 3.6. The maxWTP shows a
different distribution to the avgWTP by only starting when the water level reaches the highest bed level of
the observation points surrounding the embankments, which is at 2.96 meters. This is deemed less complete
compared to the avgWTP outcome since it cuts out this lower portion of the results.
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Figure 4.4: Calculated water levels for SFINCS at the wastewater treatment plant. The left subplot shows the avgWTP outcomes, while
the right subplot shows the maxWTP outcomes.

Comparison of outcomes FLORES and SFINCS

The SFINCS boxplot which shows the avgWTP outcomes, has a minimum outcome of around 2.25 meters
around the wastewater treatment plant, and a maximum of 4.25 meters. This is compared to a minimum
outcome of 1.5 meters and a maximum of 4.5 meters for FLORES. There are two main differences when com-
paring the maximum water levels at the wastewater treatment plant between FLORES and SFINCS. The dis-
tribution has a larger range for FLORES, and the mean outcome is higher. This is most likely due to two
things, the higher bed level for SFINCS as opposed to basin 4 for FLORES, and the flood attenuation taken
into account by SFINCS as opposed to FLORES.

The ’avgWTP’ output for SFINCS has a higher bed level than the output for FLORES, since basin 4 for FLORES
is larger and already starts downstream of the wastewater treatment plant. The higher bed level affects the
minimum outcome that can be seen, as the water level needs to reach at least this level before an outcome is
calculated in the case of SFINCS.

The flood attenuation taken into account for SFINCS due to roughness leads to a lower upper bound for the
outcomes, and overall lower outcomes. In combination with the higher bed level for SFINCS, this leads to the
skewed distribution for SFINCS compared to FLORES.

4.2 Sensitivity analysis
The sensitivity analysis calculates the relative influence of the different uncertainties on the different outputs.
These uncertainties are split up into two: model uncertainties and forcing uncertainties. Due to the large
number of graphs for the sensitivity analyses, only the main conclusions will be given here, while the graphs
themselves can be found in Appendix E. The reasoning behind the chosen model and forcing uncertainties
can be found in Section 3.6.

4.2.1 Model uncertainties

FLORES

The two model uncertainties taken into account for FLORES were the infiltration rate and the border heights.
From the sensitivity analysis it is clear that the maximum water level is not sensitive at all to the chosen
infiltration rate for any of the subbasins. This means that this variable can potentially be left out in future
iterations, and the choice of variable here is less important.

Changing the border heights also does not influence the found sensitivities, for either the downstream basins
1, 2, and 4, or the upstream basins 3 and 5. This makes sense, as the upper basins 3 and 5 are not influenced by
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the storm-tide in any case. Basins 1, 2, and 4 have very similar border heights when comparing the lowest 10%
of the border heights and the lowest 25%. These border heights are quite low, meaning minimal differences
in water level would occur since they would most often just flood.

SFINCS

The model uncertainty taken into account were potential changes in roughness of the sea, the river, and the
land. From the results of the sensitivity analysis, these have a negligible effect on the maximum water level
for most observation points. While the effect of flood attenuation is not negligible as could be seen from
the outcome distribution, the ranges chosen for the roughness seem to indicate that small differences in this
choice are not relevant.

4.2.2 Forcing uncertainties

FLORES

The forcing sensitivities are very similar for basins 1, 2, and 4, as are those for basins 3 and 5. The water
levels in the upstream basins 3 and 5 are almost exclusively sensitive to the rain intensity, showing that the
storm-tide does not reach to these basins.

The downstream basins 1, 2, and 4 are mostly sensitive to storm surge and mean sea level. Interestingly
enough, the tidal amplitude had less of an effect. This is most likely due to the chosen range being smaller
for the tidal amplitude compared to mean sea level and storm surge (0.8 compared to 1.18 and 1.3 meters
respectively), and tidal amplitude having less of an effect on high water level in general since it is divided into
flood and ebb tides. These downstream basins are also not sensitive at all to the rainfall. This aligns with the
findings of the validation, where the added rainfall only led to a couple of extra centimeters of inundation.

SFINCS

Similarly to FLORES the maximum water levels of observation points 3 and 4, which are at the most upstream
part of the basin, are almost exclusively responsive to the chosen rainfall intensity.

For the rest of the observation points, the biggest factors influencing behavior are the max surge and mean
sea level, with a smaller role for the tidal amplitude. Like FLORES, this is most likely due to the chosen range
for the tidal amplitude being smaller.

4.2.3 Sensitivity at the wastewater treatment plant

The graphs in this section show both S1 (first-order sensitivity), and ST (total sensitivity) as well as a confi-
dence bounds. First-order sensitivity measures the direct impact of the variable on the model output, while
total sensitivity considers both the direct and indirect effects, including potential second order interactions
with other parameters. If the results have fully converged, the sum of all values of ST should add up to 1.

FLORES

The wastewater treatment plant lies in subbasin 4, which is correlated with basins 1 and 2 as shown earlier
in this section. These basins are most sensitive to the storm surge and mean sea level, and then to the tidal
amplitude which can be seen in Figure 4.5. This is in part due to the smaller range for tidal amplitude, and in
part due to the division of tidal amplitude into flood and ebb as described in Section 4.2.2.
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Figure 4.5: Sensitivity analysis for both variations of FLORES: using the lowest 10% and 25% of borders respectively. The y-axis gives the
percentage of sensitivity explained by the variable. All sensitivities for all variables should add up to 1. S1 gives the first order sensitivity,
while ST gives the total sensitivity. The white line gives the confidence bounds. Explanations on these are given at the start of this
subsection.

SFINCS

In order to calculate the sensitivities around the wastewater treatment plant, multiple observation points
were placed around its borders, which can be seen in Figure 3.15. For these points, both the maximum and
the average of their maximum water levels were calculated as outputs. This is in part to see if the behavior
of the sensitivities changes significantly between the two, and in turn whether the "highest high" has similar
behavior to the "average high".

The main sensitivities at the wastewater treatment plant are similar to the rest of the observation points in the
downstream part of the model domain, and are the same for both maxWTP and avgWTP. The main factors are
storm surge and mean sea level, with a lesser role for the tidal amplitude. The reasoning for this is similar to
that for the FLORES model. Rainfall and the differing river, sea, and land roughnesses have little to no effect.

Interestingly, Figure 4.6 shows that all values of ST added together of the maxWTP output are higher than
1, with very high confidence bounds. This indicates that the results for this output have not yet converged
fully. Currently, the total sensitivities for maxWTP do show very similar behavior to those of avgWTP, however,
while the confidence bounds are quite large. This indicates there are simply less outcomes where the uncer-
tainties have an effect for the maxWTP output compared to the avgWTP, something also seen in the outcome
distribution at the wastewater treatment plant earlier in this chapter.

Figure 4.6: Sensitivity analysis for avgWTP and maxWTP. Definitions of these outputs can be found earlier in this chapter or in Section
3.6. The y-axis gives the percentage of sensitivity explained by the variable. All sensitivities for all variables should add up to 1, although
due to lack of convergence this can differ slightly. S1 gives the first order sensitivity, while ST gives the total sensitivity. The white line
gives the confidence bounds. Explanations on these are given at the start of this subsection.
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4.2.4 Comparison sensitivities FLORES and SFINCS

In general, FLORES and SFINCS show very similar sensitivity. In the upstream part of the model domain both
models are only sensitive to rainfall, while in the downstream part of the domain they are sensitive to storm
surge, mean sea level, and tidal amplitude.

At the location of the wastewater treatment plant, Figure 4.5 shows the sensitivities for FLORES and Figure
4.6 those for SFINCS. The total variability for FLORES was made up for 44.5% of storm surge, 38.2% of mean
sea level, and 17.9% of tidal amplitude. For SFINCS, this is 46.6% due to storm surge, 41.9% due to mean sea
level, and 16.0% due to tidal amplitude.

The small difference between the sensitivities at the wastewater treatment plant for FLORES and SFINCS
mainly consists of less influence of the tidal amplitude on the total variability for SFINCS. This could be due
to a number of things. First, the flood attenuation taken into account by SFINCS which was shown earlier to
affect the outcomes could have more impact on a more dynamic process such as tidal amplitude compared
to mean sea level and storm surge. Second, the results of SFINCS had not converged completely yet, which
means small errors could be possible based on the samples chosen, although this is less likely for a quasi-
random approach such as SOBOL sampling.

4.3 Scenario discovery

The steps behind the scenario discovery process is further explained in Section 2.1.2. The goal is to find a de-
scription of the conditions where failure occurs. Failure in this case is defined when the maximum water level
around the wastewater treatment plant is higher than 3.60 meters. The FLORES output used is the maximum
water level in basin 4 for the lowest 10% border heights. The SFINCS output used is the avgWTP.

4.3.1 Box selection using the Patient Rule Induction Method (PRIM)

A description of the process behind PRIM is given in Section 2.1.2. The selection of a box is based on coverage
and density. As mentioned earlier, coverage is a measure of the percentage of all cases of interest (failure) that
fall within a box’s thresholds. Density is the percentage of all cases located within a box’s thresholds that are
of interest. Ideally, both coverage and density are as high as possible. There is always a tradeoff, however. A
high coverage often leads to a low density, since the box includes a lot more cases. A high density could lead
to a low coverage, where the box misses a lot of the cases of interest.

The results from the PRIM analysis for both FLORES and SFINCS can be found in Figure 4.7. Interestingly,
more dimensions need to be restricted for SFINCS compared to FLORES, which indicates there are less total
cases of interest for SFINCS. This is further supported by the low density for SFINCS compared to FLORES.
This lower density for SFINCS is most likely since less simulations were performed compared to FLORES.

Based on Figure 4.7a, the box chosen for FLORES has a coverage of 73.7%, and a density of 73.3%. This
means that 73.7% of all outcomes where failure occurs can be explained by the selected box, and 82% of the
outcomes within the selected box are outcomes where failure occurs. To allow for better comparison, the
coverage selected for SFINCS is similar to that of the box chosen for FLORES. The box chosen for SFINCS
balances a coverage of 73.2% with a density of 74.2%.
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(a) Coverage density tradeoffs for FLORES (b) Coverage density tradeoffs for SFINCS

Figure 4.7: PRIM results for both models. The graphs show the tradeoffs between coverage and density for a maximum water level greater
than 3.60 meters. This is done for the max water level in basin 4 for FLORES, and for the output avgWTP for SFINCS. Each point on the
graph represents a potential box. The legend shows the number of restrictions, this is how many variables are taken into account to
arrive at the points of interest.

4.3.2 Box descriptions
A box is made up of certain limits, which are also sometimes called thresholds. The boxes for both models
can be compared due to their similar coverage, even though SFINCS has less outcomes. This assumes that
using SOBOL’s quasi-random sampling method does indeed lead to a more diverse and balanced exploration
of the uncertainty space.

Box description FLORES

For FLORES, three uncertainties have to be restricted to describe failure. These three factors also followed
from the sensitivity analysis as the most influential factors: mean sea level, storm surge, and tidal amplitude.
The quasi-p score, which is the number behind the uncertainties in Figure 4.8, also indicates these found
values are statistically significant.

The box indicates the following: any outcome where the mean sea level is above 0.54 meters combined with
a storm surge of at least 0.64 meters and tidal amplitude of at least 1.8 meters has approximately a 73.3%
chance of leading to failure. Additionally, this combination of factors describe 73.7% of all failure events.

Figure 4.8: Description of the chosen box for FLORES. The coverage and density can be seen in the top right, and the quasi-p score is
behind the variables on the left. These terms are explained further in Section 2.1.2. The numbers in blue are the thresholds of the box

The scatter plot in Figure 4.9 is a visual representation of the box described in Figure 4.8. It can be seen that
the relationship between the two uncertainties is linear. Still, the box covers 73.7% of all cases where failure
occurs. A linear relationship indicates that for following research, another scenario discovery method such



46 4. Modeling results and comparison

as a logistic regression or principal components analysis could achieve better coverage while keeping similar
density.

Figure 4.9: Scatter plot showing all outcomes for FLORES. Each outcome is a combination of the uncertainties for the maximum water
level in basin 4. The points are binary: orange points are where the water level is greater than 3.60 meters and failure occurs, while for
blue points no failure occurs. A probability distribution function for both these types of points can also be seen. Lastly, the box described
in detail in Figure 4.8 can be seen in red.

Box description SFINCS

Figure 4.10 describes the selected box for SFINCS. One interesting point for SFINCS is the quasi-p score,
which is the number behind each variable. A high quasi-p value suggests that the restriction as placed by the
box on the variable is not statistically significant. Currently, the quasi-p scores indicate that the restrictions
placed on rainfall and the roughness of the sea are not statistically significant, and that the main factors are
tidal amplitude, mean sea level, and storm surge. In the case of SFINCS, this indicates that more runs should
be done to investigate whether rainfall and sea roughness are indeed relevant.

The box indicates the following: when the mean sea level is above 0.57 meters, combined with a storm surge
of 0.85 meters, and where the tidal amplitude is above 1.8 meters, there is approximately a 74.2% chance
of failure. Additionally, this combination of factors describe 73.2% of the outcomes where failure occurs for
SFINCS.

Figure 4.10: Description of the box selected for SFINCS. Coverage and density can be found in the top right. The number after each
variable is their quasi-p score. These terms are explained further in Section 2.1.2. The numbers in blue are the thresholds of the box.

For the scatter plot shown in Figure 4.11, the factors "rough_sea" and "rainfall" were removed, since they
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were most likely not statistically significant. Similarly to the scatter plot for FLORES in Figure 4.9, a linear
relationship can be seen between the three uncertainties, although this is less pronounced for SFINCS due to
the lower number of runs. Similarly to FLORES, this indicates another scenario discovery technique such as
principal components analysis or logistic regression would most likely improve the fit of the box.

Figure 4.11: Scatter plot showing all results for SFINCS. Each point is an outcome for the avgWTP output described previously. The
points are binary: orange points are where the water level is greater than 3.60 meters and failure occurs, while for blue points no failure
occurs. A probability distribution function for both these types of points can also be seen. Lastly, the box described in detail in Figure
4.10 can be seen.

4.3.3 Comparison of the found boxes for FLORES and SFINCS

The boxes found through scenario discovery for FLORES and SFINCS are very similar. The same three factors
were important for both: mean sea level, storm surge, and tidal amplitude. The mean sea level threshold
is at least 0.54 meters for FLORES, and 0.57 meters for SFINCS. The tidal amplitude threshold is 1.8 meters
for both. The storm surge difference was slightly different, with 0.64 meters for FLORES, and 0.85 meters
for SFINCS. These boxes have the same coverage, meaning they describe the same percentage of outcomes
where failure occurs.

The similarity in boxes shows that the relation between these three variable is similar for both the models. The
only real difference is for the storm surge, where the SFINCS threshold is higher by 19 centimeters. This again
shows the overestimation of inundation level by FLORES as also found earlier looking at the distribution of
the outcomes. The other difference between the boxes is a slightly higher density for the SFINCS box, offset
by a slightly higher coverage for the FLORES box. Drawing specific conclusions from this is questionable
however, due to the lower amount of runs done for SFINCS compared to FLORES.

SFINCS has 4096 outcomes, compared to 6144 for FLORES. This lower number of outcomes lead to the inclu-
sion of rainfall and sea roughness as extra thresholds with very high quasi-p values. Increasing the number of
runs should show whether these two additional factors are indeed important, and increase the density of the
box by more clearly illustrating when failure occurs.

4.4 Implications for policy making
The results mentioned in this chapter also have implications for potential policy advice. This is done mostly
in broad lines. Important to note is that while the scenario discovery showed that the relationship between
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the uncertainties is linear, they still have similar percentages for coverage, indicating they both explain the
same ratio of the total cases where failure occurs. This allows for some comparison between the two.

Policy based on FLORES results

The box found in the scenario discovery for FLORES which describes 73.7% of the cases where failure occurs
has a mean sea level of at least 0.54 meters, combined with a storm surge of 0.64 meters and tidal amplitude
of 1.8 meters. A mean sea level of 0.54 meters could be reached before 2070 for a high emissions trajectory,
and around 2120 for a low emissions trajectory (Tonkin+Taylor, 2021). A storm surge of 0.64 meters under
current conditions has a return period of around 2 years (Stephens et al., 2016). A tidal amplitude of 1.8
meters under current conditions is around equal to the mean high water spring tide that is exceeded 10% of
the time (Stephens et al., 2016).

Looking at the linear relationship in Figure 4.9, the FLORES model potentially starts flooding for a mean sea
level of 0.25 meters, which is likely to occur around 2050 (Tonkin+Taylor, 2021). For this mean sea level,
the upper range of storm surge and tidal amplitude would also be necessary for flooding to occur, which is
unlikely.

The wastewater treatment plant only flooding at around 2050 for a RCP4.5 scenario would mean there is still
time for adaptation. The primary goal of policy would be to try to mitigate the storm surge in order to keep the
plant operable at the same location for longer. This has two reasons. First, the storm surge currently carries
the most uncertainty compared to mean sea level and tidal amplitude, as described in Sections 2.2.3 and
3.5.1. Second, from the sensitivity analysis it was found this factor had the most influence on the maximum
water level. Policy to address this would have to have a timeline of around 20-30 years, depending on sea level
rise. After this, most policy would likely focus on relocating the wastewater treatment plant.

Policy based on SFINCS results

The box found for SFINCS which describes 73.2% of the cases where failure occurs had a mean sea level of
above 0.57 meters, combined with a storm surge of 0.85 meters, as well as a tidal amplitude above 1.8 meters.
The mean sea level may reach the constrained value of 0.57 before 2070 for a high emissions trajectory, and
around 2120 for a low emission one (Tonkin+Taylor, 2021). The storm surge of 0.85 meters correlates to that
of around a 10 year return period, while the tidal amplitude is around the same as the MHWS10, or the mean
of the highest 10% of all high tides (Stephens et al., 2016).

From the linear relationship it can be seen that according to SFINCS, flooding only occurs when mean sea
level is above 0.4 meters, combined with the highest tidal amplitude and storm surge. This mean sea level is
expected to be reached around 2075 for a RCP4.5 emissions scenario.

Based on the sensitivity analysis, policy would be focused on reducing the effects of storm surge, since this has
the most effect on the maximum water level at the wastewater treatment plant. Additionally, this is also the
most uncertain factor compared to mean sea level and tidal amplitude as discussed in Sections 2.2.3 and 3.5.1.
Policy with the goal of mitigating this storm surge to keep the treatment plant at the current location longer
would have a timeline of around 50 years. After this, policy would focus on the relocation of the wastewater
treatment plant long-term.

4.5 Comparison FLORES and SFINCS models

4.5.1 General

Both models were built in Python, which made analysis relatively easy. Compared to SFINCS, FLORES re-
quires more pre- and post-processing which was done using QGIS. This took a significant time. Once this is
set up, however, the run time per simulation is much quicker often only taking a few seconds compared to
slightly more than a minute for SFINCS. FLORES and SFINCS also both work with globally available data, the
most important of which is an elevation map.
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4.5.2 Model behavior and accuracy
Both FLORES and SFINCS show similar behavior throughout the model domain. A comparison of their inun-
dation extent can be found in Figure 3.12. They are both only sensitive to rainfall in the upstream part of the
model domain, and have the same three main factors that lead to the variability of the maximum water level
at the wastewater treatment plant: mean sea level, storm surge, and tidal amplitude.

At the location of the wastewater treatment plant, Figure 4.5 shows the sensitivities for FLORES and Figure
4.6 those for SFINCS. The total variability for FLORES was made up for 44.5% of storm surge, 38.2% of mean
sea level, and 17.9% of tidal amplitude. For SFINCS, this is 46.6% due to storm surge, 41.9% due to mean sea
level, and 16.0% due to tidal amplitude. This is also nearly identical. Small differences could be due to the
flood attenuation taken into account by SFINCS, or by small differences in the samples taken.

FLORES overestimates the inundation level at the wastewater treatment plant when compared to SFINCS.
This could be seen in the validation, in the outcomes section, and from the results of scenario discovery. The
outcomes at the plant also indicate a larger spread in the results compared to SFINCS.

4.5.3 Identified vulnerabilities
The vulnerabilities identified for both FLORES and SFINCS are also very similar. They had a similar coverage
and density, and the same main three factors: mean sea level, storm surge, and tidal amplitude. The main
difference between the two were the increase in storm surge necessary for SFINCS to flood, which was around
20 centimeters more. SFINCS also showed rain intensity and the sea roughness to be potentially relevant,
although more runs would be necessary to prove this.

4.5.4 Policy advice
Continued from the last subsection, the conditions required for the FLORES model to flood are slightly lower
than those for the SFINCS model. This affects the timeline of policy advice, as the vulnerabilities identifed
for FLORES indicate that relocation of the treatment plant should happen earlier than the vulnerabilities
identified for SFINCS. For FLORES the timeline for adaptation measures is around 20-30 years, while for
SFINCS this is 50 years.

In both cases the wastewater treatment plant can stay at its current location longer. When designing policy,
the main factor to mitigate would be the storm surge, which has the largest current uncertainty and the largest
effects on the maximum water level at the wastewater treatment plant.

While both models show relatively similar behavior, the overestimation of water levels by the FLORES model
leads to lower flooding thresholds, which would ultimately most likely affect the timeline of potential policies.



Chapter 5

Discussion

This chapter discusses the choices made in the research and their implications on the results. It starts with
Section 5.1 discussing the system schematization used to force both FLORES and SFINCS. Next, specific
modeling choices for each model are discussed in Section 5.2. This mostly consists of the way the region
is schematized. After this, limitations of the calibration and validation for FLORES and SFINCS are discussed
in Section 5.3. Lastly, Section 5.4 discusses the way the sensitivity analysis and scenario discovery were set
up, and the validity of their results.

5.1 Forcing
Both FLORES and SFINCS were forced using the same event discussed in Section 3.2. The storm duration was
taken to be 24 hours, rain was assumed to be constant over the duration of the storm, and the same mean
sea level and tidal amplitude were taken. These conditions are obviously simplified, but made comparison
between the two models easier.

Storm duration

The chosen storm duration for the model domain was 24 hours. This is assumed to be a good duration
since all the rainfall most likely drains within this time domain, and the average rainfall intensity is higher
than for storms of a longer duration, which means it correctly simulates an extreme event. Using longer
storm durations would most likely lead to lower inundation depths, although this is uncertain, especially in
combination with different rainfall intensities and distributions. Whether this is the case, and insight into
model behavior can be tested by also using longer storm durations such as 48 and 72 hours.

Rainfall

The effects of rainfall on maximum water levels was found to be almost negligible in the downstream part of
model domain. The forcing due to rainfall was simplified however, taken to be uniform over the storm dura-
tion. This distribution was used to be able to compare FLORES and SFINCS without the added complexity of
spatial and temporal variation in the rainfall. Using a spatially and temporally uniform rainfall distribution
most likely underestimates runoff, however, since in this case the runoff is also constant instead of leading
to peak discharges. Testing the behavior of both models to changes in rainfall distribution and timing could
give interesting information on rainfall drainage and its interplay with storm-tides.

Storm-tide

Rather than using storm-tide elevation as done in previous modeling of the area, for this research the storm
surge and tidal amplitude were separated to look at each variable separately. This worked well, since it did
indeed give more information used in the comparison of FLORES and SFINCS.
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The range of potential tidal amplitudes where based on potential changes in the bathymetry of the river
or local floodplains due to sedimentation or erosion. These potential changes were taken into account by
choosing an amplitude between 1.5 and 2.3 meters. However, the wastewater treatment plant discharges its
effluent into the tidal river, meaning it needs certain tidal conditions in order to discharge. Future work could
include a reflection on the tidal ranges between which the treatment plant is operable.

Fluvial flooding

When setting up the forcing, it was assumed that since the model domain encompassed the entire watershed
any rainfall would either infiltrate or runoff, especially due to the extremely low mean annual river flow of the
Kaipara river.

Comparison of both FLORES and SFINCS forced by a 100 year ARI rainfall event against the previous work
where MIKE21 was forced by a 50 year ARI river flow showed that both FLORES and SFINCS most likely un-
derestimated the effect of rainfall. This could be due to two things, the rainfall being uniform which was
mentioned before, or a missing latent river flow missing.

A potentially missing latent river flow could influence model behavior, as FLORES and SFINCS schematize a
river flow differently. Added river flows could potentially mean inundation depths and extents are underesti-
mated by this research. In order to combat this more validation events should be looked into. This could also
lead to further insight into the order of potential river flows when setting up the forcing for future models.

5.2 Modeling choices
The modeling choices made in Sections 3.3 and 3.4 also have some discussion points. FLORES and SFINCS
were chosen as representative of conceptual and more complex models respectively. While there were other
potential models that could have been chosen, the chosen models were aligned with the research objectives
and took into compound flooding. Additionally, both models meshed well with python and the EMA work-
bench. The validation showed both models represented the model domain relatively well and the choice for
them was valid.

FLORES and SFINCS already showed similar behavior, and SFINCS was relatively accurate compared to the
MIKE21 model. This means a more complex model is almost certainly not necessary. Additionally, from
the previous modeling efforts it was shown that the bathtub model was a lot less accurate than FLORES.
Comparing other available models with complexities somewhere in between FLORES and SFINCS such as
cellular automata, 1D-2D, or quasi-2D models could give even more insight into the combination of factors
that would lead to the need for a more complex modeling approach.

5.2.1 Failure schematization
Failure for both models was defined as a maximum water level higher than 50% of the measuring points
around the wastewater treatment plant’s embankments, which was 3.60 meters. There were several simpli-
fications made here: only the maximum water level was looked at rather than including flood duration, and
potential failure mechanisms other than overtopping were ignored. For the purpose of this research to com-
pare the two models, this was fine. In future research where more precise results are needed, this should be
reassessed.

5.2.2 FLORES
FLORES was used as the conceptual model. This had several benefits compared to alternatives, including the
possible implementation of coastal defenses and the inclusion of compound flooding. Initially, the addition
of processes such as rainfall, infiltration, drainage, and flow between basins were seen as an improvement on
even more conceptual approaches. However, most of these processes were not found to be important to the
maximum water level for this research.

Originally, FLORES was meant for damage calculations in urban regions, meaning it had to be adapted for the
purposes of this research. This meant additional time was needed to rework the python code. Additionally,
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pre- and post-processing needed to make FLORES work was lengthy, since most of the basin delineation and
file creation had to be done by hand in QGIS. This extra work outside of the pure runtime, which was in the
order of seconds, might be less of an issue for more experienced modelers, but was non-trivial compared to
the total runtime for this research.

Model domain

The model domain for FLORES was schematized as one watershed in order to include all rainfall flowing
past the wastewater treatment plant. This watershed was delineated into 5 subbasins where the storm-tide
flowed into subbasin 1 as a product of two formulas, representing flow over a broad weir and open channel
flow. However, for a high enough storm-tide the water might not flow through subbasin 1, but reach high
enough to flow directly into basins 2 and 4. Whether this is the case, and how much this actually affects the
water levels in those basins could be looked into further.

As mentioned before, a lengthy pre-processing step was required to delineate the subbasins, calculate their
contours, and calculate border heights between subbasins. This limited the number of subbasins used for
this research, potentially affecting the results, especially since the storm-tide never reached subbasins 3 and
5. It would be interesting to further investigate the effects of adding additional subbasins while keeping pre-
and post-processing feasible in order to see whether this leads to more accurate results. If it does, seeing if a
balance can be found where adding additional subbasins leads to diminishing returns could also be interest-
ing.

FLORES also used a uniform infiltration value for the whole model domain, while exploration of the geology
showed infiltration is much higher in the upstream part of the domain compared to the downstream part.
This was not found to be an issue, however, as the sensitivity analysis showed the effect on water level due to
infiltration was minimal. Future work including groundwater levels, could be affected by this choice though.

Formulas

FLORES uses two formulas to simulate storm surge flowing into the model domain: a broad weir formula for
land flow, and an open channel flow formula for river flow. Since the coastal boundary was relatively similar
to the initial work by van Berchum (2019), these formulas were not changed.

The broad weir formula uses a constant typically set at 0.55 but which can potentially go as low as 0.46. While
this should be correct for this research, other potential broad weir formulas and even different schematiza-
tions of overland flow more focused on intertidal flats could be implemented and investigated. Similarly, the
open channel flow formula assumes a rectangular river profile with a set slope. Sensitivities within this for-
mula to the river’s characteristics, as well as the performance of other open channel flow formulas should
also be checked.

5.2.3 SFINCS
SFINCS was chosen as the more complex model. As a reduced physics approach, it saves significant time
compared to full 2D models while maintaining accuracy. It was feasible to run SFINCS on a home laptop with
the specifications outlined in Section 3.4.1. While a full run with SFINCS took much longer than for FLORES,
this model was much easier to set up, with limited pre- or post-processing necessary. In this regard, there is
also a balance to be found between the run time of the model and the time needed to get both models ready.

Model domain

The speed SFINCS can work with is based in part on the size of the datasets used. One of the larger datasets is
often the elevation map. To accommodate this, the elevation map can be downscaled. However, when down-
scaling an elevation map, there is a possibility that the quality of the data set is lowered. This in turn could,
in the worst case, change the flood routing or other behavior of the model. This was likely not a problem for
this research as it used a grid size of 50 meters by 50 meters. However, research on the interplay of the chosen
grid size and the the quality of the elevation map should be done to look at the trade-offs between run time
and accuracy could be very interesting.
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The forcing of SFINCS is done by means of a water level boundary at a certain chosen elevation. This is usually
at around -2 meters for a coastal region. For the Helensville case, rather than just a coast, there are large
intertidal flats with deep channels running through them where the water was forced. This made choosing
the boundary finicky compared to a coastal boundary condition, as the flood wave was damped and changed
more by the intertidal flats compared to a normal coast. While SFINCS was calibrated and validated for these
large intertidal flats, further research into their effects on the storm-tide boundary could be interesting.

5.3 Calibration and validation
Due to a lack of better data sources, both FLORES and SFINCS were calibrated and validated using the previ-
ous modeling efforts from 2013 and 2016. Unfortunately, neither of these two previous efforts were calibrated
or validated for a rainfall event. While the calibration and validation done for FLORES and SFINCS were
deemed sufficient for the purposes of this research in comparing the two, care should be put into further cal-
ibration and validation of these models. This especially pertains to the rainfall and potential river flow, which
showed a difference compared to the MIKE21 model with a 50 year ARI river flow.

The validation also showed that one of the main factors influencing flow is Parkhurst road, which strems the
flow in the MIKE21 model. While the found inundation levels are relatively similar between SFINCS, FLORES,
and MIKE21 are still similar, inclusion of this feature might slightly influence them.

5.4 Sensitivity analysis and scenario discovery
Both the sensitivity analysis and the scenario discovery were ran using SOBOL, which uses a quasi-random
sampling scheme. This had two major benefits. First, this allowed both the sensitivity analysis and the sce-
nario discovery to be run at the same time. Second, while the results for SFINCS were not converged due to
the lower amount of runs, the quasi-random sampling allowed for a more full exploration of the uncertainty
space making conclusions possible.

SFINCS was run for 4096 runs, and FLORES for 6144 runs. This discrepancy in outcomes showed in part in
the scatter plots for the scenario discovery, where a much stronger linear relationship was found for FLORES
than for SFINCS. While this lower number of runs for SFINCS did not alter the conclusions of this research, in
order to better compare the box coverage and density it would be nice if both models had a similar number
of outcomes.

5.4.1 Sensitivity analysis
The ranges used for the sensitivity analysis were all chosen with the same timescales in mind, and explained
in Section 3.6. However, the choice of range is an extra source of sensitivity. This could already be seen in the
sensitivity of the water levels to the tidal amplitude, which has a smaller range compared to mean sea level
and storm surge. Extra effort should be put into further assessing the influence of the range boundaries on
the outcomes of the sensitivity analyses.

There are also other model factors not taken into account for the sensitivity analysis due to time constraints,
which were mentioned earlier in Section 3.6. For FLORES these include the number of basins chosen and the
formulas for the lines of defense, while for SFINCS this includes the location of the boundary condition, the
chosen grid size, and the quality of the elevation map.

5.4.2 Scenario discovery
The scenario discovery showed the three main factors to be similar for both FLORES and SFINCS. PRIM was
used to find a box that had a similar coverage. From the results, however, it could be seen that there was
a linear relationship between the tidal amplitude, storm surge, and mean sea level. This means that while
the box found through PRIM is still useful in understanding around 73% of the cases where failure occurs
for both models, using another technique for scenario discovery such as a logistic regression or a principal
components analysis might give an even better description of the conditions under which failure occurs.
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Scenario discovery with regards to robust decision making is an iterative process where different policies are
designed and compared to each other based on earlier results. This was outside the scope of this research,
however. For this research, only one iteration was done using the status quo. This is fine for the goal of
the research of comparing FLORES and SFINCS. For further research, the problem definition and potential
policies should be fine-tuned using the results described in this report.



Chapter 6

Conclusion and recommendations

6.1 Conclusions
As a reminder, the main question for this report was "How does the use of a more complex model rather than
a fast simple model as traditionally used for robust decision making influence predicted system behavior and
identified vulnerabilities, and does this have an effect on potential policy advice?".

This was answered by selecting both a conceptual model (FLORES) and more complex model (SFINCS). The
predicted outcomes of both these models were described and compared to each other. Additionally, a vul-
nerability analysis consisting of a sensitivity analysis and scenario discovery was run for the wastewater treat-
ment plant, and compared for both models. Lastly, the model behavior combined with the identified vulner-
abilities were used to determine potential policy advice for both models, which was in turn also compared.

6.1.1 Comparison of predicted system behavior

The validation of FLORES and SFINCS showed that inundation level and extent were mostly similar in the
downstream part of the domain, although FLORES significantly overestimated inundation depth and extent
more upstream. This makes sense, since both models were calibrated for the same water level at the down-
stream boundary. The overestimation by FLORES upstream is most likely due to the flood attenuation present
in the SFINCS model. Compared to the full-physics MIKE21 model, SFINCS calculated similar inundation
levels close to the wastewater treatment plant while FLORES overestimated the water level here slightly.

The boxplot of the outcomes at the wastewater treatment plant also showed this overestimation of the wa-
ter levels by FLORES compared to SFINCS. The range of potential outcomes was larger, and the distribution
between the lower and upper threshold were distributed normally. For SFINCS, on the other hand, the range
of outcomes was smaller and skewed towards the lower part of the plot. This shows that FLORES on aver-
age overestimates the water level at the wastewater treatment plant, which is most likely due to the lack of
inclusion of flood attenuation.

Both models showed relatively similar sensitivities throughout the model domain. For both, outputs in the
upstream part of the model domain were almost exclusively sensitive to rainfall. In the downstream part
of the model domain, the outputs were predominantly sensitive to mean sea level, storm surge, and tidal
amplitude. Infiltration and roughness, which were taken into account for FLORES and SFINCS respectively,
were found not to be important for outputs anywhere in the model domain.

6.1.2 Comparison of identified vulnerabilities

The results of the sensitivity analysis showed the three most important factors influencing extreme water
levels at the wastewater treatment plant were the same for both models: mean sea level, storm surge, and
tidal amplitude. There were only small differences in magnitude of the sensitivities between the two models.
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The small differences in this magnitude are most likely due to the flood attenuation described by SFINCS.
This lead to a weaker effect of the tidal amplitude on the water level.

Differences in model behaviors, while small, also influenced the results of scenario discovery. For both FLO-
RES and SFINCS, the thresholds explained around 73% of the cases where failure occurs. SFINCS needed a
significant mean sea level of 0.57 meters combined with a storm surge of 0.85 meters and a tidal amplitude
above 1.8 meters to flood, while scenario discovery for FLORES showed flooding at a mean sea level of 0.54
meters combined with a storm surge of 0.64 meters and tidal amplitude of at least 1.8 meters.

For both FLORES and SFINCS, the scenario discovery showed a linear relationship between tidal amplitude,
mean sea level, and storm surge. This relationship indicated that for SFINCS the wastewater treatment plant
only started flooding when a mean sea level of at least 0.4 meters was reached, while for FLORES a mean
sea level of 0.25 meters was necessary. This difference is again due to the overestimation of water levels by
FLORES due to the lack of inclusion of flood attenuation.

6.1.3 Comparison of potential policy advice

The differences in predicted system behavior and identified vulnerabilities are small, which can be seen in
the types of policy advice as well. The vulnerabilities identified for both models indicate the wastewater
treatment plant can stay at the current location for a while longer. In the case of FLORES, the mean sea level
of 0.25 meters where failure starts to occur is reached in around 20-30 years. For SFINCS, the mean sea level
of 0.4 meters where failure starts to occur is only reached in around 50 years.

Potential policy advice would, in both cases, first focus on mitigating the effects of storm surge, and then on
relocation of the wastewater treatment plant. The focus would be on storm surge since the maximum water
level at the wastewater treatment plant was most sensitive to this factor for both models. Which adaptation
measures to choose is also in part dependent on the timeline before relocation is necessary. This timeline is
longer for the results of the SFINCS model than that of the FLORES model.

The results show that while the behaviors exhibited by both models is relatively similar, the small differences
in accuracy affect the timing of proposed adaptation. This leads to reason that while a conceptual model such
as FLORES works well to identify important factors within the system, a more accurate model such as SFINCS
is potentially more useful once timing of adaptation becomes important. In this case, the biggest reason for
the lower accuracy of FLORES was due to the lack of the flood attenuation taken into account.

6.2 Recommendations

There are three main recommendations. The first has to do with the simplifications done to schematize
the forcing and failure of the case. The second with the selection, calibration, and validation of the current
models, and the last with the vulnerability analysis done for this research.

6.2.1 Forcing and failure schematization

FLORES and SFINCS were both forced for a uniform rainfall. From the validation it became clear that a 100
year ARI uniform rainfall underestimated inundation compared to a 50 year ARI river flow. The recommen-
dation is to research why this is. One start could be to include temporally and spatially varying rainfall events,
or to include a latent river flow to see the effects on inundation levels at the wastewater treatment plant.

Failure in this case was described as a maximum water level higher than around 50% of the spot heights
around the wastewater treatment pond embankments. This was reasonable for this research where the focus
was on the comparison of the two models. A more realistic schematization of flooding, as well as taking
into account additional failure mechanisms would help to better describe the combinations of uncertainties
under which failure occurs.
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6.2.2 Model selection, calibration, and validation
The two models that were selected, FLORES and SFINCS, were deemed sufficient for this research. In order
to further validate the results and give even more insight into the combination of factors that would lead
to the need for a more complex modeling approach, it is recommended to repeat the steps taken in this
research for different models of varying complexity such as 1D-2D coupled, cellular automata, or quasi-2D
models. Models more complex than SFINCS are most likely not necessary, since SFINCS inundation levels at
the location of the wastewater treatment plant were similar compared to MIKE21.

The calibration and validation of both models was done using previous modeling efforts. This, while not
perfect, worked for the purposes of this research of comparing both models. However, if policy advice is to
be given based on these results, more work should be put into further calibration and validation, especially
taking into account rainfall and compound flooding events.

6.2.3 Vulnerability analysis
SFINCS was run for less combinations of uncertainties than FLORES. The first recommendation would be to
run it for a similar amount to FLORES, in order for convergence to occur and to better compare the two. There
are also ways to further speed up the process in order to make the use of SFINCS feasible for future projects,
such as the inclusion of subgrid features for SFINCS which was not done for this research due to time and
modeling constraints.

The scenario discovery showed the relationship between tidal amplitude, mean sea level, and storm surge
to be linear. In order to better describe the conditions under which failure occurs for this case, it is rec-
ommended to use scenario discovery methods that deal better with this linear relation, such as a logistic
regression or a principal component analysis for future iterations of the robust decision making process.
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Appendix A

Helensville wastewater treatment plant

In this appendix additional data on the Helensville wastewater treatment plant will be given. The current
dynamic adaptive policy pathways map can be found in figure A.1. This shows a clear choice to be made
between making small upgrades for the next 20 year to keep the plant at the current location longer, and just
relocating the plant once the current forcing is too much.

This appendix also contains different photos of the case site as provided by Watercare New Zealand. This
includes pictures of the location of the treatment plant, pictures of high water events, pictures of high pond
levels, and finally a topographic survey of the plant’s embankments.

Figure A.1: Dynamic adaptive policy pathways map for the Helensville wastewater treatment plant (Stephens et al., 2021)
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HIGH TIDE AND TIDAL EROSION PHOTOGRAPHS  

 
Figure 1: 21st March 2019 Super full moon spring tide (3.8m above MLLW). Access road erosion also observed. This has accelerated (see next figure) 

 
 
 
 



 
 

Figure 2: Access road erosion on the 9th September and 3rd October 2019. Approximately 0.5m erosion since the previous picture taken on 21st March 2019.  
 
 



 
 
Figure 3: High tide at the boat ramp opposite the Helensville WWTP during the March 2019 super full moon.  Photos taken just after peak levels as tide was receding.  
 



WET WEATHER IMPACTS AT WWTP 
 
 

 
 
Figure 1: 7th July 2017 wet weather event (60mm over 2 days). Pond levels at 1815mm. The pond will overtop the dam embankment into the harbour at 1.85m.  



  
 

 
 
Figure 2: 9th September 2017 wet weather event (125mm between 3rd and 11th Sep). Pond levels at 1660mm. The pond will overtop the dam embankment into the harbour at 
1.85m.   
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Appendix B

Groundwater and geology at the WTP site

B.1 Borehole set up

At the case site in Helensville there is data for rainfall, tides, and groundwater levels. The tidal gauge is located
closely to the WTP, which can be seen in the bottom yellow box in figure B.1. The top yellow box shows the
WTP, where the boreholes are located. These boreholes are labeled as BH01 and BH02 on the right in the
figure.

Figure B.1: Locations of WTP and tidal gauge location on the left, and boreholes BH01, BH02 on the right

These two boreholes both have two standpipes within them. One of these standpipes is shallower and one is
deeper. The names, tops of the standpipes, their associated boreholes, as well as their measuring depths can
be seen in figure B.2.
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Figure B.2: Set up of the boreholes

B.2 Sediment

Figure B.3: Sediment types in the Kaipara river catchment from (Auckland Regional Council, 2001)
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Figure B.4: Sediment sizes from (Haggitt et al., 2008)
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B.3 Aquifers

There are three main aquifers in the Kaipara river catchment, which can be seen in figure B.5. The Kaipara
Sand and Waitemata Group rocks aquifer have been described in section ??. Next to this, there is also the small
Parakai geothermal aquifer close to the wastewater treatment plant which is mainly used for recreation. The
water level here has been decreasing over the past ten years. This aquifer is also very permeable. The water
level is kept higher than the surrounding Kaipara dune sands aquifer to avoid the creep of cold water into the
geothermal system (Auckland Regional Council, 1993, 2001). Since the water level of the geothermal aquifer
follows that of the sand aquifer, the latter is taken as the dominant groundwater source.

Figure B.5: Locations of different aquifers from (Kalbus et al., 2016)

B.4 Effects of rainfall and tides on groundwater

To assess the effects of rainfall and tides on the groundwater level, they are plotted against each other for a
visual inspection and correlations are calculated.
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Correlations

The correlations, calculated using Pearson, can be found in table B.1. The shallow standpipes (SP01 and
SP03) are strongly correlated with each other, as well as the deeper standpipes (SP02 and SP04) with each
other. The standpipes within the same borehole and those of differing measuring levels are also correlated,
although this differs. For example, SP03 has its weakest correlation with the deeper standpipe in the same
borehole SP04.

Rainfall is correlated with each standpipe, although most strongly with the shallow standpipes. The tides
are weakly correlated with the deeper groundwater table, and not at all with the shallow groundwater.

Tides SP01 SP02 SP03 SP04 Rainfall
Tides 1.000000 0.026762 0.136657 0.005375 0.164412 0.026215
SP01 0.026762 1.000000 0.401704 0.488035 0.271665 0.520023
SP02 0.136657 0.401704 1.000000 0.445720 0.523834 0.204092
SP03 0.005375 0.488035 0.445720 1.000000 0.360596 0.486681
SP04 0.164412 0.271665 0.523834 0.360596 1.000000 0.139388

Rainfall 0.026215 0.520023 0.204092 0.486681 0.139388 1.000000

Table B.1: Correlations between the standpipes, the rainfall and the tides.

Rainfall

Rainfall data is from the gauge at Mangakura which is in the southeast of the estuary. Using the Pearson
correlation method, correlation is strong between the rainfall and the shallow standpipes SP01 and SP03
where the peaks correspond with each other, and in periods with little rain the groundwater table decreases.

Figure B.6: Borehole vs. rainfall

Tides

From a visual inspection of the tide data plotted against the standpipes, it can be seen that the deep ground-
water tables follow the tidal data, while this does not happen with the shallow standpipes.



B.5. Conclusions 77

Figure B.7: Boreholes vs. tides

B.5 Conclusions
The groundwater level is affected by rainfall as well as tides. The Kaipara sands aquifer is shallow and quite
permeable, although confined in the downstream part of the catchment by a layer of alluvial deposits. Due
to these alluvial sediments, the tides have a harder time penetrating. This is not offset by the wastewater
treatment plant being at the inner side of the river bend, where coarser material is often deposited. This
means that rainfall in the rest of the catchment has a larger effect on the groundwater level than the tides.
This can also be seen in the correlations between the standpipes, the tides, and the rainfall which can be
found in table B.1.



Appendix C

FLORES model set up

This appendix contains background information on the way FLORES is set up, background on used formulas
and a further explanation of the model code and its implementation.

C.1 FLORES input

In order to run FLORES, various inputs are necessary which are described in this section. A flowchart of each
necessary file and its name can be found in figure C.1. More information about the input and the calculations
done can be found in chapter 3, and on github within the written code.
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Figure C.1: The various steps in getting from a DEM to setting up the files to run the model

1. Schematization of Impact Zones
Before the DEM of the study area is split up into what is called impact zones (IZ’s) in literature, the depres-
sions that are present due to imperfections in the dataset should be filled. This is to keep the downward slope
for the flow path. Filling depressions can be done through open source tools such as QGIS using the Wang &
Liu algorithm. For this algorithm, a minimum slope is set. Anything under this slope is automatically filled.

After this, a list of neighboring IZ’s is made for each IZ, as well as a list of the minimum elevation of their
borders. Lastly, a volumetric curve for each IZ is made. For this, the IZ can be divided into contours. Every
contour has a certain area, which generates the volume elevation curve.

Information on the contours, their areas, and corresponding basins should be kept in the lidar_basins.csv,
while the minimum elevation of each border is kept in the lidar_basin_borders.csv.

2. Processes: drainage and lines of defense
The rest of the schematization falls into two parts: drainage and lines of defense. The drainage is filled in by
hand in the lidar_basin_drainage.csv file. For each IZ the existence and size of a drainage channel is filled
in, which is either big, medium, or small. Where the IZ drains to is also included. Lastly, the retention is
included. As a rule of thumb this can be done by calculating the amount of surface water for said IZ.

Next the lines of defense are schematized. This is done by looking at where the model domain reaches the
outside water. Information on potential flood defenses and whether they are land or water based are also put
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in by hand in the lidar_lines_of_defense.csv file. Multiple flood defenses can be added to the model.

Lines of defense

FLORES uses a lines of defense concept to separate the open water from the study area. For this concept,
multiple lines of defense can be used to separate the area from storm surge. This can be seen in figure 3.6
in chapter 3. The equations below are for cases where no defenses are present, and are taken from (van
Berchum, 2019; van Berchum et al., 2018).

Equation 1: broad weir:
This equation is used in the cases where there are no flood defenses present, and the storm surge must flow
over land.

Based on Brunner (2016) and van Berchum et al. (2018).

• Cd f : the submergence coefficient [-]

• C ′
w : the non-dimensional weir coefficient (0.46-0.55)

• h: the upstream water depth [m]

• L: the length of the weir [m]

Equation 2: open channel flow:
This equation is used in cases where there are no flood defenses present, and the storm surge hits an open
channel.

Based on De Vries (2014), Stoeten (2013), and van Berchum et al. (2018)

• hp : the water level [m+MSL] in the protected area.

• hs : the water level of the storm surge [m+MSL]

• c f : the friction factor

• Lc : the length of the inlet [m]

• Qc : the discharge through the inlet [m3/s]

• Rc : the hydraulic radius [m]

• Ac : the flow area of the channel [m2]

3. Forcing
The forcing takes two forms, storm-tide and rainfall. For this, two different csv’s are added. The first has
different return periods for a storm, with accompanying max surge. Additionally, it has the normal tidal
amplitude and the mean sea level. The second has different return periods for a storm duration of 24 hours,
with their accompanying rain intensity. Both these files start with a return period of 0 years to indicate normal
conditions.
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C.2 Model python set up
The developed FLORES model was run from a virtual environment. The installed packages for this can be
found on the github in the requirements_florex.txt file.

Data
The data necessary to run the model can be put into two categories: data for the schematization and data for
the forcing. Due to the simple nature of the model, some information has to be put in by hand such as the
size/drainage capacity of channels, capacity of surface water retention, and infiltration.

Github
The github is split up into input files, the model build (.py), and the analysis files (.ipynb). More information
on this can be found at https://github.com/xan-source/FLORES_Helensville.git

https://github.com/xan-source/FLORES_Helensville.git


Appendix D

SFINCS modeling supplementary

This appendix contains background information on the set up of the SFINCS model, the equations used as
well as their numerical implementation, and a link as well as an explanation of the github where all the code
can be found.

D.1 General process
In general, when using the hydromt-sfincs extension the model can be set up in three main steps. More infor-
mation on the most recent way this can be done can be found on https://deltares.github.io/hydromt_sfincs/
latest/(Eilander, Leijnse, & Winsemius, 2022). First, a data catalog is defined using the necessary data. This
helps to increase reproducability. Compared to FLORES, much less pre-processing of the data is required.

Next the model is built. For this, first the grid is defined. This includes active and inactive cells, water level
boundary cells, and outflow cells. After adding the roughness data for the active cells, subgrid tables can be
made if needed. Next, infiltration data is added and the necessary forcing is set up. Lastly, observation points
can be added, as well as features such as dikes or dunes. After this, the files necessary for running the model
are saved.

Lastly, the model is run and the results are investigated using post-processing in python.

D.2 Equations used
The equations used in SFINCS are split up into three parts, the momentum equation, the continuity equation,
and the boundary conditions used. These are the same for SFINCS-LIE and SFINCS-SSWE, with the exception
of the ad vx term in the momentum equation. This is also explained in the numerical implementation later
in this appendix.

Momentum equation

• g: gravitational constant

• n: manning friction coefficient

• q: the flow rate
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https://deltares.github.io/hydromt_sfincs/latest/
https://deltares.github.io/hydromt_sfincs/latest/
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• h: the average water depth of the two adjacent cells to the h point on the Arakawa C-grid

• ∆z: the water level difference between the two adjacent cells of which h is the average

• ∆t : the timestep of the model

• ρw : the water density

• τw,x : the wind shear stress

The wind shear stress in the momentum equation is calculated using a secondary formula which is found
below

• Cd : wind drag coefficient. This can be self-defined, but the default is the relation by Vatvani et al. (2012)

• ρa : the air density

• uw : the wind speed

Continuity equation

To calculate the water level based on the momentum equation in both directions, the following form of the
continuity equation is used for SFINCS (Leijnse et al., 2021).

• ζ: the water level

• ∆t : the timestep of the model

• q: the flow rate

• Sm,n can be infiltration, precipitation, or a discharge set by the model user

Boundary conditions

Along the open boundaries (mask=2), the water level is forced. This is done by ways of a Riemann type bound-
ary based on work by Dongeren and Svendsen (1997). At this boundary, fluxes are generated for each timestep
based on the water levels. The water levels consist of the slowly-varying storm surge and tide, and the rapidly-
varying waves. As mentioned before, these fluxes q are located at the velocity points in the Arakawa C-grid
explained in the next section. This is done using the following formula from Leijnse et al. (2021):

• h: the total water depth at the boundary

• ū: the mean velocity at the boundary

• ζi : the water level in the first grid cell with mask 1

• ζ0: slowly-varying water level (tide + storm surge)
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• ζ: rapidly varying water level (waves)

The water level can be forced one of two ways. A model user can input a time-series of the slowly-varying as
well as the rapidly-varying water levels. This should be done at the seaward part of the swash zone, where
most waves have already broken. The second option is for SFINCS to generate the rapidly-varying water lev-
els based on off-shore wave conditions and bed slope in the surf zone.

In the case of a user-defined input, the water level at every boundary grid cell is calculated based on an
interpolation of the weighted average of the two closest inputs (Leijnse, 2023). This can be seen in figure 3.8b

D.3 Numerical implementation

Computational mesh
To calculate the fluxes, water levels and water depths for each gridcell, SFINCS uses the Arakawa C-grid. This
is the same computational mesh that is used for Delft-3D. The Arakawa C-grid has a history of being used in
coastal modeling, being used in about 85% of shallow water models (De Goede, 2020; Gibson et al., 2002).

The Arakawa C-grid is a staggered grid, and can be seen in figure D.1. The dashed box in this figure shows
which variables share the same grid index. The water levels ζ and bed levels b are defined in the center of a
cell. The fluxes q and the water depths h are defined in the velocity points, which are perpendicular to the
grid cell faces (De Goede, 2020; Leijnse et al., 2021). The benefits of using such a staggered grid are increased
robustness, and the easier implementation of the boundary conditions.

Figure D.1: The Arakawa C-grid used in SFINCS. The staggered grid defines the water levels ζ and bed levels b in the center of a cell,
and the fluxes q and water depths h perpendicular to the side of the grid cell. The dashed line shows the variables for one index (m,n)
(De Goede, 2020; Leijnse et al., 2021)

Discretized formulas for numerical implementation
The combination of the momentum and continuity equation leads to the discretized formulations for nu-
merical implementation. A smoothing is applied to stabilize the numerical solution when dealing with low
friction. For this a user-defined θ is used. The equations below are for SFINCS-SSWE. To get to the equations
for SFINCS-LIE, simply take out the advective terms ad vx and ad vy .
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• θ: a user input used to smooth the fluxes from the previous timestep. The default is 0.9, with a range of
0-1 (de Almeida et al., 2012).

• ad v : the advective term of the SWE’s. Their calculation can be found in the paper by Leijnse et al.
(2021).

D.4 Implementation

Data + software

Data requirements

SFINCS was developed partly with the goal to be able to be implemented in as many cases as possible. To
this end, there are many different possibilities with regards to implementations, all with varying inputs. In
the figure below all potential standard inputs can be seen, with the minimally required files in green.

Figure D.2: Overview of possible input files and whether they are required (Leijnse, 2023)

Software requirements

In order to run SFINCS, first the model itself should be installed. For this research the v2.0.2 Blockhaus was
used (van Ormondt et al., 2023). This can be downloaded through Deltares. Using an earlier version than this
leads to errors with the observation points needed to describe the water level throughout the model’s runtime.
The SFINCS model itself uses input files that can be generated in a variety of ways (CLI, Delft Dashboard, Mat-
lab using Open Earth Tools, HydroMT-SFINCS). The focus here is on the use of the HydroMT-SFINCS python
plug-in, since this allows the model to be set up from a python script, making further analysis easier.

The HydroMT-SFINCS plugin is part of the HydroMT group of tools aimed at automating the process of
getting from raw data to a model instance that can be run, and the post-processing afterwards (Eilander,
Couasnon, Leijnse, et al., 2022a; Eilander, Leijnse, & Winsemius, 2022). The version used for this research
was 0.2.1. This plugin was installed in a clean virtual python environment.
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Github

The full list of python packages present in this virtual environment, as well as other information on the mod-
eling set up can be found at https://github.com/xan-source/SFINCS_helensville.git.

https://github.com/xan-source/SFINCS_helensville.git


Appendix E

Supplementary sensitivity material

This appendix has additional information on the sensitivity analyses done in Section 4.2 from Chapter 4. The
set up of the various points for both FLORES and SFINCS can be found in Section ??.

As a reminder, the graphs in this section show both S1 (first-order sensitivity), and ST (total sensitivity) as
well as a confidence bounds which is the white line. First-order sensitivity measures the direct impact of the
variable on the model output, while total sensitivity considers both the direct and indirect effects, including
potential second order interactions with other parameters. If the results have fully converged, the different
ST’s should add up to 1.

Figure E.1: Locations of observation points for SFINCS compared to FLORES. On the left are the subbasins for the FLORES model, and
on the right are the observation points for SFINCS with an overlay of the FLORES subbasins.

E.1 FLORES

The results of the sensitivity analysis for basin 4 can be found in figure 4.5 in section 4.2.
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Figure E.2: Sensitivities for output max1. This is the maximum water level in basin 1, using the mean of the lowest 10% and 25% of the
border heights respectively.

Figure E.3: Sensitivities for output max2. This is the maximum water level in basin 2, using the mean of the lowest 10% and 25% of the
border heights respectively.

Figure E.4: Sensitivities for output max3. This is the maximum water level in basin 3, using the mean of the lowest 10% and 25% of the
border heights respectively.
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Figure E.5: Sensitivities for output max4. This is the maximum water level in basin 4, using the mean of the lowest 10% and 25% of the
border heights respectively.

Figure E.6: Sensitivities for output max5. This is the maximum water level in basin 5, using the mean of the lowest 10% and 25% of the
border heights respectively.

E.2 SFINCS

Similarly to FLORES, the location of the observation points for SFINCS can be found in section 3.4. For the
sake of convenience, the observation points can also be found in figure E.7. The results of the two outputs that
use the observation points surrounding the wastewater treatment plant pond embankments can be found in
figure 4.6 in section 4.2.
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Figure E.7: Reminder of the location of the observation points for SFINCS. On the left the entire basin is visible, and on the right is
zoomed in on the observation points close to the WTP for the purpose of visibility.

Sensitivities

Figure E.8: Sensitivities for observation point 0 and 1 respectively.

Figure E.9: Sensitivities for observation points 2 and 3 respectively.
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Figure E.10: Sensitivities for observation point 4
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