
 
 

Delft University of Technology

Optimistic No-regret Algorithms for Discrete Caching

Mhaisen, Naram; Sinha, Abhishek; Paschos, Georgios; Iosifidis, George

DOI
10.1145/3606376.3593561
Publication date
2023
Document Version
Final published version
Published in
Performance Evaluation Review

Citation (APA)
Mhaisen, N., Sinha, A., Paschos, G., & Iosifidis, G. (2023). Optimistic No-regret Algorithms for Discrete
Caching. Performance Evaluation Review, 51(1), 69-70. https://doi.org/10.1145/3606376.3593561

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1145/3606376.3593561
https://doi.org/10.1145/3606376.3593561


Green Open Access added to TU Delft Institutional Repository 

'You share, we take care!' - Taverne project  
 

https://www.openaccess.nl/en/you-share-we-take-care 

Otherwise as indicated in the copyright section: the publisher 
is the copyright holder of this work and the author uses the 
Dutch legislation to make this work public. 

 
 



Optimistic No-regret Algorithms for Discrete Caching
Naram Mhaisen

Delft University of Technology

Delft, The Netherlands

Abhishek Sinha

Tata Institute of Fundamental Research

Mumbai, India

Georgios Paschos

Amazon

Luxembourg, Luxembourg

George Iosifidis

Delft University of Technology

Delft, The Netherlands

ABSTRACT
We take a systematic look at the problem of storing whole files in a

cache with limited capacity in the context of optimistic learning,

where the caching policy has access to a prediction oracle. The

successive file requests are assumed to be generated by an adver-

sary, and no assumption is made on the accuracy of the oracle.

We provide a universal lower bound for prediction-assisted online

caching and proceed to design a suite of policies with a range of

performance-complexity trade-offs. All proposed policies offer sub-

linear regret bounds commensurate with the accuracy of the oracle.

In this pursuit, we design, to the best of our knowledge, the first

optimistic Follow-the-Perturbed leader policy, which generalizes

beyond the caching problem. We also study the problem of caching

files with different sizes and the bipartite network caching problem.

CCS CONCEPTS
• Networks→ Network performance analysis.
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1 INTRODUCTION
This extended abstract summarizes the main results of the original

paper in [3]. The paper addresses the discrete caching (prefetching)

problem: choose files to replicate in a local cache in order to maxi-

mize the probability that a new file request is served locally. Hitting
the cache optimizes user experience in CDN’s, and enhances the

performance of wireless networks. This work aspires to advance

our theoretical understanding of this fundamental problem and pro-

poses new provably-optimal and computationally-efficient caching

algorithms using a new approach based on optimistic learning.
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Common caching policies store the newly requested files and em-

ploy the Least-Recently-Used (LRU), Least-Frequently-Used (LFU)

and other similar rules to evict files when the cache capacity is ex-

hausted. Under certain statistical assumptions on the request trace,

such policies maintain the cache at an optimal state. However, with

frequent addition of new content to libraries and the high volatility

of files popularity, these policies can perform arbitrarily bad. This

has spurred research efforts for policies that operate under more

general conditions. The goal of this work is to design robust caching

policies that are able to learn effective caching decisions with the

aid of a prediction oracle of unknown quality (Fig. 1 left).

2 MODEL
We formulate the caching problem as an online convex optimization

(OCO) problem. At each slot 𝑡 = 1, 2, . . . ,𝑇 , a learner (the caching

policy) selects a caching vector 𝑥𝑡 ∈ X from the set of admissible

cache statesX ⊆ {0, 1}𝑁 for a cache of size𝐶,where𝑁 is the library

size. Then, a 1-hot vector 𝜃𝑡 ∈ {0, 1}𝑁 with value 1 for the requested

file is revealed, and the learner receives a reward of 𝑓𝑡 (𝑥𝑡 ) = ⟨𝜃𝑡 , 𝑥𝑡 ⟩
for cache hits. The reward is revealed only after committing 𝑥𝑡 ,

which naturally matches the dynamic caching operation where

the cached files are decided before the next request arrives. Here,

the learner makes no statistical assumptions and 𝜃𝑡 can follow any

distribution, even one that is handpicked by an adversary. In the

optimistic framework, the learner does not only consider its hit or

miss performance so far when deciding 𝑥𝑡 , but also the predictor’s

performance and output (Fig. 1 right). We characterize the policy’s

performance by using the static regret metric:

𝑅𝑇 ({𝑥}𝑇 ) ≜ sup

{ 𝑓𝑡 }𝑇𝑡=1

{
𝑇∑︁
𝑡=1

𝑓𝑡 (𝑥★) −
𝑇∑︁
𝑡=1

𝑓𝑡 (𝑥𝑡 )
}
,

where 𝑥★=argmax𝑥∈X
∑𝑇
𝑡=1 𝑓𝑡 (𝑥) is the (typically unknown) best-

in-hindsight cache decision that can be selected only with access

to future requests. An algorithm is said to achieve sublinear regret

when its average performance gap 𝑅𝑇 /𝑇 vanishes as 𝑇 →∞.

3 ACHIEVABLE REGRET FOR CACHING
WITH A PREDICTOR

Our first result demonstrates the best achievable regret in the setup

we consider, which turns out to be 𝑅𝑇 = Ω( [∑𝑡 ∥𝜃𝑡 − ˜𝜃𝑡 ∥]1/2),
indicating a significant potential of obtaining a regret that scales

with the predictor’s error rather than the time horizon𝑇 . In general,

the predictions refer to the next function
˜𝑓𝑡 (·). However, since most

OCO algorithms learn based on the observed gradients, it suffices

to have predictions
˜𝜃𝑡 = ∇ ˜𝑓𝑡 (𝑥𝑡 ). And for caching, this coincides
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Figure 1: Optimistic online caching with predictions: system schematic (left) & algorithm template (right).

Algorithm 1: OFTRL-Cache
1 Input: 𝜎 = 1/

√
𝐶 , 𝛿1 = ∥𝜃1 − ˜𝜃1 ∥2

2
, 𝜎1 = 𝜎

√
𝛿1 , 𝑥1 = argmin𝑥 ∈X ⟨𝑥, 𝜃1 ⟩

2 Output: {𝑥𝑡 ∈ X}𝑇
3 for 𝑡 = 2, 3 . . . do
4 ˜𝜃𝑡 ← prediction //Obtain request prediction for slot 𝑡
5 𝑥𝑡 = argmax𝑥 ∈conv(X) {−𝑟1:𝑡−1 (𝑥 ) + ⟨𝑥,Θ𝑡−1 + ˜𝜃𝑡 ⟩}
6 𝑥𝑡 ← 𝑀𝑎𝑑𝑜𝑤𝑆𝑎𝑚𝑝𝑙𝑒 (𝑥𝑡 )
7 Θ𝑡 = Θ𝑡−1 + 𝜃𝑡 // Receive 𝑡 -slot request and update total gradient
8 𝜎𝑡 = 𝜎

(√
𝛿1:𝑡 −

√
𝛿1:𝑡−1

)
// Update the regularization parameter

end

with a prediction for the next request
1
. Here,

˜𝜃𝑡 is a probability

distribution over the library.

Theorem 1. For any online caching policy, there exist a sequence of
requests {𝜃𝑡 }𝑇 and predictions { ˜𝜃𝑡 }𝑇 for which the regret 𝑅𝑇 satisfies

E [𝑅𝑇 ] ≥
√︂

𝐶

2𝜋

√√√
𝑇∑︁
𝑡=1

| |𝜃𝑡 − ˜𝜃𝑡 | |2
2
− Θ

(
1

√
𝑇

)
.

4 CACHING THROUGH OPTIMISTIC
REGULARIZATION (OFTRL-CACHE)

The gist of our approach here is that we use OFTRL to obtain

𝑥𝑡 ∈ conv(X), and then apply Madow’s sampling scheme to re-

cover integral caching vectors 𝑥𝑡 ∈ X which satisfy the hard ca-

pacity non-convex constraint. In other words, we define X = {𝑥 ∈
{0, 1}𝑁 | ∑𝑁

𝑖=1 𝑥𝑖 ≤ 𝐶}, where N is the set of unit-sized files (li-

brary) and 𝐶 is the cache capacity (in file units); and 𝑥𝑖 =1 decides

to cache file 𝑖 ∈ N . Let us define the prediction error at slot 𝑡 as

𝛿𝑡 ≜ ∥𝜃𝑡 − ˜𝜃𝑡 ∥2
2
, and introduce the proximal 𝜎𝑡 -strongly convex reg-

ularizer w.r.t. the Euclidean ℓ2 norm 𝑟𝑡 (𝑥) = 𝜎𝑡
2
∥𝑥−𝑥𝑡 ∥2

2
. Following

[2], we define parameters {𝜎𝑡 }𝑡 using the accumulated prediction

errors, namely:

𝜎1 = 𝜎
√︁
𝛿1, 𝜎𝑡 = 𝜎

(√︁
𝛿1:𝑡 −

√︁
𝛿1:𝑡−1

)
∀𝑡 ≥ 2, with 𝜎 = 1/

√
𝐶.

The detailed steps are summarized in Algorithm 1. The regret guar-

antee of Algorithm 1 is described next.

Theorem 2. Algorithm 1 ensures, for any time horizon 𝑇 and
𝑁 ≥ 2𝐶 , the expected regret bound:

E[𝑅𝑇 ] ≤ 2

√
𝐶

√√√
𝑇∑︁
𝑡=1

∥𝜃𝑡 − ˜𝜃𝑡 ∥2
2

Discussion. The bound in Theorem 2 shrinkswith the prediction
quality. If all predictions are accurate, we get 𝑅𝑇 ≤ 0; when all

1
In fact this model can be readily generalized to other linear utilities beyond cache-hits,

so as to incorporate e.g., file-specific caching gains, time-varying network conditions.

Algorithm 2: OFTPL-Cache
1 Input: 𝜂1 = 0, 𝑦1 = argmin𝑦∈X ⟨𝑦, 𝜃1 ⟩
2 Output: {𝑦𝑡 ∈ X}𝑇
3 𝛾

𝑖𝑖𝑑∼ N(0, 1𝑁 ×1 ) // Sample a perturbation vector
4 for 𝑡 = 2, 3, . . . do
5 ˜𝜃𝑡 ← prediction //Obtain request prediction for slot 𝑡

6 𝜂𝑡 = 1.3√
𝐶

(
1

ln(𝑁𝑒/𝐶 )

)
1/4 √︃∑𝑡−1

𝜏=1 ∥𝜃𝜏 − ˜𝜃𝜏 ∥2
1
// Update the pert. param.

7 𝑦𝑡 = argmax𝑦∈X ⟨𝑦,Θ𝑡−1 + ˜𝜃𝑡 + 𝜂𝑡𝛾 ⟩ // Update the cache vector
8 Θ𝑡 = Θ𝑡−1 + 𝜃𝑡 // Receive request for 𝑡 and update total gradient
end

predictions fail, we get 𝑅𝑇 ≤ 2

√
2𝐶𝑇 . That is, in the worst scenario,

the regret bound is worse by a constant factor of

√
2 compared to

the FTRL algorithm that does not use predictions and ∼ 5 compared

to the lower bound derived in Sec. 3. Moreover, the bounds are

dimension-free and do not depend on the library size 𝑁 .

5 CACHING THROUGH OPTIMISTIC
PERTURBATIONS (OFTPL-CACHE)

We propose next a new OFTPL algorithm that is of independent

interest with potential applications that extend beyond caching

to other 𝑘−set structured problems [1]. The steps of the proposed

scheme are presented in Algorithm 2, where we denote the 𝑡-slot

OFTPL decisions with 𝑦𝑡 ∈ X. The following theorem characterizes

the performance of this new OFTPL algorithm.

Theorem 3. Algorithm 2 ensures, for any time horizon 𝑇 and
𝑁 ≥ 2𝐶 with 𝐶 ≥ 11, the expected regret bound:

E𝛾 [𝑅𝑇 ] ≤ 3.68
√
𝐶

(
ln

𝑁𝑒

𝐶

)
1/4

√√√
𝑇∑︁
𝑡=1

| |𝜃𝑡 − ˜𝜃𝑡 | |2
1
.

Discussion. The regret bound here is also modulated with the

quality of predictions: it collapses to zero when predictions are

perfect, and maintains 𝑅𝑇 ≤ 3.68 ln( 𝑁𝑒
𝐶
)1/4
√
2𝐶𝑇 for arbitrary bad

predictions. Comparing with Theorem 2, OFTPL achieves regret

bounds worse by a factor of ∼ 1.9 ln( 𝑁𝑒
𝐶
)1/4, which depends on 𝑁 ,

albeit in a small order. However, Algorithm 2 does not involve the

expensive projection operation that appears in Algorithm 1, but

rather a simple quantile-finding operation (top 𝐶 files).
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