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Abstract
Humans have a unique ability to learn new represen-

tations from just a handful of examples with little to no
supervision. Deep learning models, however, require an
abundance of data and supervision to perform at a sat-
isfactory level. Unsupervised few-shot learning (U-FSL)
is the pursuit of bridging this gap between machines and
humans. Inspired by the capacity of graph neural net-
works (GNNs) in discovering complex inter-sample rela-
tionships, we propose a novel self-attention based mes-
sage passing contrastive learning approach (coined as
SAMP-CLR) for U-FSL pre-training. We also propose an
optimal transport (OT) based fine-tuning strategy (we call
OpT-Tune) to efficiently induce task awareness into our
novel end-to-end unsupervised few-shot classification frame-
work (SAMPTransfer). Our extensive experimental re-
sults corroborate the efficacy of SAMPTransfer in a vari-
ety of downstream few-shot classification scenarios, setting
a new state-of-the-art for U-FSL on both miniImageNet and
tieredImageNet benchmarks, offering up to 7%+ and 5%+
improvements, respectively. Our further investigations also
confirm that SAMPTransfer remains on-par with some
supervised baselines on miniImageNet and outperforms all
existing U-FSL baselines in a challenging cross-domain sce-
nario. Our code can be found in our GitHub repository:
https://github.com/ojss/SAMPTransfer/.

1. Introduction

Deep learning models have become increasingly large and
data hungry to be able to guarantee acceptable downstream
performance. Humans need neither a ton of data samples
nor extensive forms of supervision to understand their sur-
roundings and the semantics therein. Few-shot learning has
garnered an upsurge of interest recently as it underscores
this fundamental gap between humans’ adaptive learning
capacity compared to data-demanding deep learning meth-
ods. In this realm, few-shot classification is cast as the task
of predicting class labels for a set of unlabeled data points
(query set) given only a small set of labeled ones (support

set). Typically, query and support data samples are drawn
from the same distribution.

Few-shot classification methods usually consist of two
sequential phases: (i) pre-training on a large dataset of base
classes, regardless of this pre-training being supervised or
unsupervised. This is followed by (ii) fine-tuning on an
unseen dataset consisting of novel classes. Normally, the
classes used in the pre-training and fine-tuning are mutually
exclusive. In this paper, we focus on the self-supervised
setting (also interchangeably called “unsupervised” in litera-
ture) where we have no access to the actual class labels of
the “base” dataset. Our motivation to tackle unsupervised
few-shot learning (U-FSL) is that it poses a more realistic
challenge, closer to humans’ learning process.

The body of work around U-FSL can be broadly classi-
fied into two different approaches. The first approach relies
on the use of meta-learning and episodic pre-training that
involves the creation of synthetic “tasks” to mimic the subse-
quent episodic fine-tuning phase [1, 16, 23–25, 29, 56]. The
second approach follows a transfer learning strategy, where
the network is trained non-episodically to learn optimal rep-
resentations in the pre-training phase from the abundance
of unlabeled data and is then followed by an episodic fine-
tuning phase [14, 32, 39]. To be more specific, a feature
extractor is first pre-trained to capture the structure of un-
labeled data (present in base classes) using some form of
representation learning [5, 6, 32, 39]. Next, a prediction layer
(a linear layer, by convention) is fine-tuned in conjunction
with the pre-trained feature extractor for a swift adaptation
to the novel classes. The better the feature extractor models
the distribution of the unlabeled data, the less the predictor
requires training samples, and the faster it adapts itself to
the unseen classes in the fine-tuning and eventual testing
phases. Some recent studies [11, 32, 42] argue that transfer
learning approaches outperform meta-learning counterparts
in standard in-domain and cross-domain settings, where base
and novel classes come from totally different distributions.

On the other side of the aisle, supervised FSL approaches
that follow the episodic training paradigm may include a
certain degree of task awareness. Such approaches exploit
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the information available in the query set during the training
and testing phases [9, 54, 57] to alleviate the model’s sample
bias. As a result, the model learns to generate task-specific
embeddings by better aligning the features of the support and
query samples for optimal metric based label assignment.
Some other supervised approaches do not rely purely on
convolutional feature extractors. Instead, they use graph
neural networks (GNN) to model instance-level and class-
level relationships [26, 37, 55, 58]. This is owing to the fact
that GNN’s are capable of exploiting the manifold structure
of the novel classes [52]. However, looking at the recent
literature, one can barely see any GNN based architectures
being used in the unsupervised setting.

Recent unsupervised methods use a successful form of
contrastive learning [6] in their self-supervised pre-training
phase. Contrastive learning methods typically treat each
image in a batch as its own class. The only other images
that share the class are the augmentations of the image in
question. Such methods enforce similarity of representations
between pairs of an image and its augmentations (positive
pairs), while enforcing dissimilarity between all other pairs
of images (negative pairs) through a contrastive loss. Al-
though these methods work well, they overlook the possi-
bility that within a randomly sampled batch of images there
could be several images (apart from their augmentations)
that in reality belong to the same class. By applying the con-
trastive loss, the network may inadvertently learn different
representations for such images and classes.

To address this problem, recent methods such as SimCLR
[6] introduce larger batch sizes in the pre-training phase to
maximize the number of negative samples. However, this
approach faces two shortcomings: (i) increasingly larger
batch sizes, mandate more costly training infrastructure, and
(ii) it still does not ingrain intra-class dependencies into
the network. Point (ii) still applies to even more recent
approaches, such as ProtoCLR [32]. A simple yet effective
remedy of this problem proposed in C3LR [39] where an
intermediate clustering and re-ranking step is introduced,
and the contrastive loss is accordingly adjusted to ingest
a semblance of class-cognizance. However, the problem
could be approached from a different perspective, where the
network explores the structure of data samples per batch.

We propose a novel U-FSL approach (coined as
SAMPTransfer) that marries the potential of GNNs in
learning the global structure of data in the pre-training stage,
and the efficiency of optimal transport (OT) for inducing
task-awareness in the following fine-tuning phase. More
concretely, with SAMPTransfer we introduce a novel self-
attention message passing contrastive learning (SAMP-CLR)
scheme that uses a form of graph attention allowing the
network to learn refined representations by looking beyond
single-image instances per batch. Furthermore, the proposed
OT based fine-tuning strategy (we call OpT-Tune) aligns

the distributions of the support and query samples to improve
downstream adaptability of the pre-trained encoder, without
requiring any additional parameters. Our contributions can
be summarized as:

1. We propose SAMPTransfer, a novel U-FSL ap-
proach that introduces a self-attention message passing
contrastive learning (SAMP-CLR) paradigm for unsu-
pervised few-shot pre-training.

2. We propose applying an optimal transport (OT) based
fine-tuning (OpT-Tune) strategy to efficiently induce
task-awareness in both fine-tuning and inference stages.

3. We present a theoretical foundation for
SAMPTransfer, as well as extensive experimental
results corroborating the efficacy of SAMPTransfer,
and setting a new state-of-the-art (to our best knowl-
edge) in both miniImageNet and tieredImageNet
benchmarks, we also report competitive performance
on the challenging CDFSL benchmark [20].

2. Related Work
Self-Supervised learning. Self-supervised learning

(SSL) is a term used for a collection of unsupervised meth-
ods that obtain supervisory signals from within the data
itself, typically by leveraging the underlying structure in the
data. The general technique of self-supervised learning is to
predict any unobserved (or property) of the input from any
observed part. Several recent advances in the SSL space have
made waves by eclipsing their fully supervised counterparts
[18]. Some examples of seminal works include SimCLR [6],
BYOL [19], SWaV [5], MoCo [21], and SimSiam [7]. Our
pre-training method SAMP-CLR is inspired by SimCLR [6],
ProtoTransfer [32] and C3LR [39].

Metric learning. Metric learning aims to learn a repre-
sentation function that maps the data to an embedding space.
The distance between objects in the embedding space must
preserve their similarity (or dissimilarity) - similar objects
are closer, while dissimilar objects are farther. For example,
unsupervised methods based on some form of contrastive
loss, such as SimCLR [6] or NNCLR [15], guide objects
belonging to the same potential class to be mapped to the
same point and those from different classes to be mapped to
different points. Note that in an unsupervised setting, each
image in a batch is its own class. This process generally in-
volves taking two crops of the same image and encouraging
the network to emit an identical representation for the two,
while ensuring that the representations remain different from
all other images in a given batch. Metric learning methods
have been shown to work quite well for few-shot learning.
AAL-ProtoNets [1], ProtoTransfer [32], UMTRA [25], and
certain GNN methods [37] are excellent examples that use
metric learning for few-shot learning.
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fΩ = fθ ◦ fψ

Figure 1: SAMP-CLR schematic view and pre-training procedure. In the figure, xi,a is an image sampled from the augmented
set A. The p-message passing steps refine the features extracted using a CNN encoder.

fΩ

Figure 2: Features extracted from the pre-trained CNN are used to build a graph. The features are first refined using the
pre-trained SAMP layer(s). Then OpT-Tune aligns support features with query features.

Graph Neural Networks for FSL. Since the first use
of graphs for FSL in [37], there have been several advance-
ments and continued interest in using graphs for supervised
FSL. In [37], each node corresponds to one instance (labeled
or unlabeled) and is represented as the concatenation of a
feature embedding and a label embedding. The final layer
of their model is a linear classifier layer that directly outputs
the prediction scores for each unlabeled node. There has also
been an increase in methods that use transduction. TPN [31]
is one of those methods that uses graphs to propagate labels
[52] from labeled samples to unlabeled samples. Although
methods such as EGNN [26] make use of edge and node fea-
tures, earlier methods focused only on using node features.
Graphs are attractive, as they can model intra-batch relations
and can be extended for transduction, as used in [26, 31].
In addition to transduction and relation modeling, graphs
are highly potent as task adaptation modules. HGNN [58]
is an example in which a graph is used to refine and adapt
feature embeddings. It must be noted that most graph-based
methods have been applied in the supervised FSL setting.
To the best of our knowledge, we are the first to use it in
any form for U-FSL. More specifically, we use a message
passing network as a part of our network architecture and
pre-training scheme.

3. Proposed Method (SAMPTransfer)

In this section, we first describe our problem formulation.
We then discuss the two subsequent phases of the proposed
approach: (i) self-supervised pre-training (SAMP-CLR),
and (ii) the optimal transport based episodic supervised
fine-tuning (OpT-Tune). Together, these two phases con-
stitute our overall approach, which we have coined as
SAMPTransfer. The mechanics of the proposed pre-
training and fine-tuning procedures are illustrated in Figs. 1
and 2, respectively.

3.1. Preliminaries

Let us denote the training data of size D as Dtr =
{(xi, yi)}Di=1 with (xi, yi) representing an image and its
class label, respectively. In the pre-training phase, we sam-
ple L random images from Dtr and augment each sam-
ple A times by randomly sampling augmentation functions
ζa(.),∀a ∈ [A] from the set A. This results in a mini-batch
of size B = (A+ 1)L total samples. Note that in the unsu-
pervised setting, we have no access to the data labels in the
pre-training phase. Next, we fine-tune our model episodi-
cally [47] on a set of randomly sampled tasks Ti drawn from
the test dataset Dtst = {(xi, yi)}D

′

i=1 of size D′. A task, Ti,
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is comprised of two parts: (i) the support set S from which
the model learns, (ii) the query set Q on which the model is
evaluated. The support set S = {xsi , ysi }NKi=1 is constructed
by drawing K labeled random samples from N different
classes, resulting in the so-called (N -way, K-shot) settings.
The query set Q = {xqj}

NQ
j=1 then contains NQ unlabeled

samples. By convention, we denote Ti = Si∪Qi by (N,K).

3.2. Self-Attention Message Passing (SAMP)

Our network architecture consists of a convolutional
(CNN) feature extractor fθ and a message passing network
based on self-attention, fψ. The CNN feature extractor fθ,
parameterized by θ, is used to extract features V = fθ(X),
where V ∈ RB×d is the set of B features each of size
d and X ∈ RB×C×H×W is a batch of B images of size
C ×H ×W . To help refine the features and use batch-level
relationships, we create a graph G = Graph(V , e, γ) where
V is treated as a set of initial node features, e is the pair-
wise distance between all nodes based on a given distance
metric and γ is a threshold on the values in e that deter-
mines whether two nodes will be connected or not. Note
that |G| = B, as we build the graph over the B samples in
our batch. We use a self-attention message passing neural
network (we call SAMP) fψ, parameterized by ψ, to refine
the initial feature vectors by exchanging and amalgamating
information between all pairs of connected nodes. From now
on, as can be seen in Figs. 1 and 2, we refer to the combi-
nation of the feature extractor fθ and the SAMP module fψ
as fΩ = fψ ◦ fθ where Ω = {θ, ψ} is the collection of all
parameters. The SAMP layers, fψ operate on the graph G.

To allow an effective exchange of information to refine
initial node features V , we make use of graph attention in a
slightly different manner than the standard graph attention
defined in [46]. The graph attention in [46] uses a single
weight matrix W that acts as a shared linear transformation
for all nodes. Instead, we choose to use scaled dot-product
self-attention as defined in [38, 45]. The major benefit of
this design choice is that it enhances the network with more
expressivity, as shown in [4, 27]. Notably, the use of three
separate representations (query, key, and value) instead of
just a single weight matrix to linearly transform the data is
key to modeling relationships between data points.

We apply p successive message passing steps similar to
[38, 46]. In each step, we pass messages between the con-
nected nodes of G and obtain updated features in V p+1,
at step p + 1. Here, the i-th row of V p+1 is given by
V p+1
i =

∑
j∈Ni

λpijW
pV p

j , where λij is the attention
score between the nodes i and j, W p ∈ Rd×d is the mes-
sage passing weight matrix at step p, and Ni denotes the
set of neighboring nodes of node i. In this way, λi,j al-
lows our update mechanism to flexibly weight every sample
w.r.t every other sample in the batch. We employ scaled
dot-product self-attention to compute attention scores, lead-

ing to: λpij = softmax(W p
q V p

i (W p
k V p

j )T/
√
d) where W p

k and
W p

q , both ∈ Rd×d, are the weight matrices corresponding to
the sending and receiving nodes, respectively. To allow the
message-passing neural network to learn a diverse set of at-
tention scores, we apply H scaled dot-product self-attention
heads in every message-passing step and concatenate their
results. To this end, instead of using single weight matri-
ces W p

q ,W
p
k and W p, we use W p,h

q ,W p,h
k and W p,h all

∈ Rd/H×d for each attention head, resulting in:

V p+1
i =

∑
j∈Ni

λp,1ij W p,1V p
j , . . . ,

∑
j∈Ni

λp,Hij W p,HV p
j

 ,
note that V p+1

i still has the same dimension Rd.

3.3. Self-Supervised Pre-Training (SAMP-CLR)

The fact that we do not have access to the true class
labels of the training data underscores the need to use a
self-supervised pre-training scheme. As briefly discussed
in Section 1, we build on the idea of employing contrastive
prototypical transfer learning with some inspiration from
[6, 32, 39]. Standard contrastive learning enforces embed-
dings of augmented images to be close to the embeddings of
their source images in the representation space. The key idea
of SAMP-CLR is not only to perform contrastive learning
(the “CLR” component) on the source and augmented image
embeddings, but also to ensure that images in the mini-batch
belonging to potentially the same class have similar embed-
dings. This is where the “SAMP” module comes to rescue,
enabling the model to look beyond single instances and their
augmentations. SAMP allows the model to extract richer
semantic information across multiple images present in a
mini-batch. Concretely speaking, we apply a contrastive loss
on the SAMP refined features (generated by fψ), and on the
standard convolutional features (generated by fθ). Let us
walk you through the process in more detail.

Algorithm 1 begins with batch generation: each mini-
batch consists of L random samples {xi}Li=1 from Dtr,
where xi is treated as a 1-shot support sample for which we
create A randomly augmented versions x̃i,a as query sam-
ples (lines 2 to 3), leading to a batch size of B = (A+ 1)L.
Then the embeddings Z ∈ RL×d and Z̄ ∈ RLA×d are
generated (line 4) by passing the source images and aug-
mented images through a feature extraction network fθ, re-
spectively. We then construct G = Graph(V , e, γ) with
V = [Z⊤, Z̄⊤]⊤ of size B × d concatenating source and
augmented image embeddings Z and Z̄ (line 5-6), e is the
vector of centered shift/scale-invariant cosine similarities
d′[.] (line 5) [44], and γ is defined earlier. The graph G
is then passed through the SAMP layer(s) fψ resulting in
a updated graph G′ with refined node features V ′ (line 7).
V ′ is spliced into the updated source and augmented image
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Algorithm 1: SAMP-CLR
Require: A, fθ , fψ , Ω, α, β, η, d[.], d′[.]

1 while not done do

2 Sample minibatch {xi}Li=1 ∈ Dtr

3 Augment samples: x̄i,a = ζa(xi); ζa ∼ A.

4 Z, Z̄ ← fθ
(
{xi}Li=1

)
, fθ

(
{x̄i, a}L,Ai=1,a=1

)
5 V = [Z⊤, Z̄⊤]⊤, e = {d′[Vi,Vj ],∀i, j ∈ [B]}
6 G ← Graph(V , e, γ)

7 G′ ← Graph(V ′, e′, γ) = fψ(G)
8 Z′, Z̄′ ← V ′

1:L,V
′
L+1:B

9 ℓ(i, a) = − log
exp(−d[Z̄(a−1)L+i,Zi])∑L

k=1
exp(−d[Z̄(a−1)L+i,Zk])

10 r(i, a) = − log
exp

(
−d

[
Z̄′

(a−1)L+i,Z
′
i

])
∑L

k=1
exp

(
−d

[
Z̄′

(a−1)L+i
,Z′

k

])
11 L1 = 1/LA

∑L
i=1

∑A
a=1 ℓ(i, a)

12 L2 = 1/LA
∑L
i=1

∑A
a=1 r(i, a)

13 L = βL1 + L2

14 Ω← Ω− η∇ΩL

15 end

embeddings (Z ′ and Z̄ ′), respectively (lines 8). In lines 9
to 12, we then apply contrastive losses L1 (between Z and
Z̄) and L2 (between Z ′ and Z̄ ′). Here, L1 encourages the
feature extractor to cluster the embeddings of augmented
query samples Z̄ around their prototypes (namely, source
embeddings) Z, which in turn provides a good initial set of
embeddings for the SAMP projector module to refine. L2

enforces the same constraints as L1 but for embeddings gen-
erated by the SAMP layer. Both loss terms use a Euclidean
distance metric in the embedding space, denoted by d[.]. Fi-
nally, the overall loss is given by L = βL1 + L2, which is
optimized with mini-batch stochastic gradient descent w.r.t
all the parameters in Ω = {θ, ψ} where β is a scaling factor,
and η the learning rate.

3.4. Supervised Fine-tuning (OpT-Tune)

We propose a two-stage supervised fine-tuning consisting
of (i) a transportation stage followed by (ii) a prototypical
fine-tuning and classification stage. The transportation stage
involves using optimal transport (OT) [10, 34]. As sketched
in Fig. 2, OT helps projecting embeddings of the support
set, Zs = fΩ({xsi}NKi=1 ) ∈ RNK×d, so that they overlap
better with the query set embeddings, Zq = fΩ({xqj}

NQ
j=1) ∈

RNQ×d upon transportation. This increases the spread of
Zs in the query set’s domain, which in turn creates more
representative prototypes for each of the N classes in S . We
show in Section 6 that this results in a significant boost in
the downstream classification performance.

Algorithm 2: OpT-Tune
Require: d[·], Zs, Zq

1 Mi,j = d[Zs
i ,Z

q
j ], ∀i ∈ [NK], j ∈ [NQ]

2 π⋆← Solving Eq. (1) using Sinkhorn-Knopp [10]
3 π̂⋆i,j ← π⋆i,j /

∑
j π

⋆
i,j , ∀i ∈ [NK], j ∈ [NQ]

4 Solve Eq. (2)
Return: Ẑs

OT based feature alignment. We provide a basic in-
tuition for OT in the context of SAMPTransfer. Let
r ∈ RNK and c ∈ RNQ be two probability simplexes
defined over Zs

i ,∀i ∈ [NK] and Zq
j ,∀j ∈ [NQ], respec-

tively. r denotes the distribution of the support embeddings,
whereas c denotes the distribution of the query embeddings.
Consider Π(r, c) to be a set ofNK×NQ doubly stochastic
matrices where all rows sum up to r and all columns sum up
to c as:

Π(r, c) =
{
π ∈ RNK×NQ

+ | π1NQ = r,π⊤1NK = c
}
.

Intuitively, Π(r, c) is a collection of all transport “plans”,
where a transport plan is defined as a potential strategy spec-
ifying how much of each support embedding is allocated to
every query embedding and vice-versa. Our goal here is to
find the most optimal transport plan, out of all possible trans-
port plans Π(r, c), that allocates NK support embeddings
to NQ query embeddings with maximum overlap between
their distributions.

Given a cost matrix M , the cost of mapping Zs to Zq

using a transport plan π can be quantified as ⟨π,M⟩F and
the OT problem can then be stated as,

π⋆ = argmin
π∈Π(r,c)

⟨π,M⟩F − εH(π), (1)

where π⋆ denotes the most optimal transportation plan,
⟨·, ·⟩F is the Frobenius dot product, and ε is the weight
on the entropic regularizer H. The cost matrix M quantifies
the overlap between the two distributions by measuring the
distance between each support and query embedding pair:
Mi,j = d[Zs

i ,Z
q
j ]. The entropic regularization promotes

“smoother” transportation plans [10]. Equation (1) is then
solved using the time-efficient Sinkhorn-Knopp algorithm
[10, 40]. Notice that π⋆ is also referred to as Wasserstein
metric [10, 34]. To adapt Zs to Zq with cost matrix M , we
compute Ẑs as the projected mapping of Zs, given by:

Ẑs = π̂⋆Zq,

π̂⋆i,j =
π⋆i,j∑
j π

⋆
i,j

,∀i ∈ [NK], j ∈ [NQ],
(2)

where π̂⋆ is the normalized transport. The projected sup-
port embeddings Ẑs are an estimation of Zs in the region
occupied by the query embeddings Zq. Specifically, it is a
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barycentric mapping of the support features Zs. Algorithm 2
shows this process in a succinct manner.

Prototypical classification. The projected support em-
beddings, Ẑs, are used for prototype creation and classifica-
tion of the query points. To this end, following [32, 43] we
concatenate fΩ with a single layer nearest mean classifier
fϕ (resulting in an architecture similar to ProtoNet [41]) and
only fine-tune this last layer. In this stage, for each class
k ∈ C in the support set, we compute the class prototype
ck for class k using the projected support embeddings Ẑs,k

belonging to class k:

ck =
1∣∣∣Ẑs,k

∣∣∣
∑

ẑ∈Ẑs,k

ẑ, for k ∈ C.

Following [32, 43], we initialize the classification layer
fϕ with weights set to Wk = 2ck and biases set to
bk = −∥ck∥2. To finetune this layer, we sample a subset of
supports from S and train fϕ with a standard cross-entropy
loss; more details are given in Section 4.

4. Experimental Setup
Datasets. To benchmark the performance of our method

SAMPTransfer, we conduct “in-domain” experimenta-
tion on two most commonly adopted few-shot learning
datasets: miniImageNet [47] and tieredImageNet [36].
MiniImageNet contains 100 classes with 600 samples in
each class. This equals a total of 60, 000 images that we
resize to 84 × 84 pixels. Out of the 100 classes, we use
64 classes for training, 16 for validation, and 20 for testing.
TieredImageNet is a larger subset of ILSVRC-12 [13] with
608 classes with a total of 779, 165 images of size 84× 84.
We use 351 for training, 97 for validation, and 8 for testing,
out of the 608 classes. The augmentation strategy follows
the one proposed in [2]. We also compare our method on a
recent more challenging “cross-domain” few-shot learning
(CDFSL) benchmark [20], which consists of several datasets.
This benchmark has four datasets with increasing similari-
ties to miniImageNet. In that order, we have grayscale chest
X-ray images from ChestX [50], dermatological skin lesion
images from ISIC2018 [8], aerial satellite images from Eu-
roSAT [22], and crop disease images from CropDiseases
[33]. We also used the Caltech-UCSD Birds (CUB) dataset
[48] for further analysis of cross-domain performance. The
CUB dataset is made up of 11, 788 images from 200 unique
species of birds. We use 100 classes for training, 50 for both
validation and testing.

Training strategy. In Fig. 1, as feature extractor, we use
the standard Conv4 model following [25, 32, 47]. It is fol-
lowed by a single SAMP layer with 4 attention heads. Note
that we also use a slightly modified version of the Conv4
network which we call Conv4b, where we increase the num-
ber of filters from (64, 64, 64, 64) to (96, 128, 256, 512) [17]
and average pool the final feature map returning a smaller

embedding dimension d = 512 instead of d = 1600. The
networks are pre-trained using SAMP-CLR on the respective
training splits of the datasets, with an initial learning rate of
η = 0.0005, annealed by a cosine scheduler via the Adam
optimizer [28] and L = 128. Experiments involving CDFSL
benchmark follow [20, 32, 39], where we pre-train a ResNet-
10 encoder using SAMP-CLR on miniImageNet images of
size 224× 224 for 400 epochs with the Adam optimizer and
a constant learning rate of η = 0.0001. Similar to the Conv4
encoder, the ResNet-10 uses the same SAMP configuration.
During validation and testing, as defined in Section 3.4, we
initialize and fine-tune fϕ for 15 iterations where we sample
a subset of examples from S in each iteration. For validation,
we create 15 (N -way, K-shot) tasks using the validation
split of the respective dataset.

Evaluation scenarios and baseline. Our testing scheme
uses 600 test episodes, each with 15 query shots per class,
on which the pre-trained encoder (SAMP-CLR) is fine-tuned
using OpT-Tune and tested. All our results indicate 95%
confidence intervals over 3 runs, each with 600 test episodes.
Therefore, the standard deviation values are calculated ac-
cording to the 3 runs to provide more concrete measures for
comparison. For our in-domain benchmarks, we test on (5-
way, 1-shot) and (5-way, 5-shot) classification tasks, while
our cross-domain testing is performed using (5-way, 5-shot)
and (5-way, 20-shot) classification tasks following [20]. We
compare our performance with a suite of recent unsuper-
vised few-shot baselines such as U-MlSo [60], C3LR [39],
Meta-GMVAE [29], and Revisiting UML [56] to name a few.
Furthermore, we also compare with a set of supervised ap-
proaches (such as MetaQDA [61] and TransductiveCNAPS
[3]), the best of which are expected to outperform ours and
other unsupervised methods.

5. Performance Evaluation
In-domain experiments. Table 1 summarizes our per-

formance evaluation results on the miniImageNet dataset
for (N -way, K-shot) scenarios with N = 5 and K = 1, 5.
The top section compares the performance of the proposed
approach (SAMPTransfer) with the most recent unsuper-
vised competitors. We outperform our closest competitors
by approximately 7%+ and 2%+ in the (5-way, 1-shot) and
(5-way, 5-shot) settings, respectively. More interestingly, our
method matches or outperforms some of the supervised base-
lines (bottom section of the table), especially SimpleCNAPS
which uses a much more powerful ResNet-18 backbone.
Obviously, the state-of-the-art supervised few-shot learning
approaches have the advantage of having access to the true la-
bels. When it comes to tieredImageNet, our approach shows
considerable gains over recent competitors such as C3LR
[39] with a 3%+ improvement in the (5-way, 1-shot) setting
and a 5%+ improvement in the (5-way,5 shot) setting. As
such, SAMPTransfer sets a new state-of-the-art for both
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Table 1: Accuracy (%± std.) for (N -way, K-shot) classifi-
cation tasks. Style: best and second best.

miniImageNet

Method(N,K) Backbone (5,1) (5,5)

CACTUs-MAML [23] Conv4 39.90 ± 0.74 53.97 ± 0.70
CACTUs-Proto [23] Conv4 39.18 ± 0.71 53.36 ± 0.70
UMTRA [25] Conv4 39.93 50.73
AAL-ProtoNet [1] Conv4 37.67 ± 0.39 40.29 ± 0.68
AAL-MAML++ [1] Conv4 34.57 ± 0.74 49.18± 0.47
UFLST [24] Conv4 33.77 ± 0.70 45.03 ± 0.73
ULDA-ProtoNet [35] Conv4 40.63 ± 0.61 55.41 ± 0.57
ULDA-MetaNet [35] Conv4 40.71 ± 0.62 54.49 ± 0.58
U-SoSN+ArL [59] Conv4 41.13 ± 0.84 55.39 ± 0.79
U-MlSo [60] Conv4 41.09 55.38
ProtoTransfer [32] Conv4 45.67 ± 0.79 62.99 ± 0.75
CUMCA [53] Conv4 41.12 54.55
Meta-GMVAE [29] Conv4 42.82 55.73
Revisiting UML [56] Conv4 48.12 ± 0.19 65.33 ± 0.17
CSSL-FSL_Mini64 [30] Conv4 48.53 ± 1.26 63.13 ± 0.87
C3LR [39] Conv4 47.92 ± 1.2 64.81 ± 1.15
SAMPTransfer (ours) Conv4 55.75 ± 0.77 68.33 ± 0.66
SAMPTransfer⋆ (ours) Conv4b 61.02 ± 1.0 72.52 ± 0.68

Supervised Methods
MAML [16] Conv4 46.81 ± 0.77 62.13± 0.72
ProtoNet [41] Conv4 46.44± 0.78 66.33± 0.68
MMC [36] Conv4 50.41 ± 0.31 64.39 ± 0.24
FEAT [57] Conv4 55.15 71.61
SimpleShot [51] Conv4 49.69 ± 0.19 66.92 ± 0.17
Simple CNAPS [3] ResNet-18 53.2 ± 0.9 70.8 ± 0.7
Transductive CNAPS [3] ResNet-18 55.6 ± 0.9 73.1 ± 0.7
MetaQDA [61] Conv4 56.41 ± 0.80 72.64 ± 0.62
Pre+Linear [32] Conv4 43.87 ± 0.69 63.01 ± 0.71

Table 2: Accuracy (%± std.) for (N -way, K-shot) classifi-
cation tasks. Style: best and second best.

tieredImageNet

Method(N,K) Backbone (5,1) (5,5)

C3LR [39] Conv4 42.37 ± 0.77 61.77 ± 0.25
ULDA-ProtoNet [35] Conv4 41.60 ±0.64 56.28 ± 0.62
ULDA-MetaOptNet [35] Conv4 41.77 ± 0.65 56.78 ± 0.63
U-SoSN+ArL [59] Conv4 43.68 ± 0.91 58.56 ± 0.74
U-MlSo [60] Conv4 43.01 ± 0.91 57.53 ± 0.74
SAMPTransfer (ours) Conv4 45.25 ± 0.89 59.75 ± 0.66
SAMPTransfer⋆ (ours) Conv4b 49.10 ± 0.94 65.19 ± 0.82

tieredImageNet and miniImageNet datasets.
Cross-domain experiments. We focus on the recent

CDFSL benchmark [20] to investigate the performance of
SAMPTransfer in cross-domain scenarios. This outcome
is summarize in Table 3. Here, we pre-train on miniImageNet
and fine-tune on ChestX [50], ISIC2018 [8], EuroSAT [22],
and CropDiseases [33]. We compare the performance against
C3LR[39], ProtoTransfer [32] along with its two variants
using UMTRA [25] (also proposed in [32]), as well as Con-
FeSS [11] and ATA [49] - two of the latest methods dedicated

Class 0
Class 1
Prototype
Support
Query

Class 0
Class 1
Prototype
Support
Query

Figure 3: Before (left) and after applying OT (right). Pro-
totypes (★), supports (●) and queries (✖). OT helps better
align the distribution of support and query samples.

to solving the cross-domain few-shot learning problem. Note
that we also compare with a couple of related supervised ap-
proaches from [20], as a reference. Our method consistently
keeps up with ConFeSS [11], but scores higher in 5 and 20
shot CropDiseases tasks by 2%+ and about 1%, respectively.
Except for EuroSAT, our method is consistently competitive
(∼ 1% difference) to the performance of ConFeSS in ChestX
and ISIC. In ISIC, which is the second least similar dataset to
miniImageNet, our method is better by 1%+ in the (5-way,
20-shot) setting. Note that SAMPTransfer outperforms
another recent dedicated method ATA [49] in all but one
CDFSL benchmark settings, with the exception being the
EuroSAT (5-way, 5-shot) setting.

6. Ablation Study and Robustness Analysis

Table 4 investigates the performance of the proposed
method against various choices of important hyperparame-
ters. We use the (5-way, 5-shot) miniImageNet benchmark
to analyze the robustness of our method and demonstrate the
importance of our design choices.
OpT-Tune is crucial. To illustrate the effect of using

OpT-Tune on the classification performance, we perform
experiments with OpT-Tune disabled. For a fair compari-
son, we use the same pre-trained models in the test runs with
OpT-Tune enabled or disabled. The best performing model
(a Conv4b) uses 1 SAMP layer with 4 attention heads and
a batch size of 128, resulting in accuracy of 72.52% with
OpT-Tune enabled. The same model, with OpT-Tune
disabled, loses 9% accuracy. Even with OpT-Tune dis-
abled, our method remains competitive with some of the
latest methods in Table 1. This observation suggests that the
process described in Section 3.4 is an efficient technique to
incorporate task awareness and improve the quality of pro-
totypes. This is further corroborated in Fig. 3 where a task
with N = 2 is used to showcase the effect of OpT-Tune.
We observe that the support embeddings are more evenly
spread out over the distribution of the query embeddings.
This is also backed by the DBI score [12] which increases
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Table 3: Accuracy (%± std.) of (N -way, K-shot) classification on the CDFSL benchmark. Style: best and second best.

Method(N,K) (5,5) (5,20) (5,5) (5,20) (5,5) (5,20) (5,5) (5,20)

ChestX ISIC EuroSAT CropDiseases

UMTRA-ProtoNet [32] 24.94 ± 0.43 28.04 ± 0.44 39.21 ± 0.53 44.62 ± 0.49 74.91 ± 0.72 80.42 ± 0.66 79.81 ± 0.65 86.84 ± 0.50
UMTRA-ProtoTune [32] 25.00 ± 0.43 30.41 ± 0.44 38.47 ± 0.55 51.60 ± 0.54 68.11 ± 0.70 81.56 ± 0.54 82.67 ± 0.60 92.04 ± 0.43
ProtoTransfer [32] 26.71 ± 0.46 33.82 ± 0.48 45.19 ± 0.56 59.07 ± 0.55 75.62 ± 0.67 86.80 ± 0.42 86.53 ± 0.56 95.06 ± 0.32
C3LR [39] 26.00 ± 0.41 33.39 ± 0.47 45.93 ± 0.54 59.95 ± 0.53 80.32 ± 0.65 88.09 ± 0.45 87.90 ± 0.55 95.38 ± 0.31
SAMPTransfer (ours) 26.27 ± 0.44 34.15 ± 0.50 47.60 ± 0.59 61.28 ± 0.56 85.55 ± 0.60 88.52 ± 0.50 91.74 ± 0.55 96.36 ± 0.28

ConFeSS [11] (dedicated) 27.09 33.57 48.85 60.10 84.65 90.40 88.88 95.34
ATA [49] (dedicated) 24.43 ± 0.2 - 45.83 ± 0.3 - 83.75 ± 0.4 - 90.59 ± 0.3 -
ProtoNet [20] (sup.) 24.05 ± 1.01 28.21 ± 1.15 39.57 ± 0.57 49.50 ± 0.55 73.29 ± 0.71 82.27 ± 0.57 79.72 ± 0.67 88.15 ± 0.51
Pre+Mean-Cent. [20] (sup.) 26.31 ± 0.42 30.41 ± 0.46 47.16 ± 0.54 56.40 ± 0.53 82.21 ± 0.49 87.62 ± 0.34 87.61 ± 0.47 93.87 ± 0.68
Pre+Linear [20] (sup.) 25.97 ± 0.41 31.32 ± 0.45 48.11 ± 0.64 59.31 ± 0.48 79.08 ± 0.61 87.64 ± 0.47 89.25 ± 0.51 95.51 ± 0.31

Table 4: Ablation study of various parameters on accuracy.

Backbone p H L β OT Accuracy

Conv4b 1 4 64 1.0 ✓ 71.42 ± 0.73

Conv4b 1 4 64 0.7 ✓ 71.41 ± 0.71

Conv4b 1 8 64 1.0 ✓ 71.27 ± 0.75

Conv4b 1 8 64 0.7 ✓ 69.87 ± 0.72

Conv4b 2 1 64 0.7 ✓ 68.99 ± 0.71

Conv4b 2 4 64 0.7 ✓ 67.01 ± 0.69

Conv4 1 4 64 0.7 ✓ 69.61 ± 0.71

Conv4 1 4 64 1.0 ✓ 67.60 ± 0.62

Conv4 1 8 64 1.0 ✓ 63.59 ± 0.68

Conv4b 1 4 128 0.7 ✓ 72.52 ± 0.72

Conv4 1 4 128 0.7 ✓ 68.33 ± 0.71

Conv4 1 4 128 0.0 ✓ 52.81 ± 0.66

Conv4b 1 4 128 0.0 ✓ 72.44 ± 0.69

Conv4b 1 4 64 0.7 ✗ 64.29 ± 0.63

Conv4b 1 4 128 0.7 ✗ 63.47 ± 0.64

Conv4 1 4 64 0.7 ✗ 66.73 ± 0.65

Table 5: Accuracy (%± std.) for (N -way, K-shot) classifi-
cation on miniImageNet with pre-training on CUB.

Training Testing (5,1) (5,5)

ProtoTransfer [32] ProtoTune 35.37 ± 0.63 52.38 ± 0.66
C3LR [39] ProtoTune 39.61 ± 1.11 55.53 ± 1.42
SAMPTransfer (ours) OpT-Tune 49.32 ± 0.75 56.10 ± 0.60

from 0.583 to 0.754 after OpT-Tune is applied.
SAMP layers and attention heads. In Table 4, we also

investigate the robustness of our method when the number
of SAMP layers (p) and attention heads (H) vary. The best
performance is achieved with a single SAMP layer with four
attention heads. Increasing p leads to a significant decrease
in performance; however, increasing H leads to a small
performance degradation. Notably, the observations here are
consistent with those reported in [38, 46].

Embedding dimension. We measure the performance of
the model in relation to two commonly used (by a majority
of the existing baselines) embedding dimensions: 512 and
1600. As can be seen in Table 4, the network performs best
with an embedding dimension of 512 (Conv4b). Perfor-
mance is notably lower with an embedding dimension of
1600 (Conv4). We hypothesize that this behavior can be

attributed to the lower number of channels in the final feature
map of a Conv4 network, which is limited to 64.

Effect of loss scaling factor β on L1. We observe that
when β = 0 the Conv4 based model suffers the most as it
loses 15% accuracy compared to β = 0.7, suggesting that
training the CNN with a contrastive loss is crucial. However,
the Conv4b model is not affected as strongly by the pres-
ence of this loss function. Regardless, we set β = 0.7 for
both models (Conv4 and Conv4b).

Cross-domain robustness. For the sake of complete-
ness, and to further analyze the cross-domain performance
of SAMPTransfer, in addition to Table 3, we trained a
Conv4 model on CUB and tested it on tasks derived from
miniImageNet. CUB consists of 200 classes of only birds,
while miniImageNet consists of 64 classes, of which only
3 training classes are birds. Thus, CUB has a diminished
class diversity compared to miniImageNet. Table 5 demon-
strates that when training classes are diversity constrained,
our method offers a better cross-domain transfer accuracy
compared to the only two other competing baselines that
report experimental results on this setting.

7. Concluding Remarks

We introduced SAMP-CLR, a novel contrastive pre-
training method for unsupervised few-shot classification.
SAMP-CLR learns its representations by looking beyond
single-image instances owing to a built-in self-attention mes-
sage passing (SAMP) module. We also propose an opti-
mal transport (OT) based fine-tuning strategy (OpT-Tune)
which enables the creation of more representative proto-
types by inducing task-awareness. Together, they con-
struct our overall unsupervised FSL approach (coined as
SAMPTransfer). We demonstrate that SAMPTransfer
sets a new state-of-the-art for unsupervised FSL in both
miniImageNet and tieredImageNet datasets, as well as of-
fering competitive performance on the challenging CDFSL
benchmark [20]. As future work, we are investigating the
idea of incorporating memory modules in SAMP-CLR pre-
training to help better approximate the data distribution.
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