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Abstract—In the coming decades, drones are expected to operate
within urban areas at high volumes, and if implemented suc-
cessfully, applications such as infrastructure inspection, medical
supply and parcel delivery can be improved by the technology.
This poses a challenge: how are these drones to be guided in
this highly-constrained airspace? Many existing projects have
approached the problem from different angles: some place more
importance on the Tactical Layer and thus resolving conflicts
in flight, while other research focuses on the Strategic Layer
with scheduling or airspace design. While analysis is done
on a complete system, with all separation management layers
implemented, work remains to be done regarding quantifying
how these layers interact, and what positive characteristics of
these interactions can be utilised to make the system more
efficient, safe, and robust to uncertainties. This paper proposes a
framework on which this analysis can be performed. Firstly, lay-
ers are investigated independently. A feedback system is proposed,
where layer outputs are measured, as is the resulting system
performance. For instance, an initial hypothesis is that reducing
airspace complexity in the Strategic layer, while accounting for
uncertainty, will lead to better overall system performance. This
can help with minimising flight times and improving overall
safety. Also, manoeuvres performed by the Tactical (in-flight)
layer should take this complexity metric into account. The
feedback loop approach also proposes that the complexity be fed
back to the central planner, and that the Strategic (Pre-Flight)
layer should be able to take system status into account when
performing planning.
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I. INTRODUCTION

In the coming decades, drone traffic is expected to reach
unprecedented densities, never before seen in classical avia-
tion. Projections [1] estimate that the number of drones, flying
primarily in urban airspace, will number 7 million by the year
2050. Applications will include parcel delivery for medical [2]
and commercial purposes, as well as infrastructure inspection
and first response. The highest densities are expected to come
from parcel delivery, as companies such as Amazon [3] with
their Prime Air drone delivery project are looking to leverage

large volumes in order to make the venture economical. In
order to guarantee that this growth occurs responsibly, the
aspects of U-Space need to be considered and developed
thoroughly, maximising not only efficiency but also safety.
In order to do this, Separation Management, or the set of
actions taken to ensure safe distances between drones at
all times, need to be a solved issue come implementation.
Separation management in urban very-low-level airspace (U-
Space [4] is a well-researched topic. On a European level,
large-scale projects such as Metropolis II [5] investigate the U-
Space implementation on a large scale, designing concepts that
cover everything from airspace design to conflict avoidance
algorithms. Works such as M. Ribeiro’s [6] focus in depth
on innovative methods such as Reinforcement Learning to
determine the optimal Conflict Avoidance manoeuvres, show-
ing their promise when compared to traditional geometric
methods. The goal of this research is to determine the optimal
methods for Separation Management, that is the action of
keeping all aircraft at a safe distance from each other at all
times in a way that is stable in time. A separation management
system is then broadly defined as a combination of layers [7]
that work together to achieve this goal. These can be seen in
Figure 1.

The Strategic layer encompasses aspects such as airspace
design, route generation and flight scheduling. Here, the goal
is to provide a structure to the airspace and to the flights
themselves and ensure that they remain stable. Such a layer
is the most prone to uncertainties: in a practical operational
environment, there will always be deviation from the schedule
at hand, and flight routes will not always be flown as defined.
Thus, the layer must provide solutions that are robust to un-
certainty to ensure system stability. Should uncertainties arise,
the Tactical Layer is utilised to manage separation. This layer
is triggered when the drones are already in flight, and applies
manoeuvres to avoid conflicts. Some concepts in classical Air
Traffic Management argue for full decentralisation, namely the
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Figure 1. Separation Management System Layers, adapted from [7]

Free Flight concept [8]. This concept relies on the Tactical
Layer and resolves conflicts using geometric methods such as
the Modified Voltage Potential (MVP). While the flights are
unstructured, this method theorises that stability will ensue as
all aircraft are following the same set of rules. While concepts
such as free-flight are promising in open airspace [8], and
will likely be of great value for drone traffic outside urban
centers, urban environments pose a greater challenge since
decentralised conflict avoidance methods are affected by the
geometrical constraints of low buildings and terrain in very-
low-level (sub-250 meter flight ceiling) airspace. Since this
low-level airspace stipulated in the U-Space [9] [4] documen-
tation, efforts must be made to adequately deal with these
constraints. Projects such as Metropolis II [5] have taken this
into consideration by implementing a street-network inspired
route graph, along which movement is constrained in one-
way lanes. Metropolis II [5] also compares several concepts
with different levels of centralisation (thus planning done by
a centralised agent), and shows the potential for a ”hybrid”
approach, where the strategic layer is centralised and tactical
and detect-and-avoid are performed in-flight by the drone.

II. METHODOLOGY AND RESEARCH FRAMEWORK

The methodology used in the further stages of the work is
outlined in this section. The preliminary model of a feedback-
based separation management system is presented, followed by
an outline of possible methodologies for the layers at hand.

A. Preliminary Model

The preliminary model for the Autonomous Separation
Management System will follow the layers defined in Figure
1. A feedback loop will be implemented: the strategic planner
will rely on feedback from measured airspace complexity,

route flexibility [10] and robustness. The envisioned imple-
mentation is seen in the flowchart under Figure 2.

Flight Sequencer Route Generation Airspace Design
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Schedules
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Figure 2. Separation Management System Feedback Model

In this figure, the Green layer represents the Strategic Layer,
and contains flight sequencing, route generation and airspace
design. For the Tactical, or Self-Separation layer, conflict
detection and resolution are the main blocks to implement. To
elaborate upon this, demand scenarios are used as input. The
Strategic Layer is comprised of a Flight Sequencer, Route Gen-
eration and Airspace Design modules. The reason that these are
kept as blocks is that the configurations of these are going to be
varied. For instance, the flight sequencer could apply demand
capacity balancing using Mixed-Integer Programming, or in
fact utilise a Reinforcement-Learning-trained model for the
flight planning. Likewise, the Route Generation module can be
selected in the same way. For airspace design, the vision is that
works such as M. Ribeiro’s [11] can be used as inspiration for a
dynamic airspace reconfiguration tool based on Reinforcement
Learning. The difference here is that not only the Conflicts,
Losses of Separation and other statistics such as cumulative
delay can be used in the reward function, but that the system
learns policies that minimize airspace complexity and improve
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stability through the usage of robust and flexible [10] routes
and plans. This will be done by computing complexity before
and after disturbances to evaluate the efficacy of the Tactical
Layer. For the Strategic Layer, its performance will be assessed
without taking the Tactical Layer into account.

The elements and metrics used in the feedback loop will
be analysed for effectiveness on the same demand scenarios
in the BlueSky [12] ATM simulator. In order to implement
the system, the methodology behind the layers themselves
(and thus the underlying methods) must be selected. Available
methodologies are numerous, and are discussed in the next
section.

B. Layer Implementations

For each of the layers of the Separation Management
System, as seen in Figures 1 and 2, there is a multitude of
possible implementations. For the Strategic and Tactical layers,
some possible methodologies and implementations are listed:

• Strategic Layer
– Scheduling Methods: Mixed-Integer Programming,

Brute-Force, Genetic Algorithm, Simulated Anneal-
ing, Particle Swarm or other

– Airspace Design [13]: Full-Mix, Layers, Zones,
Tubes or other

– Route Generation: Dijkstra’s Algorithm, A*,
Branching-Continuous [14] or other

• Self-Separation/Tactical Layer:
– Modified Voltage Potential, Reinforcement Learning-

based or other
Important to acknowledge is the fact methods combining

several aspects exist. These include works such as those
by D. Sacharny [15] with the “Algorithm SD” (Strategic
Deconfliction) and W. Dai [16], where airspace design and 4D
scheduling (thus routes taking a time element into account) are
both encompassed within the methodology.

Machine Learning models are often used in the context
of Air Traffic Management research. Reinforcement learning
specifically has been used in several contexts, namely to
reconfigure the airspace [11], improve merging maneuvers and
even Conflict Resolution strategies. These techniques will also
be leveraged in this project. These will be implemented and
researched, especially in the context of the Strategic layer, for
schedule modification and airspace reconfiguration based on
system complexity feedback, as seen in Figure 2.

In order to assess the system designed, and evaluate system
and layer performance, Fast-Time simulations will be per-
formed in the BlueSky [12] Open ATM simulator. This versa-
tile Air Traffic Management simulator is expandable through
Python plugins, allowing for fast testing, easy integration with
other software, and most importantly, reproducibility of results,

as it is entirely open-source and therefore available for all
users. This also aims to solve a common pitfall in Air Traffic
Management research: the lack of a performance benchmark.
Most well-performing methods are compared separately and
for different air traffic scenarios. Thus, everything can be
proven to work. The idea here is that through keeping code
and scenarios freely accessible, a platform is provided where
direct comparison with other methods ceases to be a chore.

C. Fast-Time Simulation and Environment Setup

In order to assess the system, fast-time simulations will
be run in the BlueSky [12] ATM simulator. An urban en-
vironment is then simulated using data from OpenStreetMap
[17] (OSM), by importing all potential delivery locations, as
well as building heights and geometry, street networks and
hospital locations (among other data). This is done with a
self-contained plugin for BlueSky, which obtains data from the
Overpass [18] API. The user provides the bounding box of the
test area, or the city name as a string, and the plugin can import
all of the necessary data automatically. This is done in an effort
to help faster scenario generation to be used for Reinforcement
Learning, where generalizability is paramount (thus testing and
training on a variety of city topologies is needed). Currently,
buildings need to be avoided for drone operations - the plugin
automatically imports and loads the buildings above an input
height and displays them as geofences in BlueSky.

Then, an adaptation of D. Rein-Weston’s [14] method is
used to plan routes around the resulting geofences. An example
of the resulting scenario is seen in Figure 3.

Figure 3. Amsterdam Environment With Geofences in BlueSky [12] ATC
simulator
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The simulation setup will be further improved through
including and improving the following features:

• Terrain import, automated from open-source data.
• Discrete route network generation as a graph, to better

test classical optimization methods and allow for fast
conflict detection for en-route conflicts when strategic
planning is performed.

• Uncertainty modelling for the takeoff delays
• Battery Model Plugin for eVTOL and quadcopter

drones, to be used as an optimisation parameter
Another important project is the creation of an AI Gym-

nasium [19] environment for benchmarking Reinforcement
Learning approaches in BlueSky. The implementation will be
done in the coming months.

III. CONCLUSION

This paper presents the envisioned methodology for as-
sessing layer interactions in an Autonomous Separation Man-
agement System for Drones. Then, the process is continued
through optimising these in order to create a system frame-
work that provides robust and flexible scheduling to allow
for effective conflict resolution in the tactical layer, should
uncertainties arise. Likewise, the Tactical layer’s outputs are
assessed in terms of the stabilising effect on the system
complexity - a return to the computed schedule is desired
in order to keep predictability high. In summary, the layer
interactions are to be tested extensively using a feedback
loop approach, including the difference between predicted and
measured complexity. There are some challenges regarding the
implementation of Reinforcement Learning training scenarios
within BlueSky - no standard benchmark exists, and a plugin
implementation can be slow. These issues are currently being
worked on, through the design and implementation of a
standardised testing environment for RL and AI application in
the BlueSky ATM simulator. As for the other components, the
basics of the urban environment data import, route generation
and scheduling have been implemented. Thus, the immediate
focus will be to design a complexity-sensitive Strategic Layer,
and quantify to what extent route and metrics such as plan
flexibility and robustness can be used in the system’s feedback
loop to improve overall safety, efficiency and stability through
complexity reduction.
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