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Abstract — Objective: This paper introduces a generalized 

coherence framework for detecting and characterizing nonlinear 
interactions in the nervous system, namely cross-spectral 
coherence (CSC). CSC can detect different types of nonlinear 
interactions including harmonic and intermodulation coupling as 
present in static nonlinearities and also subharmonic coupling, 
which only occurs with dynamic nonlinearities. Methods: We 
verified the performance of CSC in model simulations with both 
static and dynamic nonlinear systems. We applied CSC to 
investigate nonlinear stimulus-response interactions in the human 
proprioceptive system. A periodic movement perturbation was 
imposed to the wrist when the subjects performed an isotonic 
wrist flexion. CSC analysis was performed between the 
perturbation and brain responses (EEG). Results: Both the 
simulation and the application demonstrated that CSC 
successfully detected different types of nonlinear interactions. 
High-order nonlinearities were revealed in the proprioceptive 
system, shown in harmonic and intermodulation coupling 
between the perturbation and EEG for all subjects. Subharmonic 
coupling was found in some subjects but not all. Conclusion: This 
work provides a general tool to detect and characterize nonlinear 
nature and dynamics of the nervous system. The application of 
CSC on the experimental dataset indicates a complex nonlinear 
dynamics in the proprioceptive system. Significance: This novel 
framework 1) unveils the nonlinear neural dynamics in a more 
complete way than the existing coherence measures, and 2) is 
more suitable for estimating the input-output relation regarding 
both phase and amplitude compared to phase synchrony 
measures (which only consider phase coupling). Subharmonic 
coupling is reported in human proprioceptive system for the first 
time. 
 

Index Terms— Coherence, cross-frequency coupling, EEG, 
human proprioceptive system, nonlinear dynamics. 
 

 
The research leading to these results has received funding from the 

European Research Council under the European Union's Seventh Framework 
Programme (FP/2007-2013)/ERC Grant Agreement n°291339 (4D-EEG 
project).  

Y. Yang, T. Solis-Escalante and F. C. T. van der Helm are with Department 
of Biomechanical Engineering, Delft University of Technology, Delft, The 
Netherlands. A. C. Schouten is with Department of Biomechanical 
Engineering, Delft University of Technology, Delft, The Netherlands and 
MIRA Institute for Biomedical Technology and Technical Medicine, 
University of Twente, Enschede, The Netherlands. *Correspondence author, 
e-mail: Y.Yang-2@tudelft.nl.  

Copyright (c) 2016 IEEE. Personal use of this material is permitted. 
However, permission to use this material for any other purposes must be 
obtained from the IEEE by sending an email to pubs-permissions@ieee.org. 

I. INTRODUCTION 
ervous systems are highly nonlinear [1-3]. They can 
present different forms of nonlinear interaction between 

an input (stimulus) and the corresponding output (neural 
response), such as harmonic, subharmonic and/or 
intermodulation coupling. Assessing the nonlinear interaction 
between stimulus and neural response is essential for a better 
understanding of the nervous system and could be useful for 
clinically related purposes, such as investigating motor 
disorders [4], migraine [5] and epilepsy [6].  

Steady-state sensory stimulations, such as visual flicker and 
tactile vibration, typically evoke brain responses in harmonics 
[7, 8], i.e. integer multiples of a stimulus frequency (e.g. 3f1), 
and intermodulation frequencies [9, 10], i.e. integer 
combinations of the stimulus frequencies (e.g. 3f2 – 2f1). A 
simple static nonlinear system, such as the power function, can 
generate these two types of nonlinear coupling. Subharmonic 
coupling, where the output frequency is a fraction of an input 
frequency, e.g. f1/2, has been reported in a few studies mainly 
for visual systems (e.g. [7]). Recently, Langdon and colleagues 
found subharmonic coupling between tactile vibration and 
brain responses (electroencephalogram, EEG) [11].  
Subharmonic coupling represents a more complex type of 
nonlinearity than harmonic and intermodulation coupling [12], 
and it is known to be associated with intrinsic nonlinear 
dynamics in the human brain [3, 11]. 

The interactions between sensory stimuli and brain responses 
can be studied by various approaches in either time domain [13] 
or frequency domain [6, 9]. Since a linear system can only 
generate iso-frequency coupling (quantified by linear 
coherence or cross-correlation) between an input and the 
output, a nonlinear interaction can be easily detected in the 
frequency domain by measuring the input-output interaction 
across different frequencies [9, 11, 14-17]. Bicoherence and its 
variants are often used frequency domain methods for probing 
nonlinear interactions in the nervous system [15, 18, 19]. A 
second-order nonlinearity, such as y = x2, can be easily 
identified by bicoherence using a stimulus containing at least 
two different frequencies [16]. For example, Shils et al (1996) 
applied bicoherence to identify the second-order nonlinear 
interactions in the human visual system with a bi-frequency 
stimulus [15]. However, bicoherence cannot detect nonlinear 
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interactions beyond the second order, neither the high-order 
intermodulation/harmonic coupling nor the subharmonic 
coupling.  

Subharmonic coupling is typically assessed by phase 
synchrony (PS) measures such as the n:m phase 
synchronization index [20]. However, PS measures assess 
nonlinear interactions (as well as linear interactions) between 
two signals purely based on their relative phase, independent of 
signal amplitude (see [20, 21] for details and [22] for a review). 
Therefore, they are more often used to investigate the 
synchronized discharge of neuronal populations (e.g. functional 
connectivity between brain areas) than estimating input-output 
relation regarding both phase and amplitude.  

Thus, there is a need for a general nonlinear coherence 
framework that can quantify the different types of nonlinear 
input-output interaction and incorporates not only phase but 
also amplitude relation between the input and the output of a 
system. Doing this, we will be able to identify the nonlinear 
characteristics of the nervous system in a more complete way 
than with existing measures. 

The goal of this paper is to introduce a generalized coherence 
framework in the frequency domain for detecting and 
characterizing nonlinear stimulus-response interactions in the 
nervous system, namely cross-spectral coherence (CSC). CSC 
can detect different types of nonlinear interactions including 
harmonic and intermodulation coupling as present in static 
nonlinearities and also subharmonics, which only occur due to 
dynamic nonlinearities.  

We developed two metrics under the CSC framework: 1) n:m 
coherence, for measuring harmonic and subharmonic coupling 
related to individual input frequencies, and 2) multi-spectral 
coherence, for quantifying intermodulation coupling among 
multiple (≥ 2) input frequencies.  

A preliminary version of part of this work has been briefly 
reported in [23, 24] using a single-subject dataset. In this paper, 
we provide a thorough mathematical description of the 
proposed method. We verify the performance of the two CSC 
metrics first in model simulations involving both static and 
dynamic nonlinear systems. Then, we demonstrate the 
application of CSC for investigating the nonlinear 
stimulus-response relation in the human proprioceptive system 
during a motor control task. This dataset involves 11 healthy 
subjects. A multi-sine wrist movement was imposed 
(proprioceptive stimulus) while the subjects performed an 
isotonic wrist flexion. The brain responses were measured by 
EEG. In contrast with our previous work [23, 24], this study 
reports for the first time subharmonic coupling in the human 
proprioceptive system.  

II. METHODS 
First we summarize two types of nonlinear mapping from the 
input spectral components to the output spectral components, 
i.e. n:m mapping and integer multiplication mapping, to 
mathematically demonstrate how harmonic, subharmonic and 
intermodulation couplings are present in the frequency domain. 
Then, we introduce the CSC as a generalized framework for 
quantifying the corresponding nonlinear coupling. Simulations 

are used to evaluate the proposed method. At the end of this 
section, we provide a description of the experimental dataset 
and signal processing to demonstrate an application of CSC to 
the human proprioceptive system.  

A. Nonlinear Mapping 
Let X(f) and Y(f) be the Fourier transforms of the input x(t) 

and the output y(t) signals. The nonlinear mapping from the 
input to the output in the frequency domain can be presented in 
two different ways:  

1) n:m mapping:  

Ym(fout) = H(n : m) Xn(fin); n

n

X XX X≡ 



        (1) 

where the output frequencies (fout) are related to the input 
frequencies (fin) by the ratio n/m (n and m are coprime 
positive integers), and H(n : m) is the n:m mapping 
function. The n:m mapping can generate harmonic (m = 1) 
and subharmonic coupling (m > 1) between the input and 
the output in the frequency domain. Subharmonic coupling 
is typically present in a dynamic nonlinear system 
involving differential operations, such as the Duffing 
oscillator [25].  

2) Integer multiplication mapping: the output component is 
an integer product of the input components at frequencies 
f1, f2, … , fR (f1 < f2  < … < fR) with the integer powers a1, a2, 
… , aR: 
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‘*’ indicates complex conjugate, the output frequency 

1
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=
= >∑ , H(f1, f2, … , fR; a1, a2, … , aR)d is a 

d-th order nonlinear mapping function for corresponding 
input frequencies and their weights, and Q is the number of 
non-zero ar. The sum of the absolute values of integer 
powers is equal to the order of integer multiplication 
mapping: 

1
2R

rr
d a

=
= ≥∑ . Integer multiplication mapping 

can generate intermodulation coupling (Q > 1) as well as 
harmonic coupling (Q = 1) between the output and the 
input at the corresponding order. The integer 
multiplication mapping can occur in a static nonlinear 
system that does not contain differential operations, such 
as a power function (y = xd), where the order of integer 
multiplication mapping corresponds to the order of 
nonlinearity (d).  

B. Cross-spectral Coherence  
Cross-spectral coherence (CSC) is a generalized framework 

that can assess various types of nonlinear input-output 
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interaction. According to two different types of nonlinear 
mapping, there are two basic metrics under CSC: (i) n:m 
coherence and (ii) multi-spectral coherence.  
1)  n:m coherence quantifies the nonlinear coupling 

generated by the n:m mapping including harmonic and 
subharmonic coupling, and it is defined as: 

( , )
( , )

( ) ( )
xy in out

in out n m
xx in yy out

S f f
nmc f f

S f S f
=                          (3) 

where fout : fin = n : m, *( ) ( )( ( ))n n n
xxS f X f X f=< >   is the 

n-th order auto-spectra (<∙> represents the averaging over 
segments) and ( , )xy in outS f f is the n:m cross-spectrum: 

*( , ) ( )( ( ))n m
xy in out in outS f f X f Y f=< >                  (4) 

2) Multi-spectral coherence measures the nonlinear coupling 
generated by the integer multiplication mapping, including 
harmonic and intermodulation coupling, and it is defined 
as: 

1 2 1 2
1 2 1 2

1

( , ,... ; , ,..., )
( , ,... ; , ,..., ; )

( ) ( )i

xy R R
R R out d R

a
xx r yy out

r

S f f f a a a
msc f f f a a a f

S f S f
=

=
 
 
 
∏

             (5) 

where 
1

0R
out r rr
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=

= >∑ , 1 2 1 2( , ,... ; , ,..., )xy R RS f f f a a a  is 
the integer multiplication  cross-spectrum, which is a 
generalization of high-order cross-spectrum [26] by adding 
the integer parameters a1, a2, … , aR:  
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Each harmonic/intermodulation frequency (output 
frequency outf ) is determined by the input frequencies fr 
and their weights ar (r = 1, 2, ..., R). Thus, multi-spectral 
coherence only has 2×R free variables (R input frequencies 
fr and R corresponding ar). It is known from the inputs to 
Eq. (5) that which frequencies constitute an 
harmonic/intermodulation with which ar. According to the 
order of integer multiplication mapping, we can shrink the 
range of ar by 

1

R
rr

a d
=

=∑ for a given order of 
nonlinearity (d). Thus, the d-th order multi-spectral 
coherence can be used to detect the d-th order harmonic 
and intermodulation coupling.  

With these two basic metrics, the CSC framework can detect 
different types of nonlinear coupling in the frequency domain, 
as well as linear coupling. Linear coupling can be considered as 
a special case of harmonic coupling, i.e. the first order 
harmonic coupling. Both the n:m coherence and the 
multi-spectral coherence can detect harmonic coupling. 
Nevertheless, n:m coherence cannot detect the intermodulation 
coupling, while multi-spectral coherence is blind to the 
subharmonic coupling. Thus they are complementary.   

Mathematically, Equation (3) and (5) can be merged to get a 
general representation of CSC:  
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 Similar to the existing coherence measures [15, 22, 27], 
CSC incorporates phase and amplitude relationships between 
the input and the output. The value of CSC is proportional to 
the strength of coupling. A zero value indicates no coupling at 
all. The normalization we used here is consistent with the 
conventional normalization of (linear) coherence and 
bicoherence [28]. Advantage of this normalization is that it is 
based on the “pure” spectral magnitude, independent of any 
coupling between signals; though the maximum value of CSC 
may exceed 1 when it is computed from a limited number of 
segments. However, this problem is negligible when the 
nonlinear coherence values are obtained from hundreds of 
signal segments [29]. Alternative normalization methods have 
been discussed in [30,31,38]. Although some of these methods 
are bounded to 1, most of them are affected by the coupling of 
signals [30]. Nonetheless, for a coherence measure, the 
statistical power for correctly rejecting the null-hypothesis is 
more important than the upper boundary. The comparison 
between different types of normalization, including the 
conventional type we used here, has concluded an essentially 
equal statistical power for all types [30]. The statistics are 
proven to be identical for all nonlinear coherence when the 
conventional normalization is applied [31]. Similar to 
bicoherence, estimates of magnitude squared CSC (csc2) for 
Gaussian noise are approximately chi-squared distributed with 
degree of freedom 2N for N segments. The bias for 
cross-spectral coherence is 1 N  in this case, and the 
threshold for checking significant CSC values can be computed 

as 1/( 1)1 Np −−  when the true CSC lies with probability of
(1 ) 100%p− × . 

C. Model simulations 
To verify the effectiveness of CSC, we simulated two 

different types of nonlinear systems, i.e. Duffing oscillator and 
a power function, to generate different types of nonlinear 
coupling. The n:m coherence was computed for detecting the 
harmonic and subharmonic coupling generated by the Duffing 
oscillator, while multi-spectral coherence was computed, for 
detecting the harmonic and intermodulation coupling produced 
by the power function. The confidence level was set with p = 
0.05. 

1) Duffing oscillator is a type of dynamic nonlinear system 
driven by a sine wave [25], which can generate output 
components at the harmonics and subharmonics of the 
driven frequency. The Duffing oscillator has been used to 
model the nonlinear dynamics in EEG for both cognitive 



 4 

and clinic studies [32-34]. A mathematical description of 
Duffing oscillator is given as:  

 2 ( )y y y y x tδ α β+ + + =   (9) 

where the driving force x(t) = γcos(ωt), the output y = 
y(t) is the at time t, y is the first derivative of y with respect 
to time, i.e. velocity, y is the second time-derivative of y, 
i.e. acceleration. The parameter δ controls the damping, 
α controls the stiffness, and β controls the amount of 
non-linearity in the restoring force. For testing n:m 
coherence, the duffing oscillator was simulated with δ = 
0.2, α = 1, β = 0.1 and x(t) = 8cos(2t) with 2400 periods 
(sampling rate 80 rad/s = 40/π Hz). White noise was added 
to the output signal (SNR = –15dB) to represent 
measurement noise. To detect the harmonic and 
subharmonic coupling, we compute the n:m coherence 
with 600 non-overlapping segments. Each segment 
contained 4 periods (4π s). So the frequency resolution of 
n:m coherence was 1/4 rad/s (= 1/8π Hz). 

2) Power function (y = xd) is a nonlinear system, which can 
produce harmonic and intermodulation coupling between 
the input and the output when using a multi-sine signal 
(sum of sine waves) as the input. According to Friston’s 
review, most input-output relationship in neural systems 
can be approximately described by Volterra series, which 
is a polynomial power series containing different order of 
nonlinear terms [35]. The monomial power function y = xd 
is the basic element of polynomial representations of 
nonlinear systems. Compared to other nonlinear models, 
the advantage of the power function is that it generates 
harmonic and intermodulation coupling between the input 
and the output in the same order as its power d. For testing 
multi-spectral coherence, the system was stimulated for d 
= 3 (cubic function), and a multi-sine signal consisting of 
three sinusoids (7, 13, 29 Hz) with randomly chosen 
phases and 600 periods (period 1 s, sampling rate 256 Hz). 

These three frequencies were chosen to avoid any overlap 
of the second-order and third-order harmonic and 
intermodulation frequencies. In this case, the second-order 
and third-order multi-spectral coherence results can be 
plotted as a discrete spectrum of the output frequencies. 
White noise was added to the output signal (SNR = –15 
dB) to represent the measurement noise. For comparison, 
we computed the second-order (bicoherence) and the 
third-order multi-spectral coherence, with 600 
non-overlapping segments. Each segment contained one 
period (1 s). So the frequency resolution of multi-spectral 
coherence was 1 Hz. 

D.  Application to the human proprioceptive system 
We used the CSC framework to investigate the nonlinear 

interactions in the human proprioceptive system during a motor 
control task.  The datasets were recorded from eleven subjects 
who performed isotonic right wrist flexions (1 Nm) while 
receiving a multi-sine position (angular) perturbation on the 
same wrist (see Fig. 1.). The perturbation signal consisted of a 
sum of three sine waves with the frequencies 7, 13, and 29 Hz 
and random phases. The magnitude of the sinusoids decreased 
with frequency to keep the same power per frequency in the 
velocity signal [36]. The period of the perturbation signal was 1 
s, and the peak-to-peak amplitude was 0.06 rad. The 
experiment consisted of 60 trials with a 22 s task period in each 
trial with 1-s fade-in and fade-out periods. Detailed information 
about this dataset is available in [46]. 

The EEG were recorded using a 128-channel cap (5/10 
systems, WaveGuard, ANT Neuro, Germany) with Ag/AgCl 
electrodes, using a common average reference. The EEG, the 
perturbation and the torque signals were digitalized at 2048 Hz 
using a Refa amplifier (Twente Medical Systems International 
B.V., the Netherlands) and stored for offline analysis. We 
removed the first 3 s and the last 2 s of each trial to exclude 
transient responses. To study the nonlinear interactions 
between the perturbation and the EEG, all data were segmented 
into 6-s segments with 5-s overlap. The length of the segments 
allows to detect potential subharmonics k·(f/2, f/3, f/6) reported 
in the literature [11, 37]. The use of overlapping segments not 
only increases the number of segments [38] but also reduces the 
bias and variance of the coherence estimates [39]. Segments 
contaminated by artefacts in the EEG (e.g. blinking and eye 
movements) were removed by visual inspection. After artefact 
removal, we obtained more than 500 segments for each subject. 
This amount of data has been proven to be sufficient for a 
reliable nonlinear coherence analysis in EEG [38]. All data 
were transformed to the frequency domain by fast Fourier 
transform using the function fft.m from MATLAB. The  n:m 
coherence and multi-spectral coherence were computed 
between the perturbation and the EEG at channel C3 (around 
the left sensorimotor area) to investigate the stimulus-response 
relation. The multi-spectral coherence is computed up to the 
third order, since the frequencies of stimulation allow to 
exclusively assess all second-order and third-order 
nonlinearities without overlap in the output (EEG) spectrum. 
Since the non-stationary properties of the EEG signal may 
affect the estimation of nonlinear coherence [40], we performed 

 
Fig.1. System input (proprioceptive): wrist manipulator and  multi-sine 
perturbation. 
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a 10-fold cross-validation to get the 95% confidence interval 
(mean ± 2std.) of the estimated CSC values. In each fold of the 
cross-validation we randomly picked out 90% of the signal 
segments to compute CSC values. This was repeated 10 times 
to estimate the mean and standard deviation of CSC. We 
considered the results as significant only when the lower 
boundary of the interval was higher than the significant 
threshold. Additionally, Bonferroni correction was applied to 
control for type I error, since we scanned EEG spectrum from 
1-100 Hz. Thus, the significant threshold was adapted with 
p/100=0.0005 for 5% family-wise error rate.  

III. RESULTS 

A. Simulations 
Fig. 2. and Fig. 3. show example periods of the input x(t) and 

the output signals y(t) and the amplitude spectra |X(f)| and |Y(f)| 
of the Duffing oscillator and the cubic function in noise-free 
cases. The Duffing oscillator generated output spectral 
components in the subharmonics (fin/2 = 1 rad/s and 3fin/2 = 3/2 
rad/s) and first-order harmonic of the driven frequency (fin = 2 
rad/s) in the examined frequency range. The cubic function 
produced output spectral component in third-order harmonics 
and intermodulations of the input frequencies. 

 

 

Fig. 4. shows the results of  the n:m coherence (Fig. 4a) and 
multi-spectral coherence (Fig. 4b) for the Duffing oscillator and 
the cubic function, respectively (SNR = - 15 dB). Significant 
n:m coherence is shown in the corresponding subharmonics (1 
rad/s and 3 rad/s) and harmonic (2 rad/s) for the Duffing 
oscillator. Only the third-order multi-spectral coherence is 
significant for the cubic function. These results demonstrate 
that the n:m coherence can detect the subharmonic and 
harmonic coupling, while a given order multi-spectral 
coherence can detect the corresponding order harmonic and 
intermodulation coupling. Noteworthy, the magnitudes of both 
nonlinear coherences are in line with the amplitude spectrum of 
the output when the noise level is the same for all frequencies. 
Thus CSC can reflect the effect of signal amplitude in the 
input-output relation. 

 
B. Application to the human proprioceptive system 

The results of n:m coherence and multi-spectral coherence 
are shown in Figs. 5 to 8 for an example subject (Subject 10, 
number of data segments: 942). In line with a previous study 
[36], the linear interaction (the first order harmonic coupling) 
was shown between the perturbation and EEG. High order (≥ 2) 
harmonic and intermodulation couplings were detected for this 
subject, as well as subharmonic coupling for 29 Hz (1:2).  

 

 
Fig.2. Input and output of the simulated Duffing oscillator (noise-free case). 
This system generated spectral components in the subharmonic frequencies 
(1 and 3 rad/s)  and the first-order  harmonic of the driven frequency (2 rad/s).  

 
Fig.3. Input and output in the cubic function (noise-free case). Left column: 
Input signal containing three base frequencies 7, 13 and 29 Hz. Right column: 
Cubic function produced output spectral component in the third-order 
harmonics (3fr: 21, 39 and 87 Hz),  intermodulation between two frequencies 
(2fr ± fl: 1, 19, 27, 33, 43, 45, 51, 55, 65 and 71 Hz; fr - 2fl: 3 and 5 Hz ), 
intermodulation among three frequencies (f3 ±  f2 ± f1: 9, 23, 35, 49 Hz) and the 
base frequencies (7, 13 and 29 Hz ).  

 
Fig.4. CSC analysis results in simulation test (SNR = -15 dB). Results are 
plotted as discrete spectra of the output frequencies. Horizontal lines indicate 
the significant levels (600 segments). (a) n:m coherence for the Duffing 
oscillator. The significant values are shown in 1 rad/s, 2 rad/s and 3 rad/s. (b) 
multi-spectral coherence for the cubic function. Significant value are shown 
in the third-order harmonics and intermodulations. All second-order 
harmonic and intermodulation values (bicoherence) are not significant.  

 
Fig.5. n:m coherence for the 7 Hz input frequency component. Error bars 
show the 95% confidential interval of the coherence values estimated by 
10-fold cross-validation. Horizontal line indicates the Bonferroni corrected 
significant level (942 segments). Only significant harmonic coupling is 
detected.  



 6 

 

 

 

 

 
Fig. 9 and Fig. 10 summarize the group results. High order  

harmonic and intermodulation couplings were found in all 
subjects, despite individual differences of the output 
frequencies. Subharmonic coupling was shown in 8 out of 11 
subjects. In particularly, subharmonic 1:2 was detected in three 
subjects with the frequency 7 Hz, and in three additional 
subjects with the frequency 29 Hz.  

IV. DISCUSSIONS 
As an extension of nonlinear coherence measures 

(bicoherence and its variants), the CSC framework can assess 
nonlinear interactions in static nonlinearities, i.e. harmonic and 
intermodulation coupling, and nonlinear interactions 
exclusively due to dynamic nonlinearities, i.e. subharmonic 
coupling. Additionally, the CSC framework can also quantify 
the linear interaction (as the first order harmonic coupling). 
Thus, the CSC framework provides a more complete 
description of input-output interactions in the nervous system 
than existing coherence measures (linear coherence and 
bicoherence). Different from generalized phase synchrony 
measures [20, 21], the CSC framework reflects not only phase 
but also amplitude relation between the input and the output; 

 
Fig.6. n:m coherence for the 13 Hz input frequency component. Error bars 
show the 95% confidential interval of the coherence values. Horizontal line 
indicates the Bonferroni corrected significant level. Only significant 
harmonic couplings are detected. 

 
Fig.7. n:m coherence for the 29 Hz input frequency component. Error bars 
show the 95% confidential interval of the coherence values. Horizontal line 
indicates the Bonferroni corrected significant level. Significant subharmonic 
(1:2) and harmonic couplings are detected.  
 

 
Fig.8. Multi-spectral coherence. Error bars show the 95% confidential 
interval of the coherence values. Horizontal line indicates the Bonferroni 
corrected significant level. To avoid the information redundancy with the 
results from n:m coherence, we only present intermodulation coupling 
results. Significant intermodulation coupling is detected in the second 
(squares) and third (circles) orders.  
 

 
Fig.9. n:m coherence for each input frequency for all subjects. Only the 
significant results are indicated (stars). Results are shown as discrete spectra of 
frequency ratio fout/fin (= n:m). Integer ratios (m = 1) correspond to different 
order harmonics, non-integer ratios correspond to subharmonics.  

 
Fig.10. Multi-spectral coherence for all subjects. Only the significant 
second-order (squares) and third-order (circles) intermodulation couplings are 
presented as the discrete spectra of the output frequencies.  
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therefore the CSC framework is more suitable for probing 
stimulus-response interactions regarding both phase and 
amplitude relation in the nervous system [21]. For researchers 
who are interested in phase synchrony, please refer to our 
recent work in [21]. 

We introduced two different types of nonlinear mapping 
from the input to the output in the frequency domain, namely 
n:m mapping and integer multiplication mapping. The n:m 
mapping can occur in a dynamic nonlinear system, such as a 
Duffing oscillator, which can generate subharmonic coupling, 
as well as harmonic coupling. The integer multiplication 
mapping can be present in a static nonlinear system, such as a 
power function, which cannot yield subharmonic coupling. 
When the input is a signal containing a reduced number of 
specific frequency components (e.g. a multi-sine signal), 
integer multiplication mapping can produce intermodulation 
coupling among multiple input frequencies. According to these 
two types of nonlinear mapping, we introduced two metrics 
under the CSC framework, namely n:m coherence and 
multi-spectral coherence to assess different types of nonlinear 
interactions. A practical approach to probing nonlinear 
interactions in the human nervous system is to perturb the 
system using a periodic steady-state sensory stimulus (e.g. 
single-sine or multi-sine stimuli) [11, 24]. By measuring EEG, 
one can get the neural response to investigate the nonlinear 
stimulus-response relation in the central nervous system.    

By using a multi-sine wrist perturbation, we demonstrated 
the application of the CSC framework to investigate the human 
proprioceptive system. Compared to previous studies using 
single-sine stimuli [7, 11], multi-sine stimulus can evoke richer 
nonlinearity including the intermodulation coupling among 
multiple stimulation frequencies [17, 21]. In line with previous 
studies [14, 21, 41], intermodulation and harmonic couplings 
were detected in all subjects, indicating that integer 
multiplication mapping is an important nonlinear mapping in 
the system. Nevertheless, this indication alone does not mean 
the proprioceptive system is static, since in this study 
subharmonic coupling was also found in the majority of the 
subjects (8 out of 11).  

Subharmonic coupling between brain responses and 
steady-state sensory stimuli (e.g. visual flickering) has often 
been reported in the human visual system [3, 7]. Most studies 
using somatosensory stimuli, mainly using tactile stimuli,) only 
reported harmonic and intermodulation coupling (see  [8, 10, 
14, 36, 41] for examples and a brief review is available in [42]). 
To the best of our knowledge, only Langdon and his colleagues 
has reported 2:3 subharmonic coupling between brain 
responses and tactile vibrations [11]. There are only a very few 
previous studies investigating nonlinear interactions between 
brain responses and proprioceptive stimuli [21, 23, 24, 42]. 
None of them has reported subharmonic coupling. 
Subharmonic coupling is typically associated with a complex 
nonlinear dynamics in a system showing bifurcations [12]. This 
kind of system is mediated by the bifurcation parameters such 
as the amplitude of the driving force (here the intensity of 
stimulus). If this kind of nonlinear system is mildly excited, 
then the response will be steady-state and only contain spectral 

components  in the harmonic and intermodulation frequencies 
(see [12] for details). Subharmonic coupling can only be 
detected in the nervous system when the bifurcation parameters 
are in the range that a severely nonlinear behavior (e.g. 
multi-stability) is shown [3, 12, 43].  

To allow examination of the spectral component at 
subharmonics of the driven frequency, the frequency resolution 
of data analysis should be fine enough, and the analyzing 
method needs be suitable for detecting the subharmonic 
coupling. These conditions may not always be satisfied in 
previous studies. For example, the method used in [21] can only 
detect phase coupling in harmonic and intermodulation; and the 
frequency resolution of data analysis in [23, 24] is not fine 
enough for detecting subharmonics. The movement 
perturbation used in [42] has a smaller peak-to-peak value and 
contains only low frequency components. These differences 
may explain why subharmonic coupling was not detected in the 
previous studies but shown in this study.  

In a nonlinear system showing bifurcations, the values of 
bifurcation parameters at which the stability of an equilibrium 
changes (e.g. from steady state to multi-stability) are known as 
the bifurcation points [12]. Considering individual differences, 
the bifurcation points in the human proprioceptive system 
could vary between subjects, which could explain why 
subharmonic coupling was not shown in all subjects. Similar to 
the previous findings in the human visual system [3, 7], 1:2 
subharmonic coupling was the most common subharmonic 
coupling. In this study, we did not find 2:3 subharmonic 
coupling. The difference in the ratio of subharmonic coupling 
between subjects further indicates complex nonlinear dynamics 
in the human proprioceptive system. Since sensory information 
projected to the cortex via thalamus, the nonlinear coupling 
between the stimulus and cortical response could be mediated 
by both the external stimulus and the internal dynamics of the 
thalamo-cortical populations [44, 45].  As such, highly complex 
nonlinear dynamics could be generated [3]. 

V. CONCLUSION 
This work introduces a general nonlinear coherence 

framework for probing nonlinear interactions in the nervous 
system. The cross-spectral coherence (CSC) framework can 
detect nonlinear input-output interactions in the frequency 
domain, indicated as harmonic, subharmonic and 
intermodulation coupling, for both static and dynamic 
nonlinearities. The application of the CSC framework to a 
motor control dataset reports for the first time subharmonic 
coupling between stimulus and EEG response, indicating a 
complex nonlinear dynamics in human proprioceptive system. 
Our empirical findings provide a more complete description of 
nonlinear dynamics in the human proprioceptive system and 
could be a critical pre-requisite for system identification and 
parameter estimation of the human proprioceptive system. 
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