

# Motivation & Research Question

#### BACKGROUND

Reducing residential energy consumption is high on the political agenda Strategies to reduce consumption is modeled through *Building Energy Simulation Tools* 

### Intro duction

#### PROBLEM

Modelling for single buildings is viable but it gets more complex at the urban level Dutch buildings also need to follow the *BENG* standard as of January 1st, 2021



#### RELEVANCE

Development of a Dutch-specific BES tool based on the NTA 8800, while maintaining individual building granularity can help policy makers decision making process

)2

### Objectives



#### OBJECTIVES

Implementing a model for the city-scale analysis using semantic 3D city models

#### OBJECTIVES

Ensuring compliance with *BENG* standards and *NTA* 8800 principles

#### OBJECTIVES

Validating model accuracy

### Terminology

#### NTA 8800

NTA 8800 is the **Dutch norm** for determining the **energy performance** of buildings

Used for assessing the energy performance of the building stock for **Dutch regulation** 



#### Semantic 3D city model

3D city model is a **digital** representation of the urban environment, e.g. building objects, with **geometries** 

Semantic 3D city model can also store contextual and functional meaning, e.g. a building object has a wall surface made out of wood

**CityGML** is a data model that can represent **semantic 3D city models** 

### Research Question



To what extent can a heat demand model be developed that adapts and implements the NTA 8800 to be coupled with CityGML-based semantic 3D city models?

### Methodology

### Research Roadmap



#### Content Analysis

- Read the NTA 8800
- Outline the formulas for space heating demand
- Formulate a mind map to space heating demand calculation
- Data requirement & mapping



#### Model Implementation

- Implement *NTA 8800* principles into a Python script
- Model testing with a semantic 3D city model



#### Results comparison

- CitySim Pro modelling
- Compare NTA 8800 model results with CitySim results, energy performance indicators and CBS groundtruth

## Content Analysis PHASE 1

### Concept Mapping: Space Heating Demand Depends On



### Concept Mapping: Space Heating Demand Depends On

















# Model Implementation PHASE 2

### Model Implementation Steps



### Model Implementation



### Model Implementation: Data management





# Model Implementation: Python computations



# Model Implementation: Assumptions



### Model Testing



### Study Area: Rijssen-Holten

In Overijssel, the Netherlands

There are around 15,005 buildings in Rijssen-Holten

CityGML dataset contains 2588 building in Rijssen

Most enriched semantic 3D city model available



### Test buildings:

#### ID 1742100000006518

Residential building

Built in 1965

Building type: semi-detached house

Perimeter: 26.14 m

Usable area: 90 m2

Energy label C



### Test buildings:

#### ID 1742100000004574

Residential building

Built in 1923

Building type: detached house

Perimeter: 34.45 m

Usable area: 144 m2

No energy label



### Heat Transfer =

Transmission



Ventilation





### Heat Transfer Considerations



#### Heat Transfer Distributions



#### NTA 8800 formulation

 $Q_{\text{ventilation}} = H_{\text{heat transfer coeff. for ventilation}} \cdot (\theta_{\text{indoor temperature}} - \theta_{\text{outdoor temperature}}) \cdot 0.001 \cdot \text{time}$ (1)

 $H_{\text{heat transfer coeff. for ventilation}} = \text{heat capacity of air} \cdot \frac{\sum (\text{airflow})}{3600}$  (2)

#### Other formulations

In which:

 $Q_{ventilation} = 0.33 \times \text{no.}$  air changes per hour×building volume× $\Delta$ temperature diff.

23

### Heat Gain =

Solar gain



Internal gain



### Solar Gain Scenarios

Minimal difference between single and double glazing in summer (7% difference)

High impact of triple glazing on solar gain reduction (65%-110% difference)

Triple glazing offers the best thermal performance, minimizing heat transfer

Single glazing beneficial in winter for reducing heating demand but causes overheating in summer



### Space Heating Demand



Total Transfer

-●- Space Heat Demand

── Total Gains

# Rijssen-Holten Space Heating Demand

| Descriptive statistics | Model results |
|------------------------|---------------|
| Count                  | 324           |
| Mean                   | 117.4         |
| Min                    | 16.8          |
| Max                    | 741.3         |



# Result Comparison PHASE 3

### Model Validation Steps



### Energy Simulation



### CitySim Pro Results

#### Input data:

- Horizon file (.HOR)
- Climate file (.CLI)
- CityGML building geometries from 3D BAG
- Building characteristics from TABULA existing state

| Descriptive statistics | <b>Existing State</b> |
|------------------------|-----------------------|
| Count                  | 324                   |
| Mean                   | 260.7                 |
| Min                    | 11.5                  |
| Max                    | 575.7                 |



### Other collection for comparison



CBS gas consumption 2021 data per building type for Rijssen-Holten

Voorbeeldwoning 2022 heat demand per building type and year

### Results Comparison





Average Heating Demand for TOEK

### Comparison

Using statistical metrics for entire Rijssen-Holten

| Metric | CitySim Pro vs model<br>values | CBS ground truth vs<br>model values | Voorbeeldwoning bench-<br>mark vs model values |
|--------|--------------------------------|-------------------------------------|------------------------------------------------|
| MAE    | 148.9                          | 19886                               | 39.8                                           |
| RMSE   | 162.8                          | 31862                               | 63.5                                           |

For the two test buildings





| Statistic                                         | 1742100000006518 | 1742100000004574 |
|---------------------------------------------------|------------------|------------------|
| Total space heating demand kWh/m²/yr in the model | 218.95 ~27%      | 178.6 ~43%       |
| Total heating demand kWh/m²/yr inCitySim Pro      | 278.6            | 254.8            |



### Energy Label

Predominantly classified buildings as energy label A (186 buildings) or B (78 buildings)

Estimated far lower energy label values

Model implementation suggests Rijssen-Holten's buildings perform better

Lower expected space heating demand results in model implementation

### Final Remarks

### Discussion

#### CURRENT SITUATION

The Dutch built environment is behind in reducing energy consumption

EU pressure to decarbonize

Need for structural adjustments in built environment

#### MODEL

Development of a space heating demand model following *NTA 8800* 

Integration with CityGML-based semantic 3D city models

#### KEY INSIGHTS

Low and constant heat transfer through ventilation

Seasonal variation in heat transfer by transmission

Solar gain patterns as expected; varying impact of window quality on energy savings

### Research Implications

#### VALIDATION

Model underestimated space heating demand

Similarities with benchmark estimates, deviations from historical data

Need for refinement and validation with diverse data sources

#### DISADVANTAGES

Simulates energy flows but should be cautioned due to limitations, predicts lower space heating demand than expected

#### ADVANTAGES

Can guide renovation strategies, e.g., improving window quality Rapid computation (5 minutes for Rijssen-Holten) Less sensitive to nonwatertight geometries Tailored for Dutch building regulation

### Limitations & Future Research:



#### Possible improvements:

- Focus on refining model input data
- Test with a solar radiation model
- Developing a library of ventilation system typologies to addressing the variability in airflow rates
- Alternatively, implement ventilation loss formulation considering building volume
- Test impact of heat transfer through windows and doors

### Conclusion



#### AIM & METHOD

Develop BES tool tailored to the **Dutch context** for **city scale analysis** for policymakers to estimate space heating demand

#### FINDINGS

NTA 8800 model predicts space heating demand **lower** than expected, potentially due to **missing components** 

#### RECOMMENDATIONS

Incorporate the **heat transfer through windows and doors** and modify current **ventilation** implementation

01

 $\bigcirc 2$ 

03

