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Abstract
The project “Real-time data-driven maintenance logistics” was initiated with the purpose of bringing
innovations in data-driven decision making to maintenance logistics, by bringing problem owners
in the form of three innovative companies together with researchers at two leading knowledge
institutions. This paper reviews innovations in three related areas: How the innovations were
inspired by practice, how they materialized, and how the results impact practice.
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1 Introduction

Companies in maintenance logistics aspire to make better use of the increasing availability
of real-time data from the many (inter)connected devices within the internet of things
(IoT). Many such companies have in recent years taken a first key step in this direction
by investing substantially in a data management infrastructure that ensures central and
real-time availability of the raw data generated by the assets as well as key information
on maintenance resources; e.g. the real-time location and status of field service engineers
and spare parts, the status of repair centers, the availability of remote service engineers in
the call center, etc. Companies are eager to leverage this investment to reduce cost and
increase operational asset availability, by transitioning from traditional static maintenance
logistics plans based on rigid task intervals to dynamic maintenance logistics policies fueled
by real-time data.

Against this background, in 2018 the project “Real-time data-driven maintenance logistics"
was started, as a collaboration between two leading knowledge institutions in the area of
data-driven maintenance logistics (Eindhoven University of Technology and Delft University
of Technology) and three companies at the forefront of innovations in maintenance logistics:
Philips, Fokker Services (FS), and Dutch Railways (NS). The objective of this project
according to its proposal was set in two steps:
1. The dynamic identification of actions from real-time data.
2. Organization of the dynamic execution of these actions by appropriately allocating the

resources to accomplish them.
A different way of looking at it, based on the outcome of multiple consortium-wide discussions
and following the design of an award-winning poster [14], would be the first step requiring a
prediction that could be followed up by a prescription. The second step would design the
process for this prescription. Hence, the outcome of our research would result in algorithms
that identify the appropriate actions and a semi-structured data-driven process model that
dynamically accomplishes such actions.

Big data played an important role, in the following sense. All three companies have
large amounts of data available, and seek to make their operations data-driven. However, to
achieve this, planning must become more nimble, requiring different planning algorithms
and approaches. Hence, the general development of data-driven operations was the key
motivation for the project.

To keep the project relevant, in the project execution we took a more flexible approach
to identifying research topics. In particular, the project featured meetings with the entire
consortium, approximately every 6 months. During those meetings, we reported the results
of the previous period, as well as plans for the coming period. More importantly, companies
provided feedback on those plans, and contributed ideas on how the various developments
linked to challenges within each company. Those ideas enabled researchers to refine and
make concrete the research directions set out in the project proposal. This led to various
concrete research challenges, that were actively researched by various researchers funded by
the project. Amongst others, we researched
1. How to include integer constraints in expensive optimization problems.
2. How to optimize information gathering when decision making.
3. How to learn from data to do maintenance prognostics and routing.
For each of these endeavors, we seek to highlight:

(i) How the challenge arose from the interaction with the participating companies.
(ii) How the challenge was formalized into research.
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(iii) How data was used/collected, including adjustments and enrichments.
(iv) Which algorithms existed and which new algorithms were developed in the project.
(v) Experiments and results.
(vi) The learnings and practical validation with the companies.

We discuss these 6 elements for integer constraints in expensive optimization problems in
Section 2, for optimized information gathering in Section 3, and for learning maintenance
prognostics and routing in Section 4. We reflect and conclude in Section 5.

2 Integer constraints in expensive optimization problems

2.1 Domain

The Train Unit Shunting Problem (TUSP) is a complicated planning problem in railway
operations, where trains are moved to a shunting yard to be maintained, cleaned and inspected,
see Figure 1. The research group at NS has several algorithmic solutions available for this
problem, each with its own set of parameters that need to be tuned correctly. However,
tuning these parameters requires not just domain knowledge of railways, but also knowledge
of the planning algorithms. Such broad knowledge is difficult to find in a team, let alone
in one employee. Automated support for tuning the parameters of planning algorithms is
therefore very relevant to achieve top performance in planning problems.

An issue is that tuning the parameters of planning algorithms, such as the algorithms
used for TUSP, is very time consuming, and can be regarded as an expensive optimization
problem due to the required computational resources. Predicting the performance of certain
parameter values in advance would help in the tuning process. This can be done with
surrogate-based optimization (SBO) techniques, which are particularly well suited for solving
expensive optimization problems [17, Chapter 10]. These SBO techniques use machine
learning to predict the performance of parameter values and to find the optimal values.

Traditional SBO techniques assume that parameters can be tuned to any real-valued
number between a lower and upper bound. Some parameters in TUSP algorithms, however,
are integer-valued, meaning that there is only a finite number of possibilities available for
them. We call such a restriction an integer constraint. How to best deal with integer
constraints in expensive optimization problems is an open research question.

Figure 1 Example of a train shunting yard considered in the TUSP, from www.sporenplan.nl.
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2.2 Modeling

Motivated by the problem of parameter tuning of TUSP algorithms, we study expensive
optimization problems in general, particularly those with integer constraints. The objective
(e.g., algorithm performance) is treated as a black-box and may suffer from noise, for example
due to randomness in the TUSP algorithms or disturbances when executing the proposed
solution. This way, the problem is reduced to tuning the parameters in such a way that the
objective is maximized.

2.3 Data

We consider several simulators and parameter tuning problems that are expensive to run:
a robust Traveling Salesman Problem, a wind farm simulator, a pipe shape simulator, an
industrial gas filter simulator, a hospital simulator, and hyperparameter tuning for an
XGBoost machine learning model. These have been implemented in an open-source software
package, EXPOBench [5]. Since gathering data from these simulators is computationally
expensive, all data resulting from the project has been made available open-source [7],
providing a new big dataset to the community. Additionally, the parameters of several TUSP
algorithms have been tuned automatically in MSc projects, namely two TUSP solvers [21, 20]
and a TUSP instance generator [16].

2.4 Algorithms and experiments

We compared with the following baseline SBO techniques: Bayesian optimization with
Gaussian processes [19], SMAC [15], HyperOpt [2], CoCaBO [18], and DONE [4]. The DONE
algorithm has been adapted such that it can deal with integer constraints, leading to two
new techniques that were developed during the project: IDONE [8] and MVRSM [6].

Experiments consisted of running different SBO techniques on different simulators and
parameter tuning problems. An open-source software package (EXPOBench) was created for
this purpose [5], and the resulting dataset was also publicly released.

2.5 Practice

Domain experts can now tune the parameters of their algorithms even when different types
of parameters (continuous, integer) are involved, due to the newly developed techniques,
and different solutions are available for domain experts to compare. Furthermore, we have
obtained valuable insights into the relation between the type of SBO algorithm and the type
of parameters in the problem, providing more guidelines on when to use which technique.
The first results on algorithms from NS showed the potential for improvement in parameter
tuning, but the algorithms need to be made more consistent before they can really benefit
from the research. More research into the generalization aspects of the SBO algorithms is
also required, to make sure they can operate in a variety of situations. Besides using the
newly developed techniques at project partner NS in MSc projects, these techniques have also
been applied in other places such as Redeia in Spain, and in other software packages such as
fast CMA-ES [26]. The research has been presented at several companies, conferences and
workshops.
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3 Optimizing information gathering

3.1 Domain

Work in maintenance is often outsourced to specialized suppliers, and the process of finding
and safeguarding the availability of such suppliers, which in turn enables those suppliers to
engage in capacity management, is information- and knowledge-intensive [24, see also]. In
particular, operators of high-tech equipment such as trains and aircraft send out quotations
to a diverse range of potential suppliers. Processing such quotations is time consuming.
For suppliers, not every quotation is sufficiently interesting to invest the time required to
process it.

Most time is invested in gathering the information based on which the decision, to
quote and what to quote, is made. There is no fixed procedure for this, since every quote
is perceived to be unique. This information gathering costs time and money. Therefore,
companies such as FS require an approach that helps them guide their employees during
the quotation process, by either recommending when to stop since the quote indicates a
likely loss for FS, or by recommending which information to keep collecting. Three key and
interlocking challenges in the efficient processing of quotations are:
1. How to avoid the collection of information that is not useful.
2. How to ensure that sufficient information is gathered before the deadline for submitting

a quote passes.
3. The order in which the information is collected should be according to what is the most

valuable information to optimize the quote.

3.2 Modeling

The challenge is approached via a combination of conceptual modeling and optimization.
From the conceptual modeling point of view, we adopt an industrial modeling language
for dynamic information-centric business processes denoted by CMMN (Case Management
Modeling and Notation). Choosing an industrial standard for our approach helps transfer the
research into practice. We introduce an approach that can model decision-intensive processes,
or more specifically quotation processes, in CMMN. Moreover, we introduce additional inputs
such as an information structure which represents the business case that is being developed as
part of submitting a quote, i.e. the projected profit as a function of the information retrieved.
The result of this part of the model is defined as an Optimizable Decision-Intensive Process
(ODIP) consisting of a CMMN representation of the process according to a certain set of
constraints that allow for the following approach.

To optimize information retrieval in this ODIP, we develop an approach to convert the
CMMN model into a Markov Decision Process (MDP). An MDP is specifically useful in
sequential decision processes with uncertain environments, in which the effect of decisions
is also uncertain. Given the uncertain outcome of a quotation and the uncertain input of
information, an MDP is highly appropriate to model such quotation process optimization
problems and more in general ODIPs. Together, the ODIP model and the MDP derived
from it, result in a decision support policy that supports the knowledge worker in making the
best decision while going through a quotation process. This decision support policy has also
resulted in an online demonstration tool in which we show the effectiveness of the complete
approach.

Commit2Data
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Figure 2 A visualization of the demonstration tool that provides decision support to knowledge
workers in a quotation process. (OptimizingInformationGathering).

3.3 Algorithms
To optimize the information gathering, we adopt an algorithm for solving the MDP generated
from the CMMN process. Using the output of the algorithm, users are recommended to stop
the process (since a loss is expected or more information will not result in higher profits)
or to continue and collect a specific piece of information. The support is highly flexible:
Whenever the user overrides a recommendation, for example because of tacit knowledge
based on experience that is not clear from the data, the algorithm adapts and yields new
recommendations appropriate for the path adopted by the user. For small size ODIPs,
we are able to find the optimal solution since there is a finite horizon to these problems,
using backward recursion. For large size problems, we have introduced a deep reinforcement
algorithm to still find feasible and good-performing policies.

3.4 Data and experiments
The main inspiration that led us to this model comes from the quotation optimization problem
at FS. Based on their definition of the process, their information inputs (which were simplified
to keep the true information anonymous and the solution tractable) and their goals, we have
constructed a business case that served as a first experiment (see Figure 2). In this figure, one
sees a decision process where multiple pieces of information have already been collected (filled
green) and where the green outlined cases are information that can be collected if deemed
necessary. The bottom right part of the tool gives an insight in the expected profit when
collecting a certain type of information. This experiment allowed us to show the feasibility

https://heshuis.github.io/optimizinginformationgatheringtool/
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of the full approach for an existing decision-intensive process. Subsequently, we show the
effectiveness and efficiency of our policies in a full-factorial experiment vis-a-vis relevant
benchmarks.

3.5 Practice

Using the developed approach, considerable time can be saved when developing quotations.
The challenging part is the development of concrete business cases; ideas for this have been
developed both at FS and at companies not participating in the project, such as a large
logistics service provider in the southeast of the Netherlands. Another issue is scalability. In
solving the optimization problem as a MDP, a challenge is that the number of states grows
exponentially in the size of the problem. In successive research, we are actively exploring
various strategies to tackle this. In one direction, we decompose an ODIP into subproblems
based on decision hierarchy. Large decision problems often contain multiple subdecisions
that allow us to use this approach. In the other direction, we introduce solution methods
that can deal with significantly larger state spaces such as deep reinforcement learning. Such
methods increase the applicability of the model to a wider range of problems.

4 Learning maintenance prognostics and routing

4.1 Domain

Many prediction and optimization problems arise to obtain policies that maintain a network
of industrial assets with minimum maintenance and travel costs. Traditionally, the prediction
and optimization problems are decoupled from each other, and prediction uncertainties are
incorporated into the decision making models; see [1] for a recent example in the context of
maintenance. Furthermore, the methods for solving the prediction and optimization problems
rely on the modeling and solution capabilities of decision makers, which can be inaccurate
or inefficient for the problems at hand. The motivation of this work is to move from this
traditional view to the adoption of data-driven methods based on machine learning leading
to accurate and efficient solutions. The scope of our work includes the problems in two
distinct areas, prognostics and routing, that come together in the maintenance of a network
of industrial assets.

4.1.1 Prognostics

The field of prognostics focuses on predicting the remaining useful life (RUL) of equipment,
which is critical for optimizing maintenance schedules and minimizing downtime. One of
the primary challenges in prognostics is the difficulty in determining the best time to repair
a given asset. In many cases, sensor data from equipment is available; however, parsing
this information can be time-consuming and complex due to the high volume and variety
of data streams. Furthermore, for newly introduced equipment, run-to-failure data is often
unavailable, making it even more challenging to accurately predict the RUL. On the other
hand, historical (run-to-failure) data may exist for older assets, providing valuable insights
for estimating their RUL. Hence, the development of advanced prognostic algorithms capable
of leveraging both sensor data and historical data is crucial for optimizing repair schedules
and improving the overall reliability of equipment.

Commit2Data
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4.1.2 Routing
In the context of equipment maintenance and repair, routing can be formulated as a Traveling
Salesman Problem (TSP) where the goal is to determine the most efficient route for visiting
a network of assets that require inspection or maintenance. Figure 3 illustrates the solution
of a TSP instance. Given the combinatorial nature of the TSP, finding an optimal solution
is computationally intractable for large-scale problems. Therefore, we propose adopting a
machine learning (ML) perspective to learn improvement heuristics, which can be used to
search near-optimal tours. By employing ML techniques such as reinforcement learning,
we aim to develop algorithms capable of efficiently exploring the possible solutions and
converging to high-quality solutions for the routing problem. This approach not only enables
more effective utilization of available resources but also the incorporation of asset prognostics
into the routing decision making process.

Best Improvement First Improvement

TSP Solution

cost: 4.40

cost: 3.54 cost: 3.90

Figure 3 A Traveling Salesman Problem solution. Indices represent the order in which nodes,
representing locations in the network, are visited.

4.2 Modeling
In the field of prognostics, our focus is on developing methods that require minimal human
intervention and do not necessitate prior knowledge of the underlying failure mechanisms. The
proposed methods are designed to leverage historical run-to-failure data, which is assumed
to be available for older equipment, and sensor data for the assets of interest. By modeling
this setup as a transfer learning problem, we aim to use the assets with both sensor and
run-to-failure data to improve prognostics assets with only sensor data [13]. To effectively
capture dependencies in the sensor data, we employ machine learning techniques [12].

In the context of routing, we initially examine classic TSP improvement heuristics as a
starting point and baseline for our proposed methods. We hypothesize that a look-ahead
policy based on simple operators, can outperform a short-sighted one. Our objective is to
learn such policies autonomously, relying solely on executing actions and observing their
long-term results. Moreover, we do not have access to an exact solver, as generating optimal
tours can become computationally intractable for large-scale problems [9, 10]

4.3 Data and experiments
In the context of prognostics, we utilize simulated data from aircraft turbofan engines
operating under various conditions and fault modes. The experimental setup consists of
four datasets (i.e., FD001-FD004), each containing different combinations of fault modes
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and operating conditions. Figure 4 illustrates two normalized sensor values just before a
failure occurs. In each experiment, one dataset is designated as the source domain, and we
attempt to learn the RUL of the remaining three datasets (target domains), which have
different fault modes and operating conditions. This approach allows us to test the model’s
effectiveness in transferring knowledge across operating conditions and fault modes. For each
target domain dataset, we assume no access to the observed RUL of the assets and attempt
to make predictions based solely on the sensor data from the target domain and observed
RUL information from the source domain.

0.0 0.5 1.0

FD001 (1 OC, 1 FM)
FD002 (6 OC, 1 FM)
FD003 (1 OC, 2 FM)
FD004 (6 OC, 2 FM)

(a) Sensor A.

0.0 0.5 1.0

FD001 (1 OC, 1 FM)
FD002 (6 OC, 1 FM)
FD003 (1 OC, 2 FM)
FD004 (6 OC, 2 FM)

(b) Sensor B.

Figure 4 Distribution of normalized sensor values before a failure. Sensor distributions differ for
the same assets under different operating conditions and fault modes.

For the routing experiments, we consider simulated data containing TSP instances of
various sizes (20, 50, 100). We construct a simulator capable of handling a batch of TSP
instances and making decisions corresponding to improvement operators based on 2-edge
swaps. Data is collected following policies in the simulator, whereby a sequence of operators
creates a history of TSP solutions and selected operators for a batch of TSP instances. We
train and evaluate the proposed methods for different TSP sizes, learning policies for a
50-node TSP and evaluating on a 100-node TSP to assess how well the model generalizes
to different sizes. We repeat a similar setup for other routing problems such as the Vehicle
Routing Problem. Additionally, we test the proposed method on real-world TSPLib instances,
which are not seen during the training process, in order to evaluate the model’s generalization
to instances with different location distributions.

4.4 Algorithms
In the field of prognostics, we develop a deep transfer learning algorithm which means we apply
deep learning techniques in transfer learning algorithms. To evaluate the performance of the
proposed algorithm, we compare it with various methods, such as transfer component analysis
(TCA), and correlation analysis (CoRaL). Furthermore, we investigate the effectiveness of
the proposed algorithm in comparison to methods trained only on the source domain (Source-
only), and standardized data approaches.

In the routing context, we develop a deep reinforcement learning algorithm designed to
select 2-edge swaps for the TSP, the multiple Traveling Salesman Problem, and the Vehicle
Routing Problem. A 2-edge swap means that we swap two parts of the initial route and check
if this improves the performance. We compare the performance of this algorithm against
several benchmarks, including exact solvers, classic heuristics, and both supervised and

Commit2Data
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reinforcement learning methods. This extensive comparison allows us to assess the relative
strengths and weaknesses of our proposed approach, as well as its potential for application in
real-world routing and scheduling problems.

4.5 Practice

In the context of prognostics, domain experts can benefit from our proposed deep transfer
learning algorithm when faced with similar business cases, such as the presence of RUL
labeled data for older assets and the need to obtain predictions for new assets that lack
observed failures. As part of the project, [25] has applied our method in a use case at FS,
and investigated how it can improve health state predictions of a specific aircraft component
under varying working conditions. The strength of our method lies in its ability to be applied
even in the absence of information about the underlying degradation of assets. Through the
evaluation of test data, we have demonstrated that our proposed method outperforms other
off-the-shelf transfer learning algorithms and yields more accurate predictions than training
solely on the source domain.

In the realm of routing problems, our proposed heuristics offer domain experts an effective
solution for TSP-like problems. The learned policies outperform other hand-crafted heuristics
while operating under a similar computational budget. A notable advantage of our algorithm
is its capacity to be applied in batches, enabling the efficient simultaneous solving of multiple
instances. Experimental results further reveal that our algorithm can be employed to solve
more general TSP instances, and can be adapted to fit specific instance distributions depending
on the application, such as drilling problems, cargo delivery, maintenance scheduling and
chip design.

Motivated by the success of deep reinforcement learning for solving the TSP efficiently,
the approach has been extended for a real-life service-logistics use case of Philips, where
the routing of a field service engineer is optimized in the presence of imperfect alerts on
the health condition of physical assets [11]. Based on the discussions with Philips, we
developed the Dynamic Traveling Maintainer Problem with Alerts (DTMPA) on asset
networks. In the DTMPA, we rank the quality of information retrieved from the alert using
various information levels. We propose a wide range of heuristics for the DTMPA to cover
each information level. The numerical results show that the deep reinforcement learning
heuristic outperforms the others, requiring least information. The DTMPA is extended to
the case of multiple field service engineers who must coordinate actions to minimize asset
unavailability whilst maximizing coverage to anticipate future events in the network [22]; see
Figure 5 for a schematic depiction of that case. We employ an iterative deep reinforcement
learning algorithm to directly improve sophisticated dispatching strategies by learning e.g. a
repositioning strategy from simulated data. A key advantage of this approach is scalability
since data collection can be distributed over multiple compute nodes, which enables us to
solve industrial-scale problems in a reasonable time. Numerical experiments based on the
Dutch hospital network show that the algorithm quickly produces near-optimal policies and
the trained policies demonstrate robustness against minor model modifications.

5 Conclusion and reflection

In this paper, we discussed the various research endeavors that were part of the project
“Real-time data-driven maintenance logistics”. Reflecting on the process, we next list a few
observations and learnings we obtained from this project.
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(a) Failure: When assets fail,
available engineers must be dis-
patched efficiently.

(b) Alert: When an alert is is-
sued, a risk urgency assessment
decides whether to dispatch an
engineer.

(c) Repositioning: Idle engi-
neers are proactively reposi-
tioned to be closer to future
alerts and failures.

Figure 5 A multi-maintainer service-logistics model: Service engineers respond to IoT-generated
alerts of various degrees of severity that must be appropriately ranked considering risk, urgency and
opportunity.

First of all, working together with companies worked well for this type of project. The
companies each bought into the project by promising a monetary contribution. As a
consequence, they each had the objective to get something out of the project, and project
participants from the companies were aligned on this with senior management. As a
consequence, company representatives were interested in the results and actively participated
in project meetings. A good example of this is the award-winning poster [14], which was
built based on intensive consortium-wide discussions.

The company input steered the direction of the research on various occasions, and in
some cases, this led to research that is challenging theoretically, but that also has a high
practical value. A key example is the work on transfer learning [13] for predicting remaining
useful life via deep domain adaptation. This work was inspired by a comment from one of
the companies that they had ample data for older systems, but not so much for new ones,
and that it would be useful to be able to use data for the old systems to predict failures for
the new systems. This work unlocked a whole stream of literature on precisely that subject,
exactly because it is theoretically challenging. Also, these ideas turned out to be applicable
in the company setting [25]. Similarly, the use case on efficiently dealing with requests for
quotations was a basis for work that is interesting both in practice and in theory [24, 23].

Some work was useful in ways that were not initially foreseen. For example, the surrogate
models discussed in Section 2 were not designed with problems in maintenance logistics in
mind, but turned out to be really useful in that context. Relatedly, we note that while each
of the junior researchers on the project had their own focus, a substantial overlap both in
methodological interests and in problem domain enabled them to learn from each other,
which strengthened the entire team and enabled us to deliver interesting interdisciplinary
research insights, e.g. the comparison of various traditional optimization techniques and deep
reinforcement learning by [10], and the first Traveling Salesman Problem competition [3]
which similarly bridges disciplines and was organized via a cooperation within the consortium.

If we look back at the two-step objective of this project we can conclude that we have
achieved our goals in both steps. In Sections 2 and 4, we have shown some of the achievements
related to the first step regarding identifying actions from real-time data. Also, in Sections 3
and 4, we show how actions can be implemented into a decision making process where we
aim at dynamically executing them.
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6 Guidance for future collaborative projects

Reflecting on our project’s journey, several key strategies stand out as instrumental for the
success of similar collaborative ventures. A critical element was ensuring company buy-in,
particularly through promised contributions. This commitment significantly boosted their
ongoing engagement and helped align their objectives with the project’s goals. Regular,
well-structured consortium meetings also played a vital role. These gatherings maintained
company interest and facilitated real-time alignment with their evolving needs, proving
essential for sustained collaboration.

Additionally, our project’s flexible planning approach, which emphasized broader goals
over specific objectives, allowed us to nimbly adapt to changes and unexpected developments
within the companies. This flexibility was key in marrying theoretical exploration with
practical applicability, ensuring the project’s relevance and responsiveness.

These insights offer valuable lessons for future research initiatives aiming to bridge the
gap between academia and industry. Strategic engagement, consistent communication, and
adaptable planning emerge as fundamental components for fostering effective partnerships
and achieving meaningful outcomes in such collaborative settings.
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