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Multilevel Deep Neural Network Approach for
Enhanced Distributed Denial-of-Service Attack

Detection and Classification in Software-Defined
Internet of Things Networks

Yawar Abbas Abid , Jinsong Wu , Senior Member, IEEE, Guangquan Xu , Member, IEEE,
Shihui Fu, and Muhammad Waqas

Abstract—With the increasing rates of interconnected Internet
of Things (IoT) devices within software-defined networking
(SDN) environments, Distributed Denial-of-Service (DDoS)
attacks have become increasingly common. As a result of this
challenge, novel detection and classification methods must be
developed based on the unique characteristics of SDN-supported
IoT networks. This article proposes a novel approach to detect-
ing and categorizing DDoS attacks that have been optimized
specifically for such environments. As part of our methodology,
we integrate convolutional neural networks (CNNs) and long-
short-term memory (LSTM) models into a multilevel deep neural
network architecture. With this hybrid architecture, complex
spatial and temporal patterns can be automatically extracted
from raw network traffic data to facilitate comprehensive anal-
ysis and accurate identification of DDoS attacks. We validate
the efficacy and superiority of our proposed approach over
traditional machine learning algorithms by conducting rigorous
experiments on real-world data sets. Our findings underscore
the potential of the multilevel deep neural network approach as
a robust and scalable solution for mitigating DDoS attacks in
SDN-supported IoT networks. By improving network security
and resilience to evolving threats, our methodology contributes to
safeguarding critical infrastructures in the era of interconnected
IoT ecosystems.
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I. INTRODUCTION

THE DISTINCT nature of Internet of Things (IoT)
networks, characterized by heterogeneous nodes and

devices limited by resources, requires a unique security
approach that differentiates them from traditional networks.
Given the varied vulnerabilities in IoT networks, various types
of Distributed Denial-of-Service (DDoS) attacks can be exe-
cuted using different methods, with varying impacts [1], [2].
With the substantial growth of the Internet and its excessive
exploitation as a commercial platform, numerous network
attacks have emerged [2]. One of the most common attacks is
DDoS [3]. These attacks have targeted major websites, such as
Amazon, eBay, and Yahoo, attracting much public attention,
as reported in [4]. These attacks affect network services by
the excessive number of requests, which causes rejection for
an actual network user. If multiple systems are used to launch
such attacks, it is known as a DDoS attack [5]. Detecting and
managing these attacks can be a challenging task [6].

Very innovative machine learning (ML) technologies, such
as deep learning that integrates software-defined networking
(SDN) and sophisticated deep learning algorithms, are a persis-
tently used security innovation [6]. SDN consists of the current
generation of networks, which makes them more competent
than previous networks, as it ensures various simplifications
in the task of network management and troubleshooting and,
consequently, takes an essential position to be implemented.
Blending the implications of convolutional neural networks
(CNNs) with RL-based techniques and other ML strategies in
SDNs infrastructure can be purposefully utilized to administer
real devices. The addition of these two strategies can enhance
the detection efficiency of DDoS attacks to ensure the secu-
rity of IoT networks [7] Whereas, intelligent deep learning
methods would also improve the safety of SDN-IoT networks
by giving them strong defenses against DDoS threats. In
this sense, a network made up of IoT objects includes a
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variety of physical objects, including sensors, communica-
tion components, software, and other technologies to provide
the connection for the exchange and sharing/processing
of data among users, the cloud, and systems over the
Internet [8].

SDN is a streamlined concept of network systems that ful-
fills the unfulfilled desires of obsolete hardware-based network
systems. SDN builds a flexible, soft, and programmable
framework that covers packets and dataflow, applications, and
control planes [9]. The control plane in the SDN gives access
to the data plane for configuration and management, which
is the place where routers, switches, modern devices, or any
other equipment such as that is placed. The data plane devices
get the information from the control plane where the controller
programs the rules that are responsible for a packet to be
transmitted. The controller links the processing units of the
application alongside the networks through which they are
transmitted. In SDN, these planes are exploited to break the
plug where the decision making and forwarding functions are
separated from each other.

Despite the many advantages of SDN, there are drawbacks,
including scalability, dependability, and security issues. One
of the security risks is its susceptibility to DDoS attacks,
as it uses a centralized controller. When a switch receives a
packet from an unmatched Internet protocol (IP) (from the
flow table), it is automatically sent to the controller. The
controller then sends a flow rule for this IP to the device,
usually a switch. If an attacker uses the default behavior
and directs most packets from various IP addresses, these
packets will be transmitted to the controller. This traffic will
occupy all the controller’s resources, making it impossible
for legitimate users to access the system. These issues make
SDNs vulnerable to DDoS attacks. However, many ML
algorithms have been proposed to secure SDN networks.
These ML algorithms provide more efficient, intelligent, and
dynamic solutions for the optimization, management, and
security of SDN networks [10]. The elucidating cybersecurity-
promulgated malware taxonomy (ECMT) framework is widely
used to enhance cybersecurity in IoT environments, preventing
intrusion, protecting information, deterring cybercrime, and
reducing energy consumption. Using established criteria or
thresholds applied to aspects of network traffic is one method
to detect DDoS attacks [11], [12], [13]. These rules help to
spot unusual activity that can point to an attack, including
sending out an alert when the volume of incoming traffic from
a certain IP address exceeds a predetermined threshold in a
short amount of time. These are modest to understand and
implement, but may not be able to detect complex or dynamic
DDoS attack patterns. Furthermore, the high number of false
positives or false negatives produced by these technologies
can be challenging regardless of whether there are valid
traffic changes or complicated assault tactics meant to avoid
detection.

Several studies on DDoS detection have been carried out uti-
lizing custom characteristics derived from network traffic data
and conventional ML techniques [14], [15], [16], [17]. These
attributes consist mostly of payload properties, statistical data
obtained from network flows, or information from packet

headers. Although these methods can yield respectable results
in some situations, they are not always suitable for capturing
the intricate patterns and dependencies in network traffic data.
Furthermore, the quality and applicability of the features
created manually that may not always accurately reflect the
subtleties of DDoS assault behavior have a significant impact
on how effective these algorithms are.

CNNs and shallow neural networks [18], [19], [20], [21],
deep learning algorithms have shown potential to identify
spatial patterns, but they have difficulty handling encrypted
communication, evasion tactics, and dynamic traffic that
attackers use in distributed DDoS operations. Consequently,
to increase detection accuracy and decrease false positives
for a reliable DDoS detection method, this research suggests
combining long-short-term memory (LSTM) and CNN tech-
niques. The main contribution of this research is to examine
an accurate and effective DDoS detection method in SDN that
can recognize attacks instantly.

The LSTM and CNNs are combined in the LSTM-CNN
hybrid technique, which takes advantage of CNN’s superior
spatial pattern recognition skills and LSTMs’ temporal ana-
lytic capabilities. The model can now automatically identify
relevant elements from unprocessed network traffic data, cap-
turing the intricate temporal and spatial correlations typical
of DDoS attacks. Compared to conventional methodologies,
the hybrid LSTM-CNN strategy is resistant to changing
attack tactics. It is capable of processing massive amounts
of data quickly and effectively. Additionally, by continuously
learning from the incoming data and utilizing deep learning
techniques, the MLDNN methodology reduces false positives
and improves overall detection accuracy. The following are the
main contributions of this article.

1) This article presents a technique for detecting DDoS
attacks and classifying them according to different pro-
tocols. The technique uses a combination of deep CNNs
and LSTM models, which provide temporal and spatial
analysis capabilities, thus strengthening the effectiveness
of the detection.

2) The hybrid approach LSTM-CNN is proposed to auto-
matically learn features from raw network traffic, adapt
in real time, and effectively identify attack vectors,
reducing false alarms and minimizing disruptions to
network operations.

The suggested approach has a number of benefits. For
example, the hybrid method provides real-time detection
capabilities that minimize the impact of DDoS attacks on
network infrastructure and services. Additionally, the proposed
approach does not rely on a single type of information, making
it an exceptional tool for detecting DDoS attacks in ever-
changing network environments. Its adaptability helps it learn
from incoming data and adjust to subtle changes in traffic
patterns.

The remaining article is organized as follows. Section II
discusses the latest relevant research works in the chosen area.
Section III describes the overall proposed approach of the
applied methods with the model flow structure and parametric
values. Section V provides the relevant experimental results
and discussions. Section VI concludes this article.
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II. RELATED WORKS

The identification and categorization of DDoS attacks
within SDNs have become crucial research areas due to the ris-
ing threat levels. Recent studies have significantly contributed
by introducing innovative methods and approaches. This
section offers a concise overview of DDoS attack detection
and classification in SDNs, utilizing diverse strategies. These
methods utilize traffic attributes within SDNs to effectively
detect DDoS attacks, improving accuracy by analyzing traffic
patterns and distinguishing between normal and malicious
activity. Additionally, employing deep learning techniques for
DDoS attack detection and classification in SDNs has proven
highly effective, accurately identifying various attack types.
Notably, one study [12] focused on utilizing machine learning
(ML) techniques to detect anomalies associated with DDoS
attacks in SDNs, thereby enhancing detection capabilities
by recognizing abnormal network behavior. This approach
integrates flow-based, protocol-based, and behavioral-based
detection methods to precisely identify and mitigate DDoS
attacks within SDNs.

Through research [16], it has been shown that deep
learning models are efficient. This approach improves detec-
tion accuracy by utilizing SDN’s dynamic network control
capabilities and machine learning algorithms. Deep learn-
ing can correctly classify different categories of DDoS
attacks. The study [22] examined how ML techniques can
be adapted for DDoS attack anomaly detection. Spotting
out the SDN that will be most helpful to increasing the
detection capabilities of SDNs. Unconventional network activ-
ities that may be Denial-of-Service (DoS) attacks. DDoS
attacks can be detected and mitigated quickly and accurately
through SDNs.

The DDoS attack detection methods via SDN extends detec-
tion capabilities by identifying abnormal network activities
related to DDoS attacks. First, to correctly identify and contain
DDoS attacks in SDNs, Abdulqadder et al. [17] proposed
a multilayered detection architecture that utilizes flow-based
detection, protocol-based detection, and behavior-based detec-
tion. For the sake of enhancement of detection accuracy, the
research [21] created a hybrid attack detection framework
based on ML algorithms and SDN’s dynamic network control
features. Additionally, on the other hand, the reinforcement
learning which [23] illustrates how is very capable of making
the quick adaptations to the ever-changing attack circum-
stances and making the timely mitigation decisions. And, it
provided a very deep reinforcement learning method to detect
and decrease DDoS attacks in the SDN nets. A DDoS-resistant
SDN architecture has been proposed by [24] that combines
the random forest (RF) and also flow entropy algorithms. The
method uses flow-level information to derive the entropy and
furthermore utilizes an RF classifier [25]. A deep-learning-
based scheme for the DDoS attacks detection in SDNs was
adopted by us with the aim of achieving a very high detection
accuracy rate. This route employs a deep learning model that
is very powerful and utilizes the network traffic data and then
distinguishes between the normal traffic and an attack.

Although a DDoS attack detection approach employing traffic
behavior analysis that was reported in [13] is already available,

more research is required to make networks like SDNs more
resilient to DDoS attacks. ML algorithms along with traffic
behavior pattern monitoring are employed to detect irregular
traffic immediately which is the flagging of DDoS attacks
through the software-defined network approach contributed
to leveraging SDN to detect DDoS attacks by suggesting a
software-defined network method that uses traffic features, to
analyze traffic and identify features that are specifically related
to DDoS attacks and thereby resulting in highly advanced
detection. Since it can detect these pollutants and mitigate
them adequately and timely. Bahashwan et al. [26] proposed
a software-defined network-based DDoS attack detection
approach using traffic characteristics, the proposed model
achieved an accuracy of 94% in accurately identifying and
classifying DDoS attacks. Alanazi et al. [27] presented a
hybrid deep learning model along with its ability to take
feature selection into consideration; their ultimate goal was
to improve detection accuracy and yet reduce computational
cost. Along the same lines, Jiang et al. [28] discussed the idea
of multidimensional network traffic detection (MNTD). They
proposed an algorithm with a multigranularity level for detecting
abnormal network traffic which uses the multi-instance learning
technique put forward by Waqas et al. [29], [30], [31]. One
key benefit is the deployment of this way when it is hard
to annotate in an appropriate manner and saves the need for
supervision.

Table I provides an overview of earlier studies on the use
of a DL model for attack detection. The deep learning model,
application domain, and data set used in these works are
compared. A summary of the evaluation findings of each
study is also provided, and Table II offers a comparative
analysis of various assault detection techniques. The features,
benefits, and downsides of each approach are the basis for this
comparison.

III. METHODOLOGY

The proposed approach consists of several stages. In the first
stage, we preprocess the data to facilitate smooth training. In
this stage, we clean the traffic data by filtering, normalizing,
and removing any noise or outliers to ensure consistency. We
also convert the data into a suitable format for training and
testing the models. In the second stage, the training process is
initiated. The training process of the proposed approach is a
two-stage learning process. In the first stage, we train the CNN
and recurrent neural network (RNN) modules of the network.
These two modules are trained separately to minimize as much
loss as possible. After that, the learned features of the models
are combined to obtain better performance. In this section,
we first present a brief overview of CNN and LSTM, fol-
lowed by the hybrid learning approach approach as shown in
Figure 1.

A. Data Preprocessing

Socket Features Removal: The basic socket features, such
as IP addresses of the source and the destination, the ports of
the source and the destination, flow ID, and the timestamp,
will be removed. Since these features differ for each network,
packet characterization is required to train the model directly.

Authorized licensed use limited to: TU Delft Library. Downloaded on July 29,2024 at 14:44:18 UTC from IEEE Xplore.  Restrictions apply. 
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TABLE I
OVERVIEWS SEVERAL STUDIES ON USING DL MODELS IN DDOS ATTACK DETECTION

TABLE II
ADVANTAGES AND DISADVANTAGES OF VARIOUS ASSAULT DETECTION STRATEGIES

In addition to that, the regular user and the intruder can both
have the same IP address. Hence, an overfitting problem can
arise if the model is trained based on socket information as
this information can make the model biased.

1) Data Cleaning: A huge number of missing (NaN)
values are present in the data set, which are necessarily
removed from the data set.

2) Input Data Normalization: The features in the data set
have numerous numerical values. Classification errors
may occur while training the model on original data
and it will also be time consuming to train the model.
Therefore, it is appropriate to normalize the data fea-
tures. There are many options available for normalizing
the data such as min–max and z-score normalization, the
minimum value assigned to any feature is 0 whereas
the maximum value is 1 for a feature having maximum
values.

3) Labeled Data Encoding: The proposed model is trained
using binary classification where each traffic input is
classified either as malicious or normal. The classes of

DDoS are placed into the attack category. Finally, the
string value will be encoded to binary values (0 and 1);
0 for the normal label and 1 for the attack label.

B. Working of CNN

CNNs are commonly used in image recognition and com-
puter vision tasks, such as image classification, anomaly
detection, object detection, and many others [52], [53], [54].
The key operations in a CNN are convolution, pooling,
and fully connected layers, as defined in Algorithm 1.
Here are the resultant equations (1) and (2) for these
operations.

Convolution is the core operation in CNNs, where a filter
is applied to an input image to extract features. The output
feature map is obtained by convolving the filter with the input
image, element-wise multiplication, and summation.

Resultant Equation (1):

V[c, d] =
∑

k1

∑
k2X[c + k1, d + k2] · F[k1, k2] + bi (1)

Authorized licensed use limited to: TU Delft Library. Downloaded on July 29,2024 at 14:44:18 UTC from IEEE Xplore.  Restrictions apply. 
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Algorithm 1 Working of CNN
1: Let X be the input dataset of network traffic data.
2: Split dataset X into training Xtrain and testing Xtest.
3: Train a CNN model on the training set Xtrain to learn

feature representations from the network traffic data.
4: Define the architecture of the CNN model.
5: Define the weights and biases of the CNN layers as Wc

and bc respectively.
6: Perform forward propagation:
7: Convolution: Compute the convolution operation of the

input Xtrain with the weights Wc and biases bc.
8: Activation: Apply a nonlinear ReLU activation function

into the convolved outputs.
9: Pooling: Perform pooling operations (e.g., max pooling)

to downsample the feature maps.
10: Calculate the loss function Lc (cross-entropy) among the

predicted output and the true labels.
11: Update CNN weights and biases Wc and bc using back-

propagation and gradient descent.
12: Repeat the training process for multiple epochs until

convergence.

where V[c, d] is the value of the output feature map at (c,
d), X indicates the input value, F is the filter/kernel, and bi

is the bias term. Pooling is used to decrease the spatial sizes
of the feature maps, reducing computational complexity and
extracting dominant features.

Resultant Equation (2):

V[c, d] = max
m

max
n

X[c.s + k1, d.s + k2] (2)

where V[c, d] is the value of the output feature map at (c, d),
X is the input feature map, and s indicates stride, which
determines the step size for the pooling window. CNNs are
used with fully connected layers to categorize or predict the
output based on the extracted information. Each neuron in a
layer that is fully connected is linked to every neuron in the
layer above it, enabling extensive information exchange across
the network.

Resultant Equation (3):

OV = fun (W · X + bi) (3)

where OV indicates the output vector, fun is an activation
function, W is the weight matrix connecting the previous layer
to this layer, X is the input vector from the previous layer,
and bi is the bias term. Note that the activation function fun
can vary based on the specific task and network architecture;
commonly used activation functions include ReLU, sigmoid,
and tanh. These equations represent the basic operations in
a CNN. However, the architecture and variations in CNNs
can be more complex, incorporating additional layers, skip
connections, batch normalization, and other techniques to
improve performance.

C. Working of LSTM

To use LSTM for DDoS attack detection, the model can be
trained on time-series data of network traffic features. Here
are the resultant equations for LSTM in the context of DDoS

Algorithm 2 Working of LSTM
1: Preprocess the network traffic data into sequences, con-

sidering a specific time window or time steps.
2: Let S represent the sequences of network traffic data.
3: Train an LSTM model on the training sequences S to

capture temporal dependencies and patterns.
4: Define the architecture of the LSTM model, including

LSTM layers and possibly additional layers like dropout
or batch normalization.

5: Define the weights and biases of the LSTM layers as WL
and bL respectively.

6: Perform forward propagation:
7: LSTM Cell Equations:

a) Vt = σ(W1[ht − 1, xt] + b1)

b) It = σ(W2[ht − 1xt] + b2)

c) Ct′ = tanh
(
W3 · [

ht−1, xt
] + b3

)

d) Cs = fs � Cs − 1 + Is � Cs
′

e) Oss = σ(W4 · [ht − 1Xs] + b4)

f) hs = Os � tanh(Cs)

8: Calculate the loss function Ll and update the LSTM
weights and biases WL and bL using back propagation and
gradient descent.

9: Repeat the training process for multiple epochs.

attack detection as given in Algorithm 2. The input to the
LSTM model consists of a sequence of network traffic features
at each time step. The input features can be represented as a
vector, such as packet count, packet size, source IP address,
destination IP address, and so on. The LSTM cell equations
describe the computations performed at each time step within
the LSTM unit. In the context of DDoS attack detection, the
LSTM cell (4)–(9) can be written as follows.

1) Forget Gate:

Vt = σ
(
W1

[
ht−1xt

] + b1
)
. (4)

2) Input Gate:

It = σ
(
W2

[
ht−1xt

] + b2
)

(5)

Ct′ = tanh
(
W3 · [

ht−1, xt
] + b3

)
. (6)

3) Update Cell State:

Cs = fs � Cs − 1 + Is � Cs
′. (7)

4) Output Gate:

Os = σ
(
W4 · [

ht − 1, Xss
] + b4

)
(8)

hs = Os � tanh(Cs) (9)

where Xs represents the input feature vector, ht−1 is the hidden
state, W1, W2, W3, and W4 are weight matrices, b1, b2, b3,
and b4 are bias terms, σ represents the sigmoid function, tanh
indicates the hyperbolic tangent activation function, and �
indicates element wise multiplication.

After processing the entire sequence, the final hidden state
ht of the last time step can be fed into a classification layer
to predict the DDoS attack class. The classification layer can
be a fully connected layer followed by a softmax activation
function to obtain class probabilities. Each sample in the
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Fig. 1. Structure of the proposed MLDNN framework. (a) shows the Stage
1 training process for CNN and LSTM, while (b) illustrates the combination
of feature vectors and training of classification layers.

time-series data has a matching attack class label, and this
labeled data is used to train the LSTM model. In order to
reduce the classification loss, the model parameters (weights
and biases) are improved using methods like gradient descent
and backpropagation through time (BPTT). It is significant
to remember that the particular architecture and configuration
of the LSTM model may change based on the demands and
features of the task of detecting and classifying DDoS attacks.
Although there may be more factors and optimizations to take
into account during actual implementation, the aforementioned
equations offer a general foundation for using LSTM in this
situation.

D. Hybrid CNN and LSTM Learning Approach

During the hybrid training stage, we trained the CNN and
LSTM modules separately. The goal is to minimize the loss
as much as possible using cross-entropy loss. Each model

Fig. 2. Representation of training and validation accuracy.

Fig. 3. Representation of training and validation loss.

processes different input information. The CNN module per-
forms 1-D convolution on a batch of individual network traffic
data instances, while the LSTM module uses timestamp-based
input. We group input instances from the same time frame in
a batch and provide them as input to the LSTM block. These
models consider different aspects of the data. For example,
the CNN module focuses on spatial information, while the
LSTM module extracts dependencies between similar or close
timeframe instances. Once both models converge, we combine
their output to obtain a reliable identification of DDoS attacks.
The cross-entropy loss is given by

CE = −
C∑

i

ti log(si) (10)

where ti and si are the ground truth and the CNN score for each
class i in C. Usually, an activation function (Sigmoid/Softmax)
is applied to the scores before the CE Loss computation, we
write f (si) to refer to the activations.

During the second stage of training, we combine the outputs
of the two pretrained networks. Let xi represent a data instance
related to network traffic, and let oc

i and oc
l represent the corre-

sponding output embeddings of the CNN and LSTM networks,
respectively, after removing their classification layers. The
embedding for xi is obtained by merging these two outputs and
creating a new vector, x′

i = [oc
i , oc

l ]. This embedding vector,
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TABLE III
CICDDOS2019 DATA SET DISTRIBUTION

x′
i is then fed as input to the network classification layers,

represented by f (:). The embedded vector x′
i combines spatial

and temporal dependencies for more meaningful information.
Furthermore, the hyperparameters of both modules, such as

the number of layers and filters, are determined through a
cross-validation process during network training.

IV. EXPERIMENTAL SETUP

In this section, you will find information on the experimental
design, data set details, evaluation measures, as well as
hardware and software specifications that were utilized in the
research. We used 5.4.0-6 Ubuntu and the system will be
equipped with 32 GB of random access memory (RAM) and
1 graphics processing unit (GPU) with 4 GB of graphics RAM.
The TensorFlow framework is utilized to implement the deep
neural network [33].

A. Data Set

In this work, CICDDoS2019 has been used to apply
the models, which consist of a large number of various
DDoS attacks that can be executed by protocols of the
application layer using connection-oriented and connectionless
protocols such as TCP/UDP. In the data set, the classifica-
tion of attacks is done in terms of reflection-based attacks
and exploitation-based attacks. To evaluate the data set for
training and testing, the data set collections consist of 18
classes. The training data set consisted of different types of
DDoS attacks, each saved in a separate file as shown in
Table III. Several kinds of attacks are present in the data
set, such as SYN, TFTP, DrDoS_NTP, Benign, Portmap,
LDAP, UDP, UDP_lag, DrDoS_DNS, MSSQL, DrDoS_UDP,
DrDoS_MSSQL, NetBIOS, DrDoS_NetBIOS, DrDoS_LDAP,
DrDoS_SNMP, UDPLag, and WebDDoS [55].

B. Evaluation Metrics

This section provides a detailed analysis of the network
performance of our model in terms of the evaluation metrics
for SDN to detect the DDoS attack. The efficiency and
performance of DDoS detection systems in a network can be
measured using parameters accuracy (A), recall (R), precision
(P), and F1-measure (F1). All these metrics are based on four
measures: 1) true positive; 2) false positive; 3) true negative;
and 4) false negative, as given in (11)–(16). Additionally, the
results are obtained by performing fivefold cross-validation

Classification Accuracy

= Correctly Predicted Samples

Number of Test Samples
× 100% (11)

Classification Error

= Incorrectly Predicted Samples

Number of Testing Samples
× 100% (12)

A = Accurately classified records

Total Record
× 100% (13)

TABLE IV
OBTAINED RESULTS USING THE CNN MODULE

P = true positive

true positive + false positive
× 100% (14)

R = true positive

true positive + false negative
× 100% (15)

F1 = 2 × P × R

P + R
× 100%. (16)

V. RESULT ANALYSIS AND DISCUSSION

In this section, we present the results and performance
comparison between the proposed MLDNN approach and
several state-of-the-art ML techniques. First, we compare each
module (CNN and LSTM) individually. Later, we will be able
to present their combined performance.

The results obtained by the CNN module of the proposed
MLDNN approach are shown in Table IV. The obtained
results show that the proposed approach is able to obtain
good precision and recall rates in all classes and an average
accuracy of 97.5%. Moreover, the training and validation
loss and accuracy graphical explanations are also shown in
Figures 2 and 3.

The results obtained from the individual LSTM module are
shown in Table V. The outcomes of the LSTM model for
identifying and classifying DDoS attacks in SDN demonstrate
promising results across all categories. However, the model’s
effectiveness varies across different classifications, unlike the
CNN module. Therefore, the output of both separately trained
modules is combined for better performance.

Table VI presents the performance of the combined (LSTM
+ CNN) module for each class. The precision and recall
outcomes reveal that the integration of both modules results
in superior performance compared to using just one. The
proposed MLDNN combination of both CNN and LSTM
obtained 99.4% average accuracy. This highlights the robust-
ness of the combined module over any individual module.

The results presented in Tables IV–VI show that combining
CNN and LSTM models for DDoS attack detection provides a
synergistic strategy that takes advantage of the benefits of both
architectures. The hybrid model includes a network “for the
sake of traffic” that uses the spatial pattern recognition abilities
of CCMs and the temporal modeling knowledge of LSTMs.
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TABLE V
OBTAINED RESULTS USING THE LSTM MODULE

TABLE VI
OBTAINED RESULTS USING THE PROPOSED COMBINATION OF

CNN + LSTM MODULE

The combo of these two makes the result more accurate
by identifying not only the immediate and the extended
links found in DDoS attacks but also achieving a successful
detection report that would be consistent and general in
nature. The main stakeholders will be the general public,
local government officials, and social service agencies. The
public will play a crucial role in determining the community
educational outcomes. The hybrid method which is highly
interpretative leads network managers to understand threats as
they are able to see those threats up-close and make informed
decisions of what to do next. A conclusion of the CNN and
LSTM models fusion is a very powerful and flexible technique
to develop the DDoS attacks detection, the latter surpassing
the efficiency and performance of individual models.

A. Performance Comparison With Other ML-Based Method

Furthermore, a comparative analysis is conducted between
the results generated by various algorithms. The comparison’s
specifics are shown in Table VII. When compared to the RF
and support vector machine (SVM) methods, the MLDNN
algorithm performs better. The method that is suggested offers

a comprehensive analysis that takes into account relationships
that are both permanent and transient. However, SVMs and
RFs rely on manually created features that are extracted from
the data. This means that they may not be as effective at
identifying complex patterns and may require specialist knowl-
edge in the area. The CNN-LSTM hybrid model performs
better when handling large data sets, avoiding false positives,
and adapting to evolving attack tactics. However, SVMs and
RFs are known for being simple, understandable, and efficient
in terms of computation, which makes them more appealing
in situations where resource constraints or interpretability are
important. Although the CNN-LSTM hybrid strategy has the
potential to provide greater accuracy and durability, the choice
of different approaches for detecting DDoS attacks depends
on the specific needs and constraints of the application in
question.

The CNN-LSTM hybrid method for DDoS attack detec-
tion has advantages over Logistic Regression as well as
K-Nearest Neighbors and Ensemble Learning methodologies,
which include RFs and AdaBoost. The CNN-LSTM hybrid
model applied deep learning architectures each to figure out
the elaborate spatial and temporal patterns without external
processing of network traffic data. This way, all analysis
inputs are accessible and the detection is far much accu-
rate. Logistic Regression and KNN follow linear or nearest
neighbor approach, respectively, which may not be suitable
for the data sets with high dimensions and can be less
accurate in solving problems with a vast number of other
attributes. Ensemble learning methods, such as RFs and
gradient boosting machines, integrate many models to enhance
the robustness and scalability [56]. Nevertheless, they might
be demanding in terms of processing resources and necessitate
meticulous feature engineering to enhance results. Logistic
Regression, KNN, and Ensemble Learning are suitable options
for resource-limited environments or applications that priori-
tize transparency and interpretability. The CNN-LSTM hybrid
technique is extremely versatile in adapting to changing assault
tactics and has significantly decreased the occurrence of false
positives.

The comparison between the CNN-LSTM hybrid tech-
nique and the combination of SVM with self-organizing
maps (SOM) for DDoS attack detection [57] reveals clear
advantages and disadvantages. The CNN-LSTM model inde-
pendently acquires complex spatial and temporal patterns
from unprocessed network data, providing thorough analysis
and achieving high precision. On the contrary, SVM with
SOM transformed guided learning to unguided learning which
helps it arranged the input space before in morphing it into
categories. Interpretability can be improved in SVM with
SOM yet may have problems tracking of detailed patterns
when compared to CNN-LSTM compact hybrid. However, the
CNN-LSTM model additionally points to such outstanding
versatility, the number of errors is reduced, and the system can
work in case of the system overloads, which makes it a very
good fit for any network conditions. Exceedingly, the selection
depends on the specific requirements of the detection task and
it furnishes the CNN-LSTM technique which is one of the
strongest and adaptable answers.
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TABLE VII
PERFORMANCE COMPARISON WITH OTHER ML-BASED TECHNIQUES

On the other hand, the proposed CNN-LSTM model,
contrary to the genetic algorithm (GA) feature selection
technique [58], can explore raw network data by identifying
patterns and feed back, and hence reduce the need for manual
feature selection. But gprox feature selection selects subsets
of features that improve the accuracy of classification, while
it may not be applicable for very large network system.
This CNN-LSTM hybrid model offers a distinctive feature
because it is multipurpose, reduces the number of wrong
identifications, and is capable of dealing with the huge and
ever-changing networks. Thus, it is definitely an appropriate
option.

The CNN-LSTM hybrid system is the best performing
solution to intrusion detection as compared to the rest of the
approaches discussed previously. This is due to its power to
learn sophisticated patterns from the unprocessed networks
data right from the analysis up to and including highly
accurate conclusions. On the contrary, the SVM with SOM
or GA feature selection approaches are meant to provide
the interpretability and flexibility that the CNN-LSTM hybrid
model may be struggling with in terms of adaptation and
scalability. In the case of selection of the detection method,
the method that will be chosen should be in accordance with
the specific needs of the problem to be solved. However, the
LSTM-CNN compound is a resilient and adaptable solution
that is capable of effectively solving the problem of detection
of DDoS attacks in the dynamic network environment.

VI. CONCLUSION

This article introduces a new hybrid model that combines
CNN and LSTM to detect DDoS attacks. The main objective
of our research is to evaluate the effectiveness of this hybrid
model compared to the traditional and sophisticated methods
used for detecting DDoS attacks. Our analysis provides a
thorough understanding of the powers and limitations of each
technique, which could be very beneficial in real-world sce-
narios. This method has the ability to acquire complex spatial
and temporal patterns from unprocessed network traffic data.
The model’s extraordinary capacity to thoroughly analyze data
and accurately detect DDoS attacks highlights its effectiveness

in addressing the ever-changing network security risks. SVMs
using SOM or GA feature selection approaches are alternative
methods that offer interpretability and flexibility. However,
they may not exhibit the same level of resilience to detect and
adapt to attack patterns as the CNN-LSTM hybrid model. The
SVM with SOM algorithm combines elements of supervised
and unsupervised learning, although it may encounter difficul-
ties in accurately representing the intricate nature of DDoS
assault patterns. Similarly, GA feature selection techniques can
uncover useful features, but may not fully utilize the abundant
information present in the raw network data.

In terms of future prospects, there exist numerous oppor-
tunities for additional research and development in the realm
of DDoS attack detection. Optimizing the parameters of
the CNN-LSTM hybrid model and investigating ensemble
methods that include various detection techniques could
improve the resilience and effectiveness of detection systems.
Moreover, it is important to prioritize endeavors aimed
at enhancing the comprehensibility and openness of deep
learning models, as this will play a pivotal role in estab-
lishing confidence and comprehension in the decision-making
procedure.

In conclusion, the CNN-LSTM hybrid approach has shown
encouraging results and offers a flexible solution for identi-
fying DDoS attacks. It is capable of effectively tackling the
complex challenges presented by contemporary network secu-
rity threats. The CNN-LSTM hybrid model will be crucial in
protecting network infrastructures and ensuring the reliability
and accessibility of critical services as the threat landscape
evolves.
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