




Language Agnostic
Code Exploration Services

THESIS

submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE

in

COMPUTER SCIENCE

by

Jonathan Dönszelmann
born in Amsterdam, the Netherlands

Programming Languages Group
Department of Software Technology

Faculty EEMCS, Delft University of Technology
Delft, the Netherlands
https://ewi.tudelft.nl

https://ewi.tudelft.nl


© 2023 Jonathan Dönszelmann.

Cover by Pjotter Bergsma.



Language Agnostic
Code Exploration Services

Author: Jonathan Dönszelmann
Student id: 4888766

Abstract

Programmers spend significantly more time trying to comprehend existing code than
writing new code. They gain an understanding of the code by navigating the code base in
an IDE, by reading documentation online, and by browsing code repositories onwebsites
such as GitHub. To create rich experiences for programming languages across those var-
ious media is a large effort for developers of programing languages. This effort might be
worthwhile for popular languages, but for new or experimental languages the required
effort is often too large. Solutions to reduce this effort of implementing an IDE exist,
such as LSP, but to reduce the effort in other places outside IDEs, we introduce the Codex
metadata format, which separates language-specific generation of code metadata from its
language-agnostic presentation. To demonstrate this approach by implementing four
language-specificmetadata generators (based on LSP, CTAGS, TextMate and Elaine) and
two language-agnostic presentations (PDF documents and a code viewer websites) of
code and metadata. To demonstrate different kinds of code metadata, we implemented
four code exploration services: syntax colouring, code navigation, structure outline, and
diagnostic messages. We show that with the Codex metadata format, we can decouple
the metadata generators from the presentations.

Thesis Committee:

Chair: Prof. dr. Koen Langendoen Embedded Systems
Committee Member: Dr. Jesper Cockx Programming Languages
University Supervisor: Ir. Daniël A. A. Pelsmaeker Programming Languages
University Supervisor: Ir. Danny M. Groenewegen Programming Languages

j.b.donszelmann@student.tudelft.nl




Preface

They say a picture is worth a million words, and yet it felt appropriate to add a few words
to the original preface Terts Diepraam jokingly made. Because that is not the only artistic
contribution I have to thank him for. Every time I sent him this document for feedback, I got
back a front page with even more drawings than the time before, together with a reviewed
thesis for which I am incredibly grateful. Similarly, I am grateful for the help and support of
my (other) friends, family and supervisors. In particular Laura, V, Ricardo, Thijmen, Anne
and George, also for all the games we have played and dinners we have had, without which
this work would not have been possible.

Original pre-face by Terts Diepraam

You may be reading this document on paper. Generally, I also prefer this. However, be
aware that some parts of this thesis are interactive when read digitally in a PDF reader, so
for a full experience I do recommend that.

Finally, this is a programming languages thesis after all. The rest of this document does
not mention the word monad, but it did not feel complete without using the word at least
once so there we go.

Jonathan Dönszelmann
Delft, the Netherlands

October 16, 2023

3





Contents

Contents 5

Introduction 1

1 Editor Services 5
1.1 An Overview of Editor Services . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2 Implementing Editor Services . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.3 The IDE Portability Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.4 Code Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2 Code Exploration Services 15
2.1 Code Exploration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2 Code Exploration Services . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.3 Code Exploration Services Outside Editors . . . . . . . . . . . . . . . . . . . . 17

3 The Design of the Codex Format 25
3.1 The Codex Metadata Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.2 Language Agnostic Classification . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.3 Generating and Using Metadata . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.4 A Format Instead of a Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4 Demonstration 31
4.1 Presenting Code on Websites through HTML . . . . . . . . . . . . . . . . . . . 32
4.2 Presenting Code in PDF Documents through LaTeX . . . . . . . . . . . . . . . 32
4.3 Generating Metadata from Existing Tools . . . . . . . . . . . . . . . . . . . . . 33
4.4 Producing Metadata for Small Languages: Elaine . . . . . . . . . . . . . . . . . 35
4.5 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5 Considerations and Tradeoffs 37
5.1 Storing Locations in Source Code . . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.2 Spans . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.3 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.4 Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.5 Metadata Size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

6 Future Work 43

Conclusion 45

5



CONTENTS

Bibliography 47

Acronyms 51

A Paper 53

6



Introduction

As programmers, we spend much more time reading code than writing it. We try to get
acquainted with a code base as part of our new job, work our way though the API documen-
tation of the new cutting-edge framework that everyone uses, or attempt to comprehend
code written decades ago. All in all, compared to writing code, we spend an estimated ten
times more time reading code (Martin 2009).

We read code in our highly interactive code editors and Integrated Development Envi-
ronments (IDEs), but also explore code repositories on GitHub, browse API documentation
and specifications, look for answers to our questions on StackOverflow, and even internalise
code from offline paper-based publications.

In this thesis, we refer to this as code exploration; the process of analyzing and understand-
ing a software code base by examining its structure, components, and dependencies. To
explore code effectively, we use code exploration services. These form a subset of the more
well-known editor services (Erdweg, van der Storm, Völte, et al. 2013) which only support a
user in editing code, but exclude services that are only useful when writing code.

Code exploration services range from simple yet effective syntax colouring, all the way
to interactive services such as code navigation and hover information. These services are not
only useful in a code editor, but also in other code exploration media: places where code might
be explored, such as on documentationwebsites and in books. The code exploration services
and their presentations need to be adjusted to meet the limitations of the specific medium.
For example, syntax colouring is feasible in a printed book, but one cannot instantly jump to
a definition.

There are existing solutions that facilitate code exploration. Developers of most major
programming languages have spent effort to implement their own editor plugins that pro-
vide syntax colouring and additional editor services for various editors. To support authors
of code libraries, more and more languages include tooling to generate language-specific
documentation websites from a code base. For example, Rust has RustDoc, Haskell has Had-
dock, and Agda can output code as rich HTML and even LaTeX code. However, all these
solutions are very narrowly applicable to only those particular languages where the devel-
opers have gone through the trouble of providing, implementing, and maintaining these
services. Especially for languages with less development power, investing time and effort in
the implementation of such services may not be worthwhile.

At the same time, there are tools that apply to multiple languages but target only a very
specific code exploration service. For example, there is Bootlin’s Elixir cross referencer, which
allows users to navigate C and C++ source code online, such as the Linux Kernel source
code1. To provide code navigation in editors that support it, there is also CTAGS (CTAGS
2023), which is a tool that generates an index of all identifiers found in a code base andwhich

1Explore the Linux Kernel source code at: https://elixir.bootlin.com.

1

https://elixir.bootlin.com


CONTENTS

supports more than a hundred languages. We will call these narrow tools: those that either
provide few services for many languages, or many services for few languages.

This is reminiscent of a problem known as the IDE portability problem, where for m lan-
guages to provide services forn editors requiremˆn implementations and related effort (Kei-
del, Pfeiffer, and Erdweg 2016). One solution to the IDE portability problem is a system that
decouples editors from language-specific providers of editor services, which is what a sys-
tem like Language Server Protocol (LSP) does. All languages that expose a language server
implementation can provide editor services to all editors with an LSP client. With LSP, m
languages and n editors need to support LSP, transforming the effort required from m ˆ n
into m+ n.

The IDE portability problem also presents itself in other media. There are maybe a dozen
major code editors, but a nearly limitless number of places, such as many different websites,
where having better code exploration services makes sense. Themˆn problem is thus even
bigger for code exploration services than for editor services! In this thesis, we will therefore
aim to answer the question:

How can we provide code exploration services outside editors
in a way that decouples programming languages from code exploration media?

Codex
To answer that question, we present Codex: an intermediate format for describing code base
metadata, a solution to themˆn problem for rich code exploration. The format is language-
agnostic and can be extended to support new kinds of metadata for future code exploration
services. Thanks to its offline nature, the format allows the code to be explored at any point
later in time fromwhen themetadata is generated, even when the specific versions of tooling
that were used on the code base are not available. We discuss the reasoning that led us to the
Codex format, describe what choices we made in the progress, demonstrate our implemen-
tation of four prototype generators of the Codex format and two different rich prototype pre-
sentations of the Codex format and finally reflect on our experience making these prototypes.
The source code for Codex can be found online at https://github.com/jdonszelmann/codex.

Contributions In summary, our contributions are:

• a thorough introduction of editor services and the IDE portability problem than was
given in the paper;

• rigorous definitions of the terms code exploration and code exploration services, which we
introduced;

• a detailed study of existing tools that provide code exploration services and how they
relate to the Codex metadata format;

• the Codex metadata format, a tractable solution to the m ˆ n problem for code explo-
ration services, able to describe code bases of both DSLs and mainstream languages;

• a proof of concept comprising four prototype generators ofCodexmetadata (LSP,CTAGS,
TextMate, Elaine), and twoprototype code presentations derived fromCodexmetadata
(LaTeX, HTML);

• an analysis of the trade-offs when designing a code metadata format.

2

https://github.com/jdonszelmann/codex


Contents

These contributions align with the contributions of a paper which we submitted to Soft-
ware Language Engineering (SLE) 2023 called “Codex: a Metadata Format for Rich Code
Exploration” (Dönszelmann, Pelsmaeker, and Groenewegen 2023) (See appendix A). Un-
fortunately, this paper was not accepted, the reason was, in part, how we treated related
work. This thesis also serves as an extension of that paper, containing much more detailed
related work and reasoning behind decisions.

The rest of the thesis is structured as follows: We start in chapter 1 with an overview of
what editor services are, together with a detailed explanation of the IDE portability problem.
This leads into chapter 2, where we define the terms code exploration, and code exploration
servicesWerelate these terms towhatwe learned about editor services in the previous chapter,
go over existing tools for code exploration services and establish that a similar problem to
the IDE portability problem exists in this context. With this theory behind us, we will design
our solution in chapter 3, and demonstrate this solution called Codex in chapter 4 We will
discuss the observations wemade while making this solution, together with the tradeoffs we
made in chapter 5. Finally, we present future work in chapter 6 and conclude this thesis in
chapter 6.

3





Chapter 1

Editor Services

The main subject of this thesis is what we call code exploration services. However, we think
that we cannot discuss code exploration services without first talking about the concept that
forms the foundation of that idea, which is the focus of this chapter. Wewill first define what
editors and editor services are, after whichwe go over the effort required to implement editor
services. We finish with the IDE portability problem, which is a problem central to the rest
of this thesis.

Although programmers used to manually punch their programs into paper punchcards, or
before that, even changed the wiring of a computer just to program it, this has not been
common practice in the last 50 years. Instead, programmers write computer programs for a
computer, on a computer, using a computer program commonly called an editor. Using edi-
tors for programmingmakes the processmuch easier, and vastlymore accessible to everyone
who has a computer.

Early on, there was ed (Thompson 1969), short for ‘editor’. Ed was one of the standard
tools included on all unix operating systems, and can still be used on many modern comput-
ers. However, ed was not very user-friendly, and is infamous for its error codes. For all kinds
of different errors, ed simply prints a ? without any further context (IEEE/The Open Group
2017).

A lot has changed since then, and editors have become significantlymore advanced. First
with editors like vi, vim and emacs, which were an improvement in user experience, if only
for the fact that these allow their users to see the document while they are editing it, a feature
ed notably lacked. Still later, Graphical User Interface (GUI) editors entered the scene, like
Notepad, Notepad++ and Sublime Text, and many more.

There are also more sophisticated editors that help programmers while they write their
programs, such as IntelliJ, Eclipse and Visual Studio Code. These often get called Integrated
Development Environments (IDEs), referring to the fact that they allow users to do much
more than just edit source code1. What makes an IDE more sophisticated, is that an IDE
often knows much more about the language that is being edited in them and can help pro-
grammers with writing their program. For example, an IDE may know about the different
libraries you use or might want to use, and can refer to those libraries’ documentation while
the programmer uses items from them in your program.

To talk about the capabilities of an IDE, we can talk about what is called an editor service,
a term first used in literature by Kats, Kalleberg, and Visser (2008). We can say that a ‘smart’

1Of course, some simple editors like vim and emacs can be extended near endlessly by users to operate more
like an IDE. Many people, in fact, swear by these editors, considering any added features nothing more than a
distraction.

5



1. EDITOR SERVICES

editor such as an IDEprovidesmany editor services to help programmerswrite their programs.
However, as we will see, some things we classify as an ‘editor service’ can also be found
in many editors often considered ‘simple’ editors, not just in IDEs, making the distinction
between an IDE and simpler editors a bit fuzzy2.

1.1 An Overview of Editor Services
Editor services, the tools which editor provide, vary widely in kind and capability between
different editors. Nevertheless, attempts have beenmade tomake a comprehensive list based
on the different kinds of services provided by many editors and IDEs. One such list is the
one by Erdweg, van der Storm, Völte, et al. (2013) in “The State of the Art in LanguageWork-
benches - Conclusions from the LanguageWorkbench Challenge”. Here, a feature model for
a language workbench is given, which we will discuss further in section 1.3.2.

Important is the clear relation between language workbenches and editor services. In
fact, Erdweg et al.’s feature model considers it one of six main features of what a language
workbench is. Therefore, as part of defining what a language workbench is, they also list
categories of editor services.

The feature model by Erdweg et al. was later adapted by Pelsmaeker (2018) into a list
of just editor services. Their derived list further divides the services into larger categories,
and also renames a few to be more intuitive. For example, syntax highlighting was renamed
to syntax colouring as highlighting would imply a change in background colour. Finally,
Pelsmaeker also provides a useful overview of many popular editors and lists which editor
services each supports.

Based on these two sources, we compiled the following list of editor services, together
with a short explanation of what each means.

A function with coloured syntax.

Syntax Colouring Assigns parts
of a program colours based on
their syntactical meaning. This de-
pends on the language that is be-
ing written in, which can some-
times change within a single doc-
ument. For example, inline SQL
database queries have a different
syntax from the programming lan-
guage surrounding the query. A
related concept is semantic colour-
ing3, where colours are assigned
based on semantic meaning such as by giving all uses of a variable the same colour. To
provide this service for a language, the editor needs to know the syntax of that language and
a colour scheme that assigns certain syntactical elements those colours.

2This is made worse because IDE is sometimes used as a marketing term.
3Which is more commonly called semantic highlighting, but we think it should be called Semantic Colouring

just like Syntax Colouring.

6



1.1. An Overview of Editor Services

The function body of skip_layout folded away.

Code Folding Hides parts of a
program to reduce visual clutter.
Often this is presented to users as
collapsable blocks of code, based
on the syntax of that block, for ex-
ample, the body of a function or
the contents of a conditional ex-
pression. To provide this service
for a language, an editor needs to know about certain points in the syntax of a language
where logical blocks start, and what constitutes a logical block may be different for different
languages.

Completing layout while writing skip_layout.

Code Completion Suggests code
fragments as a programmer is writ-
ing their program. Simple code
completion can be based on occur-
rences of words in the same doc-
ument or project, a technique of-
ten employed by simpler editors.
However, such simple completion
often finds nonsensical comple-
tions. More sophisticated code
completion can include knowledge about a language’s scoping and importing rules, suggest-
ing only completions that are valid based on context. Recently, AI-based code completion
has also established itself, with programs such as GitHub Copilot (Github 2023a) and other
large language models. These tools provide completion based on a training set containing
code written by others, which has sparked some debates related to whether some advanced
code completion could at some point be considered plagiarism. In fact, lawsuits (GitHub
Copilot litigation 2022) have been filed over this, though no final verdict has been given at the
time of writing. To provide this service for a language, an editor needs to know about all
items in scope at the location where the programmer writes, and be able to select likely can-
didates based on various factors. These factors may involve the type of items around where
the suggestion is made, what values are syntactically valid and what the programmer has
already typed, which may be a prefix of what they want the completion to be.

The outline of the file with of skip_layout.

Outline Anoverview of the high-
level structure of a program, like
an index. Such an overview can of-
ten display what functions, classes
and interfaces are defined in a file,
and allows for quick navigation to
their definition sites. To provide
this service for a language, an ed-
itor needs a simple model of the
syntax of a language. This model
must have enough context to work
out what items are present and are important enough to be included in the outline, and
whether one such important item is nested inside another.

7



1. EDITOR SERVICES

A list of links to all usages of skip_layout.

Code Navigation Provides quick nav-
igation between related parts of a pro-
gram. For example, between defini-
tion sites and usages of elements in a
code base. To provide this service for
a language, an editor needs a list of re-
lated locations in the program for ev-
ery identifier in the program. These
relations between locations, in essence,
form the edges in a graph where nodes
are source locations. Edges in this graph could also contain information about what kind of
relation is represented. For example, different kinds of edges may relate a variable to other
usages of that variable, or to the initial definition of a variable.

The documentation of the CharacterClass type
while hovering over it.

Documentation A broad range of ser-
vices that provide access to the docu-
mentation associated with code. Exam-
ples include: showing documentation
of items when interacting with item
names such as hovering over them, ap-
plying markup to documentation text
embedded in code and linking to online
documentation. To provide this service
for a language, an editor needs the doc-
umentation for all items in a programwhich have documentation available. This documenta-
tion does not necessarily need to be separately stored. If documentation is part of source code
itself, the editor could dynamically load relevant documentation by following references to
definition sites which can be found through code navigation.

A popup with information on how to give accept
parameters.

SignatureHelp Especially in strongly
typed languages; shows information
about an element’s definition while a
programmer is typing a usage of that el-
ement. For example, when a program-
mer begins writing a function call, sig-
nature helps shows the expected pa-
rameter types and names for that func-
tion. This service can be related to
documentation in more weakly typed
languages, where types are sometimes
part of comments or annotations that are essentially equivalent to comments. Some editors,
such as the JetBrains IDEs, might even go a step further, and provide interactively fillable
fields.

8



1.1. An Overview of Editor Services

skip_layout before and after automatic formatting.

Automatic Formatting A refactoring
that rewrites source code to adhere to
a certain style guide. Some languages
define a standardised style guide like
Python, which has the PEP8 (2001)
standard, or have standardised tool-
ing to format code, like Rust, which
has the Rustfmt (The Rust Program-
ming Language 2023b) project. Other-
wise,many editors support reading spe-
cial EditorConfig files, which contains
style rules for the code in a code base.
To provide this service for a language,
an editor needs to know about such
style guides for languages, and must
then be able to apply those rules to
change unformatted code into format-
ted code with precisely the same mean-
ing.

Code actions A broad range of language-specific actions and refactorings that can be ap-
plied to programs. What code actions are relevant may change per language. For example,
a language that has syntactical macros might allow users to expand macro usages through
a code action. As such, to provide code actions for a language, an editor needs the ability to
execute language-specific actions and transformations on user-selected code.

A code action is being selected that will insert the CharacterClass type explicitly, instead of
the type being infered.

The accept method, in the process of being re-
named from a usage. After the renaming is con-
firmed, the definition and all usages of will change
as well.

Rename Refactoring A refactoring
that performs automatic renaming
based on context and scoping rules
of language. This is sometimes called
structural search and replace (JetBrains
2022). This implementation of such
a service is closely related to code
navigation; to provide this service
for a language, an editor needs the
ability to rename a single identifier and
all related identifiers from the list of
related items.

9



1. EDITOR SERVICES

skip_layout at a breakpoint in the middle of the func-
tion, with values of variables show inline.

Diagnostic Messages Gives real-
time feedback, maybe from a com-
piler or linter, often as an overlay
on source code. To provide this ser-
vice for a language, an editor needs
to interpret the output of external
static analysis tools (which could
be a compiler).

A test of skip_layout with a little green arrow in the
sidebar to run just that test. The green arrow has a
checkmark to show this test passed in the last run.

Integrated Debugger Allows
a programmer to debug a pro-
gram in an editor by showing the
runtime state of that program
together with the source text in
the editor at a particular point
in its execution. For example, a
debugger can display the location
in the source code that is currently
being executed and overlaying the
value of variables. To provide this
service for a language, in theory,
an editor needs debug symbols
associated with a program that is
being debugged as well as infor-
mation on how to display runtime
values. However, in practice an
editor might simply interface with
a dedicated debugger program like gdb and provide a graphical user interface to interact
with the debugger to programmers.

Before the expression is filled in, a syntax error is
shown.

Integrated Testing Shows the
status of tests, and allows users
to run tests by selecting them in
the editor. To provide this service
for a language, an editor needs
to interpret the output of specific
testing tools for that language.
Sometimes such tools are stan-
dardised like in Rust, for example,
which has a built-in test runner. However, in C there is no such standard test runner, and
the editor may need to support multiple different testing tools for a single language.

1.2 Implementing Editor Services
To provide editor services, an editor needs information about the language it is providing
these services for. Exactly what kind of information is required depends on the service. For
example, for an editor to support syntax highlighting for a language, the editor needs knowl-
edge about the language’s syntax, which might be derived from a grammar specification.

10



1.3. The IDE Portability Problem

A service that only needs syntactical knowledge about a language might be considered
relatively simple though. Providing diagnostic messages, code navigation and code comple-
tion interactivelymight require constantly re-running analyses on source codewhile the user
is typing, which can be enormously costly. Although such analyses should give outputs that
closely resemble that of what the compiler or interpreter would show, a regular compiler is
most likely not the right tool for this job4.

A regular compiler, also called a batch compiler, is good at turning large batches of source
code into machine code quickly (Katzan Jr. 1969; Kladov 2022). These batches are, for exam-
ple, the files of an entire code base and its dependencies. In contrast, the kind of program
that analyses source code for an editor has different goals. In editors, users mostly care about
getting as much feedback as possible, as quickly as possible after making small changes to a
program.

We will call such a compiler an editor compiler, although that is not an established term5.
A user expects an editor compiler to give live feedback while they type, with latencies of at
most a few seconds. Often, the only way to achieve these latency goals is by being extremely
incremental, caching as much information from previous analyses to provide real-time feed-
back.

Furthermore, an editor compiler is often expected to be very resilient to errors. As a
user writes a program, they often leave the program in a syntactically invalid state halfway
through typing a line. Still, services such as code completion are expected to provide reason-
able suggestions for these half-written programs.

And yet, an editor compiler still has much of the complexity a regular compiler has to
deal with. It still has to parse and type check a language in a manner that is often expected
to be consistent with what the regular compiler for that language would produce. Therefore,
implementing such tools can be a complex task.

1.3 The IDE Portability Problem
Because editors need knowledge about a language to provide editor services for that lan-
guage, not even the most advanced editor can support all languages. Lesser used languages
and Domain-Specific Languages (DSLs) often have poor support from editors out of the box.
For that reason, many editors provide a way to be extended by users, often in the form of a
plugin system. That way, an author of a new language can also create a plugin providing
support for that language in a specific editor, which means the editor authors do not need to
spend time supporting all languages.

However, shifting the responsibility like this creates a new problem. Now a language
author, or the community around a language, becomes responsible for providing plugins for
their languages in all kinds of editors, which often work subtly differently. Again, this means
that smaller languages and DSLs will be inherently less supported as they may not have the
resources to implement and maintain specific tooling for multiple editors. As discussed in
the introduction, this is a problem of responsibility, where either a language has to support
n editors or an editor has to support m languages, is called the IDE portability problem by
Keidel, Pfeiffer, and Erdweg (2016). However, sometimes the problem is simply referred to
as the m ˆ n problem, framing the problem as a kind of complexity. There have to be m ˆ n
implementations providing editor services for m languages and n editors.

4An interpreted language might not have a compiler. However, an interpreter performs many of the steps
relevant for this argument. Source code still needs to be parsed, and typechecked (even though that may happen
at runtime for some languages).

5It is debatable if compiler is the right word for this kind of tool. I argue a compiler is fitting name, since an
editor compiler has to solve many similar problems to batch compilers even though in the end no machine code
is compiled. Problems such as name resolution and type checking still need to happen as normal.

11



1. EDITOR SERVICES

Figure 1.14: The XKCD ‘Standards’ comic, from https://xkcd.com/927/

In “Portable Editor Services”, Pelsmaeker (2018) investigates this issue, and proposes a
possible solution: Adaptable Editor Services Interface (AESI). AESI is a system to create
editor plugins, motivated by the desire to separate concerns between the Spoofax language
workbench, and the editors supported by Spoofax. They introduce a kind of common inter-
face through which languages and editors can talk. If all editors only need to support one
interface to talk to all languages, and if all languages only need to support one interface to
talk to all editors, the m ˆ n problem is essentially transformed into an m+ n problem.

Although the idea of a single common standardmight be good in principle, it only works
when all parties agree on the same standard. The well known XKCD comic in figure 1.14
illustrates this problem. And yet, there does seem to be one standard for editor services that
is becoming reasonably universal: LSP, which we will discuss in the next section.

1.3.1 Language Servers
The idea of solving the m ˆ n problem by providing a single standardised interface through
which languages and editors can talk is also the basis for LSP, a protocol developed by Mi-
crosoft (2022a). Although AESI lacked traction, LSP is doing rather well in this regard,
with support in many editors and languages, like for example NeoVim and Fleet, and many
more (Sourcegraph 2023). Importantly, Microsoft’s own Visual Studio Code, one of themost
popular editors, natively supports LSP which helped the protocol gain popularity (Carbon-
nelle 2023).

LSP works on a client-server model. On one side there is the language server, which is a
program that provides language-specific implementations for kinds of editor services. The
list of supported services is almost equivalent to our list given in section 1.1. A language
server usually keeps running in the background for as long as the LSP client, (i.e. the editor)
is open. This allows the language server to keep state between requests.

The LSP client and server are two different processes. They communicate by exchanging
standardised JSON messages using JSON-RPC. An editor that acts as an LSP client can dy-
namically make requests to the server based on the user’s actions in the editor. For example,
the editormight tell the server that a file has been opened, to which the servermight respond
that it is analysing that file now. These requests are asynchronous, meaning that multiple
requests can be in progress at the same time, and it is even possible for the language server to
make a request back to the editor6. The asynchronicity also makes sure that the editor does
not have to block while waiting for requests to finish.

6This can happen when the language server ‘creates’ a progress bar, for example for how long it will take to
index a project. The language server them makes a request to the editor to tell it it will start sending progress
notifications. The editor must then respond if it wants to receive these.

12

https://xkcd.com/927/


1.4. Code Search

Although LSP defines a communication protocol, it does not define the channel over
whichmessages are sent. One common approach is that the editor spawns a language server
as a subprocess, communicatingwith it over the standard in and out streams. However, many
other communication channels can be used, including networked channels like websockets.
For example, Eclipse Che and Theia are web editors, which make requests to a language
server over the internet (Eclipse Foundation 2023a; Eclipse Foundation 2023b). This does
have the disadvantage of some added latency caused by the network.

1.3.2 Language Workbenches
Erdweg, van der Storm, Völter, et al. (2015) define that “language workbenches are environ-
ments for simplifying the creation anduse of computer languages.” In a languageworkbench
such as Spoofax, Xtext and Rascal, users can write down a description of a language using
several DSLs (Fowler 2005; Kalleberg and Visser 2007; Kats and Visser 2010; Eysholdt and
Behrens 2010; van der Storm 2011). Such a specification may consist of syntax rules of a lan-
guage, a description of how the type system of the language is supposed to work, and rules
on how to generatemachine code. Then, based on this specification, the languageworkbench
can derive an entire compiler and editor, complete with editor services.

With a language workbench, the workbench itself essentially functions as a common in-
terface between editors and languages. If a language workbench supports deriving editor
service implementations for n editors, then the workbench can use its derivation rules to
generate these implementations for m languages specified in the language workbench, pro-
viding one solution to the m ˆ n problem.

Of course, only languages that have a specification in the language workbench can ben-
efit from these automatically derived editor services. This effectively excludes most big lan-
guages, which often have a custom-made compiler. Luckily, those bigger languages often
have the resources to implement a language server or provide editor services for several edi-
tors. However, the story is different for smaller DSLs. For those, using a languageworkbench
could be valuable, exactly because theworkbench ensures that the language immediately has
editor support.

While the Spoofax languageworkbench does not support many editors to generate editor
services for7, Xtext, a different language workbench can generate entire Language Server
implementations supporting syntax colouring, code folding, code completion, an outline,
code navigation, signature helpand code actions based on a description of a language. That
means that a languagemade in Xtext automatically has editor support in all editors that work
with LSP.

1.4 Code Search
Although our list of code exploration services has its roots in a list of editor services, which
itself has its roots in frequently cited theory by Erdweg, van der Storm, Völte, et al. (2013),
we think that one feature may be missing from the original list. That feature is search. That
search is missing is interesting, because the feature is pretty much universally supported by
editors, even ‘dumb’ ones. Even many websites, where we showed that often relatively few
services are supported, offer advanced search options.

We suspect that the reason that search is missing from the work by Erdweg, van der
Storm, Völte, et al. (2013) is the following: searching through a code base is often language
agnostic. Therefore, an editor does not need any language specific knowledge to provide
it, and can also provide it for documents not written in any programming language. As

7Only Eclipse is properly supported, although attempts have been made to also support LSP-based editors
and IntelliJ (Pelsmaeker 2018))

13



1. EDITOR SERVICES

Figure 1.15: Structural search in IntelliJ: an example of a query for any JavaScript function
with any number of parameters. Other options are supported as well, like searching for
specific parameter or return types.

a consequence, there is no IDE portability problem with search. However, in our opinion
we should consider it to be an editor service: it is a service an editor provides, that helps
programmers edit programs.

Furthermore, the claim that search is language-agnostic is not always true. Intellij, and
other JetBrains IDEs support a service which they call ‘structural search’. We show an image
of what this looks like in figure 1.15.

Structural search is only supported for a limited number of languages, because it is not
language agnostic. Through the menu, a programmer can construct a kind of pattern with
types andparameters, whichmatches elements of a programming language for syntax-aware
search.

In the rest of this thesis, we will assume search to be an editor service.

14



Chapter 2

Code Exploration Services

In this chapter, we introduce and define the terms code exploration and code exploration ser-
vices. We explain the reasoning that leads us from editor services towards code exploration
services, discuss the status quo of code exploration services and discuss the possibility of
more, different code exploration services. Finally, we establish that a problem similar to the
IDE portability problem exists with code exploration services.

2.1 Code Exploration
As the name programmer implies, a programmer’s job is to program: writing programs. Pro-
grams are written in editors, which provide certain editor services. The goal of editor ser-
vices, as discussed in chapter 1, is to simplify writing programs by helping the programmer
in various ways.

However, programming is not just about writing programs, but also about reading and
understanding programs. This can be a time-consuming process, especially when reading
code written by other people. In fact, it has been estimated that programmers spend ten
times as much time reading code than writing it (Martin 2009).

Moreover, reading code is more complex than for example reading an article or a book.
A book has a decidedly linear structure; you can start on the first page, and slowly work your
way to the last. Although small sections of programs might be linear, an entire program
often is not, unless very carefully crafted. Function calls, imports and external resources
such as online documentation all mean that reading code requires frequent shifts in focus
between sources of information. Therefore, a more descriptive name for interpreting and
understanding a program might be exploring, not reading, and from now on we will refer to
it as such.

Definition 1 Code Exploration is the process of interpreting programs, with the goal of understand-
ing how it works.

Interestingly, the fact that reading code is different to reading natural language has also
been observed in Artificial Intelligence (AI). In AI research there is something called theNat-
uralness Hypothesis (Allamanis et al. 2018), which says that programs and natural languages
are not so different. Therefore, it is said, natural language models (which, for example, can
summarise written texts) should also work well on programs. This hypothesis seems to hold
well on a small scale, but Ben-Nun, Jakobovits, and Hoefler (2018) claim that on a large scale
it does not hold. Because natural language models often work linearly, processing tokens
sequentially, they are not well adapted to switching focus as required to interpret code. In
their paper, Ben-Nun, Jakobovits, and Hoefler present their own approach, which can deal
with this problem better.

15



2. CODE EXPLORATION SERVICES

2.1.1 Passive and Active Code Exploration
This definition of code exploration we gave above is extremely broad. Many things can be
considered code exploration, not just reading functions from top to bottom. For example,
attaching a debugger to a running program, and observing the program’s behavior can be
considered code exploration. Similarly improving one’s understanding of a program could
be better understood by simply running it and testing different inputs.

The latter form of code exploration is more interactive than simply browsing a program’s
source code or associated documentation. It requires a programmer to interact with the
program at runtime to learn more about it. For the rest of this thesis, this difference will be-
come important. Therefore, to make the distinction between these forms of code exploration
clearer, we will use the words ‘active’ and ‘passive’ to describe code exploration according
to the two definitions below.

Definition 2 Active Code Exploration is code exploration that involves interacting with the pro-
gram as it executes.

Definition 3 Passive Code Exploration is all non-active code exploration. It does not involve an
interaction with an executing program.

2.2 Code Exploration Services
In chapter 1, we looked at how editor services can help programmers to create code. How-
ever, many editor services do not specifically help with writing code. Instead, they help pro-
grammers explore code, making it easier to understand a code base, which could then help
a programmer write code. Code navigation is maybe the most obvious example of such an
editor service, that mainly helps with code exploration and not writing code. We will call
these kinds of editor services code exploration services.

Definition 4 Code Exploration Services are a subset of editor services that help with code explo-
ration.

Documentation, outline and syntax colouring are also examples of editor services which
help mainly with code exploration. Notice though, that according to the definitions above,
these examples aid with passive code exploration instead of active code exploration. On the
other hand, integrated debugging and testing, are editor services which help with active
code exploration instead. Just like we split up the definition of code exploration, we can also
split up the definition of code exploration services as follows:

Definition 5 Active Code Exploration Services are code exploration services that help with active
code exploration.

Definition 6 Passive Code Exploration Services are code exploration services that help with pas-
sive code exploration.

Figure 2.1 gives an overview of the definitions we gave thus far, visualizing their rela-
tionships. From these definitions, we can categorise the list of editor services presented
in section 1.1. The following are passive code exploration services: Outline, Code Navigation,
Documentation, Diagnostic Messages. some Code Actions and Search, while the following are
categorised as active code exploration services: Debugging and Testing.

16



2.3. Code Exploration Services Outside Editors

Programming

Exploring Code

Active Passive

Writing Code

Editor Services

Active Passive

Code Exploration Services

e.g.
debugger

e.g.
code

navigation

e.g.
code

completion

Figure 2.1: A visual overview of the definitions given in this section. Red arrows denote
which kinds of services help with which kinds of programming tasks. In this thesis, we will
mostly be focussing on passive code exploration services, here depictedwith a green outline.

2.3 Code Exploration Services Outside Editors
Code exploration is always done in some environment, which we will call the code explo-
ration medium. Up to now, we have mainly discussed editors as code exploration media.
Editors are often a convenient code exploration media, because of the editor services many
editors provide, However, editors are far from the only code exploration media.

For example, there are websites that display code for users to explore, such as GitHub,
StackOverflow and a plethora of others. Some websites even provide some of the services
that editors also provide: the category we called code exploration services in the previous
section. Besides websites, PDF files (papers for example), presentation slides, books, videos
and whiteboards might all be considered code exploration media as well, which just like
websites can support certain code exploration services. For example, almost any medium,
even those printed on paper, can have an outline or index, and syntax colouring.

Providing code exploration services in other media than editors is nothing new. Many
solutions already exist today, which do exactly that: simplifying code exploration by provid-
ing code exploration services. To learn about what is possible in this space, we have made
an overview of many important tools below. We chose these tools, not simply based on pop-
ularity, but also to highlight interesting or relevant examples of code exploration services in
the field, to give a non-exhaustive overview of what options exist.

2.3.1 Language Specific Documentation Generators
To start off, many languages come with tools that can generate documentation. However,
although ‘documentation generator’ suggests that they provide only a single editor service:

17

https://github.com
https://stackoverflow.com


2. CODE EXPLORATION SERVICES

documentation, this is often far from true. Instead, such tools often provide several code ex-
ploration services together, like code navigation, and syntax highlighting, though sometimes
in limited form. We will first look at some tools meant to serve only a single programming
language or ecosystem, and then broaden our scope to tools which are more widely applica-
ble.

The standard Rust distribution ships with a tool called Rustdoc (The Rust Programming
Language 2023a). The tool generate documentation websites from Rust projects. In a sense,
it can be seen as a kind of compiler. It takes Rust code annotated with special comments
(so-called doc-comments), and produces an HTML file. The generated HTML contains only
the documentation and public API of the code, not the code itself.

Rustdoc provides at least three code exploration services. The main ones are documen-
tation, and an outline. Additionally, there is code navigation. All parts of the public API
are clickable, Finally, there are bits of code that are displayed, mostly type signatures, which
have coloured syntax.

Rustdoc is similar in many ways to tools such as Haddock for Haskell, Javadoc for Java,
and countless comparable tools for other languages.

Just like Rustdoc can generate documentation websites for Rust, the Agda compiler can
produce HTML output based on Agda source code. As we have seen, many languages have
this capability, so although it can be useful, it is not especially novel. However, we mention
Agda separately because the language also natively supports generating LaTeX for use in
papers (Agda 2023). The tool mainly performs syntax colouring.

2.3.2 Language Agnostic Documentation Generators

Doxygen Doxygen (van Heesch 2022) generates documentation pages just like Rustdoc
does, and therefore seems quite similar in scope at first glance. However, while Rustdoc
only works for a single language: Rust, and similarly Haddock only works for Haskell, Doxy-
gen actually supports quite a wide range of languages. For example, C, C++ and Java, and
with extensions even some less common languages are supported, as long as their syntax is
somewhat similar to that of C.

Furthermore, Doxygen can produce all kinds of output formats, not just webpages. Just
like Agda, Doxygen supports outputting LaTeX, but also man pages and XML. The XML
output is interesting, because it is not intended to be human-readable, and instead captures
the structure of programs in a more machine-readable format.

To provide code navigation in the generated documentation, Doxygen needs to have a
way to figure out which parts of a codebase reference one another. This is different for ev-
ery language, and thus quite a complex task for a tool that aims to support many different
languages. All previously mentioned documentation generator tools have it much easier in
this regard: they have only a single language to deal with.

To avoid this complexity, Doxygen uses a different program called CTAGS to generate
reference information (CTAGS 2023). We will discuss this tool further in section 2.3.4.

CBS For a language called Component Based Semantics (CBS), Mosses (2019) created a
system to generate a documentation website based on source code. The tool is currently a
language-specific tool just like ones discussed in the previous section. Furthermore, just like
some of those tools, it can generate both HTML and LaTeX. However, what is different is
that CBS is built with the Spoofax language workbench. In section 1.3.2, we discussed the
possibilities language workbenches possess to provide editor services across a wide range of
languages. and this is also the goal for CBS’ documentation generator (Mosses 2023).

18



2.3. Code Exploration Services Outside Editors

2.3.3 Websites
In this section, we discuss a few notable tools out of many that aid programmers collaborat-
ing while writing programs. The ones we will discuss are web-based, and display code on
many pages of their website. It is not always convenient to download this code to a local de-
velopment environment to be able to run and explore it. Therefore, these websites provide
various online code exploration services of differing sophistication.

StackOverflow The first noteworthy tool is StackOverflow. The code exploration services
StackOverflow provides are rather limited. Although many programmers look for code on
the website, they essentially only provide programmers with syntax colouring, and that
might just be plenty for the purposes of the site.

StackOverflow is based on questions and hand-written answers by other programmers.
Answers may contain snippets of code to explain a certain concept without requiring much
further context. Providing more than syntax colouring for these small snippets is likely dif-
ficult and may not even be very helpful for users.

What may happen though, is that the question that somebody asked on StackOverflow
does not exactly match the one you have. As such, the given answer might not work for you.
In that case, you could ask your own question, but StackOverflow also has a built-in service
that finds related questions that might match your question better. One could argue that this
is a form of code navigation, although not based on the contents of programs and instead
based on the meaning of the code.

GitLab andGitHub In contrast to StackOverflow,GitLab is often used to store entire projects,
not just snippets of code. GitLab is a platform on which people can collaborate on projects
using Git, a version control system. To help people explore code on their platform, GitLab
performs syntax colouring for many languages when viewing files with source code in them.
Additionally, GitLab has search functionality that can be scoped to a particular project or
group of projects.

Figure 2.2: ctx.py from the Python Flask repository viewed on GitLab with only syntax
Colouring.

19



2. CODE EXPLORATION SERVICES

GitLab provides fewer code exploration services than GitHub. Just like on GitLab, pro-
grammers often upload entire codebases toGitHub, andwork on their code together through
Git. However, GitHub gives us a taste some of what is possible with more advanced code
exploration services.

In addition to the quite standard code colouring, GitHub allows visitors of the site to
easily navigate source code of limited set programming languages (currently only Python)
by jumping from usages to definitions and back, even between different files of a project.
Instead of depending on exact name matches like Doxygen does, GitHub builds a model
of the scoping rules of a language using Stack Graphs (Creager and van Antwerpen 2023;
Github 2023b). Based on this model, they can work out which identifiers refer to which
other identifiers while taking scoping rules into consideration.

In section 1.3.2, we discussed language workbenches and Spoofax. To define the scoping
rules of a language in Spoofax, a model called Scope Graphs is used (Néron et al. 2015; van
Antwerpen, Néron, et al. 2016; van Antwerpen, Poulsen, et al. 2018). Stack Graphs are based
on Scope Graphs, but modified to be highly incremental. That means that when someone
changes one file in the project, and pushes this change as part of a Git commit, GitHub does
not have to re-analyse all other files in the code base.

In figure 2.3 we show a demonstration of code navigation through the Python Flask
project based on Stack Graphs on Github. At the time of writing, GitHub has only enabled
Stack Graphs based navigation for Python, though the plan is to provide this for more lan-
guages (Creager and van Antwerpen 2023).

Figure 2.3: The same ctx.py as shown infigure 2.2 from the Pythonflask repository onGitHub,
showing coloured code on the left with one identifier selected: pop. On the right, the code
navigation menu is open (which happens after an identifier is selected) showing navigation
options: two in this file and 3 more in different files. Clicking these options navigate to those
files in the browser. It is also possible to open a file overview on the left, to navigate between
files. When no identifier is selected, the right shows an outline of the current file.

In addition to syntax colouring, code navigation (for Python) and extensive search op-
tions, GitHubusers have also found customways to add limited diagnosticsmessages to code
displayed on the site. For example, theClippy check action (https://github.com/actions-rs/
clippy-check) automatically checks code uploaded to project repositories on GitHub by us-
ing GitHub Actions, GitHub’s continuous integration service, and adds comments at the
places where warnings and errors are found.

20

https://github.com/actions-rs/clippy-check
https://github.com/actions-rs/clippy-check


2.3. Code Exploration Services Outside Editors

2.3.4 Other tools
Finally, there are several toolswhich do not fit any category above, and yet are certainlyworth
a mention.

Web Code Colourers First, there are several JavaScript libraries which specifically solve
syntax colouring on websites. For example, there are highlight.js (2023) and prism.js (2023),
which essentially package a single code exploration service: code colouring, to work for hun-
dreds of languages on anywebsite. Several of thewebsiteswe discussed sofar use highlight.js
on their website, like StackOverflow and GitLab (Kelley and StackOverflow 2020; GitLab
n.d.), while GitHub uses a custom system.

LaTeX Code Colourers Next, there are similar tools that provide syntax colouring in LaTex
documents. Since this thesis was written using LaTeX, we can demonstrate those in this
document. First, there’s the LaTeX listings package, which simply highlights a number of
predefined keywords, as figure 2.4 shows.

fn fibonacci(n: u64) -> u64 {
match n {

0 => 0,
1 => 1,
n => fibonacci(n - 1) + fibonacci(n - 2)

}
}

Figure 2.4: A snippet of Rust code, formatted using the LaTeX listings package.

Which keywords are highlighted changes per language, and users of the library can de-
fine their own set of keywords that should be highlighted. This is different to what the LaTeX
minted package does, which uses an external tool called Brandl, Chajdas, and Abou-Samra
(2023) to perform highlighting. The result looks a lot more like what code listings commonly
look like on websites, as can be seen in figure 2.5.

fn fibonacci(n: u64) -> u64 {
match n {

0 => 0,
1 => 1,
n => fibonacci(n - 1) + fibonacci(n - 2)

}
}

Figure 2.5: A snipped of Rust code, formatted using the latex minted package.

CTAGS CTAGS is a tool that reads programs and codebases and generates so-called tag-
files. Tagfiles are like a table of contents of a codebase, containing information about the
location and type of all items in the codebase.

Doxygen, a tool we previously discussed in section 2.3.2, reads the output of CTAGS to
provide its services. However, such an index of definitions in a codebase is useful for all
kinds of tools, not just Doxygen. In fact, the main use case of tagfiles is not Doxygen, but
editors to help provide editor services. Vim, for example, can read tagfiles to provide code
navigation.

21



2. CODE EXPLORATION SERVICES

AlthoughCTAGS can find identifiers in a source file, it does not understand scoping rules.
The result is that tools like Doxygen, that use CTAGS to provide code navigation, sometimes
make mistakes. If there are two items with the exact same name, Doxygen may refer to the
wrong one or both.

Luckily, the languages that Doxygen works on have scoping rules that make triggering
these mistakes somewhat difficult. For example in C++, toplevel items are not allowed to
shadow each other. Still, it is possible to craft an example that shows Doxygen making mis-
takes in finding what parts of the program reference what other parts. We used Doxygen to
generate documentation for the C++ code snippet below, in which both the enum variant
A::X and the struct X are both in global scope:

1 #include<iostream>
2

3 enum A {
4 X = 5,
5 };
6

7 struct X {};
8 const A x = X;
9

10 int main() {
11 std::cout << x << std::endl;
12 }

In C++, you do not need to qualify usage of an enum variant, so on line 8, the variable
example gets the value 5 assigned which is printed in main. However, Doxygen internally
thinks that the enum variant is called A::X and the struct is just called X. Therefore, the X in
const A x = X does not exactly match the enum variant name and instead Doxygen thinks
this statement refers to the struct X, the name of which does match exactly. Doxygen shows
this association by generating a blue link, and in figure 2.6 the arrow shows where the link
(mistakenly) takes users.

Figure 2.6: Doxygen links from const A x to struct X because it wrongly matches the value
to the struct which is also named X. Doxygen should instead link to the variant named X in
enum A. The arrow shows where the blue X link points users to.

Bootlin Elixir The Bootlin Elixir cross-referencer is an online tool to browse the source code
of various large C and C++ projects such as the Linux kernel and Glibc. In Elixir, users
can navigate around these large code bases easily by providing code navigation and syntax
highlighting. The website is available at https://elixir.bootlin.com.

22

https://elixir.bootlin.com


2.3. Code Exploration Services Outside Editors

The cross-referencer is a custom tool written in Python, which stores metadata in an SQL
database. This works for a small set of programming languages: C, C++ and assembly, as
well as some formats specific to the Linux kernel such as devicetree files. The database can
later be queried, which is done to generate HTML webpages for example.

MattGodbolt’s Compiler Explorer TheCompiler Explorer is an online tool created byMatt
Godbolt, available at https://godbolt.org. On the website, users can write code in a simple
editor and execute it (non-interactively) on the server, and this works for a large range of
different compiled programming languages. This makes the Compiler Explorer, in contrast
to the other systems in this list in that it also provides active code exploration services: users
can see what their code does when ran.

Furthermore, the Compiler Explorer is not just an online editor and fewpeoplewould use
it as such. The main purpose of the Compiler Explorer is instead to be able to choose exactly
which compiler is used to compile the code. The website can, instead of running the code,
also give the binary and assembly output of the compiler, and link each line in the source
code to what assembly instructions correspond to it. With the Compiler Explorer, users can
research differences in the code generated between different compilers and programming
languages, and can visualise the optimisations a compiler performs.

This makes the Compiler Explorer unique in the list of code exploration systems in this
chapter: it is the only tool that performs services which even sophisticated IDEs cannot pro-
vide. Few developers have the hundreds of versions of different compilers of different lan-
guages installed on their local machine, even though that would be required for an IDE to
provide the features of the Compiler Explorer. Instead, providing this tool as-a-service, on
remote machines which do have all these different compilers installed is much more conve-
nient.

2.3.5 Evaluation
In this section we have discussed many examples of systems that provide a wide range of
code exploration services in several media. However, many of the discussed approaches are
quite narrow in scope. To make that notion more exact, we say that a system is narrowwhen
it has one of the following shortcomings:

1. It supports only a single or small number of programming languages,

2. It supports only a single or small number of code exploration media,

3. It supports only a single or small number of code exploration services.

All the systems we looked at have at least one of these three properties. For example,
the documentation generators we discussed, like rustdoc, only support a single language.
The various code colourers we mention almost by-definition only support a single code ex-
ploration service. Finally, GitHub’s Stack Graphs currently supports only a single language,
only powers a single code exploration service and is only available in a single medium: on
GitHub.

What we see here is, in essence, similar to the IDE portability problem described in sec-
tion 1.3. There arem languages for which services are provided in n places and no party can
feasibly be responsible for those m ˆ n implementations. Instead, many narrow solutions
form the landscape of code exploration services in various media. We call this, the m ˆ n
problem for code exploration services.

The opposite of a system that is narrow in scope is a system that is broad in scope. A broad
tool is one that does have the ability to support multiple programming languages, multiple

23

https://godbolt.org


2. CODE EXPLORATION SERVICES

media and multiple code exploration services, and is extensible in all these directions. Al-
though there are currently no broad solutions for code exploration services, we have already
discussed one for editor services in section 1.3.1. LSP is a broad solution to the IDE Portabil-
ity Problem. Through LSP, multiple editor services can be provided, in any supported editor
and for any supported language.

Of course, the caveat there is that the editor or language does need to be supported. How-
ever, to supportmore languages or editors, LSP does not fundamentally need to change. This
is an important property a broad system should have: extensibility.

The rest of this thesis will be about this: creating a broad solution that solves the m ˆ n
problem for code exploration services. A solution which can support multiple kinds of code
exploration services, in a language-agnostic manner, in multiple code exploration media.

24



Chapter 3

The Design of the Codex Format

In the previous chapter we identified a problem analogous to the IDE portability problem:
the m ˆ n problem for code exploration services. Current systems that provide code explo-
ration services are all narrow in scope which hinders reuse causing this m ˆ n complexity.
A solution for this problem is a system that is not narrow, but broad in scope and that can
support multiple languages, multiple code explorationmedia, multiple code exploration ser-
vices and which is extensible in all these dimensions.

The solution we present in this chapter is the Codex metadata format, which forms the
foundation behindCodex, a broad and extensible system for code exploration serviceswhich
we will demonstrate in chapter 4. The metadata format is to codex what the language server
communication protocol is to LSP: it connects language-specific tools to language-agnostic tools.
This is the main reason both LSP and Codex are broad in scope. In figure 3.1 we show the
Codex metadata format, and the rest of this chapter is dedicated to our reasoning for why
the format is what it is.

3.1 The Codex Metadata Format
The Codex metadata format needs to be able to store metadata for all code exploration ser-
vices as described in section 2.1. To do so, the format needs to represent:

• references to specific sections of the source code, which aids code navigation and relat-
ing structures in the outline;

• classifications of certain parts of source code, for example to indicate the syntactic clas-
sification of a token or the semantics of a structure;

• extra information relating to pieces of source code, such as a diagnostic message from
the compiler.

Some code exploration services need multiple, or even all of these kinds of metadata to
be present. For example, code navigation mainly, and most obviously, consists of reference
information. However, there is a difference between references from a definition of an item
to a usage, and from a usage back to a definition, which we want to be able to represent for
code navigation.

In the Codex metadata format, we define three different data types to represent these
three kinds of metadata, which can be seen in figure 3.1. References are made using the Span
data type representing a source locations as two numbers and a string: a start in number of
unicode codepoints, a length and a file path relative to the root of the project. Classifications
are made with the Classification data type, and free-form data is represented as a String.

25



3. THE DESIGN OF THE CODEX FORMAT

// Types
struct Span {

start: usize,
length: usize,
file: Path,

}
struct Classification(Vec<String>);
struct Text(String);

// Relations
enum Relation {

Outline {
kind: Classification,
parent: Span,

},
Syntax {

kind: Classification,
},
Reference {

target: Span,
kind: Classification,

},
Diagnostics {

kind: Classification,
message: Text,

}
}

// Metadata
type Metadata = Vec<(Span, Relation)>;

Figure 3.1: The definition of the Codex metadata format in the Rust proof of concept. In
Rust, enums are sum types, they can hold one of a number of possible variants. For example,
a Relation can be a Reference, or a Syntax classification. This is also an example of code
formatted using Codex, our proof of concept which we show in chapter 4.

Using combinations of these three data types, themetadata required for different code explo-
ration services can be stored. The Relation type in figure 3.1 represents these combinations
of more primitive types. There are four kinds of Relations defined, for four different code
exploration services.

Finally, Codex metadata consists of many such relations. A single source file likely con-
tains many references between locations, and many tokens which are classified using Syntax
relations. Each Relation is paired with a source location, also called a Span, and stored in a
large list which is called Metadata in figure 3.1.

A small example of what some Codex metadata might look like when using this format
can be found in figure 3.2. The example shows samples of each kind of metadata generated
from a Rust file in a serialized representation as JSON. How we generated this exactly will
become clearer in chapter 4.

3.2 Language Agnostic Classification
It is important that the way this metadata is stored is in no way tied to any specific program-
ming language. If that were the case, we would unnecessarily limit the scope of Codex, just
like the narrow tools we discussed in section 2.3.

26



3.2. Language Agnostic Classification

["data_structures.rs!17+14", {
"Reference":
{
"kind": ["declaration"],
"reference": "data_structures.rs!1+44"

}
}]
//...
["data_structures.rs!107+4", {
"Diagnostics":
{
"severity": ["error"],
"message": "struct Path not in scope"

}
}]
//...
["data_structures.rs!17+14", {
"Outline":
{
"kind": ["struct"],
"parent": null

}
}]
//...
[ "data_structures.rs!10+6", {
"Syntax":
{
"kind": ["keyword","declaration","struct","rust"]

}
}]

Figure 3.2: An excerpt of serialized metadata in the codex format, showing what data for
the different kinds of metadata categories defined in section 3.1 look like. The metadata was
generated by taking the source code in figure 3.1 and running it through the Codex tool we
show in chapter 4. Out of about a hundred lines of metadata, only a few lines are shown.

Despite the success of LSP, one could argue that this is a flaw in LSP. In LSP, a symbol
can fall into one of a limited set of categories, which is the symbol’s SymbolKind (Microsoft
2022b). It is not difficult to find languageswith symbol kinds that do not fit into these limited
number of categories: Rust has structs but a struct is not a valid SymbolKind, and Haskell’s
typeclasses fail to fit in as well. To represent these items, we could approximate: a struct
might become a class, and a typeclass an interface. However, this does not always work.
C++ has both classes and structs, making it ambiguous if we labelled these both as classes.

The approach LSP takes, with a limited number of categories into which all languages
must fit is doomed to fail. Because of the wide variety of programming languages in exis-
tence, and subtle differences in meaning of language constructs between languages, we can-
not make an exhaustive list of syntactical categories which applies to every language there
is.

3.2.1 Hierarchical Categorisation
An approach that avoids making such an exhaustive list was first used for TextMate, an ed-
itor for macOS (MacroMates Ltd. 2021). This approach is now used in facilitating syntax
highlighters in multiple editors, like Visual Studio Code, all Jetbrains editors, and Atom.

27



3. THE DESIGN OF THE CODEX FORMAT

TextMate uses custom syntax specifications of languages in the formof regular-expression-
based grammars in order to support syntax colouring. Such grammars label the different
syntactical elements. Colour themes can then apply different colours to items with specific
labels. Because the people who make grammars are not necessarily the same as the people
making the themes, a standardised labelling system had to be invented such that all themes
could be compatible with all grammars. That allows anyone to make their own themes.

Instead of making an exhaustive list, TextMate uses a hierarchical approach, which is not
so different from taxonomies in biology. In TextMate, an equals sign in a variable assignment
in Rust might be labelled keyword.operator.assignment.rust using this hierarchical categori-
sation scheme. The dots in this label separate parts of the label, going from generic to specific.
First of all, the equals sign is a keyword, but more specifically an operator, specifically meant
for assignment, specifically in Rust.

Now, TextMate themes can match on these labels in a similar way to how CSS classes
match: if a theme only knows how to colour keywords, this assignment operator gets the
same colour as all keywords. However, a theme can also specify a specific colour for all
items labelled keyword.operator, or even more specific. The advantage is that this system
can both capture all the language-specific details of syntax, as well as being easy to read for
tools which might not be aware of these language-specific details.

In the Codex metadata format, to be completely language-agnostic, it makes sense to
make any language-specific labelling such as syntactical categories hierarchical. In fact, as
figure 3.1 shows, we use classifications for every relation.

3.3 Generating and Using Metadata
Using the Codex metadata format, metadata can be generated and stored in a language-
agnostic way. The question then becomes, who or what generates the metadata? By keeping
the format simple, a wide range of tools could be metadata generators.

Many of the narrow tools we discussed in section 2.3 can be metadata generators just
by translating their output. For example, CTAGS could be a metadata generator. Currently,
CTAGS outputs tags files, but these simply contain encoded metadata for a single source file.
Similarly, we could imagine GitHub’s Stack Graphs to be a generator of metadata, though
mainly for reference information.

A completely different example of a possible metadata generator is a compiler. Naturally,
a compiler has a very good understanding of the program it is compiling. To generate ma-
chine code for a program, a compiler already has to parse the source and do an analysis of
references. A compiler could, apart from outputting machine code, also output some Codex
metadata.

Through the Codexmetadata format, a wide range of thesemetadata generators can be con-
nected to what we call language agnostic presentation generators that can take metadata and
source code to create rich presentations of that source code is various media. Presentation
generators are the application what Codex is designed for, though one can imagine tools
with other purposes reading Codex metadata to gain information about some program.

The concept of metadata generators and presentation generators is similar to how LSP
functions. They call metadata generators language servers and the presentation generators
are analogous to editors. With LSP, the two sides communicate over the language server
protocol, which is comparable to the Codex metadata format.

3.4 A Format Instead of a Protocol
An important difference between the Codex metadata format and LSP is that the former is a
data format, while the latter is a protocol. That is because there is a large difference between

28



3.4. A Format Instead of a Protocol

editors and presentation generators.
Editors using LSP are lazy; information is only sent when requested by the user through

the editor. That is possible because editors are also very dynamic: they can easily run arbitrary
code when the user gives inputs, to make the necessary requests for information. This can
be beneficial for performance, not all information needs to be available from the start, and is
especially necessary because source code in editors is constantly changed, so metadata very
quickly becomes outdated.

Code presentations in other media cannot work this way. Under LSP, editors are both
presentations, and also the tools that interpret and present metadata received the metadata
from a language server. However, these roles become separated in other media, because
other media are not as dynamic and flexible as editors are.

Take PDF documents as an example. While an editor can dynamically make requests to a
language server running in the background to get up-to-date information about the program
which is written, we cannot make requests like that inside a PDF document. We illustrate
this in figure 3.3.

Uses PDF
Document

Can't
make

requests

Uses
Editor

Requests
from Language

Server

Uses PDF
Document

Generates
PDF Language

Agnostic
Tool

Generates
Metadata Language

Specific
Tool

Figure 3.3: Although a language-agnostic editor can directly make requests to a language-
specific source of information (as is the case with LSP), this architecture cannot work in code
exploration media where making requests are impossible such as in PDF documents. Code
exploration services must instead be embedded in such media whenever they are generated.

Instead, if wewant to provide code exploration services in a PDFdocument, those need to
be embedded into the PDF itself at the moment the PDF is generated. This baking-in process
may involve colouring some text in the document where source code is presented, and, for
example, adding extra hyperlinks to navigate between different pieces of source code. This
embedding is done by the presentation generator, making it analogous to an editor with the
capability to access language-specific metadata. In that way, the presentation generated by
the presentation generator has the possibility to be entirely static.

29



3. THE DESIGN OF THE CODEX FORMAT

Because the entire presentation is generated at the same time, all metadata is needed at
the same time. Therefore, a request-response model like LSP makes little sense, in the end
all data will be requested. Instead, a method of communication in which all information
is packaged together can be used: a data format instead of a protocol. We foresee several
advantages of doing this.

First, there is no need for two-way communication between the metadata generator and
presentation generator. Instead, all data flows oneway. Themetadata generator can generate
all metadata at once, then the presentation generator can interpret all the metadata at once.

Next, after the metadata is generated, the presentation generator does not have to inter-
pret the metadata immediately. Instead, the metadata could be written to a file and used
later. One could imagine metadata being committed along with programs to a Git reposi-
tory, or being generated by a continuous integration pipeline. Then, other parties could use
the metadata to generate their own presentations, also after the tooling that generated the
metadata is maybe not available anymore. Git providers like GitHub or GitLab could even
use the metadata to present code to users automatically, regardless of the language (as long
as the authors of the code also provided the metadata).

Lastly, we can imagine the stored metadata serving as a kind of cache. Before metadata
generators start, they could first read the old metadata from a file, and then only generate
new metadata for code that has changed, updating the cache.

30



Chapter 4

Demonstration

In the previous chapter, we described the design of the Codex metadata format. Using that
format, we claimed we can decouple language-specific metadata generators from language-
agnostic code exploration media and make a broad and extensible solution to the m ˆ n
problem for code exploration services. The question now is, can the Codex metadata format
indeed do that?

In this chapter we demonstrate that it does by looking at the prototype system we built
which we call Codex. Codex currently demonstrates four different language-specific tools
that generate program metadata which communicate, using the Codex metadata format,
with two different language-agnostic systems that generate presentations of code in two dif-
ferent media.

Figure 4.1: A fragment of Rust code presented in an interactive HTML webpage. The colour
information, reference information (underlines), outline, and warnings are derived from
metadata stored in the Codex metadata format. When a declaration in the code is referenced
more than once, hovering over the underlined name opens a pop-up listing all its usages.
Clicking one of the usages in the list instantly jumps the webbrowser to the relevant code.

31



4. DEMONSTRATION

The source code of this tool can be found online at https://github.com/jdonszelmann/
codex.

4.1 Presenting Code on Websites through HTML
HTML is a standard format for documents designed to be displayed in web browsers. To-
gether with CSS and JavaScript, HTML can be used to create websites with complex graph-
ical user interfaces and visualisations. Many websites such as StackOverflow, GitHub and
GitLab can present users’ source code, sometimes with some basic code exploration services.

Using the Codex prototype, we can produce HTML documents from source code and
its corresponding Codex metadata. What programming language the source code was writ-
ten in does not matter, as long as there is associated metadata. In figure 4.1 we show an
example of Codex’s presentation of a source file containing Rust code in a web browser. In
the generated HTML document, we implemented several code exploration services: syntax
colouring, structure outline, code navigation, and diagnostic messages. Code navigation is
implemented by adding hyperlinks to the code, thoughwhenmore than one reference exists,
a pop-up is shown when hovering over underlined items, allowing users to choose where
to navigate. Diagnostic messages are shown by underlining an item in yellow, which when
hovered over shows the associated compiler warnings and errors.

It is possible for users to change the theme of the HTML visualisation. Instead of assign-
ing colours to tokens, we add CSS classes based on the token’s classification (See section 3.2
for more details). At the same time, multiple TextMate syntax theme definitions are trans-
lated to CSS and included with the HTML document. Users can choose which CSS rules
are applied by choosing a theme in the top left. In figure 4.2 we show a presentation of a
program in HTML, formatted with a different colour scheme.

Figure 4.2: A fragment of TypeScript code presented in an interactive HTML webpage in
a different colour scheme than figure 4.1. No code navigation is available in this example,
since this information is derived from LSP in other languages, and TypeScript has no good
LSP available. Editors like Visual Studio Code instead have TypeScript support built-in and
derive their editor services for TypeScript from tsc directly.

4.2 Presenting Code in PDF Documents through LaTeX
A different presentation of the same Rust code of figure 4.1 is shown in figure 4.3 embedded
into this thesis’s text through generated LaTeX code. Just like with HTML, the Codex proof
of concept can also generate LaTeX source code based onmetadata in the Codex format. The
two visualisations are adjusted to their medium, but both rely on the Codexmetadata format.

32

https://github.com/jdonszelmann/codex
https://github.com/jdonszelmann/codex


4.3. Generating Metadata from Existing Tools

One extra aspect of our LaTeX generator is that it can generate LaTeX for multiple files
from the same project, if the metadata contains that information. Figure 4.4 shows source
code from a different file in the same Rust project as the example in figure 4.1. The two
files reference each other, and when reading this thesis digitally, hyperlinks enable quick
navigation between the two figures.

When there are multiple references, instead of providing a drop-down menu as shown
in the generated website, in the PDFwe addmultiple links in superscript to parts of the code
that referencemultiple other locations in the code. An example of this can found in figure 4.3,
figure 4.4 and in figure 4.5.

Because both theHTMLpresentation and this LaTeXpresentation rely solely onmetadata
in the Codex format, both are completely language-agnostic. Although figure 3.2 is mainly
meant to demonstrate what the Codex metadata format looks like when it is serialised, the
syntax colouring in the example itself is created using Codex. Therefore, figure 3.2 is also a
demonstration of how, through the Codex metadata format, we can present code written in
different languages.

#[derive(Debug)]
pub struct Numberⁱ,ⁱ,ᵘ {

inner: u32,
}

impl Numberᵈ,ⁱ,ᵘ {
pub fn multiply(&self, other: u32) -> Self {

Self {
inner: self.inner * other

}
}

pub fn square(&self) -> Self {
self.multiply(self.inner)

}
}

Figure 4.3: The same fragment of Rust code as shown in figure 4.1, but embedded in this the-
sis document through LaTeX source code generated from the Codexmetadata format. When
this document’s PDF is viewed digitally, some elements such as variables are clickable and
navigate to the referenced location. When an item is referenced more than once, superscript
annotations are inserted that facilitate navigation: ‘d’ means definition, ‘i’ means implemen-
tation and ‘u’ means usage.

4.3 Generating Metadata from Existing Tools
Codexmetadata can be generated either directly by instrumenting compilers, or by adapting
independently developed tools. In this section, we showhowweused several of such existing
tools to generate metadata and how we converted this metadata into the Codex format.

TextMate Grammars The first tool that we use to generate Codex metadata are grammar
definitions. A common standard for grammar definitions supported by code editors is the

33



4. DEMONSTRATION

fn print_square(n: Numberᵈ,ⁱ,ᵘ,ᵘ) {
println!("{:?}", n.square());

}

Figure 4.4: This is the continuation of the example Rust code in figure 4.3. Code navigation
enables quick navigation between the two pieces of code on different pages, when reading
this thesis’ PDF digitally.

one originally used by the TextMate editor (MacroMates Ltd. 2021). Grammar definitions for
many languages, both small and large, are freely available online, mostly with the purpose to
be used in editors. Almost all editors either have native support for these TextMate grammar
files, or have plugins which add this support.

TextMate grammars are not full context-free grammars, but instead function by apply-
ing regular expressions to fragments of source code. Based on which regular expressions
matched words in the code, other regular expressions are brought in and out of scope to
allow moderately complex syntaxes to be parsed. Due to their design, TextMate grammars
quite often perform well even in the presence of syntax errors.

TextMate introduces a way to hierarchically classify tokens based on the token’s function
in a programming language. We discussed in section 3.2.1 how we use this function for
syntax colouring and other code exploration services in the Codex format. Because we use
this system for syntax colouring, translating from TextMate output to the Codex format is
very simple. TextMate grammar files already contain such classifiers, sowe can include those
directly into the Codex format.

Previous parsers using TextMate (like the one for VS Code and TextMate itself) are de-
signed to work in combination with an editor. These proved hard to integrate in Codex,
in part because they were designed to directly output colour information as opposed to to-
ken classifications. For our proof of concept, we wrote a custom TextMate parser in Rust,
which we have tested on grammar definitions of many large languages such as the ones
for Rust, TypeScript, and Haskell. You can find this implementation at code-exploration-
services-lib/src/textmate

CTAGS CTAGS (2023) is a tool that can provide primitive editor services in terminal-based
editors such as Vim. To do this, CTAGS parses source files of many different languages and
can generate so-called tags files from that. Vim can then read these tags files to allow pro-
grammers to search for definitions in a code base.

CTAGS does not provide enough information to accurately derive code navigation from
its output alone. Despite Doxygen doing this, as discussed in section 2.3, name shadowing
easily fools the primitive name resolution CTAGS performs. However, CTAGS’ output can be
used to generate an outlines for source files, which is what Codex does. The implementation
of this tool can be found in code-exploration-services-lib/src/input/subsystems/ctags. An
example of such an outline can be found in figure 4.1.

TheLanguageServer Protocol In section 1.3.1, we alreadymentionedLSP (Microsoft 2022a)
in the context of the m ˆ n problem. Although LSP is a protocol meant for editors, we can
use the information that LSP can provide and extract metadata from it. This is very different
from how LSP is normally used for editor services, where it requires live communication
about a user’s interaction with the code base.

To accomplish this, we first start a language server on the code base we want to analyse.
Then we query this language server about every token in a code base, storing all responses.

34

https://github.com/jdonszelmann/codex/tree/main/code-exploration-services-lib/src/textmate
https://github.com/jdonszelmann/codex/tree/main/code-exploration-services-lib/src/textmate
https://github.com/jdonszelmann/codex/tree/main/code-exploration-services-lib/src/input/subsystems/ctags


4.4. Producing Metadata for Small Languages: Elaine

We then convert the responses such that they can be stored in the Codex format, after which
the language server can be stopped again. Because of the number of queries that need to be
executed, this process can be rather slow, taking up amajority of the indexing time. However,
for this demonstration, speed was not a priority.

Codex currently queries LSP to get both reference information and diagnostic messages.
However, the LSP can provide much more than just reference information, like documenta-
tion for items, code folding points and code actions.

We have tested Codex querying an LSP, with both Rust’s and Haskell’s language server
implementation. This is also how the reference metadata for figures 3.1, 4.1 and 4.3 is gener-
ated.

4.4 Producing Metadata for Small Languages: Elaine
Small programming languages, DSLs or research programming languages, often have very
little tooling available. The time it costs to make tooling, such as editor services, build sys-
tems and documentation is often not worth the time. However, for educational purposes,
and science communication, having some simple code exploration services like syntax high-
lighting and code navigation could be very advantageous.

The Codex format can help with this. The visualisations of code that Codex can gener-

use std;

effect Abort {
abort() a

}

let hAbortᵘ,ᵘ = fn(default) {
handler {
return(x) { x }
abort() { default }

}
};

let safe_divᵘ,ᵘ = fn(x, yᵘ,ᵘ) <Abort> Int {
if eq(y, 0) {
abort()

} else {
div(x, y)

}
};

let main = add(
handle[hAbort(0)] safe_div(3, 0),
handle[hAbort(0)] safe_div(10, 2),

);

Figure 4.5: An example piece of Elaine code. Elaine is a research language that explores pro-
grammingwith higher order effects. Elaine’s parser and type checker were slightly modified
to output metadata in the Codex format, enabling syntax colouring and code navigation in
this example.

35



4. DEMONSTRATION

ate are completely language-agnostic. That means that if the compiler or interpreter of a
DSL can output metadata in the Codex format, all code exploration services in the Codex
visualizations work out of the box.

To demonstrate this, we implemented a Codex generator for the Elaine language. Elaine
is a domain-specific language that explores programmingusing higher order effects (Poulsen
and van der Rest 2023; Diepraam 2023). Elaine is built for research, and it has a simple type
checker and interpreter written in Haskell.

We modified the Elaine parser and type checker slightly, such that it outputs metadata
in the Codex format directly from the parser and type checker. Implementing these modifi-
cations took less than three hours in total, and required less than 100 extra lines of code. The
parser directly labels the syntax with similar category names as used by TextMate, without
using a TextMate grammar itself. At the same time, the type checker outputs reference infor-
mation as a replacement to queries to an LSP. Since the type checker needs to resolve type
references anyway, outputting the results of these resolutions is not very complicated.

For this thesis, we fed the generated metadata from Elaine into Codex, which converts
the code into a LaTeX representation. The result of this can be found in figure 4.5.

What’s interesting to note is that the Codex metadata format has no problem support-
ing reference resolution for effects and elaborations, a language feature not common among
larger programming languages. When Elaine outputs metadata, elaboration references get
the label definition.elaboration (see figure 3.1), allowing consumers of the metadata to
visualise it.

4.5 Evaluation
In this chapter, we demonstrated Codex, a prototype broad solution for language-agnostic
code exploration services. We showed that with Codex, we can generate presentations of
source code written in several programming languages, based on metadata gathered from a
diverse set of language-specific tools, which was then stored in the Codex metadata format.
We also showed that Codex is extensible in this regard: we can create new generators of
metadata like the one we created for Elaine.

We showed that we can make presentations of source code, with code exploration ser-
vices, in two different media: Websites and PDF documents. The prototype presentation
generators for these media are completely language-agnostic, and in this chapter we have
shown examples of Codex making presentations of Rust, TypeScript, Elaine, as well as JSON
in the previous chapter in figure 3.2.

The Codex metadata format is also extensible in what metadata it can store. By adding
different relations to the format as specified in section 3.1, metadata for different purposes
can be added.

With that, we demonstrate that Codex is not narrow in any of the three categories high-
lighted in section 2.3.5:

1. Codex is extensible to support any number of programming languages through the
language-agnostic Codex metadata format,

2. Codex is extensible to support any code exploration medium that can interpret the
Cdoex metadata format,

3. The Codex metadata format is extensible to store metadata for any passive code explo-
ration service.

36



Chapter 5

Considerations and Tradeoffs

In chapter 4, we demonstrated that the Codex metadata format indeed has the capability to
decouple language agnostic presentation generators from language-specific metadata gener-
ators. Still, the Codexmetadata format is far from ideal, which we experienced while design-
ing the metadata and presentation generators that use the Codex metadata format. In this
chapter, we will discuss these findings.

5.1 Storing Locations in Source Code
In the Codexmetadata format we are describingmetadata about parts of source code. There-
fore, we need a way to refer to specific locations in the source files to connect metadata to
those places. In the Codexmetadata format, we represent this with the Span type, as we show
in section 3.1.

There are two main ways in which this is commonly implemented: either as an absolute
offset from the start of a file, or as pairs of xline number, character offsety. For example, the
Rust compiler stores offsets from the start of the document, while LSP stores pairs.

Line numbers more easily map the metadata to individual lines in the code editor or
viewer, as they are often line-based. For an editor, this presents an advantage: line offsets
only need to be adjustedwhenever the user adds or removes a newline in the document. This
can be beneficial for checking metadata into version control systems, or when implementing
a system where metadata files can be updated incrementally (see chapter 6).

The downside of storing both lines and character offsets is that it may take up more stor-
age, as every location is stored as two numbers instead of one. Additionally, to find the line
that is referenced, a program would need to step through the file, counting newline charac-
ters until the target line is found, though this problem can be mitigated with an index map-
ping line numbers to byte offsets. This makes it more expensive to find a particular location
in a source file. For these reasons, we chose to use absolute offsets in our prototype.

5.1.1 Encoding
The above raises the question: in what unit do we express these absolute file offsets? One
obvious choicewould be to use the absolute byte offset from the start of the file. This has some
downsides: an erroneous offset could point in the middle of two bytes that together form a
single character, and byte offsets need to be changed whenever the code base is transformed
to a different character encoding.

A character encoding specifies how the bytes in a file should be interpreted as characters
by an editor or viewer. There are many character encodings. The ASCII character encoding
used to be the default for a long time in the English-speaking world, where each byte rep-
resents a single character. Nowadays, the Unicode character encodings are more common,

37



5. CONSIDERATIONS AND TRADEOFFS

such as UTF-8 and UTF-16, which can represent more types of characters using variable-
length encoding. To save space, these encodings represent common Latin characters using
fewer bytes.

If offsets are expressed in bytes, and the text encoding changes, offsets will not line up
anymore. For example, most programming languages useUTF-8 character encoding for their
source files, but LSP, being based on JavaScript, specifies offsets to be given as a number of
UTF-16 characters by default. This means that an extra translation step is required to make
the byte offsets in the file correspond to the offsets reported by LSP.

An alternative to byte offsets, is to express offsets as a number of Unicode code points.
This number is independent of the character encodingused. However, because of the variable-
length nature of commonUnicode encodings, finding the character at a certain offset requires
iterating over the entire source code. Character lookups can be made more efficient by keep-
ing an index mapping code points to byte offsets.

So the trade-off is that either possibly many encoding-conversions need to take place, or
that character lookup requires an index to be performant.

In Codex, we refer to absolute offsets by counting the number of Unicode code points
from the start. This proved to be easier to keep consistent than UTF-8 byte offsets, Codex
started out being byte-offset based which caused issues regularly. Using UTF-8 did come at
the cost of some performance: in Codex, every time we want to know the text of a source file
at a certain offset, we need to traverse the entire file, and the current implementation does
not keep an index.

5.2 Spans
Todescribe stretches of source code, in theCodex formatwe used the concept of a span, which
denotes a selection of code. All spans have a start and end position, but there are two main
ways in which this can be constructed: first, a span could contain a start and an end location,
but not allow the end to be before the start. Alternatively, a span could be the combination
of a start and a length, which might take up less storage space and makes it easier to verify
that the length is always positive or zero. In the Codex format, we take the latter approach
as was outlined in section 3.1.

5.2.1 Multi-part spans
One thing to keep in mind is that spans are not always contiguous in all programming lan-
guages. Agda1, for example, can have multi-part spans that refer to, for example, both an
opening and closing parenthesis. In that case, the metadata format should either split such
spans into the component parts and store the same metadata twice, or each file offset should
become a list of offsets.

5.3 References
An important aspect of the Codexmetadata format is to relate metadata with spans of source
code. For example, the metadata for an identifier in the source code might have a reference
to the span of its associated declaration. To achieve this, there are numerous strategies that
can be used.

To provide reference resolution in code exploration media, the metadata format needs to
contain information about what locations reference which other locations. Effectively, a set
of relations between parts of a code base.

1See https://wiki.portal.chalmers.se/agda/pmwiki.php and https://github.com/agda/agda.

38

https://wiki.portal.chalmers.se/agda/pmwiki.php
https://github.com/agda/agda


5.4. Accuracy

Referencing locations can be done with any of the techniques discussed in section 5.1.
In the Codex format, we chose to make a separate metadata entry for every single relation.
However, a more efficient method might be to associate a list of reference destinations for
every symbol that needs it. In that case, the start offset only needs to be given once.

In Codex, we store most relations twice. For example, one direction is from some ref-
erence to some definition, and the inverse relation would be labeled as a usage of that def-
inition. We chose to separate these two directions, because consumers of metadata might
handle the two directions differently. Additionally, it would make the format more general,
as back-edges might not make sense in all situations for all programming languages.

Linking with labels Another way to reference from one place in a piece of source code to
another, would be to use a label or identifier. One piece of metadata might be on the usage
of a variable, saying that that usage site is identified by the number a123. The location in
the source code with the definition of that variable could then have some metadata with the
same identifier a123, linking the two locations.

This technique could even allow for a complete elimination of spans. Instead, metadata
could be connected to source code through lengths only, no absolute positions needed. The
first metadata item in the format refers to an offset of 0 in the source code, and has a certain
length. From there, every metadata item only stores a length relative to the end of the previ-
ous metadata item, assuming there are no gaps. Gaps could be labelled as lengths without
metadata. This might be an efficient way to store metadata.

5.3.1 Referencing symbols in different files
In the Codex format, we not only want to refer to spans in the same file, but also across files.

In our prototype, we put all the metadata for a code base into a single file. We divide the
file into sections, one for each file in the code base. Each section starts with the hash of that
source file.

The hash makes sure that an interpreter of the metadata knows for certain that a source
file and a piece of metadata really belong together. However, the hash has a second purpose.
When a source file references a location in another source file, themetadata for that reference
will contain the hash of the other source file. Essentially, the hash serves as an identifier for
inter-file references.

Alternatively, content could be addressed by file name. This may be convenient because
it makes finding the source file to which the metadata file belongs on disk easier. However,
hashes are oftenmuch shorter than paths saving space, and keeping track of pathswhen files
move around can be problematic.

5.4 Accuracy
An interesting aspect of the Codex metadata format is how accurately it represents its infor-
mation. The goal of the Codex metadata format is to connect different tools with each other.
One or more language-specific tools generate metadata, and the stored metadata can then
later be used to create presentations.

The presentation generators have to assume that all metadata is correct. Because they
are language-agnostic, they cannot do much else. Therefore, the accuracy of Codex entirely
depends on the accuracy of the tools generating themetadata overwhichwemight have little
control. We have seen this go wrong a few times, where the tools we depend disagree on the
location of metadata. One tool might include the spaces around a token where another does
not.

One way this problem could be partially mitigated, is to first tokenize the source using a
language-specific tokenizer. Instead of relating metadata to arbitrary spans of text, we can

39



5. CONSIDERATIONS AND TRADEOFFS

Figure 5.1: To give an indication for the size metadata files grow to, we used our proof of
concept to generate metadata for the 100 most downloaded Rust projects. We chose Rust
because for this language, our implementation currently generates themost metadata. In the
plot, we compare the sizes of the projects (each in lines of code) to the file size of the serialized
metadata (inMiB) on a log-log scale. In blue, the raw size is shown, while red shows the size
of the metadata compressed using Zstd v1.5.5 with its default settings (compression level
3).

relate metadata to a specific token. When a tool generates metadata at a location that is
included by a token, the entire token might get this metadata.

5.5 Metadata Size
The Codex metadata format is a bridge between tools that generate metadata and tools that
consume metadata. Although these two steps may sometimes follow each other directly,
they do not need to. Because the metadata is static, it is possible to store the metadata and
consume it later. For example, it might be desired to generate the metadata locally, commit it
to version control, and have a continuous deployment job find the metadata and turn it into
a static documentation website.

The size of the stored metadata is no primary concern to us: our goal with Codex was
to show the possibility of a language agnostic metadata format connecting language-specific
metadata generators to language-agnostic presentations. However, if it turns out that even
for small projects we produce an unmanageable amount of metadata, our proof of concept
might not be feasibly usable. Therefore, we ran a small experiment to give an indication of
the size of the metadata we generate.

We downloaded the 100 most popular Rust projects2, and ran our generator on each of
them. These projects ranged from a few tens of lines of code to thousands, comments re-
moved. All four types of metadata relations which our proof of concept currently supports
were generated for these 100 projects.

2The same 100 used by the Rust playground: https://github.com/rust-lang/rust-playground/tree/main/
top-crates

40

https://github.com/rust-lang/rust-playground/tree/main/top-crates
https://github.com/rust-lang/rust-playground/tree/main/top-crates


5.5. Metadata Size

In figure 5.1, we show the results of this test, split into two categories. First, the size of the
raw output, which grows at approximately a mebibyte for every 1500 lines of code. However,
we also looked at how much compression could help reduce the size of the metadata.

When we use a popular compression algorithm, Zstd Meta Platforms, Inc. 2023, the file
size drastically decreases. With compression, the files only grow at about a mebibyte for ev-
ery 20 000 lines of code, more than 13 times smaller. Using a generic compression algorithm
like Zstd may be a good choice, as opposed to optimizing the format itself for storage size.
While the latter option requires lots of effort to implement, complicating the data format, the
former option is essentially trivial and does not depend on the data format itself.

41



5. CONSIDERATIONS AND TRADEOFFS

This page was unintentionally left blank.

42



Chapter 6

Future Work

Although we show that the Codex metadata format can successfully decouple language-
specific metadata generators from language-agnostic presentations of source code, Codex
is no perfect solution yet. For example, although we theorise that many passive code actions
can be encoded in Codex through an extra relation, we did not demonstrate this in our pro-
totype. Furthermore, the current definition of the Codex does not support the kind of multi-
part spans discussed in section 5.2.

Apart from these specific changes to the Codex metadata format and Codex prototype,
there are also some larger unanswered questions The first is to see whether is it possible to
encode and provide certain guarantees about the metadata format. Right now, in our proof
of concept, certain aspects of the format, like the order of metadata, are undefined. Spans of
the same relation can also interleave, with one span starting before another and ending inside
the other. Whether the format has these, depends on the tools that generate the metadata,
while it can make implementing consumers of the format hard.

Tomitigate this, wemight imagine a formatwith certain guarantees encoded in them, and
transformer tools which take metadata,and produce metadata with more guarantees. This
might be by filling in missing information, sorting information based on a desired property,
or splittingmetadata so spans no longer interleave. Such transformer toolsmaymake it easier
to generate and to consume metadata as well.

Next, although Codex is not intended to update metadata in real-time like LSP, some-
times programs do change andmetadata is regenerated. The Codex prototype demonstrated
in this thesis takes quite some time to gather metadata for a whole project, especially when
a language server is queried. One way to improve this is to first figure out which parts of
a code base changed, to avoid generating metadata for an entire code base. Codex could
first read old metadata files, and then update only the sections that change in an incremental
fashion.

Lastly, but most importantly, is an issue of standardisation. Although we showed that
the Codex metadata format is capable of decoupling language-specific tools from language-
agnostic tools, the only real way in which it can work if its widely supported. On could
imagine GitHub reading Codex metadata files in the root of a repository and basing its navi-
gation on it, or various compilers outputting metadata on their own. The only way that that
is possible is if everyone agrees to use the same format, whether that is the Codex format or
another.

43





Conclusion

Code exploration is an important part of programming. Many text editors and IDEs provide
editor services, or more specifically code exploration services that can help programmers explore
code. However, although programmers also regularly explore code in other coed exploration
media such as on websites and in PDF documents, we find that only few code exploration
services are supported there.

Existing tools that do provide code exploration services in other media are narrow in
scope: they are not extensible in which programming languages, code exploration services
and code exploration media they support. We established that a problem analogous to the
IDE portability problem exists when providing code exploration services outside of editors:
the m ˆ n problem for code exploration services. Thus, we set out to create a broad solution
for code exploration services, one that decouples the supported programming languages
from the code exploration media in which the programs are explored.

Our solution, the Codex metadata format, is a language-agnostic format for describing
the metadata of a code base, with the purpose of providing code exploration services in
media such as websites and PDF documents. The format decouples generating the metadata
from its presentation, addressing the m ˆ n problem. The format allows the code to be
explored at a point later in time fromwhen themetadata is generated, evenwhen the specific
versions of tooling that was used on the code base is no longer available.

By implementingmultiple language-specific generators, we showed that the Codexmeta-
data format can be generated from several existing narrow tools (e.g. TextMate grammars,
LSP, CTAGS) for various programming languages (e.g. Rust, Haskell). This includes gen-
erating metadata for a Domain-Specific Language (DSL), called Elaine, demonstrating that
providing code exploration services for such languages without pre-existing tooling is fea-
sible. The code examples in the digital version of this paper are interactive, allowing the
reader to navigate between code usages and definitions. These interactive features and the
syntax highlighting are generated based on the Codex metadata format, using our language-
agnostic LaTeX presentation. Additionally, we demonstrated an interactive HTML presen-
tation that can be used to explore a code base. We show that the Codex format successfully
decouples languages and their metadata from their presentations.

45





Bibliography

Agda (2023). Generating LaTeX. URL: https://web.archive.org/web/20230821093901/https:
//agda.readthedocs.io/en/v2.6.3.20230805/tools/generating-latex.html.

Allamanis, Miltiadis et al. (2018). “A Survey of Machine Learning for Big Code and Natural-
ness”. In: ACM Computing Surveys 51.4. DOI: 10.1145/3212695. URL: https://doi.org/10.
1145/3212695.

Ben-Nun, Tal, Alice Shoshana Jakobovits, and TorstenHoefler (2018). “Neural CodeCompre-
hension: A Learnable Representation of Code Semantics”. In: Advances in Neural Informa-
tion Processing Systems 31: Annual Conference on Neural Information Processing Systems 2018,
NeurIPS 2018, 3-8 December 2018, Montréal, Canada. Ed. by Samy Bengio et al., pp. 3589–
3601. URL: http://papers.nips.cc/paper/7617-neural-code-comprehension-a-learnable-
representation-of-code-semantics.

Brandl, Georg, Matthäus Chajdas, and Jean Abou-Samra (Sept. 10, 2023). Pygments. URL:
https://pygments.org/.

Carbonnelle, Pierre (2023). Top IDE index. URL: https://pypl.github.io/IDE.html (visited
on 06/28/2023).

Creager, Douglas A. and Hendrik van Antwerpen (2023). “Stack Graphs: Name Resolution
at Scale”. In: Eelco Visser Commemorative Symposium, EVCS 2023, April 5, 2023, Delft, The
Netherlands. Ed. by Ralf Lämmel, Peter D. Mosses, and Friedrich Steimann. Vol. 109. OA-
SIcs. Schloss Dagstuhl - Leibniz-Zentrum für Informatik. ISBN: 978-3-95977-267-9. DOI: 10.
4230/OASIcs.EVCS.2023.8. URL: https://doi.org/10.4230/OASIcs.EVCS.2023.8.

CTAGS, Universal (2023). ctags. URL: https://github.com/universal-ctags/ctags (visited
on 06/27/2023).

Diepraam, Terts (2023). “Elaine: Elaborations of Higher-Order Effects as First-Class Lan-
guage Feature”.

Dönszelmann, Jonathan, Daniël A. A. Pelsmaeker, and Danny M. Groenewegen (Oct. 2023).
“Codex: a Metadata Format for Rich Code Exploration”.

Eclipse Foundation (2023a). Eclipse Che™. URL: https://www.eclipse.org/che/.
— (2023b). Theia. URL: https://theia-ide.org/.
Erdweg, Sebastian, Tijs van der Storm, Markus Völte, et al. (2013). “The State of the Art

in Language Workbenches - Conclusions from the Language Workbench Challenge”. In:
Software Language Engineering - 6th International Conference, SLE 2013, Indianapolis, IN, USA,
October 26-28, 2013. Proceedings. Ed. by Martin Erwig, Richard F. Paige, and Eric Van
Wyk. Vol. 8225. Lecture Notes in Computer Science. Springer, pp. 197–217. ISBN: 978-3-
319-02653-4. DOI: 10.1007/978-3-319-02654-1_11. URL: http://dx.doi.org/10.1007/978-
3-319-02654-1_11.

Erdweg, Sebastian, Tijs van der Storm, Markus Völter, et al. (2015). “Evaluating and compar-
ing language workbenches: Existing results and benchmarks for the future”. In: Computer

47

https://web.archive.org/web/20230821093901/https://agda.readthedocs.io/en/v2.6.3.20230805/tools/generating-latex.html
https://web.archive.org/web/20230821093901/https://agda.readthedocs.io/en/v2.6.3.20230805/tools/generating-latex.html
https://doi.org/10.1145/3212695
https://doi.org/10.1145/3212695
https://doi.org/10.1145/3212695
http://papers.nips.cc/paper/7617-neural-code-comprehension-a-learnable-representation-of-code-semantics
http://papers.nips.cc/paper/7617-neural-code-comprehension-a-learnable-representation-of-code-semantics
https://pygments.org/
https://pypl.github.io/IDE.html
https://doi.org/10.4230/OASIcs.EVCS.2023.8
https://doi.org/10.4230/OASIcs.EVCS.2023.8
https://doi.org/10.4230/OASIcs.EVCS.2023.8
https://github.com/universal-ctags/ctags
https://www.eclipse.org/che/
https://theia-ide.org/
https://doi.org/10.1007/978-3-319-02654-1_11
http://dx.doi.org/10.1007/978-3-319-02654-1_11
http://dx.doi.org/10.1007/978-3-319-02654-1_11


BIBLIOGRAPHY

Languages, Systems & Structures 44, pp. 24–47. DOI: 10.1016/j.cl.2015.08.007. URL: http:
//dx.doi.org/10.1016/j.cl.2015.08.007.

Eysholdt, Moritz and Heiko Behrens (2010). “Xtext: implement your language faster than
the quick and dirty way”. In: Proceedings of the ACM international conference companion on
Object oriented programming systems languages and applications companion, pp. 307–309.

Fowler, Martin (2005). Language Workbenches: The Killer-App for Domain Specific Languages?
URL: http://www.martinfowler.com/articles/languageWorkbench.html.

Github (2023a). Your AI pair programmer. URL: url (visited on 05/01/2023).
— (2023b). stack-graphs. URL: https://github.com/github/stack-graphs/ (visited on 09/08/2023).
GitHub Copilot litigation (Nov. 1, 2022). URL: https://web.archive.org/web/20230815201014/

https://githubcopilotlitigation.com/ (visited on 08/15/2023).
GitLab (n.d.). SyntaxHighlighting. URL: https://web.archive.org/web/20230802094534/https:

//docs.gitlab.com/ee/user/project/highlighting.html.
highlight.js (2023). URL: https://highlightjs.org/ (visited on 09/09/2023).
IEEE/The Open Group (2017). ed(1p). URL: https://man7.org/linux/man-pages/man1/ed.1p.

html.
JetBrains (Feb. 3, 2022). Structural search and replace. URL: https://web.archive.org/web/

20230314140106/https://www.jetbrains.com/help/idea/structural-search-and-replace.
html.

JSON-RPC working group (Jan. 4, 2013). JSON-RPC 2.0 Specification. URL: https : / / www .
jsonrpc.org/specification (visited on 03/28/2023).

Kalleberg, Karl Trygve and Eelco Visser (Mar. 2007). “Spoofax: An Interactive Development
Environment for ProgramTransformationwith Stratego/XT”. In:Proceedings of the Seventh
Workshop on Language Descriptions, Tools and Applications (LDTA 2007). Electronic Notes
in Theoretical Computer Science. Braga, Portugal: Elsevier. URL: http://swerl.tudelft.
nl/twiki/pub/Main/TechnicalReports/TUD-SERG-2007-018.pdf.

Kats, Lennart C. L., Karl Trygve Kalleberg, and Eelco Visser (Apr. 2008). “Generating Editors
for Embedded Languages. Integrating SGLR into IMP”. In: Proceedings of the Eight Work-
shop on Language Descriptions, Tools, and Applications. Ed. by Jurgen J. Vinju and Adrian
Johnstone. Vol. 238. Electronic Notes in Theoretical Computer Science 5. Elsevier.

Kats, Lennart C. L. and Eelco Visser (2010). “The Spoofax language workbench”. In: Com-
panion to the 25th Annual ACM SIGPLAN Conference on Object-Oriented Programming, Sys-
tems, Languages, and Applications, SPLASH/OOPSLA 2010, October 17-21, 2010, Reno/Ta-
hoe, Nevada, USA. Ed. by William R. Cook, Siobhán Clarke, and Martin C. Rinard. ACM,
pp. 237–238. ISBN: 978-1-4503-0240-1. DOI: 10.1145/1869542.1869592. URL: http://doi.acm.
org/10.1145/1869542.1869592.

Katzan Jr., Harry (1969). “Batch, conversational, and incremental compilers”. In: American
Federation of Information Processing Societies: AFIPS Conference Proceedings: 1969 Spring Joint
Computer Conference, Boston, MA, USA, May 14-16, 1969. Vol. 34. AFIPS Conference Pro-
ceedings. AFIPS Press, pp. 47–56. DOI: 10.1145/1476793.1476813. URL: http://doi.acm.
org/10.1145/1476793.1476813.

Keidel, Sven, Wulf Pfeiffer, and Sebastian Erdweg (2016). “The IDE portability problem and
its solution inMonto”. In:Proceedings of the 2016ACMSIGPLAN International Conference on
Software Language Engineering, Amsterdam, The Netherlands, October 31 - November 1, 2016.
Ed. by Tijs van der Storm, Emilie Balland, and Dániel Varró. ACM, pp. 152–162. ISBN: 978-
1-4503-4447-0. URL: http://dl.acm.org/citation.cfm?id=2997368.

Kelley, Ben and StackOverflow (Sept. 24, 2020). Goodbye, Prettify. Hello highlight.js! Swapping
out our Syntax Highlighter. URL: https://web.archive.org/web/20221001151631/https:
//meta.stackexchange.com/questions/353983/goodbye-prettify-hello-highlight-js-
swapping-out-our-syntax-highlighter?cb=1.

Kladov, Alex (Apr. 25, 2022). Why Lsp? URL: https://matklad.github.io/2022/04/25/why-
lsp.html.

48

https://doi.org/10.1016/j.cl.2015.08.007
http://dx.doi.org/10.1016/j.cl.2015.08.007
http://dx.doi.org/10.1016/j.cl.2015.08.007
http://www.martinfowler.com/articles/languageWorkbench.html
url
https://github.com/github/stack-graphs/
https://web.archive.org/web/20230815201014/https://githubcopilotlitigation.com/
https://web.archive.org/web/20230815201014/https://githubcopilotlitigation.com/
https://web.archive.org/web/20230802094534/https://docs.gitlab.com/ee/user/project/highlighting.html
https://web.archive.org/web/20230802094534/https://docs.gitlab.com/ee/user/project/highlighting.html
https://highlightjs.org/
https://man7.org/linux/man-pages/man1/ed.1p.html
https://man7.org/linux/man-pages/man1/ed.1p.html
https://web.archive.org/web/20230314140106/https://www.jetbrains.com/help/idea/structural-search-and-replace.html
https://web.archive.org/web/20230314140106/https://www.jetbrains.com/help/idea/structural-search-and-replace.html
https://web.archive.org/web/20230314140106/https://www.jetbrains.com/help/idea/structural-search-and-replace.html
https://www.jsonrpc.org/specification
https://www.jsonrpc.org/specification
http://swerl.tudelft.nl/twiki/pub/Main/TechnicalReports/TUD-SERG-2007-018.pdf
http://swerl.tudelft.nl/twiki/pub/Main/TechnicalReports/TUD-SERG-2007-018.pdf
https://doi.org/10.1145/1869542.1869592
http://doi.acm.org/10.1145/1869542.1869592
http://doi.acm.org/10.1145/1869542.1869592
https://doi.org/10.1145/1476793.1476813
http://doi.acm.org/10.1145/1476793.1476813
http://doi.acm.org/10.1145/1476793.1476813
http://dl.acm.org/citation.cfm?id=2997368
https://web.archive.org/web/20221001151631/https://meta.stackexchange.com/questions/353983/goodbye-prettify-hello-highlight-js-swapping-out-our-syntax-highlighter?cb=1
https://web.archive.org/web/20221001151631/https://meta.stackexchange.com/questions/353983/goodbye-prettify-hello-highlight-js-swapping-out-our-syntax-highlighter?cb=1
https://web.archive.org/web/20221001151631/https://meta.stackexchange.com/questions/353983/goodbye-prettify-hello-highlight-js-swapping-out-our-syntax-highlighter?cb=1
https://matklad.github.io/2022/04/25/why-lsp.html
https://matklad.github.io/2022/04/25/why-lsp.html


Bibliography

MacroMates Ltd. (2021). TextMate for macOS. URL: https://macromates.com/.
Martin, Robert C. (2009).Clean Code - a Handbook of Agile Software Craftsmanship. PrenticeHall.

ISBN: 978-0-13-235088-4. URL: http://vig.pearsoned.com/store/product/1,1207,store-
12521_isbn-0132350882,00.html.

Meta Platforms, Inc. (2023). Zstandard. URL: https://facebook.github.io/zstd/#other-
languages.

Microsoft (2022a). Language Server Protocol. URL: https://web.archive.org/web/20230310034722/
https://microsoft.github.io/language-server-protocol/ (visited on 03/10/2023).

— (Oct. 5, 2022b). SymbolKind. URL: https://web.archive.org/web/20230318082328/https://
microsoft.github.io/language-server-protocol/specifications/lsp/3.17/specification/
#symbolKind.

Mosses, Peter D. (2019). “Software meta-language engineering and CBS”. In: Journal of Com-
puter Languages 50, pp. 39–48. DOI: 10.1016/j.jvlc.2018.11.003. URL: https://doi.org/10.
1016/j.jvlc.2018.11.003.

— (2023). “Using Spoofax to Support Online Code Navigation”. In: Eelco Visser Commem-
orative Symposium, EVCS 2023, April 5, 2023, Delft, The Netherlands. Ed. by Ralf Lämmel,
Peter D. Mosses, and Friedrich Steimann. Vol. 109. OASIcs. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik. ISBN: 978-3-95977-267-9. DOI: 10.4230/OASIcs.EVCS.2023.21. URL:
https://doi.org/10.4230/OASIcs.EVCS.2023.21.

Néron, Pierre et al. (2015). “A Theory of Name Resolution”. In: Programming Languages and
Systems - 24th European Symposium on Programming, ESOP 2015, Held as Part of the European
Joint Conferences on Theory and Practice of Software, ETAPS 2015, London, UK, April 11-18,
2015. Proceedings. Ed. by JanVitek. Vol. 9032. LectureNotes inComputer Science. Springer,
pp. 205–231. ISBN: 978-3-662-46668-1. DOI: 10.1007/978- 3- 662- 46669- 8_9. URL: http:
//dx.doi.org/10.1007/978-3-662-46669-8_9.

Pelsmaeker, Daniël A. A. (2018). “Portable Editor Services”. MA thesis.
Poulsen, Casper Bach and Cas van der Rest (Jan. 2023). “Hefty Algebras: Modular Elabora-

tion of Higher-Order Algebraic Effects”. In: Proceedings of the ACM on Programming Lan-
guages 7.POPL, pp. 1801–1831. DOI: 10.1145/3571255. URL: https://doi.org/10.1145/
3571255.

prism.js (2023). URL: https://prismjs.com/ (visited on 09/09/2023).
Sourcegraph (2023). A community driven source of knowledge for Language Server Protocol imple-

mentations. URL: https://web.archive.org/web/20230418003505/https://langserver.org/
(visited on 05/02/2023).

The Rust Programming Language (2023a). The Rustdoc Book. URL: https://web.archive.org/
web/20230314235749/https://doc.rust-lang.org/rustdoc/.

— (2023b). rustfmt. URL: https://github.com/rust-lang/rustfmt (visited on 08/18/2023).
Thompson, Ken (1969). The ed line editor.
Van der Storm, Tijs (2011). “The Rascal language workbench”. In: CWI. Software Engineering

[SEN] 13, p. 14.
VanAntwerpen,Hendrik, PierreNéron, et al. (2016). “A constraint language for static seman-

tic analysis based on scope graphs”. In: Proceedings of the 2016 ACMSIGPLANWorkshop on
Partial Evaluation and ProgramManipulation, PEPM2016, St. Petersburg, FL, USA, January 20
- 22, 2016. Ed. byMartin Erwig and Tiark Rompf. ACM, pp. 49–60. ISBN: 978-1-4503-4097-7.
DOI: 10.1145/2847538.2847543. URL: http://doi.acm.org/10.1145/2847538.2847543.

Van Antwerpen, Hendrik, Casper Bach Poulsen, et al. (2018). “Scopes as types”. In: Proceed-
ings of the ACM on Programming Languages 2.OOPSLA. DOI: 10.1145/3276484. URL: https:
//doi.org/10.1145/3276484.

Van Heesch, Dimitri (2022). Doxygen. URL: https://web.archive.org/web/20230819152523/
https://www.doxygen.nl/index.html (visited on 08/19/2023).

Van Rossum, Guido, Barry Warsaw, and Nick Coghlan (July 5, 2001). Style Guide for Python
Code. URL: https://peps.python.org/pep-0008/.

49

https://macromates.com/
http://vig.pearsoned.com/store/product/1,1207,store-12521_isbn-0132350882,00.html
http://vig.pearsoned.com/store/product/1,1207,store-12521_isbn-0132350882,00.html
https://facebook.github.io/zstd/#other-languages
https://facebook.github.io/zstd/#other-languages
https://web.archive.org/web/20230310034722/https://microsoft.github.io/language-server-protocol/
https://web.archive.org/web/20230310034722/https://microsoft.github.io/language-server-protocol/
https://web.archive.org/web/20230318082328/https://microsoft.github.io/language-server-protocol/specifications/lsp/3.17/specification/#symbolKind
https://web.archive.org/web/20230318082328/https://microsoft.github.io/language-server-protocol/specifications/lsp/3.17/specification/#symbolKind
https://web.archive.org/web/20230318082328/https://microsoft.github.io/language-server-protocol/specifications/lsp/3.17/specification/#symbolKind
https://doi.org/10.1016/j.jvlc.2018.11.003
https://doi.org/10.1016/j.jvlc.2018.11.003
https://doi.org/10.1016/j.jvlc.2018.11.003
https://doi.org/10.4230/OASIcs.EVCS.2023.21
https://doi.org/10.4230/OASIcs.EVCS.2023.21
https://doi.org/10.1007/978-3-662-46669-8_9
http://dx.doi.org/10.1007/978-3-662-46669-8_9
http://dx.doi.org/10.1007/978-3-662-46669-8_9
https://doi.org/10.1145/3571255
https://doi.org/10.1145/3571255
https://doi.org/10.1145/3571255
https://prismjs.com/
https://web.archive.org/web/20230418003505/https://langserver.org/
https://web.archive.org/web/20230314235749/https://doc.rust-lang.org/rustdoc/
https://web.archive.org/web/20230314235749/https://doc.rust-lang.org/rustdoc/
https://github.com/rust-lang/rustfmt
https://doi.org/10.1145/2847538.2847543
http://doi.acm.org/10.1145/2847538.2847543
https://doi.org/10.1145/3276484
https://doi.org/10.1145/3276484
https://doi.org/10.1145/3276484
https://web.archive.org/web/20230819152523/https://www.doxygen.nl/index.html
https://web.archive.org/web/20230819152523/https://www.doxygen.nl/index.html
https://peps.python.org/pep-0008/




Acronyms

AI Artificial Intelligence

AESI Adaptable Editor Services Interface

ASCII American Standard Code for Information Interchange

AST Abstract Syntax Tree

DSL Domain-Specific Language

GUI Graphical User Interface

IDE Integrated Development Environment

JSON JavaScript Object Notation

JSON-RPC JavaScript Object Notation (JSON) Remote Procedure Call (JSON-RPCworking
group 2013)

LSP Language Server Protocol

PDF Portable Document Format

SLE Software Language Engineering

51





Appendix A

Paper

As part of this thesis, a paper was submitted to the Software Language Engineering (SLE)
conference. Unfortunately it was not accepted, in part due to the positioning and the size of
the relatedworkwhich is somethingwe expanded in this thesis. The paperwas co-written by
two of the supervisors of this thesis: Daniël A. A. Pelsmaeker and Danny M. Groenewegen.
This thesis is essentially an expanded version of this paper, with more content, details and
explanation, also addressing some of the concerns raised in the reviews. Nonetheless, we
felt that it was appropriate to include the original, unaltered paper in this appendix.

53


	Contents
	Introduction
	Editor Services
	An Overview of Editor Services
	Implementing Editor Services
	The IDE Portability Problem
	Code Search

	Code Exploration Services
	Code Exploration
	Code Exploration Services
	Code Exploration Services Outside Editors

	The Design of the Codex Format
	The Codex Metadata Format
	Language Agnostic Classification
	Generating and Using Metadata
	A Format Instead of a Protocol

	Demonstration
	Presenting Code on Websites through HTML
	Presenting Code in PDF Documents through LaTeX
	Generating Metadata from Existing Tools
	Producing Metadata for Small Languages: Elaine
	Evaluation

	Considerations and Tradeoffs
	Storing Locations in Source Code
	Spans
	References
	Accuracy
	Metadata Size

	Future Work
	Conclusion
	Bibliography
	Acronyms
	Paper

