
Delft University of Technology
Faculty of Electrical Engineering, Mathematics and Computer Science

Delft Institute of Applied Mathematics

Bayesian parameter estimation applied to

(non-)Gaussian random fields

Thesis on behalf of the
Delft Institute of Applied Mathematics

as part to be obtained

the degree of

BACHELOR OF SCIENCE
in

APPLIED MATHEMATICS

by
LEVI KLOMP

under supervision of
dr.ir. J. Bierkens

Delft, The Netherlands
June 30th 2021

Copyright © 2021 by Levi Klomp. All rights reserved.

Abstract

The purpose of this study is to define and estimate multivariate statistic models, inspired by the
data of the Cosmic Microwave Background Radiation, and apply those models to self-simulated
data. Two distinct models are constructed using random fields, which include a set of parameters,
structural covariance among random variables and a multivariate (non-)Gaussian distribution.
To obtain the optimal parameter estimates for a model, methods like Maximum likelihood esti-
mation and Bayesian parameter estimation, are utilised for these predefined models. Only the
Bayesian parameter estimation is used, since it is illustrated to be superior, compared to Max-
imum likelhood estimation, for parameter estimation of statistical models consisting of random
fields. The structure of the models makes it impossible to compute estimates analytically, hence
the Metropolis-Hastings algorithm is employed to calculate the estimates. Finally a comparison
about the performance of parameter estimation among several models with dissimilar mask sizes
is established.

1

Contents

Abstract 1

1 Introduction 4
1.1 Overview . 4

2 Preliminaries on random fields and the Gaussian random field 6
2.1 Defining a Gaussian random field . 6
2.2 Theory behind simulating a Gaussian random field 6

2.2.1 Simulating an example for a Gaussian random field 7

3 Theory behind non-Gaussian random fields 8
3.1 Non-Gaussian random fields by using a transformation gθ[·] on a Gaussian random

field . 8
3.1.1 Simulating an example of a transformation: Lognormal random field . . . 8

3.2 Examples of well-known non-Gaussian random fields 9
3.2.1 Simulation of a Gamma(m) random field 9
3.2.2 Simulation of a Beta(m,n) random field 10
3.2.3 Simulation of a Student-tv random field 10

4 Model of the first type: general random field with observation noise 12
4.1 Assumptions about the observed data of the first model 12
4.2 First model with a Gaussian random field . 12
4.3 First model with a mapped, non-Gaussian random field 13
4.4 First model with other non-Gaussian random fields 14

5 Model of the second type: random field using an eigenfunction representation
with random coefficients and observation noise 17
5.1 Assumptions about the observed data of the second model 17
5.2 Second model with Gaussian eigenfunction coefficients 17
5.3 Second model with mapped, non-Gaussian eigenfunction coefficients 18
5.4 Second model with other non-Gaussian eigenfunction coefficients 19

6 Parameter estimation of the CMB models using maximum likelihood estima-
tion (MLE) 21
6.1 Parameter estimation of the first model using MLE 21

6.1.1 MLE on Gaussian random field . 21
6.1.2 MLE on mapped, non-Gaussian random field 22
6.1.3 MLE on an other example of a non-Gaussian random field 22

6.2 Parameter estimation of the second model using MLE 22
6.2.1 MLE on model with Gaussian eigenfunction coefficients 23
6.2.2 MLE on model with non-Gaussian eigenfunction coefficients 23

7 Parameter estimation of the CMB models using Bayesian parameter estima-
tion (BPE) 25
7.1 Posterior density and the Bayes estimate . 25
7.2 Bayesian parameter estimation of the first model 25

7.2.1 BPE on Gaussian random field . 25
7.2.2 BPE on mapped, non-Gaussian random field 26

2

7.2.3 BPE on an other example of a non-Gaussian random field 27
7.3 Bayesian parameter estimation of the second model 28

7.3.1 BPE on model with Gaussian eigenfunction coefficients 28
7.3.2 BPE on model with mapped non-Gaussian eigenfunction coefficients . . . 29
7.3.3 BPE on model with other non-Gaussian eigenfunction coefficients 30

8 Parameter estimation of the CMB models using the Metropolis-Hastings al-
gorithm (MH) 31
8.1 Introduction to the Metropolis-Hastings algorithm 31
8.2 Parameter estimation of the first model using the Metropolis-Hastings algorithm 32

8.2.1 MH algorithm on Gaussian random field 32
8.2.2 MH algorithm on mapped, non-Gaussian random field 35
8.2.3 MH algorithm on an other example of a non-Gaussian random field . . . 37

8.3 Parameter estimation of the second model using the Metropolis-Hastings algorithm 39
8.3.1 MH algorithm on model with Gaussian eigenfunction coefficients 39
8.3.2 MH algorithm on model with mapped, non-Gaussian eigenfunction coeffi-

cients . 41
8.3.3 MH algorithm on model with other non-Gaussian eigenfunction coefficients 43

9 Utilisation of masks on the CMB models 46
9.1 Definition of a mask . 46
9.2 Example of using a mask on simulated data . 47
9.3 MH algorithm on the example of a Gaussian random field with rectangular mask 47

10 Performance analysis on parameter estimation among various mask sizes 50
10.1 Rectangular mask size against posterior variance for second model example using

MH algorithm . 50

11 Summary 54
11.1 Further research . 54

12 Layman’s summary 55

3

1 Introduction

The Cosmic Microwave Background Radiation, abbreviated (CMB), is one of the most important
discoveries in the field of cosmology (Evans (2015)). It describes the composition of the early
universe. This is because this specific radiation, observed by satellites, originates from a relative
short epoch after the Big Bang. In every direction of the night sky the satellite points, it observes
this CMB. The radiation is converted by the satellite into heat in order to create a heatmap of
the universe which is shown in Figure 1. But because the universe consists of a lot of factors
which block or distort the data (e.g. planets, black holes or other extraterrestrial phenomena),
it is paramount to construct a model for the CMB map in order to eliminate those factors.

Figure 1: Heatmap of the Cosmic Microwave Background radiation (ESA and the Planck Col-
laboration (2013)).

1.1 Overview

The goal of this paper is to apply statistical models to simulated data, which has similarities
with the observed CMB map in Figure 1. The building blocks of these models are called random
fields, introduced by Vio et al. (2001). In Section 2 the theory behind this important concept
is treated and the Gaussian random field is defined. With Gaussian random fields we can create
different types of non-Gaussian random fields, where all of them have diverse characteristics.
This is discussed in Section 3, where the definitions and simulations of various random fields
are given. These non-Gaussian random fields increase in complexity with respect to the Gaussian
random fields. Some of these examples are inspired by Vio et al. (2001).

Using these random fields we can build models for the CMB data, where the first model
is covered in Section 4 and the second model in Section 5. These are two distinct models
suggested respectively by Vio et al. (2001) and Taylor et al. (2008), which both are built on a
number of parameters. The first model treats every coordinate in the random field as a random
variable, whereas in the second model the random field is created by using an eigenfunction
expansion. Here the eigenfunction coefficients will assume some distribution, which will together
with the number of distinct predefined eigenfunctions govern the structure of the random field.

4

After constructing the two models , the next step will be to estimate the model for a given
set of observations. In Section 6 Maximum likelihood estimation (MLE) is applied to all the
different examples we have encountered in the previous sections. However it is shown here
that MLE is very inconvenient for these examples, because of the computational intractability
it produces. Another parameter estimation method for the two models is Bayesian parameter
estimation (BPE), which is covered in Section 7. In contrast to MLE, BPE can be used to
estimate the parameters of the CMB models found in earlier sections. Still we cannot describe
BPE analytically, because of the complexity of our models. The solution to this is in Section
8, where we use the theory of BPE to calculate the parameter estimates computationally with
a tool called the Metropolis-Hastings algorithm (MH). We simulate all the previous examples in
this section and after that we use the MH algorithm to estimate the parameters and compare
these estimates with the real values. These results will be visualised in heat maps, tables and
trace plots for every example.

An addition to the observation of data will be the possibility of using masks, which is intro-
duced in Section 9. A mask will eliminate a specific selection of pixels of the data. The physical
interpretation can be that these pixels are distorted or blocked by some spatial phenomena, like
planets or stars. A consequence of this will be that it affects the performance of the quality
of the parameter estimation. In Section 10 one will compare the performance of parameters
estimation, by using the MH algorithm, on different masks sizes. This can give us some useful
information about the credibility about a given estimate of parameters. Finally a summary is
given in Section 11, which also includes further research topics relating to the results in this
paper. Furthermore a, more trivial, summary for laymen is given in Section 12.

5

2 Preliminaries on random fields and the Gaussian random
field

The data of the CMB radiation, in Figure 1, seems difficult to model because all of its small
‘lumps’ of different temperatures. This is because there is some kind of structure between the
values of the pixels, or equivalently it is not independent, identically distributed random noise
that is observed by the satellite. For this research it is important to describe such observed
data in a statistical model. Random fields, as suggested in Vio et al. (2001), are such statistical
models which are frequently used for clustered data like the CMB data.

2.1 Defining a Gaussian random field

To build a random field one needs a set of coordinates. Each coordinate in the set gets assigned
a random value. Here the set of coordinates are all the pixels and each pixel has a random
value which represents the temperature. Formally written, if there are N coordinates, the d-
dimensional field (set of coordinates) is defined as V := {t1, ..., tN} where ti ∈ Rd, ∀i = 1, ..., N .
In this paper we will only make use of the case d = 2 (a 2-dimensional field).

The temperature value of a coordinate t is defined as R(t), also the set of all temperatures is
denoted by the vector R (temperature field). To describe the relation between a pair of random
values, a covariance function is constructed, denoted by the letter ξη where η will be some vector
with function parameters

ξη,R(t1, t2) = Cov(R(t1), R(t2)), ∀t1, t2 ∈ V (1)

note that R(t)’s are assumed to be random.
For the first example we will use the notation for the random values X(t) (instead of R(t)) to

assume that the temperature for all points t ∈ V are standard Gaussian distributed, i.e. X(t) ∼
N (0, 1). Also the covariance structure will be created by the covariance function ξη,X(t1, t2) :=
Cov(X(t1), X(t2)).

Thus a standard Gaussian random field denoted by the N -dimensional random vector X =
{X(t1), ..., X(tN)} has ∀t ∈ V thatX(t) ∼ N (0, 1) and for all pairs t1, t2 ∈ V that Cov(X(t1), X(t2)) =
ξη,X(t1, t2) for some predefined covariance function ξη,X with function parameters η. Some al-
ternative terminology is that we say that the field is Gaussian.

2.2 Theory behind simulating a Gaussian random field

Here we discuss how to sample from such a Gaussian random field. The difficulty here is that
there is some underlying dependence among the random variables X(t). In order to simulate from
X it is mandatory to transform this univariate N (0, 1)-distribution with covariance function ξη,X
into some multivariate distribution. Since X is a vector of standard Gaussian random variables
it is possible to write X ∼ N (0,Ση), where Ση ∈ RN×N . Note that every element of the
covariance matrix Ση is determined by the pairwise covariance among all random variables in
the random field X, which are defined by the function ξη,X . Hence the covariance matrix of
the Gaussian random field X will look like

Ση =


ξη(t1, t1) ξη(t1, t2) . . . ξη(t1, tN)
ξη(t2, t1) ξη(t2, t2) . . . ξη(t2, tN)

...
...

. . .
...

ξη(tN , t1) ξη(tN , t2) . . . ξη(tN , tN)

 . (2)

6

Alternative terminology for the covariance matrix of a Gaussian random field, which will be used
repeatedly in this paper, is the Gaussian covariance matrix. So in order to simulate a Gaussian
random field we use the fact that the random vector X is representing a Gaussian random field
with Gaussian covariance function ξη,X , with parameters η. Then X ∼ N (0,Ση) where the
covariance matrix Ση has the form of (2).

There are several techniques to sample from a multivariate Gaussian such as the Cholesky
decomposition or the spectral decomposition, which will be applied to simulate the example in
the next section.

2.2.1 Simulating an example for a Gaussian random field

The example for this section will be the 2-dimensional grid with coordinates (−L : ∆x : L)
in the x-direction and (−M : ∆y : M) in the y-direction. This notation means that for x we
have coordinates between and including −L and L with step size ∆x. For the example we take
L = M = 10 and ∆x = ∆y = 0.25. This implies that there are N = 6561 grid points and
thus a 6561-dimensional distribution. Now constructing the covariance function of the Gaussian
random field with parameters η = {A,B,C} by

ξη,X(t1, t2) = ξ{A,B,C},X(t1, t2) = A cos(B||t1 − t2||) exp(−C||t1 − t2||)

where, in this example, we assume that A = 1, B = 1, C = 0.1. Then Ση will be evaluated by
equation (2). A simulation of such X ∼ N (0,Ση) will then be done by taking a sample from
this multivariate distribution and plotted in a heatmap which is shown in Figure 2.

Figure 2: Simulated Gaussian random field for this section’s example.

7

3 Theory behind non-Gaussian random fields

In the previous section the concepts of a random field were introduced. Specifically Section 2.2.1
describes how a Gaussian random field X for a given covariance function ξη,X can be simulated.
Figure 2 showed what such a sample looks like. But there are a lot of different random fields,
with different probability distributions. These random fields will not be Gaussian and are thus
called non-Gaussian random fields. We will denote such a random field with the symbol R and
its definition follows the same concept as the definition of a Gaussian random field.

A non-Gaussian random field denoted by theN -dimensional random vectorR = {R(t1), ..., R(tN)}
has ∀t ∈ V that R(t) ∼Mα for some parameters α, where the distributionMα is a multivariate
non-Gaussian distribution. For all pairs t1, t2 ∈ V that Cov(R(t1), R(t2)) = ξη,R(t1, t2) for some
predefined covariance function ξη,R with function parameters η. Some alternative terminology
is that we say that the field is Gaussian.

Since we are not restricted to Gaussian random fields, one can think of an endless amount of
different examples of random fields. We are not restricted to a random field which is Gaussian,
which provides a lot of freedom when trying to find the best model for the CMB data. In the
following subsections some different examples for non-Gaussian random fields will follow.

3.1 Non-Gaussian random fields by using a transformation gθ[·] on a
Gaussian random field

A whole family of non-Gaussian distributions can be defined by mapping the Gaussian random
field using a transformation gθ : R → R (Vio et al. (2001)). Here θ are the parameters in the
transformation. A non-Gaussian random field R can be acquired by using a Gaussian random
field and the following relation:

R(t) = gθ(X(t)), ∀t ∈ V (3)

Or more shortly and conveniently written as R = gθ(X). Important is that this function
transforms the Gaussian random field pointwise to a non-Gaussian random field (it is R→ R).

First considering the case that R(t) = ga,b(X(t)) = a+ bX(t), ∀t ∈ V and a, b ∈ R, i.e. it is
a linear transformation. Since X(t) ∼ N (0, 1), equivalent multivariate notation X ∼ N (0,Ση),
by linearity of the normal distribution it holds that R(t) ∼ N (a, b2), ∀t ∈ V . Which means
that ∀t ∈ V, E[R(t)] = a and

Cov(R(t1), R(t2)) = Cov(a+ bX(t1), a+ bX(t2)) = b2Cov(X(t1), X(t2)),

which implies that R ∼ N (a1N , b
2Ση). Here 1N is a N -dimensional vector where all entries are

equal to 1. This means that this linear mapping gives again a Gaussian random field.
The linear transformations are not interesting since it generates a Gaussian random field

again. Hence we want to look into some non-linear transformations of gθ[·]. An example of such
a non-linear transformation is a lognormal distribution, which is an exponential transformation
of a Gaussian distribution.

For the simulation of such a mapped, non-Gaussian random field one only needs to generate
a Gaussian random field. After that every pixel of the Gaussian random field is mapped using
the transformation. This will be visualised in the next subsection.

3.1.1 Simulating an example of a transformation: Lognormal random field

For this example the mapping R(t) = gµ,σ(X(t)) = exp(µ + σX(t)) is assumed, where again
X(t) ∼ N (0, 1). By the definition this means that R(t) ∼ Lognormal(µ, σ2). Simulating a

8

lognormal random field is not difficult. After generating a Gaussian random field one needs to
map these values pixel per pixel. Such a simulation is illustrated in Figure 3. We assign the
values µ = 2, σ = 0.1 to the transformation parameters θ. Note that the same example is used
as in Section 2.2.1

Figure 3: Simulated lognormal random field for the same Gaussian covariance function ξ{A,B,C},X
and coordinates as the example in Section 2.2.1.

Comparing Figure 2 of the Gaussian example and Figure 3 of the lognormal example there is
a clear difference for this example’s values for θ = {µ, σ}. The lognormal field has more extreme
values then the Gaussian random field. The exponential distribution causes higher values to
increase relatively harder compared to lower values. Even if we try to rescale this random field
we will not end up with a Gaussian random field as in Figure 2. Also because of the exponential
transform; all the temperature values are positive.

3.2 Examples of well-known non-Gaussian random fields

In Section 3 it was assumed that the non-Gaussian random field was a pointwise transformation
of a Gaussian random field. However there are also non-Gaussian random fields which can not be
described by such a transformation. But luckily these can be simulated using other expressions,
which use several independently generated Gaussian random fields. Three examples of such are
shown: Gamma(m), Beta(m,n) and Student-tv random fields. The first two are from inspiration
of Vio et al. (2001). Also a simulated heat map will be provided for each random field as well as
the steps to simulate them.

3.2.1 Simulation of a Gamma(m) random field

The first group of random fields are called Gamma random fields. The definition used in Vio
et al. (2001) at equation (16) actually implies that a Gamma(m) random field can be simulated
using numerous independently simulated Gaussian random fields.

Given a set of coordinates t ∈ V , a Gamma(m) random field (m ∈ N) is defined coordinate

wise by the formulaGm(t) = 1
2

∑2m
i=1Xi(t), whereXi(t) ∼ N (0, 1), ∀t ∈ V are independent with

some covariance function ξη,Xi which is the same for all Xi. Or, equivalently, in the multivariate

case a Gamma(m) random field Gm =
∑2m
i=1Xi, where Xi ∼ N (0,Ση) are independently

distributed. Note that the covariance function acts on the structure of the Gaussian random
field. These independently sampled Gaussian random fields will generate the Gamma random
field.

9

Since it is known how to simulate Gaussian random fields, the definition of a Gamma random
field can be used to simulate Gamma random fields using some independently sampled Gaussian
random fields. Here in Figure 4 an example of a Gamma(3) random field has been simulated.

Figure 4: Simulated Gamma(3) random field for the covariance function ξ{A,B,C},X , which acts
on the Gaussian random field, and coordinates as the example in Section 2.2.1.

A noticable difference with the Gaussian and lognormal field in Figure 2 and 3 is that there
seems to be a lot more cold spots in comparison to hot spots. This is an interesting characteristic
for this random field since maybe this uneven proportion of hot an cold spots seem to fit the
data of the CMB better.

3.2.2 Simulation of a Beta(m,n) random field

An even larger group of random fields called the Beta(m,n) random fields can be simulated
using two independently generated Gamma(m) and Gamma(n) random fields, with the same
covariance function. Again defined by the definition in Vio et al. (2001) using equation (21).

Given a set of coordinates t ∈ V , a Beta(m,n) random field (m,n ∈ N) is defined coordinate

wise by the formula Bm,n(t) = Gm(t)
Gm(t)+Gm(t) , where Gm(t) and Gn(t) are independent and

generated by the same covariance function of the Gaussian random field ξη,X .
Or, equivalently, in the multivariate case a Beta(m,n) random field Bm,n = Gm

Gm+Gn
(pointwise

division), where Gm and Gn are independently generated Gamma random fields.
Since in the previous section we have generated a Gamma random field, it is now trivial by

the definition of a Beta(m,n) random field how to simulate such a field. In Figure 5 such a
simulation ,where m = 4 and n = 2, has been created.

There seems to be a lot more hills and troughs in contrast to all the previously simulated
random fields. There is a lot more variety in temperatures among all spots, which is an interesting
characteristic.

3.2.3 Simulation of a Student-tv random field

An other obvious interesting choice for a random field, because of its similar symmetric distribu-
tion as the Gaussian distribution, would be that temperatures R(t) ∼ tv, v ∈ R>0. This is also
because the Student-tv distribution is, like the normal distribution, symmetrical as well; but it
has thicker tails.

To take a sample T from a tv-distribution one can generate it by calculating T = Z

/√
Wv

v ,

where Z ∼ N (0, 1) and Wv ∼ χ2
v. Using this fact a tv random field can be defined it using a

10

Figure 5: Simulated Beta(4,2) random field for the covariance function ξ{A,B,C},X , which acts
on the Gaussian random field, and coordinates as the example in Section 2.2.1.

single Gaussian random field.
Given a set of coordinates t ∈ V and a random variable W ∼ χ2

v, a Student-tv random

field (v ∈ R>0) is defined coordinate wise by the formula Tv(t) = X(t)
/√

W
v , where X(t) is

generated by a Gaussian random field with some covariance function ξη,X .

Or, equivalently, in the multivariate case a tv random field Tv = X
/√

W
v , whereX ∼ N (0,Ση).

From previous sections it is known how to simulate a Gaussian random field X. The only
extra thing for this random field is the generation of a single sample from χ2

v . Then a simulation
of the Student tv random field; for this example v = 0.5; is plotted in Figure 6.

Figure 6: Simulated t0.5 random field for the covariance function ξ{A,B,C},X , which acts on the
Gaussian random field, and coordinates as the example in Section 2.2.1.

As expected, in contrast with the Gaussian random field in Figure 2, the Student t0.5 has a
lot more extreme values in temperature.

In this section we have looked at several examples of random fields and the methods to
simulate them. It seems plausible that some random field is the underlying structure of the
CMB data, because of its similarities in structure. We see similar regions of cold and hot spots
as in Figure 1. The next step is to create a model in order to express the observed data in
random fields and an other additional factor. The examples of the random fields from previous
sections could then be applied to the observed data.

11

4 Model of the first type: general random field with ob-
servation noise

In this section a first of two models for the observed data will be defined. In the previous sections
random fields, which were introduced by Vio et al. (2001), have made an entry. These fields will
function as an underlying structure of the first model that will be constructed.

4.1 Assumptions about the observed data of the first model

The observed data at a coordinate t will be denoted by the symbol Y (t) and analogously the
whole observed field by the vector Y . Then, using the theory of random fields, the expression
of the definition of the first model is not difficult.

We say the observed data Y is a model of the first type, if it can be written as

Y = F + ε,

where F is any random field (Gaussian/non-Gaussian) and observation noise ε ∼ N (0, ν2I).
Or, equivalently, ∀t ∈ V it holds that Y (t) = F (t) + ε(t), where F (t) is defined by some random
field and independent ε(t) ∼ N (0, ν2).

As suggested by Taylor et al. (2008) only one additional factor is added, namely the obser-
vation noise. Although in their research the random field has a different form, which will be
discussed in an upcoming section. The additional noise factor is realistic since with every mea-
sure instrument, e.g. satellite, the observed value always differs from the real value. Note that
the parameter ν2 explains how significant this noise really is. The choice for letting the noise be
independently Gaussian is because it is a simple and natural choice when working with physical
phenomena like the CMB. The smaller ν2 the more accurate the observation is. The underlying
structure for the model is thus the random field F .

This additional observation noise ε does make the temperature distribution of the observed
data Y more difficult. Since now two (possibly different) independent multivariate distributions
are added.

4.2 First model with a Gaussian random field

For the trivial case if the observed data is described by a Gaussian random field, the expression
of Y is again a Gaussian distribution. Because if X ∼ N (0,Ση) is a Gaussian random field with
covariance function ξη,X , then

Y = X + ε ∼ N (0,Ση + ν2I). (4)

This is because of the linearity of the Gaussian distribution. Now comparing the difference
between the observed data and the random field, when still using the same example as in section
2.2.1, the plot in Figure 7 arises. Here the noise factor has the value ν2 = 0.52.

12

Figure 7: Simulated Gaussian random field for the example in section 2.2.1 with noise (right)
and without noise (left).With ν2 = 0.52

4.3 First model with a mapped, non-Gaussian random field

If the observed data in the first model has a random field defined by R = gθ(X), a transforma-
tion of a Gaussian random field X a, then the expression for the distribution of Y becomes more
difficult. Luckily the two added distributions are independent which means that the probability
density function of Y can be expressed as an convolution integral.

Also introducing notation, used in Bishop (2006), for the joint probability density function
of the multivariate normal distribution:

N (x | µ,Ση) =
1

(2π)N/2 det(Ση)1/2
exp

(
−1

2
(x− µ)TΣ−1η (x− µ)

)
(5)

Theorem 4.3.1. For the first model if the observed data has the form Y = gθ(X) + ε for some
mapping gθ[·] with parameters θ, then the probability density function of Y is equal to:

pY |η,θ,ν2(y) =

∫
RN

N (g−1θ (r) | 0,Ση) det[J (r | θ)]N (y − r | 0, ν2I)dx, (6)

where J (R | θ) =
[
∂g−1
θ (r)

∂r

]
r=R|θ

and dx = dg−1θ (r).

Proof. Recall that if Z = X + Y and X,Y are independent we have that for the probability
density function of Z:

pZ(z) =

∫ ∞
−∞

pX(z − y)pY (y)dy,

which will also hold for the multivariate case as we have here. If Y ∈ RN , we have Y = R+ ε =
gθ(X)+ε, X ∼ N (0,Ση). So because of independence convolution be be applied for this data:

pY |η,θ,ν2(y) =

∫
RN

pR|η,θ(r)N (y− r | 0, ν2I)dr (7)

Now considering the function pR|θ(r). When looking at the cumulative density function FR|θ:

FR|η,θ(r) = P(R ≤ r|η, θ) = P(gθ(X) ≤ r | η, θ) = P(X ≤ g−1θ (r) | η, θ)

where g−1θ [.] is the inverse of the mapping which we assume exists and that it is differentiable.
The probability P(R ≤ r) means that ∀i = 1, ...N ,Ri ≤ ri (element wise). Note that X ∼

13

N (0,Ση). Using the N -th derivative of the joint cumulative density function of R, we can obtain
pR|θ(r) using the following expression:

pR|θ(r) =
∂NFR|η,θ

∂r1 · · · ∂rN
(r) =

∂NP(X ≤ g−1θ (r)|η, θ)

∂r1 · · · ∂rN
(8)

Now because gθ : R → R the expression becomes much simpler because of its easy Jacobian
matrix. The Jacobian is a diagonal matrix and hence its inverse aswell. The expression becomes
the following by using the chain rule;

pR|η,θ(r) =
∂NP(X ≤ g−1θ (r)|η, θ)

∂g−1θ (r1) · · · ∂g−1θ (rN)
×
∂g−1θ (r1) · · · ∂g−1θ (rN)

∂r1 · · · ∂rN

=
∂NFX|η,θ(g−1θ (r))

∂g−1θ (r1) · · · ∂g−1θ (rN)
×
∂g−1θ (r1) · · · ∂g−1θ (rN)

∂r1 · · · ∂rN

= pX|η,θ(g−1θ (r))

N∏
i=1

(g−1θ)′(ri) := pX|η,θ(g−1θ (r))det[J (r | θ)],

where J (R | θ) =
[
∂g−1
θ (r)

∂r

]
r=R|θ

denotes the Jacobian matrix of the inverse mapping g−1θ at a

point R given mapping parameters θ.
Then because the joint probability density function ofX given η is known the final expression

will be
pR|η,θ(r) = N (g−1θ (r) | 0,Ση)det[J (r | θ)] (9)

then combining (7) and (9) the joint probability function of the data Y , given η, θ and ν2, for
a transformation gθ[.] is

pY |η,θ,ν2(y) =

∫
RN

N (g−1θ (r) | 0,Ση)det[J (r | θ)]N (y − r | 0, ν2I)dx (10)

where dx = dg−1θ (r).

For a general mapping of a Gaussian random field the joint probability density function is
really complex. It consists of a N -dimensional integral which needs to be solved numerically.
This will take a lot of time to compute as N increases. Still it is possible to simulate such a non-
Gaussian random field which is mapped. In Section 3.2 a lognormal random field was simulated,
which is a transformed Gaussian random field as well. Now for comparison in Figure 8 , for
ν2 = 0.52, both the observed data and the random field is simulated for a lognormal random
field.

4.4 First model with other non-Gaussian random fields

The last case of the first model is that the random field is non-Gaussian, but can not be expressed
in a closed form of a transformation. These examples have been shown in Section 3.2 and include
the Gamma(m), Beta(m,n) and Student-tv random field. For the Student-tv (Bishop (2006))
the joint probability density function is known:

ST (x|µ,Ση, v) =
Γ(N/2 + v/2)

Γ(v/2)(πv)N/2 det(Ση)1/2

[
1 +

1

v
(x− µ)TΣ−1η (x− µ)

]−N/2−v/2
, (11)

14

Figure 8: Simulated lognormal random field for the example in section 2.2.1 with noise (right)
and without noise (left). With ν2 = 0.52

where Γ(s) =
∫∞
0
xse−sdx is the Gamma-function.

Now considering a non-Gaussian random field where R ∼ td(0,Ση). Again assuming that
the noise ε ∼ N (0, ν2IN). This results in the model

Y = R+ ε = tv(0,Ση) +N (0, ν2IN)

which is the sum of two independent N -dimensional multivariate independent random variables.
Using convolution this results in the joint probability density function for the observed data Y
with known Gaussian covariance matrix Ση constructed by the Gaussian covariance function
ξη,X :

pY |η,v,ν2(y) =

∫
RN

ST (r|0,Ση, v)N (y− r|0, ν2I)dr (12)

Note that Ση is the covariance of the Gaussian random field X. It is not the covariance matrix of
the tv(0,Ση) random field, because this matrix is defined as Cov(R) = v

v−2Ση (Bishop (2006)).
Here in Figure 9 both the Student-tv random field, from Figure 6, and the random field with
added noise are plotted. In the corresponding figure the noise factor ν2 = 52.

For the other two cases, a joint probability density function has not been found, or simply
does not exist in an explicit form. Hence such a density function can not be written explicitly.
Vio et al. (2001) does calculate the moments and covariance/correlation function of both the
Gamma(m) and Beta(m,n) random fields in relation to the covariance of the Gaussian random
field, but this will not be discussed in this paper. This does not mean that it is impossible
to simulate the data for these random fields. These simulations for the observed data for the
Gamma(3) and Beta(4, 2) random field are respectively shown in Figure 10 and 11. Here for
Gamma(3) we have ν2 = 2.52 and for Beta(4,2) we take ν2 = 0.52. We use different noise factors,
because we want to see a noticeable difference between the random field and its corresponding
observed data, which includes the observation noise.

15

Figure 9: Simulated Student-t0.5 random field for the example in Section 2.2.1 with noise (right)
and without noise (left). With ν2 = 52

Figure 10: Simulated Gamma(3) random field for the example in Section 2.2.1 with noise (right)
and without noise (left). With ν2 = 2.52

Figure 11: Simulated Beta(4, 2) random field for the example in Section 2.2.1 with noise (right)
and without noise (left).With ν2 = 0.52

.

16

5 Model of the second type: random field using an eigen-
function representation with random coefficients and ob-
servation noise

The model introduced in this section has similarities to the first model. Similarly, the only
additional factor to the underlying structure will be the observed noise. The only difference will
be that there is an assumption made about the form of the random field. It will be decomposed
in a sum of eigenfunctions, whose coefficients will be randomly distributed, in addition with
some covariance structure among the coefficients. This model is first encountered in Taylor et al.
(2008) and will be more generalised in this paper, since in Taylor et al. (2008) only a Gaussian
case is assumed of the model we will define.

5.1 Assumptions about the observed data of the second model

The model will still assume that the data has the form Y = F + ε for a general random field F .
Here it is assumed that F can be written as a sum of eigenfunctions with random coefficients
with, i.e.

F (t) =

n∑
i=1

ciei(t), ∀t ∈ V = {t1, ..., tN} (13)

where ei(t) is an eigenfunction evaluated at the coordinate t ∈ V . For i = 1, ..., n the coefficients
ci are random variables with some covariance structure Cov(ci, cj) = ζc,γ(i, j), where γ are
function parameters. The multivariate notation is

F = Ec,

where E, the eigenfunction matrix, is a matrix with a row for all the coordinates and a column
for all the eigenfunctions:

E =


e1(t1) e2(t1) · · · en(t1))
e1(t2) e2(t2) · · · en(t2))

...
...

...
e1(tN) e2(tN) · · · en(tN))

 ∈ RN×n, c =


c1
c2
...
cn

 ∈ Rn. (14)

Here c has a multivariate distribution which depends on the covariance function ζc,γ(·, ·).
We say that the observed data Y is a model of the second type, if it can be written as

Y = F + ε = Ec+ ε

where F is any random field (Gaussian/non-Gaussian) and observation noise ε ∼ N (0, ν2I).
The eigenfunction matrix E and vector of random coefficients c are defined in (14).

In the upcoming subsections two cases will be discussed for different kind of distributions
for the random coefficients c. Note that this model is also used in Taylor et al. (2008) whom
use in their specific case spherical harmonics as eigenfunctions and a normal distribution for the
random coefficients.

5.2 Second model with Gaussian eigenfunction coefficients

Still using the letter X to denote a Gaussian random field, the definition for the second model
will look like Y = X+ ε. The only difference is the assumed form of X. It will be expressed as

17

a sum of eigenfunctions multiplied with random variables as coefficients, i.e. :

X(t) =

n∑
i=1

aiei(t), ∀t ∈ V = {t1, ..., tN}. (15)

Now writing X = Ea where the random vector a ∼ N (0,Cγ). Note that the use of a is done to
prevent later confusion in Gaussian and non-Gaussian examples. Since a is normally distributed,
also X = Ea has a normal distribution, namely X = Ea ∼ N (0,ECγE

T). Implying , since
ε ∼ N (0, ν2I), that the observed data Y has the distribution

Y ∼ N (0,ECγE
T + ν2I).

Hence the data Y also has an explicit expression for the probability density function, which will
be helpful for parameter estimation later on.

To show how such a simulation will look like a couple of assumptions have to be made about
the existing model. First the field consists of the grid (−L : ∆x : L) in the x-direction and
(−M : ∆y : M) in the y-direction. For the example we take L = M = 10 and ∆x = ∆y = 0.25.
We will assume that:

X(tj) =

5∑
l=1

5∑
m=1

alme
−iπ(lxj/L+myj/M), ∀j = 1, ..., N tj = (xj , yj) (16)

Here the eigenfunction elm(tj) = e−iπ(lxj/L+myj/M), l,m = 1, ..., 5. This means that the number
of eigenfunctions is n = 25. The coefficients assume the normal distribution a ∼ N (0,Cγ) where
the matrix elements have the value

Clml′m′,γ = ζa,γ((l,m), (l′,m′)) = γlmδll′δmm′

where the vector γ consists of coefficients γlm = 1
lm and δij = 1{i=j} is the Kronecker-delta

function. Note that this will imply that Cγ is a diagonal matrix.
Simulating coefficients a ∼ N (0,Cγ), noise ε ∼ N (0, ν2I), where ν2 = 12, and constructing

E using (14) is self-explanatory. Then using these two generated vectors and the matrix to
simulate the observed data Y = Ea + ε, gives the following sample in Figure 12. As usual
comparing the observed data with its underlying structure (random field).

5.3 Second model with mapped, non-Gaussian eigenfunction coeffi-
cients

The second model of random fields for Gaussian coefficients can be extended to non-Gaussian
examples. In a similar fashion as in Section 3.1 the Gaussian coefficients a can be transformed to
non-Gaussian coefficients using a mapping gθ[·], with parameters θ. Non-Gaussian distributed
eigenfunction coefficients; denoted by the bold letter b; will in this section be defined by a
transformation. This means that the expression b = gθ[a], where a ∼ N (0,Cγ) and the Gaussian
covariance matrix Cγ is constructed using some Gaussian covariance function ζa,γ(·, ·) with
parameters γ.

The example for this section is again a lognormal example. The mapping gθ[a] = eµ+σa

creates lognormal coefficients when a ∼ N (0,Cγ). Hence we get that bi = eµ+σai , ∀i = 1, ..., n;
or shortly written as b = eµ+σa (pointwise addition and exponentiation). We use the same
example as in Section 5.2. Additional for the mapping in this example the parameters µ = −1
and σ = 0.1. Then simulating the random field presents the heat maps in Figure 13. Here the
noise parameter ν2 = 12.

18

Figure 12: Simulated random field with Gaussian eigenfunction coefficients. With noise (right)
and without noise (left). With ν2 = 12

Figure 13: Simulated random field with lognormal distributed eigenfunction coefficients. With
noise (right) and without noise (left). With ν2 = 12

5.4 Second model with other non-Gaussian eigenfunction coefficients

Similar to the coefficients in previous subsection, these coefficients will also have a non-Gaussian
distribution. In this case the mapping will be unknown, or maybe not possible to write explicitly.
Again denoted by the bold letter b it will have a non-Gaussian distribution b ∼ Mα,γ with
parameters α and covariance parameters γ. The covariance matrix is then described by the
function ζb,γ(·, ·).

19

For this section we take the example of Student-tv distributed random coefficients. This
means that b ∼ tv(0,Cγ). We will use that v = 4 and use the same matrix form Cγ as in all
previous subsections of the second model. The noise factor ν2 = 2.52. Then a simulation of this
model will be painted in Figure 14.

Figure 14: Simulated random field with Student-t4 distributed eigenfunction coefficients. With
noise (right) and without noise (left). With ν2 = 2.52

The way the tv random coefficients b are generated is by using the Gaussian coefficients

a ∼ N (0,Cγ) and use that b = a
/√

W
v ∼ tv(0,Cγ), where W ∼ χ2

v. Note that the covariance

matrix Cγ is the covariance matrix of the Gaussian distributed eigenfunction vector a, which is
established using the Gaussian covariance function ζa,γ(·, ·). The covariance matrix of the vector
b is then Cov(b) = v

v−2Cγ , using Bishop (2006).

20

6 Parameter estimation of the CMB models using maxi-
mum likelihood estimation (MLE)

Now that the assumptions about the observed data of the Cosmic Microwave Background have
been made, the parameters of the model have to be tuned such that it creates the best fit for
the observed data. This can be applied to both models that were introduced as the first and the
second type.

The data we want to fit a model on is the observed CMB data which is represented with
the letter Y . We will assume that there are K observations of the multivariate data Y (do not
all have to be the same size). This can be interpreted as a set of snapshots of the CMB map.
The set of observations is denoted by the symbol Y = {Y1,Y2, ...,YK} with their corresponding
coordinate set V = {V1, V2, ..., VK}, with the number of coordinates of observation i is |Vi| = Ni
. The reason that we do not assume to only have one big observation is that this is also included
in the general form of K observations. Simply take K = 1 and take Y , for example, as the whole
CMB map in Figure 1 .

Maximum likelihood estimation (MLE) is a method to optimise the parameters of a model
given a set of observations. For reference check Bijma et al. (2017) (Chapter 3.3). It works
by calculating the maximum of a objective function called the log-likelihood function. This log-
likelihood function is defined by:

ρ 7→ L(ρ;Y) =

K∏
i=1

pY |ρ(Yi) (17)

where ρ are all the parameters in the model (e.g. a, b, η, θ, γ, ν2) and pY |ρ is the joint probability
density function of Y given all the parameters of the model ρ. The parameters ρ̂ which maximise
function (17) are then called the maximum likelihood estimates. Of course since there are
two distinct models, two different log-likelihood functions arise, because of the difference in
parameters and joint probability density functions.

In this section and the next one is also shown that the use of MLE is inferior to an other
parameter estimation method. That is why, in this section, only is shown how MLE should be
applied and why it is not convenient for these examples.

6.1 Parameter estimation of the first model using MLE

For the first model of the observed data it is shown, for the three cases, that MLE is not really
convenient for parameter estimation. Also for all three the cases it is assumed the reader has
made an assumption about the form of the covariance function ξη,X , which will impact the
structure of all Ση,i, i = 1, ...,K. Here Ση,i is the Gaussian covariance matrix constructed
using a Gaussian covariance function ξη,X with parameters η given the random field Xi. The
size of the matrix depends on the number of coordinates in the random field.

6.1.1 MLE on Gaussian random field

The log-likelihood function for this example, using its joint pdf in (4), is defined as:

(η, ν2) 7→ L(η, ν2;Y) =

K∏
i=1

NNi
(Yi | 0,Ση,i + ν2I) (18)

21

where Ση,i is the covariance matrix of Yi, ∀i = 1, ...,K. Note that these matrices can have
different sizes because of the different sizes of Yi. Analytically it is impossible to solve a maxi-
mization problem like this one, since there are parameters inside the matrix. Also the joint pdf
of the multivariate normal (5) includes its determinant (depending on variable η), which cre-
ates another level of complexity to this problem. Computationally this problem becomes more
exhausting as the total size of Y increases. There does exist an algorithm which can calculate
the maximum likelihood estimates for this specific example. This algorithm is called the EM
algorithm (Expectation-Maximization algorithm). This is an iterative process which can be used
to calculate the estimates for MLE (Bijma et al. (2017), Chapter 3.3.2). We will not use this
algorithm for an example since our focus will be on the Bayesian parameter estimation, which
will come along in Section 7.

6.1.2 MLE on mapped, non-Gaussian random field

The probability density function of the observed data given a mapped non-Gaussian random
field is even worse since it contains an N -dimensional integral (7). Also there are additional
parameters θ of the mapping. This means the log-likelihood function will look like

(η, θ, ν2) 7→ L(η, θ, ν2;Y) =

K∏
i=1

∫
RNi

NNi
(g−1θ (r) | 0,Ση,i)det[JNi

(r | θ)]NNi
(y − r | 0, ν2I) dx

(19)

=

K∏
i=1

∫
RNi

NNi
(g−1θ (r) | 0,Ση,i)

[
Ni∏
i=1

(g−1θ)′(ri)

]
NNi

(y − r | 0, ν2I) dx.

(20)

Now the log-likelihood function consists of multidimensional integrals, including the calculation
of determinants which will drastically increase the computational time of the calculation of the
maximum likelihood estimates.

6.1.3 MLE on an other example of a non-Gaussian random field

An example of a different non-Gaussian random field, not represented by a mapping gθ[·], is the
Student-tv random field. Applying MLE to calculate the parameters (now including the degrees
of freedom v) using (12), we acquire the following log-likelhood function:

(η, v, ν2) 7→ L(η, v, ν2;Y) =

K∏
i=1

∫
RNi

ST Ni(r|0,Ση,i, v)NNi(y− r|0, ν2I) dr (21)

Again like previous the case, the function consists of multiple higher dimensional integral and
determinants which will hinder the efficiency of the maximization problem.

6.2 Parameter estimation of the second model using MLE

Similar to the MLE in the previous subsection about the first model, one needs the density
functions for all the cases of the second model in order to perform Maximum likelihood estimation.

22

6.2.1 MLE on model with Gaussian eigenfunction coefficients

The first and most trivial example is again the model with Gaussian distributed eigenfunction
coefficients. The log-likelihood function will look like:

(γ, ν2) 7→ L(γ, ν2;Y) =

K∏
i=1

NNi
(Yi | 0,ECγET + ν2I). (22)

The log-likelihood function in equation (22) is valid, but it does not contain the parameters
a. This is because they are integrated out of the density. This simplifies the equation, but it
eliminates the parameters that we wanted to estimate using MLE. Hence if there is no interest
in the parameter a, the log-likelihood function (22) can be used. The same difficulties arise
as in Section 6.1.1. Again the unknown parameters are inside the matrix, which increase the
difficulty in maximising the function. Also making it impossible to solve analytically. However
it is possible to use an EM algorithm to obtain the maximum likelihood estimates.

To calculate the log-likelihood function for the parameters (a, γ, ν2) we need to find a joint
probability density function where the parameters a are present. This is a difficult task. We will
not be able to find the joint density for this example, but we will intuitively explain what it will
look like. The difficulty comes with the matrix E ∈ RN×n, which will not be a square matrix.
Note that the rank of this matrix is at most n. Because the columns consists of eigenfunctions
which are pairwise orthogonal we can say all of these column vectors are independent. This
means that Rank(E) = n. The column space of the matrix will thus be a subset of the whole
RN , i.e. Col(E) ⊂ RN . So the product Ea can not get to every vector in RN , since it is always
in the column space. Since the observed data is defined by Y = Ea + ε, the product Ea
will function as some sort of underlying structure of the observed data. The observational noise
vector ε ∼ N (0, ν2I) will be the difference vector between the observed data Y and a vector
Ea ∈ Col(E) ⊂ RN . Also this coefficients vector a ∼ N (0,Cγ), where the covariance matrix
Cγ is defined by some covariance function ζa,γ with unknown parameters γ. Hence we will not
be able to apply MLE for this example if we wanted to estimate the parameters (a, γ, ν2). If
we were only interested in the parameters (γ, ν2) we could use the EM algorithm and use the
log-likelihood function in equation (22). Luckily Bayesian parameter estimation in Section 7 will
work on all models in this section.

6.2.2 MLE on model with non-Gaussian eigenfunction coefficients

We will generalise the two different cases of non-Gaussianity (mapped and non-mapped) into
one section, because the same problem arises for the two models. In the Gaussian case, i.e.
the coefficients a ∼ N (0,Cγ), the expression Ea also had a well-known multivariate Gaussian
distribution. Here the data will look like Y = Eb + ε where b is some non-Gaussian vector
with some covariance structure. In this case the distribution of the expression Eb will not be
known. The intuition remains the same for the distribution of the observed data. The underlying
structure of the data will be the vector Eb ∈ Col(E) ⊂ RN , where the vector b ∼ Mα,γ has
some multivariate non-Gaussian distribution with parameters α and covariance parameters γ.
Then again the observational noise vector ε ∼ N (0, ν2I) will be the difference vector between
the vector Eb ∈ Col(E) and the observed data Y .

We have shown in this section that MLE is very inconvenient for these types of models. The
only model which would qualified to solve with MLE is the first model Gaussian case, which could
be solved using the EM algorithm The log-likelihood function of the non-Gaussian examples of
the first model result in products of higher dimensional integrals, which are inefficient to solve

23

compared to other Bayesian methods which we will discuss in upcoming sections. For the second
model the probability density function of the Gaussian case results in a nice expression, but this
expression does not consist of the eigenfunction coefficients a. We were not able to write the
joint probability density function of this observed data for the second model in terms of Gaussian
and non-Gaussian coefficients. Hence the log-likelihood function could not be defined in terms of
these eigenfunction coefficients, which implied that MLE is not the suitable parameter estimation
method for this type of model. In the next section we will use Bayesian methods which are more
convenient for these types of models, because we can describe the likelihood of a set of parameters
more neatly in something called a posterior distribution.

24

7 Parameter estimation of the CMB models using Bayesian
parameter estimation (BPE)

In the previous section maximum likelihood estimation, a frequentist approach, has been applied
to the models to estimate the parameters. There was not a lot of success in estimating the
parameters using MLE. The log-likelihood functions were to computationally heavy, because
of their higher dimensional integrals. For this section, without further referencing, we will use
Bijma et al. (2017) (Chapter 3.5).

In contrast to the frequentist approach; the Bayesian approach has something called the pos-
terior distribution which gives an inside about the likelihood of a selection of parameters when
the observed data is applied to it. In order to apply this estimation method, again some assump-
tions about the data has to be known (the two models) . Furthermore some prior knowledge
about the parameters is mandatory in order to perform this estimation method.

In this section it is clarified how to apply Bayesian parameter estimation (BPE) for to the
specific cases in the two models of the observed data, in order to obtain estimates for the pa-
rameters of the model. It will be shown that it is still impossible to calculate analytically, but
also in the section hereafter, some convenient computational methods will be used for parameter
estimation, which build on the theory treated in this section.

7.1 Posterior density and the Bayes estimate

The Bayesian formula describes that for some parameters ρ and observed data y the posterior
density

p(ρ | y) =
p(y | ρ)π(ρ)

p(y)
∝ p(y | ρ)π(ρ). (23)

Here p(y | ρ) is called the likelihood function and π(ρ) the prior of the parameters. Note that
y in the example for the CMB data is the set of observations Y = {Y1, Y2, ..., YK}, which was
also used in the section about MLE. Here ρ are all the unknown parameters and latent variables
of the model.

The Bayes estimate for a parameter h(ρ), denoted Th(ρ)(y), can then be calculated by cal-
culating

Th(ρ)(y) =

∫
P
h(ρ)p(y | ρ)π(ρ) dρ

p(y)
=

∫
P
h(ρ)p(y | ρ)π(ρ) dρ∫
P
p(y | ρ′)π(ρ′) dρ′

, (24)

where we integrate over the whole parameter space P. Since there are K observations denoted
by the set Y, the likelihood function becomes a product resulting in the formula

Th(ρ)(Y) =

∫
P
h(ρ)

[∏K
i=1 p(Yi | ρ)

]
π(ρ) dρ∫

P

[∏K
i=1 p(Yi | ρ′)

]
π(ρ′) dρ′

. (25)

One could use for example the mean of the posterior as the Bayes estimate, which would
imply that h(ρ) = ρ. In the next subsections the posterior will be calculated for the two models
that have been created.

7.2 Bayesian parameter estimation of the first model

7.2.1 BPE on Gaussian random field

The model will look like Y = X + ε, X ∼ N (0,Ση) and ε ∼ N (0, ν2I), from which the
dependent structure of the model can be visualised in a tree

25

Y

X

η

ν2

Using a Gaussian random field in the first model results in the likelihood function

p(Y |X,η, ν2) = p(Y |X, ν2)p(X | η). (26)

Note that the latent variables X are introduced (value of the Gaussian random field). This will
result in the posterior density

p(X,η, ν2 | Y) =
p(Y |X, ν2)p(X | η)π(η)π(ν2)

p(Y)
. (27)

Again because of multiple observations we introduce the set of underlying Gaussian random fields
as X to there corresponding observation in Y. Hence acquiring the following posterior

p(X ,η, ν2 | Y) =
p(Y | X , ν2)p(X | η)π(η)π(ν2)

p(Y)
(28)

=

[∏K
i=1 p(Yi |Xi, ν

2)p(Xi | η)
]
π(η)π(ν2)∏K

i=1 p(Yi)
(29)

∝

[
K∏
i=1

p(Yi |Xi, ν
2)p(Xi | η)

]
π(η)π(ν2). (30)

When calculating an Bayes estimate for the parameter h(ρ), where ρ = {X ,η, ν2}, one needs to
fill in the found posterior in equation (25) to get the estimate

p(X ,η, ν2 | Y) =

∫
P
h(ρ)

[∏K
i=1 p(Yi |Xi, ν

2)p(Xi | η)
]
π(η)π(ν2) dρ∫

P

[∏K
i=1 p(Yi |X′

i , ν
′2)p(X′

i | η′)
]
π(η′)π(ν′2) dρ′

. (31)

Note that the denominator is some normalisation constant dependent on the parameters ρ. The
expression in the denominator is too difficult to solve analytically, because of its high dimension
and there will still be parameters in the covariance matrix of all X ∈ X . Luckily there is an
algorithm, called the Metropolis-Hastings algorithm, that will bypass these problems. This will
calculate the Bayes estimate numerically and will be discussed in the next main section.

7.2.2 BPE on mapped, non-Gaussian random field

The only addition to this example of the first model in contrast with the previous one is that there
are additional mapping parameters θ, since the model looks like Y = R+ ε = gθ(X) + ε, X ∼
N (0,Ση) and ε ∼ N (0, ν2I). The tree will thus have one extra branch

26

Y

R

η θ

ν2

The same procedure, as with the previous example, has been done to calculate the likelihood
function:

p(Y | R,η, θ, ν2) = p(Y | R, ν2)p(R | η, θ). (32)

This will result in the following posterior, given observations Y and set of corresponding random
fields R

p(R,η, θ, ν2 | Y) =
p(Y | R, ν2)p(R | η, θ)π(η)π(θ)π(ν2)

p(Y)
(33)

=

[∏K
i=1 p(Yi | Ri, ν

2)p(Ri | η, θ)
]
π(η)π(θ)π(ν2)∏K

i=1 p(Yi)
, (34)

now using (9) to obtain

p(R,η, θ, ν2 | Y) =

[∏K
i=1 p(Yi | Ri, ν

2)NNi(g
−1
θ (Ri) | 0,Ση,i)det[JNi(Ri | θ)]

]
π(η)π(θ)π(ν2)∏K

i=1 p(Yi)
(35)

Analogously denoting the set of non-Gaussian mapped random fields with R by their corre-
sponding observed data Y. Then the Bayes estimate for ρ = {R,η, θ, ν2}, for observations Y,
will look like

p(R,η, θ, ν2 | Y) =

∫
P
h(ρ)

[∏K
i=1 p(Yi | Ri, ν

2)NNi
det[JNi

(Ri | θ)]
]
π(η)π(θ)π(ν2) dρ∫

P

[∏K
i=1 p(Yi | R′

i, ν
′2)NNi(g

−1
θ (R′

i) | 0,Ση′,i)det[JNi(R
′
i | θ′)]

]
π(η′)π(θ′)π(ν′2) dρ′

.

(36)
This integral cannot be calculated analytically.

7.2.3 BPE on an other example of a non-Gaussian random field

This example of a Student-tv random field is very similar as the previous example. Except
now there is no mapping and the likelihood function is defined with a density function of the
tv-distribution (11). Now the data is Y = R + ε, R ∼ tv(0,Ση) and ε ∼ N (0, ν2I). The
structure of parameters will thus look like

Y

R

η v

ν2

27

This will result in the likelihood function

p(Y | R,η, v, ν2) = p(Y | R, ν2)p(R | η, v). (37)

Given the observations Y, the posterior will thus look like

p(R,η, v, ν2 | Y) =
p(Y | R, ν2)p(R | η, v)π(η)π(v)π(ν2)

p(Y)
(38)

=

[∏K
i=1 p(Yi | Ri, ν

2)p(Ri | η, v)
]
π(η)π(v)π(ν2)∏K

i=1 p(Yi)
(39)

and the Bayes estimate for a h(ρ) where ρ = {R,η, v, ν2} will be defined as

p(R,η, θ, ν2 | Y) =

∫
P
h(ρ)

[∏K
i=1 p(Yi | Ri, ν

2)p(Ri | η, v)
]
π(η)π(v)π(ν2) dρ∫

P

[∏K
i=1 p(Yi | R′

i, ν
′2)p(R′

i | η′, , v′)
]
π(η′)π(v′)π(ν′2) dρ′

, (40)

which again is impossible to solve analytically.
For all three cases of the first model it is demonstrated, in this subsection, that the Bayes es-

timates for the parameters result again in higher dimensional integrals with a difficult expression
in it. The covariance matrix will namely be variable and thus unknown as well as its determinant.

7.3 Bayesian parameter estimation of the second model

7.3.1 BPE on model with Gaussian eigenfunction coefficients

For the second model using Gaussian eigenfunction coefficients; the observed data will look like
Y = Ea+ ε, a ∼ N (0,Cγ)and ε ∼ N (0, ν2I). Here it is assumed that there are n different
eigenfunction, i.e. a ∈ Rn. The following structure of the model arises

Y

a

γ

ν2

,

which results in the likelihood function

p(Y | a, γ, ν2) = p(Y | a, ν2)p(a | γ). (41)

Given observations Y, the posterior density will be defined as

p(a,γ, ν2 | Y) =
p(Y | a, ν2)p(a | γ)π(γ)π(ν2)

p(Y)
(42)

=

[∏K
i=1 p(Yi | a, ν2)p(a | γ)

]
π(γ)π(ν2)∏K

i=1 p(Yi)
(43)

28

and the Bayes estimate for a h(ρ) where ρ = {a,γ, ν2} will be defined as

p(a,θ, γ, v, ν2 | Y) =

∫
P
h(ρ)

[∏K
i=1 p(Yi | a, ν2)p(a | γ)

]
π(γ)π(ν2) dρ∫

P

[∏K
i=1 p(Yi | a′, ν′2)p(a′ | γ′)

]
π(γ′)π(ν′2) dρ′

, (44)

As seen in the previous subsection about the first model, we again get a very difficult expression.
Note that we afresh have parameters inside the covariance matrix Cγ , and thus also in its
determinant. It makes it impossible to calculate analytically. This is also, because the dimension
of the integral increases as the number of eigenfunctions and data points increases.

7.3.2 BPE on model with mapped non-Gaussian eigenfunction coefficients

The next example is for mapped Gaussian eigenfunction coefficients to a non-Gaussian distribu-
tion. This means that the observed data Y = Eb+ ε , where b = gθ(a) with a ∼ N (0,Cγ) and
ε ∼ N (0, ν2I). Then the structure is a little more extended compared to the Gaussian case

Y

b

γ θ

ν2

which results in the likelihood function

p(Y | b, γ, θ, ν2) = p(Y | b, ν2)p(b | γ, θ). (45)

Given observations Y, the posterior density will be

p(b,γ, θ, ν2 | Y) =
p(Y | b, ν2)p(b | γ, θ)π(γ)π(θ)π(ν2)

p(Y)
(46)

=

[∏K
i=1 p(Yi | b, ν2)p(b | γ, θ)

]
π(γ)π(θ)π(ν2)∏K

i=1 p(Yi)
(47)

=

[∏K
i=1 p(Yi | b, ν2)p(g−1θ (b) | γ, v)det[J (b | θ)]

]
π(γ)π(θ)π(ν2)∏K

i=1 p(Yi)
, (48)

where the Jacobian J (b | θ) =
[
∂g−1
θ (r)

∂r

]
r=b

. Then the Bayes estimate for a h(ρ) where

ρ = {b, θ,γ, ν2} will be defined as

p(b,θ, γ, ν2 | Y) =

∫
P
h(ρ)

[∏K
i=1 p(Yi | b, ν2)p(g−1θ (b) | γ, θ)det[J (b | θ)]

]
π(γ)π(θ)π(ν2) dρ∫

P

[∏K
i=1 p(Yi | b′, ν′2)p(g−1θ (b′) | γ′, θ′)det[J (b′ | θ′)]

]
π(γ′)π(θ′)π(ν′2) dρ′

.

(49)
Again this will be impossible to solve analytically.

29

7.3.3 BPE on model with other non-Gaussian eigenfunction coefficients

Finally we check what happens if we have some other eigenfunction coefficients which are non-
Gaussian, but do not have a known mapping from the Gaussian eigenfunction coefficients. Again
we take the example of the Student-tv distribution. We let Y = R + ε, R ∼ tv(0,Cγ) and
noise ε ∼ N (0, ν2I). This results in the following tree:

Y

b

γ v

ν2

which results in the likelihood function

p(Y | b, γ, v, ν2) = p(Y | b, ν2)p(b | γ, v). (50)

Given observations Y, the posterior density will be defined as

p(b,γ, v, ν2 | Y) =
p(Y | b, ν2)p(b | γ, v)π(γ)π(v)π(ν2)

p(Y)
(51)

=

[∏K
i=1 p(Yi | b, ν2)p(b | γ, v)

]
π(γ)π(v)π(ν2)∏K

i=1 Yi
(52)

(53)

and the Bayes estimate for a h(ρ) where ρ = {b,γ, v, ν2} will be defined as:

p(b,γ, v, ν2 | Y) =

∫
P
h(ρ)

[∏K
i=1 p(Yi | b, ν2)p(b | γ, v)

]
π(γ)π(v)π(ν2) dρ∫

P

[∏K
i=1 p(Yi | b′, ν′2)p(b′ | γ′, v′)

]
π(γ′)π(v′)π(ν′2) dρ′

, (54)

As all previous example, this estimate is impossible to solve analytically. However in the upcom-
ing section we will use the Metropolis-Hastings algorithm to surpass this problem and estimate
the parameter estimates numerically.

30

8 Parameter estimation of the CMB models using the Metropolis-
Hastings algorithm (MH)

In the previous section the theory about BPE has been applied to the example models we
encountered earlier in this paper. By calculating the parameter estimates for a given parameter
vector h(ρ), one could estimate it by calculating its Bayes estimate. These could not be calculated
analytically. Also numerically calculating the integrals would be highly inefficient.

Intuitively if one was able to sample from this posterior distribution it would be possible,
after many samples, to estimate for example the sample mean of the parameters. However the
posterior distribution, in the latter cases of the first and second model, is not a ‘well-known’
density.

Something called the Metropolis-Hastings algorithm surpasses this problem. It is something
called a MCMC method (Markov Chain Monte Carlo) which will ‘walk’ through this posterior
density. It is called a Markov Chain because its sample only depends on the previous sample that
it was at (in the parameter space P). The algorithm will a large amount of successive samples
from the posterior density. This means that approximate posterior mean can be calculated
numerically using this MH algorithm. The algorithm will, in this section, be applied to the two
models with different examples. Without further referencing, contents of this section is based on
Bijma et al. (2017) (Chapter 3.5.1).

8.1 Introduction to the Metropolis-Hastings algorithm

The posterior distribution will be denoted by the letter p(ρ). To start the walk through the
parameter space P one needs an initial starting point ρ0 ∈ P. From this the next point ρ1 needs
to be generated. This will be done by using a transition kernel Q. This will propose a new value
in P which could be accepted, in which it will move to the next value, or rejected, in which it will
stay at the current point. The transition density q is a function which calculates the likelihood of
the proposed value ρi+1 given the current value ρi, denoted by ρi+1 7→ q(ρi,ρi+1). This density
is associated with the transition kernel, which is a sampler for the transition density. Then given
the current state ρi, the MH algorithm will accept the proposed state ρi+1 with probability

A(ρi,ρi+1) = min

{
p(ρi+1)q(ρi+1,ρi)

p(ρi)q(ρi,ρi+1)
, 1

}
.

Hence if one samples a uniform random variable Ui+1 ∼ U(0, 1) and Ui+1 < A(ρi,ρi+1) the MH
algorithm will accept the proposed state, else it will just stay at the current state (hence it will
sample the same value again). This process will be iterated for a given number of times. After
the MH has finished for all iterations, something called the burn-in will remove some number of
samples from the beginning of the algorithm. This is because the initial value can be in a really
low density state which will impact the calculation of the estimated posterior means. Hence the
parameter estimation will most likely be more precise if those samples are removed.

In all of the examples the transition density will be symmetric, this means that q(a, b) =
q(b,a), ∀a, b ∈ P. Then the acceptance probability can be simplified:

A(ρi,ρi+1) = min

{
p(ρi+1)

p(ρi)
, 1

}
,

since q(ρi+1,ρi)
q(ρi,ρi+1)

= 1. Also for our examples we need to use logarithms, because the densities get

really small for higher dimensions, which can cause numerical underflow (giving zero values while

31

it is not equal to zero). Hence we accept if

logUi+1 < logA(ρi,ρi+1) = min{log p(ρi+1)− log p(ρi), 0},

which is equivalent to accept when Ui+1 < A(ρi,ρi+1) because of the strict monotonicity of the
logarithm.

8.2 Parameter estimation of the first model using the Metropolis-
Hastings algorithm

First the example, that will be used for the different cases of the first model, needs to be defined.
The grid will be (−L : ∆x : L) in the x-direction and (−M : ∆y : M) in the y-direction. There
will thus be one observation, i.e. Y = Y . Here L = M = 1 and ∆x = ∆y = 0.25. The covariance
function of the Gaussian random field X will be the function with parameters η = {A,B,C}:

ξη,X(t1, t2) = ξ{A,B,C},X(t1, t2) = A cos(B||t1 − t2||) exp(−C||t1 − t2||)

where, in this example, we assume that A = 1, B = 1, C = 0.5. Then Ση will be constructed by
equation (2). The noise factor for generating the observed data will be ν2 = 12

Using section 7.3 we can get the posterior density for each different case, which we will need
for the Metropolis-Hastings algorithm. For the MH algorithm we take a symmetric transition
kernel with distribution ρi+1 ∼ N (ρi, β

2I) for every iteration i, where β2 =. This means the
transition density q is ρi+1 7→ q(ρi,ρi+1) = N (ρi+1 | ρi, β2I). This value β2 has to be chosen
wisely, because it acts kind of like a step size and will effect the performance of the MH algorithm.
Too big and the acceptance rate will be very low, i.e. a very inefficient algorithm. Too small
and the sample will not efficiently move through the parameter space. It will take a long time
to through the whole space P. Finally the number of iterations T = 25000 with a burn-in of
B = 500.

A key note is that we already assume that we know the distribution of the random field and
of the covariance structure. However the parameters are unknown, because those are going to be
estimated by the MH algorithm. This is of course a very precise assumption, because we have
simulated the models ourselves with the same covariance structure and distribution.

8.2.1 MH algorithm on Gaussian random field

For the first example using the posterior in (27) the acceptance probability of the Metropolis-
Hastings algorithm for this case, given parameters ρi = {Xi,ηi, ν

2
i }, is defined by:

A(ρi,ρi+1) = min


p(Y |Xi+1,ν

2
i+1)p(Xi+1|ηi+1)π(ηi+1)π(ν

2
i+1)

p(Y)

p(Y |Xi,ν2
i)p(Xi|ηi)π(ηi)π(ν2

i)

p(Y)

, 1


= min

{
p(Y |Xi+1, ν

2
i+1)p(Xi+1 | ηi+1)π(ηi+1)π(ν2i+1)

p(Y |Xi, ν2i)p(Xi | ηi)π(ηi)π(ν2i)
, 1

}
.

One thing which is useful, is that the normalisation factors p(Y) cancel eachother out. The
algorithm thus prevents us from calculating a high dimensional integral. Also in this case because
of our symmetric transition kernel we do not have to take that calculation of the transition
densities into account, since those two will cancel eachother out. In the long run this will same
us some computational time.

32

Now some assumptions about the priors have to be made. The parameters η will assumed to
have a prior density of π(η) = N (η | η̃,vηI) where η̃ is some expectation vector and vη is some
variance vector for the parameters. The parameter ν2 can only be positive, so the prior density
will be π(ν2) = N (ν2 | µν2 , σ2

ν2), from the normal distribution with parameters µν2 and σ2
ν2 .

For this section η̃ = [1, 1, 0.1]T , vη = [0.25, 0.25, 0.25]T , µν2 = 1 and σ2
ν2 = 0.12. Henceforth the

present functions inside the acceptance probability will be:

p(Y |X, ν2) = N (Y −X | 0, ν2I)

p(X | η) = N (X | 0,Ση)

π(η) = N (η | η̃,vηI)

π(ν2) = N (ν2 | µν2 , σ2
ν2)

Note that ξη,X will be known, which implies that the structure of Ση will be known.
The transition kernel will be ρi+1 ∼ N (ρi, β

2I) where β2 = 0.022. Now using T = 25000
iterations and B = 500 burn-in we can start sampling from the posterior distribution using the
MH algorithm above, starting at the initial value

X0 = Y , η0 = [1; 1; 1], ν20 = 0.75.

This walk through the parameter space P result in something called a trace plot, which indicates
the value per parameter at a given iteration. The trace plot for all parameters can be seen in
Figure 15.

Figure 15: Metropolis-Hastings algorithm for given example for the observed data with with
a Gaussian random field of the first model with 25000 iterations and 500 burn-in. One line
represents one parameter value.

If we use the posterior mean as Bayes estimate X̂ for the Gaussian random field parameters,
we would obtain the random field, which is plotted in Figure 17. For comparison it is plotted
next to the real values of the random field.

From the trace plot of all parameters we can not read clearly what happens for specific
parameters, that is why we do not show this plot for the upcoming examples of applying the MH
algorithm to various random fields. The more interesting parameters η and ν2 can be isolated
in their own trace plot as shown in Figure 16. Here the horizontal lines represent the real values

33

Figure 16: The same trace plot but now only for the parameters η and ν2. The blue line
represents the path, the red line represents the real value used in the simulation and the green
line is the posterior mean for the path (sample mean)

Figure 17: The posterior mean of the random field, acquired from the trace plot, plotted against
the real random field for the given example.

of the parameters. The estimates of the parameters for this example and their real values are
respectively the green and the red horizontal lines in Figure 16. Looking at the trace plots all the
paths get close to the real value. The posterior mean of the paths (green lines) are also relatively
close to the real value (red lines), especially for the parameter ν2.

In this section all different examples of (non-)Gaussian random fields for the two different
models will be used to apply the MH algorithm for their corresponding self-simulated observed
data. Here the real values of the parameters are already known, which is convenient for making
a comparison among all its designated parameters and their estimate.

34

8.2.2 MH algorithm on mapped, non-Gaussian random field

As an example of mapped non-Gaussian random field we take a lognormal random field. This
means θ = {µ, σ} and

R(t) = gθ(X(t)) = gµ,σ(X(t)) = eµ+σX(t),

with for this example µ = −1 and σ = 1. These are two extra parameters that have to be
estimated by the MH algorithm. For this example using the posterior (33) the acceptance
probability, given parameters ρi = {Ri,ηi,θi, ν

2
i }, will be defined as:

A(ρi,ρi+1) = min

{
p(Y | Ri+1, ν

2
i+1)p(g−1θ (Ri+1) | ηi+1,θi+1)det[J (Ri+1,θi+1)]π(ηi+1)π(ν2i+1)

p(Y | Ri, ν2i)p(g−1θ (Ri) | ηi,θi)det[J (Ri,θi)]π(ηi)π(ν2i)
, 1

}
,

where g−1θ (R(t)) = logR(t)−µ
σ . For this example we also need the prior for the mapping pa-

rameters θ. Analogous to the prior of η we take that π(θ) = N (θ | θ̃,vθI). Here we take
that θ̃ = [−1, 1]T and vθ = [0.5, 0.5]T . Thus the function inside the acceptance probability are
defined by:

p(Y | R, ν2) = N (Y −R | 0, ν2I)

p(g−1θ (R) | η, θ) = N (g−1θ (R) | 0,Ση)

π(η) = N (η | η̃,vηI)

π(θ) = N (θ | θ̃,vθI)

π(ν2) = N (ν2 | µν2 , σ2
ν2)

J (R,θ) =

[
∂g−1θ (r)

∂r

]
r=R|θ

Note that Ση is the Gaussian covariance matrix, defined by the function ξη,X . The transition
kernel will be ρi+1 ∼ N (ρi, β

2I) where β2 = 0.0052. Now given T = 50000 and B = 500 we
can start sampling from the posterior distribution given the MH algorithm above, starting at
the initial values

R(ti)0 = max(Y (ti), 0.01), η0 = [0.5; 0.5; 0.5], θ0 = [−0.5; 0.5], ν20 = 0.5, ∀i = 1, ..., N.

A trace plot is shown with the parameters η, θ and ν2 in Figure 18. The real values are
again shown as the red horizontal lines and their corresponding posterior mean as the green
horizontal lines. Taking the posterior mean as our Bayes estimate for the parameters we obtain
the following estimated underlying random field, which is plotted next to the real random field
in Figure 19.

The values of the estimates are also put in the table in Table 1. Also the real values and the
variances of the values are put in the table.

The posterior means of σ and C are still some standard deviations away from the real values.
Especially the estimator σ̂ which is around 5 standard deviations away. If we run the algorithm
for some more steps, these estimated posterior means will get closer to the real values of the
parameters.

35

Figure 18: The same trace plot but now only for the parameters η, θ and ν2. The blue line
represents the path, the red line represents the real value used in the simulation and the green
line is the posterior mean for the path (sample mean).

Figure 19: The posterior mean of the random field, acquired from the trace plot, plotted against
the real random field for the given example of the lognormal random field.

parameter real value (red line) posterior mean (green line) variance of post. mean
A 1.0000 1.0363 0.0504
B 1.0000 1.1042 0.0518
C 0.5000 1.2103 0.0853
µ -1.0000 -1.0638 0.0810
σ 1.0000 2.2200 0.0691
ν2 1.0000 0.8640 0.0176

Table 1: Table corresponding to the parameter trace plot in Figure 18.
18

A possibility for the inaccurate estimation is because there are multiple true value possible
for the parameters. This means that the model is unidentifiable. Here the coefficients A and σ
interfere with each other. So we could simplify the model by taking away one of the parameters.

36

Possibly the parameter C also is related to the parameter σ, but for this further investigation is
needed.

8.2.3 MH algorithm on an other example of a non-Gaussian random field

The last case of the first model would be a non-mapped non-Gaussian random field. Again the
Student-tv example is demonstrated. For our simulation we take the real value of v = 6. This
parameters will also be estimated by the MH algorithm. This leads to a acceptance probability,
given parameters ρi = {Ri,ηi, vi, ν

2
i }, of:

A(ρi,ρi+1) = min

{
p(Y | Ri+1, ν

2
i+1)p(Ri+1 | ηi+1, vi+1)π(ηi+1)π(vi+1)π(ν2i+1)

p(Y | Ri, ν2i)p(Ri | ηi, vi)π(ηi)π(vi)π(ν2i)
, 1

}
.

Now the prior of v has to be defined. Let π(v) = N (v | µv, σ2
v), where µv = 6 and σv = 0.25.

This means the present functions inside the acceptance probability are:

p(Y | R, ν2) = N (Y −R | 0, ν2I)

p(R | η, v) = ST (R | 0,Ση, v)

π(η) = N (η | η̃,vηI)

π(v) = N (v | µv, σ2
v)

π(ν2) = N (ν2 | µν2 , σ2
ν2)

Note that Ση is the Gaussian covariance matrix, defined by the function ξη,X . The transition
kernel will be ρi+1 ∼ N (ρi, β

2I) where β2 = 0.012. Now given T = 50000 and B = 500 we can
start sampling from the posterior distribution given the MH algorithm above, starting at the
initial values

R0 = Y , η0 = [0.75; 0.75; 0.75], v0 = 6, ν20 = 0.75.

Figure 20: The same trace plot but now only for the parameters η, v and ν2. The blue line
represents the path, the red line represents the real value used in the simulation and the green
line is the posterior mean for the path (sample mean)

37

A trace plot is shown with the parameters η, v and ν2 in Figure 20. The real values are
again shown as the horizontal lines. If we take the posterior mean as our Bayes estimate for the
parameters we obtain the following estimated underlying random field, which is plotted next to
the real random field in Figure 21.

Figure 21: The posterior mean of the random field, acquired from the trace plot, plotted against
the real random field for the given example.

The other estimated parameters have been put in Table 2 next to their real value. These
values correspond to the parameter trace plot. In the figure with the two random fields (Figure
21) is shown that the estimated field has higher and lower temperatures. A cause of this is
probably that the estimate of the noise factor ν2 is lower than the real value, which implies that
more extreme temperatures are more likely since there is less noise.

parameter real value (red line) posterior mean (green line) variance of post. mean
A 1.0000 1.0943 0.1339
B 1.0000 0.7987 0.1078
C 0.5000 1.1401 0.0919
v 6.0000 6.0023 0.0096
ν2 1.0000 0.8114 0.0446

Table 2: Table corresponding to the parameter trace plot in Figure 20

38

8.3 Parameter estimation of the second model using the Metropolis-
Hastings algorithm

The example that we work with for the second model has the grid same grid as in the example
for the first model, i.e (−L : ∆x : L) in the x-direction and (−M : ∆y : M) in the y-direction,
with L = M = 2.5 and ∆x = ∆y = 0.25. There will thus be one observation, i.e. Y = Y . The
covariance function of the Gaussian eigenfunction parameters a ∼ N (0,Cγ) where the matrix
elements have the value

Clml′m′,γ = ζa,γ((l,m), (l′,m′)) = γlmδll′δmm′

where the vector γ consists of coefficients γlm = 1
lm and δij = 1{i=j} is the Kronecker-delta

function. Then the Gaussian random field can be generated using

X(tj) =

5∑
l=1

5∑
m=1

alme
−iπ(lxj/L+myj/M), ∀j = 1, ..., N tj = (xj , yj), (55)

or equivalently X = Ea. This means we have n = 25 distinct eigenfunctions. To simulate the
observed data the noise has to be added, since Y = Ea+ ε. The noise factor will be different
for all examples; its value will be assigned before every example.

For the Metropolis-Hastings algorithm in this section, the same assumptions have been made
about the transition kernel/density as in the previous section on applying MH on the first model.
Note that this (second) model will be way more efficient when applying the MH algorithm, since
its speed is affected less by the number of pixels in comparison to the first model. This is because
the dimension of the covariance matrix Cγ of the second model only grows when the number of
eigenfunctions increases. Not when the number of pixels increases as in the first model. This
can be convenient when dealing with larger observations like the CMB data.

8.3.1 MH algorithm on model with Gaussian eigenfunction coefficients

Using the posterior (42) the acceptance probability, given parameters ρi = {ai,γi, ν2i }, will look
like:

A(ρi,ρi+1) = min

{
p(Y | ai+1, ν

2
i+1)p(ai+1 | γi+1)π(γi+1)π(ν2i+1)

p(Y | ai, ν2i)p(ai | γi)π(γi)π(ν2i)
, 1

}
The prior of γ will be defined in a similar fashion as the prior for η or θ as in the previous

subsections. We define π(γlm) = Exp(γlm | λlm), where λlm is the exponential rate for the
coefficients γlm, where in this example λlm = 1/lm. The prior of ν2 will remain the same,but
with different µν2 = 5 and σν2 = 1. This means for the acceptance probability we have the
functions:

p(Y | a, ν2) = N (Y −Ea | 0, ν2I)

p(a | γ) = N (a | 0,Cγ)

π(γlm) = Exp(γlm | λlm)

π(ν2) = N (ν2 | µν2 , σ2
ν2).

Cγ is the Gaussian covariance matrix, defined by the function ζa,γ . The real value of the
noise factor will be ν2 = 5.

39

Then the transition kernel will be ρi+1 ∼ N (ρi, β
2I) where β2 = 0.022. Now given T = 25000

and B = 500 we can start sampling from the posterior distribution given the MH algorithm above,
starting at the initial value

a0 = 0, γlm,0 = 1, ν20 = 1, ∀l,m = 1, ..., n = 5.

A trace plot is shown, in Figure 22, where only the parameter ν2 is shown next to its real
value in red and posterior mean in green. The purple line represents the posterior mean upto
the current point.

Figure 22: Trace plots of the parameter ν2.

The estimated eigenfunctions coefficients â generate the estimated Gaussian random field
X̂ = Eâ. The real random field X and estimated random field X̂ are compared in Figure 23.

Figure 23: Random field given the posterior mean of the random coefficients, acquired from the
trace plot; plotted against the random field given the real coefficients for the given example.

40

Since we have 51 parameters which is an extensive amount of work to put in a table, we
describe the precision of the estimates by the Mean Squared Error (MSE), which is defined in
Bijma et al. (2017) (Section 3.5) and slightly altered for our example as the following formula:

MSE = Eρ((ρ̂− ρ)2) =
1

d

d∑
i=1

(ρ̂i − ρi)2. (56)

Here ρ̂ is an estimate vector of the real values of the parameter vector ρ ∈ Rd. A convention is
that the estimation gets more accurate as the MSE decreases.

For this simulation of the MH algorithm we have acquired some estimates and MSE’s for
parameter vectors ρ, a and γ, which are put in Table 3.

parameter real value (red line) posterior mean (green line) variance of post. mean
ν2 5.0000 4.6801 0.0467

parameter vector MSE(.)
ρ 0.1697
a 0.0013
γ 0.3448

Table 3: Table corresponding to the parameter trace plot in Figure 22 and the MSE’s for several
parameter vectors.

8.3.2 MH algorithm on model with mapped, non-Gaussian eigenfunction coeffi-
cients

Using the same example again of mapped, non-Gaussian eigenfunction coefficients. We generate
lognormal eigenfunction coefficients. This means θ = {µ, σ} and

b = gθ(X(t)) = gµ,σ(a) = eµ+σa,

with for this example µ = −1 and σ = 1. The two mapping parameters have to be estimated as
well in the MH algorithm. For this example using the posterior (46) the acceptance probability,
given model parameters ρi = {bi,γi,θi, ν2i }, will be defined as:

A(ρi,ρi+1) = min

{
p(Y | bi+1, ν

2
i+1)p(g−1θ (bi+1) | γi+1,θi+1)det[J (bi+1 | θ)]π(γi+1)π(γi+1)π(ν2i+1)

p(Y | bi, ν2i)p(g−1θ (bi) | γiθi)det[J (bi | θ)]π(γi)π(θi)π(ν2i)
, 1

}

The prior of θ is the same as in the previous example for the first model, with prior mean
θ̃ = [−1; 1]. For the other priors we assume λlm = 1/lm, µν2 = 5 and σν2 = 1. Hence we have
the densities:

41

Figure 24: Trace plots which seperates the parameters θ = {µ, σ} and ν2. The blue line represents
the path, the red line represents the real value used in the simulation and the green line is the
posterior mean for the path.

p(Y | b, ν2) = N (Y −Eb | 0, ν2I)

p(b | γ, θ) = N (g−1θ (b) | 0,Cγ)

π(γlm) = Exp(γlm | λlm)

π(θ) = N (θ | θ̃,vθI)

π(ν2) = N (ν2 | µν2 , σ2
ν2)

J (b,θ) =

[
∂g−1θ (r)

∂r

]
r=b|θ

For this example, the real value of the noise factor Cγ is again the Gaussian covariance
matrix, defined by the function ζa,γ . The real value of the noise factor, in this example, will be
ν2 = 2.5.

Now for the MH algorithm; transition kernel will be ρi+1 ∼ N (ρi, β
2I) where β2 = 0.022.

Now given T = 25000 and B = 500 we can begin sampling given the initial values

blm,0 = 1, γlm,0 = 1, θ0 = [−0.5; 1], ν20 = 1, ∀l,m = 1, ..., n = 5.

A trace plot is shown in Figure 24, which groups the parameters b, γ, θ and ν2. For θ = {µ, σ}
and ν2 the real and estimated values are also plotted in Figure 24.

The estimated eigenfunction coefficients b̂ generate the estimated random field R̂ = Eb̂.
The real random field R and estimated random field R̂ are compared in Figure 25. Furthermore
Table 4 shows the estimates in comparison to their real values, as well as some Mean Squared
errors of the parameter vectors ρ, b and γ.

42

Figure 25: Random field given the posterior mean, acquired from the trace plot; plotted against
the random field given the real coefficients for the given example.

parameter real value (red line) posterior mean (green line) variance of post. mean
µ -1.0000 -0.9187 0.0093
σ 1.0000 1.0508 0.0279
ν2 2.5000 2.4651 0.0096

parameter vector MSE(.)
ρ 0.1562
b 0.2108
γ 0.1120

Table 4: Table corresponding to the parameter trace plot in Figure 24 and the MSE’s for several
parameter vectors.

8.3.3 MH algorithm on model with other non-Gaussian eigenfunction coefficients

The final example of applying the MH algorithm will be on non-mapped, non-Gaussian eigen-
function coefficients. The same example is used, namely a Student-tv distribution. For the
example we take that v = 10 to simulate the tv random field. The noise factor for this model
will be ν2 = 2.5 The acceptance probability, with model parameters ρi = {bi,γi, vi, ν2i }, of the
algorithm will look like:

A(ρi,ρi+1) = min

{
p(Y | bi+1, ν

2
i+1)p(bi+1 | γi+1, vi+1)π(γi+1)π(vi+1)π(ν2i+1)

p(Y | bi, ν2i)p(bi | γi, vi)π(γi)π(vi)π(ν2i)
, 1

}
The prior for v is the same as used in Section 8.2.3,but here we use µv = 10 and σ2

v = 0.5. The
prior for the noise factor will be the same, but with different values µν2 = 2.5 and σ2

ν2 = 0.5.
The prior of γ will remain the same. The list of densities inside the probability are then

43

p(Y | b, ν2) = N (Y −Eb | 0, ν2I)

p(b | γ) = ST (b | 0,Cγ , v)

π(γlm) = Exp(γlm | λlm)

π(v) = N (v | µv, σ2
v)

π(ν2) = N (ν2 | µν2 , σ2
ν2),

where the covariance matrix Cγ is defined by the function ζa,γ . The transition kernel will be
ρi+1 ∼ N (ρi, β

2I) where β2 = 0.022. Now given T = 25000 and B = 500 we can start sampling
starting at the initial values

b0 = 0, γlm,0 = 1, v0 = 9, ν20 = 1.

The real random field R = Eb and estimated random field R̂ = Eb̂ are compared in Figure
27.

Figure 26: Trace plots which seperates the parameters v and ν2. Tthe blue line represents the
path, the red line represents the real value used in the simulation and the green line is the
posterior mean for the path.

The estimators of the parameters and their real values are represented in Table 5. Furthermore
the accuracy of the parameter vectors ρ, b and γ, given by the MSE, are in the same table. The
estimator of the parameter v is inaccurate. Possibly we need more iterations of the MH algorithm
in order to get the posterior mean of the parameter v closer to the real value. What also could
be the case is that the model is unidentifiable. Further investigation is mandatory to figure this
out.

The estimation of the random field Eb̂ is really accurate. The estimated and the real random
field in Figure 27 look almost identical. This is because the MSE of the eigenfunction coefficients
b is really close to zero.

In this section we have used the Metropolis-Hastings algorithm for estimating parameters,
using BPE, for a given CMB model. The only aspect that changes when using the MH algorithm
among different models is the calculation of the acceptance probability. This is probability is
defined using the posterior distribution and will determine whether a new proposal is accepted or
rejected. One convenient trademark from this acceptance probability is that it cancels out some
probabilities which are hard to calculate (p(Y)). Using this algorithm one could calculate Bayes

44

Figure 27: Random field given the posterior mean of the random coefficients, acquired from the
trace plot, plotted against the random field given the real coefficients for the given example.

parameter real value (red line) posterior mean (green line) variance of post. mean
v 10.000 7.9346 0.2746
ν2 2.5000 2.4004 0.0160

parameter vector MSE(.)
ρ 0.2559
b 0.0205
γ 0.3407

Table 5: Table corresponding to the parameter trace plot in Figure 26 and the MSE’s for several
parameter vectors.

estimates (e.g. posterior means) for the parameters of the model. For example by calculating the
sample mean of the ‘walk’ through the parameter space P. Those walks are visualised in trace
plots. The models that were estimates here were pre-simulated by ourselves. This algorithm can
be applied to the real CMB data using our two models.

For the next sections this algorithm will be applied to data which consists of pixels that
will be thrown away from the data set. Without these pixels we can still use this algorithm to
estimate the value of these eliminated pixels.

45

9 Utilisation of masks on the CMB models

The data of the Cosmic Microwave Background (Figure 1) can be modeled using the two models
created in the previous sections of this paper (Section 4 and 5). We create the observed data
ourselves by simulating the models. We did not use the real observed data of the CMB. After the
simulation the parameters of the assumed model were estimated using the Metropolis-Hastings
algorithm (Section 8).

One thing to keep in mind is that outer space consists of a myriad of extraterrestrial factors
which will distort or disrupt the observation of the CMB. Radiation emitted by stars can add
some heat to some pixels or black holes can map the radiation to some other pixels. Even some
pixels will be useless because a physical object, for example a planet or asteroid, is blocking that
region in the night sky. To eliminate those pixels something called a mask is created. In Taylor
et al. (2008) the model created also consisted of a map, but it was not clear here if it was solely
for elimination purposes.

9.1 Definition of a mask

A mask M is essentially a linear mapping (matrix) of the random field which eliminates a certain
set of pixels, so that only the pixels with relevant information remain. Here M ∈ Rm×N is a
matrix which keeps m out of N observations. This means that the observed data Y will now
look like:

Y = MR+ ε,

where the random field R ∈ RN , observed data Y ∈ Rm and ε ∼ Nm(0, ν2I).
The construction of M is as follows; first starting with a N × N identity matrix I. If a

pixel ti for i = 1, ..., N needs to be removed from the random field, then row i of the identity
matrix has to be removed. This results in a (N − 1) × N matrix. Iterate this process until all
the irrelevant, unwanted pixels are removed and only m pixels remain. For example if we had a
random field with ten pixels and we want to remove pixels 2,3,6,9,10, the mask would look like:

M =


1 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0

 .
Then MR only keeps the wanted pixels of the random field (here pixels 1,4,5,7,8):

MR =


1 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0



R(t1)
R(t2)

...
R(t9)
R(t10)

 =


R(t1)
R(t4)
R(t5)
R(t7)
R(t8).


Essentially the mask we use only reduces the set of data points used for our model. Still

BPE can be applied to this model, using the Metropolis-Hastings algorithm. The only difference
will be that we do not have a rectangular grid, because of some removed pixels. This will create
holes in the data. The covariance structure will remain the same when simulating a model using
a mask. For later applications in this paper using masks, we will assume that the pixels that are
removed form a rectangle. In the physical world this can represent obstructing by a planet or
star.

46

9.2 Example of using a mask on simulated data

The example for this section consists of the grid (−L : ∆x : L) in the x-direction and (−M : ∆y :
M) in the y-direction. For the example we take L = M = 5 and ∆x = ∆y = 0.25. Here the same
covariance function ζa,γ is assumed for the Gaussian coefficients a ∼ N (0,Cγ) as in Section 5.2.
The mask M will be rectangular and consists of all pixels that lie in D = [−2, 3] × [−2, 3].
This means that the bottom left corner is (−2,−2) and the top right corner is (3, 3). Since
∆x = ∆y = 0.25, we have that 441 pixels out of 1681 have been removed from the observed
data. Hence we have the model

Y = MEa+ ε,

where we used that ν2 = 1 for the noise ε ∼ N (0, ν2I). The number of distinct eigenfunction
are n = 25.

This is visualised in Figure 28 where the original observations and the observations with mask
are illustrated.

Figure 28: Generated observed data with and without rectangular mask. The mask is displayed
with the black pixels.

9.3 MH algorithm on the example of a Gaussian random field with
rectangular mask

Using the Metropolis-Hastings algorithm on this example is actually no different then in Section
8.3.1. Again we assume that we know the complete structure of the data, except for the real
values of the parameters. Because of the presence of a mask, the only difference is that our data
set has shrunk, because of the elimination of a specific selection of pixels. Here we will compare
the performance of the MH algorithm on the data with and without mask to check if there are
any noticeable difference in posterior density. Also the same MH scheme is used to calculate the
acceptance probability, that is the posterior, priors, transition kernel and initial value all remain
the same. The only difference is that we run it two times with two different data sets. One with
mask and one without mask.

In Figure 29, the trace plot of parameter ν2 is shown separately for both the example with
and without mask. Also the real value and posterior mean estimate is shown in the trace plot.

47

(a) With mask (b) Without mask

Figure 29: Trace plots for ν2 the example of all parameters with mask and without mask using
the Metropolis-Hastings algorithm. Red line represents the real value, green line represents the
posterior mean, the purple line represents the mean of all values of the walk upto the current
state.

As well as an extra line (purple) which calculates the mean of all previous values upto its current
value.

In order to visualise the estimates for a we can generate the random field R̂M = EâM with
mask and R̂ = Eâ without mask and compare it with the real random field R = Ea. This is
shown in Figure 30. Hence three different random fields (but similar looking) are shown. Two
of those are build on the estimates calculated by the two simulations of the MH algorithm. The
other one is the real random field generated by the real values of a.

Both the MH algorithms estimated the random field well as seen in Figure 30. The random
field without mask seems to be estimated better when comparing it to the real random field. To
see the differences in estimations we put all the data in Table 6 .

parameter real value (red line) posterior mean (green line) variance of post. mean
ν2 with mask 1.0000 1.0351 0.0017
ν2 without mask 1.0000 1.0188 0.0012

parameter vector MSE(.) on mask MSE(.) on no mask
ρ 0.0570 0.1697
a 0.0059 0.0013
γ 0.1103 0.3448

Table 6: Table corresponding to the parameter trace plot in Figure 26 and the MSE’s for several
parameter vectors.

The table shows us that the estimation using the posterior mean of the parameter ν2 is indeed
better for the model without mask. Furthermore the estimation of the parameter vector a is
more accurate for the model without mask, which is also substantiated visually in Figure 30 .

An interesting result arises when we compare the MSE’s of the parameter vector γ for the
two different cases. Using the MSE, Table 6 states that these parameters of the model with mask
are better estimated than for the model without mask. This sounds debatable since there are
more observations in the model without mask than with mask. This phenomena will probably
disappear when we take more iterations in the MH algorithm. Because of this result also the

48

Figure 30: Real random field against the estimated random field for the MH algorithm on the
data with and without mask.

MSE for the parameter vector ρ, which indicates all parameters, of the model with mask is more
accurate than for the model without mask. This is a counter-intuitive result.

In this section the concept of a mask was introduced. The way that a mask affects the data
is by eliminating uninformative pixels. Here we checked the difference in estimation using the
MH algorithm for the model with and without mask. For this example the acquired parameter
estimates of the observed data with and without mask were almost similar. The two estimated
random fields almost look similar, which indicates that the MH algorithm performs well for this
example. This section only compared the performance of the parameter estimation using the
MH algorithm between two models. In the next section this will be taken one step further. We
will calculate parameter estimates for the same observed data multiple times for a number of
different masks, which will be applied independently to the same data set.

49

10 Performance analysis on parameter estimation among
various mask sizes

An interesting topic on calculating the parameters of the model will be how the estimation of
these parameters is affected by the presence of a mask with a given size. In this section we will
just assume that the mask on the data is a single rectangle with four given vertices. Each vertex
is assigned to a pixel in the field. For a rectangle only two non-adjacent vertices have to be
assigned, for example bottom left corner and top right. This is enough to create the rectangle.

In Section 9 we have caught sight of a comparison of the performance of the MH algorithm
used for parameters estimation on the same model with and without mask. In this section the
rectangular mask size will be altered multiple times, increased in small steps. Each different
mask size will then be compared with some measure that conveys the parameter estimation
performance using the MH algorithm.

10.1 Rectangular mask size against posterior variance for second model
example using MH algorithm

The performance of the posterior density given the observed data can be represented using the
posterior variance. To illustrate this we will just take one example of a random field which is
generated by Gaussian eigenfunction coefficients. This is the same example as in section 5.2.
The number of available pixels inside the data shrinks as the mask size increase. Still we want
to use MH algorithm to estimate the parameters of the model, even if there is a mask. Here the
posterior variances of the parameters will be plotted against it iteration (this means the given
mask size/available data points). In this context the beginning of a new iteration means that we
are running the MH algorithm again for a new mask size.

The grid for this section consists of coordinates (−L : ∆x : L) in the x-direction and (−M :
∆y : M) in the y-direction. For the example we take L = M = 4 and ∆x = ∆y = 0.25. Also the
same random field with Gaussian eigenfunction coefficients is assumed as in Section 9. In total
we will have 16 different mask sizes, including the case where we apply no mask. Per iteration
we let the MH algorithm run for the given observations, which depend on the mask. This means
that for every iteration we obtain the posterior mean and variances/standard deviations of all
parameters. We will compare the deviation of the estimated parameters to its real values per
parameter per iteration in Figure 31. An important note is that for every iteration we will have
the same initial value for the MH algorithm, as well as the same transition kernel/density.

Also the standard deviation of all parameters at any iteration is given in Figure 33. We
have seperated the parameters in their corresponding group. The groups are a, γ and ν2. The
heatmap represents the value of the standard deviation or the deviation of the estimate from
the real value. On the x-axis we have the indices of the parameters and on the y-axis we have
the iteration. Here the iterations start from no mask, to the largest mask. The results in the
heatmaps and line plot are as expected. For Figure 31 we see that the smaller the mask size
(low iteration) the closer the estimate gets to the real value. For the γ parameters this is less
convincingly, because its heatmap is more ‘cloudy’. For the parameters a and ν2 we see a clear
increase of the deviation of the posterior mean from the real value as the iterations begin to
go up. This deviation is defined as the absolute value of the difference between the real and
estimated value.

Another measure for the performance of the parameter estimation is the Mean Squared Error
(56). For the example in Figure 32 we used that the estimator is the posterior mean calculated
by the MH algorithm. We can see in these three subfigures that there is a clear trend between
the MSE of the total parameter vector and the iteration. The larger the mask size the higher

50

(a) parameters a (b) parameters γ

(c) parameters γ

Figure 31: Heatmaps and line plot of parameters a, γ, ν2. For the heatmaps the color represents
the deviation of a parameter estimate at a given iteration from its real value. For the line plot,
the height represents the deviation varied over different iterations for the parameter ν2.

the MSE for the total parameter vector. This is also the case for the MSE of the estimate of the
eigenfunction coefficient vector â. The estimate of the vector covariance parameter γ̂ does not
show a clear trend when the mask size increases. This can imply that this model is unidentifiable.

In combination with Figure 31 the standard deviation visualised in Figure 33 also seems
to be lower as the mask size is smaller. Again for the parameters of γ the results are not
convincing, because we do not see a clear relation between the colors and the iterations. For the
other parameters the standard deviation drops as the number of the iteration decreases. Those
two Figures combined tells us that the MH algorithm makes less accurate predictions, given its
estimate is the posterior mean, when the mask size increases. For this example we particularly
see this in the estimation of the parameters a and ν2. When the mask size gets smaller the
estimates seem to get closer to the real value, as well as its standard deviations decrease.

51

(a) Mean Squared Error of parameter vec-
tor ρ (all parameters).

(b) Mean Squared Error of parameter vec-
tor a.

(c) Mean Squared Error of parameter vec-
tor γ.

Figure 32: Comparison of the Mean Squared Error and its iteration, which is a single simulation
of the MH algorithm. Every iteration assigns a different mask size.

(a) parameters a (b) parameters γ

(c) parameter ν2

Figure 33: Heatmaps and line plots of parameters a, γ, ν2 and the MSE. For the heatmaps the
color represents the standard deviation of a parameter estimate at a given iteration. For the line
plot, the height represents the standard deviation for the parameter ν2 or MSE over different
iterations.

52

As an extra aid we will plot the empirical probability density function of the parameter ν2

for different simulations of the Metropolis-Hastings algorithm. Again a noticeable difference will
arise, when we plot four different EPDF’s given their iteration, which is shown in Figure 34.

Figure 34: Empirical probability density functions for the parameter ν2 given its iteration of the
MH algorithm. The higher the iteration the bigger the mask. Also the real value of ν2 = 1 is
shown as a vertical red line.

We see that as the iteration increases (mask size gets larger) the mode of the EPDF gets
further away from the real value. Also the variance/standard deviation of the density increases.
This can also be seen in Figure 31c and 33c, where these two values also increase as the iteration
gets higher.

In Table 6 in Section 9 we saw that the accuracy of the estimation of ν2 increased as the
mask size decreased (no mask), but furthermore we saw that the estimates for a and γ of the
model with no mask were less precise than the model with mask. In this section we have shown
that the estimation of γ is less affected by the mask size, because there is no recognisable pattern
illustrated in both of its heatmaps in Figure 31b and 33b. But for coefficients a there is a clear
trend, shown in Figure 31a and 33a, when we increase the mask size and compare it to the two
precision factors. This probably means that, in the previous section, we just had an unfortunate
event for the estimation of the parameters a. This occurance is always probable because of the
random nature of the MH algorithm.

53

11 Summary

We started in this paper by defining the random fields, which are multivariate distributions with
some covariance structure, constructed using a function, among all random variables. These ran-
dom fields are the underlying structures of the two models we defined. These models, suggested
by Vio et al. (2001) and Taylor et al. (2008), where used to simulate observed data which we
would later use to compare estimates of the parameters of these models with their real values.

First we looked at Maximum likelihood estimation for parameter estimation. Analytically it
was impossible to calculate the estimates. We could use the EM algorithm for the most triv-
ial Gaussian models, but for the more difficult non-Gaussian models the log-likelihood function
would consist of higher dimensional integrals. It is possible to calculate these, but for these ex-
amples more convenient Bayesian methods are available. Using Bayesian parameter estimation
it is still impossible to calculate Bayes estimates analytically, but with a computational tool
called the Metropolis-Hastings algorithm one could make the Bayesian parameter estimation
work. The algorithm samples from the posterior density using some transition kernel and accep-
tance probability defined by the assumed prior distributions, likelihood functions and transition
densities. This MH algorithm was used on all kinds of examples on the two distinct models.
When the algorithm is finished, it creates trace from which we can calculate the estimates of the
parameters. The results of these estimations were mostly accurate, except for one case which
could imply that designated model is unidentifiable (Section 8.2.2).

Furthermore masks were introduced which eliminate irrelevant pixels from the observed data.
Something we researched is the comparison of estimated posterior densities, using the MH al-
gorithm, among the same observed data given different mask sizes. Intuitively the results were
right. The more pixels were eliminated by the mask, the more uncertain and inaccurate the
Bayes estimate got. This meant that the error with the real value compared to the posterior
mean increased, as well as the posterior standard deviation got bigger as the size of the mask
increased. This was visualised in a heatmap.

11.1 Further research

There are a lot of different routes one can take from here. In this paper we have only applied
the MH algorithm to self-simulated data, but it is obvious that we want to apply this to the
real observed data of the CMB. The models we have defined can be altered a little bit. For
example the observation noise, which is now assumed independent noise, can be dependent. The
physical interpretation behind this is that some spots in the night sky come along with more
noise compared to other spots. A possibility is to assign some covariance matrix constructed by
a function to the observation noise (similar to the random field covariance function). Another
small modification can be to make the mask not only eliminate pixels, but also map the values
of one pixel to the other. The physical motive is that radiation can be bend or morphed by
heavy objects in outer space. This implies that some fraction of radiation from one pixel can be
mapped to a set of other pixels.

Another assumption about the second model will be about its eigenfunction. In this paper
we assumed that we had a flat surface for our random field. In reality the observations lie on
a sphere. This means that spherical harmonics will be more suitable than regular exponentials.
This is also suggested in Taylor et al. (2008).

Finally some other MCMC methods can be applied for the constructed models. Something
like a Gibbs sampler takes some more work to program, but will have faster convergence to the
real posterior density. Also the Hamiltonian Monte Carlo (HMC), discussed in Taylor et al.
(2008), can be more opportune than the Metropolis-Hastings algorithm for these examples.

54

12 Layman’s summary

The Cosmic Microwave Background raditiation (CMB) is observed by satellites. These observe
radiation and convert it into heat, which is displayed in the heatmap of Figure 1. Because of its
structure we wanted to create models, which had similarities with this CMB data. We started
to design models for this observed data using some statistical models, which were built on a
concept called random fields. Random fields are a set of random variables, which influence each
other (covariance) in a structural fashion. This structure also depended on some covariance
parameters. The random fields formed the underlying structure of the observed data models.
We looked at the most trivial, Gaussian models and some more complex, non-Gaussian models.
When the models increased in complexity the number of different parameters also increased.

For a given set of observed data like the CMB data we want to estimate these parameters
of these different examples among the two models to obtain the best possible model. Two
parameter estimation methods were introduced, were we only used one to estimate parameters
called the Bayesian parameter estimation (BPE). Analytically these parameter estimates could
not be acquired, so we had to use some algorithm to calculate the estimates numerically. This
algorithm is called the Metropolis-Hastings algorithm. Using this algorithm we were able to
estimate the parameters of all our self-simulated observed data, which we were then able to
compare with the real values of the parameters.

Lastly masks were introduced. These are objects that eliminate a selected family of pixels,
because we assume they are irrelevant. The increase of mask size on the data decreased our
precision on parameter estimation of the underlying model for the observed data.

55

References

Bijma, F., Jonker, M., and van der Vaart, A. (2017). An Introduction to Mathematical Statistics.
Amsterdam University Press, Amsterdam.

Bishop, C. M. (2006). Pattern Recognition and Machine Learning. Springer, New York.

ESA and the Planck Collaboration (2013). Planck CMB. https://www.esa.int/ESA_

Multimedia/Images/2013/03/Planck_CMB#.YNnirGtbR80.link.

Evans, R. (2015). The Cosmic Microwave Background, How It Changed Our Understanding of
the Universe. Springer, New York.

Taylor, J., Ashdown, M., and Hobson, M. (2008). Fast optimal CMB power spectrum estimation
with Hamiltonian sampling. Mon. Not. R. Astron. Soc., 389:1284–1292.

Vio, R., Andreani, P., and Wamsteker, W. (2001). Numerical Simulation of Non-Gaussian
Random Fields with Prescribed Correlation Structure. Publications of the Astronomical Society
of the Pacific, 113:1009–1020.

GitHub repository

The code of this project is written in Julia and can be found in the following repository:
https://github.com/leviklomp/BEP_project

56

