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1
Introduction

The Component Services group within KLM Engineering and Maintenance (KLM E&M) provides availability
of aircraft spare parts. The end goal of this thesis is improving the operational performance of the component
services group, while minimizing the financial cost. To do so, this thesis will first provide insight in the current
supply chain structure of KLM E&M. Tailored to the supply chain structure, a new inventory optimization
model will be developed. The purpose of the inventory optimization model is two folded. The model will
increase insights in the current performance of the supply chain at KLM E&M, while simultaneously offering
the possibility of determining the minimum required inventory size to fulfill customer demand.

The project is conducted in collaboration with Delft University of Technology (TU Delft). The thesis is con-
currently used to obtain the degree of Master of Science at the faculty of Aerospace Engineering from the
Delft University of Technology.

The remainder of this chapter will first elaborate on the specific case study at KLM E&M. Subsequently the
research questions belonging to the project will be discussed. Finally the structure of the research project,
and thesis will be discussed in chapter 1.3.

1.1. Problem description

KLM Engineering and Maintenance (KLM E&M) provides component availability for numerous airline cus-
tomers. To ensure on-time performance, inventory is an indelible part of operations. Inventory models allow
supply chain engineers to determine the required size of the component pool. The inventory system of KLM
E&M consists of about 1500 different components distributed over 5 warehouses around the world. The cur-
rent inventory optimization model used by KLM E&M is a multi-item single-echelon model. This model does
not necessarily match with the actual operational conditions. A single-echelon model approaches the system
as if all inventory is located at a single warehouse. However, the component pool of KLM E&M has multiple
storage locations, each with a unique behavior and constraints.

The current supply chain of KLM E&M consists of one main warehouse in Amsterdam (AMS), and four re-
mote warehouses located around the world. Figure 1.1 provides a graphical overview of the supply chain
structure at KLM E&M. From Amsterdam items can be shipped to either, one of the remote locations, or a
customer. Items are rarely shipped back from a remote location to Amsterdam, neither shipped between re-
mote locations. Due to the geographical locations of the remote warehouses, do the shipping times between
Amsterdam and remote location differ. Table 1.1 enlists the abbreviation and locations of the five warehouses
of KLM, and lists the shipping time between Amsterdam and the remote warehouse.

The aircraft spare parts of this case study are classified in three layers. The first layer of an item is the part
number. Each aircraft component will be assigned a part number by the manufacturer. The part number
of an aircraft component is universal between all airlines, aircraft manufacturers, and aircraft maintenance
providers. Some part numbers are fully interchangeable between each other. To keep track of interchangeable
parts, KLM E&M assigns all part numbers to a code number. Fully interchangeable part numbers will get the

1



2 1. Introduction

Table 1.1: Warehouses KLM E&M

Code City Country Shipping time
AMS Amsterdam The Netherlands N/A
RPA Paris France 3 days
RLO London United Kingdom 3 days
RKL Kuala Lumpur Malaysia 5 days
RMI Miami United States 5 days

AMS

RPA RLO RKL RMI

Figure 1.1: Supply chain structure at KLM E&M

same code number. During the lifetime of a component, it can get modified to a different code and part
number. All code numbers which can be modified to each other, are grouped together by family numbers.
Inventory optimization at KLM E&M will solely happen on family number level. However, it is good to keep
in mind the under laying structure of the component pool. On the first of January 2018 the entire component
pool consists of 1678 different family numbers.

The family number of the case study can be categorized in several groups. Each category of items is charac-
terized by a different criticality, and therefore required delivery time. The four categories are, AOG (Aircraft on
ground), critical, routine, and stock replenishment. Components with criticality AOG, and critical are bound
to be delivered within the aforementioned shipping times between the warehouses. For these components it
is necessary to have stock at the local warehouses. The components of the other two groups are allowed to
have a longer lead time. It is therefore possible to ship the item on time from the main warehouse to each
customer around the world.

By developing a more advanced optimization model, which takes into account the aforementioned aspect,
and accounts for stochastic demand and supply behavior, it is expected that the size of the component pool
could be reduced while maintaining or improving the component delivery time.

Many different inventory models have been developed in current literature. Tailoring a solution to the situa-
tion at KLM E&M is however challenging. Aircraft spare part items can generally be characterized as expen-
sive low demand items. Such items do require different assumptions to be made during the development of
the inventory model. The main goal of the project would therefore be to develop a multi location inventory
model suitable for expensive and low demand items, as experienced by KLM E&M.

1.2. Research question

The research project will be conducted as a collaboration between KLM E&M and Delft University of Technol-
ogy (TU Delft). Due to this collaboration the goal of the project will be two-folded. The goal related to KLM
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E&M will be to develop a more advanced optimization model. The goal related to the TU Delft will be to fill
some of the research gaps identified in the literature review and contributed to the knowledge of inventory
optimization.

The main research question which needs to be answered for both stakeholders is the following: What is the
effect of a multi-echelon model on the inventory investment for a supply chain of aircraft rotables? Before the
research question can be answered the following three sub-questions have to be answered first.

1. What is the optimal allocation of inventory over the multi-echelon supply chain?

2. What is the gain on the service metric per inventory item if the stock level would be incremented?

3. What is the difference between the theoretically calculated, and the actual supply chain performance?

Next to the research question a couple of objectives are defined. The main objective for KLM E&M will be
to develop a usable, understandable, and more advanced optimization model. Before achieving this objec-
tive, multiple sub-objectives have to be achieved. The sub-objectives related to KLM E&M are the follow-
ing.

1. Determine the physical supply chain structure of KLM E&M

2. Determine which demand probability fits with the spare part demand experienced by KLM E&M

3. Select a optimization method suiting the inventory model and requirements of KLM E&M

The objectives related to the TU Delft are focused on filling the research gaps. Chapter 2 will provide an
overview of the state of the art literature, and discuss the voids within the literature. The following sub-
objectives related to the TU Delft have been determined.

1. Improve model predictions by creating a better fit between the model and reality

2. Increase the accuracy of the inventory optimization problem by improving the optimization method

3. Implement a more complex demand probability distribution in a multi-echelon inventory system

The research question will be answered using a mathematical inventory optimization model. With the in-
ventory optimization model the optimal stock will be determined depending on the variables that will be
described in Chapter 6.

1.3. Project and thesis structure

This thesis is structured somewhat chronological to the conducted project. The first step of the project is to
determine the current state of the art of inventory optimization literature. The next chapter will first provide
an overview of the current literature. The literature is, similar to the final structure of the model, divided
in three parts. The first part will discuss model structure, the second part the demand probability, and the
third part the solution techniques. With the state of the art in literature in mind, the novelty of this project is
highlighted.

Chapter 3 describes the model developed over the course of this project. First the demand of components
is analyzed. Secondly the structure and mathematics of the three inventory models used during the project
is described. The chapter will end with the definition of different optimization parameters applicable to
different objectives of the project.

The theoretical models of chapter 3 is implemented for the case study. The implementation is shown in
chapter 4. The implementation is follow by the chapter containing the verification. The verification chapter
makes a link between the mathematical model and the implementation, by showing the manual calculations
for two components.

Chapter 6 will show the results obtained by the three inventory optimization models. Before the results are
obtained, a small description of the scope is provided. To establish confidence in the obtained results, a
sensitivity analysis is performed. The motivation and results of the sensitivity analysis are covered in chap-
ter 7.
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The report ends with a conclusion, providing a summary of the conducted research and an answer to the
research question. The research on the topic is off course not finished yet. New opportunities will always
arise to improve the fit between the model and reality. The second part of chapter 8 will describe some of the
recommendations for further research.



2
Theoretical context

In this chapter the reader will be presented with an overview of the literature relevant to the problem state-
ment of chapter 1.1. In order to provide a clear overview of the current literature, the inventory optimization
problem is divided into three parts. A graphical representation of the structure is provide in Figure 2.1.

The backbone of an inventory model is the way the demand for the inventory is modelled. The first part will
discuss the probability distribution used to model the demand. The second part will go into detail on the
actual model structure. In this part the effort of implementing the physical structure and constraints of the
inventory model is covered. The third section contains an overview of the most important optimization pa-
rameters used in current literature. Finally, several solution techniques used to solve inventory optimization
problems are discussed.

The chapter will end with a description of the novelty of the research conducted for this thesis.

Figure 2.1: Inventory optimization structure

Inventory optimization

Demand distributionModel structureOptimization method

2.1. Model structures

Current inventory models can be divided into two main categories. Namely the single-echelon and multi-
echelon models. In a single-echelon model the system is represented as if all the inventory is located at the
same location. The demand and resupply is all modeled to take place at one single location. The other main
category is the multi-echelon model. Multi-echelon models optimize an inventory over several locations.
One of the first implementations of the single-echelon model was presented by Feeney and Sherbrooke in
1966 [8].

A single-echelon model requires much less computational power compared to multi-echelon models. For
this reason several authors have tried to approximate the results of a multi-echelon model by adapting the
theory of a single-echelon model. An example of such an approach is presented by Muckstadt and Thomas
in 1980 [13]. This paper shows that the approach works relatively well for high demand items. However, the
larger the number of low demand items, the more important a multi-echelon approach will be. The KLM case
described before involves low demand items, so a multi-echelon model will be desirable. The remainder of
the literature discussed in this review will therefore mostly involve multi-echelon systems.

5



6 2. Theoretical context

Multi-echelon models can be categorized on ordering policy. The main two categories are the batch ordering
policy, and the lot for lot policy. The batch ordering category consist of the (Q,R) policy and the (S,s) policy
[2]. The (Q,R) policy is described as the fixed replenishment point and fixed replenishment quantity inventory
policy. When the on-hand inventory falls below the replenishment point R, an order will be placed of quantity
Q. The (S,s) policy can be described as the minimum/maximum inventory policy [11]. When the on-hand
inventory falls below the minimum s, the inventory will be replenished so that the on-hand inventory level
is restored to level S. The (S,s) policy will have varying order sizes where the (Q,R) policy has fixed order
sizes.

The lot for lot policy can be considered as a special case of the (Q,R) policy. The lot for lot policy, or (S,S-1)
policy, places an order as soon as the inventory drops by 1. This can be seen as the (Q,R) policy with an order
quantity Q of one. In general will the batch ordering policy be more economical for high demand items, and
the lot for lot ordering policy more economical for low demand items. The low demand KLM case makes use
of a lot for lot ordering policy. Main focus throughout this literature review will be on this policy, however
some cases with an batch order policy are discussed as well.

2.1.1. The single-echelon structure

A single-echelon model approaches the system like all inventory is located at one location. All customers
are served from this location. In case of repairable items, are all unserviceable items sent to the single loca-
tion. The unserviceable items will be sent for repair and returned to the single location as well. A graphical
overview of such an inventory system can be find in Figure 2.2 where the single location is identified by the
green circle.

Figure 2.2: Single-echelon structure

Development of the single-echelon model started around 1966. As mentioned before, one of the first papers
on single-echelon theory is written by Feeney and Sherbrooke in 1966 [8]. The authors prove that the single-
echelon model can be used with any Poisson and compound Poisson demand process. The paper is written
considering the aircraft spare parts industry. This industry is characterized by low-demand high value items.
It is stated that the (S, S-1) reorder policy will suit these characteristics. Assuming that resupply is instan-
taneous will always result in an optimal inventory of zero. The authors of this paper relax this assumption,
so with positive resupply times, the optimal inventory will usually be positive. The paper contains two mea-
sures of supply performance to which the model can be optimized. Namely, the number of back orders and
the number of lost sales. The paper does not contain any implementation of both models, and does not
provide any conclusions on which of those two models is preferable under which circumstances.

In 1968, Sherbrooke [19] continuous on the the work of Feeney and Sherbrooke and provides a clear descrip-
tion of the single-echelon back order model. To determine the number of back orders Sherbrooke calculates
the probability that the number of items requested is larger than the number of items currently on stock. The
amount of items currently on hand (OH) equals the total stock (s) minus the units due in (D I ). Following this
definition the stock can be defined as Equation 2.1.

s =OH +D I (2.1)
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The authors neglect shipping times of items from the customer to the warehouse. With this assumption the
number of items due in equals the number of items in the repair cycle. The authors introduce the term
pipeline (µ) to describe the amount of items in the repair cycle. With m as the average annual demand and T
the average repair time in years, the pipeline is defined as the dimensionless value in Equation 2.2.

µ= mT (2.2)

To determine the number of back orders the authors look at the expected value of the probability distribution
for the back orders. The expected value of a probability distribution is can be calculated with commonly
known Equation 2.3.

E [x] =
∞∑

x=1
xP (X = x) (2.3)

Sherbrooke now defines the expected number of back orders according to Equation 2.4.

EBO(s) =
∞∑

x=s+1
(x − s)P (µ= x) (2.4)

The inventory system is finally optimized using a marginal analysis. The marginal analysis is based on the
marginal decrease in expected back orders divided by the item cost (Equation 2.5). This value is calculated
for each stock level and item. Inventory is finally determined by repeatedly incrementing the stock of the
item with the highest value of y by one.

y = EBO(s −1)−EBO(s)

cost
(2.5)

2.1.2. The multi-echelon structure

Multi-echelon models optimize inventory over multiple locations. A multi-echelon system is formed like a
tree structure where each location can have one predecessor and multiple successor. The top level will always
contain one single location. In case of repairable items all unserviceable items are sent to the top level where
the items will be repaired. All serviceable items will be distributed from the top warehouse. A multi-echelon
system can in theory contain an infinite number of levels. Figure 2.3 provides a graphical representation of a
multi-echelon system with two levels. The central warehouse is represented with the green circle. The local
warehouses are drawn as red circles.

The first occurrence of a multi-echelon model can be found in a paper written by Sherbrooke in 1968 [19]. In
this paper the author developed the Multi-Echelon Technique for Recoverable Item Control (METRIC). The
purpose of this model is again to optimize aircraft spare part inventory. The METRIC model is the basis for a
large number of multi-echelon models developed later on. The model is build on the single echelon theory
described in the previous section. The METRIC model optimizes the inventory level for every item at several
bases. The objective of the model is to minimize the sum of the back orders across all bases. The authors
assume a Poisson demand over all items. Next to this assumption the model is treated as the inventory is in a
steady state. The number of aircraft and flying hours will remain the same over some period of time. The (S,
S-1) inventory policy is applied for every item in every echelon. The model does not allow for lateral supply
from another base. A base is solely resupplied from the depot in the echelon above.

Next to the written assumptions, four unwritten assumptions can be identified. The first assumption is re-
garding independent demand. The author would not be able to apply Palms theorem if failures of spare parts
would be dependable of each other. The METRIC model is also unable to cope with irreparable items. It is
assumed that every item can be repaired to its initial state. The third assumption relates to the back order
queue. The METRIC model operates on a first come first serve basis. Finally, the METRIC model assumes
items to be equally essential for operations.
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Figure 2.3: Multi-echelon structure

In the METRIC model can an unserviceable item be repaired at each echelon level. Sherbrooke defines the
probability that an item is repaired at a certain base with the symbol r . In the METRIC model positive sub-
scripts for j are used to refer to warehouses, with 0 indicating the parent warehouse. With these definitions
the demand at a warehouse is defined as Equation 2.6.

m0 =
J∑

j=1
(1− r j ) (2.6)

The pipeline for the parent warehouse EBO(s0|m0T0), is defined like the single echelon theory described
in Equation 2.4. The average order and ship time form the the parent warehouse to the local warehouse is
defined as O j . With this, the pipeline for the local warehouse is determined by Equation 2.7.

µ j = m j (r j T j + (1− r j )(O j + EBO(s0|m0T0)

m0
)) (2.7)

The calculated pipeline is subsequently substituted in Equation 2.4 to calculate the expected back orders.
Finally the marginal analysis can be applied similar to the single echelon model with Equation 2.5. For a
multi-echelon system the number of coefficients y will grow exponentially with the number of warehouses
and items, which results in a much bigger optimization problem.

The METRIC model is used as basis for numerous other multi-echelon models. Each model tries to improve
the performance of the model by relaxing some of the constraints. An example of such a model is presented
by Muckstadt1973 [12], where the MOD-METRIC model is developed. The author relaxes the constraint of
equal essentially, allowing for the modelling of assemblies and its components. The objective of the METRIC
model is to minimize expected base back orders for all items. The objective of the MOD-METRIC model is to
minimize the expected base back orders for the end item.

According to Sherbrooke [20] the MOD-METRIC model understates the delay in repair of a higher indenture
item caused by back orders on the item’s lower indenture components. The model also understates the delay
in resupply of a base from a depot that has back orders.

It is also tried to derive exact solutions for the METRIC problem. To accomplish this authors had to make
more restrictive assumptions. An example of such an approach can be found in Simon [22]. In this paper,
the resupply times are assumed to be constant instead off arbitrary and the demand is assumed to be Pois-
son instead of compound Poisson. An exact solution will result in a more optimal solution, but will require
substantial computation time. This, combined with the more restrictive assumptions, motivated researchers
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to come up with a different way of improving the METRIC model. An example can be found a paper writ-
ten by Graves in 1985 [9], where the VARI-METRIC model is developed. Graves improves the performance of
the METRIC model by relaxing the assumption that the shape of the demand distribution will remain con-
stant. Modelling the demand with a negative binomial distribution does accomplish this relaxation. Graves
does assume a deterministic shipment time between the different echelons. Sherbrooke [20] shows that the
VARI-METRIC model allows for arbitrary shipment times as well. It is shown that the VARI-METRIC results in
a much better solution compared to the METRIC model without sacrificing largely on computational time.
Graves shows that in 11,5% of the cases, the METRIC stock levels differ by at least one unit from the optimal
results. Contrarily, the VARI-METRIC model only deviates in 0,9% of the cases from the exact result.

There are many examples where the multi-echelon model has been adjusted to serve specific characteristics
of real life supply chains. In the paper of Shtub and Simon [21], the multi-echelon model is utilized to de-
termine the reorder point of a supply chain in order to maximize the fill rate of the local warehouses. The
model is applied to the consumable high value spare parts domain. An interesting extension of the model is
the implementation of non identical local warehouses. The warehouses are given weights to determine the
priorities in supply form the depot.

A different direction within multi-echelon modelling is the implementation of lateral transshipment. Pos-
sible savings within inventory optimization could be achieved by relaxing the assumption that a warehouse
can only receive resupply from a warehouse in a echelon above. Resupply between warehouses in the same
echelon is also called lateral transshipment. Paterson et al. provided an overview of papers utilizing this
concept[17]. Current literature taking into account lateral transshipment, is limited on a couple of areas [17].
There is little known about determining when it is best to perform the redistribution. Lateral transshipment
theory is also solely applied to systems with a small number of locations. Increasing the number of locations,
exponentially increases the dimensions of the problem. Resulting in very long computational times. For the
same reason, most of the papers discussed by Paterson et al. [17] involve single item systems.

2.2. Demand probability distributions
The backbone of each inventory optimization model is the demand probability. This chapter will provide an
overview of the frequently used probability distributions, and most interesting probability distributions.

2.2.1. Poisson distribution

The first and still most widely used demand probability is the Poisson distribution. Current literature cov-
ers two types of the Poisson distribution to model demand, namely the basic Poisson distribution and the
compound Poisson distribution. Both probabilities will be discussed in more detail below.

Basic Poisson distribution

The Poisson distribution is a discrete probability distribution that gives the probability of a given number of
events occurring in a fixed interval of time. The probability of the distribution is based on the average number
of events occurring in the time interval. Equation 2.8 provides the probability mass function of the Poisson
distribution where λ denotes the average number of occurrences of events.

P (X = k) = e−λ
λk

k !
(2.8)

An early implementations of the Poisson distribution can be found in [19]. Sherbrooke shows that the if the
time between demands has an exponential distribution, the probability distribution for the demand follows
a Poisson. The author finally utilizes the Poisson distribution to determine the probability of a stock-out for
a given amount of stock. The exact implementation is described before in section 2.1.

The Poisson distribution itself is characterized as the "memoryless" distribution. The time of the previous
demand has no influence on the time of the next demand. Many authors, e.g. Axsäter [1], Hopp et al. [10],
Nozick and Turnquist [16], Axsäter [3], Caglar et al. [6], do make the assumption of independent demand and
therefore use the Poisson distribution.
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A useful characteristic of the Poisson distribution lays in the queuing theorem of Palm. This theorem states
that if demand at each local warehouse is Poisson, the demand at the central warehouse can also follows a
Poisson distribution.

The basic Poisson distribution gives the probability of a certain number of events occurring in a fixed time in-
terval. This makes the basic Poisson distribution ideal for inventory systems with fixed ordering size, like the
(S,S-1) replenishment policy. The basic Poisson distribution only provides the probability of the occurrences
of an event. It is not able to differentiate in different types of events.

Compound Poisson distribution

The compound Poisson distribution is a extension of the basic Poisson distribution. The compound Poisson
distribution provides the probability distribution of the sum of a number of independent identically dis-
tributed events, where the events itself are Poisson-distributed. This probability distribution allows for the
implementation of non identical events. In contrary to the basic Poisson distribution, which is only capable
of providing information on the probability of the occurrences of events, provides the compound Poisson
process information on the event itself as well. The ability of representing different events make a compound
Poisson distribution useful for inventory systems where demand occurs in clusters of varying size and in-
ventory systems with varying order sizes. The (S,s) ordering policy described in Section 2.1 is an example of
ordering policy with varying order sizes.

Feeney and Sherbrooke [8] has shown that Palms theory does apply for each Compound Poisson distribu-
tion, which allow the compound Poisson distribution to be used for multi-echelon systems as well. Exam-
ples of papers utilizing the compound Poisson distribution are Sherbrooke [19], Simon [22], and Muckstadt
[12].

2.2.2. Negative binomial distribution

The negative binomial distribution is discrete probability distribution. The distribution describes the num-
ber of successes in a sequence of independent and identically distributed Bernoulli trials before a number of
failures occurs. A Bernoulli trial is a random experiment with exactly two possible outcomes, namely success
and failure. The probability of success and failure is the same every time the experiment is conducted. Equa-
tion 2.9 provides the probability mass function of the negative binomial distribution. The negative binomial
distribution depends on two parameters. The first parameter is the number of failures until the experiment is
stopped which is denoted as r . The second parameter is the success probability for each experiment, denoted
as p.

P (X = k) =
(

k + r −1

k

)
pk (1−p)r (2.9)

When using the Poisson distribution to model demand, the mean and variance of the distribution are as-
sumed to be the same. This assumption can be relaxed by modelling the demand with the negative binomial
distribution. Similar to the Poisson process, Sherbrooke [18] shows that if the time between demands is char-
acterized by the logarithmic Poisson process, the probability distribution for the demand follows a negative
binomial distribution. The complexity of determining the parameters of negative binomial distribution lim-
its the usage of this distribution. Graves [9] first tried to utilize the distribution to improve the METRIC model
by Sherbrooke, as discussed in chapter 2.1.

2.2.3. Weibull distribution

The demand process for some items is not random, but results from wear out [18]. Such behaviour can
be modelled using a the Weibull distribution. Most inventory models discussed in this literature review do
require a discrete demand probability as demand is a discrete phenomenon. The Gamma and Weibull dis-
tribution are both in origin a continuous probability distribution. In order to use such a distribution the
probability distribution should be made discrete. For the Weibull distribution this is done by Nakagawa and
Osaki [14]. The discrete form of the Weibull distribution according to Nakagawa and Osaki can be found in
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Equation 2.10. The shape parameter of the distribution is denoted with β. The q is the success rate of each
event, which is per definition equal to 1 minus the failure rate (1−p).

P (X = k) = qkβ −q (k+1)β (2.10)

Unfortunately no implementation of the Weibull distributions for a supply chain model can be found in cur-
rent literature.

2.2.4. Choosing a demand distribution

Effort has been made to construct a method to determine the most suitable demand distribution for a certain
demand type. Syntetos et al. [24] compared the Poisson distribution, negative binomial distribution, com-
pound Poisson distribution, normal distribution, and the gamma distribution. The author analyzes three
different component pools varying between 3000 to 5000 stock keeping units.

Syntetos et al. shows that the negative binomial distribution and the compound Poisson distribution provide
the most frequent fit. The gamma and normal distribution do not perform well. Syntetos et al. claims that
the misfit may be caused by the continuous nature of this distribution. During the research the fit of the
distributions is tested on discrete observations. The Poisson distribution provides an reasonable fit. However,
it is interesting to mention that the fit increases for slow moving items.

2.3. Optimization parameter

In order to be able to optimize a system, it is necessary to determine which parameter of the system should be
minimized or maximized. Brooks et al. [4] lists four main optimization parameters for aircraft spare parts op-
timization, which are commonly used. Although the paper is written in 1969, current literature on inventory
optimization is almost always utilizing one of those four service metrics. The four optimization parameters
described by Brooks et al. are, fill rate, back orders, operational rate, and average aircraft on ground.

Fill rate is the portion of demand met with on hand stock over a certain time period. This service metric
does not allow for any time based service agreements. The back order service metric is similar to the fill
rate. However, this metric will also take into account the duration of the shortage. The operational rate is the
probability that, at any given point in time, there will be no due-out from base supply. The average aircraft
on ground service matrix is the number of aircraft grounded for lack of spare parts at any given point in
time. This last service metric is rather specific. It is designed to fit the application of the paper by Brooks
et al..

More recently a fifth service metric has been employed for a supply chain optimization. Caggiano et al. [5]
emphasizes the inability of implementing time based service level constraints. According to Caggiano et al.
are many supply chain contracts based on a service level which depends on time. To be able to include these
time based contract statements, the time bases fill rate service metric is developed.

The usage of service metrics in current literature is not evenly distributed across the five metrics mentioned
above. The literature discussed in this paper mainly utilizes the fill rate, back order, and time based fill rate
service metric.

2.4. Solution technique

The current literature covers a wide range of solution techniques for inventory optimization models. This
chapter discusses a selection of the most used, and most relative solution techniques. The solution tech-
niques can be divided into three groups. Namely, exact solutions, linear programming, and simulation based
optimization. The three different groups are highlighted in the remaining of this chapter.
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2.4.1. Exact solution

Exact solutions inherently provide an optimal solution to a problem. Due to this characteristic, exact solu-
tions are a popular way of solving mathematical problems. Inventory optimization problems usually involve a
large capital investment, which means that even a small percentage reduction in inventories may correspond
to savings on the order of hundreds of thousands of euros [25]. Therefore, being able to find the exact solution
instead of an approximation of an inventory optimization problem is desirable. Deriving an exact solutions
may be challenging and complicated for complex systems, like inventory optimization systems.

Solving an average real life inventory process exactly is nearly impossible. In order to be able to derive an
exact solution for such problem, extensive assumptions do have to be made. In papar written by Axsäter
[1], a two echelon stock policy for consumable items is determined utilizing an exact solution. The authors
develop a cost function representing the system. This is different compared to the papers by Sherbrooke [19]
and Simon [22], where the objective is to determine the steady state stock distribution. The outcome of such
a system can thereafter be used to calculate the cost.

The cost function derived by Axsäter takes into account the delays experienced by the customer and the unit’s
storage time at each of the facilities. It is assumed that the holding cost and stock out cost incurred by the
customers delay are linear with the time. The ordering costs are disregarded. Both the depot and the indi-
vidual warehouses follow the (S,S-1) replenishment policy. If an order from a warehouse cannot be full filled,
the items are back ordered on a first come first serve basis. With these assumptions the author states that
the computational efforts are similar to the METRIC model. The author does not provide an implementation
of the developed theory. The author recommends to compare the method with the METRIC model and the
VARI-METRIC model to evaluated the computational performance and accuracy of the model. However, no
implementation of the theory can be found in current literature.

A more recent example of an exact solution procedure applied to inventory optimization can be found in
a paper by Topan et al. [25]. The proposed approach utilizes the branch-and-price algorithm. The (S,S-
1) policy for the depot used by Axsäter is relaxed to the more general (Q,R) policy. On the other hand, the
shipping time between depot and warehouses is more restricted. Topan et al. do assume the shipping times
to be deterministic.

The developed model is applied to a range of problems. The authors consider problems with 5-30 items and
2-4 warehouses. It is shown that the computational time increases drastically when the number of items
increases. For the maximum case, with 20 items and 4 warehouses, the computational time on an average
desktop is more than 5 hours. The results of the paper confirm that an exact solution can be used as long as
the number of items and especially the number of warehouses are limited. Unfortunately the results have not
been compared to an approximate solutions of for example the METRIC model.

The theory of the two papers above is extended by Stenius et al. in 2016 [23]. The previous mentioned papers
both model the demand with the Poisson distribution. This assumption is relaxed by Stenius et al., where
the demand is represented by a compound Poisson process. The theory developed in the paper is applied
to a single item, two echelon supply chain concerning the distribution of sheet metal products. Is is shown
that deriving the exact solution is computationally challenging. Therefore, the authors do not recommend to
apply the theory to an larger inventory system. The authors do believe the theory presented in the paper will
form a good foundation for future research on accurate heuristics.

2.4.2. Linear programming

Most of the used solution techniques for inventory optimization problems belong in the linear programming
category. Within linear programming there are two frequently applied methods, namely the Greedy algorithm
and the Lagrangian relaxation.

Greedy algorithm

A greedy algorithm solves an optimization problem by making the local optimal choice at every step. The so-
lution obtained by a greedy algorithm will rarely be the global optimal solution. However, a greedy algorithm
generally yields a local optimal solution close to the global optimal solution in a reasonable time. This char-
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acteristic of the greedy algorithm makes it a regular choice or researchers within the inventory optimization
domain.

An early implementation of a greedy algorithm can be found in the single echelon model of Feeney and Sher-
brooke [8] discussed before. The proposed Greedy algorithm calculates the back order reduction at each
step. By dividing the back order reduction with the investment cost, the marginal improvement can be cal-
culated. The marginal analysis approximates the maximum back order reduction with the lowest investment
costs.

The METRIC model presented by Sherbrooke [19] is optimized in a similar way as the single echelon model
mentioned before. Sherbrooke proposes a marginal back order analysis of the system as well. Unfortunately,
this optimization function is not necessarily convex. This may result in sub optimal distributions of the in-
ventory. However, due to the relative simplicity and good computational performance the Greedy algorithm
is still applied. Many of the improved models based on METRIC model use a similar Greedy algorithm. Ex-
amples of these papers are, Muckstadt [12], Graves [9], and Sherbrooke [20].

A different implementation of the Greedy algorithm is presented by Caggiano et al.[5]. The FastIncrement
procedure developed in this paper is an improved version of the approach presented in based on a Greedy
algorithm. The procedure employs a marginal analysis technique that greedily increments the stock levels at
all bases until all service-level constraints are satisfied.

Lagrangian relaxation

A different linear approach is the Lagrangian relaxation. Hopp et al. [10] introduced the Lagrangian relaxation
method to improve the performance of the Greedy algorithm. Instead of minimizing the back orders, Hopp
et al. minimized the Lagrangian multipliers. The advantage of this approach lays in the insensitivity for small
changes of the Lagrangian multipliers. For small changes in the system it is not required to resolve the entire
model. According to the author the results of the proposed Lagrangian method are reasonably close to the
back order optimization. However no comparison has been provided.

The method introduced by Hopp et al. divides the problem in two parts. First the optimal stock of the central
warehouse constrained to the service level is calculated. After the central warehouse stock is determined the
optimal local warehouse stock is calculated. The local warehouse stock is constrained to the average total
delay.

Caglar et al. [6] continue on the research of Hopp et al.. The method proposed by Caglar et al. uses a com-
bination between a Greedy algorithm and the Lagrangian relaxation as well. The objective of the model is
to minimize the system wide inventory holding cost, constrained to an average response time to the cus-
tomers. Also, Caglar et al. considers repairable items, where Hopp et al. only considers consumable items.
The computational experiments presented reveal that the developed heuristic works much better on large-
sized problems compared to the heuristic developed by Hopp et al..

2.4.3. Simulation based optimization

The most recent development in supply chain optimization is a form of simulation based optimization. A
simulation based optimization allows for wider, and more complex implementation of the supply chain.
Due to significant interactions between planning and scheduling for the different echelons, it is necessary
to consider the simultaneous optimization and scheduling decisions in order to determine the global opti-
mal solution [15]. A simulation based optimization can capture the behaviour of all the entities involved,
their interactions, and the uncertainties associated with these systems.

An example of a simulation based optimization is presented by Nikolopoulou and Ierapetritou [15] where the
authors implement a hybrid approach. The author combines the optimization, and the simulation modelling
approach by applying a Mixed Integer Linear Programming formulation in the context of an agent based sim-
ulation. The model presented minimizes the inventory, back order, transportation, and production costs. A
limitation of the proposed system lays in the inability to accommodate for any stochastic characteristics. For
example, the model does not include a stochastic demand, or lead-time. With this limitation the authors
are able to iterate to an optimal solution in a reasonable time. The model is applied to a small 3 echelon, 2



14 2. Theoretical context

item supply chain. The supply chain network contains two suppliers that provide raw materials to 3 produc-
tion sites, which server 3 markets. The computation time will increase drastically when the system would be
implemented for a larger scale supply chain.

A different simulation based optimization framework is presented by Chu et al. [7]. The objective of this paper
is to minimize the inventory cost while maintaining a service level quantified by the fill rates. The inventory
system is modeled by an agent-based system, which returns the performance functions. A limitation of an
agent-based simulation method is that the output does not represent the uncertainty of the input parameters.
To overcome this limitation, Chu et al. developed a computational algorithm to estimate the expectations of
these uncertainties. The developed method is applied to two single item case studies. The first case study
is two echelon system with four facilities while the second was a three echelon system with seven facilities.
The local optimal solutions were found in 270 and 751 seconds respectively. Chu et al. did not compare the
obtained results with other methods. However, it can be seen that the developed method will quickly become
computational demanding for larger multi-item systems.

2.5. Novelty of the project
The academic novelty of the project will lay in combining the several elements described in this chapter. First
the demand probability with the best fit will be determined. In the second step the physical supply chain
structure is captured in a mathematical model. The third, and most novice step, will be to implement a new
service metric on the developed supply chain model. The new service metric will optimize the system with
regards to the achieved service level. Optimizing the model to service level will result in a better fit with the
current operations of KLM E&M, and will contribute to the state of the art literature.

The new service metric, combined with the categorization of components as discussed in chapter 1.1 is be-
lieved to be novice. Extensive research is conducted on inventory optimization models, as described in this
chapter. The characteristics of aircraft spare part supply chains do however require a slightly different ap-
proach. This research will contribute to the knowledge of such supply chains, by entirely focusing on the
operations of KLM E&M.
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Inventory optimization model

The theoretical content of chapter 2 is used to develop a single-echelon, METRIC, and VARI-METRIC model.
This chapter will discuss the complete derivation and mathematical foundation of these models. The struc-
ture of the chapter is according the structure of a typical inventory optimization problem shown in figure 2.1.
First the demand of the supply chain items is discussed. Secondly the theoretical models are provided, and
finally the solution technique is determined.

3.1. Demand probability distribution

Before the inventory pool of KLM E&M can be optimized, a probability distribution modelling the demand
is determined. As discussed in chapter 2, different discreet probability distributions can be utilized. This
section will provide a concise analysis of the demand for components as seen at KLM E&M.

The demand analysis is performed on the demand data from two consecutive years (2 January 2016 - 1 Jan-
uary 2018). During this time span a total of 9707 components are requested. On average this will result in
about 13,2 component requests per day. The component pool of KLM E&M consists of 1678 different family
numbers as mentioned in chapter 1.

The first step of the analysis will provide a general insight in the demand of the different components. The re-
quests are distributed over the different family numbers. Similar to many processes in nature, are the number
of requests divide over the different family numbers according to the Pareto distribution. Figure 3.1 shows
the theoretical Pareto distribution, combined with the data of the actual components. It can be seen that the
distribution of demand over the family numbers generally follows the Pareto distribution. During the fur-
ther analysis of the demand it is important to keep this characteristic in mind. Majority of the items is only
requested rarely.

Figure 3.2 shows in blue the distribution of the number of requests received by KLM E&M each day. The input
of the inventory optimization model should as best as possible represent this distribution for each individual
component. Two different probability distribution from chapter 2.2, namely the Poisson distribution and the
negative binomial distribution, are fitted to the actual data.

Generally looking at the date, it can be seen that the negative binomial distribution results in a better fit com-
pared to the Poisson distribution. Statistical tests do unfortunately not confirm the similarity between the
distribution. To quantify the match between the theoretical distributions, the chi-squared test is performed.
According to this test the negative binomial distribution is more likely to be a match with the data compared
to the Poisson distribution. However, it is not possible to qualify the data as the negative binomial distri-
bution with any statistical confidence. Table 3.1 shows the results of the chi-squared test, tested for both
distribution.

15
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Figure 3.1: Total demand per family number

Table 3.1: Details chi-squared test demand probability

Poisson NBD
h 1 1
p 0 5.4∗10−8
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Figure 3.2: Total demand per day

3.2. single-echelon

The purpose of this section is to describe the mathematical single-echelon model applicable to the supply
chain of KLM E&M. The theoretical single-echelon model of Sherbrooke [19] is used to develop the model
described in this section. The physical structure is identical to the structure described in depicted in Fig-
ure 2.2.

3.2.1. Mathematical single-echelon model

The demand (m) for an aircraft rotable from the inventory pool is equal to the expected number of removals
of this item. A common reliability parameter of a component in the aviation industry is the mean time be-
tween removals (MT BR). In case the MT BR is expressed in hours, can the expected removals be determined
using the amount of flying hours with this component. The total flying hours of the entire fleet is captured
in a parameter called fleet hours (F H). For redundancy purposes, aircraft often contain several times the
same component. The quantity of identical components in an aircraft is given by the quantity per aircraft
parameter (QPA). With these three variables the expected number of removals can be defined according to
Equation 3.1.

m = F H ∗QPA

MT BR
(3.1)

The model neglects handling and shipping times. This means that the pipeline of a component equals the
number of components in the repair loop. The number of components in the repair loop depends on the
number of components put in the repair loop, times the time a component remains in the repair loop. The
repair loop does not experience queuing of items. This assumptions can be seen as if the repair capacity is
infinite. With this assumption, the time a component remains in the repair loop is constant. The constant
representing the repair time is given by the turn around time (T AT ) of the component. The pipeline for each
component can therefore be calculated according to Equation 3.2, where the T AT is given in days.
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pi pel i ne = m ∗ T AT

365
(3.2)

The expected number of items on back order can be derived form the definition in Equation 2.4, where the
probability distribution depends on the pipeline. Equation 3.3 shows the expected back orders for the single-
echelon model.

EBO(s) =
∞∑

x=s+1
(x − s)P (x = pi pel i ne) (3.3)

For computational purposes, can the definition of the expected back order be rewritten to the recursive form
according to Equation 3.5. If the stock is zero, all orders will result in a back order. Therefore will EBO(0) per
definition be equal to the pipeline.

EBO(s) =
∞∑

x=s
(x − (s −1)P (x)−

∞∑
x=s

P (x) (3.4)

= EBO(s −1)−1−
s−1∑
x=0

P (x) (3.5)

The model is finally optimized using a marginal analysis. The marginal analysis parameter called secr et , is
defined as the interval of the optimization parameter (Xopt ) divided by the cost of this improvement. The
definition of the optimization parameter can be found in Equation 3.6. The optimization parameter itself is
discussed later on in chapter 3.5.

secr et = Xopt (s)−Xopt (s +1)

pr i ce
(3.6)

3.3. multi-echelon: METRIC
Similar to the single-echelon model, can the multi-echelon METRIC model be applied to the aviation spare
parts industry as well. This chapter will apply the theory of the METRIC model described in chapter 2 to the
general case at KLM E&M.

3.3.1. multi-echelon model structure

The structure of the model described in this chapter is slightly different from the model structure described
and depicted in Figure 2.3. The model in this chapter will include the capability of local repair. In the multi-
echelon model defined in chapter 2, are unserviceable components always returned to the main warehouse.
This type of operations is not necessarily the most efficient method for a supply chain. It might be beneficial
to repair unserviceable components locally at the remote warehouse. Such an operations is called local repair.
To incorporate local repair in the model, the model structure is modified according to Figure 3.3. The dashed
lines represent the flow of components repaired locally.
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Figure 3.3: Multi-echelon structure with local repair

3.3.2. Mathematical multi-echelon METRIC model

The definition of demand for components at the local warehouses is identical to the demand for the single-
echelon model (Equation 3.1). The model structure does not allow for any demand directly from the main
warehouse. The demand at the main warehouse is therefore equal to the sum of the components shipped
from the remote warehouses to the main warehouse. The number of components shipped to the main ware-
house depends on the fraction of items locally repaired. This fraction is defined by r j , where j identifies each
local warehouse. The definition of the demand at the main warehouse can be found in Equation 3.7.

mmai n =
J∑

j=1
(1− r j )m j (3.7)

The definition of the pipeline for the main warehouse in Equation 3.8, is comparable to the pipeline definition
of the single-echelon model.

pi pel i nemai n = mmai n ∗T ATmai n (3.8)

The pipeline definition for a remote warehouse is less trivial. The model structure reveals that a component
in the pipeline for a remote warehouse can be located at two positions. The component can reside in the
local pipeline, or the pipeline between the main warehouse and the local warehouse. The definition of the
pipeline for a remote warehouse (Equation 3.9) is therefore separable in two different pipelines. The local
pipeline, as depicted in Equation 3.10, is derived similar to the pipeline of the main warehouse. The parent
pipeline itself can be divided into two parts as well. One part represents the orders which are on stock at
the main warehouse, and therefore can be shipped to the remote warehouse instantly. The second term
represents the orders which are back ordered at the main warehouse. Combining these two terms results in
Equation 3.11.

pi pel i ne j = local Pi pel i ne j +par entPi pel i ne j (3.9)

local Pi pel i ne j = m j ∗ r j ∗T AT j (3.10)

par entPi pel i ne j = m j ∗ (1− r j )∗
(

shi ppi ng T i me j + EBOmai n

mmai n

)
(3.11)
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With the definition of the pipeline, the expected back orders at the remote warehouse can be determined.
The definition of the expected back orders (Equation 3.12) can be rewritten to the form of Equation 3.14. It
is worth mentioning that for a stock level of 0, the expected back orders will per definition be equal to the
expected removals. Evidently, if there is no stock, each order will result in a back order. Therefore it can be
stated that EBO(0) = E

[
X

]
, where E

[
X

]
stands for the expected demand at each point in time.

EBO(s) =
∞∑

x=s+1
(x − s)P (x = pi pel i ne) (3.12)

= pi pel i ne −
s=stock∑

s=0
P (X ≥ s −1) (3.13)

= pi pel i ne −
s=stock∑

s=0
1−P (X < s −1) (3.14)

The expected back orders experienced by the customers of the entire supply chain is the sum of the expected
back orders at the remote warehouses (Equation 3.15). Note that the expected back orders of the main ware-
house are not included in this sum. The structure of the model does not connect any customers to the main
warehouse, therefore the back orders at the main warehouse should be excluded from the system back or-
ders summation. The back orders of the main warehouse do influence the system back orders through the
pipeline of the remote warehouse (Equation 3.11).

EBOs y stem(s) =
J∑

j=1
EBO j (s) (3.15)

The data structure containing the optimization parameter (Equation 3.16) for the multi-echelon model differs
from the single echelon model. The data structure contains the optimization parameter for each component
at each location. Equation 3.17 shows the construction of the optimization parameter vector.

∆Xopt (s) = Xopt (s)−Xopt (s j +1) (3.16)

∆Xopt (s) =
{

Xopt (s)−Xopt (smai n +1), for mai n

Xopt (s)−Xopt (s j +1), for ∀ j
(3.17)

The marginal analysis variable secr et is changed from a single value, to a vector as well. The length of the
vector is the same as the amount of warehouses in the supply chain structure. Equation 3.18 shows the multi-
echelon form of the secret parameter.

Secr et (s) =
∆Xopt (s)

pr i ce
(3.18)

3.4. multi-echelon: VARI-METRIC

The VARI-METRIC model is an extension of the METRIC model. The previous section showed that the ex-
pected back orders of the METRIC model are solely based on the expected value of the pipeline. The VARI-
METRIC model relaxes this assumption. By determining the variance of the pipeline, the probability distri-
bution in the expected back order equation can be chosen more freely. The remainder of this chapter will
show the derivation of the variance of the pipeline. Chapter 4 will discuss the implementation of the variance
in the probability distribution of the expected back orders.
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3.4.1. Mathematical multi-echelon VARI-METRIC model

For the METRIC model the expected number of components between the main and local warehouse is con-
tinuously described as the pipeline. A different, more mathematical notation, is E [X j ] where j denotes each
local warehouse. This section will use the mathematical notation to make the derivation more recogniz-
able.

The variance of the pipeline will be derived from the general definition of the pipeline. The general definition
of the variance can be found in Equation 3.19.

V ar
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X
]= E

[
X 2]−E

[
X

]2 (3.19)

Equation 3.19 can be rewritten in the following two forms. The proof of Equation 3.20 and 3.21 can be found
in Appendix A.1 and A.2 respectively.
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Applying Equation 3.21 to the pipeline from the main warehouse to the remote warehouse results in Equa-
tion 3.22.
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To determine the first term of the variance, the expectation is rewritten. The variance differentiates between
the case where the number of items on order is more than the items on stock at the main warehouse (xmai n >
smai n), and less or equal to the items on stock at the main warehouse (xmai n ≤ smai n).

If the number of items on order at the main warehouse is less or equal to the number of items on stock. The
average number of items in the pipeline from the main warehouse to the remote warehouse is the average
number of items on its way to the remote warehouse (Equation 3.23).

E
[

X j |xmai n
]= m j ∗ shi ppi ng T i me j xmai n ≤ smai n (3.23)

When the number of items on order is more than the items on stock at the main warehouse (xmai n > smai n),
the number of back orders will be xmai n − smai n . Thus, the expected number of items in the pipeline to the
remote will be the average items on its way to the warehouse, plus the fraction of back orders at the main
warehouse designated for the remote (Equation 3.24).

E
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X j |xmai n
]= m j ∗ shi ppi ng T i me j +

m j

mmai n
(xmai n − smai n) xmai n > smai n (3.24)

With the seperate equation for the expectation, the first term of the variance can be derived. Equation 3.22
shows the derivation of the first term of the variance.
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(3.25)

Determining the expectation of the variance results in equation 3.26.
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The second term of Equation 3.22 is derived as follows:
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Substituting Equation 3.26 and Equation 3.31 into Equation 3.22 gives the following variation for the pipeline
at the remote locations.
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To determine the variance of the pipeline it is required to determine the variance of the back orders at the
main warehouse. The variance of the back orders can be derived using the alternative form of the variance
in equation 3.20. From this definition the recursive form of the variance of back-orders can be determined
(Equation 3.33-3.34). Similar to the expected back-orders, V BO(0) will per definition be equal to the variance
of the demand.

V BO(s) = E
[
BO2(s)

]− (
EBO

[
s
])2 (3.33)

=V BO(s −1)−EBO(s)−EBO(s −1)− (
EBO(s)

)2 + (
EBO(s −1)

)2 (3.34)

3.5. Optimization parameter
Before the system can be optimized, a solution technique has to be determined. This section will first elabo-
rate on selecting the solution technique. After this, the section continues with the definitions of the different
optimization parameters.

3.5.1. Selecting the solution technique

Chapter 2.4 described a wide variety of solution techniques which can be used to optimize a inventory op-
timization model. This section will commence shortly on the process behind choosing the optimization pa-
rameter used during the project.

The introduction stated that the project is a collaboration between the TU Delft and KLM E&M. The selec-
tion of the solution technique is therefore based on the requirements of both stakeholders. Finding an exact
solution for the inventory optimization problem can be ruled out. The high complexity of the multi-echelon
problem does not allow for an exact solution, without making critical simplifications. Simplifying the model
to a point where a exact solution is possible, does limit the usability of the model for KLM E&M and the
academic novelty for the TU Delft.

The end users of the to be developed inventory optimization model are the specialists at KLM E&M. These
specialists are required to perform analyses on the inventory levels, multiple times a day. The final inventory
optimization model is therefore required to limit the computational load.

Considering computation time, the choice between solution techniques is quickly narrowed down to a lin-
ear programming approach. Simulation based approaches do provide better insight in the behaviour of the
supply chain, but are computational to demanding.
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The Lagrangian relaxation algorithm does entail benefits regarding the optimization procedure. The com-
plexity of such a algorithm does unfortunately not fit in the scope of the project. This project will therefore
uses a greedy algorithm as solution technique of the model. A secondary advantage of a greedy algorithm
lays in the comparison with the current inventory optimization tool at KLM E&M. The current optimization
program used by KLM E&M does utilize the greedy algorithm as well. Developing a new model with this same
algorithm enables the specialists at KLM E&M to easily compare the two tools to each other.

The objective of KLM E&M is to increase operational profitability. To achieve the maximum operational
profitability, investment costs should be minimized while still achieving the desired service level target. A
marginal analysis lends itself eminently for this purpose. The marginal analysis makes the optimal decision
during each iteration for that moment in time. The decision is based on the gain of service metric relative
to the cost of this gain. The model developed over the course of this project will therefore use a greedy algo-
rithm based on a marginal analysis. The next section will describe in more detail what the specific definition
of marginal analysis parameter for this project.

3.5.2. Expected back order as optimization parameter

As mentioned in the definition of chapter 3.2, a back order occurs if an inventory item is not on hand when
an order is placed. If the assumption that every item is critical for operation is made, consequently each back
order will result in downtime of the end product. To minimize the downtime of the end product, the event of
a back order should therefore be limited.

The expected back order based optimization parameter can be defined by substituting the expected back
orders into equation 3.6. The final definition of the secret can be found in equation 3.35.

secr etEBO = EBO(s)−EBO(s +1)

pr i ce
(3.35)

3.5.3. Back order cost as optimization parameter

For most supply chain items it is possible to borrow an item externally if necessary. Especially the aviation
spare part industry is well know for this type of operation. The cost of such a borrow may differ between the
items in the supply chain. So, instead of solely optimizing the number of back orders, it may be interesting to
minimize the cost of back orders as well.

To do so the expected borrow cost need to be defined. The expected borrow cost is simply defined by multiply-
ing the expected number of back orders by the price of a back order. Equation 3.36 depicts the mathematical
definition of the expected borrow cost, where the borrow cost is defined by the variable cost .

EBOcost (s) = EBO(s)∗ cost (3.36)

To minimize the total cost of the back orders, the secret defined in equation 3.37 can be used. The opti-
mization parameter multiplies the cost of a back order, by the reduction in back orders if the stock would
be increased. The profit gain by reducing the expected borrow cost is then divided by the price of the item,
similar to the expected back order secret of equation 3.35.

secr etcost = EBOcost (s)−EBOcost (s +1)

pr i ce
(3.37)

3.5.4. Service level as optimization parameter

The objective of most supply chain optimization problems is to maximize the operational availability. The
general definition for operational availability of maintenance supply chain is if it is not down for either main-
tenance or supply [18]. The operational availability can be calculated according to equation 3.38. Where
MT B M is the mean time between maintenance, and MDT the mean downtime due to spares, maintenance,
and delays.



24 3. Inventory optimization model

Aoper ati onal =
MT B M

MT B M +MDT
∗100% (3.38)

For this project the downtime due to maintenance is not relevant. Therefore it is useful to derive two separate
expressions for the maintenance availability and supply availability. Sherbrooke [18] states that the mainte-
nance and supply availability can be determined by equation 3.39 and equation 3.40 respectively.

Amai ntenance = MT B M

MT B M +MC T M +MP MT
∗100% (3.39)

Asuppl y =
MT B M

MT B M +MSD
∗100% (3.40)

In these equations MC T M is the corrective maintenance time, MP MT the preventive maintenance time, and
MSD the mean supply delay. The operational availability, as defined in equation 3.38, can be approximated
by multiplying the maintenance and supply availability. This approximation will result in an underestimation
of the operational availability. However, for high availability rates will the error be minimal [18].

For the single echelon model described in Chapter 3.2 the supply availability can be rewritten to the mathe-
matical form of equation 3.41. Where i denotes any item in the supply chain.

A Avai l abi l i t y =
I∏

i=1

(
1− EBO(si )

F H ∗QPAi

)QPAi ∗100% (3.41)

The multi-echelon model of section 3.3 and 3.4 required an extra step to determine the availability. In a multi-
echelon model the supply availability is determine by the combined availability at the remote warehouses.
Equation 3.42 shows the mathematical representation of the availability parameter for a multi-echelon sys-
tem. In this equation, j denotes any remote warehouse in the system. The availability at the main warehouse
does not effect the system availability due to the assumption that all customer requests will take place at the
remote warehouses.

A Avai l abi l i t y =
∑J

j=1 A j ∗F H j∑J
j=1 F H j

∗100% (3.42)

The optimal availability for the supply chain of KLM E&M differs from the availability rates described above.
KLM E&M is not necessarily concerned with the mean supply delay. The contractual agreements of the KLM
E&M customers are service level based. The service level is determined by the fraction of components deliv-
ered within the contractually agreed time span. To facilitate an optimization based on the achieved service
level a new optimization parameter needs to be defined. The new optimization parameter is defined as the
fraction of on time deliveries (Dachi eved ) compared to the total deliveries (D tot al ). The mathematical repre-
sentation of the optimization parameter can be found in equation 3.43.

Aser vi cel evel =
Dachi eved

D tot al
∗100% (3.43)

The same availability parameter can be used in the marginal analysis as well. Equation 3.44 depicts the
marginal analysis parameter based on the on time removals.

secr etOT R (s) = Dachi eved (s +1)−Dachi eved (s)

pr i ce
(3.44)
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Implementation

4.1. Single-echelon model

The implementation of the single-echelon model depends heavily on the probability distribution forming the
basis of the model. The equation defining the expected number of back orders (Equation 3.5) has a variable
P, representing a discrete probability distribution. Chapter 3.1 elaborated on the fit between the supply chain
of KLM E&M and different probability distributions. It is shown that the Poisson distribution results in the
best fit, with the available resources and data sets. Assuming a Poisson distribution, will change the expected
back order equation of chapter 3.2 to Equation 4.1. Instead of taking the sum the Poisson distribution, the
cumulative distribution can be used.

EBO(s) = EBO(s −1)−1−
s−1∑
x=0

Poi sson(s, pi pel i ne)

= EBO(s −1)−1−Poi sson.C DF (s −1, pi pel i ne) (4.1)

The final single-echelon model implemented, consists of two steps. First the model is initialized, after which
the model gets optimized. This section will provide details on both steps of the implemented model.

Initialization

During the initialization, the starting state of the model is determined. The starting state of the model consists
of two parts, the initial service level and the optimization parameter of each component. The initial service
level of the system is determined according to Equation 3.43. The optimization parameter is component
specific, and is therefore initialized for each component individually. The optimization parameter is based
on Equation 3.6. The specific secr et value will depend on the chosen optimization parameter as explained in
3.5. For clarification, the complete initialization procedure is provided as pseudo code in Algorithm 1.

Algorithm 1 Initialization single-echelon

1: procedure INITIALIZE

2: onTimeRemovals ← 0
3: for all component s do
4: ∆serviceLevel ← serviceLevel(stock+1)− serviceLevel(stock)
5: secretList[component ] ←∆serviceLevel
6:

7: onTimeRemovals ← onTimeRemovals+ serviceLevel(stock)∗expectedRemovals

8: systemServiceLevel ← onTimeRemovals/totalRemovals

25
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Optimization

The optimization procedure of the single-echelon contains a while loop repeating itself until the optimiza-
tion target is reached. Line 3 of Algorithm 2 selects the component with the highest value for the optimization
parameter, as it is most beneficial to increase the stock of this component. To increase the stock of a com-
ponent a couple of variables do require modification. Line 6 of the algorithm calls a different procedure to
modify the variables required to increase the stock by one.

The INCREASESTOCK procedure increments the stock level of the component by one. After the new stock level
is set, a new service level delta is determined. Finally, the new service level delta is saved to the data structure
containing the reference between component and service level delta.

Increasing the stock of a component will naturally impact the service level of the system. The initialization
procedure reveals that the system service level is determined based on the on time removals. To limit compu-
tational load, the on time removals variable is modified instead of recalculated. Line 4 of Algorithm 2 deducts
the on time removals caused by the selected maxComponent . After the method to increment the stock is
finished, a the new amount of on time removals is added to the total on time removals again (Line 8).

Algorithm 2 Optimization single-echelon

1: procedure OPTIMIZE

2: while finalServiceLevel < systemServiveLevel do
3: maxComponent ← max(secretList)
4: onTimeRemovals ← onTimeRemovals− serviceLevel(stock)∗expectedRemovals
5:

6: goto INCREASESTOCK(maxComponent)
7:

8: onTimeRemovals ← onTimeRemovals+ serviceLevel(stock)∗expectedRemovals
9: systemServiceLevel ← onTimeRemovals/totalRemovals

10:

11: procedure INCREASESTOCK

12: stock ← stock+1
13: ∆serviceLevel ← serviceLevel(stock+1)− serviceLevel(stock)
14: secretList[component ] ←∆serviceLevel

4.2. Multi-echelon model

The implementation of the METRIC and VARI-METRIC model is identical. The difference between the model
lays in the definition of the secret value. The implementation described in this section can therefore be ap-
plied to the METRIC and VARI-METRIC model.

The fist step of the implementation lays in the model structure. In the problem description of chapter 1 the
supply chain structure of KLM E&M is described. This structure shows a direct link between the main ware-
house and a customer. A multi-echelon model does not facilitate such a connection. During the development
of the multi-echelon model it is assumed customer demand will only occur at the remote warehouses. To
cope with this restriction a fifth virtual local warehouse is introduced. The new local warehouse, called SPL,
is located in Amsterdam as well. Customer requesting components from the main warehouse will be server
via this virtual warehouse. Figure 4.1 shows the implemented supply chain structure for the case study.

Similar to the single echelon model, does the multi-echelon model depend on a discrete probability distribu-
tion. Equation 3.14 contains the same variable P . Substituting the Poisson distribution will finally result in
Equation 4.2 for the expected number of back orders.

P (X < s −1) = Poi sson.C DF (s, pi pel i ne) (4.2)

The VARI-METRIC model utilizes the negative binomial distribution as well. Equation 4.3 shows the imple-
mentation of the negative binomial distribution for the variable P .
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AMS

RPA RLO RKL RMI SPL

Figure 4.1: multi-echelon representation of the KLM E&M supply chain

P (X < s −1) = N BD.C DF (s, pi pel i ne,V ar
[

X j
]
) (4.3)

The implementation of the multi-echelon model is closely related to the implementation of the single echelon
model. It consists of two phases, an initialization phase, and an optimization phase. Due to the complexity of
the model structure, the implementation increases in complexity too. Both phases will be discussed in more
detail below.

Initialization

During the initialization phase, each component, at each location is initialized. At line 4, a different optimiza-
tion parameter for an increase in stock at each location is determined.

Line 8 of Algorithm 3 shows the calculation of on time removals. The final on time removals to the cus-
tomers are achieved at the local warehouses only, as the customer requests do only take place at the local
warehouses.

Algorithm 3 Initialization multi-echelon

1: procedure INITIALIZE

2: for all component s do
3: for all locati ons do
4: ∆serviceLevel ← serviceLevel(stock+1)− serviceLevel(stock)
5: secretList[component , locati on] ←∆serviceLevel
6:

7: if l ocati on 6= mai n then
8: onTimeRemovals ← onTimeRemovals+ serviceLevel(stock)∗expectedRemovals

Optimization

The optimization of the multi-echelon model is depicted in Algorithm 4. The optimization procedure is re-
peated until the final service level goal is reached. During each optimization step, the stock of component
with the highest secr et value is increased by one. After each increment in stock, the service level of the system
will increase as well. Due to the multi-echelon structure, the increase of stock of a component will effect the
service level of the entire system. For the single echelon mode, it was sufficient to determine the increase in
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on time removals for the modified component. However, for the multi-echelon model the on time removals
for the entire system have to be redetermined.

Algorithm 4 Optimization multi-echelon

1: procedure OPTIMIZE

2: while finalServiceLevel < systemServiveLevel do
3: maxComponent ← max(secretList)
4:

5: goto INCREASESTOCK(maxComponent)
6:

7: for all component s do
8: for all locati ons do
9: if locati on 6= mai n then

10: onTimeRemovals ← onTimeRemovals+ serviceLevel(stock)∗expectedRemovals

11:

12: systemServiceLevel ← onTimeRemovals/totalRemovals

13:

14: procedure INCREASESTOCK

15: stock ← stock+1
16: ∆serviceLevel ← serviceLevel(stock+1)− serviceLevel(stock)
17: secretList[component , locati on] ←∆serviceLevel

4.3. Optimization parameter
The expected back order, and expected back order cost optimization parameter can be calculated directly
from the equations of the model. The service level optimization parameter does however require an extra
step during implementation. Equation 3.43 depicts the mathematical definition of the optimization parame-
ter. Determining the total demand of an item is fairly straight forward, by calculating the sum of the demand
at each location. With the assumption of Poisson demand for each component, the Dachi eved can be de-
termined according to Equation 4.4. The parameters of the cumulative distribution function (Poi ssonC DF )
are the stock level (s) and the expected number of units in the pipeline (pi pel i ne). The definition of the
pipeline varies between the single- and multi-echelon models. For the single-echelon model the pipeline is
defined according to Equation 3.2. The definition of the pipeline for the multi-echelon models can be found
in Equation 3.9.

Dachi eved = Poi ssonC DF (s −1, pi pel i ne)∗D tot al (4.4)
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Verification

To ensure validity of the developed inventory optimization model, a verification of different steps of the op-
timization procedure is performed. The purpose of this section is threefold. The section lists the different
verification steps with results, it motivates the chosen verification steps, and finally will discuss the limitation
of the verification steps.

5.1. Motivation for verification procedure

The verification procedure of this chapter lays a relation between the mathematical model of chapter 3 and
the implementation of chapter 4. The purpose of the verification procedure is to increase insight in the cal-
culations performed during the optimization of the model. With this chapter, the reproducibility of the con-
ducted research is meant to increase as well.

The mathematics of the single and multi-echelon model are closely related. To a large extend are the equa-
tions of the multi-echelon model a complex version of the single echelon model. Therefore, for the sake of
simplicity does this chapter only perform the verification of the equations once. Each verification step high-
lights the single and multi-echelon equations belonging to the particular step.

The verification is performed in a bottom up procedure. The final optimization parameter of the system are
the on time removals (OT R). In order to determine the on time removals, several calculation steps have to be
performed. The verification procedure on the next chapter will therefore start on the bottom, and step wise
proceed to the final on time removals of the system.

5.2. Verification of the inventory optimization model

In order to perform a verification of the inventory optimization model, a couple of input parameters are
defined. Table 5.1 lists the parameters belonging to a typical fast moving and slow moving component of the
KLM E&M case described in chapter 1. The fast moving component selected as example is a crew oxygen
cylinder. The slow moving component selected is a radar antenna placed in the nose of the aircraft.

For the multi-echelon model it is necessary to determine the number of flight hours for customers related to
a remote warehouse. KLM E&M does currently not have these numbers. Therefore an estimation has been
made. It is assumed that a customer request is always fulfilled from the warehouse closest to the hub airport
of the customer. For example, all component requests from airlines located in Asia will be shipped from the
warehouse in Kuala Lumpur. Using this assumption, the number of aircraft served by each warehouse can be
determined. The final flight hours are calculated by multiplying the number of aircraft by the average flight
hours of an aircraft per year. For KLM E&M, the average flight hours per year is set to 3190. The estimated
number of flight hours for the two components are provided in Table 5.2.

Next to the flight hours, the multi-echelon model depends on the shipping time between the warehouses.
The supply chain of KLM E&M is a global operation. The shipping time between the warehouses therefore

29
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Table 5.1: Verification components parameters

Fast mover Slow mover
Family number 221 62
Name Oxygen cylinder Radar antenna
QPA 1 1
MT BR (hours) 2172 515568
Price $ 4.319 $ 23.735
Flight hours 535.421 520.905
T AT (days) 30 34
Exp removals (year) 246,6 1,12
AIP 24,86 0,10

Table 5.2: Components flight hours and shipping times

Fast mover Slow mover Shipping time
RPA 73.297 51.580 3 days
RLO 117.007 0 3 days
RKL 150.095 397.337 5 days
RMI 0 0 5 days
SPL 195.022 71.988 0 days
Total 535.421 520.905 -

varies per location. For the European warehouses a shipping time of 3 days is the norm. The shipping time
between Amsterdam and a non European warehouses is 5 days. An overview of the shipping times can be
found in Table 5.2.

The first step of the model is to determine the expected removals (m) per year. Equation 3.1 and 3.7 are used
to calculate the expected removals for the single- and multi-echelon model. As explained in Chapter 1, does
KLM E&M at this moment not perform repair actions at the local warehouses. The local repair parameter (r j )
is therefore set to 0 for all remote warehouses. Equation 5.1 provides the demand calculation for one local
warehouse. The demand at RPA for the fast moving component is used as an example. The calculation show
that the demand for the fast moving component at RPA is expected to be 33.75 per year

mRPA = F H ∗QPA

MT BR
= 73.297∗1

2172
= 33.75 per year (5.1)

The demand calculation for the main warehouse of the multi-echelon model differs from the equation de-
scribed above. Equation 5.2 shows the demand calculation of the main warehouse for the multi-echelon
model. Again, the fast mover component is used as an example. Calculating the demand for the single ech-
elon model, or different components is considered trivial. The demand at the main warehouse for the fast
moving component is 302.55 per year.

mmai n =
J∑

j=1
(1− r j )m j

= (1−0)∗mRPA + (1−0)∗mRLO + (1−0)∗mRK L + (1−0)∗mRM I + (1−0)∗mSPL

= 33.75+53.87+69.10+0+89.79

= 246.51 (5.2)

The next step is to determine the number of components in the pipeline. The pipeline calculation for the
single echelon model (Equation 3.2) is equal to the pipeline of the main warehouse in a multi-echelon model
(Equation 3.8). Equation 5.3 shows that the expected number of components in the pipeline of the main
warehouse for the fast moving component is 20.26 at any given point in time.
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pi pel i nemai n = mmai n ∗T ATmai n = 246.51∗ 30

365
= 20.26 (5.3)

The pipeline of the remote warehouses for the multi-echelon model depends on the expected back orders
(EBO) of the main warehouse, as can be seen Equation 3.11. The definition of expected back orders at the
main warehouse is given in Equation 3.12. Combined with the discussed implementation of the probability
distribution in Chapter 4, are the expected back orders determined according to Equation 5.4. The verifi-
cation of the expected number of back orders for the main warehouse is performed for two iterations, the
case where stock is 0 and stock is 1. The parameters of the fast moving component are substituted in Equa-
tion 5.4. For the case where stock is 0, the number of expected back orders is 20.26. Chapter 3.3 already
stated the fact that, in case of zero stock, the expected back orders always equals the pipeline. For the case
where stock is 1, the recursive form of the back orders from Equation 4.1 is used. Due to the high demand
and low stock, decreases the number of expected back orders by approximately one. As the stock increases
the decrease in expected back orders for each step will convert to zero. Chapter 7 will further elaborate on
this behaviour.

EBOmai n(stock = 0) = pi pel i nemai n −
s=0∑
s=0

1−P (X < s −1)

= 20.26

EBOmai n(stock = 1) = EBO(stock −1)− (
1−

s=stock∑
s=0

P (X < s −1)
)

= EBO(0)− (
1−Poi ssonC DF (0, pi pel i nemai n)

)
= 20.26− (1−1.58∗10−11)

= 19.26 (5.4)

The pipeline of the remote warehouse consists of two terms. The first term, the local pipeline, represents
components in the local repair loop. The second term, the parent pipeline, represents components shipped
from the main warehouse. The assumption of no local repair, results in a local pipeline of 0. Equation B.5
shows the calculation of the local pipeline. .

l ocalPi pel i neRPA = mRPA ∗ rRPA ∗T ATRPA = 33.75∗0∗T ATRPA = 0 (5.5)

As mentioned before, the parent pipeline depends on the expected number of back orders. Equation B.6
shows the parent pipeline for the case of 1 stock at the main warehouse. The shipping time between the main
warehouse and the Paris warehouse is 3 days.

par entPi pel i neRPA = m j ∗ (1− r j )∗
(

shi ppi ng T i me j + EBOmai n

mmai n

)
= mRPA ∗ (1− rRPA)∗

(
shi ppi ng T i meRPA + EBOmai n

mmai n

)
= 33.75∗ (1−0)∗

(
3

365
+ 19.26

246.51

)
= 2.91 (5.6)

The final pipeline of the remote location with 1 stock at the main warehouse can be found in Equation 5.7.
Due to the assumption of no local repair, the final pipeline will be equal to the parent pipeline.

pi pel i neRPA = local Pi pel i neRPA +par entPi pel i neRPA = 0+2.91 = 2.91 (5.7)
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With the pipeline of the local warehouse, the expected back orders at the local warehouse can be determined.
The calculation of the expected back orders at the local warehouse is different for the METRIC and VARI-
METRIC model, due to the different implementation of the probability distribution P . The procedure for the
METRIC model is identical to the expected back order calculation of the main warehouse. The verification of
the local warehouse expected back orders for the METRIC model can be found in Equation 5.8.

EBORPA(stock = 0) = pi pel i neRPA

= 2.91

EBORPA(stock = 1) = EBO(0)− (
1−Poi ssonC DF (0, pi pel i neRPA)

)
= 2.91− (1−0.05)

= 1.96 (5.8)

The expected back orders for a local warehouse of the VARI-METRIC model is defined differently. Chapter 4
discussed the probability required for the VARI-METRIC model. Next to the pipeline, this model requires the
variance of the pipeline as well. Before determining the variance of the pipeline, it is necessary to calculate
the variance of the back orders at the main warehouse (V BO) first. The variance of the back order can be
obtained by substituting the corresponding values in equation 3.34. Equation 5.9 contains the variance for
the case of 0 and 1 stock at the main warehouse.

V BOmai n(stock = 0) = pi pel i nemai n

= 20.26

V BOmai n(stock = 1) =V BOmai n(0)−EBOmai n(1)−EBOmai n(0)− (
EBOmai n(1)

)2 + (
EBOmai n(0)

)2

= 20.26−19.26−20.26−19.262 +20.262

= 20.26 (5.9)

The variance of the local pipeline can be determined according to equation 3.22. The variance of the pipeline
of RPA, with a stock level at the main warehouse of 1, can be found in equation 5.10.

V ar
[

XRPA
]= mRPA ∗ shi ppi ng T i meRPA + mRPA

mmai n

(
1− m j

mmai n

)
EBOmai n +

(
mRPA

mmai n

)2

V BOmai n

= 33.75∗ 3

365
+ 33.75

246.51

(
1− 33.75

246.51

)
∗19.26+

(
33.75

246.51

)2

∗20.26

= 2.93 (5.10)

With the variance of the pipeline it is possible to determine the expected back orders according to the VARI-
METRIC model. Equation 5.11 shows the calculation of the expected back orders at RPA with a stock level at
the main warehouse of 0 and 1.

EBORPA(stock = 0) = pi pel i neRPA

= 2.91

EBORPA(stock = 1) = EBO(0)− (
1−N BDC DF (0, pi pel i neRPA ,V ar

[
XRPA

]
)
)

= 2.91− (1−0.051)

= 1.96 (5.11)

With the expected back orders of the local warehouse, the final optimization parameter can be determined.
Depending on the desired optimization parameter the final calculations of the model differ. The solution for
the three different optimization parameters will be shown in detail below.
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The optimization parameter based on the expected back orders, as described in Equation 3.35, can be deter-
mined directly from the values discussed before. The implementation of the expected back order optimiza-
tion parameter can be found in Equation 5.12.

secr etEBO(stock = 0) = EBO(0)−EBO(1)

pr i ce
= 2.91−1.96

4319
= 2.20∗10−4 (5.12)

The optimization parameter based on the increase in the theoretical on time removals is defined before in
Equation 3.44. Before this optimization parameter can be determined, the on time removals need to be de-
termined. Equation 5.13 shows the on time removals based on Equation 4.4 for the multi-echelon method.
The implementation for the single echelon model is similar to the implementation shown below.

Dachi eved (stock = 0) = 0∗D tot al

= 0

Dachi eved (stock = 1) = Poi ssonC DF (0, pi pel i neRPA)∗D tot al

= 0.05∗33.75

= 1.69 (5.13)

The marginal analysis based on the on time removals can be found in Equation 5.14.

secr etOT R (stock = 0) = Dachi eved (1)−Dachi eved (0)

pr i ce
= 1.69−0

4319
= 3.91∗10−4 (5.14)

The final service level at the remote location is obtained according to equation 5.15. If the stock levels at the
main and remote warehouse are both 1, the service level will be 5%.

ser vi ceLevel (stock = 1) = Dachi evedRPA

mRPA
∗100% = 1.69

33.75
∗100% = 5% (5.15)

The procedure can be repeated for the slow moving component. After the performed verification of the fast
moving component, are the calculation for the slow moving component trivial. For the sake of fullness are
the calculations included in appendix B.

5.3. Limitations of model verification
The model verification of the previous sector is limited to a single item. Performing a verification for a multi
item system is to computational demanding to be done by hand. The verification of the multi item model
will be covered during the sensitivity analysis in chapter 7.

The optimization based on service level is not included in the verification procedure. The unexpected com-
plex characteristic of this optimization parameter, could not be translated in a usable model over the course
of this project. The obtained results concerning the service level optimization are discussed in more detail in
chapter 6.





6
Results

The main goal of the project is to determine the required amount of stock to achieve a set service level target.
Over the course of this thesis, three different models have been suggested to determine the required stock.
Namely, the single echelon model, the METRIC model, and the VARI-METRIC model.

This chapter will discuss the ideal amount and distribution of aircraft components according to the three
different models. To do so, the parameters of the different components need to be defined. The fist section
will therefore discuss the scope of the specific case study at KLM E&M. The second section will discuss the
obtained results. A requirement of the model is a reasonable computational load. The last section of this
chapter will provide insight in the computation time of the different models.

6.1. Scope of the case study

Chapter 3.1 already stated the fact that the entire pool of components at KLM E&M consists of 1678 different
family numbers. The results obtained in this chapter are based on this entire pool of components. The pa-
rameters of the supply chain components of the case study vary greatly. Chapter 3.1 discussed the variety and
distribution of the demand for the different components. This analysis revealed large differences in demand
for the components. Next to the demand, other parameters do vary between the components as well. To
give insight in the parameters of the different components, this section will show and discuss the limits of the
different parameters.

Table 6.1 provides an overview of the 5 main defining parameters of the aircraft components. Additionally
the expected number of removals are included as well. The expected number of removals can be calculated
using the T AT , MT BR, and QPA according to equation 3.1. The final expected removals do however provide
an insightful look on the characteristics of the component pool.

Table 6.1: Limits of the parameters within the scope

Parameter Minimum Maximum Mean Median
MT BR (hours) 949 99.999.999 38.622.004 540.000
QPA 1 22 1,71 1
T AT (days) 23 58 38,99 38
Price $ 114 $ 965.759 $ 38.440 $ 12.567
Flight hours 0 1.595.000 302.601 178.640
Exp removals (year) 0 348,1 6,65 0,01

The widest range in the parameters can be found in the MT BR. The component with the shortest lifetime
will on average be removed after 949 flight hours. On the other hand, there are components which practically
never fail. The model can not cope with infinite numbers. Components which barely fail are therefore given a
MT BR of 99.999.999 hours. The mean MT BR is disproportionately influenced by the components with the
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maximum MT BR. The median of 540.000 hours does therefore provide a better insight in the distribution of
the MT BR.

Most components on an aircraft are unique. Occasionally, it does happen a component is present multiple
times. This can happen due to, for example, redundancy purposes. The mean and median of the QPA do
confirm this. The highest QPA of the component pool of this case study belongs to a light assembly. This
component does occur 22 times in a Boeing 737.

The T AT of the components within the supply chain of the case study varies between 23 and 58 days. The
majority of the components have a T AT between 30 and 40 days, as is indicated by the mean and median as
well. Chapter 7 will provide some insight and motivation for the goal of KLM E&M to reduce the T AT .

As mentioned in the introduction, can aircraft components be considered as expensive items. The prices in
table 6.1 do confirm this. The most expensive component, the airborne weather radar, is almost 1 million dol-
lars. Although this component is an extreme example, the average price lays still above 300.000 dollars. The
price of a component plays an important factor in the determination of the optimization parameter.

The expected removals provide a good insight on the characteristics of the component pool. Some compo-
nents with a very large MTRB and low amount of flight hours are not expected to be removed at all. Table 6.1
confirms this by showing that the minimum expected number of removals is 0. Components with a small
MT BR and/or a large number of flight hours are expected to be removed often. The most removed item of
the case study is the oxygen cylinder, with 348 expected removals per year. The demand analysis of chap-
ter 3.1 already revealed the fact that the majority of items do only get removed rarely. The median of the
expected removals does again confirm this statistic.

6.2. Results of the case study

This section contains the results obtained by the single echelon, METRIC, and VARI-METRIC model for the
scope described in the previous section. Each optimization is iterated until an overall service level of 95% is
reached. First the results of the three models optimized to a minimum number of expected back orders is
discussed. Secondly, the results of the models for the expected back order cost optimization are discussed. At
the end of the section a short overview of the required computational time is provided.

6.2.1. Expected back order optimization

Figure 6.1 shows the investment required to achieve a theoretical 95% service level across all locations and
components, according to the three different models. The investment is broken down into the different loca-
tions for the multi-echelon models.

The total investment is the lowest for the single echelon model. This characteristic may suggest that the single
echelon is preferable. However, as discussed in chapter 2.1, does the single echelon model underestimate the
losses induced by the shipping time between the different locations. The multi-echelon models do take into
account the shipping times and will therefore be more expensive. The total investment of the METRIC and
VARI-METRIC model are similar. The investment for the VARI-METRIC model is slightly less compared to the
METRIC model. Compared to the total investment, this difference can however be neglected.

The difference between the METRIC and VARI-METRIC model do reveal them self in the number of items in
the warehouses. The different approach on the probability distribution for the pipeline to the remote ware-
houses, does result in an increase in bought items for the VARI-METRIC model. The VARI-METRIC model
prefers to increase the stock of cheaper items which get removed more often.

It is interesting to note the relatively large number of items placed at the RKL warehouse. The fraction of
demand for this warehouse (±19%) is slightly larger compared to the demand at RPA (±16%). However, the
difference in investment and number of items is higher. The main driver for this difference lays be in the
different shipping time between the main warehouse and the remote warehouse.

Besides looking at the results of the total system. It is interesting to look at the results of a single component
as well. The output of the model contains an overview of the performance of each individual component in
the pool. To provide insight in the output of a specific component, the results of the fast mover of chapter 5
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Figure 6.1: Expected back order optimization investment
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Figure 6.2: Expected back order optimization number of items
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are graphically represented in figure 6.3. The figure contains the following information. Within the circle, the
optimal stock at each location is provided. The average number of components for the fast moving compo-
nent in the repair loop of the main warehouse, known as the pipeline, is about 20. Finally, the theoretical
service level to the customers at the individual locations is provided. The weighted average service level for
the entire fast moving component is 99.96%.
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Figure 6.3: Expected back order optimization detailed result family 221

Similar to the fast moving component, the results of the slow moving component are provided. Figure 6.4
provides a graphical overview of the results. The expected number of components in the pipeline is 0.094.
The model does only forward deploy stock to RKL. This warehouse is able to provide a service level of 98.62%.
The other warehouses wil therefore per definition experience 0% service level. The weighted average of the
service level is 75.23%. The results do correspond to the values of the verification procedure of the slow
moving component in appendix B.
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Figure 6.4: Expected back order optimization detailed result family 62

The service level of the fast moving component is above the 95% service level target of the optimization. The
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Figure 6.5: Weighted service level versus expected number of removals
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Figure 6.6: Expected back order cost optimization investment

high amount of expected removals, combined with the relatively low price makes this component preferable
for the greedy algorithm. In general it can be stated that components with these characteristics achieve a high
service level. Figure 6.5 provides a graph containing the average service level of each individual component.
The figure contains a couple of outliers, marked in red. The high price of these components reduces the
preferability of the components drastically. Although the relatively high amount of expected removals, is the
average weighted service level below the 95% target.

6.2.2. Expected back order cost optimization

This section provides the results of the single echelon, METRIC, and VARI-METRIC model optimized to the
cost of an expected back order. Determining the cost of an expected back order, or in the case of KLM E&M
the borrow cost, is not trivial. For the case study of this thesis does the borrow cost vary significantly per
event. The cost of a borrow among other things depend on the current market behaviour, duration, and
availability per vendor. Analyzing and forecasting the cost of a borrow is outside the scope of this study. As a
rule of thumb it can be said that the borrow cost is about 50% of the price of the component. The results in
this section are obtained applying this rule of thumb. The results are therefore merely useful for the analysis
of the behaviour of the model. Further research will be required to fit this model to the supply chain at KLM
E&M.

Figure 6.6 contains the investment required to achieve the 95% service level target for the three different
models. The results are inline with the results of the expected back order models. The investment of the single
echelon model is less compared to the multi-echelon models. The investment of the METRIC and VARI-
METRIC models are similar, with a slight advantage of the VARI-METRIC model. The investment of all three
models is consistently higher compared to the expected back order models. The borrow cost decreases the
effect of the prize on the optimization parameter. Therefore, more expensive items are held on hand.
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Figure 6.7: Expected back order cost optimization number of items

The increase in preferability of more expensive items does result in a lower total number of components.
Figure 6.7 shows the number of items required to achieve the target service level by the three different mod-
els. Interestingly does the VARI-METRIC model this time invest in more expensive items compared to the
METRIC model. An explanation for this behaviour can be given with the help of figure 6.8. This figure shows
the final weighted service level of each component, versus the demand of the component. In general, if the
demand for a component is high, the service level of this component will be high as well. The expected back
order model does however contain a few outliers. Three outliers are highlighted with a red circle in figure 6.8.
These three outliers are relatively expensive items, with a prices of $437.442, $524.137, and $350.037. The
model optimized to the expected back orders does not invest to heavily in these items, as it is expensive to do
so. Contrarily, the expected back order cost model does invest in these items. The cost of a back order is high
as well, so the negative effect of these items is reduced.

6.2.3. Required computational time

A requirement opposed by KLM E&M for the optimization model is the computational load of the model. The
specialists at KLM E&M do regularly need to perform inventory optimization calculations. A model relying
on extensive computational performance is therefore not sufficient. This section will discuss the required
computational time for the inventory optimization model developed for this project.

The results of this section are obtained by running the optimization model on an average end user laptop. An
overview of the specific configuration of the laptop can be found in Appendix E.

The greedy algorithm increments the inventory by one unit during each optimization step. Existing supply
chains usually have an initial amount of stock. Including the initial stock in the input of the optimization
model, reduces the computational time. Hence, the model requires less iterations to achieve the desired
service level target. The results of the this entire chapter, including the computational times of this section
assume that there is no initial stock. The comparison of computational time can therefore be considered as a
worst case scenario for the case study.
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Figure 6.8: Weighted service level versus expected number of removals for the VARI-METRIC model

Table 6.2: Computation times METRIC and VARI-METRIC model

Method Model Time (s) Increase

Expected back order
METRIC 532

7,0%
VARI-METRIC 569

Expected back order cost
METRIC 480

-5,8%
VARI-METRIC 452

Table 6.2 lists the computation time of the two multi-echelon models. The single echelon model is included
in the final multi-echelon models. Each time a multi-echelon model is optimized, the single-echelon model
will be optimized as well. It can be seen that the computation time of the models lays between 7,5 and 9,5
minutes. As mentioned in chapter 2.1 does the implementation of the VARI-METRIC model come with a
increase in computation time. This behaviour does indeed appear if the model is optimized according to
the expected back order method. For the expected back order cost optimization it is more complicated to
observe this behaviour. Due to the increase in item count, and therefore iteration steps, is the computation
time of the METRIC model slightly higher. Although significant, are these computation times acceptable for
the usage case at KLM E&M.
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Sensitivity analysis

The validation of the developed models is done through the technique of a sensitivity analysis. The com-
plexity of the iterative METRIC and VARI-METRIC model does not allow it to manually check each step of
the calculation. To ensure the correct performance of the model, a sensitivity analysis is performed. This
chapter discusses the sensitivity analysis of the METRIC and VARI-METRIC model. The sensitivity analysis
is divided in two sections. The first section discusses the sensitivity analysis performed for the METRIC and
VARI-METRIC model, using the expected back order optimization parameter. The second section will discuss
the sensitivity analysis for the METRIC and VARI-METRIC model optimized by the expected back order cost
parameter.

7.1. Expected back order optimization

The sensitivity analysis is performed on two parameters of the aircraft components, namely the MT BR and
the T AT . The MT BR does directly effect the demand for the component. Decreasing the MT BR, will in-
crease the demand for the component.

To solely test the effect of the MT BR on the model, the scope of the sensitivity analysis is reduced to only
one item. The results shown in this section are obtained with the parameters of the fast moving component
described in chapter 5. Each run is optimized until an overall service level of 95% is reached. Figure 7.1 and
figure 7.2 show the results for the METRIC and VARI-METRIC model respectively. Each stacked bar in the
figures represent a single run of the model. The MT BR of the input is varied for each of the seven runs. The
actual MT RB of the component is 2172 hours. During the analysis the MT BR is varied between 500 hours
and 3000 hours with steps of 500 hours.

The METRIC and VARI-METRIC model behave in a very similar way. As expected, does the number of items
increase when the MT BR decreases. If the average time a component stays on an aircraft is shorter, more
stock will be required to still achieve the 95% service level. The final investment required to achieve the
desired service level, increases as well. The scope of the sensitivity analysis only consist of one component,
with one price. The final investment of the model is therefore trivial and not provided in a figure.

Similar to the MT BR, the T AT can be varied. If the T AT decreases, a component will reside shorter in the
repair loop of the supply chain. A lower T AT is therefore expected to reduce the required number of compo-
nents. The sensitivity analysis for the T AT is performed on the same scope as the MT BR analysis described
before. Only this time, the T AT is varied between 15 and 35 days with steps of 5 days. Figure 7.3 and fig-
ure 7.4 show the results for the METRIC and VARI-METRIC model respectively. As expected does the number
of items decrease when the T AT is reduced.

Besides analyzing the behaviour of the model, does the above performed analysis fulfill a second goal. To
increase the operational profitability at KLM E&M, it is necessary to achieve the contracted 95% service level
with the least amount of investment as possible. As proven in the analysis of this chapter, can a reduction
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Figure 7.1: Total stock METRIC model for fast moving component with varying MTBR
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Figure 7.2: Total stock VARI-METRIC model for fast moving component with varying MTBR
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Figure 7.3: Total stock METRIC model for the fast moving component with varying TAT
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Figure 7.4: Total stock VARI-METRIC model for the fast moving component with varying TAT
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in required number items be achieved at two ways. KLM E&M can either increase the MT BR of the compo-
nents, or decrease the T AT .

It is difficult to increase the operating time of a component before it fails. Some components do get a fixed
MT BR from the manufacturer. After this fixed amount of flight hours an airline is obligated to replace the
component. In case the component does not contain such a restriction the reliability of a component could
be increased. This can be achieved by performing a modification campaign on the component. Such cam-
paigns do however require investment, so significant improvement in the MT BR has to be obtained to make
such a campaign profitable. The analysis of this chapter enables insight in the potential decrease in invest-
ment if the MT BR would increase.

Decreasing the T AT is a second way to increase operational profitability. The repair loop of a component at
KLM E&M consists of a couple of sections, varying per component. In general the repair loop does at least
contain the sections shipping, logistic handling, and repair process. By reducing the time required for any
of the sections the overall T AT can be reduced. At the time of writing KLM E&M is conducting a business
redesign process to, among others, reduce the T AT . The objective of KLM E&M is to reduce the total T AT
to 14 days. The analysis of this chapter indicates that such a reduction can significantly reduce the required
inventory investment.

7.2. Expected back order cost optimization
This section describes the sensitivity analysis of the METRIC and VARI-METRIC model optimized by the cost
of an expected back order. The first step of the sensitivity analysis is identical to the analysis performed in
the previous section. Varying the T AT and MT BR does result in the same characteristics as if the model is
optimized by the expected back orders. The results of this analysis can be found in appendix D.

However, the sensitivity analysis for the cost optimization can be taken a step further. Changing the cost of
a back order will influence the preferability of the component during the optimization. If the cost of a back
order is increased, the component will get less preferable. For the case at KLM E&M the cost of a back order
is defined by the borrow cost. If a component is back ordered, KLM E&M will borrow the component from a
competitor to fulfill the customer demand.

Figure 7.5 and figure 7.6 show the effect of varying the borrow cost of a component. Increasing the borrow
cost does result in a decrease in bought items. The results are obtained with a scope specifically designed for
the sensitivity analysis, containing variations of the fast moving component. The system is optimized until an
overall service level of 95% is reached. Changing the borrow cost for a run with one component does therefore
not result in any change in output. The scope of this analysis does therefore consists of 5 copies of the fast
moving component, with a different borrow cost for each component. The borrow cost for this analysis is
varied between 20% and 100% of the price of the component, with steps of 20%.
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Figure 7.5: Total stock METRIC model for the fast moving component with varying borrow cost
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Figure 7.6: Total stock VARI-METRIC model for the fast moving component with varying borrow cost





8
Conclusion

8.1. Conclusion

The research project started with the objective to determine the effect of a multi-echelon model on the in-
vestment of a supply chain of aircraft rotables. The project is conducted with the supply chain of KLM E&M
in mind. The final inventory model developed is tailored to the operations of KLM E&M, and all results are
obtained with data of this same supply chain.

To answer the research question, a systematic approach is applied. First the structure and requirements of an
inventory optimization model are discussed. A inventory optimization model can be divided into three main
sections. Chapters 1 showed that the three sections can be identified as the demand probability, the model
structure, and the solution technique. The three sections combined, will eventually determine the behaviour
and computational requirements of the model.

Starting point of the research is the current state of the art in literature. Chapter 2 provides an overview of
current literature on the three different sections. Different probability distributions are applied to model
the demand for an inventory optimization model. The theoretical context chapter discussed the Poisson,
Negative Binomial, and Weibull distributions as options to model the demand. Analysis of the demand made
clear that with the current available data, the Poisson distribution is the best way to model demand. The
Negative Binomial distribution tends to better represent the demand. However, more extensive research is
required to statistically proof the fit between data of low demand items, and this distribution.

Within current literature, two theories on inventory optimization can be distinguished. The simplest ap-
proach to the problem is a single-echelon model. Such a model assumes all demand is taking place at the
same warehouse. The second theory, namely the multi-echelon model, relaxes this assumption by introduc-
ing local warehouses. Many variations of this model are developed, each aiming to reduce the impact of an
modelling assumption.

The solution technique determines mainly the computational load of the model. The theoretical context
chapter discusses the possibility of an exact solution, linear programming, and a simulation based optimiza-
tion. The selected optimization algorithm for this project belongs to the linear programming category. The
inventory model is optimized utilizing the greedy algorithm. This technique comes with a low computational
demand, while still being a viable solution technique in current literature.

An inventory model does require an optimization metric to be optimize to. Current literature covers a couple
of metrics, each suiting different types of operations. The most novice step of this project lays in the im-
plementation of a new optimization metric, suitable for a supply chain containing low demand high value
items. This thesis proposed three optimization metric, namely the expected back orders, the expected back
order cost, and the service level. The expected back order cost and service level metric are two new metrics,
representing the novelty of the project.

Chapter 6 showed and discussed the effect on the investment of the different service metrics. The results of
the expected back order metric, and expected back order cost metric are compared to each other. According
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to the expectations, does the investment increase if the model is optimized to investment cost. The motiva-
tion of the cost optimization lays in the reduction of total operational cost of the supply chain. The complex
operational conditions make the validation of this behaviour unfortunately challenging, and therefore forced
to be left out of the scope of this project.

Next to the expected back order, and expected back order cost optimization, a service level optimization
metric is developed. The complex behaviour of this optimization metric does not permit the development
of a usable optimization metric jet. The early results are however promising. As soon as the initialization
problem is solved, it is expected that the service level optimization will outperform the other two optimization
metrics.

The research performed over the course of the project allows two of the three sub-questions to be answered.
The first sub question, what is the optimal allocation of inventory, is answered in chapter 6. According to the
two models, the majority of stock needs to be located at the main warehouse. The remaining stock needs to
be distributed over the local warehouses. Where the distribution depends on mainly on, the demand, and
turn around time.

The answer on the second sub-question, what is the gain on the service metric per item, depends per service
metric and stock level. The inventory model is optimized according to this research question. The marginal
analysis divides the increase in service metric by the cost of this increase. Naturally, there is no definitive
answer on this sub-question. The different possible service metrics are discussed in chapter 4.

The third sub-question, what is the difference between the theoretical calculated and actual supply chain
performance, is left unanswered. The complexity of the operation of the case study, makes it difficult to
validate the obtained results. The model does behaves as expected, as shown in chapter 7. However, a definite
validation can not be given due to the many unknown parameters influencing the supply chain.

With the answers to the three sub-questions, the research question can be answered. The investment re-
quired for a supply chain of aircraft rotables increases for a multi-echelon model compared to the single-
echelon model. The increase varies with the choice in optimization model and optimization metric. The
increase in complexity of the model and required investment is necessary to reduce the underestimation of
losses in the supply chain due to the global network. The increase in investment is caused by thee main
factors. The multi-echelon model allocates stock to remote warehouses. This allocation provides a better
representation of the reality, but does require more items to fulfill the optimization target. The multi-echelon
model takes into account the shipping times between the different locations as well. The single echelon
model essentially assumes instant delivery. Taking into account the shipping times will increase the invest-
ment cost, but again provide a better fit with reality. The VARI-METRIC does not only look at the expected
back order between the local- and main warehouse, but also takes into account the variance. Taking into ac-
count the variance will require more items to achieve the optimization target, and requires therefore a higher
investment.

8.2. Recommendations

There are definitely possibilities to improve the results obtained by the inventory optimization model. Im-
proving the inventory optimization model will achieve two goals. The model will provide a better insight in
the behaviour of a supply chain, enabling a better analysis of operational decisions. Secondly, the optimiza-
tion algorithm is more reliable, and can reduce the required investment to achieve the desired optimization
target. This section will discuss some recommendation for further research to improve the fit between the
model and the actual supply chain.

To be able to implement a demand probability capable of producing a better fit to the failure data, more
extensive research is required. Fitting a probability distribution to low demand items is challenging. Low
demand items will inevitably result in a limited amount of data to determine the fit of the probability distri-
bution. To justify the usage of for example the Negative Binomial distribution, further research can look at
the fit between many slow moving items. The approximately 1000 slow moving items at KLM do not produce
enough data to determine this fit. It is hard to say how many items are exactly required to determine this fit,
as this varies by the behaviour of the items as well.

Major possibilities of improvements lay in the extension of the model structure. The model developed during
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this project utilizes a virtual warehouse to accommodate for customer request at the main warehouse. Locat-
ing stock at the virtual warehouse places it out of reach for the other local warehouses. Eliminating the need
of a virtual warehouse will reduce the required investment to achieve the desired target.

The current model does not allow for any shipment between local warehouses. If an item is placed at a local
warehouse, it will stay there until a customer request is placed from that specific warehouse. In practice it
may occur that, an item at a certain moment may be more desirable at a different location. The shipment
of items between warehouses in the same echelon is called lateral transshipment in literature. Introducing
the possibility of lateral transshipment in the model, can increase the achieved service level with the same
amount of stock. Current literature covers extensive research on lateral transshipment. Applying the theory
to a multi-echelon, multi-item model is to this date not performed before. Models containing lateral trans-
shipment are computational demanding and therefore difficult to implement for such supply chains.

This paper already elaborated on optimizing the model to the achieved service level. Especially parties pro-
viding item availability can profit from a service level optimization. In order to successfully apply the devel-
oped service level optimization metric to a supply chain model, a way to cope with the initial characteristic
of the metric needs to be developed. It is believed, that the work conducted during this project can provide a
good starting point for further research on this topic.

All inventory optimization models use a constant to model the TAT of the items. It might be interesting to
analyze the effect of variation of the TAT on the required investment to achieve the optimization target. To
analyze this effect, the TAT can be represented by a probability distribution. Research on the fit between the
demand and a probability distribution will be useful for this purpose as well. Many of the same challenges
encountered during the demand analysis will apply the this problem as well.

The greedy algorithm combined with a marginal analysis provides opportunity for further research as well.
Implementing an epsilon greedy algorithm increases the change of escaping from a local optimum during
optimization. Changing the solution technique will almost always increase the computational load of the
model. Off all alternatives provided in this thesis, the epsilon greedy algorithm is considered the most evident
next choice. The effect on computational load can be limited, while improving the estimation of the true
global optimum.
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Mathematical proof

A.1. Proof of first variance form

The correctness of Equation A.1 can be proven by a lemma assuming the equation. The proof of the lemma
can be found below.
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A.2. Proof of second variance form

Equation A.7 is also know as the law of total variance.
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The proof of the above form is given below.
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A.3. Recursive formulas probability distributions

A.3.1. Poisson distribution

The Poisson distribution is solely dependable of the mean (µ). The definition of the recursive form for the
Poisson distribution can be found in Equation A.13.

P (0,µ) = e−µ (A.12)

P (i +1,µ) = µ

i +1
P (i ,µ) ∀i ∈Z≥ (A.13)

A.3.2. Negative binomial distribution

The Negative binomial distribution is dependable of two parameters (p,r ). These two parameters can be
defined in terms of the mean (µ) and variance (σ). The definitions of p and r can be find in Equation A.14
and A.15 respectively.

p = µ

σ2 (A.14)

r = µ2

σ2 −µ
(A.15)

The recursive form of the Negative binomial distribution is provided in Equation A.17.

P (0, p,r ) = pr (A.16)

P (i +1, p,r ) = i + r

i +1
(1−p)P (i , p,r ) ∀i ∈Z≥ (A.17)



B
Verification slow moving item

This appendix contains the verification of the slow moving component defined in chapter 5.

The expected removals per year can be defined for each location individually. The calculation is performed
for the RKL warehouse, as example.

mRK L = F H ∗QPA

MT BR
= 397.337∗1

515568
= 0,77 per year (B.1)

Equation B.2 shows the demand calculation of the main warehouse for the multi-echelon model.

mmai n =
J∑

j=1
(1− r j )m j

= (1−0)∗mRPA + (1−0)∗mRLO + (1−0)∗mRK L + (1−0)∗mRM I + (1−0)∗mSPL

= 0,10+0+0,77+0+0,14

= 1,01 per year (B.2)

The expected number of components in the pipeline is given by Equation B.3.

pi pel i nemai n = mmai n ∗T ATmai n = 1,01∗ 34

365
= 0,094 (B.3)

The expected back orders at the main warehouse can be found in Equation B.4.

EBOmai n(stock = 0) = pi pel i nemai n −
s=0∑
s=0

1−P (X < s −1)

= 0,094

EBOmai n(stock = 1) = EBO(stock −1)− (
1−

s=stock∑
s=0

P (X < s −1)
)

= EBO(0)− (
1−Poi ssonC DF (0, pi pel i nemai n)

)
= 0,094− (1−0,91)

= 0,004 (B.4)

Equation B.5 shows the calculation of the the local pipeline for the remote warehouse.
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local Pi pel i neRK L = mRK L ∗ rRK L ∗T ATRK L = 0,77∗0∗T ATRK L = 0 (B.5)

Equation B.6 shows the parent pipeline for the case of 1 stock at the main warehouse. The shipping time
between the main warehouse and the Kuala Lumpur warehouse is 5 days.

par entPi pel i neRK L = m j ∗ (1− r j )∗
(

shi ppi ng T i me j + EBOmai n

mmai n

)
= mRK L ∗ (1− rRK L)∗

(
shi ppi ng T i meRK L + EBOmai n

mmai n

)
= 0,77∗ (1−0)∗

(
5

365
+ 0,004

1,01

)
= 0,014 (B.6)

The final pipeline of the remote location with 1 stock at the main warehouse can be found in Equation B.7.
Due to the assumption of no local repair, the final pipeline will be equal to the parent pipeline.

pi pel i neRK L = local Pi pel i neRK L +par entPi pel i neRK L = 0+0,014 = 0,014 (B.7)

The verification of the local warehouse expected back orders for the METRIC model can be found in Equa-
tion B.8.

EBORK L(stock = 0) = pi pel i neRK L

= 0,014

EBORK L(stock = 1) = EBO(0)− (
1−Poi ssonC DF (0, pi pel i neRK L)

)
= 0,014− (1−0,99)

= 0,004 (B.8)

Equation B.9 contains the variance for the case of 0 and 1 stock at the main warehouse.

V BOmai n(stock = 0) = pi pel i nemai n

= 0,094

V BOmai n(stock = 1) =V BOmai n(0)−EBOmai n(1)−EBOmai n(0)− (
EBOmai n(1)

)2 + (
EBOmai n(0)

)2

= 0,094−0,004−0,094−0,0042 +0,0942

= 0,005 (B.9)

The variance of the pipeline of RKL, with a stock level at the main warehouse of 1, can be found in equa-
tion B.10.

V ar
[
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]= mRK L ∗ shi ppi ng T i meRK L + mRK L

mmai n

(
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)
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V BOmai n
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365
+ 0,77

1,01

(
1− 0,77

1,01

)
∗0,004+

(
0,77

1,01

)2

∗0,005

= 0,014 (B.10)

With the variance of the pipeline it is possible to determine the expected back orders of according the the
VARI-METRIC model. Equation B.11 shows the calculation of the expected back orders at RKL according with
a stock level at the main warehouse of 1.
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EBORK L(stock = 0) = pi pel i neRK L

= 0,014

EBORK L(stock = 1) = EBO(0)− (
1−N BDC DF (0, pi pel i neRK L ,V ar

[
XRK L

]
)
)

= 0,014− (1−0,99)

= 0,004 (B.11)

The implementation of the expected back order optimization parameter can be found in Equation B.12.

secr etEBO(stock = 0) = EBO(0)−EBO(1)

pr i ce
= 0,014−0,004

23.735
= 4,21∗10−7 (B.12)

Equation B.13 shows the on time removals for the multi-echelon method. The implementation for the single
echelon model is similar to the implementation shown below.

Dachi eved (stock = 0) = 0∗D tot al

= 0

Dachi eved (stock = 1) = Poi ssonC DF (0, pi pel i neRK L)∗D tot al

= 0,99∗0,77

= 0,76 (B.13)

The marginal analysis based on the on time removals can be found in Equation B.14.

secr etOT R (stock = 0) = Dachi eved (1)−Dachi eved (0)

pr i ce
= 0,76−0

23.735
= 3,2∗10−5 (B.14)

The final service level at the remote location is obtained according to equation B.15.

ser vi ceLevel (stock = 1) = Dachi evedRK L

mRK L
∗100% = 0,76

0,77
∗100% = 99% (B.15)





C
Service level optimization

This appendix will show and discuss the results obtained by the VARI-METRIC model optimized using the
service level parameter.

Figure C.1 shows the investment required to achieve the a 95% service level. As the final requirement of the
system is a certain service level, optimizing the system to service level should result in an investment less
compared to the expected back order, and expected back order cost models. Clearly this is not the case. The
final investment for the service level optimization is much higher compared to both other models.
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Figure C.1: VARI-METRIC investment required for varying optimization parameters

An explanation for this behaviour can be found in figure C.2 and figure C.3. These figures show the behaviour
of the optimization parameter for varying MTBR and TAT respectively. The figures show the increase in ser-
vice level for a component if the stock of this component would be increased by one. It can be seen that for
each MTBR, the increase in service level at very low stock levels is low as well. When the stock increases, the
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Figure C.2: Service level analysis variable removals

delta in service level increases as well. After reaching a maximum, the service level delta decreases again.
This, Poisson like, curve makes it very challenging to optimize the system. At low stock levels, it is difficult to
know the future maximum increase in service level. Therefore, it may not be beneficial for the optimization
algorithm to invest in a model at low stock levels, but will be beneficial at higher stock levels.

To be able to optimize the system on service level, the relation between service level delta and stock delta
needs to be determined. The blue line in figure C.2 shows the potential of determining this relations ship.
The large number of variables make it however very tricky to design a rule uniform for each item in the supply
chain. Figure C.3 does contain a similar fitted curve for varying TAT. This curve does show a complete different
shape compared to the curve belonging to the demand.

Despite the complex characteristic of the service level parameter. Effort has been made to verify the correct
behaviour of the model. To verify the behaviour of the model, the effect of the service level characteristic
should be avoided. This is done by imposing a minimum full rate for each supply chain item. By setting
a minimum fill rate for each component, the optimization parameter of each component is started after
reaching the maximum delta in service level.

To test the behaviour of the model, the minimum fill rate of each component is set to 10%. Figure C.4 show
the final investment of the three models with the minimum fill rate constraint. It can be seen that, in this case,
the investment of the service level optimization is lower compared to the other two models. This is according
to the expectations mentioned above.

The total investment of the three models with minimum fill rate constraint are much higher compared to the
normal models. Defining a minimum fill rate forces the model to keep at least 1 stock at each single location.
Placing 1 stock at locations with an expected demand of one per ten years, is off course not ideal. The solution
of setting a minimum fill rate is therefore not useful for the case study of this project.

Concluding, it can be said that optimizing the system to service level is potentially beneficial for the supply
chain of the case study. The complex characteristic of the service level parameter does it however make
challenging to perform this optimization. To be able to use the service level optimization, future research will
have to define a way of coping with the complex characteristic.
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Figure C.3: Service level analysis variable TAT
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Figure C.4: VARI-METRIC investment required for varying optimization parameters with a minimum fill rate of 0.1





D
Sensitivity analysis expected back order

cost optimization

This appendix contains the graphs belonging to the sensitivity analysis of the expected back order cost opti-
mization model. The sensitivity analysis is performed for the METRIC and VARI-METRIC model.

Figure D.1 shows the output of the METRIC model for varying MTBR. It can be seen that the number of items
decreases if the MTBR increases.

Figure D.2 shows the output of the VARI-METRIC model for varying MTBR. The trend showing in this graph
is again similar to trend described above.

The second step of the sensitivity analysis is varying the TAT. Figure D.3 and D.4 show the output of the MET-
RIC and VARI-METRIC model respectively. The stock level increases when the TAT increases as well. Due to
the longer repair times, it will be necessary to keep more stock to fulfill customer demands.
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Figure D.1: Total stock METRIC model for fast moving component with varying MTBR
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Figure D.2: Total stock VARI-METRIC model for fast moving component with varying MTBR
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Figure D.3: Total stock METRIC model for the fast moving component with varying TAT
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Figure D.4: Total stock VARI-METRIC model for the fast moving component with varying TAT





E
Hardware configuration

This appendix shows the configuration details of the computer used for all calculations performed over the
course of the project. To achieve similar performance it is recommended to use at least a machine with
comparable specifications.

Table E.1: Hardware configuration

Manufacturer Lenovo
Product ThinkPad L570
Processor Intel Core i5 2.4GHz
RAM 8GB
Operating system Windows 7 Professional
System type 64-bit
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